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We calculate the pole masses of pseudoscalar mesons in a strongly magnetized medium within the
framework of the SU(3) Nambu–Jona-Lasinio model, using a magnetic field-independent regularization
scheme. We employ both a constant and a magnetic field-dependent coupling GðBÞ, the latter being fitted
to reproduce lattice QCD results for the pseudocritical chiral transition temperature. Numerical results for
the pole masses are obtained for definite parametrizations of the model. For neutral mesons, the use of
GðBÞ provides closer agreement with lattice QCD results, which reveal a decrease of the mass with the
external field. On the contrary, charged mesons masses are enhanced by B, showing no sign of the
nonmonotonous behavior found in recent lattice QCD simulations.
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I. INTRODUCTION

The behavior of strongly interacting matter under the
influence of intense magnetic fields has been attracting a lot
of interest in recent years. This interest is partly motivated
by the fact that strong magnetic fields have been achieved
or hypothesized in several physical situations. For example,
in noncentral relativistic heavy-ion collisions, magnetic
fields of magnitude as large as B ∼ 1019–1020 G are
generated due to the motion of charged spectator particles,
essentially at the earliest times of the collision [1].
In addition, strong magnetic fields may also play an
important role in astrophysics scenarios, such as matter
formation in the early Universe [2] or in the dynamics of
magnetars, where the inner core can possibly harbor
magnetic fields strengths as large as B ∼ 1019 G [3].
One expects that new and detectable effects in the phase
diagram and properties of strongly interacting matter will
emerge due to these extreme magnetic fields, causing
numerous phenomenological consequences. For example,

the chiral magnetic effect [4–6], chiral separation effect [7],
chiral magnetic wave [8–12], and related phenomena are
supposed to be experimental signals of the influence of
strong magnetic fields in the QCD matter [13,14].
From the theoretical point of view, first principle

analytical QCD calculations are very difficult to perform
in the nonperturbative regime given the complexity of the
theory. Therefore, one has to make use of alternative
procedures to tackle the problem. In this regard, great
progress has been made in recent years on the investigation
of the QCD phase diagram by using either lattice QCD
(LQCD) simulations or effective models, which can work
together in a complementary manner in the face of lack of
experimental evidence in some observables. In fact, in
many of these models available experimental or LQCD
results are used to fix their phenomenological parameters,
allowing for improved results. In particular, results from
LQCD calculations at zero temperature and physical pion
masses show that an external constant magnetic field
enforces the quark condensate favoring the breakdown
of chiral symmetry, an effect known as magnetic catalysis
(MC) [15]. This result is in agreement with most effective
model calculations [16,17]. At finite temperature, the
majority of these models predict the increase of the
pseudocritical transition temperature Tpc with the magnetic
field [16,17]. Nevertheless, accurate LCQD results [18–21]
have shown the opposite pattern; Tpc decreases with the
magnetic field, a phenomenon dubbed as inverse magnetic
catalysis (IMC). The explanation for IMC at finite
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temperature is still controversial and under study [see
Ref. [22] for a minireview on the IMC effect]. It is not
clear that the nonmonotic behavior of the quark condensate
is in fact the mechanism behind the IMC effect [23–25].
In the context of effective models, several possibilities have
been explored in the recent literature to incorporate the
IMC effect phenomenologically. Within the Nambu–Jona-
Lasinio (NJL) model for example, which we will use in this
work, these improvements include going beyond mean-
field calculations [26] or taking into consideration the
anomalous magnetic moment of quarks [27–30]. Motivated
by the running of the QCD coupling, one of the simplest
modifications available consists of introducing a coupling
constant that depends on the magnetic field (and in some
cases also on the temperature) and can be fixed by fitting
some LQCD results, such as the quark condensate or the
chiral pseudocritical temperature. This strategy has shown
that the NJL model can satisfactorily reproduce LQCD
results in a broad range of temperature and magnetic fields
[31–36]. In this regard, an interesting possibility was
recently proposed in Ref. [37]. There, the magnetic field
dependent four fermion coupling is fitted to reproduce
constituent quark masses, which are obtained from the
LQCD calculation of baryon masses by assuming in a
simplified way that the baryon mass can be obtained by
merely summing the masses of their constituents. Lastly,
calculations using the nonlocal NJL model have shown that
IMC is obtained naturally [38,39].
The presence of strong magnetic fields also has a mean-

ingful impact onhadronproperties. In thisworkwewill focus
on its consequences over themasses of the light pseudoscalar
meson nonet, which has drawn a lot of attention in recent
years. Most calculations in the literature have been per-
formed for the lightestmesons. For pions at zero temperature,
LQCD simulations show an overall decrease of the neutral
pion mass with the magnetic field (both in quenched QCD
and using staggered fermions), while charged pions exhibit
the opposite behavior within the quenched approximation
[40,41]. A recent simulation using highly improved stag-
gered fermions with a slightly heavier-than-physical pion
mass of 220 MeV was performed in Ref. [42], where the
masses of many pseudoscalar mesons are computed. There,
the decreasing trend of the neutral pion (and kaon) mass is
confirmed. Moreover, charged pions (and kaons) reveal an
initial increase with the magnetic field up to values
eB ∼ 0.6 GeV2, in accordance with previous results from
Ref. [18] where eB < 0.5 GeV2 values are considered for
the charged pion mass using stout smeared staggered
fermions. However, in stark contrast with previous quenched
results from Refs. [40,41], for stronger magnetic fields this
increasing tendency is found to be reversed, resulting in a
nonmonotonous behavior.
On the other hand, the influence of magnetic fields on the

