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A B S T R A C T   

According to the last report from the European Union (EU) Food Fraud Network, olive oil tops the list of the most 
notified products. Current EU regulation states geographical origin as mandatory for virgin olive oils, even 
though an official analytical method is still lacking. Verifying the compliance of label-declared EU oils should be 
addressed with the highest priority level. Hence, the present work tackles this issue by developing a classification 
model (PLS-DA) based on the sesquiterpene hydrocarbon fingerprint of 400 samples obtained by HS-SPME- 
GC–MS to discriminate between EU and non-EU olive oils, obtaining an 89.6% of correct classification for the 
external validation (three iterations), with a sensitivity of 0.81 and a specificity of 0.95. Subsequently, multi-class 
discrimination models for EU and non-EU countries were developed and externally validated (with three 
different validation sets) with successful results (average of 92.2% of correct classification for EU and 96.0% for 
non-EU countries).   

1. Introduction 

Current global market of olive oil, in particular extra virgin (EVOO) 
and virgin olive oil (VOO) categories, is threatened by fraudulent 
practices due to its high nutritional, sensory and, therefore, economic 
value. As a proof of fact, the 2020 annual report from the Agri-Food 
Fraud Network (FFN) from the European Union (EU) placed olive oil 
and other edible oils as the most notified food category with respect to 
non-compliances (European Union, 2021). This report also revealed that 
almost the 40% of the total non-compliances were due to mislabelling 
issues. Geographical origin is known to play a key role for consumers’ 
choice during olive oil purchasing process (Conte et al., 2020). More
over, a recent study (Carzedda et al., 2021) highlighted the general 
preference for local products, not only due to sustainability awareness 
but also because of a greater perception of safety. For these reasons, the 

EU Regulation N◦ 29/2012 aims to protect consumers from misleading 
information, as well as to maintain the competitiveness of the sector, 
through a mandatory label-declaration of the geographical origin for 
both EVOO and VOO. According to its fourth article, the declaration of 
origin shall consist of a reference to the EU, to the EU member state or to 
the third country, as appropriate. In the case of olive oils produced in 
more than one EU or non-EU countries, or in a mixture of both EU and 
non-EU countries, the corresponding blend should be mentioned. 
Finally, according to the EU certification, the geographical provenance 
can also be stated as Protected Designation of Origin (PDO) or Protected 
Geographical Indication (PGI) (Regulation (EU) No 1151/2012). The 
declared provenance of virgin olive oils is currently only assessed 
through documental review by the corresponding control bodies 
because an official analytical method is not available yet. Disposing of 
an instrumental method for verifying the geographical origin of virgin 
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olive oil would help to detect counterfeiting cases. Thus, the opportunity 
of fraud would be reduced in this regard. 

Numerous studies were performed for years aiming at virgin olive oil 
geographical authentication, most of which have been compiled in 
recent comprehensive reviews about olive oil authentication (Conte 
et al., 2020; Valli et al., 2016), even specifically regarding geographical 
assessment (Tahir et al., 2022). Tahir et al. (2022) evidenced that a wide 
variety of analytical techniques ranging from the popular separation 
tools (gas and liquid chromatography, GC and LC) to rapid spectroscopic 
methods have been combined with chemometrics for olive oil 
geographical authentication. The latter ones have been broadly applied 
as independent techniques (Near Infrared, NIR/ Mid-Infrared, MIR 
(Woodcock et al., 2008); Nuclear Magnetic Resonance, NMR (Alonso- 
Salces et al., 2015; Winkelmann & Küchler, 2019); Raman (Sánchez- 
López et al., 2016); Fluorescence (Lia et al., 2020); Fourier Transform 
Infrared, FTIR (Hennessy et al., 2009)) or combining the corresponding 
spectra through data-fusion techniques (Bevilacqua et al., 2013). 

