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Abstract: In this article we present a classical potential that respects the Pauli exclusion principle and
can be used to describe nucleon-nucleon interactions at intermediate energies. The potential depends
on the relative momentum of the colliding nucleons and reduces interactions at low momentum
transfer mimicking the Pauli exclusion principle. We use the potential with Metropolis Monte Carlo
methods and study the formation of finite nuclei and infinite systems. We find good agreement in
terms of the binding energies, radii, and internal nucleon distribution of finite nuclei, and the binding
energy in nuclear matter and neutron star matter, as well as the formation of nuclear pastas, and the
symmetry energy of neutron star matter.

Keywords: nucleon-nucleon interactions; nuclear matter; nuclear pasta; neutron star matter; nuclear
symmetry energy

1. Introduction
1.1. Antecedents

In 1953, Bethe stated [1] that the Nucleon-Nucleon (NN) interaction was the problem
most studied in the history of the world, and almost 70 years later the statement is still
true. Since the discovery of the neutron by Chadwick in 1932, many experiments, labor
and mental works, have been devoted to study the most fundamental problem in nuclear
physics, the NN interaction. The goal of describing the atomic-nuclei properties in terms
of the interactions between pairs of nucleons is the main objective of nuclear physics,
unfortunately, because of the complexity of the quantum mechanical problem, no complete
theory has been developed, and progress has been based on approximations.

So far it has been a trade-off; while most researchers have decided to study nuclear
systems using mean field methodologies that only respect quantum mechanics approxi-
mately, a few others have overlooked some quantum aspects to use classical dynamics that
preserves nucleon-nucleon correlations, statistical fluctuations, clusterization phenomena,
phase changes, and critical phenomena; all features of the upmost importance in the later
stages of fragmentation reactions, and that are not present in the quantum models.

Some of the mean field models are time-dependent Hartree–Fock [2–11], hydrody-
namics [12], relativistic and non-relativistic mean-field theories [13–23], as well as quantum
molecular dynamics [24–26]. Most of the classical models are based on applications of the
molecular dynamics methods on point particles interacting through pair potentials, such
as those of references [27–35].

To describe nuclear collisions of intermediate-energy of nuclear collisions, classical dynam-
ics has evolved from an initial adaptation of Nordheim’s propagation of individual nucleons in
a common mean field plus some residual scattering [36], to an incorporation of nucleon-nucleon
potentials [27,29,37,38]. Several pair-potentials have been used extensively to study nuclear
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reactions [27,28,30,37], infinite nuclear systems as found in neutron star crusts [32–35,39–43],
the isospin dependence of nuclear matter properties [39–46], and the like.

Although this type of classical models contain the entire many-body matrix, all statis-
tical fluctuations and clusterization phenomena, they lack important quantum effects.

1.2. Quantum Caveats

Quantum effects affect the behavior of many body systems on, at least, two fronts:
Energy distribution in bound systems and wave mechanics.

From the point of view of the energy, in bound clusters the energy of individual nu-
cleons becomes discrete and the distribution of energy levels is ruled by Fermi–Dirac
statistics with the Pauli exclusion principle further regulating the occupation of such lev-
els. Although for high excitation energies the phase space available for nuclei is ample
enough to render Pauli blocking practically obsolete [44], at lower energies it is bound to
have an impact on the nucleon dynamics prohibiting energy and momentum transfer in
some nucleon-nucleon collisions; such a problem is expected to be relevant whenever the
number of quantum states available to a nucleon at a given temperature is comparable to
the number of nucleons.

A second problem of the validity of the classical approach is connected to the wave
nature of the nucleons. Wave mechanics leads to classical mechanics as soon as the distance
between particles is larger than their de Broglie wavelengths. This poses a problem when
using classical dynamics at high densities, but not at the low sub-saturation densities [44].

Other quantum effects, such as collective excitations, superfluidity, and superconduc-
tivity, etc., occur at much lower temperatures and are unlikely to play a major role in the
dynamics of medium energy nuclear collisions.

In intermediate-energy heavy-ion collisions, the nuclear systems will first be com-
pressed and heated up to temperatures of several MeV, and then expanded and cooled
down as they undergo a phase transition into a liquid-gas mixed phase. Since the first
stage occurs at high energies, Pauli blocking is not expected to play a major role in the
nucleon-nucleon interactions. In the second stage, however, as the system cools and ex-
pands, Pauli exclusion will regulate the final-stage interactions. Likewise, in cold stable
nuclei, the occupacy exclusion in energy levels causes nuclei in their ground state to have a
non-zero kinetic energy known as Fermi motion.