lightest scalar and pseudoscalar mesons (σ and π) has also
been calculated mostly using two-flavor schemes, such as

chiral perturbation theory [43–46], the linear sigma model
[47–49], two-flavor quark-meson model [50], relativistic
Hamiltonian-based formalisms [45,51], effective chiral
confinement Lagrangian approach [52,53], QCD sum rules
[54], the two-flavor NJL model [34,55–64], or its nonlocal
version [65,66]. In this context, there are very few calcu-
lations of meson properties incorporating the strange quark.
In Refs. [67,68], using a nonrelativistic constituent SU(3)
quark model, neutral and charged mesons masses are
considered. By using a relativistic Hamiltonian-based
formalism, in Refs. [45,51] pions and kaons are calculated
and comparisons with chiral perturbation theory and LQCD
results are considered. In Ref. [69], kaons and antikaons are
investigated in a chiral SU(3) model.
In order to study the behavior of the masses of the light

pseudoscalar meson nonet in the presence of an external
constant magnetic field, we will use the SU(3) NJL model.
We remind that theNJLmodel is a nonrenormalizablemodel
and a regularization procedure has to be adopted, whichmay
be considered as part of the definition of the effectivemodel.
In fact, the choice of an appropriate regularization scheme is
a crucial issue for the description of physical systems. It has
been shown that the use of an inappropriate regularization
scheme causes strong oscillations in meson masses and
tachyonic or discontinuous behavior of masses. When
working with quark matter immersed in a magnetized
medium, performing an exact separation of magnetic from
nonmagnetic contributions for all physical observables is a
key point for their correct description, a strategy known as
the “magnetic field independent regularization” (MFIR)
scheme. The importance of the regularization procedure has
been reviewed in Ref. [70], where it is shown that the MFIR
scheme is free of these unphysical behaviors, which are due
to an improper regularization. An improvement within the
MFIR scheme was recently suggested in Ref. [36] for the
calculation of many mean-field observables. However, this
modification is not relevant for the quantities we will study
in this work, namely quark condensates and meson masses,
so we can safely omit it.
Regarding the determination of meson masses within the

NJL model, one important point is the proper calculation of
charged mesons. In this case, polarization functions have to
be carefully handled in order to be diagonalized, since
Schwinger phases arising from quarks propagators do not
cancel, leading to a breakdown of translational invariance.
As shown in Ref. [58], an appropriate treatment involves
the use of the Ritus basis [71]. Unfortunately, this issue has
not been properly addressed in several calculations. Of
course, for neutral mesons the usual momentum basis can
be used since the Schwinger phase factor cancels out in that
case. In this regard, the NJL model shows an enhancement
of the neutral pion mass for sufficiently strong magnetic
fields, in contradiction with lattice results. One possible
approach to overcome this issue, which we will adopt in
this work, is to introduce a magnetic field dependent
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coupling constant, determined by fitting LQCD results for
the quark condensate, which, as mentioned earlier, also
allows the model to incorporate the IMC effect at finite
temperatures. Results obtained following this strategy
agree very well with LQCD simulations [34,57]. An
alternative approach comprises the use of the nonlocal
version of the SU(2) NJL model, where the neutral pions
mass has been shown to naturally decrease with the
magnetic field in agreement with LQCD results [65,66].
As mentioned earlier, there are very few calculations of

meson properties incorporating the strange quark. The aim
of the present paper is to study the behavior of the
pseudoscalar meson nonet masses as functions of the
magnetic field. To that end we use the SU(3) NJL model
including the ’t Hooft-Maekawa interaction which breaks
the UAð1Þ symmetry. We work within the MFIR scheme
and consider both the case of a fixed and of a B-dependent
four-fermion coupling constant. At the mean-field level we
calculate quark condensates, which are compared with
LCQD results to find qualitative agreement. For the
calculation of the light pseudoscalar meson nonet we adopt
the RPA formulation, where special care has to be taken to
the fact that constituent quark masses are different for each
flavor. For charged mesons the Ritus basis is used to
diagonalize the polarizers, resulting in monotonically
increasing masses for both constant and magnetic cou-
plings. For neutral mesons, the polarizers calculation is
simplified since Schwinger phases cancels out. Note that
the ’t Hooft-Maekawa interaction together with the uniform
magnetic field B induce a mix of neutral mesons states with
equal flavors, i.e., π0, η, η0 [72]. We see that, except for η0,
neutral pseudoscalar mesons display a nonmonotonous
behavior when using a constant coupling, which shifts to
a monotonous decrease in concordance with LCQD results
when a magnetic coupling is introduced. As already known
from the usual SU(3) NJL model at B ¼ 0, the η0 meson
comes out in the model as a resonance or unstable particle.
In this case, the propagator becomes a complex number and
from the analysis of the complex pole, the mass of the
resonance is obtained. This situation gets intricate when the
magnetic field is present, thus, we have developed a new
formalism to treat this case.
We organize this work as follows. In Sec. II we introduce

the theoretical formalism used to obtain neutral and
charged pseudoscalar meson masses. Then, in Sec. III
we present and discuss our numerical results, while in
Sec. IV we provide a summary of our work, together with
our main conclusions. We also include Appendixes A and
B to quote some technical details of our calculations.

