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Properties of balanced flows with bottlenecks: Common stylized facts
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We study experimentally the properties of the flow of mechanical vibration-driven vehicles confined in two
chambers connected through a narrow opening. We report that the density of particles around the opening
presents critical behavior and scaling properties. By mapping this density to the financial market price, we
document that the main stylized facts observed in financial systems have their counterparts in the mechanical
system. The experimental model accurately reproduces financial properties such as scaling of the price
fluctuation, volatility clustering, and multiscaling.
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I. INTRODUCTION

Financial stylized facts are robust statistical properties
that are found in financial assets of different markets across
time including stocks, portfolios, bond, and currencies [1,2].
Financial price fluctuations result from the flow of orders,
where the dynamics of the buy and sell orders at a given
time in the first layers [3] of the order book influence realized
transactions. In this representation of a continuous flow of
orders seen as particles populating the order book, a well-
functioning market is one in which there is on average an
approximate balance between buy and sell orders that occur
in narrow price intervals near the best bid and the best ask. In
contrast, when liquidity rarefies on the buy side and sell or-
ders accumulate, large price changes and larger volatility can
result, for instance, when a large market sell order occurs [4].
This picture of a flow of two types of buy and sell orders
interacting in a narrow price interval suggests that a physical
analog of almost balanced counterflows of particles could
provide useful insights. A few proposals have already been
made in this direction. For instance, Vamoş et al. presented
the derivation of a one-dimensional hydrodynamic model to
describe the stock price evolution [5]. Parisi et al. showed
that a counterflow of simulated pedestrians through a door
displays essentially all the stylized facts of financial markets,
when mapping the density of agents around the opening to
the logarithm of the market price [6]. Yura et al. established
a remarkable quantitative analogy between the financial order
book and a gas of creating and annihilating particles, which
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provided a new physically based derivation of the geometric
Brownian motion of financial prices [3,7]. In a similar vein,
Bouchaud et al. noted that the volatility of financial markets
is stabilized by a “liquidity molasses” created by the liquidity
providers [8].

Previous studies have shown that agent-based models are
capable of reproducing various stylized facts [9–11]. In the
present work we report that a constrained system of self-
propelled particles flowing through an opening exhibits crit-
ical behavior and scaling properties. Interestingly, we find
that the emerging properties coincide with the so-called styl-
ized facts of financial systems. Previous research investigated
mechanical systems consisting of elongated vibration-driven
vehicles (VDVs) confined to a specific geometry such as
hopperlike constrictions [12], circular arenas [13], race-
tracks [14], and parabolic traps [15].

Here we consider a geometry that is specifically designed
to embody a balanced flow with a bottleneck, namely, two
chambers connected by an opening. This particular geometry
allows us to satisfy the following properties: competition
between two opposite flows in the opening and constrictions
that emerge from the interaction with the boundaries. While
most numerical and experimental studies involve passive par-
ticles, we examine whether the analogy between financial
price fluctuations and balanced flows with bottlenecks can be
implemented experimentally by means of self-driven vehicles,
which are more realistic analogs of market orders driven by
purposeful traders. Our analysis of the temporal evolution of
the density fluctuations of the VDV finds that they reproduce
experimentally the main stylized facts of financial time se-
ries. This demonstrates that the proposed mechanical system
presents statistical properties that are independent of their
context, e.g., finance, physics, or engineering.
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FIG. 1. (a) Snapshots of the VDV system. In panel B the distance
d3 is depicted. (b) Density time series of vibration-driven vehicles
where A and B indicate the particular configurations shown in (a).
(c) Time evolution of the polarization parameter Pκ . (d) Probability
density function of Pκ .

