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Lie structure on the Hochschild cohomology of a family of
subalgebras of the Weyl algebra

Samuel A. Lopes and Andrea Solotar

Abstract. For each nonzero h 2 F Œx�, where F is a field, let Ah be the unital associative algebra
generated by elements x; y, satisfying the relation yx � xy D h. This gives a parametric family of
subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously
been studied independently. In this paper, we give a full description of the Hochschild cohomology
HH�.Ah/ over a field of an arbitrary characteristic. In case F has a positive characteristic, the center
Z.Ah/ of Ah is nontrivial and we describe HH�.Ah/ as a module over Z.Ah/. The most interesting
results occur when F has a characteristic 0. In this case, we describe HH�.Ah/ as a module over the
Lie algebra HH1.Ah/ and find that this action is closely related to the intermediate series modules
over the Virasoro algebra. We also determine when HH�.Ah/ is a semisimple HH1.Ah/-module.

1. Introduction

The Weyl algebra became an object of interest in the 1920s, together with the development
of the quantum theories in physics. It has played an important role in D-module theory. It
is well known that the Weyl algebra is the algebra of differential operators over the one-
dimensional affine space, where x acts by multiplication and y corresponds to the usual
derivative @

@x
. Of course, replacing this last action by h � @

@x
for any fixed polynomial

h.x/ 2 F Œx� also corresponds to a derivation. If h D 0, the derivation would annihilate
everywhere, so we will not consider this case. Precisely, the algebras we consider are
Ore extensions of the polynomial algebra in one variable, whose only other possible Ore
extensions – here we allow h D 0 – are a quantum plane or a quantum Weyl algebra.

Given a field F and a nonzero polynomial h.x/ 2 F Œx�, let Ah be the unital associative
F -algebra with two generators x and Oy, subject to the relation Oyx � x Oy D h. There is
an embedding of Ah in A1 given by x 7! x, Oy 7! yh, as in [2, Lem. 3.1]. We will thus
henceforth take Oy D yh and consider Ah as the unital subalgebra of the Weyl algebra A1
generated by x and Oy D yh, where Œy; x� D 1 and Œ Oy; x� D h.

The family Ah parametrizes many well-known algebras, which we study simultane-
ously. As previously said, for hD 1, we retrieve the first Weyl algebra A1. Other particular
cases have attracted attention, such as Ax , which is the universal enveloping algebra of the
two-dimensional non-abelian Lie algebra, and Ax2 , known as the Jordan plane, which is a
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Nichols algebra of non-diagonal type. More generally, taking h D xn with n � 3 and set-
ting x in degree 1 and Oy in degree n � 1, then, as observed by Stephenson [12], Axn is an
Artin–Schelter regular of global dimension two, although it does not admit any regrading
so that it becomes generated in degree one.

The aim of this article is to describe the structure – given by the Gerstenhaber bracket –
of the Hochschild cohomology spaces HH�.Ah/ as Lie modules over HH1.Ah/.

The Hochschild cohomology HH�.Ah/D
L
n�0 HH

n.Ah/ can be made into a Lie mod-
ule for the Lie algebra HH1.Ah/ of outer derivations of Ah, under the Gerstenhaber bracket.
By the Hochschild–Kostant–Rosenberg theorem, under suitable assumptions, this bracket
is the generalization to higher degrees of the Schouten–Nijenhuis bracket. In our setting,
this is especially interesting in case char.F/D 0 and gcd.h;h0/¤ 1 as then the description
of HH1.Ah/ is related to the Witt algebra and, as we shall see, the HH1.Ah/-Lie module
structure of HH2.Ah/ can be described in terms of the representation theory of the Witt
algebra.

The paper is organized as follows. In Section 2, we prove a few technical lemmas
about commutators, while in Section 3, we construct the minimal resolution of Ah as an
Ah-bimodule. Since it has length 2, HHi .Ah/ is zero for i greater than 2. In particular, this
resolution allows us to give an explicit description of HH2.Ah/ in a positive characteristic.
The aim of Section 4 is to complete the construction of a contracting homotopy for the
minimal resolution, and in Section 5, we recall the method developed by Suárez-Álvarez
[13] to compute the brackets ŒHH1.A/;HHn.A/� for any associative unital algebra A. This
allows us to obtain in Section 6 the main results of this article: the description, in a char-
acteristic zero, of the Lie structure of HH�.Ah/ as an HH1.Ah/-Lie module.

Below we summarize, in simplified form, the main results of the paper.

Theorem A (Theorem 3.24). Assume that char.F/ D p > 0 and let Z.Ah/ denote the
center of Ah. Then, HH2.Ah/ is a free Z.Ah/-module if and only if gcd.h; h0/ D 1. In this
case, HH2.Ah/ has rank one over Z.Ah/ and, moreover, HH�.Ah/ is a free Z.Ah/-module.

In a positive characteristic, an explicit description of HH2.Ah/ is given in Theorem 3.21,
although this is a bit involved. On the other hand, in a characteristic zero, HH2.Ah/ can be
presented as a space of polynomials.

Theorem B (cf. Corollary 3.11 and Remark 3.13). Assume that char.F/ D 0. There are
isomorphisms

HH2.Ah/ Š Ah= gcd.h; h0/Ah Š DŒ Oy�;

where D D .F Œx�= gcd.h; h0/F Œx�/. In particular, HH2.Ah/ D 0 if and only if h is a sepa-
rable polynomial; otherwise, HH2.Ah/ is infinite-dimensional.

We also describe in detail HH2.Ah/ as an HH1.Ah/-Lie module. Please refer to Theo-
rem 6.2 below, or [1, Thm. 5.1, Prop. 5.9], for a detailed description of the structure of
HH1.Ah/ as a Lie algebra.
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Theorem C (cf. Theorem 6.19). Assume that char.F/ D 0 and gcd.h; h0/ ¤ 1. Let mh C
1 be the largest exponent occurring in the decomposition of h in F Œx� into irreducible
factors. The structure of HH2.Ah/ as a Lie module, under the Gerstenhaber bracket, for
the Lie algebra HH1.Ah/ is as follows:

(a) there is a filtration of length mh by HH1.Ah/-submodules,

HH2.Ah/ D P0 © P1 © � � � © Pmh�1 © Pmh D 0;

such that each factor Pi=PiC1 is semisimple;

(b) the irreducible summands of each Pi=PiC1 can be naturally seen as obtained
from intermediate series modules for the Witt algebra, under a suitable finite field
extension of F ;

(c) HH2.Ah/ has a finite composition length, equal to the number of irreducible fac-
tors of gcd.h; h0/, counted with multiplicity;

(d) HH2.Ah/ is a semisimple HH1.Ah/-module if and only if h is not divisible by the
cube of any non-constant polynomial.

It is noteworthy that in case F is of a characteristic 0 and algebraically closed (so
that each irreducible factor of h is linear and the corresponding factor algebra of F Œx�
is isomorphic to F ), then from Theorem C and the previous results obtained in [1] we
can recover the number of irreducible factors appearing in h and the corresponding multi-
plicities. More specifically, let �.h/ denote the partition encoding the multiplicities of the
irreducible factors of h. We can conclude that if �.h/ and �.g/ are different partitions,
then Ah is not derived equivalent to Ag .

We now fix some definitions and notation. Given an associative algebraA and elements
a; b 2 A, we use the commutator notation Œa; b� D ab � ba. The center of A and the
centralizer of an element a 2 A will be denoted by Z.A/ and CA.a/, respectively. An
element c 2 A is normal if cA D Ac (an ideal of A). We remark that the set of normal
elements of A forms a multiplicative monoid.

Given a two-sided ideal I of A, we will write a � b .mod I / to mean that a � b 2 I .
This yields an equivalence relation on A with the usual stability properties under addition
and multiplication. If J is another ideal such that J � I , then obviously a � b .mod J /
implies that a � b .mod I /. In case I D cA for some normal element c 2 A, we also use
the notation a � b .mod c/.

Unadorned ˝ will always mean ˝F . For any set E, 1E will denote the identity map
on E. Given f 2 F Œx�, f .k/ stands for the k-th derivative of f with respect to x, which
we also denote by f 0 and f 00 in case k D 1; 2, respectively. If f; g 2 F Œx� are not both
zero, then we tacitly assume that gcd.f; g/ is monic.

An infinite-dimensional Lie algebra which plays an important role in the description of
HH1.A/ is the Witt algebra. A confusion with terminology may arise here, since the term
Witt algebra has been used in the literature to mean two different things: the complex
Witt algebra is the Lie algebra of derivations of the ring CŒz˙1�, with basis elements
wn D z

nC1 d
dz

, for n 2 Z; while over a field K of a characteristic p > 0, the Witt algebra
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is defined to be the Lie algebra of derivations of the ring KŒz�=.zp/, spanned by wn for
�1 � n � p � 2. Here, we are considering a subalgebra of the first one (defined over the
field F ):

W D spanF¹wi j i � �1º; (1.1)

equipped with the Lie bracket Œwm; wn� D .n � m/wmCn, for m; n � �1. It is easy to
check that if char.F/D 0, then W is a simple Lie algebra (cf. [1, Lem. 5.19]). For the sake
of simplicity and in accordance with the usage in [1], we will abuse the terminology and
refer to the algebra W defined above as the Witt algebra. To make the distinction clear, we
will call the Lie algebra of derivations of F Œz˙1�, with basis ¹wiºi2Z, the full Witt algebra.

A related Lie algebra of the utmost importance in theoretical physics is the Virasoro
algebra, denoted by Vir. It has basis ¹wi j i 2 Zº [ ¹cº over F , with bracket

Œc; Vir� D 0 and Œwm; wn� D .n �m/wmCn C ımCn;0
m3 �m

12
c;

for allm;n 2Z. We will see in (6.21) that the composition factors of HH2.Ah/ can be natu-
rally embedded into irreducible modules for the Virasoro algebra. These are the so-called
intermediate series modules and it is a result of Mathieu [9] that a Harish-Chandra module
for Vir is either a highest weight module, a lowest weight module or an intermediate series
module.

2. Some technical results on commutators

In this short section, we gather some technical lemmas about commutators in Ah. We will
need several additional results on centralizers and commutators in Ah from [2], which for
convenience we combine below.

Proposition 2.1 (cf. [2, Lem. 3.4, 5.2, 6.1, 6.3; Prop. 5.5, 6.2; Thm. 5.3]). Let ı W F Œx�!
F Œx� be the derivation defined by ı.f / D f 0h for all f 2 F Œx�.

(a) One has the following formula for computing in Ah:

Oynf D

nX
jD0

�
n

j

�
ıj .f / Oyn�j : (2.2)

(b) Ah is a free left F Œx�-module with basis ¹hiyiºi�0.

(c) If char.F/D 0, then Z.Ah/D F ; if char.F/D p > 0, then Z.Ah/ is the polynomial
algebra in the variables xp and hpyp .

(d) The centralizer CAh.x/ is generated by F Œx� and Z.Ah/.

(e) Ah is free over Z.Ah/ and over CAh.x/. If char.F/ D p > 0, then

Ah D
p�1M
i;jD0

Z.Ah/xihjyj D
p�1M
jD0

CAh.x/h
jyj :

(f) ŒAh; Ah� � hAh. If char.F/ D 0, then Œx; Ah� D Œ Oy; Ah� D ŒAh; Ah� D hAh.
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Lemma 2.3. For any 0 ¤ h 2 F Œx�, ŒF Œx�; Ah� D Œx; Ah�.

Proof. If char.F/ D 0, then the claim follows from Œx; Ah� D ŒAh; Ah�, by Proposition 2.1.
So assume that char.F/ D p > 0. By [2, Lem. 6.3] and Proposition 2.1, we know that

Œx; Ah� D
p�2M
jD0

hCAh.x/h
jyj and Ah D

p�1M
jD0

CAh.x/h
jyj :

Given that f 2 F Œx�, c 2 CAh.x/, and 0 � j � p � 1, we have, using (2.2),

Œchjyj ; f �D chj Œyj ; f �D chj
jX
kD1

�
j

k

�
f .k/yj�k D h

jX
kD1

�
j

k

�
chk�1f .k/hj�kyj�k :

So, Œchjyj ; f � 2
Lp�2
jD0 hCAh.x/h

jyj D Œx; Ah�.