1.3. Pauli Blocking

To mimic Pauli blocking in classical collisions one must introduce a way to regulate
the nucleon-nucleon collisions at low energies and low momentum transfer. A plausible
approach to this problem is to introduce a momentum-dependent blocking or repulsion to
simulate the Pauli exclusion principle. Such an approach was first taken by Wilets et al. [29],
and followed up by Dorso and Randrup, who improved the approximation to the nucleon
phase-space distribution. Some other models were based on similar approaches with
density-dependent potentials and quasiparticles [47,48].

In the first step, Dorso and Randrup used a momentum-dependent repulsive potential
to simulate the Pauli exclusion in a nuclear-like Fermi gas over the temperatures and
densities attained in nuclear collisions at intermediate energies [49]. To prevent nucleons
identical in spin and isospin getting too close in phase space, a repulsive, momentum-
dependent two-body potential was used.

As a next step, a modified Lennard–Jones-like two-body interaction was added to
mimic nuclear interactions [30], along with a standard Coulomb repulsion between protons.
The resulting model yielded a system with the proper saturation energy and compressibility
of nuclear matter over a broad range of temperatures and densities, as well as the proper
sizes and binding energies of finite nuclei [50].

Although the potentials of [50] were very promising in simulating the Pauli exclusion
principle and endowing classical models with a realistic ground-state Fermi motion, the
models lack a proper nucleon-nucleon repulsion. Specifically, the model allowed the
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formation of dineutron structures that are not to be expected, despite the short time period
during a collision.

Thus the motivation of this study: To develop a model that maintains the advantages
of classical models but, at the same time, respects the Pauli exclusion principle while
preventing the formation of nonphysical states. The structure of the article is as follows:
Section 2 presents the new potential introducing its various components. This is followed
by applications to model the finite nuclei in Section 3, and infinite systems in Section 4.
The model is then used to obtain the symmetry energy of neutron star matter in Section 5.
A discussion of the results in Section 6 closes the article.

2. The Model

To mimic the Pauli exclusion principle, we designed potentials following the pro-
cedure of Dorso and Randrup [49]. In a nutshell, a dimensionless distance in phase
space was defined as s2

ij = p2
ij/p2

0 + r2
ij/r2

0, where, for any pair of nucleons i and j,
r2 = |~ri −~rj|2, and p2 = |~pi −~pj|2, and with the parameters p0 and q0 determining the size
of the effectively excluded volume around each particle in phase space, and adjusted such
that the uncertainty relation, p0q0 ≈ 2h̄, is satisfied.

Modifying the Dorso and Randrup potential by trial and error we arrived at:

VPauli(r, p) =
VP

1− e
− r2

c
2q2

0

e
− r2

2q2
0 − e

− r2
c

2q2
0

e
− p2

2p2
0 (1)

where the scale factors are VP = 10.33 MeV, p0 = 61.969 MeV/c, and q0 = 6.0 fm, and
rc = 9.0 fm is a cut-off distance. In our case we find that p0q0 = 1.88h̄, very close to the
uncertainty relation, and in agreement with the expectation that the product be slightly
smaller than 2h̄ due to geometric considerations [49].

Furthermore, the present potential improves over the Dorso and Randrup potential by
forbidding the formation of di-neutrons. Notice that the added modulating term imposes
a repulsive force between equal nucleons at short values of p and r, basically forbidding
their interaction. This repulsion ceases for values of r > rc, i.e., the potential is truncated at
r = rc. Also notice that for r = 0 and p = 0, the potential becomes Vnn = Vpp = Vp. The
potential (1) generates a kinetic energy (i.e., a “Fermi energy”) that is in agreement with
the results obtained by Dorso and Randrup in [49]. Figure 1 shows the potential for the
case of zero momentum transfer, p = 0.

The next step is to incorporate a potential to describe the nuclear force. For the
interaction potential between two nucleons, we use:

VNuclear(r) =

{
Vnp

[(
σ
r
)n −

(
σ
r
)m
]
−Vnp(rc)

VNN
(

σ
r
)n −VNN(rc).