II. EXPERIMENTAL SETUP

We used 13 vibration-driven vehicles commercially avail-
able as HEXBUG nano. The motion of these is originated by
the vibration produced by an eccentric motor located inside
the body. The motor is powered by a 1.5-V battery. The VDVs
are standing on legs which resemble an asymmetric brush that
rectifies the random vibration into a forward displacement.
The direction of the VDVs is changed by the collision with
other vehicles or with the boundaries of the arena. The di-
mensions of these are 43 × 15 × 18 mm3. Each of them had
a unique four-color label on it that allowed us to identify it
univocally.

We built the closed geometry by connecting two chambers
through an opening of size L = 40 mm as shown in Fig. 1(a).
This particular design allowed us to generate a continuous
flow of VDVs between both chambers. We used acetate tapes
as flexible walls and wooden blocks (fixed to the floor) to
set the opening size. A sheet of glass was placed on top,
at a height of 19 mm, in order to prevent vehicles from
overturning. We recorded the experiments with a GoPro Hero
3 camera placed on top of the arena and tracked the position
of each agent with a time resolution τ = 1/29.97 s given by
the camera frame rate. We analyzed the first 105 frames of the
experiment, that is, approximately 55 min.

III. RESULTS

As mentioned above, it is of interest to study the effect
of constrictions on the dynamics of the system. For this we
focused on the density around the opening estimated by the
κ nearest neighbor. For this we determined the distance dκ to
the κth nearest VDV from the center of the opening (x0, y0)
as shown in panel B in Fig. 1(a). Finally, we estimated the
density as

ρ ∝ κ − 1

d2
κ

. (1)

We studied the influence of different values of κ = [2, 4] on
the emerging statistical properties. While we found that the
stylized facts are robustly present for these values, we choose
to use κ = 3 because results better match the stylized facts of
the financial markets (see Appendix A). Figure 1(b) shows the
time evolution of ρ in a particular window of 50 s. Capital
letters link the density values with the snapshots shown in
Fig. 1(a).

We proceed to study different statistical properties that
emerge from the mechanical system and compare them to
the corresponding stylized facts from the Bitcoin cryptocur-
rency expressed in US dollars (BTCUSD) at a 1-h sampling
rate [16]. Specifically, we take into account data ranging from
31 December 2012 to 30 June 2018. We consider the density
ρ defined by the expression (1) as well as the logarithm of the
price of BTCUSD, referring to their variation as the return

RY (ti, j) = Y (ti+ j ) − Y (ti ), (2)

where ti are the discrete time steps, j is the number of time
steps over which the return is computed, and Y (ti ) can be ρ

for either the mechanism system or the logarithmic price of
BTCUSD. We use j = 1 unless otherwise indicated. In anal-
ogy with the standardized return, we compute the standardized
absolute return as

|R∗
Y (ti, j)| = |RY (ti, j)|(∑NT − j

h=1 |RY (th)|)/(NT − j)
, (3)

where |RY | is the absolute value of the return and NT is the
total number of data points in the time series.

Because of their particular shape and their interaction with
the boundaries, the VDVs tend to align with each other. This
kind of emergent behavior for elongated particles was studied
in [13,17]. In order to characterize the behavior of VDVs
near the opening, we define a polarization parameter that is
calculated from the orientations of the κ particles closest to
the opening as

Pκ (ti ) = 1

κ

∣∣∣∣∣
κ∑

k=1

�ek (ti )

∣∣∣∣∣, (4)

where �ek (ti ) is the direction of the particle k at time ti.
Figure 1(c) shows the time evolution of the polarization
while Fig. 1(d) shows the probability density function (PDF)
computed over all ti. The results exhibit two maxima that
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FIG. 2. Autocorrelation function of the (a) VDV and (b) BT-
CUSD returns (red solid line), absolute returns (royal blue short-
dashed line), square returns (green long-dash–short-dashed line), and
logarithm of absolute returns (navy blue long-dash–double-short-
dashed line).

correspond to configurations of parallel and antiparallel align-
ment. These findings show that those particles that are closer
to the opening evolve between disordered motion and herding.
It can be observed that the system operates in a metastable
state in which saturated high polarization values alternate with
low polarization values. A similar phenomenon was found in
the simulated pedestrian system [6] for an optimum value of
the individualistic parameter. This evidences that the stylized
facts emerge when the systems defined as balanced flows with
bottlenecks operate near a critical state.