Now, we can characterize the subspace Œx; Ah�C Œ Oy; Ah� in case char.F/ D p > 0.

Lemma 2.4. Assume that char.F/ D p > 0. The following hold:

(a) for all z 2 Z.Ah/, f 2 F Œx�, and 0 � j � p � 2, one has

Œ Oy; zf hjyj � 2 Œx; Ah� and Œ Oy; zf hp�1yp�1� D zhf 0hp�1yp�1I

(b) Œx; Ah�C Œ Oy; Ah� D
Lp�1

i;jD0
.i;j /¤.p�1;p�1/

Z.Ah/hxihjyj ;

(c) hAh D .Œx; Ah�C Œ Oy; Ah�/˚ hZ.Ah/xp�1hp�1yp�1.

Proof. For the first part of (a), it suffices to show that Œ Oy;f hjyj � 2 Œx;Ah� for all 0 � j �
p � 2, as the latter is clearly a Z.Ah/-module. Since Oy � hy D h0 2 F Œx� and ŒF Œx�; Ah� D
Œx; Ah�, we need to prove that Œhy; f hjyj � 2 Œx; Ah�. Moreover,

Œhy; f hjyj � D Œhy; f �hjyj C f Œhy; hjyj � D hf 0hjyj C f Œhy; hjyj �

and hf 0hjyj 2 Œx;Ah�, so we are left with showing that Œhy; hjyj � 2 Œx;Ah�. This is clear
for j D 0; 1. For 2 � j � p � 2, we have, using (2.2),

Œhy; hjyj � D �

j�1X
`D1

�
j

` � 1

�
hj�`�1h.j�`C1/h`C1y`:

This proves that Œ Oy; zf hjyj � 2 Œx; Ah� for all z 2 Z.Ah/, f 2 F Œx�, and 0 � j � p � 2.
Now, notice that, since hp; yp 2 Z.A1/, then

hp�1yp�1 Oy D hp�1yph D hpyp D yhpyp�1 D Oyhp�1yp�1; (2.5)

so Œ Oy; hp�1yp�1� D 0. Thus, for z 2 Z.Ah/ and f 2 F Œx�, we have

Œ Oy; zf hp�1yp�1� D zŒ Oy; f �hp�1yp�1 D zhf 0hp�1yp�1;

which finishes the proof of (a).
Since Z.Ah/h � im. ddx /h

p�1yp�1 D
Lp�2
iD0 Z.Ah/hx

ihp�1yp�1, (b) is also established
and (c) follows from (b), by Proposition 2.1.
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3. Minimal free bimodule resolution of Ah

For simplicity, throughout the remainder of this paper, we denote Ah simply by A, reserving
the notation Ah for situations in which we want to emphasize h or make particular choices
for h, e.g., when referring to the Weyl algebra A1.

In this section, we construct a free resolution of A as an A-bimodule or, equivalently,
as a left Ae-module, where Ae D A ˝ Aop is the enveloping algebra of A and Aop is the
opposite algebra of A.

We will follow the approach in [4]. Let V D Fx ˚ F Oy be the vector subspace of A
spanned by x and Oy and let RD F r be a vector space of dimension 1. Consider the follow-
ing sequence of right A-module maps:

0 A˝ R˝ A A˝ V˝ A A˝ A A 0:
d1 d0

s1

�

s0 s�1

(3.1)

The maps �, d0, and d1 are in fact A-bimodule maps, whereas the maps s�1, s0, and s1
are just right A-module maps. We describe them all below, except for s1, which we discuss
only in Section 4:

� � is the multiplication map;

� d0.1˝ v ˝ 1/ D v ˝ 1 � 1˝ v for all v 2 V;

� s�1.1/ D 1˝ 1;

� s0.xk Oy` ˝ 1/ D
Pk�1
iD0 x

i ˝ x ˝ xk�1�i Oy` C
P`�1
jD0 x

k Oyj ˝ Oy ˝ Oy`�1�j , with the
usual convention that an empty summation is null; in particular, s0.1˝ 1/ D 0;

� d1.1˝ r˝ 1/ D 1˝ Oy ˝ x C Oy ˝ x ˝ 1 � 1˝ x ˝ Oy � x ˝ Oy ˝ 1 � s0.h˝ 1/.

It is easy to check that
� ı d0 D 0 D d0 ı d1; (3.2)

so (3.1) is a complex of A-bimodules. In fact, we already know that (3.1) is exact, and
hence a free resolution of A, since its associated graded complex is exact (see [4]), but it
will be useful for further computations to have an explicit contracting homotopy.

We claim that the right A-module maps s�1, s0, and s1 form the desired contracting
homotopy for (3.1), i.e., that the following hold:

� ı s�1 D 1A;

s�1 ı �C d0 ı s0 D 1A˝A;

s0 ı d0 C d1 ı s1 D 1A˝V˝A;

s1 ı d1 D 1A˝R˝A:

(3.3)

The first two equalities are easy to prove and are left as an exercise. So as not to stray from
the main ideas of this section, we will defer the construction of the map s1 and the proof
of the last two relations in (3.3) until Section 4 (see Theorem 4.8).
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Applying the functor HomAe .�; A/ to the resolution associated with (3.1), we get the
commutative diagram

0 HomAe .A˝ A; A/ HomAe .A˝ V˝ A; A/ HomAe .A˝ R˝ A; A/ 0

0 A A˚ A A 0;

d�0

�0

d�1

�1 �2

�1 �2

where d�i is right composition with di , for i D 0; 1, and the vector space isomorphisms �j
are defined as usual by

�0.f /D f .1˝ 1/; �1.f /D
�
f .1˝ x˝ 1/; f .1˝ Oy ˝ 1/

�
; �2.f /D f .1˝ r˝ 1/:

The maps �1 and �2 are given by

�1.˛/ D
�
Œx; ˛�; Œ Oy; ˛�

�
(3.4)

and
�2.˛; ˇ/ D Œˇ; x�C Œ Oy; ˛� � F˛.h/; (3.5)

for all ˛; ˇ 2 A, where F˛ W F Œx�! A is the linear map defined by

F˛.x
s/ D

s�1X
`D0

x`˛xs�`�1; for s � 0; (3.6)

with the convention that F˛.1/ D 0.
Since Fz˛ D zF˛ , for z 2 Z.A/, the maps �i and �j are actually Z.A/-module maps. It

follows that, as a Z.A/-module, the Hochschild cohomology of A can be determined from
the maps �i :

� HH0.A/ D Z.A/ D ker�1;

� HH1.A/ D DerF .A/= InderF .A/ Š ker�2= im�1;

� HH2.A/Š A= im�2 is the space of equivalence classes of infinitesimal deformations of
A (see [6]);

� HHi .A/ D 0 for all i � 3.

The degree zero cohomology HH0.A/ has been computed in [2, Sec. 5], while the deriva-
tions and the Lie algebra structure of HH1.A/ were determined in [1], both over arbitrary
fields.

Examples 3.7. Assume that char.F/ D 0.

� If hD 1, then A1 is the Weyl algebra and it is well known (see [11]) that HH0.A1/D F
and HHi .A1/ D 0 for all i > 0. In this case, A1 is graded, setting deg.x/ D 1 and
deg.y/ D �1.
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� If h D x, then Ax is the universal enveloping algebra of the two-dimensional non-
abelian Lie algebra. In this case, HH0.Ax/D F D HH1.Ax/, by [1, Thm. 5.29]. We will
see shortly that HH2.Ax/ D 0.

� If h D x2, then Ax2 is the Jordan plane. In this case, Ax2 is graded, setting deg.x/ D
deg. Oy/ D 1. Note that HH0.Ax2/ D F and by [1, Thm. 5.29], as a Lie algebra,
HH1.Ax2/ D Fc ˚ W, where c is central and W is the Witt algebra given in (1.1). We
will see that HH2.Ax2/Š F Œ Oy� is naturally a simple module for W and that this module
can be embedded into a simple module for the Virasoro algebra.

Our main goal in this section will be to determine the image of �2 and the quotient
Z.A/-module A= im�2. Later, we will determine the Lie action of HH1.A/ on HH2.A/ given
by the Gerstenhaber bracket. Towards that goal, we start out by studying the map F˛ given
in (3.6). It will be convenient to introduce a mild generalization, so that F˛ can be defined
for all ˛ in the Weyl algebra A1 � A. With this extension, the range of F˛ becomes A1, but
we will still use F˛ to denote this map.

Lemma 3.8. For ˛ 2 A1, let F˛ W F Œx� ! A1 be the linear map defined by (3.6). The
following hold for all f; g 2 F Œx�:

(a) F˛.fg/ D fF˛.g/C F˛.f /g, i.e., F˛ is a derivation;

(b) if ˛ 2 CA1.x/, then F˛.f / D f̨ 0;

(c) moreover, if ˛ 2 A, then F˛.f / 2 f 0˛ C Œx; A�.

Proof. To show (a), it suffices to consider f D xk and g D xs , with k; s � 0. Then,

F˛.fg/ D F˛.x
kCs/ D

kCs�1X
`D0

xkCs�`�1˛x`

D xk
s�1X
`D0

xs�`�1˛x` C

� k�1X
`D0

xk�`�1˛x`
�
xs D fF˛.g/C F˛.f /g:

This proves (a); (b) is clear and we proceed to prove (c). Again, we need only consider
˛ 2 A and f D xk , as above. We have

F˛.x
k/ D

k�1X
`D0

xk�`�1˛x` D

k�1X
`D0

xk�1˛ C

k�1X
`D0

xk�`�1Œ˛; x`�

D kxk�1˛ C

k�1X
`D0

Œxk�`�1˛; x`� 2 kxk�1˛ C ŒF Œx�; A� D f 0˛ C Œx; A�:

In case char.F/D0, the following result completely describes the image of the map �2.

Proposition 3.9. The following hold:

(a) im�2 � gcd.h; h0/A;

(b) if char.F/ D 0, then im�2 D gcd.h; h0/A.
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Proof. It is convenient to write �2 D �12 ˚ �
2
2 , where

�12 W A! A

˛ 7! Œ Oy; ˛� � F˛.h/;

�22 W A! A

ˇ 7! Œˇ; x�:
(3.10)

Since, by Lemma 3.8 (c),

�12.�˛/ 2 h
0˛ C Œx; A�C Œ Oy; A� � h0AC hA D gcd.h; h0/A;

for all ˛ 2 A, it follows that

im�2 D im�12 C im�22 � gcd.h; h0/AC Œx; A� � gcd.h; h0/AC hA D gcd.h; h0/A:

Now, assume that char.F/D 0. By Proposition 2.1, we know that Œx;A�D Œ Oy;A�D hA
and thus im�22 D Œx; A�D hA, which implies that hA � im�2. Hence, we proceed to show
that also h0A � im�2. For ˛ 2 A, we have seen that

�12.�˛/ � h
0˛ 2 Œ˛; Oy�C Œx; A� � hA � im�2:

Also, �12.�˛/ 2 im �2, so it follows that h0˛ 2 im �2. Hence, gcd.h; h0/A D h0AC hA �
im�2 and the equality holds, by (a).

Corollary 3.11. Assume that char.F/ D 0. There are isomorphisms

HH2.A/ Š A= gcd.h; h0/A Š DŒ Oy�; (3.12)

where DD .F Œx�= gcd.h; h0/F Œx�/. In particular, HH2.A/D 0 if and only if gcd.h; h0/D 1,
i.e., if and only if h is a separable polynomial; otherwise, HH2.A/ is infinite-dimensional.

Remark 3.13. In case A=gcd.h; h0/A is graded, (3.12) is an isomorphism of graded vector
spaces.

Let us now consider the case char.F/ D p > 0. Suppose first that h 2 F Œxp�, a cen-
tral polynomial. This is a particularly interesting case, not only because it includes the
Weyl algebra A1 but also since Ah is Calabi–Yau if and only if h is central. Indeed, more
generally, Ah is twisted Calabi–Yau with Nakayama automorphism satisfying x 7! x,
Oy 7! Oy C h0, a fact which can be derived from [8, Rem. 3.4, (2.10)].

Although we can retrieve the following result from Theorem 3.21 below, we think
this particular case helps set the stage for our general result and offers a more concrete
example.