(2)

And for the Coulomb potential, we use the point-charge repulsion:

VCoulomb(r) =
e2

r
−VCoulomb(rc) . (3)

The parameters of the nuclear potential are Vnp = 34.8 MeV, VNN = 16.0 MeV, and
rc = 5.4 fm, and the rest were estimated based on the experimental value of the nuclear
binding energy of the 4He nucleus:

Vα =
(
4Vnp + Vnn + Vpp

)(σ

a

)n(
1− n

m

)
= −28.30 M̃eV (4)

where a is the radius of an α particle, a = 2.3 fm, and σ is twice the proton radius, σ = 1.625 fm.
The compressibility (K = 9ρ2

0d2V/dρ2) yields the condition n× m = − K
E(ρ0)/A , which, for

E(ρ0) = −16 MeV, and compressibility K = 288 MeV, is satisfied by n = 6 and m = 3.
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The terms Vnp(rc), Vnp(rc), and VCoulomb(rc) are the values of their respective accompanying
terms at rc to make the potentials smoothly go to zero and avoid the extraneous force that an
abrupt cutoff at rc would produce. For VCoulomb, e is the elementary electric charge, and thus
e2 = 1.44 MeV fm, and rc = 10.0 fm.
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0

4
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12
V
P
a
u
li
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Figure 1. The upper blue line corresponds to the spatial factor of the Pauli potential,
Vq = VPauli(r, p = 0), plotted as a function of r in units of q0 = 6 fm; notice the truncation at
r = 9 fm. The lower orange curve is the exponential reduction imposed by the momentum depen-
dent factor, Vp = exp(−p2/2p2

0), as it goes from p = 0 to p = 2p0.

3. Finite Nuclei

The model created with the potentials (1)–(3), can be used to construct finite nuclei.
Since the potentials are not separable, symplectic integrators of the equations of motion
cannot guarantee the conservation of certain quantities, such as the energy, and the behavior
of such systems is best calculated using Metropolis-Monte Carlo methods (MMC); see
Appendix A for a synoptic review of the method.

Nuclei were prepared by caging nucleons in a potential well. The systems were
then cooled down employing an MMC procedure, until reaching the “ground state” (say,
T = 0.01 MeV), where they were kept in thermal equilibrium through a heat bath.

Figure 2 shows the radii obtained for several nuclear-like clusters bound with the
potentials (1)–(3), calculated with a Metropolis-Monte Carlo method [51], and compared
to the experimental values of the radii. The radii were computed as the r.m.s value of
the nucleons positions in the ground state. The curve R = c A1/3 corresponds to the best fit
of the radii as a function of A1/3 (see caption for details).

Likewise, Figure 3 shows the binding energy per nucleon obtained for the nuclei
of Figure 2. Although the trend follows the same trajectory of the experimental values,
the simulated nuclei are about 50% over-bound, close to the results of the Simple Semi-
classical Potential of Horowitz and coworkers [33], see Figure 2 in [52] for a comparison
with other models.
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Figure 2. Radius of nuclei at the ground state (T = 0.01 MeV). The bottom orange dots corresponds
to the MMC simulation. The data points in blue correspond to commonly accepted experimental
values. The dashed curve in gray is a least square fit of the MMC data of the type R = c A1/3, where
c is 0.835.
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Figure 3. Binding energy obtained for the nuclei of Figure 2.

To get an idea of the internal structure of the clusters, Figure 4 shows the average
distance between nucleons for several nuclei in the ground state (at T = 0.01 MeV). Also
shown in the insets, is the un-normalized pair correlation function for np, nn, and pp of
4He and 137Cs.
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Figure 4. Average distance between the nuclei of Figure 2. The insets show the un-normalized
probability of finding a nucleon at a distance d, for the pairs np, nn, and pp in the nuclei 4He and 137Cs.

4. Infinite Nuclear Matter

The model presented by Equations (1) and (2), can also be used to construct infinite
systems; notice that the Coulomb interaction, Equation (3), is excluded. This is achieved by
placing a large number of nucleons in a cubic cell with 26 replicas surrounding the central
cell. Once again, utilizing the MMC method, systems of varying density and isotopic
content can be constructed at specific temperatures, and used to determine, e.g., energy-
density isotherms, pasta-like structures (at low temperatures), and the corresponding
symmetry energy. Infinite systems can be constructed without and with an embedding
electron gas, which are known as nuclear matter and neutron star matter, respectively.