One of the first works that addressed geographical authentication of 
olive oil was based on the fatty acid (FA) profile (Forina & Tiscornia, 
1982). Nowadays, FA are generally chosen together with other valuable 
analytical markers, such as volatile organic compounds (VOC) (Kosma 
et al., 2017) and phenols (Ben Hlima et al., 2017), to obtain comple
mentary information. In this sense, the triacylglycerol composition 
(Vera et al., 2019) and its stereospecific distribution of FA (Vichi et al., 
2007) have been used for this purpose as well. Phenols (Bakhouche 
et al., 2013) and VOC have been some of the traditional markers for 
origin discrimination of olive oil, without forgetting that these com
pounds might be heavily influenced by storage and processing factors. 
The analysis of the latter ones was not only carried out through chro
matographic techniques (Cecchi et al., 2020; Lukić et al., 2019), but also 
by rapid tools based on electronic devices (e-nose and e-tongue) (Pala
gano et al., 2020; Souayah et al., 2017) or Proton Transfer Reaction- 
Mass Spectrometry (PTR-MS) (Araghipour et al., 2008). In the last 
years, trace elements analysis by Inductively Coupled Plasma (ICP)-MS 
(Damak et al., 2019) and isotopic fingerprint assessment (Bontempo 
et al., 2019; Portarena et al., 2017) have become popular due to the high 
correlation with the soil properties where the olive trees are grown. 

Casadei et al. (2021) surveyed the olive oil stakeholders and the EU 
FFN national contact points about olive oil fraudulent practices. 
Regarding EVOO and VOO geographical origin counterfeiting, the re
sults of the survey addressed to the EU FFN national contact points 
pointed out that verifying the compliance with declared EU and non-EU 
origin are the cases which need more control activities, including the 
provenance from a given country, followed by the authentication of 
geographical certifications (PDO and PGI). Conversely, some studies 
considered samples from two different countries, one EU and one non- 
EU (Ben Mohamed et al., 2018; Borges et al., 2017), while others pro
posed a country approach regardless of the EU membership including 
the olive oil traditional producing countries within the Mediterranean 

basin (Alonso-Salces et al., 2015; Bajoub et al., 2018; Cecchi et al., 
2020). Just a few of them faced the EU vs non-EU discrimination 
(Bontempo et al., 2019; Palagano et al., 2020), evidencing the need for a 
fit-for-purpose analytical tool to verify the label-declared EU prove
nance as the foremost aim, which would also be suitable to assess the 
country of origin. 

Therefore, the present research pursued to achieve a reliable 
instrumental method that allows geographical authentication of EVOO 
and VOO produced in very specific and homogeneous areas as well as in 
wider regions with higher heterogeneity in terms of the traditional 
cultivars and pedoclimatic conditions, according to the aforementioned 
priority standards. Hence, this study focused on developing and vali
dating classification models (PLS-DA) for the first geographical 
authentication priority, EU vs. non-EU and for single countries (EU and 
non-EU members) (Fig. 1). Our proposal is based on a previous work 
(Quintanilla-Casas, Bertin, Leik, Bustamante, Guardiola, Valli, Bendini, 
Gallina Toschi, Tres, & Vichi, 2020), where preliminary models to verify 
the country of origin were developed based on sesquiterpene hydro
carbons (SH) fingerprint analysed by Headspace – Solid Phase Micro 
Extraction (HS-SPME) and GC–MS. These semi-volatile compounds are 
known to be related with genetic and pedoclimatic factors, while 
scarcely influenced by processing and storage conditions (Damascelli & 
Palmisano, 2013; Vichi et al., 2018). Both target and fingerprinting 
approaches were investigated and compared with regards to classifica
tion ability by PLS-DA, concluding that chromatographic fingerprint 
allowed for better geographical classification performance of virgin 
olive oils from different countries (Quintanilla-Casas, Bertin, et al., 
2020). The present study involves a big dataset with great diversity, 
including different productive regions, olive cultivars, crop years and 
even analytical batches, in order to evaluate the performance of the 
authentication approach in a more realistic scenario where the natural 
variability is highly represented. 