Proposition 3.14. Assume that char.F/ D p > 0 and 0 ¤ h 2 F Œxp�. Then, im �2 D
Œx; A�C Œ Oy; A�. Thus,

HH2.A/ Š
p�1M
i;jD0

.i;j /¤.p�1;p�1/

�
Z.Ah/=hZ.Ah/

�
xihjyj ˚ Z.A/xp�1hp�1yp�1;

as Z.A/-modules.
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In particular, in case hD 1, we obtain HH2.A1/Š Z.A1/xp�1yp�1, a rank-one module
over Z.A1/ D F Œxp; yp�.

Proof. We continue to use the maps �12 and �22 defined in (3.10). For ˛ 2 A, we have

�12.˛/ D Œ Oy; ˛� � F˛.h/ D Œ Oy; ˛� � h
0˛ �‚˛ D Œ Oy; ˛� �‚˛; (3.15)

for some ‚˛ 2 Œx; A� D im �22 . Thus, im �12 � Œx; A� C Œ Oy; A� and there are inclusions
Œx; A� � im�2 D im�12 C im�22 � Œx; A�C Œ Oy; A�. Conversely, by (3.15) we also have that
Œ Oy; ˛� D �12.˛/C‚˛ 2 im �

1
2 C im �22 D im �2, so Œ Oy; A� � im �2, yielding the equality

im�2 D Œx; A�C Œ Oy; A�.
The expression for A= im�2 then comes from Lemma 2.4 (b) and Proposition 2.1.

We now tackle the general case for 0 ¤ h 2 F Œx�, which is a bit more intricate than
the particular case studied above. Consider the decomposition A D 	 ˚ J, where

	 D CA.x/hp�1yp�1 and J D

p�2M
jD0

CA.x/hjyj : (3.16)

Thus, im�12 D im�12 j	 C im�12 jJ . Also, by [2, Lem. 6.3 (b)], im�22 D Œx; A� D hJ.
We wish to show that

im�12 jJ C im�22 D hJ C h0J D gcd.h; h0/J: (3.17)

Let ˛ 2 J. Then, Œ Oy; ˛� 2 Œx; A� D hJ, by Lemma 2.4 (a). As in (3.15), �12.˛/ D
Œ Oy; ˛� � h0˛ � ‚˛ for some ‚˛ 2 Œx; A� D hJ. Thus, im �12 jJ � hJ C h0J; moreover,
h0˛ D ��12.˛/C Œ Oy; ˛� �‚˛ 2 im�

1
2 jJ C im�22 , and (3.17) is established.

So it remains to determine the image of �12 j	 . Let ˛ 2 	. Without loss of gener-
ality, we can assume that ˛ D zf hp�1yp�1 with z 2 Z.A/ and f 2 F Œx�. Then, using
Lemma 2.4 (a), we have

�12.˛/ D Œ Oy; zf h
p�1yp�1� � F˛.h/

D zf 0hhp�1yp�1 � zh0f hp�1yp�1 �‚˛

D z.f 0h � h0f /hp�1yp�1 �‚˛; (3.18)

with ‚˛ 2 Œx; A� D hJ.
Define the map

~ D ~h W F Œx�! F Œx�; ~.g/ D g0h � h0g: (3.19)

By [1, Lem. 4.28 (d)], we know that ker ~ D F Œxp�.h=%h/, where %h is the unique monic
polynomial in F Œxp� of maximal degree dividing h (see [1, Def. 2.14] for a detailed
description of %h). Since ~ is clearly F Œxp�-linear and F Œx� is free of rank p over the
hereditary algebra F Œxp�, we conclude that K WD im~ is a free F Œxp�-submodule of F Œx�
of rank p � 1.
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From the above and (3.18), we can conclude that

im�12 j	 C im�22 D hJ ˚ Z.A/Khp�1yp�1

and finally that
im�2 D gcd.h; h0/J ˚ Z.A/Khp�1yp�1: (3.20)

Thence, we obtain a description of HH2.A/ in a positive characteristic.

Theorem 3.21. Assume that char.F/ D p > 0. Then, the image of the map �2 defined in
(3.5) is im�2 D gcd.h; h0/J ˚ Z.A/Khp�1yp�1, where J and ~ are given in (3.16) and
(3.19), respectively, and K is the image of ~. Thus,

HH2.A/ Š J= gcd.h; h0/J ˚
�
CA.x/=Z.A/K

�
hp�1yp�1;

as Z.A/-modules. In particular, HH2.A/ is nonzero for all 0 ¤ h 2 F Œx�.

Remark 3.22. Suppose that in Theorem 3.21, we take 0¤ h 2 F Œxp�. Then, gcd.h; h0/D
h and K D h im d

dx
D
Lp�2
iD0 F Œxp�hxi , so that

im�2 D hJ ˚

p�2M
iD0

Z.A/hxihp�1yp�1 D Œx; A�C Œ Oy; A�;

by Lemma 2.4 (b), in agreement with the statements in Proposition 3.14.

Examples 3.23. Let char.F/ D p > 0.

(a) In case h D 1, then A1 is the Weyl algebra and, as observed in Proposition 3.14,
HH2.A1/ Š Z.A1/xp�1yp�1 is a rank-one free module over Z.A1/ D F Œxp; yp�.
It was shown in [1, Thm. 3.8] that HH1.A1/ is a rank-two free module over Z.A1/.

(b) In case hD x, then Ax is the universal enveloping algebra of the two-dimensional
non-abelian Lie algebra. We have gcd.h; h0/ D 1 so that J= gcd.h; h0/J D 0. By
computing the image under ~ of the F Œxp�-basis ¹xi j 0 � i � p � 1º of F Œx�,
we easily see that

Z.Ax/K D Z.Ax/˚
p�1M
iD2

Z.Ax/xi :

Hence, Theorem 3.21 yields

HH2.Ax/ Š Z.Ax/xpyp�1;

again a free rank-one module over Z.Ax/ D F Œxp; xpyp�.

(c) Assume that h D x2. Then, Ax2 is the Jordan plane. We distinguish between two
cases:

� Case 1: p D 2.
In this case, x2 is central and we use Proposition 3.14 to obtain the isomor-
phism

HH2.Ax2/ Š D˚ Dx ˚ Dx2y ˚ Z.Ax2/x
3y;

where Z.Ax2/ D F Œx2; x4y2� and D D Z.Ax2/=x2Z.Ax2/.
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� Case 2: p > 2.
In this case, x2 is not central and we use Theorem 3.21. Since gcd.h; h0/ D x
and CAx2 .x/=xCAx2 .x/ Š Z.Ax2/=xpZ.Ax2/, we can conclude that

J= gcd.h; h0/J Š
p�2M
jD0

�
Z.Ax2/=x

pZ.Ax2/
�
hjyj :

Finally, as in the case h D x, it is easy to see that

Z.Ax2/K D
2M
iD1

Z.Ax2/x
i
˚

pM
iD4

Z.Ax2/x
i ;

where the last summand is zero in case p D 3. Hence, Theorem 3.21 gives

HH2.Ax2/ Š D˚ Dx2y ˚ Z.Ax2/x
4y2;

in case p D 3, and

HH2.Ax2/ Š
p�2M
jD0

Dx2jyj ˚ Dx2.p�1/yp�1 ˚ Z.Ax2/x
2pC1yp�1

D

p�1M
jD0

Dx2jyj ˚ Z.Ax2/x
2pC1yp�1;

for all primes p>3, where Z.Ax2/DF Œxp;x2pyp� and DDZ.Ax2/=xpZ.Ax2/.

Notice that in all cases, HH2.Ax2/ is not a free module over Z.Ax2/, although it is
composed of a torsion summand and a free summand of rank one.

We have seen in the examples that, in general, HH2.A/ is not a free module over Z.A/.
The next theorem provides a necessary and sufficient condition for HH2.A/ to be free.

Theorem 3.24. Assume that char.F/ D p > 0. Then, HH2.A/ is a free Z.A/-module if and
only if gcd.h; h0/ D 1. In this case, HH2.A/ has rank one over Z.A/ and, moreover, HH�.A/
is a free Z.A/-module.

Proof. The last statement follows from the first by [1, Thm. 6.29], so we need only focus
on HH2.A/.

The condition gcd.h; h0/ D 1 is necessary, as otherwise, J= gcd.h; h0/J would be
nonzero and annihilated by the central element .gcd.h; h0//p . Next, we prove that it is
sufficient.

Suppose that gcd.h; h0/ D 1. Then, HH2.A/ Š .CA.x/=Z.A/K/hp�1yp�1 and, since
CA.x/D Z.A/F Œx�, it suffices to prove that K is a direct summand of F Œx�, as F Œxp�-mod-
ules. The latter is equivalent to showing that F Œx�=K is torsion free, for then the canonical
epimorphism F Œx�!F Œx�=K will yield the decomposition F Œx�DK˚F Œxp��, for some
rank-one free F Œxp�-submodule F Œxp��. It will follow that HH2.A/ Š Z.A/�hp�1yp�1, a
free Z.A/-module of rank one.
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Claim. The F Œxp�-module F Œx�=K is torsion free.

Proof of the claim. Recall that ~ is defined in (3.19) and K is the image of ~. Let 0 ¤
! 2 F Œxp� and f 2 F Œx� be such that !f 2 K , say !f D ~.g/. It needs to be shown
that f 2 K . For such, it is enough to show that there exist q 2 F Œx� and r 2 F Œxp� so
that g D !q C rh. Indeed, if this is the case, then !f D !~.q/C r~.h/ D !~.q/ and it
follows that f D ~.q/ 2K .

Subclaim 1. g 2 !F Œx�C hF Œx�.

Proof of Subclaim 1. Let t D gcd.!; h/. Then, !F Œx�C hF Œx� D tF Œx� and the equality
!f D g0h � h0g implies that h0g 2 tF Œx�. But t is a divisor of h and gcd.h; h0/ D 1 so it
follows that g 2 tF Œx�, as required.

Take q; r 2 F Œx� with g D !q C rh. Applying ~ to this equality, we obtain ~.g/ D
!~.q/C ~.rh/ and thus ! divides ~.rh/. So it suffices to prove that if ! divides ~.rh/,
then rh 2 !F Œx� C hF Œxp�. In other words, we may assume without loss of generality
that g D rh.

Write r D r0 C r1, with r0 2 F Œxp� and r1 2
Lp�1
iD1 F Œxp�xi . As ~.rh/D ~.r1h/, we

may assume that r0D 0. So, without loss of generality, we assume that r 2
Lp�1
iD1 F Œxp�xi .

Subclaim 2. ! divides rh.

Proof of Subclaim 2. Note that ~.rh/ D r 0h2, so we need to show that if ! divides r 0h2,
then ! divides rh. From this point on, our proof follows that of [1, Lem. 6.28 (iv)],
although the details are a bit more intricate and some modifications are needed. Thus,
we suspend the proof of the subclaim here and refer the interested reader to the proof of
[1, Lem. 6.28 (iv)].

By the above arguments, the claim is also established, thus proving the theorem.

4. The contracting homotopies s�1, s0, and s1

Recall the definition of the right A-module maps s�1 and s0, given at the beginning of
Section 3. In this section, we prove the two final relations in (3.3), together with a few
other useful identities. For the sake of brevity, we leave most of the details to the reader.

Lemma 4.1. Let f 2 F Œx�, a; b 2 A, and ˛ 2 A˝ V˝ A. The following hold:

(a) s0.fa˝ b/ D f s0.a˝ b/C s0.f ˝ ab/;

(b) s0.f d0.˛// D f s0.d0.˛//.

Recall that we have fixed r as the basis element of the one-dimensional vector space R.
Consider the linear map G W F Œx�! A˝ R˝ A defined by

G.xk/ D

k�1X
iD0

xi ˝ r˝ xk�1�i ; for all k � 0; (4.2)
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with G.1/ D 0. Also, recall that ı denotes the derivation of F Œx� defined by ı.f / D f 0h,
so that Œ Oy; f � D ı.f /, for all f 2 F Œx�.

Lemma 4.3. The map G is a derivation and, for any f 2 F Œx�,

d1 ıG.f / D 1˝ Oy ˝ f � f ˝ Oy ˝ 1 � s0.f ˝ Oy/ � s0.ı.f /˝ 1/C Oys0.f ˝ 1/:

Proof. The first statement follows from Lemma 4.1 (a) and the second one can be verified
through a computation, using the properties of s0.