4.1. Nuclear Matter

Systems composed solely of uncharged protons (otherwise the system is thermody-
namically stable) and neutrons are known as nuclear matter. Figure 5 shows the energy per
nucleon obtained for nuclear matter systems constructed with 1000 nucleons with equal
number of protons and neutrons (with their corresponding spin), for temperatures ranging
from T = 0.01 MeV to 1.0 MeV. The minimum of the peculiar “∪” shape corresponds to
the saturation density, which is observed to be close to ρ = 0.18 fm−3 for σ = 1.625 fm in
Equation (2). The flattening of the energy-density isotherms at sub-saturation densities
indicates a departure from the liquid-like phase that exists around saturation density to a
mixed liquid-gas phase; at T = 0.10 MeV the state corresponds to a frozen medium, and to
a pasta structure at low densities.

The plot of the energy per nucleon as a function of the temperature can indicate
changes of phase. Figure 6 shows how the energy per nucleon of a system at a fixed density
varies with the temperature. The systems shown were constructed with 5832 nucleons
with equal numbers of protons and neutrons and with densities in the range ρ = 0.04 to
0.14 fm−3. Notice that the system with ρ = 0.12 fm experiences a sharp change around
T ≈ 1.5 MeV, denoting a change of phase at that density; previous studies with other
potentials [31] connect these discontinuities with a liquid-to-solid change of phase.
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Figure 5. Average energy per nucleon as a function of the density for nuclear matter at T = 0.10
and 1.0 MeV. The systems were constructed with 500 protons and 500 neutrons. The dashed lines
correspond to quadratic fittings of the energies in the density range ρ = 0.13–0.18 fm−3. The estimates
of the compressibility κ can be seen in the legend.

Figure 6. Average energy per nucleon as a function of the temperature for nuclear matter.

Pastas of Nuclear Matter

Nuclear “pastas” are spatial arrangement of protons and neutrons, theorized to exist in
neutron star crusts [53], in which the structures reach a free energy minima. These energy
minima have been determined using static methods such as the liquid drop model [53,54],
mean field theories [55], Thomas–Fermi models [56], or dynamically with quantum molecular
dynamics [57–59] and classical potential models [31,33,39,40,60,61].

Using the present model, structures of nuclear matter with 1000 nucleons were found
at sub-saturation densities and a low temperature (T = 0.01 MeV), see Figure 7. Structures
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at ρ = 0.14 and 0.12 fm−3 depict continuous liquid-like arrangements, while that at
ρ = 0.08 fm−3 show pasta-like structures. Figure 8 shows the structure obtained with
5832 nucleons, equal number of protons and neutrons, at ρ =0.04 fm−3 and T = 0.8 MeV;
the structure on the left shows the simulation cell and its replicas.
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Figure 6. Average energy per nucleon as a function of the temperature for nuclear matter.

4.1.1. Pastas of Nuclear Matter

Nuclear “pastas” are spatial arrangement of protons and neutrons, theorized to exist in
neutron star crusts [52], in which the structures reach a free energy minima. These energy
minima have been determined using static methods such as the liquid drop model [52,53],
mean field theories [54], Thomas-Fermi models [55], or dynamically with quantum molecular
dynamics [56–58] and classical potential models [29,37,38,59–61].

Using the present model, structures of nuclear matter with 1,000 nucleons were
found at sub-saturation densities and low temperature (T = 0.01 MeV), see Figure 7.
Structures at ρ = 0.14 and 0.12 fm−3 depict continuous liquid-like arrangements, while
that at ρ = 0.08 fm−3 show pasta-like structures. Figure 8 shows the structure obtained
with 5,832 nucleons, equal number of protons and neutrons, at ρ =0.04 fm−3 and T = 0.8
MeV; the structure on the left shows the simulation cell and its replicas.

Figure 7. Structures produced in nuclear matter at densities ρ =0.08, 0.12 and 0.16 fm−3 and T = 0.01
MeV. Pseudo-pastas form at sub-saturation densities.