2. Material and methods 

2.1. Sampling 

The sample set consisted of 400 traceable virgin olive oils from 
different EU member states and third countries – here so-called non-EU, 
including 246 oils produced in 6 EU member states (Croatia, HRV; 
Greece, GRC; Italy, ITA; Portugal, POR; Slovenia, SVN; Spain, ESP) and 
154 oils from 4 non-EU countries (Argentina, ARG; Morocco, MAR; 
Tunisia, TUN; Turkey, TUR) (Table 1). They were obtained in the 
framework of the projects OLEUM (EC H2020 Programme 2014–2020) 
and Autenfood (ACCIÓ- Programa Operatiu FEDER Catalunya 
2014–2020) or directly purchased from producers. These samples were 
produced at real industrial conditions during different campaigns (har
vests from 2015/16 to 2019/20) and were graded as EVOO or VOO 
according to the panel test assessment. Additional information about 

Fig. 1. Extra virgin and virgin olive oil sampling, according to the three authentication levels: EU (in grey) vs. non-EU (in black) oils, EU members (blue flag) and 
non-EU countries (orange flag). EU: European Union. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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olive oil samples is available in Table S1 (Supplementary material). 
Samples were stored under N2 atmosphere at − 20 ̊ C until analysis, 
which was performed over a period of seven months in 3 different 
analytical batches. These batches corresponded mainly to the harvesting 
season, and they included samples from several geographical origins 
that were randomly measured. 

2.2. HS-SPME-GC–MS 

SHs were extracted from samples by HS-SPME and subsequently 
analysed by GC–MS according to Torres-Cobos et al. (2021), based on 
the original protocol from Vichi et al. (2006). In order to evaluate the 
performance of the analytical system, qualitative and quantitative 
representative virgin olive oil samples (quality control samples) were 
analysed periodically. These quality control samples allowed to detect 
signal drift as well as magnitude changes between analytical batches. 
For this, the relative standard deviation (RSD%) was evaluated for the 
analytical signal as described in Quintanilla-Casas, Marin, Guardiola, 
García-González, Barbieri, Bendini, Toschi, Vichi, & Tres (2020). 

2.3. Chemometrics 

2.3.1. Data extraction and pre-processing 
Seven data matrices were built, one for each extracted ion chro

matogram (EIC) acquired in single ion monitoring (SIM): m/z 93, 119, 
157, 159, 161, 189 and 204. These ions were selected because they are 
specific ions of SHs as reported by Vichi et al. (2006). Intensity of scans, 
from minute 21 to 42, were the matrix columns while the rows corre
sponded to the samples (400 × 3197). Retention time shifting among 
samples was corrected by means of Correlation Optimized Shifting (co- 
shift) (Larsen et al., 2006) followed by Correlation Optimized Warping 
(COW) algorithm (Nielsen et al., 1998), both performed in Matlab 
R2020b®. Data was then normalized to the maximum intensity (row 
wise) to handle magnitude changes that can occur when a large sample 
set is analysed by GC–MS over a long period, as it was the case. Baseline 
correction (automated weighted least squares) was applied for the same 
reason. Once individually aligned and normalized, the 7 matrices were 
concatenated conforming a two-way unfolded matrix of 400 samples 
and 22,379 variables. 

2.3.2. Calibration and validation of EU vs. non-EU discriminant model 
In order to discriminate between the EU and the non-EU virgin olive 

oils, PLS-DA was applied to the unfolded matrix described above. The 
whole sample set (n = 400) was split into a training set that included 
80% of the samples (n = 320, being 197 from EU and 123 from outside 
the EU) and a validation set conformed by the remaining 20% of the 
samples (n = 80, being 49 from the EU and 31 from outside the EU) 
(Table 1). It is important to highlight that samples were distributed in 
the training and validation sets at random after the analysis, but keeping 
the balance between the different olive harvests, regions, countries, and 
analytical batches. In order to evaluate the stability of the classification 
approach when different samples were used to build the model, this split 

was done three times (3 iterations). Therefore, three different PLS-DA 
models were built and cross-validated with three different training 
sets, and later, each of them was externally validated with the corre
sponding validation set that consisted of samples previously unseen by 
that model. Unit variance scaling and mean centering (column wise) 
were selected as preprocessing techniques, as there were variables in the 
fingerprint with very different intensity values. Software used was 
SIMCA v13.0© (Umetrics AB, Sweden). 