We are finally ready to define the homotopy s1 W A˝ V˝ A! A˝ R˝ A. This is the
right A-module map defined inductively as follows, for f 2 F Œx�, a; b 2 A, and ` � 0:

� s1.a˝ Oy ˝ b/ D 0;

� s1.f Oy` ˝ x ˝ a/ D f s1. Oy` ˝ x ˝ 1/a;

� s1.1˝ x ˝ 1/ D 0;

� s1. Oy`C1 ˝ x ˝ 1/ D Oys1. Oy` ˝ x ˝ 1/C
P`
jD0

�
`
j

�
.G ı ıj .x// Oy`�j , where ı.f / D

f 0h and G is the linear map given by (4.2).

Lemma 4.4. The map s1 satisfies s0 ı d0 C d1 ı s1 D 1A˝V˝A.

Now, we aim to prove the last relation in (3.3), namely, s1 ı d1 D 1A˝R˝A. We start
with a technical identity which just depends on the fact that G and ı are derivations.

Lemma 4.5. Given k � 1 and r � 0,

k�1X
iD0

rX
jD0

r�jX
tD0

�
r

j

��
r � j

t

�
ıj .xi /G

�
ıt .x/

�
ır�j�t .xk�i�1/ D G

�
ır .xk/

�
:

Our next results concern the computation of s1.

Proposition 4.6. For all ` � 0 and all f 2 F Œx�, the following identity holds:

s1
�
Oy`C1s0.f ˝ 1/

�
D Oys1

�
Oy`s0.f ˝ 1/

�
C

X̀
jD0

�
`

j

�
G
�
ıj .f /

�
Oy`�j :

We are now able to determine the closed formulas for s1. Oy`C1s0.f ˝ 1// and
s1. Oy`C1 ˝ x ˝ 1/.

Proposition 4.7. For all ` � 0 and f 2 F Œx�, one has

s1
�
Oy`C1s0.f ˝ 1/

�
D

X̀
jD0

`�jX
kD0

�
` � k

j

�
OykG

�
ıj .f /

�
Oy`�j�k :

In particular, taking f D x, one obtains the following explicit formula for s1:

s1. Oy`C1 ˝ x ˝ 1/ D
X̀
jD0

`�jX
kD0

�
` � k

j

�
OykG

�
ıj .x/

�
Oy`�j�k :



Lie structure on the Hochschild cohomology of Ah 1387

Finally, we can prove the main result of this section.

Theorem 4.8. The right A-module maps s�1, s0, and s1 form a contracting homotopy for
(3.1).

Proof. It remains to prove the identity s1 ı d1 D 1A˝R˝A from (3.3), and it clearly suffices
to check this identity on elements of the form Oy` ˝ r˝ 1, as s1 is also a left F Œx�-module
homomorphism. The case ` D 0 is straightforward, so assume that ` � 1. Then,

s1
�
d1. Oy` ˝ r˝ 1/

�
D s1

�
Oy`d1.1˝ r˝ 1/

�
D s1. Oy`C1 ˝ x ˝ 1/ � s1. Oy` ˝ x ˝ 1/ Oy � s1

�
Oy`s0.ı.x/˝ 1/

�
;

and by Proposition 4.7, we have

s1. Oy`C1 ˝ x ˝ 1/ D
X̀
jD0

`�jX
kD0

�
` � k

j

�
OykG

�
ıj .x/

�
Oy`�j�k :

Using adequate combinatorial identities, we obtain

s1. Oy`C1 ˝ x ˝ 1/ D
`�1X
jD1

`�j�1X
kD0

�
` � k � 1

j

�
OykG

�
ıj .x/

�
Oy`�j�k

C

X̀
jD1

`�jX
kD0

�
` � k � 1

j � 1

�
OykG

�
ıj .x/

�
Oy`�j�k

C

`�1X
kD0

�
` � k � 1

0

�
OykG

�
ı0.x/

�
Oy`�k C Oy`G.x/

D

`�1X
jD0

`�j�1X
kD0

�
` � k � 1

j

�
OykG

�
ıj .x/

�
Oy`�j�k

C

`�1X
jD0

`�j�1X
kD0

�
` � k � 1

j

�
OykG

�
ıjC1.x/

�
Oy`�j�k�1 C Oy` ˝ r˝ 1

D s1. Oy` ˝ x ˝ 1/ Oy C s1
�
Oy`s0.ı.x/˝ 1/

�
C Oy` ˝ r˝ 1;

which proves the desired identity.

5. The Gerstenhaber bracket: general remarks
The Hochschild cohomology HH�.A/ D

L
n�0 HH

n.A/ has a rich structure, including an
associative, graded-commutative product (relative to homological degree), given by the
cup product, and also a graded Lie bracket Œ ; � of (homological) degree �1; these are
related by the graded Poisson identity. In particular, the graded anti-symmetric property
of Œ ; � means

Œ˛; ˇ� D �.�1/.m�1/.n�1/Œˇ; ˛�; for all ˛ 2 HHm.A/ and ˇ 2 HHn.A/;
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and there is a corresponding graded version of the Jacobi identity (see [5]). Under this
construction, HH�.A/ becomes a Gerstenhaber algebra. In particular, the Jacobi identity
implies that HH�.A/ is a Lie module for the Lie algebra HH1.A/, extending the usual Lie
bracket of derivations on HH1.A/. In caseA is a smooth finitely generated F -algebra and F
is perfect, the Hochschild–Kostant–Rosenberg theorem gives an isomorphism of Gersten-
haber algebras between the Hochschild cohomology of A and the exterior algebra over A
of the k-linear derivations of A, as R. Hermann proved in [7], telling that, in this situation,
the Gerstenhaber bracket is the generalization to higher degrees of the Schouten–Nijenhuis
bracket.

The Gerstenhaber structure of Hochschild cohomology is particularly interesting for
us since in case char.F/ D 0 and gcd.h; h0/ ¤ 1, the description of HH1.A/ involves the
Witt algebra W. In a prime characteristic, most of the computations of the Gerstenhaber
structure in Hochschild cohomology concern group algebras and tame blocks; see, for
example, [3, 10].

Although the Gerstenhaber bracket does not depend on the chosen bimodule projective
resolution of A, it is, in general, difficult to compute it on an arbitrary resolution other than
the bar resolution. In spite of this, we always have ŒD; z� D D.z/ and ŒD;D0� D ŒD;D0�
for D;D0 2 DerF .A/ and z 2 Z.A/, so it remains to compute ŒHH1.A/; HH2.A/�, which is
what we undertake in this section. Notice that, in our case, we already have the contracting
homotopy of the minimal resolution, from which the comparison maps can be obtained.
Nevertheless, we will use an easier method that, for the family of algebras we consider,
also needs the contracting homotopy.

To avoid cumbersome notation, we identify D 2 DerF .A/ with its canonical image
D 2 HH1.A/. We will often refer to the map ŒD;�� W HHi .A/! HHi .A/ as the (Lie) action
of D 2 HH1.A/ on HHi .A/.

5.1. The method of Suárez-Álvarez for computing ŒHH1.A/; ��

In this subsection, we will describe a method devised by Suárez-Álvarez in [13] to com-
pute the Gerstenhaber bracket ŒHH1.A/;�� in terms of an arbitrary projective resolution of
A as a bimodule. The reader is advised to consult [13] for further details and all the proofs.

Fix an F -algebra B and a derivation  W B! B. Given a left B-module M , we say that
a linear map f WM !M satisfying f .bm/D bf .m/C .b/m for all b 2 B andm 2M
is a  -operator on M . Given a projective resolution

� � � ! P2
d2
��! P1

d1
��! P0

�
�!M ! 0

of M , a  -lifting of the  -operator f to P� is a sequence f� D .fi /i�0 of  -operators
fi W Pi ! Pi such that the following diagram commutes:

� � � P2 P1 P0 M 0

� � � P2 P1 P0 M 0:

d2

f2

d1

f1

�

f0 f

d2 d1 �
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It was shown in [13, Lem. 1.4] that every  -operator f admits a unique (up to B-module
homotopy)  -lifting.

Given a  -operator f and a  -lifting f� of f to P�, define a sequence f ]� D .f
]
i /i�0

of linear maps f ]i W HomB.Pi ;M/! HomB.Pi ;M/ by

f
]
i .�/.p/ D f

�
�.p/

�
� �

�
fi .p/

�
;

for � 2 HomB.Pi ; M/ and p 2 Pi . In fact, f ]� is an endomorphism of the complex of
vector spaces HomB.P�;M/ and the induced map on cohomology

r
�
f;P�
W H
�
HomB.P�;M/

�
! H

�
HomB.P�;M/

�
depends only on f and not on the choice of  -lifting f�. What is more, noticing that
H.HomB.P�; M// is canonically isomorphic to Ext�B.M;M/, we obtain a canonical mor-
phism of graded vector spaces

r
�
f W Ext

�
B.M;M/! Ext�B.M;M/

which depends only on f and not on the chosen projective resolution of M (see [13,
Thm. A]).

Returning to the problem at hand, which is the computation of the bracket ŒHH1.A/;��
in terms of a chosen bimodule projective resolution � W P�� A of A, set B D Ae and
M D A, so that � W P�� A can be identified with a projective resolution of A as a left
B-module. Given a derivationD of A, construct a new derivationDe DD˝ 1A C 1A ˝D

of B. It can be readily seen that D is a De-operator on A. Since Ext�B.A; A/ is naturally
identified with the Hochschild cohomology HH�.A/, the above construction yields a map
r�D W HH

�.A/! HH�.A/, which by [13, Sec. 2.2] turns out to be ŒD;�� and which can be
computed using any bimodule projective resolution of A, provided that a De-lifting D� of
D to the given resolution is found.

Going back to the case under study, with A D Ah, � D � (the multiplication map),
P0 D A˝ A, P1 D A˝ V˝ A, and P2 D A˝ R˝ A, it can be checked thatD ı�D � ıDe

andDe is trivially aDe-operator on A˝ A, so we can chooseD0 DDe . Taking i D 2 and
using the map �2 from Section 3 to identify HH2.A/ with a homomorphic image of A, we
obtain the formula describing the Lie action of HH1.A/ on HH2.A/:

ŒD; a� D D.a/ � �a
�
D2.1˝ r˝ 1/

�
; (5.1)

for a 2 A andD 2 DerF .A/, where �a 2 HomAe .A˝ R˝ A;A/ is defined by �a.1˝ r˝ 1/D
a.

5.2. The De-lifting of D to (3.1)

In order to make use of (5.1), it remains to determine the De-lifting D2 of D, which
we do in this subsection. We begin with a few general observations aimed at simplifying
computations; then, we determine the De-liftings D1 and D2.

The proof of the lemma that follows is standard and is thus omitted.
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Lemma 5.2. Let B be an algebra,  W B ! B a derivation, M and N left B-modules,
X � M a generating set for M as a B-module, and Y � B a generating set for B as a
vector space.

(a) If X is a free B-basis for M , then for any function f 0 W X !M there is a unique
 -operator f WM !M such that f jX D f 0.

(b) Let � WM !N be a morphism ofB-modules and let f WM !M and g WN !N

be  -operators. If g ı �jX D � ı f jX , then the following square commutes:

M N

M N:

�

f g

�

(c) If f W M ! M is a linear map such that f .bm/ D bf .m/ C  .b/m for all
b 2 Y � B and all m 2 X �M , then f is a  -operator.

Throughout the rest of this subsection, fix D 2 DerF .A/ and let D0 D De W Ae ! Ae .
Next, we define a D0-lifting D1 W A˝ V˝ A! A˝ V˝ A in terms of the homotopy s0.

Lemma 5.3. Let D1.a ˝ v ˝ b/ D as0.D.v/˝ b/CD.a/˝ v ˝ b C a ˝ v ˝D.b/,
for all a; b 2 A and all v 2 V D Fx ˚ F Oy. Then, extending linearly to A˝ V˝ A, this rule
defines a D0-operator such that D0 ı d0 D d0 ıD1.

Proof. Define firstD1.1˝ v˝ 1/D s0.D.v/˝ 1/ for v 2 ¹x; Oyº. Since ¹1˝ x ˝ 1; 1˝
Oy ˝ 1º is a free basis for A˝ V˝ A as an Ae-module, Lemma 5.2 (a) guarantees the exis-
tence of a unique D0-operator, which we still denote by D1, defined on A˝ V˝ A and
extending the above rule.