Figure 7. Structures produced in nuclear matter at densities ρ =0.08, 0.12, and 0.16 fm−3 and
T = 0.01 MeV. Pseudo-pastas form at sub-saturation densities.
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Figure 8. Structure produced in nuclear matter at a density of ρ =0.04 fm−3 and T = 0.8 MeV. The
snapshot on the left shows the simulation cell and its images. Detailed snapshots of the simulation
cell can be seen on the right.

4.2. Neutron Star Matter

Similarly, the model can be used to study a medium generically known as “Neutron
Star Matter”. It should be noted that crusts of neutron stars, i.e., the outermost layer of
about 1 km of depth, are composed of neutrons, protons and electrons with a varying ratio
of protons and neutrons; here we study this type of systems with different ratios without
claiming that they exist in actual neutron stars. The medium is governed by means of
equations (1) and (2), and an all embedding electron gas.

The electron cloud introduces an screening effect on the Coulomb potential of the
protons, which in turn modifies the pasta structures. Such screening between the protons
and the electron gas can be treated by means of a Thomas-Fermi screening potential of
the form VTM(r) = e2

r e−r/λ −Vrc, with a screening length λ and Vrc =
e2

rc
e−rc/λ. The effect

of the screening on the formation of the pasta has been studied extensively [29,39,60], the
value we use, λ = 10 fm, was found to be the minimal length at which the effects of the
finite cell size are eliminated and the pasta morphology stabilizes and ceases to depend on
λ. Likewise, the cutoff distance rc, is set to the value of the screening length, rc = 10 fm.

Figure 9 shows the energy per nucleon as a function of the density for an isospin
symmetric system with 5,832 nucleons (see caption for details). The dashed lines corre-
spond to the a quadratic fit of data between ρ = 0.13 fm−3 and 0.19 fm−3. The resulting
compressibility for neutron star matter turns out to be κ = 523.3 MeV and 572.3 MeV (not
to be confused with that for nuclear matter which is about 288 MeV).

Figure 8. Structure produced in nuclear matter at a density of ρ = 0.04 fm−3 and T = 0.8 MeV.
The snapshot on the left shows the simulation cell and its images. Detailed snapshots of the simulation
cell can be seen on the right.

4.2. Neutron Star Matter

Similarly, the model can be used to study a medium generically known as “Neutron
Star Matter”. It should be noted that crusts of neutron stars, i.e., the outermost layer of
about 1 km of depth, are composed of neutrons, protons, and electrons with a varying ratio
of protons and neutrons; here we study this type of systems with different ratios without
claiming that they exist in actual neutron stars. The medium is governed by means of
Equations (1) and (2), and an all embedding electron gas.

The electron cloud introduces a screening effect on the Coulomb potential of the
protons, which in turn modifies the pasta structures. Such screening between the protons
and the electron gas can be treated by means of a Thomas–Fermi screening potential of
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the form VTM(r) = e2

r e−r/λ −Vrc, with a screening length λ and Vrc =
e2

rc
e−rc/λ. The effect

of the screening on the formation of the pasta has been studied extensively [31,41,60], the
value we use, λ = 10 fm, was found to be the minimal length at which the effects of the
finite cell size are eliminated and the pasta morphology stabilizes and ceases to depend on
λ. Likewise, the cutoff distance, rc, is set to the value of the screening length, rc = 10 fm.

Figure 9 shows the energy per nucleon as a function of the density for an isospin
symmetric system with 5832 nucleons (see caption for details). The dashed lines corre-
spond to the a quadratic fit of data between ρ = 0.13 fm−3 and 0.19 fm−3. The resulting
compressibility for neutron star matter turns out to be κ = 523.3 MeV and 572.3 MeV (not
to be confused with that for nuclear matter which is about 288 MeV).
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Figure 9. Average energy per nucleon as a function of the density for neutron star matter. The dashed
lines correspond to the fitting of data (ρ = 0.13–0.19 fm−3) into a quadratic function. The estimates of
the compressibility κ are shown in the legend.