II. THEORETICAL FORMALISM

A. Effective Lagrangian and mean field properties

We consider the Euclidean action of the SU(3) NJL
model which includes a scalar-pseudoscalar interaction and

the ’t Hooft six-fermion interaction in the presence of an
external magnetic field. It is written as

SE¼
Z

d4x

�
ψ̄ð−iDþm̂Þψ−G

X8
a¼0

½ðψ̄λaψÞ2þðψ̄ iγ5λaψÞ2�

þKðdþþd−Þ
�
; ð1Þ

where G and K are coupling constants, ψ ¼ ðψu;ψd;ψ sÞT
represents a quark field with three flavors, d� ¼
det½ψ̄ð1� γ5Þψ � and m̂ ¼ diagðmu;md;msÞ is the corre-
sponding current quark mass matrix. In addition,
λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I, where I is the unit matrix in the three flavor

space, and λa with a ¼ 1;…; 8 denote the Gell-Mann
matrices. The coupling of quarks to the electromagnetic
field Aμ is implemented through the covariant derivative
Dμ ¼ ∂μ − iQ̂Aμ where Q̂ ¼ diagðQu;Qd;QsÞ represents
the quark electric charge matrix with Qu=2 ¼ −Qd ¼
−Qs ¼ e=3, e being the proton electric charge. In the
present work we consider a static and constant magnetic
field in the 3 direction. Using the Landau gauge we
have Aμ ¼ δμ2x1B.
In order to study meson properties, we proceed by

bosonizing the action in terms of scalar σaðxÞ and pseu-
doscalar πaðxÞ fields and the corresponding auxiliary saðxÞ
and paðxÞ fields. Following the standard procedure, we start
with the partition function

Z ¼
Z

Dψ̄Dψe−SE: ð2Þ

By introducing functional delta functions, the scalar (ψ̄λaψ )
and pseudoscalar (ψ̄iγ5λaψ) terms present in SE are
replaced by saðxÞ and paðxÞ and the functional integration
on the fermionic fields ψ and ψ̄ can be performed by
standard methods. To perform the integration over the
auxiliary fields we use the stationary phase approximation
(SPA), choosing s̃aðxÞ and p̃aðxÞ in order to minimize the
integrand of the partition function. This yields a set of
coupled equations among the bosonic fields; at the end,
s̃aðxÞ and p̃aðxÞ are to be considered as implicit functions of
σaðxÞ and πaðxÞ. Finally, we use the mean field approxi-
mation by expanding the bosonized action in powers of
field fluctuations around the corresponding translationally
invariant mean field values σ̄a and π̄a, i.e., σaðxÞ ¼
σ̄a þ δσaðxÞ and πaðxÞ ¼ π̄a þ δπaðxÞ. Due to charge
conservation, only σ̄0, σ̄3, and σ̄8 are different from
zero, while the vacuum expectation values of pseudo-
scalar boson fields are zero, π̄a ¼ 0. For convenience,
we introduce σ̄ ¼ diagðσ̄u; σ̄d; σ̄sÞ ¼ λ0σ̄0 þ λ3σ̄3 þ λ8σ̄8.
At the mean field level, the Euclidean action per unit
volume reads
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S̄bosE

Vð4Þ ¼ −
Nc

Vð4Þ
X

f¼u;d;s

Z
d4xd4x0trD ln ðSf

x;x0 Þ−1

−
1

2

�
σ̄f s̄f þ Gs̄f s̄f −

K
2
s̄us̄ds̄s

�
; ð3Þ

where trD stands for the trace in Dirac space while
ðSf

x;x0 Þ−1 ¼ δðx − x0Þ½−ið∂ − iQf=AÞ þMf� represents the
inverse mean field quark propagator for each flavor with
effective mass Mf ¼ mf þ σ̄f. Moreover, s̄f ¼ s̃fðσ̄aÞ
represent the auxiliary fields at the mean field level within
the SPA approximation (note that p̄f ¼ 0). From the
condition δS̄bosE =δσ̄f ¼ 0 it follows that s̄f ¼ 2ϕf, where
ϕf is the chiral condensate for each flavor given by

ϕf ¼ hψ̄fψfi ¼ −
δS̄bosE

δmf
¼ −

Nc

Vð4Þ

Z
d4xtrDS

f
x;x: ð4Þ

As is well known, the quark propagator can be written in
different ways [16,17]. For convenience we take the
following one

Sf
x;x0 ¼ eiΦfðx;x0Þ

Z
p
eipðx−x0ÞS̃f

p; ð5Þ

where Φfðx; x0Þ ¼ QfBðx1 þ x01Þðx2 − x02Þ=2 is the so-
called Schwinger phase. We have introduced here the
shorthand notation

Z
p
≡
Z

d4p
ð2πÞ4 : ð6Þ

We express S̃f
p in the Schwinger form [16,17]

S̃f
p¼

Z
∞

0

dτexp

�
−τ

�
M2

fþp2
kþ

tanhðτBfÞ
τBf

p2⊥−iϵ

��

×

�
ðMf−pk ·γkÞ½1þisfγ1γ2 tanhðτBfÞ�−

p⊥ ·γ⊥
cosh2ðτBfÞ

�
;