First, notice that by linearity ofD and s0, one hasD1.1˝ v˝ 1/D s0.D.v/˝ 1/ for
all v 2 V. Given a; b 2 A, the definition of a D0-operator implies that

D1.a˝ v ˝ b/ D D1
�
.a˝ b/.1˝ v ˝ 1/

�
D .a˝ b/D1.1˝ v ˝ 1/CD0.a˝ b/.1˝ v ˝ 1/

D as0.D.v/˝ 1/b CD.a/˝ v ˝ b C a˝ v ˝D.b/:

As s0 is a right A-module map, this expression matches the one in the statement.
Now, by Lemma 5.2 (b), it suffices to check the equality D0 ı d0 D d0 ıD1 on ele-

ments of the form 1˝ v ˝ 1. Thus, using the second identity in (3.3), we establish the
final claim:

d0 ıD1.1˝ v ˝ 1/ D d0
�
s0.D.v/˝ 1/

�
D D.v/˝ 1 � s�1 ı �

�
D.v/˝ 1

�
D D.v/˝ 1 � s�1

�
D.v/

�
D D.v/˝ 1 � 1˝D.v/

D D0.v ˝ 1 � 1˝ v/ D D0 ı d0.1˝ v ˝ 1/:

Before we proceed to define the D0-lifting D2, we prove some auxiliary relations
which will simplify several expressions, including one for D2.1˝ r˝ 1/.
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Lemma 5.4. Let g 2 F Œx�, ˛ 2 A˝ V˝ A, b 2 A, and k; ` � 0. The following hold:

(a) s1.g˛/ D gs1.˛/;

(b) s1 ı s0 D 0;

(c) s1. Oys0.g Oy` ˝ b// D G.g/ Oy`b, where G is given in (4.2);

(d) s1 ıD1 ı s0.xk ˝ 1/D
Pk�1
iD1 s1.D.x

i /˝ x˝ xk�i�1/, where this sum is under-
stood to be 0 in case k 2 ¹0; 1º.

Proof. Both (a) and (b) follow trivially from the definitions, so we proceed to prove (c).
As before, we can assume that b D 1. Furthermore, using (a), (b), Lemma 4.1 (a), the
definition of s1, and Proposition 4.6, we get

s1
�
Oys0.g Oy` ˝ 1/

�
D s1

�
Oy
�
gs0. Oy` ˝ 1/C s0.g ˝ Oy`/

��
D s1

�
g Oys0. Oy` ˝ 1/

�
C g0hs1

�
s0. Oy` ˝ 1/

�
C s1

�
Oys0.g ˝ 1/

�
Oy`

D gs1
�
Oys0. Oy` ˝ 1/

�
C s1

�
Oys0.g ˝ 1/

�
Oy`

D G.g/ Oy`:

Finally, for the proof of (d), we have, using the definition of D1, parts (a) and (b), and
the definition of s1:

s1 ıD1 ı s0.xk ˝ 1/ D
k�1X
iD0

s1 ıD1.xi ˝ x ˝ xk�i�1/

D

k�1X
iD0

s1
�
D.xi /˝ x ˝ xk�i�1

�
D

k�1X
iD1

s1
�
D.xi /˝ x ˝ xk�i�1

�
:

Motivated by Lemma 5.4 (c), we extend the map G linearly to A, by setting

G.f Oy`/ D G.f / Oy`; for all f 2 F Œx� and all ` � 0: (5.5)

Thus, we can rewrite Lemma 5.4 (c) as

s1
�
Oys0.a˝ b/

�
D G.a/b; for all a; b 2 A: (5.6)

We are now ready to define the D0-operator D2 in terms of D1 and the homotopy s1.

Lemma 5.7. There is a unique D0-operator D2 W A ˝ R ˝ A ! A ˝ R ˝ A such that
D2.1˝ r˝ 1/ D s1 ıD1 ı d1.1˝ r˝ 1/. Then, D1 ı d1 D d1 ıD2 and

D2.1˝ r˝ 1/ D G
�
D.x/

�
C s1

�
D. Oy/˝ x ˝ 1

�
� s1 ıD1 ı s0.h˝ 1/: (5.8)
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Proof. By Lemma 5.2 (a), there exists a uniqueD0-operatorD2 defined on A˝ R˝ A and
such thatD2.1˝ r˝1/D s1 ıD1 ı d1.1˝ r˝1/. The exact expression forD2.a˝ r˝b/
can be computed as in the proof of Lemma 5.3.

Now, using Lemma 5.4 and (5.6), we have

D2.1˝ r˝ 1/ D s1
�
D1.1˝ Oy ˝ x/

�
C s1

�
D1. Oy ˝ x ˝ 1/

�
� s1

�
D1.1˝ x ˝ Oy/

�
� s1

�
D1.x ˝ Oy ˝ 1/

�
� s1

�
D1
�
s0.h˝ 1/

��
D s1

�
s0
�
D. Oy/˝ x

��
C s1

�
1˝ Oy ˝D.x/

�
C s1

�
Oys0
�
D.x/˝ 1

��
C s1

�
D. Oy/˝ x ˝ 1

�
� s1

�
s0
�
D.x/˝ Oy

��
� s1

�
1˝ x ˝D. Oy/

�
� s1

�
xs0

�
D. Oy/˝ 1

��
� s1

�
D.x/˝ Oy ˝ 1

�
� s1

�
D1
�
s0.h˝ 1/

��
D s1

�
Oys0
�
D.x/˝ 1

��
C s1

�
D. Oy/˝ x ˝ 1

�
� s1

�
D1
�
s0.h˝ 1/

��
D G

�
D.x/

�
C s1

�
D. Oy/˝ x ˝ 1

�
� s1

�
D1
�
s0.h˝ 1/

��
:

Finally, by Lemma 5.2 (b), it is enough to show that D1 ı d1.1 ˝ r ˝ 1/ D d1 ı
D2.1˝ r˝ 1/, so we compute, using Lemma 4.4 and Lemma 5.3,

d1 ıD2.1˝ r˝ 1/ D d1 ı s1 ıD1 ı d1.1˝ r˝ 1/

D D1 ı d1.1˝ r˝ 1/ � s0 ı d0 ıD1 ı d1.1˝ r˝ 1/

D D1 ı d1.1˝ r˝ 1/ � s0 ıD0 ı d0 ı d1.1˝ r˝ 1/

D D1 ı d1.1˝ r˝ 1/;

as d0 ı d1 D 0.

5.3. Technical lemmas

We need to prove yet some more technical results which will allow us to simplify the
computation of the Gerstenhaber bracket given in (5.1). Although these will be particularly
useful in case char.F/ D 0, most statements hold over an arbitrary field, so we include
them here.

Following [1, Lem. 2.13], it will be useful to define, for 0 ¤ f 2 F Œx�, the element
�f such that

(1) �f 2 F Œx� is monic;

(2) �f D
f

gcd.f;f 0/ , up to a nonzero scalar.

In particular, if f 0 D 0, then �f D 1.
In this subsection, we will mostly work over some homomorphic image of A and we

will extensively use the notations a � b .mod I / and a � b .mod c/, defined in the intro-
duction to mean that a � b 2 I and a � b 2 cAD Ac, for a two-sided ideal I and a normal
element c, respectively. We remark that the monoid of normal elements of Awas described
in [2, Thm. 7.2] and, in particular, any product of factors of h is normal in A.

Lemma 5.9. Let D 2 DerF .A/, a 2 A, and k � 0. The following hold:

(a) D.h/ 2 hA and D.x/ 2 �hA;

(b) D.ak/ � kak�1D.a/ .mod h/;
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(c) D.gcd.h; h0// 2 gcd.h; h0/A.

Proof. The defining relation for A implies that

D.h/ D �
�
D.x/; Oy

�
�
�
x;D. Oy/

�
2 ŒA; A� � hA:

So D.hA/ � hA and D induces a derivation D W A=hA ! A=hA with D.a C hA/ D
D.a/C hA. Since A=hA is commutative, we have

D.ak/C hA D D
�
.aC hA/k

�
D kak�1D.a/C hA;

which proves (b).
In particular, 0�D.h/� h0D.x/ .modh/, and it follows that h0D.x/ 2 hA. Since for

any f 2 F Œx� we have that h divides h0f if and only if �h divides f , we conclude that
D.x/ 2 �hA, finishing the proof of (a).

Let g D gcd.h; h0/. Up to a nonzero scalar, h D �hg. Write D.x/ D �hb for some
b 2 A. By (b),

D.g/ 2 g0�hb C hA � g0�hAC hA:

As h0 D �hg0 C � 0hg and g divides h0, we deduce that g divides �hg0, so D.g/ 2 gAC
hA D gA.

Lemma 5.10. Let � be a divisor of h, D 2 DerF .A/, � 2 HomAe .A˝ R˝ A; A/, and f 2
F Œx�. The following hold:

(a) s1.�A˝ V˝ AC A˝ V˝ �A/ � �A˝ R˝ AC A˝ R˝ �A;

(b) �.�A˝ R˝ AC A˝ R˝ �A/ � �A;

(c) � ıG.f / � f 0�.1˝ r˝ 1/ .mod h/; in particular, � ıG.hA/ � gcd.h; h0/A;

(d) if char.F/ ¤ 2, then � ı s1 ı D1 ı s0.f ˝ 1/ 2 �hf 00A C hA; in particular,
� ı s1 ıD1 ı s0.h˝ 1/ 2 gcd.h; h0/A;

(e) � ı s1. Oy` ˝ x ˝ 1/ � `�.1˝ r˝ 1/ Oy`�1 .mod gcd.h; h0//, for all ` � 0.

Proof. The claim in (a) is clear because � is normal, s1.�A˝ V˝ A/D �s1.A˝ V˝ A/ �
�A˝ R˝ A, by Lemma 5.4, and s1 is a right A-module map. Claim (b) is proved similarly.

Take f D xk , with k � 0. Then,

� ıG.xk/ D

k�1X
iD0

xi�.1˝ r˝ 1/xk�i�1 �
k�1X
iD0

xk�1�.1˝ r˝ 1/

� kxk�1�.1˝ r˝ 1/ .mod h/;

establishing the first claim in (c). Thus, for all ` � 0,

� ıG.hf Oy`/ D �
�
G.hf /

�
Oy` 2 .h0f C hf 0/�.1˝ r˝ 1/ Oy` C hA � gcd.h; h0/A;

proving that � ıG.hA/ � gcd.h; h0/A.
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For (d), consider f D xk , with k � 0. By Lemma 5.9, there is a 2 A such that
D.x/ D �ha and D.xi / � ixi�1D.x/ 2 hA, for all i � 0. Set �i D D.xi / � ixi�1D.x/.
By Lemma 5.4, we have

� ı s1 ıD1 ı s0.xk ˝ 1/ D
k�1X
iD1

� ı s1
�
D.xi /˝ x ˝ xk�i�1

�
D

k�1X
iD1

� ı s1
��
ixi�1D.x/C �i

�
˝ x ˝ xk�i�1

�
:

By (a) and (b),
Pk�1
iD1 � ı s1.�i ˝ x˝ x

k�i�1/ 2 hA. Thus, working modulo hA and using
the commutativity of A=hA and the hypothesis that char.F/ ¤ 2, we obtain

� ı s1 ıD1 ı s0.xk ˝ 1/ �
k�1X
iD1

� ı s1.ixi�1�ha˝ x ˝ xk�i�1/

�

k�1X
iD1

ixi�1�h�
�
s1.a˝ x ˝ 1/

�
xk�i�1

�

�
k

2

�
xk�2�h�

�
s1.a˝ x ˝ 1/

�
� .xk/00�h

1

2
�
�
s1.a˝ x ˝ 1/

�
.mod h/;

so indeed � ı s1 ıD1 ı s0.f ˝ 1/ 2 f 00�hAC hA. In particular,

� ı s1 ıD1 ı s0.h˝ 1/ 2 h00�hAC hA � gcd.h; h0/A

because gcd.h; h0/ divides h00�h.
Lastly, we prove (e) by induction on ` � 0. As � ı s1.1˝ x ˝ 1/ D 0, the base step

is established and we assume that

� ı s1. Oy` ˝ x ˝ 1/ � `�.1˝ r˝ 1/ Oy`�1
�
mod gcd.h; h0/

�
holds for some ` � 0. Then, by the definition of s1, the commutativity of A= gcd.h; h0/A,
and part (c) above, as ıj .x/ 2 hA for all positive j ,

� ı s1. Oy`C1 ˝ x ˝ 1/ D Oy�
�
s1. Oy` ˝ x ˝ 1/

�
C

X̀
jD0

�
`

j

�
� ıG

�
ıj .x/

�
Oy`�j

� `�.1˝ r˝ 1/ Oy` C � ıG.x/ Oy`

� `�.1˝ r˝ 1/ Oy` C �.1˝ r˝ 1/ Oy`
�
mod gcd.h; h0/

�
:

Lemma 5.11. Let �2HomAe .A˝R˝A;A/, f 2F Œx�, and k�0. Then, the following hold.