Figure 10 shows the energy per nucleon as a function of the temperature for values
of the density between ρ = 0.04–0.14 fm−3, for a system with 5832 nucleons with equal
numbers of protons and neutrons (with the corresponding spins). Notice that the energy at
ρ = 0.12 fm−3 experiences a sharp change around T ≈ 1.5 MeV, denoting a change of phase.
It should be remarked that, at a difference from molecular dynamics calculations, MMC
calculations do not explore the energy landscape profusely, and arrive at configurations
of minimum energy that correspond to meta-stable liquid states which, at slightly lighter
densities drop in internal energy corresponding to non-uniform states; these changes
appear as sudden drops in the E− ρ plots at around ρ ≈ 0.13 fm−3, and tend to diminish
for T . 0.1 MeV, and are less noticeable in nuclear matter (cf. Figure 5).

The behavior of E can be examined in terms of the kinetic and potential energies.
Figures 11 and 12 show, respectively, the kinetic and potential components of the energy
of Figure 10 as a function of the temperature. While the potential energy does not show a
significant change at around T ≈ 1.5 MeV, the kinetic energy does show a change in the
slope for low densities, especially for ρ = 0.12 fm−3. Figure 11 also shows that the potential
energy changes its trend at T ≈ 3 MeV, presumably due to the Pauli potential at low and
high momentum transfer.
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Figure 10. Average energy per nucleon as a function of the temperature for neutron star matter.
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Figure 11. Average kinetic energy per nucleon as a function of the temperature for neutron star matter.

To visualize changes in the internal structure we recur to the Kolmogorov statistic, which
computes the discrepancy between the sampled spatial distribution of the nucleons and a
uniform distribution. This statistic, plotted in Figure 13, shows changes at 1.5 . T . 3 MeV
for densities 0.11 fm−3 . ρ . 0.12 fm−3, denoting the changes from uniformity to pasta-like
structures at low densities, but not at ρ ≥ 0.13 fm−3.
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Figure 12. Average potential energy per nucleon as a function of the temperature for neutron star matter.
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Figure 13. Kolmogorov statistic illustrating the departures from uniformity .

Figure 14 depicts better the phenomenon by plotting the “net” kinetic energy, after
subtracting the linear contribution in Figure 11 (shown in gray). The sharp slopes in
Figure 14 correlate with sharp topological changes in the system, as can be noticed from
successive snapshots around T ≈ 1.4 MeV (see Figure 15).
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Figure 14. Kinetic energy in excess, as expressed in the legend.

The divergence from uniformity can also be seen in Figure 15, which shows the
structures formed in systems with ρ = 0.12 fm−3, with a “bubble” appearing in the
simulation cell appearing at T = 1.4 MeV.
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Figure 14 correlate with sharp topological changes in the system, as can be noticed from
successive snapshots around T ≈ 1.4 MeV (see figure 15).

The divergence from uniformity can also be seen in Figure 15, which shows the
structures formed in systems with ρ = 0.12 fm−3), with a “bubble” appearing in the
simulation cell appearing at T = 1.4 MeV.

Figure 15. Snapshots of the simulation cell for 0 ≤ z < 20 fm. The density is ρ = 0.12 fm−3.

4.2.1. Pastas of Neutron Star Matter

The structures of neutron star matter at low temperatures are shown in Figure 16.
Again, the structures appear homogeneous at ρ = 0.16 fm−3, while the first bubble can be
seen at 0.12 fm−3. At ρ = 0.08 fm−3 a “pasta-like” structure is formed. Examining the low
density region more closely, Figure 17 shows the pseudo-pasta structures obtained at ρ =
0.04, 0.08 and 0.10 fm−3 for a system with 2,916 protons and 2,916 neutrons.

Figure 15. Snapshots of the simulation cell for 0 ≤ z < 20 fm. The density is ρ = 0.12 fm−3.

Pastas of Neutron Star Matter

The structures of neutron star matter at low temperatures are shown in Figure 16.
Again, the structures appear homogeneous at ρ = 0.16 fm−3, while the first bubble can
be seen at 0.12 fm−3. At ρ = 0.08 fm−3 a “pasta-like” structure is formed. Examining the
low density region more closely, Figure 17 shows the pseudo-pasta structures obtained
at ρ = 0.04, 0.08, and 0.10 fm−3 for a system with 2916 protons and 2916 neutrons.
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Figure 18 shows two structures of neutron star matter obtained with 1,944 protons and
3,888 neutrons (x = protons/nucleons = 0.3), at a temperature of T = 0.1 MeV and ρ =
0.04 and 0.08 fm−3; to clarify the structures, the position of the protons is also presented.
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neutrons.
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Figure 18. Pasta structures formed in isospin asymmetric neutron star matter at densities ρ = 0.04 and
0.08 fm−3 and T = 0.1 MeV for a 5832-nucleon system with 30% of protons and the remainder as neutrons.