ð7Þ

where the following definitions have been used. The
“perpendicular” and “parallel” gamma matrices are col-
lected in vectors γ⊥ ¼ ðγ1; γ2Þ and γk ¼ ðγ3; γ4Þ. Similarly,
p⊥ ¼ ðp1; p2Þ and pk ¼ ðp3; p4Þ. Note that in our con-
vention fγμ; γνg ¼ −2δμν and we have introduced the
notation sf ¼ signðQfBÞ and Bf ¼ jQfBj. The limit
ϵ → 0 is implicitly understood.
The integral in Eq. (7) is divergent and has to be properly

regularized. We will use the MFIR scheme, where one
subtracts from the unregulated integral the B ¼ 0 limit and
then adds it in a regulated form. We obtain

ϕreg
f ¼ ϕvac

f þ ϕmag
f ;

�ϕvac
f ≡ −NcMfIvac1f

ϕmag
f ≡ −NcMfI

mag
1f

: ð8Þ

The expression of Ivac1f for the 3D cutoff regularization
scheme we use in this work can be found in Eq. (A5) of
Appendix A. The expression of Imag

1f , given in Eq. (B5) of
Appendix B, reads

Imag
1f ¼ Bf

2π2

�
lnΓðxfÞ−

�
xf−

1

2

�
lnxfþxf−

ln2π
2

�
; ð9Þ

where xf ¼ M2
f=ð2BfÞ.

Finally, by combining the equations from the SPA
together with the gap equations, we obtain that the
regularized form of the set of coupled equations for the
effective quarks masses read

Mu ¼ mu − 4Gϕreg
u þ 2Kϕreg

d ϕreg
s ;

Md ¼ md − 4Gϕreg
d þ 2Kϕreg

s ϕreg
u ;

Ms ¼ ms − 4Gϕreg
s þ 2Kϕreg

u ϕreg
d : ð10Þ

B. Meson sector

For the calculation of meson masses, we consider the
second-order correction to the mean field bosonized
Euclidean action SE. At the quadratic level we get for
the pseudoscalar sector

Squadmes ¼ 1

2

Z
d4x0d4x

X
P;P0

δP�ðxÞGP;P0 ðx; x0ÞδP0ðx0Þ; ð11Þ

where the sum indexes run over the nonet of pseudoscalar
mesons. Namely, P;P0 ¼ π3; π�; K0; K̄0, K�, η0, η8. The
inverse meson propagator in coordinate space can be
written as

GP;P0 ðx; x0Þ ¼ TP;P0δð4Þðx − x0Þ − JP;P0 ðx; x0Þ: ð12Þ

For P;P0 ¼ π�; K�; K0; K̄0 this operator is diagonal

TP;P0 ¼ TPδP;P0 ; JP;P0 ðx; x0Þ ¼ JPðx; x0ÞδP;P0 ; ð13Þ

where

Tπþ ¼ Tπ− ¼ ½2G − Kϕs�−1;
Jπþðx; x0Þ ¼ Jπ−ðx0; xÞ ¼ cudðx; x0Þ; ð14Þ

TKþ ¼ TK− ¼ ½2G − Kϕd�−1;
JKþðx; x0Þ ¼ JK−ðx0; xÞ ¼ cusðx; x0Þ; ð15Þ

TK0 ¼ TK̄0 ¼ ½2G − Kϕu�−1;
JK0ðx; x0Þ ¼ JK̄0ðx0; xÞ ¼ cdsðx; x0Þ: ð16Þ

AVANCINI, SODRÉ, COPPOLA, and SCOCCOLA PHYS. REV. D 104, 094040 (2021)

094040-4



In these expressions

cff0 ðx; x0Þ ¼ 2NctrD½Sf
x;x0γ5S

f0
x0;xγ5�: ð17Þ

On the other hand, the two-point function GP;P0 ðx; x0Þ is nondiagonal but symmetric in the P;P0 ¼ π3; η0; η8 subspace.
The corresponding matrix elements of TP;P0 are

Tπ3π3 ¼
K2ðϕu þ ϕdÞ2 − 4GKϕs − 8G2

f
;

Tη0π3 ¼
2½K2ðϕu þ ϕd − ϕsÞ − 2GK�ðϕu − ϕdÞffiffiffi

6
p

f
;

Tη8π3 ¼
½K2ðϕu þ ϕd þ 2ϕsÞ þ 4GK�ðϕu − ϕdÞffiffiffi

3
p

f
;

Tη0η0 ¼
2K2½ðϕd − ϕsÞ2 þ ϕuðϕu − 2ϕd − 2ϕsÞ� þ 8GKðϕu þ ϕd þ ϕsÞ − 24G2

3f
;

Tη8η0 ¼
2K2½ðϕu − ϕdÞ2 þ ϕsðϕu þ ϕd − 2ϕsÞ� − 4GKðϕu þ ϕd − 2ϕsÞ

3
ffiffiffi
2

p
f

;