(a) �hh
k�1ŒykC1;h��.kC 1/�hh

0hk�1ykC
�
kC1
2

�
�hh

00hk�1yk�1 .modh/. (Notice
that in case k D 0, the above expression still makes sense, as �hh

0

h
D

h0

gcd.h;h0/ 2

F Œx�.)
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(b) Oyk � hkyk .mod gcd.h; h0//.

(c) �ıG.f hkyk/�f 0�.1˝r˝1/ Oyk�
�
kC1
2

�
f h00�.1˝r˝1/ Oyk�1 .mod gcd.h;h0//.

Proof. Working modulo hA, we deduce (a):

�hh
k�1ŒykC1; h� D

kC1X
jD1

�
k C 1

j

�
�hh

.j /hk�1ykC1�j

� .k C 1/�hh
0hk�1yk C

�
k C 1

2

�
�hh

00hk�1yk�1 .mod h/:

In particular, multiplying both sides of (a) by gcd.h; h0/ D h=�h, we obtain

hk ŒykC1; h�� .k C 1/h0hkykC

�
kC1

2

�
h00hkyk�1� .kC1/h0hkyk .mod h/; (5.12)

and it follows that hk ŒykC1; h� 2 gcd.h; h0/A.
We are now ready to prove (b) by induction on k � 0, the base case being trivial.

Supposing that (b) holds for a certain k � 0, we get

OykC1 � hkykC1h D hkC1ykC1 C hk ŒykC1; h� � hkC1ykC1
�
mod gcd.h; h0/

�
:

We also prove (c) by induction on k � 0. The case k D 0 is immediate from Lemma
5.10 (c). For the inductive step, assume that the congruence holds for k � 0. By (5.12), we
have

hkC1ykC1 D hkykC1h � hk ŒykC1; h� � hkyk Oy � .k C 1/h0hkyk .mod h/:

By Lemma 5.10 (c),

� ıG.f hkC1ykC1/

� � ıG.f hkyk/ Oy � .k C 1/� ıG.f h0hkyk/

� f 0�.1˝ r˝ 1/ OykC1 �
�
k C 1

2

�
f h00�.1˝ r˝ 1/ Oyk

� .k C 1/.f h0/0�.1˝ r˝ 1/ Oyk C .k C 1/
�
k C 1

2

�
f h0h00�.1˝ r˝ 1/ Oyk�1

� f 0�.1˝ r˝1/ OykC1 �
�
kC1

2

�
f h00�.1˝ r˝ 1/ Oyk � .kC1/f h00�.1˝ r˝1/ Oyk

� f 0�.1˝ r˝1/ OykC1 �
�
kC2

2

�
f h00�.1˝ r˝ 1/ Oyk

�
mod gcd.h; h0/

�
:

6. The Gerstenhaber bracket
In this section, we determine the structure of HH2.A/ as a module over the Lie algebra
HH1.A/ under the Gerstenhaber bracket, always under the assumption that char.F/ D 0.
We will prove some of the main results of this article. In the first subsection, we will
describe two different subspaces of the space of linear derivations of our algebra that will
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act on HH2.A/ in a very different way. Next, we will describe the action of the classes
of these derivations on HH2.A/. Then, we achieve our goal of giving an explicit descrip-
tion of HH2.A/ as an HH1.A/-Lie module. We finish the section by relating this action of
HH1.A/ on HH2.A/ with the representation theory of the Virasoro algebra, and then by dis-
cussing several special cases. More explicitly, we will describe the composition series of
HH2.A/ as an HH1.A/-Lie module, whose length equals the maximum of the multiplicities
of the irreducible factors of h minus 1. The successive quotients associated to this com-
position series turn out to be completely reducible. Moreover, they decompose as direct
sums of intermediate series modules over a Witt algebra. The intermediate series modules
are naturally graded and the dimensions of the homogeneous components are uniformly
bounded.

6.1. The Lie algebra structure of HH1.A/

The Lie algebra structure of HH1.A/ in case char.F/ D 0 is described explicitly in [1,
Sec. 5] and we briefly collect the results we need below.

There are two types of derivations of A, which together describe DerF .A/ and HH1.A/.

� For any g 2 F Œx�, letDg be the derivation of A such thatDg.x/ D 0 andDg. Oy/ D g.
Then, ¹Dg j g 2 F Œx�º is an abelian Lie subalgebra of DerF .A/ andDg 2 InderF .A/ if
and only if g 2 hF Œx�.

� Viewing, as usual, A D Ah � A1 with Oy D yh, define the elements an D �hhn�1yn 2
¹u 2 A1 j Œu;A�� Aº (the normalizer of A in A1), for all n� 1. It will also be convenient
to consider the element a0 D �h=h D

1
gcd.h;h0/ in the localization of A1 at the Ore

set formed by the powers of h. Then, adgan 2 DerF .A/ for all n � 0 and g 2 F Œx�.
Moreover, adgan 2 InderF .A/ if and only if g 2 gcd.h; h0/F Œx�.

Next, we recall the definition in [1, Sec. 4.3] of the linear endomorphism ı0 W F Œx�!
F Œx� given by

ı0.g/ D ı.ga0/ D .g�hh
�1/0h D .g�h/

0
� g

�hh
0

h
; (6.1)

where ı.f / D f 0h. By [1, Lem. 4.14], adga0 D �Dı0.g/.
For notational simplicity, by [2, Thm. 8.2], we can assume that h is monic, say h D

u˛11 � � � u
˛t
t , where u1; : : : ; ut are the distinct monic prime factors of h, with multiplicities

˛1; : : : ; ˛t . Up to changing the order of the factors, we can further assume that there is
0 � k � t such that ˛1; : : : ; ˛k � 2 and ˛kC1 D � � � D ˛t D 1. Moreover, if k D 0, then
gcd.h; h0/ D 1 and in this case HH2.A/ D 0, so there is nothing to prove.

We have the following result (see also [1, Thm. 5.1, Prop. 5.9]).

Theorem 6.2. Assume that char.F/ D 0. Then, there is a decomposition HH1.A/ D
Z.HH1.A// ˚ ŒHH1.A/; HH1.A/�. Moreover, using the above notations, there are isomor-
phisms of Lie algebras:

(a) N D spanF¹adgan j g 2 u1 � � � ukF Œx�; n � 0º is the unique maximal nilpotent
ideal of ŒHH1.A/;HH1.A/�;
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(b) Z.HH1.A// Š ¹Dg j g 2 gcd.h; h0/F Œx�; degg < deg hº;

(c) ŒHH1.A/;HH1.A/� D spanF¹adgan j g 2 F Œx�; degg < deg gcd.h; h0/; n � 0º;

(d) ŒHH1.A/;HH1.A/�=N Š W1˚ � � � ˚Wk , where Wi D .F Œx�=uiF Œx�/˝W is a field
extension of the Witt algebra.

6.2. Formulas for the Gerstenhaber bracket ŒHH1.A/;HH2.A/�

Recall that by Corollary 3.11, HH2.A/ Š A= gcd.h; h0/A can be identified with the polyno-
mial ring DŒ Oy�, where DD .F Œx�=gcd.h;h0/F Œx�/. We will use (5.1) and also the identifica-
tion introduced there between A=gcd.h;h0/A and HomAe .A˝ R˝ A;A/= im d�1 , which asso-
ciates the element a2A with the map �a 2HomAe .A˝R˝A;A/ defined by �a.1˝ r˝1/D
a, and similarly for the corresponding homomorphic images.

Fix D 2 DerF .A/ and let D1 be the lifting as in Lemma 5.3. Now, Lemma 5.10 (d)
implies that for all a 2 A, the image of �a ı s1 ıD1 ı s0.h˝ 1/ in HH2.A/ is zero. Thus,
we have, using Lemma 5.7,

ŒD; a� D D.a/ � �a
�
G
�
D.x/

��
� �a

�
s1
�
D. Oy/˝ x ˝ 1

��
; (6.3)

for all a 2 A andD 2 DerF .A/. Moreover, by Lemma 5.9 (c), the image ofD.a/ in HH2.A/
depends only on the class aC gcd.h;h0/A and similarly, �a.G.D.x/// and �a.s1.D. Oy/˝
x ˝ 1// depend only on the classes D.x/C hA and D. Oy/C gcd.h; h0/A, respectively, by
Lemma 5.10.

We will first consider the derivations of the formDg , for g 2 F Œx�. Fix g and letD D
Dg . Take aDp.x/ Oyk for some p.x/2F Œx� and k�0. Then, D.x/D0D s1.D. Oy/˝x˝1/
and by Lemma 5.9, D.p.x/ Oyk/ D p.x/D. Oyk/ � kp.x/ Oyk�1g � kgp.x/ Oyk�1 .modh/.
Thus, ŒDg ; p.x/ Oyk � � kgp.x/ Oyk�1 .mod gcd.h; h0//. So,

ŒDg ;�� D g
d

d Oy
on DŒ Oy�: (6.4)

In particular, ŒZ.HH1.A//;HH2.A/� D 0, by Theorem 6.2 (b).
Now, we can turn our attention to the derivations of the form adgan , with g 2 F Œx� and

n � 0.

Lemma 6.5. Let D D adgan and a D p.x/ Oyk 2 A, as above. Then,

(a) D.x/ D n�hgh
n�1yn�1 � n�hg Oy

n�1 .mod gcd.h; h0//;

(b) D. Oy/ � �ı0.g/ Oy
n .mod gcd.h; h0//;

(c) D.a/ � .n�hgp
0.x/ � kp.x/ı0.g// Oy

nCk�1 .mod gcd.h; h0//.

Proof. We have

D.x/ D Œ�hgh
n�1yn; x� D n�hgh

n�1yn�1 � n�hg Oy
n�1 .mod gcd.h; h0//;

where the last congruence comes from Lemma 5.11 (b). Also,

D. Oy/ D Œ�hgh
n�1yn; Oy� D �hgh

n�1ynC1h � y�hgh
nyn

D �hgh
nynC1 C �hgh

n�1ŒynC1; h� � �hgh
nynC1 � Œy; �hgh

n�yn
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� .nC 1/�hh
0ghn�1yn C

�
nC 1

2

�
�hgh

00hn�1yn�1 � .�hgh
n/0yn .mod h/

� .nC 1/�hh
0ghn�1yn � .�hgh

n/0yn
�
mod gcd.h; h0/

�
� .nC 1/�hh

0ghn�1yn � n�hgh
0hn�1yn � .�hg/

0hnyn
�
mod gcd.h; h0/

�
� �hh

0ghn�1yn � .�hg/
0hnyn

�
mod gcd.h; h0/

�
�

�
�hh

0g

h
� .�hg/

0

�
hnyn

�
mod gcd.h; h0/

�
� �ı0.g/ Oy

n
�
mod gcd.h; h0/

�
;

using Lemma 5.11 (a) and (b), the fact that gcd.h; h0/ divides h00�h, and (6.1).
Finally, using Lemma 5.9 (b),

D.a/ � D
�
p.x/

�
Oyk C p.x/D. Oyk/

� p0.x/D.x/ Oyk C kp.x/D. Oy/ Oyk�1

�
�
n�hgp

0.x/ � kp.x/ı0.g/
�
OynCk�1

�
mod gcd.h; h0/

�
:

Hence, forD D adgan and aD p.x/ Oyk 2 A, we can now compute ŒD;a� as an element
of DŒ Oy�, using (6.3), Lemma 5.10 (e), and Lemma 5.11 (c) and recalling that gcd.h; h0/
divides h00�h:

D.a/ �
�
n�hgp

0.x/ � kp.x/ı0.g/
�
OynCk�1

�
mod gcd.h; h0/

�
;

�a
�
G
�
D.x/

��
D �a

�
G.n�hgh

n�1yn�1/
�

� n.�hg/
0p.x/ OynCk�1 � n

�
n

2

�
�hgh

00p.x/ OynCk�2

� n.�hg/
0p.x/ OynCk�1

�
mod gcd.h; h0/

�
;

�a
�
s1.D. Oy/˝ x ˝ 1/

�
� �ı0.g/�a

�
s1. Oyn ˝ x ˝ 1/

�
� �nı0.g/p.x/ Oy

nCk�1
�
mod gcd.h; h0/

�
:

It thus follows that, working in HH2.A/ D A= gcd.h; h0/A and recalling (6.1),

ŒD; a� � n
�
�hgp

0.x/ � .�hg/
0p.x/

�
OynCk�1 C .n � k/p.x/ı0.g/ Oy

nCk�1

�

�
n�hgp

0.x/ � ng
�hh

0

h
p.x/ � kı0.g/p.x/

�
OynCk�1

�
mod gcd.h; h0/

�
:

Therefore, we have proved the main result of this subsection.