5. Symmetry Energy

The nuclear symmetry energy became a topic of intense investigations when ra-
dioactive beam facilities began to study nuclei away from the stability valley; under-
standing isospin asymmetric nuclear matter is needed in areas of nuclear physics and
astrophysics [22].
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In 1935, Weizsäcker introduced an asymmetry term in a parametrization of the nuclear
binding energy to provide favorable binding to those nuclei with a similar number of
protons than neutrons [62]. Such a term was later modified to include the role of isospin in
a generalized density-dependent asymmetry term [63]. For the case of microscopic models,
the symmetry energy can be evaluated numerically following the procedure outlined in
Appendix B, and introduced in [44,64], see also [31].

To calculate the symmetry energy it is necessary to know the energy per nucleon at
various densities and temperatures, and for various values of the isospin asymmetry, x.
Figure 19 shows the behavior of the energy per nucleon as a function of x for temperatures
T = 0.5, 1.0, and 2.0 MeV, and densities ρ = 0.04, 0.06, 0.08, and 0.10 fm−3.

Figure 19. Energy per nucleon as a function of x for T = 0.5, 1.0, and 2.0 MeV, and ρ = 0.04, 0.06,
0.08, and 0.10 fm−3.

Following the procedure of [31,44,64] (cf. Appendix B), one can compute the symmetry
energy both of nuclear matter and of neutron star matter. Figure 20 shows the variation of
Esym with the temperature for four sub-saturation densities.

The behavior of Esym for neutron star matter is reminiscent to that obtained with
molecular dynamics with the “new medium” potential for nuclear matter. Relatively
constant values of Esym are observed at temperatures below 2.0 MeV, corresponding to
the pasta regime, and with smaller values at higher temperatures corresponding to more
uniform systems. See [31,38] for a related analysis.

The observed values of Esym, namely, ranging between 20 MeV and 50 MeV, are
reminiscent of previous results obtained with microscopic field theories, see e.g., [23].
Similarly, the trend of Esym, decreasing for larger temperatures, is similar to the behavior
found using an equation of state obtained through a virial expansion at T = 2, 4, and
8 MeV [65], and through a self-consistent model using various effective interactions [66].
Comparing these results with previous computations of the symmetry energy obtained
with classical potentials, e.g., those of Figure 68b of [31], we can see a major change in the
behavior of Esym at low temperatures; surely due to the effect of the repulsion introduced
at low momentum transfer.
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Figure 20. Symmetry energy as a function of T, and for ρ = 0.04, 0.06, 0.08, and 0.10 fm−3.

6. Discussion

In this article we presented a nucleon-nucleon potential whose strength depends
on the relative momenta of the colliding nucleons and, thus, has the ability to reduce
interactions at low momentum transfer mimicking the Pauli exclusion principle.

Comparing to previous attempts at introducing Pauli blocking to a classical potential,
we improved on the best attempt (i.e., that of Dorso and Randrup from 1987 [49]) by
constructing a potential that respects an excluded volume in phase space, respects the
uncertainty relation, and inhibits the production of di-neutrons.

As a first test, the potential was used with Metropolis Monte Carlo simulations to
study the formation of finite nuclei, their binding energies, radii, and internal nucleon
distribution. It was also used to study the binding energy in infinite systems such as
nuclear matter and neutron star matter, as well as the structures formed at sub-saturation
densities and cold temperatures, known as nuclear pastas. Finally, the symmetry energy
was also obtained for the case of neutron star matter.

In general terms, the potential functioned as expected in most areas reproducing
binding energy and radii trends of finite nuclei. The saturation density and compressibility
of infinite systems were observed near the expected values. Pasta structures were observed
to appear at low temperatures and sub-saturation densities. Finally, the magnitude and
trends of the symmetry energy were in the ball park predicted by mean field theories.

An observed weakness of the potential is the over-binding found in the synthetic
nuclei (cf. Figure 3). By inspecting the radii of the nuclei in Figure 2, and the distance
between nucleons in Figure 4, it is easy to see that the model produces nuclei that are too
tight, with nucleons closer to one another more than expected, which leads to over-binding.
Since the over-binding and smaller radii are a problem of finite nuclei, we do not expect that
they will affect the results of infinite systems, vis-à-vis the pasta structures and symmetry
energy as they are obtained from systems with fixed densities.