A. Correlation of returns and volatility clustering

We now examine several statistical properties of the re-
turns. The sample correlation function of the returns is
defined as

C(k) = corr(RY (ti + kτ ), RY (ti )), (5)

where k is the time lag and τ is the time resolution. Figure 2(a)
shows the estimated autocorrelation for Y = ρ as a function
of the time lag k, revealing that there is an absence of linear
autocorrelation for times larger than ten lags. Similar results
are obtained for Y equal to the logarithmic price of BTCUSD,
shown in Fig. 2(b).

This fast decay of the correlation of returns should be
contrasted with the long memory exhibited by the autocorrela-
tion function of the absolute returns, associated with volatility
clustering. To quantify this phenomenon, we follow standard
procedures and estimate the autocorrelation function of an
arbitrary power α of the absolute returns defined as

Cα (k) = corr(|RY (ti + kτ )|α, |RY (ti )|α ). (6)

The C1(k) and C2(k) are shown for Y = ρ in Fig. 2(a) and
for Y equal to the logarithmic price of BTCUSD in Fig. 2(b).
This result is compatible with other observations in financial
systems [18,19], which document a power-law decay Cα (k) ∝

FIG. 3. Autocorrelation function of the absolute (blue short-
dashed line) and squared returns (green long-dash–short-dashed line)
for the (a) VDV and (b) BTCUSD systems. Black solid lines stand for
PL fits. Also shown is the first lag of the autocorrelation for different
exponents α for the (c) VDV and (d) BTCUSD systems.

k−β(α). Figures 3(a) and 3(b) show the autocorrelation of the
absolute returns for powers α = 1 and 2 for the VDV and
BTCUSD systems, respectively. We fit power-law functions
using the least-squares method and our calibration yields
β(1) = 0.4 and β(2) = 0.6 for the VDV system and β(1) =
0.3 and β(2) = 0.55 for the logarithmic price of BTCUSD.
The closeness of these exponents for the VDV system and
logarithmic price of BTCUSD is a quite remarkable substan-
tiation of the analogy between the two systems. Moreover,
as stated by Ding and Granger for financial systems [20],
we have verified that the autocorrelation for a given time
lag k reaches its maximum at α = 1 for both systems as
can be seen in Figs. 3(c) and 3(d). Motivated by multifractal
stochastic volatility models [21,22], we also estimated the
autocorrelations of the logarithm of the absolute returns

Clog(k) = corr(log |RY (ti + kτ )|, log |RY (ti)|), (7)

which are shown in Fig. 2. One can observe a quasilinear
decay Clog(k) as a function of ln k up to an integral timescale
approximately equal to kT � 103 for the VDV system and
kT � 104 for the logarithmic price of BTCUSD. In both cases,
the integral timescales are much larger than that found for the
autocorrelation of |RY|. These results are in agreement with
the postulated form proposed by Muzy et al. [21].

This slow decay of the autocorrelation of the absolute val-
ues of returns for the VDV cannot be associated, as in financial
systems, with the existence of an explicit decision mechanism
and competition between strategies. However, we note that
decisions could be replaced by the more complex particle
geometry (anisotropic), in contrast with the isotropic disk
geometry in computer simulations [6]. The elongated form,
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FIG. 4. Power-law exponents and coefficient of determination
obtained from fits of the autocorrelation of the absolute values of
density when estimated at different measurement points.

along with the vibration mechanism, can produce changes of
direction when interacting near the door, which change the
“state” of the particle, i.e., the direction of particle motions.
This is connected with the system operating in metastable
states so that the polarization alternates between two distinc-
tive types of order as shown in Fig. 1.