In this EU vs. non-EU binary PLS-DA, classes were expressed as PLS 
dummy variables (being 0 for EU class, and 1 for non-EU class). The PLS 
predicted value (PV) obtained for each sample was used to classify it into 
the class with the highest PV, provided it was above the classification 
threshold (here, PV = 0.5). The three calibration models were internally 
validated by leave 10%-out cross-validation. The optimal number of 
latent variables (LV) of each PLS-DA model was selected according to the 
lowest root mean squared error of cross validation (RMSEcv), to the 
highest cumulative Q2 - defined as the estimated total variation of the 
discriminant categories that can be predicted by the model - and to the 
misclassification results. Hotelling’s T2 and Q-residuals were used to 
detect outliers. Model overfitting was evaluated by examining various 
parameters such as the RMSEcv, the Q2 obtained by the permutation test 
(Q2 of 20 models developed after randomly permuting the sample’s 
class) and the ANOVA of cross-validated residuals. 

For each of the three iterations, cross-validation and external vali
dation results were expressed as the % of correct classification for each 
category and for the total sampling, diagnostic sensitivity (eq. (1)) and 
diagnostic specificity (eq. (2)) (Magnusson & Örnemark, 2014). Results 
from the three iterations were averaged and the standard deviation was 
calculated (n = 3). 

Diagnostic sensitivity =
Non-EU samples correctly classified

Total non-EU samples
(1)  

Diagnostic specificity =
EU samples correctly classified

Total EU samples
(2)  

2.3.3. Calibration and validation of discriminant models by country of 
origin 

To develop classification models to verify the geographical origin of 
virgin olive oils by country, only the samples from the countries that 
were represented by at least 40 samples were included in the data set (n 
= 322; Table 1). They agreed with the main EU and to some of the main 
non-EU olive oil producing countries according to the Food and Agri
culture Organization database (FAOSTAT) for the crop year 2018. Two 
independent multi-class PLS-DAs were developed: one to classify EU 
samples according to their EU member state (ITA, ESP and GRC, n =
189) and another for the non-EU ones (ARG, TUN and MAR, n = 133). 
Both the EU and the non-EU subsets were split in three different training 
sets (80% of the samples, n = 152 for the EU subsets and n = 107 for the 
non-EU subsets) and the three corresponding validation sets (20% of the 
samples, n = 37 for the EU subsets and n = 26 for the non-EU subsets) (3 
iterations). As explained in section 2.3.2, samples were distributed in the 

Table 1 
Number of virgin olive oil samples (virgin and extra virgin categories) in the training and validation sets used to develop the EU vs non-EU binary discrimination 
models and the multi-class models for the country of origin.  

EU member states Training sets Validation sets Total Non-EU countries Training sets Validation sets Total 

ESP 52 13 65 ARG 40 10 50 
GRC 46 11 57 MAR 33 8 41 
HRVa 17 5 22 TUN 34 8 42 
ITA 54 13 67 TURa 16 5 21 
PORa 18 5 23     
SVNa 10 2 12     
Total 197 49 246 Total 123 31 154 

ARG: Argentina; CHL: Chile; ESP: Spain; GRC: Greece; HRV: Croatia; ITA: Italy; MAR: Morocco; POR: Portugal; SVN: Slovenia; TUN: Tunisia; TUR: Turkey. 
a Countries with<40 samples were not included in the corresponding multi-class models (country approach). 

B. Quintanilla-Casas et al.                                                                                                                                                                                                                    



Food Chemistry 378 (2022) 132104

4

training and validation sets at random after the analysis, but keeping the 
balance between the different olive harvests, regions, countries, and 
analytical batches. Unit variance scaling and mean centering (column 
wise) were selected as preprocessing techniques, as there were variables 
in the fingerprint with very different intensity values. 