Theorem 6.6. Assume that char.F/ D 0. The Lie action of HH1.A/ on HH2.A/ under the
Gerstenhaber bracket is given by the following formulas:�

Z
�
HH1.A/

�
;HH2.A/

�
D 0; (6.7)

Œadgan ;�� D n�hg Oy
n�1 d

dx
� ı0.g/ Oy

n d

d Oy
� ng

�hh
0

h
Oyn�11DŒ Oy�; (6.8)

for all g 2 F Œx� and n � 0, where an D �hhn�1yn.
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6.3. The structure of HH2.A/ as a Lie module over HH1.A/

Recall that h D u˛11 � � � u
˛t
t , where u1; : : : ; ut are the prime factors of h, ordered so that

˛1; : : : ; ˛k � 2 and ˛kC1 D � � � D ˛t D 1 for 0 � k � t , as in Theorem 6.2. If k D 0, then
gcd.h; h0/ D 1 and in this case, HH2.A/ D 0. Thus, we suppose throughout this subsection
that k � 1. Then,

�h D u1 � � � ut ; gcd.h; h0/ D h=�h D u˛1�11 � � � u˛k�1
k

; �.h=�h/ D u1 � � � uk :

Let us fix mh D max¹ j̨ � 1 j 1 � j � kº � 1.
We make the identification HH2.A/ D DŒ Oy�, where D D F Œx�= gcd.h; h0/F Œx�. Since

u˛i�1i , 1 � i � k, are pairwise coprime,

D Š F Œx�=u˛1�11 F Œx�˚ � � � ˚ F Œx�=u˛k�1
k

F Œx�;

and there exist nonzero pairwise orthogonal idempotents e1; : : : ; ek 2 D with e1 C � � � C
ek D 1, DD De1˚ � � � ˚ Dek , and Dei Š F Œx�=u˛i�1i F Œx� (these isomorphisms are both as
algebras and as left F Œx�-modules). Define Di D Dei . Then, HH2.A/D D1Œ Oy�˚ � � � ˚ Dk Œ Oy�.

Let D D F Œx�=u1 � � � ukF Œx� Š F Œx�=u1F Œx� ˚ � � � ˚ F Œx�=ukF Œx�. Then, by Theo-
rem 6.2 (d), we have�

HH1.A/;HH1.A/
�ı

N Š D˝ W Š W1 ˚ � � � ˚ Wk ;

with Wi D .F Œx�=uiF Œx�/˝ W. As the notation suggests, the algebra D is a quotient of D
by the ideal u1 � � �ukD. Let e1; : : : ; ek 2 D be the images of the idempotents e1; : : : ; ek 2 D
under the canonical epimorphism. It is straightforward to see that these are still nonzero
pairwise orthogonal idempotents in D with e1 C � � � C ek D 1, D D De1 ˚ � � � ˚ Dek , and
Dei Š F Œx�=uiF Œx�. Denote this field Dei D Di by Di . Then,�

HH1.A/;HH1.A/
�ı

N Š .D1 ˝ W/˚ � � � ˚ .Dk ˝ W/: (6.9)

For i � 0, set

‚i D

kY
jD1

umin¹ j̨�1;iº
j :

Thus, ‚0 D 1, ‚1 D u1 � � � uk D �.h=�h/ and for any i � mh, ‚i D gcd.h; h0/. Finally,
define

Pi D ‚iDŒ Oy� � HH2.A/:

We record a few useful facts below.

Lemma 6.10. For i � 0, one has

(a) ‚iC1 D ‚i .
Q

j̨�iC2
uj /;

(b) �h‚
0
i � i‚i�

0
h
.mod‚iC1F Œx�/;
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(c) Pi D‚iDŒ Oy� is a Lie HH1.A/-submodule of HH2.A/ and there is a strictly decreas-
ing filtration

HH2.A/ D P0 © P1 © � � � © Pmh�1 © Pmh D 0: (6.11)

Proof. (a) is clear from the definition. The identity in (b) holds trivially for i D 0 and
we prove it by induction on i � 0. So assume that �h‚0i D i‚i�

0
h
C ‚iC1f , for some

f 2 F Œx�. As ‚iC1.
Q

j̨�iC2
uj / 2 ‚iC2F Œx�, by (a), we have

�h‚
0
iC1 D �h

�
‚i

Y
j̨�iC2

uj

�0
D �h‚

0
i

� Y
j̨�iC2

uj

�
C �h‚i

� Y
j̨�iC2

uj

�0
D .i‚i�

0
h C‚iC1f /

� Y
j̨�iC2

uj

�
C �h‚i

� Y
j̨�iC2

uj

�0
� i‚i�

0
h

� Y
j̨�iC2

uj

�
C �h‚i

� Y
j̨�iC2

uj

�0 �
mod‚iC2F Œx�

�
D i‚iC1�

0
h C‚iC1

� Y
1� j̨�iC1

uj

�� Y
j̨�iC2

uj

�0
D i‚iC1�

0
h C‚iC1

�
� 0h �

� Y
1� j̨�iC1

uj

�0� Y
j̨�iC2

uj

��
� i‚iC1�

0
h C‚iC1�

0
h

�
mod‚iC2F Œx�

�
:

The fact that (6.11) is a decreasing filtration of vector spaces is clear because ‚i
divides ‚iC1. Since the quotient

Q
j̨�iC2

uj of these polynomials is not a unit, for 0 �
i � mh � 1, by the definition of mh, the filtration is strict. Thus, it remains to show that
Œadgan ; Pi � � Pi , for all g 2 F Œx� and n; i � 0. By (6.8), given f 2 F Œx� and ` � 0,

Œadgan ; ‚if Oy
`� D n�hg‚if

0
OynC`�1 C n�hg‚

0
if Oy

nC`�1

� `ı0.g/‚if Oy
nC`�1

� ng
�hh

0

h
‚if Oy

nC`�1;

which is in Pi because �h‚0i 2 ‚iF Œx�.

Set Si D Pi=PiC1, for 0 � i � mh � 1. We have seen that Si is a nonzero HH1.A/-
module under the action induced from the Gerstenhaber bracket. Noting that ı0.g/ D
gı0.1/ C g

0�h (see [1, Lem. 4.14]) and �h‚i 2 ‚iC1F Œx�, we see that this action is
completely described by the following computation in Si :

Œadgan ; ‚if Oy
`� � fg

�
n�h‚

0
i � `ı0.1/‚i � n

�hh
0

h
‚i

�
OynC`�1;

� fg‚i

�
in� 0h � `ı0.1/ � n

�hh
0

h

�
OynC`�1 .modPiC1/: (6.12)
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In particular, Œadgan ; Si � D 0 if g 2 u1 � � � ukF Œx� D ‚1F Œx� because ‚1‚i 2 ‚iC1F Œx�.
So, ŒN ; Si � D 0 for all i � 0, where N is the unique maximal nilpotent ideal of ŒHH1.A/;
HH1.A/�, as in Theorem 6.2. It follows that Si is naturally an ŒHH1.A/;HH1.A/�=N -module.

Note that Si Š .‚iD=‚iC1D/Œ Oy�. Then, the definitions of D, ‚i , and mh � 1, along
with Lemma 6.10 (a), imply that there is a natural isomorphism of vector spaces induced
by the natural map D� ‚iD=‚iC1D:

Si Š
D

.
Q

j̨�iC2
uj /D

Œ Oy� Š
M
j̨�iC2

Dj Œ Oy�; for all 0 � i � mh � 1: (6.13)

By the above isomorphisms, the element ‚if Oy` C‚iC1DŒ Oy� 2 Si is identified with the
element

P
j̨�iC2

f ej Oy
` 2

L
j̨�iC2

Dj Œ Oy�.
Our next step is to describe the Lie algebra isomorphism (6.9). We will need the fol-

lowing.

Lemma 6.14. There is an element � 2 F Œx�, determining a unique class modulo ‚1F Œx�,
such that �ı0.1/ � 1 .mod‚1F Œx�/. For such an element, the following hold:

(a) �� 0
h
� 1 � �

�hh
0

h
.mod‚1F Œx�/;

(b) �� 0
h
�

1
1� j̨

.mod ujF Œx�/, for all 1 � j � k.

Proof. We have that � 0
h
D
Pt
iD1 u1 � � �bui � � � utu0i and �hh

0

h
D
Pt
iD1 ˛iu1 � � �bui � � � utu0i ,

so, in particular,

ı0.1/ D �
0
h �

�hh
0

h
D ukC1 � � � ut

kX
iD1

.1 � ˛i /u1 � � �bui � � � uku0i
and gcd.ı0.1/; ‚1/ D 1. This shows the existence of � with �ı0.1/ � 1 .mod‚1F Œx�/
and also proves (a).

Fix 1 � j � k. Then,

� 0h � u1 � � �buj � � � utu0j �mod ujF Œx�
�
;

�hh
0

h
� j̨ u1 � � �buj � � � utu0j � j̨�

0
h

�
mod ujF Œx�

�
:

But, by (a), we also have �� 0
h
� �

�hh
0

h
�1 .modujF Œx�/, so .1� j̨ /��

0
h
�1 .modujF Œx�/

and (b) follows since j̨ � 2.

Based on the proof of [1, Lem. 5.19] and the definition of Dq , we can deduce that under
the isomorphism (6.9), the element geq ˝wm 2 Dq ˝W is mapped to�adgeq�amC1 CN 2

ŒHH1.A/;HH1.A/�=N , for 1� q � k, g 2 F Œx�, andm� �1, where � is as in Lemma 6.14.
Using these identifications and those in (6.13), we have

.geq ˝ wm/ �

� X
j̨�iC2

f ej Oy
`

�
D �Œadgeq�amC1 ; ‚if Oy

`�
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D ‚ifgeq

�
� i.mC 1/�� 0h C `�ı0.1/C .mC 1/�

�hh
0

h

�
OymC` .modPiC1/

D ‚ifgeq
�
.1 � i/.mC 1/�� 0h C ` � .mC 1/

�
OymC` .modPiC1/

D

X
j̨�iC2

fgej eq
�
` � .mC 1/.1 � .1 � i/�� 0h/

�
OymC`

D

´
fgeq

�
` � .mC 1/.1 � .1 � i/�� 0

h
/
�
OymC` if ˛q � i C 2;

0 if ˛q � i C 1;

by (6.12) and Lemma 6.14, as‚iC1 divides‚1‚i . Moreover, we can use Lemma 6.14 (b)
since uqeq D 0 in Dq , yielding

.geq ˝ wm/ �

� X
j̨�iC2

f ej Oy
`

�
D

´
fgeq

�
` � .mC 1/

˛q�i

˛q�1

�
OymC` if ˛q � i C 2;

0 if ˛q � i C 1:

The above shows that Dq ˝ W acts trivially on Dj Œ Oy� � Si except if j D q and ˛q �
i C 2. In the latter case, the action of Dq ˝ W on DqŒ Oy� is given by

.geq ˝ wm/ � .f eq Oy
`/ D fgeq

�
` � .mC 1/

˛q � i

˛q � 1

�
OymC`: (6.15)

In particular, each Dj Œ Oy� � Si in the decomposition (6.13) is an HH1.A/-submodule of Si .
Notice that in (6.15), the elements f eq and geq are scalars in the field extension

Dq Š F Œx�=uqF Œx� of F and the action (6.15) is Dq-linear. This motivates the following
definition. Fix a scalar � 2 F and let V� D F Œ Oy�. Define an action of the Witt algebra W
on V� by

wm � Oy
`
D
�
` � .mC 1/�

�
OymC`; for all m � �1 and ` � 0: (6.16)

It can be verified that this indeed defines an action of W on V�, for any � 2 F (for � of
the form ˛�i

˛�1
with ˛ � i C 2, this statement is implied by (6.15)).