Additionally, we have studied the influence of the opening
on the evolution of the system. For this, we estimated the
local density of particles for the measurement points shown
in Fig. 1(a). Then, for each time series, we computed the
autocorrelation of the absolute returns and fitted a power-law
(PL) function as in Fig. 3. The obtained exponents β(1) are
shown in Fig. 4 with the related coefficient of determination
R2. Data reveal that the better approximation (largest R2) is
found for the density estimated at the center of the opening.
For this series, we found that the density measured around the
opening presents the longest correlation decay, namely, a low
value of β(1). As the measurement point moves away from
the center, the absolute values of density are less correlated,
that is, β(1) increases. These results show that the volatility
clustering, one of the main stylized facts, is maximized at the
center of the opening.

B. Fat tails and aggregational Gaussianity

Another stylized fact is the non-Gaussian and fat-tailed
nature of the probability density function of returns [22–24].
Figure 5 shows the complementary cumulative distribution
function (CCDF) of |R∗

Y | for Y = ρ [Fig. 5(a)] and Y equal
to the logarithmic price of BTCUSD [Fig. 5(b)] for returns
estimated on j = 1, 100, and 500 time steps. The CCDFs of
returns exhibit fatter tails than Gaussian distributions, while at
the same time they converge to Gaussian distributions under
time aggregation, as can be seen from their change from j = 1
to 100 and to 500 [25]. In Appendix B we present quantitative
results regarding the fitting of the distributions.

C. Scaling of distribution maxima

The properties of the central part of the distribution, that
is, the probability of zero returns, constitute another stylized
fact previously reported for financial returns. We thus estimate

FIG. 5. Complementary cumulative distribution function for the
standardized absolute returns of the (a) VDV and (b) BTCUSD
systems computed at different time steps j. The solid line stands for
the CCDF of the nearest Gaussian distribution.

the dependence of the maximum P(RY = 0) of the distribution
of returns for various time steps j using a probability density
estimator based on a normal kernel function. As expected, we
find that P(RY = 0) decays according to a power law P(Rρ =
0) ∝ j−δ , with δ = 0.81 for the VDV system and δ = 0.59
for BTCUSD as shown in Fig. 6. Fitting was done using the
least-squares method. These results are in accordance with,
for instance, those obtained for the S&P500 index [26].

FIG. 6. Probability of zero return as a function of time step j
for the (a) VDV and (b) BTCUSD systems. The exponents of the
power-law fits are δ = 0.81 for the VDV system and δ = 0.59 for
BTCUSD system.

042302-4



PROPERTIES OF BALANCED FLOWS WITH … PHYSICAL REVIEW E 101, 042302 (2020)

FIG. 7. (a) Plot of Kq( j) of Rρ as a function of time step j for
q = 1, 2, 3, and 4. Solid lines show the PL fits. (b) Plot of Kq( j) and
PL fits for the BTCUSD system. (c) Exponents qQ(q) as a function
of q for the VDV system, showing a nonlinear relationship. (d) The
qQ(q) function for the BTCUSD system.

D. Multifractality

Next we perform a multifractal analysis to verify the
scaling property of the moments [27–29]

Kq( j) = 〈|RY (ti, j)|q〉 ∝ jqQ(q), (8)

where the operator 〈·〉 is the time average over all ti and
q is the order of the moment. Figures 7(a) and 7(b) show
Kq( j) as a function of j for the VDV and BTCUSD sys-
tems, respectively. The power-law scaling Kq( j) ∝ jqQ(q) is
confirmed, with exponents qQ(q) that are nonlinear functions
of q qualifying the presence of multifractality [27,30] as seen
in Figs. 7(c) and 7(d) for the VDV and BTCUSD systems,
respectively. The exponents are obtained using least-squares
calibration. These results are in accordance with the BTCUSD
multifractal analysis shown in Refs. [31,32].