Tη8η8 ¼
K2½ðϕu − ϕdÞ2 þ 4ϕsðϕu þ ϕd þ ϕsÞ� − 4GKð2ϕu þ 2ϕd − ϕsÞ − 24G2

3f
; ð18Þ

where

f ¼ −4K3ϕuϕdϕs þ 4GK2ðϕ2
u þ ϕ2

d þ ϕ2
sÞ − 16G3: ð19Þ

In turn, the polarization function elements can be expressed as

JP;P0 ðx; x0Þ ¼
X
f

γfP;P0cffðx; x0Þ; ð20Þ

where the coefficients γfP;P0 are given by

γuπ3π3 ¼ þγdπ3π3 ¼
1

2
; γsπ3π3 ¼ 0; γuη0η0 ¼ γdη0η0 ¼ γsη0η0 ¼

1

3
;

γuη0π3 ¼ −γdη0π3 ¼
1ffiffiffi
6

p ; γsη0π3 ¼ 0; γuη8η0 ¼ γdη8η0 ¼ −
1

2
γsη8η0 ¼

1

3
ffiffiffi
2

p ;

γuη8π3 ¼ −γdη8π3 ¼
1

2
ffiffiffi
3

p ; γsη8π3 ¼ 0; γuη8η8 ¼ γdη8η8 ¼
1

4
γsη8η8 ¼

1

6
: ð21Þ

1. Neutral mesons

For neutral mesons the contributions of Schwinger
phases associated with the quark propagators in Eq. (17)
cancel out. Therefore, the polarization functions depend
only on the difference ðx − x0Þ, which leads to the con-
servation of momentum, since they are translationally
invariant. If we take the Fourier transform of neutral
meson fields to the momentum basis, the corresponding
transform of the polarization functions will be diagonal
in momentum space. Thus, the neutral meson contribution
to the quadratic action in the momentum basis can be
written as

Squadneut:mes ¼
1

2

Z
q

X
P¼K0;K̄0

δP�ð−qÞGPðq2⊥; q2kÞδPðqÞ

þ 1

2

Z
q

X
P;P0¼π3;η0;η8

δP�ð−qÞGP;P0 ðq2⊥; q2kÞδP0ðqÞ:

ð22Þ
Here, the inverse neutral kaon propagator is given by

GK0ðq2⊥; q2kÞ ¼ GK̄0ðq2⊥; q2kÞ
¼ ½2G − Kϕu�−1 − cdsðq2⊥; q2kÞ; ð23Þ
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while for P; P0 ¼ π3; η0; η8 we have

GP;P0 ðq2⊥; q2kÞ ¼ TP;P0 þ
X
f

γfP;P0cffðq2⊥; q2kÞ: ð24Þ

The values of TP;P0 and γfP;P0 can be found in Eqs. (18) and
(21), respectively.
In the neutral case, the functions cff0 in momentum

space are given by

cff0 ðq2⊥; q2kÞ ¼ 2Nc

Z
p
trD½S̃f

p−
γ5 S̃

f0
pþ γ5�; ð25Þ

where p� ¼ p� q=2. We remark here that these functions
are divergent. Within the MFIR scheme they can be
regularized as

cregff0 ðq2⊥; q2kÞ ¼ cvacff0 ðq2Þ þ cmag
ff0 ðq2⊥; q2kÞ; ð26Þ

where the first term in the right-hand side correspond to the
vacuum contribution while the second term to the magnetic
one. In this work we regularize the otherwise divergent
vacuum term through a 3D cutoff; the corresponding
expression is given in Eq. (A13) of Appendix A. For the
calculation of the masses we can set q2⊥ ¼ 0, while
the Euclidean parallel components are to be evaluated at
the negative real space q2k ¼ −m2

P, with mP > 0. Then,

assuming that mP < Mf þMf0 , the magnetic contribution
can be written as (see Appendix B)

cmag
ff0 ð0; q2k ¼ −m2

PÞ

¼ 2Nc

�Imag
1f þ Imag

1f0

2
− ½m2

P − ðMf −Mf0 Þ2�Imag
2ff0 ð−m2

PÞ
�
:

ð27Þ
The function Imag

1f has already been expressed in
Eq. (9) while

Imag
2ff0 ð−m2

PÞ ¼
1

8π2
lim
ϵ→0

Z
1

0

dy

�
ψðx̄ff0 − iϵÞ − lnðx̄ff0 − iϵÞ þ 1

2ðx̄ff0 − iϵÞ
�
; ð28Þ

where ψðxÞ is the digamma function and we have defined

x̄ff0 ¼
yM2

f þ ð1 − yÞM2
f0 − yð1 − yÞm2

P

2Bf
: ð29Þ

For mP < Mf þMf0 we have that x̄ff0 > 0 for all values
of y within the integration range of the integral of Eq. (28).
Thus, the limit ϵ → 0 can be directly taken.
On the other hand, for η0 we expect that

mP > Mf þMf0 . In this case one has to have special care
since x̄ff0 can be negative within the interval 0 < y < 1. We
proceed by taking the analytic continuation of both the

digamma and logarithm functions. This implies that the
inverse propagators become complex functions. Thus, we
assume that qk develops an imaginary part

q2k ¼ −
�
mP −

i
2
ΓP

�
2

; ð30Þ

where ΓP is associated with the decay width of the meson.
Following the customary method introduced in Ref. [73],
we assume that the width is not too large and neglect its
contribution inside Imag