In a multi-class PLS-DA, a dummy Y matrix holding as many classi
fication vectors as classes is used in the PLS regression, each vector 
having values of 1 for one class and 0 for all the other classes. Here, each 
sample was classified into the class corresponding to the vector leading 
to the highest PV; but samples whose PV did not reach the classification 
threshold (PV < 0.5) for any vector were not assigned to any country. 
That is because multi-class models indeed work as multiple binary 
models of each class against the rest of samples. All calibration models 
(three for the EU approach and three for the non-EU approach) were 
internally validated by leave 10%-out cross-validation and externally 
validated by predicting the class of samples in the corresponding vali
dation sets, as those samples were out of the model’s calibration step. 
The optimal number of LVs, outliers’ assessment and models’ overfitting 
evaluation were carried out as explained in section 2.3.2. 

In this case, model’s reliability for both internal and external vali
dation, was expressed by: i) % of not assigned samples (samples with PV 
< 0.5) considering all countries (eq. (3)) and for each country (eq. (4)), 
and by ii) % of correctly classified samples (PV > 0.5) considering all 
countries (eq. (5)) and for each country (eq. (6)). Results were averaged 
and the standard deviation was calculated (n = 3). 

Not assigned samples (%)

(all countries) =
Total unassigned samples

Total samples
× 100 (3)   

Not assigned samples (%)

(per country) =
Unassigned samples from a country

Samples from a country
×100 (4)   

Correctly classified samples (%)

(all countries)
=

Total correctly classified samples
Total assigned samples

×100

(5)   

2.3.4. Exploration of PLS-DA coefficients 
As explained above, two different geographical authentication ap

proaches were developed based on the SH fingerprint and PLS-DA: at the 
EU vs non-EU level, and at a country level (for EU and for non-EU 
countries). In order to explore which variables of the SH fingerprint 
were more relevant for each model and how they varied depending on 
whether they were grouped into a higher (e.g., EU class) or a lower (e.g. 
country) authentication level, both types of models were rebuilt using 
the same samples (n = 322). Thus, all samples from well represented EU 
and non-EU countries were employed to build a binary (EU, n = 189, vs. 
non-EU, n = 133) and a multi-class PLS-DA (ESP, n = 65; GRC, n = 57; 
ITA, n = 67; ARG, n = 50; MAR, n = 41; TUN, n = 42), cross-validated by 
leave 10%-out. Significant regression coefficients - positive values 
greater than the corresponding standard error – were extracted for the 
EU category from the binary model and for each of the EU countries 
(ESP, GRC and ITA) and compared. 

3. Results and discussion 

Geographical authentication models have been calibrated and vali
dated to fulfil two complementary purposes: i) to discriminate between 
EU and non-EU virgin olive oils, and ii) to verify the country of prove
nance, among EU member states and non-EU countries. Results obtained 
in both approaches are shown and discussed in the following 
subsections. 

3.1. Geographical authentication approach I: Discrimination between EU 
vs. non-EU virgin olive oils 

Three binary PLS-DAs were calibrated with 320 different virgin olive 
oil samples produced inside (n = 197) and outside (n = 123) the EU. 
These models needed between 8 and 9 LVs, showed a minimum pre
diction power (Q2) of 0.651 and a maximum cross-validation error 
(RMSEcv) of 0.255. Individual contingency tables for each model are 
available at Table S2 (Supplementary material). As shown in Table 2, 
successful discrimination between EU and non-EU virgin olive oils was 
achieved, providing an average correct classification of 99.6% in cross- 
validation and 89.6% in external validation. In both cases, the models 
performed slightly better for the EU class, providing the maximum 
specificity (equals to 1) in cross-validation, which slightly decreased to 
0.95 in the external validation. This could be explained due to the higher 
number of samples considered in the EU compared to the non-EU. This 
fact was observed by Palagano et al. (2020), who developed a EU vs non- 
EU model using the whole VOC fingerprint obtained by Fast GC (FGC) 
and also achieved better classification results for the EU class in the 
external validation. While the classification rates that they obtained 
through Artificial Neural Network (ANN) on the FGC fingerprint of VOC 
(EU: 92.3% for EU and 88.4% for non-EU classes) were comparable to 
the ones in the present study (Table 2), the discrimination efficiency 
when models were built by PLS-DA slightly dropped. On the contrary, 
other previous studies (Bontempo et al., 2019) that also attempted to 
differentiate EU from non-EU oils but by stable isotope ratio analysis, 
were not capable of completely separating EU from non-EU oils, 
obtaining better discrimination results between oils from single coun
tries. They suggested that the discrimination between EU and non-EU 
virgin olive oils was not attributable to different characteristics of the 