Ongoing investigations are addressing these problems, especially as future studies
will concentrate on using finite nuclei in collisions.
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Appendix A. Metropolis Monte Carlo

The simulations were performed by means of the Metropolis Monte Carlo procedure.
It consists essentially on building an appropriate Markov chain by sampling the configura-
tional space. The system was assumed to be in thermal equilibrium with an external heat
bath, and thus, the sampled energy states were those of the canonical ensemble.

The nucleons were first placed at the vertices of a cubic lattice, in order to avoid overlapping.
The momenta were further set to random with a vanishing mean value. Then, the system was
driven to the thermal equilibrium following the same procedure as in the simulation stage (see
below), but fixing the thermal bath at T = 5 MeV. The thermalization required 1000 steps, that
is, 1000 times the degrees of freedom of the system to arrive to equilibrium.

Figure A1. Radial pair distribution for nuclear matter at ρ = 0.04 fm−3 and T = 5 MeV.

The equilibrium temperature, T = 5 MeV, was warm enough to mimic a liquid state.
This can be verified through the radial pair distribution and the distribution of the compo-
nents of the momentum; Figures A1 and A2 show the radial distribution function and the
momentum distribution, respectively, for the case of ρ = 0.04 fm−3 with 1000 nucleons. All
the simulations ran over 1000 nucleons for nuclear matter and 6000 for neutron star matter.

The simulation stage was as follows: At each step, any nucleon was selected randomly,
and either moved to a new position, or changed its momentum. This yields an energy
jump ∆E. Such an energy jump corresponds to the following transition probability in the
canonical ensemble.
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Figure A2. Momentum distribution for nuclear matter at ρ = 0.04 fm−3 and T = 5 MeV.

p = exp(−β∆E) (A1)

where β = 1/KT (K meaning Boltzmann constant and T is the associated bath temperature).
Thus, accepting the transition with probability p attains the right samples for the canonical space.

The above “trials” alternate between the positions and momenta of randomly selected
particles. The fraction of accepted trials commonly lies in the interval 0.35–0.75. A control
mechanism was implemented to keep this fraction between these limits. The controlling
magnitudes were the degree of the perturbation of the positions and momenta. The final Markov
chain was afterward sub-sampled, in order to get non-correlated observables.

Appendix B. Symmetry Energy

The excess of neutrons to protons in nuclear systems affects the nuclear equation
of state through the symmetry energy, Esym(T, ρ); its importance in topics ranging from
nuclear structure to astrophysical processes is the subject of intense investigations [22].

The symmetry energy is defined as:

ESym(ρ, T) =
1
2!

[
∂2E(ρ, T, α)/∂α2

]
α=0

, (A2)

with α = (N − Z)/(N + Z) = 1− 2x. The symmetry energy can be evaluated with data
obtained from the MMC calculations using a procedure introduced before [44,64].

Using the MMC results of the internal energy E(ρ, T, α), it is possible to construct a
continuous function by fitting E(T, ρ, α) for each T and α with an expression of the type:

E(T, ρ, α) = E0(T, α) + E1(T, α)ρ

+ E2(T, α)ρ2 + E3(T, α)ρ3. (A3)

The α dependence of the coefficients E0(T, α), E1(T, α), E2(T, α), E3(T, α) can be easily
extracted from the MMC data assuming an α dependence of the type:

Ei(T, α) = Ei0(T) + Ei2(T)α2 + Ei4(T)α4 (A4)
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for i = 0, 1, 2, and 3; odd terms in α are not included to respect the isospin symmetry of
the strong force (without the Coulomb potential). With this, the symmetry energy is then
given by:

ESym(T, ρ) = E02(T) + E12(T)ρ

+ E22(T)ρ2 + E32(T)ρ3, (A5)

with the coefficients Ei2(T) given by the fitting procedure.
It is important to mention that the mechanism to extract ESym from MMC data is

sensitive to the type of data used. For instance, for neutron star matter the odd terms in α
are maintained, and depending on the density region, some of the fits may require higher
order terms in ρ; see [31] for more general details.
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