E. Hurst exponent

The last property that we analyze is the long-range de-
pendence of the time series of absolute returns |Rρ |, which
we investigate by means of the detrended fluctuation analy-
sis [33–35]. Following this approach, we compute the root-
mean-square fluctuation of the integrated and detrended time

FIG. 8. Detrended fluctuation analysis for the (a) VDV and
(b) BTCUSD systems. Solid lines stand for PL fits.

series F (n) and plotted against n as shown in Fig. 8 for the
VDV system [Fig. 8(a)] and the BTCUSD system [Fig. 8(b)].
In both we find a linear relationship on a log-log scale that
leads us to fit a PL function. Our estimation of the Hurst
exponent gives H = 0.82 for the VDV system [Fig. 8(a)].
This value indicates that the VDV system presents significant
persistence. For the BTCUSD system [Fig. 8(b)], we find an
almost identical value H = 0.83. These results indicate that
periods with positive trends tend to be followed by periods
with similar trends.

F. Mechanical-financial equivalence equation

Finally, we further motivate the proposed analogy between
the mechanical system of VDVs and financial price fluctua-
tions by presenting the equation for the rate of change of the
density in the self-propelled particle system as

∂ρ

∂t
= −2

ρ

rκ

[〈ṙκ〉 + ε], (9)

where rκ is the radial component of the position of the κth
particle from the center of the constriction (used to compute
the density ρ), ṙκ is the radial velocity, and ε represents
velocity fluctuations stemming mainly from the interchanges
of other particles with the κth particle. This equation can be
further mapped onto the price evolution equation in finance

dP

dt
= D − S

W
, (10)

where P is the price, D the demand, S the supply, and W
the market depth. The derivation is demonstrated as follows.
First, we write ∂ρ

∂t for our mechanical system. We choose to
calculate the density in a nonparametric way, by fixing the
number of particles and measuring the area that contains them,
ρ(rκ , t ) = κ−1

πr2
κ (t ) , where rκ (t ) is the radial position of the κth
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particle from the center of the constriction. Thus,

∂ρ

∂t
= ∂[(κ − 1)/(πr2

κ (t ))]

∂t
= −2[(κ − 1)/π ]

ṙκ

r3
κ

. (11)

Considering the definition of the density we can write

∂ρ

∂t
= −2

ρ

rκ

ṙκ . (12)

Now we consider that our mechanical system provides
at least two kind of fluctuations for the velocity of the κth
particle. One corresponds to the high frequency due to the
vibration mechanism that propels the VDVs. The second
source of fluctuation appears when particle κ − 1 or κ + 1
interchanges places and becomes particle κ . This change of
particles may occur at different radial velocities and thus it
produces a discontinuity on it. So these sources of velocity
fluctuations are expressed by writing the radial velocity as its
mean value over time plus a fluctuation term: ṙκ = 〈ṙκ〉 + ε.
With this, Eq. (12) becomes

∂ρ(rκ , t )

∂t
= −2

ρ

rκ

[〈ṙκ〉 + ε]. (13)

Defining a virtual flow of particles as J = −ρ ṙ, we can write
Eq. (13) as

∂ρ(rκ , t )

∂t
= − ∂J

∂rκ

+ s(rκ , t ), (14)

where s(rκ , t ) is a source term of flowing particles related to
the fluctuation velocity term ε.

Equation (14) is analogous to the one corresponding to
price dynamics in the order book if we take it along the price
axis, where ρ(p, t ) is the density of orders at a given price p
at time t ; J (p, t ) is correspondingly the flux of orders at price
p at time t in the order book. In this case, the equation reads

∂ρ(p, t )

∂t
= −∂J

∂ p
+ s(p, t ). (15)

This representation corresponds to the microscopic level of
the order book, as described in [3,7]. In particular, it provides
a microscopic origin of the random-walk nature of prices
with a physical picture analogous to the Brownian motion [3].
Specifically, it maps the financial price dynamics to that of a
micron-sized particle in a solvent undergoing a random walk
in space. In other words, ρ(p, t ) can be visualized as the
density of particles at position p at time t . These particles
move around, are created when a new order occurs, and are
annihilated when an order is removed or executed when a
trade is made. This last phenomenon is taken into account by
the source and sink terms of Eq. (15).