whole EU or non-EU categories, but to specific isotopic profiles of the 
individual countries that conformed both the EU and the non-EU cate
gories resulting from the particular pedoclimatic conditions of each 
production area. In the present study, PLS discriminant models based on 
SH fingerprint seem to overcome the reported issue, providing suc
cessful results for the discrimination of EU and non-EU virgin olive oils. 
This will be shown in section 3.3, where models will be investigated and 
discussed through their PLS-DA coefficients. 

3.2. Geographical authentication approach II: Verification of the country 
of provenance. 

3.2.1. EU member states 
Although 6 EU countries (ESP, GRC, HRV, ITA, POR and SVN) con

formed the EU class of the wider EU vs. non-EU authentication model, 
only those with at least 40 samples were included in the country 
discrimination approach. Therefore, virgin olive oils from ESP, GRC and 
ITA, the main EU producer members, were considered to develop (n =

Correctly classified samples (%)

(per country)
=

Correctly classified samples from a country
Assigned samples from a country

× 100 (6)   
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152, three times) and validate (n = 37, three times) the EU member 
authentication models. Individual contingency tables for each model are 
available at Table S3 (Supplementary material). Bearing in mind this is a 
more challenging purpose due to the closeness of the productive areas, 
the overall cross-validation results were successful, with an average of 
99.6% of samples correctly classified and<2% of unassigned samples, 
without remarkable differences among classes (Table 3). The same trend 
was observed for the external validation, where a 92.2% (mean value) of 
the 37 validation samples was correctly assigned to the corresponding 
country. As exposed in Table 3, the classification model not only showed 
an excellent performance for all countries, but also left a small number 
of samples unassigned (average 8.1% of total sampling). 

Previous works shared the aim of discriminating olive oils produced 
in different EU countries. Those that included samples from the main 
producer countries (ESP, ITA and GRC) also reported good classification 
rates, but either applied less affordable analytical techniques (Winkel
mann & Küchler, 2019) or required more than one instrumental method 
even for a reduced sample set (Schwolow et al., 2019). Therefore, our 
results show that the models based on the SH fingerprint were useful to 
verify the geographical origin at a country level for these three EU 
countries (ESP, ITA and GRC), even if a high natural variability was 
considered in the sampling. Applying the model to oils from other EU 

countries would require collecting a suitable number of samples from a 
country, and to develop and externally validate the models, but the re
sults obtained for ESP, ITA and GRC point to successful models. 

3.2.2. Countries outside the EU 
The steps and criteria explained in the section above for the EU 

country authentication model, were also followed to build the classifi
cation model for the non-EU countries. Consequently, three well rep
resented non-EU countries with at least 40 samples each (ARG, MAR and 
TUN) were selected to calibrate (n = 107, three times) and validate (n =
26, three times) the multi-class PLS-DA. Individual contingency tables 
for each model are available at Table S4 (Supplementary material). In 
this context, models’ performance resulted successful, obtaining an 
overall correct classification of 100% and 96.0% for internal and 
external validation, respectively (Table 4). All samples were assigned to 
a given country in cross-validation and few samples were left unassigned 
at the external validation (average of 5.1%). Since there is a high dis
tance between ARG and the two other non-EU countries (TUN and 
MAR), the good performance of model for the identification of ARG 
samples (96.4% correct classification) was somehow expected. Howev
er, the same model also showed an excellent efficiency of classification 
for samples from MAR (95.7%) and TUN (95.7%) that are closer 
countries. 