2ff0 function (this also applies to the
equivalent vacuum contribution)

cmag
ff0 ðmP;ΓPÞ ≃ 2Nc

�Imag
1f þ Imag

1f0

2
−
��

mP −
i
2
ΓP

�
2

− ðMf −Mf0 Þ2
�
Imag
2ff0 ð−m2

PÞ
�
: ð31Þ

Note that in Eq. (28) one might hit some poles of the digamma function if the limit ϵ → 0 is naively taken. As detailed in
Appendix B, through a careful treatment of these poles one can explicitly calculate the Imag

2ff0 function. The general result for
f ≠ f0 is given in Eq. (B13) of Appendix B. We remark here that, as a consistency check, we have repeated the calculation
using the Landau level representation of the quark propagator, well defined for all mP, obtaining the same result. For the
determination of the η0 mass we only need the f ¼ f0 version of the general expression, given by

Imag
2ff ð−m2

PÞ ¼ −
1

8π2

�
ln

�
M2

f

2Bf

�
þ 2β0 ln

�
mPð1þ β0Þ

2Mf

�
− 2þ 2Bf

m2
P

XN
n¼0

gn
βn

ln

�
1 − βn
1þ βn

��

þ 1

8π2

Z
1

0

dyψðx̄ff þ N þ 1Þ þ i
8π

�
β0 −

2Bf

m2
P

XN
n¼0

gn
βn

�
; ð32Þ
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where gn ¼ 2 − δn0 and N ¼ Floor½m2
Pβ

2
0=8Bf�. Moreover,

βn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
f

m2
P

−
8nBf

m2
P

s
: ð33Þ

For the neutral kaons, we expect mK0 ¼ mK̄0 <
Md þMs. In this case the polarization function is real
and Imag

2ff0 is well defined in the ϵ → 0 limit of Eq. (28).
Therefore, the pole mass will be given by the solution of

GK0ðq2⊥ ¼ 0; q2k ¼ −m2
K0Þ ¼ 0: ð34Þ

In the P;P0 ¼ π3; η0; η8 subspace, the corresponding
quadratic action can be expressed in matrix notation
through the following inverse matrix propagator

M ¼

0
B@

Gπ3π3 Gπ3η0 Gπ3η8

Gη0π3 Gη0η0 Gη0η8

Gη8π3 Gη0η8 Gη8η8

1
CA; ð35Þ

which is actually symmetric. The physical meson pole
masses and widths will be given by the roots of

det½MðmP;ΓPÞ� ¼ 0; ð36Þ

where the three pair of roots are to be associated with the
π0, η, η0. Of course, one expects to get Γπ0 ¼ Γη ¼ 0 while
Γη0 is expected to be nonvanishing. Note that when B ¼ 0,
π3 (and therefore π0) decouples from the η0, η8 states due to
isospin symmetry. However, in the presence of an external
magnetic field this symmetry breaks down due to different
quark electric charges. In this case, the π0, η, η0 neutral
mesons consist of a mix of π3, η0, η8 states, reflected by the
fact that nondiagonal terms are present in the inverse
propagator of Eq. (35).

2. Charged mesons

In this case the contributions of Schwinger phases
associated with the quark propagators do not cancel out,

leading to a breakdown of translational invariance. In order
to diagonalize the charged meson fields, we employ the
Ritus-like formalism. We find it convenient to introduce the
following notation convention

δPðxÞ ¼
XZ
q̄

FP
q̄ ðxÞδPðq̄Þ;

XZ
q̄

≡ 1

ð2πÞ4
X∞
k¼0

Z
dq2dq3dq4; ð37Þ

with q̄ ¼ ðk; q2; q3; q4Þ where k labels the charged meson
Landau level. The Ritus-like eigenfunctions are

FP
q̄ ðxÞ ¼ Nkeiðq2x2þq3x3þq4x4ÞDkðρPÞ: ð38Þ

Here DkðxÞ are the cylindrical parabolic functions.
We have also defined Nk ¼ ð4πBPÞ1=4=

ffiffiffiffi
k!

p
and ρP ¼ffiffiffiffiffiffiffiffi

2BP
p

x1 − sP
ffiffiffiffiffiffiffiffiffiffiffi
2=BP

p
q2, where BP ¼ jQPBj and sP ¼

signðQPBÞ. Note that in our case, for the π� and K�
mesons these definitions reduce to BP ¼ jeBj and
sπ� ¼ sK� ¼ �1.
The corresponding transformed polarization functions

will be diagonal in q̄, q̄0 space. Thus, the charged meson
contribution to the quadratic action in the Ritus basis can be
written as

Squadchar:mes ¼
1

2

XZ
q̄

X
P¼π�;K�

δP�ðq̄ÞGPðk;Π2ÞδPðq̄Þ; ð39Þ

where Π2 ¼ q2k þ ð2kþ 1ÞBP. The inverse propagators

read

Gπ�ðk;Π2Þ ¼ ½2G − Kϕs�−1 − cudðk;Π2Þ;
GK�ðk;Π2Þ ¼ ½2G − Kϕd�−1 − cusðk;Π2Þ; ð40Þ

where we have used

Z
d4x0d4x½Fπþ

q̄ ðxÞ��cudðx; x0ÞFπþ
q̄0 ðx0Þ ¼ cudðk;Π2Þð2πÞ4δq̄;q̄0 ;Z

d4x0d4x½FKþ
q̄ ðxÞ��cusðx; x0ÞFKþ

q̄0 ðx0Þ ¼ cusðk;Π2Þð2πÞ4δq̄;q̄0 : ð41Þ

These functions are divergent and need to be regularized. Within the MFIR scheme using a 3D cutoff they can be
expressed as

cregff0 ðk;Π2Þ ¼ cvacff0 ðΠ2Þ þ cmag
ff0 ðk;Π2Þ: ð42Þ

The regularized vacuum contribution is given in Appendix A. After a long but straightforward calculation (see [59] for
details), we obtain the following expression for the magnetic contribution
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cmag
ff0 ðk;Π2Þ ¼ Nc