The observed price P(t ) can be approximated at a coarse-
grained level as the center of gravity of the set of prices along
the order book axis. Thus, P(t ) is defined as

P(t ) =
∫

d p pρ(p, t ). (16)

Then

dP

dt
=

∫
d p p ∂ρ(p, t )/∂t (17)

and

dP

dt
= −

∫
d p p ∂J (p, t )/∂ p +

∫
d p p s(p, t ). (18)

Integrating by parts, we obtain that (assuming vanishing flux
and its derivative at + and − infinity)

dP

dt
=

∫
d p J (p, t ) +

∫
d p p s(p, t ). (19)

In the simplest model, J ∝ −∂ρ(p, t )/∂ p expresses a ten-
dency for orders to equilibrate. Then the first integral in
Eq. (19) vanishes and we are left with

dP

dt
=

∫
d p p s(p, t ). (20)

Now it is necessary to differentiate between the ask
[ρ+(p, t )] and bid [ρ−(p, t )] side of the order book. The
former is expressed as

∂ρ+(p, t )

∂t
= −∂J

∂ p
+ s+(p, t ), (21)

while the latter is

∂ρ−(p, t )

∂t
= −∂J

∂ p
+ s−(p, t ). (22)

In this way, the price equation becomes

P(t ) = 1

W

∫
d p p[ρ−(p, t ) + ρ+(p, t )]. (23)

This is the key equation capturing the phenomenon of the
price dynamics as a balance between the bid and ask prices
along the order book. We introduce a proportionality constant
1/W to express that the price is proportional to the overall
unbalance between all the orders in the order book.

Following the same steps as from Eq. (17) to Eq. (20), we
find that

dP

dt
= 1

W

∫
d p p[s−(p, t ) − s+(p, t )]. (24)

By definition, demand D = ∫
d p p s−(p, t ) and supply S =∫

d p p s+(p, t ) and we obtain

dP

dt
= D − S

W
. (25)

IV. CONCLUSION

In summary, we have studied the properties of the flow
of mechanical self-propelled particles confined in a geometry
described by two chambers that connect through a narrow
opening. While the system configuration produces a con-
tinuous flow of particles between the two chambers, their
elongated geometry leads to transient spatial clustering and
coherent orientation, akin to a herding process in finance. By
defining the polarization parameter, we observed that the three
nearest particles from the center of the opening exhibit strong
transitory alignments. Further, we found that the vibration-
driven vehicle system exhibits critical behavior and scaling
properties in agreement with the so-called stylized facts ob-
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served in financial systems. We illustrated this by comparing
with similar properties of the financial returns of the Bitcoin
price series expressed in US dollars. We found excellent
agreement between these two systems in the sense that they
share the following facts: fast decay of the autocorrelation of
returns; slow decay of the autocorrelation of absolute returns,
of their square, and of the logarithm of absolute returns; fat
tails of the distribution of returns; aggregational Gaussianity;
scaling of the probability of zero return; multifractality; and
self-similarity with persistence quantified by a large value of
the Hurst exponent.

Therefore, the VDV system, which is ruled by simple re-
pulsion and friction interactions, exhibits essentially the most
important statistical properties shown by a system as complex
as that of financial markets. By comparing the experimental
VDV system with the numerical results of simulated pedestri-
ans [6], we hypothesized what seems to be the key ingredients:
(i) two groups of interacting agents flowing in counterflow
configuration, which is the analog in finance to the buyers
and sellers initiating trades; (ii) a geometrical constriction
that funnels the flow, which is the analog in finance to the
narrow price interval close to the bid-ask spread around which
transactions are executed [36,37]; and (iii) the continuity
equation for the flow [Eq. (9)], which has a counterpart in
financial systems [Eq. (10)].