Table 2 
EU vs. non-EU discrimination approach: internal (leave 10%-out cross-validation) and external validation results of the binary PLS-DA models. Average values ±
standard deviation of the three sample sets (3 iterations) for each category are provided.   

Cross-validation of training sets External validation  

na Correct classification (%)b Sensitivityc Specificityd ne Correct classification (%)b Sensitivityc Specificityd 

EU 197 100 ± 0.00  1 ± 0.00 49 95.2 ± 1.18  0.95 ± 0.01 
Non-EU 123 98.9 ± 1.24 0.99 ± 0.01  31 80.7 ± 8.53 0.81 ± 0.09  
Total 320 99.6 ± 0.48   80 89.6 ± 2.89   

Binary PLS-DAs with 8–9 latent variables, RMSEcv < 0.255, Q2 > 0.651, ANOVAcv p value < 0.05. 
a Number of samples in each of the three training sets. 
b Correctly classified samples × 100/Total samples. 
c Non-EU samples correctly classified as non-EU/total non-EU samples. 
d EU samples correctly classified as EU samples/total EU samples. 
e Number of samples in each of the three validation sets. 

Table 3 
EU single member classification approach: internal (leave 10%-out cross- 
validation) and external validation of the PLS-DA models. Mean and standard 
deviation of the three sample sets (3 iterations), for each category.   

Cross-validation of training sets External validation  

na Not 
assignedb 

Correctly 
classifiedc,d 

ne Not 
assignedb 

Correctly 
classifiedc,d  

(% of total 
sampling) 

(% of 
assigned 
samples)  

(% of total 
sampling) 

(% of 
assigned 
samples) 

ESP 52 1.9 ± 0.00 100 ± 0.00 13 7.7 ± 0.00 91.7 ± 8.34 
GRC 46 0.0 ± 0.00 100 ± 0.00 11 12.1 ±

10.50 
93.1 ± 4.70 

ITA 54 0.6 ± 1.07 98.8 ± 0.87 13 5.1 ± 4.44 91.9 ± 6.32 
Total 152 0.9 ± 0.38 99.6 ± 0.31 37 8.1 ± 2.70 92.2 ± 3.84 

ESP: Spain; GRC: Greece; ITA: Italy. PLS-DAs with 8–10 latent variables, RMSEcv 
ESP < 0.264, RMSEcv GRC < 0.275, RMSEcv ITA < 0.291, Q2 > 0.639, 
ANOVAcv p value < 0.05. 

a Number of samples in each of the three training sets. 
b Not assigned samples (%) (PV < 0.5) per country (unassigned samples from 

a country × 100/samples from a country) and for all countries (total unassigned 
samples × 100/total samples). 

c Correctly classified samples (%) (PV > 0.5) per country (correctly classified 
samples from a country × 100/assigned samples from a country) and for all 
countries (total correctly classified samples × 100/total assigned samples). 

d Weighted mean and standard deviation, given that the number of assigned 
samples was different for each of the three sets. 

e Number of samples in each of the three validation set. 

Table 4 
Non-EU country classification approach: internal (leave 10%-out cross- 
validation) and external validation of the PLS-DA models. Mean and standard 
deviation of the three sample sets (iterations), for each category.   

Cross-validation of training sets External validation  

na Not 
assignedb 

Correctly 
classifiedc,d 

ne Not 
assignedb 

Correctly 
classifiedc,d   

(% of total 
sampling) 

(% of 
assigned 
samples)  

(% of total 
sampling) 

(% of 
assigned 
samples) 

MAR 33 0.0 ± 0.00 100 ± 0.00 8 4.2 ± 7.22 95.7 ± 6.58 
ARG 40 0.0 ± 0.00 100 ± 0.00 10 6.7 ± 5.77 96.4 ± 4.79 
TUN 34 0.0 ± 0.00 100 ± 0.00 8 4.2 ± 7.22 95.7 ± 5.95 
Total 107 0.0 ± 0.00 100 ± 0.00 26 5.2 ± 2.22 96.0 ± 3.25 