2π2

Z
∞

0

dz
Z

1

0

dye
−z½yM2

fþð1−yÞM2

f0þyð1−yÞΠ2�

×

��
MfMf0 þ

1

z
− yð1 − yÞðΠ2 − ð2kþ 1ÞBPÞ

��ð1þ sfsf0 tftf0 Þ
αþ

�
α−
αþ

�
k
ezyð1−yÞð2kþ1ÞBP −

1

z

�

þ ð1 − t2fÞð1 − t2f0 Þ
α2þα−

�
α−
αþ

�
k
½α− þ kðα− − αþÞ�ezyð1−yÞð2kþ1ÞBP −

1

z

�
1

z
− yð1 − yÞð2kþ 1ÞBP

��
; ð43Þ

where we have introduced the definitions tf ¼ tanhðBfzyÞ,
tf0 ¼ tanh½Bf0zð1−yÞ� and α�¼ðBf0tfþBftf0 �BPtftf0 Þ=
ðBfBf0 Þ. Note also that QP ¼ Qf −Qf0 .
For pions and kaons we expect them to develop only a

real pole mass, i.e., Π2 ¼ −m2
P with mP < Mf þMf0 .

In that case the integrals in Eq. (43) are convergent and
well defined. Therefore, for each Landau level the charged
mesons pole masses will be given by the solutions of

Gπ�ðk;Π2 ¼ −m2
π�Þ ¼ 0;

GK�ðk;Π2 ¼ −m2
K�Þ ¼ 0: ð44Þ

III. NUMERICAL RESULTS

To obtain numerical results for the magnetic field
dependence of the meson masses one has to fix the model
parametrization. Here, following Ref. [73], we take the
parameter set mu ¼ md ¼ 5.5 MeV, ms ¼ 140.7 MeV,
Λ ¼ 602.3 MeV, GΛ2 ¼ 1.835, and KΛ5 ¼ 12.36, which
has been determined on fixing that for vanishing external
field one gets mπ ¼ 135 MeV, mK ¼ 497.7 MeV,
mη0 ¼ 957.8 MeV, and fπ ¼ 92.4 MeV. This parameter
set gives an η mass of mη ¼ 514.8 MeV, which compares

reasonably well with the physical valuemphs
η ¼548.8MeV,

together with an appropriate value for the chiral condensate
of hψ̄fψfi1=3 ¼ 242 MeV for f ¼ u, d. As mentioned in
the Introduction, while local NJL-like models are able to
reproduce the MC effect at vanishing temperature, they fail
to lead to the IMC effect. Among the possible ways to deal
with this problem, one of the simplest consists of allowing
the model parameters to depend on the magnetic field.
Motivated by this we also explore the possibility of
considering a magnetic field dependent coupling GðBÞ.
We adopt the one proposed in Ref. [31] in the context of an
SU(3) NJL model with the same parameters that we use. In
that work the current quark masses, Λ and K were kept
constant while for GðBÞ the form

GðBÞ ¼ G
�
1þ aðeB=Λ2

QCDÞ2 þ bðeB=Λ2
QCDÞ3

1þ cðeB=Λ2
QCDÞ2 þ dðeB=Λ2

QCDÞ4
�
; ð45Þ

was introduced. Here, a ¼ 0.0108805, b¼−1.0133×10−4,
c ¼ 0.02228, d ¼ 1.84558 × 10−4, and ΛQCD¼300MeV.
As stated in Ref. [31], this form of the scalar coupling has

been fitted so that the lattice QCD pseudocritical chiral
transition temperatures are reproduced.
Results for the magnetic field dependence of the

dynamical quark masses are shown in Fig. 1, for both
constant and B-dependent coupling G. As we see, for
constantG all quark masses increase with B. In contrast, for
GðBÞ they display a nonmonotonous behavior, less affected
by the magnetic field. In this case, Md and Ms initially
decrease with B, while about eB ∼ 0.6–0.7 GeV2 this
tendency reverses. On the other hand, Mu has just the
opposite behavior. In fact, these dependencies of the
dynamical quark masses on the magnetic field are roughly
consistent with the results obtained in Ref. [37]. In that
work these quantities have been extracted from a LQCD
calculation of the baryon masses using a simple minded
approximation based on the constituent quark model.
It should be stressed that in spite of the rather different

behavior between the dynamical quark masses, a magnetic
catalysis effect at zero temperature is obtained independ-
ently on whether G depends on B or not. This is shown in
Fig. 2, where we displayed the conveniently normalized
light quark condensates. These quantities are defined as it
follows. As in Ref. [19], for the case of vanishing temper-
ature we are interested in, we first introduce

FIG. 1. Effective quark masses Mu (black), Md (red), and Ms
(blue) as functions of eB for fixed (solid lines) and B-dependent
(dashed lines) coupling G.
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Σf ¼
2mf