We can also identify a number of characteristics from the
simulated [6] and experimental physical systems that are irrel-
evant for the emergence of the stylized facts: (a) the particular
geometries of the connected chambers, which are square for
the simulated particles and heart-shaped here; (b) periodic
boundary conditions in the simulation that are not present
in the experiment; (c) the shape of the particle (isotropic
vs elongated); (d) the specific form of the interactions be-
tween particles; (e) the specific propulsion mechanism of the
particles; (f) the decision-making capacity of the simulated
pedestrians are replaced by the complex shape and alignment
process in the experimental counterpart; and (g) the model
approximations and numerical simplifications are not present
in the experiment. Because of these important differences,
we can state that the simulated and experimental systems
are two different systems sharing only the key ingredients
defined above. This enhances the evidence suggesting that
these ingredients, also shared by the financial systems, are
at the basis of the mechanisms from which the stylized facts
emerge.

ACKNOWLEDGMENTS

This work was funded by Project No. ITBACyT-33 [In-
stituto Tecnológico de Buenos Aires (ITBA)] and Grant No.
PID2015-003 (Agencia Nacional de Promoción Científica y
Tecnológica, ITBA, and Urbix Technologies S.A., Argentina).
D.R.P. is grateful to Román y Matilda for their help with the
first prototype of the experiment. G.A.P. is grateful to Gonzalo
Nardini, María Eugenia Sakuda, and Diego Vázquez for their
help with the tracking system.

PD
F

0

4

8

12

16

Pκ
0.0 0.2 0.4 0.6 0.8 1.0

κ = 2
κ = 3
κ = 4

FIG. 9. Comparison between the PDF of Pκ for κ = [2, 4].

APPENDIX A

We study how κ affects the PDF of the polarization.
For this we take κ ∈ [2, 4] and find that the corresponding
distributions are bimodal, as shown in Fig. 9. In the case
of κ = 2, there is a dominant maximum reflecting a greater
probability of finding the two VDVs in parallel alignment
(Pκ ≈ 1). In contrast, there is a small probability of finding
the two VDVs in antiparallel alignment (Pκ ≈ 0). For κ = 4,
as in the case of κ = 3, the peak heights of the distributions
are more similar, showing a parity between antiparallel and
parallel configurations.

We choose to show results using κ = 3 because one im-
portant stylized fact is more pronounced, as is the case of the
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FIG. 10. (a) Decay of the autocorrelation of |Rρ | as a function
of κ . (b) Coefficient of determination obtained from the fitting
procedure.
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power-law decay of the autocorrelation of absolute returns.
For κ = [2, 4] we find that β(1) ranges from 0.4 to 0.6 but the
coefficient of determination R2 is maximized for κ = 3 as can
be seen in Figs. 10(a) and 10(b), respectively.

APPENDIX B

Figure 11(a) shows results for j = 1, where we find that the
CCDF corresponding to the VDV system is well described by
a stretched exponential distribution with exponent 0.71 similar
to that reported in other financial systems [23,24,38]. For the
BTCUSD system [Fig. 11(b)], the CCDF of the returns of the
logarithmic price of BTCUSD is better fitted by a power law
with exponent 3.3.

For the case of BTCUSD, we follow the procedure intro-
duced by Clauset et al. [39] to find the power-law exponent
and the threshold value above which the fit is valid. In the
case of the VDV system, we find that the data are com-
patible with a Weibull distribution. Then we follow an ad
hoc maximum likelihood estimation procedure to estimate the
parameters.
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FIG. 11. (a) Complementary cumulative distribution function for
the VDV returns. The solid line stands for SE fit. (b) The CCDF for
BTCUSD returns and the corresponding PL fit shown by the solid
line.
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