MAR: Morocco; ARG: Argentina; TUN: Tunisia. Multi-class PLS-DAs with 7 latent 
variables, RMSEcv ARG < 0.243, RMSEcv MAR < 0.252, RMSEcv TUN < 0.227, 
Q2 

> 0.755, ANOVAcv p value < 0.05. 
a Number of samples in each of the three training sets. 
b Not assigned samples (%) (PV < 0.5) per country (unassigned samples from 

a country × 100/samples from a country) and for all countries (total unassigned 
samples × 100/total samples). 

c Correctly classified samples (%) (PV > 0.5) per country (correctly classified 
samples from a country × 100/assigned samples from a country) and for all 
countries (total correctly classified samples × 100/total assigned samples). 

d Weighted mean and standard deviation, given that the number of assigned 
samples was different for each of the three sets 

e Number of samples in each of the three validation set. 
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3.3. Exploration of discriminant models by PLS coefficients 

One of the purposes of investigating PLS-DA coefficients was 
knowing whether variables with higher prediction influence for a given 
country remained or not when the model intended to discriminate on a 
higher authentication level (group of countries). In order to achieve 
that, as explained in section 2.3.4., a binary EU vs. non-EU model and a 
multi-class model by countries built with the very same samples were 
needed. Information about the corresponding discriminant models are 
available in Table S5 (Supplementary information), which indicated 
that the classification approach by countries resulted less efficient when 
EU and non-EU countries were considered together (multi-class PLS-DA 
with 6 countries in Table S5 of Supplementary Material) than when 
models only included the EU (Table 3) or the non-EU countries 
(Table 4). 

By way of example, Fig. 2 shows the EIC of the m/z 93 (Fig. 2a) and 
the extracted PLS coefficients from the binary (EU vs non-EU, n = 322) 
(Fig. 2b) and the multi-class (6 countries (n = 322), three EU member 
states and three non-EU countries) (Fig. 2c) discriminant models. It 
evidenced that most of variables with high discriminant power for the 
EU category (Fig. 2b) also had a high discriminant power for some of the 
EU countries (Fig. 2c). This fact would confirm that the EU category is 
actually explained by SH information from different production areas 
within the EU, as previous studies suggested for the stable isotopic 
profile (Bontempo et al., 2019). However, it is worth to point out that 
some of the SH variables with high coefficients for each EU country 
(Fig. 2c) did not show high coefficients in the discrimination of the EU 
class (Fig. 2b), because different SH analytical information is extracted 
for each authentication purpose. Besides, it is worth to point out that 
significant coefficients corresponded to both major and minor SH 
(Fig. 2a), as observed in Quintanilla-Casas, Bertin, et al. (2020). 

4. Conclusions 

The present work showed that the SH fingerprint by HS-SPME- 
GC–MS together with the proposed chemometric approach could be the 
fit-for-purpose tool for virgin olive oil geographical authentication, 
fulfilling the needs of control activities previously highlighted by some 
of the EU FFN contact points. The developed model efficiently 

discriminated EU vs non-EU samples, classifying correctly a 89.6% of 
samples in external validation. Therefore, it overcame the challenge that 
the EU and non-EU classes are highly heterogeneous categories, con
formed by groups of countries with particular pedoclimatic conditions. 
The SH fingerprint provided a large amount of information, but the PLS- 
DA allowed to consider the most relevant variables according to the 
categories driving the analysis. Successful results were also obtained 
when the classification models were performed by countries: the EU 
member states model correctly classified a 92.2% of assigned samples 
(8.1% unassigned samples) and the non-EU countries model correctly 
classified a 96.0% of assigned samples (5.2% of unassigned samples). It 
is remarkable that these high % of correct assignments were obtained 
with a data set that considered a high virgin olive oil natural hetero
geneity and analytical variability as it included samples from the main 
cultivars for each production area, from different crop-years and they 
were analysed in several analytical batches. Bearing this information in 
mind, we can hypothesize that the proposed approach could be scaled 
down to authenticate the origin of oils obtained from smaller and highly 
close areas. Thus, it could be useful to face the second geographical 
authentication priority that aims to verify the provenance of PDO/PGI 
virgin olive oils. 
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