The module V� is related to the intermediate series modules for the Witt and Virasoro
algebras (compare (6.21), ahead). Next, we record irreducibility and isomorphism criteria
for these modules.

Lemma 6.17. For F an arbitrary field of a characteristic 0 and � 2 F , let V� be the
W-module defined in (6.16). Then,

(a) V� is irreducible if and only if � ¤ 0;

(b) V� Š V�0 if and only if � D �0.

Proof. The proof is straightforward, so we just sketch it. First, if � D 0, then F Oy0 is
a submodule of V0, so V0 is reducible. Suppose now that � ¤ 0. Let X be a nonzero
submodule of V�. Since w`�1 � Oy

` D `Š Oy0, it follows by the usual argument that Oy0 2 X .
Taking into account that wm � Oy0 D �.m C 1/� Oym 2 X for all m � 0 and � ¤ 0, we
deduce that X D V�. Thus, V� is irreducible and (a) is proved.
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The action of w0 on V� is diagonalizable with eigenvalues ¹`��º`�0, with �� being
the unique eigenvalue such that �� � 1 is no longer an eigenvalue. Thus, the action of W
on V� determines �, which proves (b).

It follows from the above that for all 0 � i � mh � 1 and all j such that j̨ � i C 2,
the Dj ˝ W-module Dj Œ Oy� � Si is irreducible and it is isomorphic to Dj ˝ V�ij , where
�ij D

j̨�i

j̨�1
¤ 0. As the action depends on i , it is convenient to introduce i into the nota-

tion for this module. Thus, we henceforth denote this module by V ij :

V ij D Dj Œ Oy� � Si and V ij Š Dj ˝ V�ij ;

for all 0 � i � mh � 1 and j such that j̨ � i C 2. Moreover, Dq ˝ W acts trivially on
V ij for q ¤ j , so it follows by Theorem 6.2 and (6.9) that V ij is an irreducible HH1.A/-
submodule of Si on which both Z.HH1.A// and the nilpotent radical N of ŒHH1.A/;HH1.A/�
act trivially. As a result of this analysis, we conclude that Si is a completely reducible
HH1.A/-module with semisimple decomposition (cf. (6.13)):

Si D
M
j̨�iC2

V ij : (6.18)

We summarize these results in the following, which constitutes the main result of this
paper.

Theorem 6.19. Assume that char.F/D 0 and AD Ah for 0¤ h 2 F Œx�. Let hD u˛11 � � �u
˛t
t

be the decomposition of h into irreducible factors with 0 � k � t such that ˛1; : : : ; ˛k � 2
and ˛kC1 D � � � D ˛t D 1. Since HH2.A/ ¤ 0 if and only if k � 1, assume that k � 1 and
set mh D max¹ j̨ � 1 j 1 � j � kº.

The structure of HH2.A/ as Lie module over the Lie algebra HH1.A/ under the Ger-
stenhaber bracket is as follows.

(a) There is a filtration of length mh by HH1.A/-submodules

HH2.A/ D P0 © P1 © � � � © Pmh�1 © Pmh D 0:

(b) For each 0� i �mh � 1, the factor module Si DPi=PiC1 is completely reducible
with semisimple decomposition Si D

L
j̨�iC2

V ij , where

(i) the nilpotent radical Z.HH1.A//˚N of HH1.A/ acts trivially on Si , so Si
becomes a .D1 ˝W/˚ � � � ˚ .Dk ˝W/-module, where Dj Š F Œx�=ujF Œx�
and W D spanF¹wi j i � �1º is the Witt algebra;

(ii) V ij Š Dj ˝ V�ij , where �ij D j̨�i

j̨�1
and the irreducible W-module V� is

described in (6.16);

(iii) Dq ˝ W acts trivially on V ij for q ¤ j and Dj ˝ W acts on V ij via (6.16),
under scalar extension;

(iv) V ij Š V i 0j 0 as HH1.A/-modules if and only if .i; j / D .i 0; j 0/.
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(c) HH2.A/ has finite composition length equal to
Pk
jD1. j̨ � 1/, the number of irre-

ducible factors of gcd.h;h0/ counted with multiplicity; the composition factors are
¹V ij j 0 � i � mh � 1; j̨ � i C 2º, representing distinct isomorphism classes.

(d) HH2.A/ is a semisimple HH1.A/-module if and only if mh � 1, i.e., if and only if h
is not divisible by the cube of any non-constant polynomial.

Remark 6.20. It turns out that under the same conditions that ensure that HH2.A/ is semi-
simple, both HH0.A/ and HH1.A/ are also semisimple HH1.A/-modules: since char.F/D 0,
HH0.A/ D F is always simple and by [1, Cor. 5.22 (ii)], HH1.Ah/ is a direct sum of its
center – a sum of trivial modules – and simple Lie ideals.

Proof. All of the above statements have been proved, except for (iv) and (d). We start with
(iv). If V ij Š V i 0j 0 , then Dj ˝ W acts non-trivially on V i 0j 0 , so j D j 0, by (iii). Thus, by
Lemma 6.17 (b), �ij D �i 0j , which in turn implies that i D i 0.

For the proof of (d), if h is not divisible by the cube of any non-constant polynomial,
then mh D 1 and HH2.A/ D S0, which we have seen in (b) is semisimple. Conversely, if
mh � 2, then there is some i such that ˛i � 3, say i D 1. By (6.8),

Œadu1���uka1 ; Oy
0� D �u1 � � � uk

tX
iD1

˛iu1 � � �bui � � � utu0i … gcd.h; h0/F Œx�
because u21 divides gcd.h; h0/ but it does not divide Œadu1���uka1 ; Oy

0�. But adu1���uka1 2 N

and N annihilates all the composition factors of HH2.A/, by (i), so HH2.A/ cannot be
semisimple in this case.

Before we proceed to illustrate our result with some special cases, we first want to
establish a connection between the representations V ij and the Virasoro algebra. Recall
that the Virasoro algebra is the unique (up to isomorphism) central extension of the full
Witt algebra of derivations of F Œz˙1�. This Lie algebra is defined as Vir D

L
i2Z F �wi ˚

F � c, where

Œc; Vir� D 0 and Œwm; wn� D .n �m/wmCn C ımCn;0
m3 �m

12
c 8m; n 2 Z:

Define, for � 2 F , the Vir-module U� D F Œ Oy˙1� with action

wm � Oy
`
D .` � .mC 1/�/ OymC` and c � Oy` D 0; 8`;m 2 Z: (6.21)

The module U� is an intermediate series module (see [9] for details).
The following can be readily checked by the reader:

(a) W is a Lie subalgebra of Vir;

(b) formula (6.21) gives a well-defined action of Vir on U�;

(c) V� � U� as W-modules;

(d) U� is irreducible as a Vir-module if and only if � ¤ 0 and � ¤ 1;

(e) U� Š U�0 as Vir-modules if and only if � D �0.
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6.4. Special cases

We end this section with a discussion of some examples of special interest. To avoid trivial
cases, in all examples, the polynomial h is assumed to be divisible by the square of some
non-constant polynomial. We continue to assume that char.F/ D 0.

Example 6.22 (h D xn). Let’s consider the case where h has a unique irreducible factor.
For the sake of simplicity, we will assume that this factor is x, that is, h D xn with n � 2;
the more general case of an irreducible factor of higher degree is entirely analogous. In
this case,

Z
�
HH1.Axn/

�
D FDxn�1 ; where Dxn�1.x/ D 0 and Dxn�1. Oy/ D x

n�1;

N D spanF¹adxiam j 1 � i � n � 2; m � 0º;�
HH1.Axn/;HH1.Axn/

�ı
N Š W .the Witt algebra/;

HH2.Axn/ D DŒ Oy�; where D D
�
F Œx�=xn�1F Œx�

�
:

For 0� i � n� 1, let Pi D xiDŒ Oy�, so that we get the following filtration of HH1.Axn/-
submodules of HH2.Axn/:

HH2.Axn/ D P0 © P1 © � � � © Pn�2 © Pn�1 D 0:

Set Si D Pi=PiC1 Š F Œ Oy�, for i � n � 2. Then, Dxn�1 : HH2.Axn/ D 0 and N :Pi �

PiC1, so Si is naturally a module for the Witt algebra W, with action

wm � Oy
`
D

�
` � .mC 1/

n � i

n � 1

�
OymC`; for all m � �1 and ` � 0:

Thus, Si Š V n�i
n�1

is simple and the composition factors ¹Siº0�i�n�2 of HH2.Axn/ are pair-
wise non-isomorphic. In particular, HH2.Axn/ has length n � 1 as an HH1.Axn/-module,
with distinct composition factors.

The next example, a particular case of the previous one, focuses on the Jordan plane.

Example 6.23 (The Jordan plane). Taking h D x2, we obtain the algebra Ax2 , known as
the Jordan plane, with homogeneous defining relation Oyx D x Oy C x2. The description
here is

HH1.Ax2/ D FDx ˚ W and HH2.Ax2/ D F Œ Oy�;

where Dx.x/ D 0, Dx. Oy/ D x, and W is the Witt algebra.
It follows that HH2.Ax2/ is a simple HH1.Ax2/-module annihilated by Dx and such

that, as a W-module, HH2.Ax2/ Š V2.
The Lie subalgebra Fw�1 ˚ Fw0 ˚ Fw1 � W is isomorphic to sl2.F/, under the

identification e D w�1, h D �2w0, and f D �w1, where e D E12, f D E21, and h D
Œe; f � are the canonical generators of sl2.F/. The restriction of the HH1.Ax2/-module
structure of HH2.Ax2/ D F Œ Oy� to sl2.F/ is determined by the relations

e � Oy` D ` Oy`�1; h � Oy` D .4 � 2`/ Oy`; f � Oy` D .4 � `/ Oy`C1; 8` � 0:
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Whence, it is easy to see that L.4/ WD F Oy0 ˚ F Oy1 ˚ F Oy2 ˚ F Oy3 ˚ F Oy4 is a simple
sl2.F/-submodule of HH2.Ax2/. In fact, L.4/ is the simple sl2.F/-module of highest
weight 4 and the quotient module HH2.Ax2/=L.4/ Š M.�6/ is the irreducible Verma
module of highest weight �6.

Our last example deals with the case where HH2.A/ is a semisimple Lie module.

Example 6.24 (h is cube free). By Theorems 6.2 and 6.19 (d), the following conditions
are equivalent:

� HH2.A/ is a semisimple HH1.A/-module;

� N D 0;

� HH1.A/ is a reductive Lie algebra;

� h is cube free.

Here, we study the case in which these conditions hold, so the decomposition of h into
irreducible factors is of the form h D u21 � � � u

2
k
ukC1 � � � ut , for some 1 � k � t . We have

dimF Z
�
HH1.A/

�
D deg u1 � � � ut ;

HH1.A/ D Z
�
HH1.A/

�
˚ .D1 ˝ W/˚ � � � ˚ .Dk ˝ W/;

HH2.A/ D D1Œ Oy�˚ � � � ˚Dk Œ Oy�;

where Dj Š F Œx�=ujF Œx� and W is the Witt algebra.
Then, Z.HH1.A// acts trivially on HH2.A/ andDi ˝W acts trivially onDj Œ Oy�, if i ¤ j .

As a Dj ˝W-module, Dj Œ Oy� Š Dj ˝ V2. Thus, the irreducible summands of HH2.A/ are
¹Dj Œ Oy�º1�j�k , they are pairwise non-isomorphic as HH1.A/-modules, and the composi-
tion length of HH2.A/ is k.
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