D4
½ϕreg

f ðBÞ − ϕreg
f ð0Þ� þ 1; ð46Þ

where we have explicitly stated the magnetic field depend-
ence of the quark condensate, defined in Eq. (8). Moreover,
D ¼ ð86 MeV × 135 MeVÞ1=2 was introduced in Ref. [19]
as a kind of normalization constant and mf is the current
quark mass of each light flavor. Then, in the left panel of
Fig. 2 we plot ΔΣ̄ ¼ ðΣu þ ΣdÞ=2 − 1 while in the right
panel the difference Σ− ¼ Σu − Σd is shown. The gray
bands in Fig. 2 correspond to LQCD results taken from
Ref. [19], whereas full red (dashed blue) lines represent our
results for constant G (B-dependent G). We observe that
although the predictions for constant G are somewhat
closer to the LQCD results, those corresponding to GðBÞ
can certainly be considered as acceptable. It is interesting to
remark here that other form functions of GðBÞ, such as the
ones proposed in Refs. [34,37], reproduce similar trends for
these quantities.
We turn now to our results for the magnetic field

dependence of the masses of the nonet of pseudoscalar
mesons. They are shown in Fig. 3, where for charged
mesons we instead display their lowest energy states,
given by

EP� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P� þ ð2kþ 1ÞeBþ q23

q 			q3¼0
k¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P� þ eB
q

; ð47Þ

(note that both EP and mP depend on B although not
explicitly stated). The left (right) panel corresponds to the
case of constant coupling G (B-dependent G). We observe
that, except for the η0 mass, the B dependence is rather mild
in the case of the neutral mesons. On the other hand a rather

strong increase with growing B is found for charged meson
masses. These results are analyzed in further detail in what
follows.
The case of η0 is somewhat special and, therefore,

indicated in dashed lines in Fig. 3. In fact, already at
B ¼ 0 its mass is above the threshold for qq̄ decay and,
thus, the associated qq̄ polarization diagram receives an
unphysical imaginary part. Following Ref. [73] we accept
this as an unavoidable feature of the NJL model and define
the η0 mass as the real part of the corresponding pole in the
complex plane. We should keep in mind, however, that this
fact makes the predictions for the η0 mass less reliable as
compared to those of the other mesons. The situation
worsens for finite magnetic field. First, new divergencies
appear at low magnetic fields due the existence of thresh-
olds associated with the Landau levels of the intermediate
quark states. Although these divergencies are along the real
axis, they originate the kind of oscillatory behavior found
for eB≲ 0.2 GeV2. In passing, we note that including in
the calculation the imaginary part of the polarization
function makes these divergencies less harmful. If one
neglects that contribution, as done in Ref. [74], the
determination of mη0 becomes full of ambiguities making
its determination even more troublesome. The other point
has to do with the fact that at finite magnetic field the width
is in general larger than the already non-negligible value at
B ¼ 0, ΓB¼0

η0 ¼ 269 MeV. For constant G, we encounter a
nonmonotonic behavior of the width, which shows a close-
to-vacuum mean value of ΓB;mean

η0 ¼ 332 MeV but can

reach values of ΓB
η0 ∼ 590 MeV at intermediate fields.

On the other hand, for B-dependent G the pace of growth
of the width increases. At fields strengths around eB ∼
0.5 GeV2 the width exceeds the mass, with a value of
ΓB
η0 ∼ 1.46 GeV. This enhancement of the width, together

FIG. 2. Left: average condensate as a function of eB. Right:
condensate difference as a function of eB. Results for constant
(red solid lines) and B-dependent (blue dashed lines) coupling G
are shown. LQCD results from Ref. [19] (gray bands) are added
for comparison.

FIG. 3. Pseudoscalar neutral meson pole masses and charged
mesons lowest energies as functions of eB for constant (left) and
B-dependent (right) coupling G.
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with the decrease of GðBÞ as B increases, results in the fact
that for eB≳ 0.5 GeV2 no solution of Eq. (36) can be
found apart from the ones associated with π0 and η.
Namely, above such a value of the magnetic field the

coupling strength is not enough to form an η0 resonance in
the qq̄ continuum.
To discuss our results for the other neutral mesons

(π0, K0; K̄0 and η) in more detail we display in Fig. 4

FIG. 4. Normalized neutral meson masses as functions of eB for constant (red solid lines) and B-dependent (blue dashed lines)
coupling G. LQCD results from Ref. [41] (gray band) and Ref. [42] (magenta circles) are added for comparison.

FIG. 5. Charged meson masses (top) and differences of squared lowest energies between the case at B ≠ 0 and B ¼ 0 (bottom) for
charged pions (left) and kaons (right) as a function of eB. Results for constant and B-dependent coupling G are shown in red solid and
blue dashed lines, respectively. Green dotted lines correspond to energies associated with pointlike charged mesons. LQCD results from
Ref. [41] (black squares) and Ref. [42] (magenta circles) are added for comparison.
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the corresponding masses taken with respect to their
values at B ¼ 0. We show results using a constant and a
B-dependent coupling G together with LCQD simulations
from Refs. [41,42] for comparison. It should be noticed that
these LQCD calculations correspond to nonphysical pion
masses, i.e., 415 and 220 MeV, respectively, for vanishing
magnetic fields. In both cases they point to a stronger
decrease of the π0 masswith increasingB than the one found
in our calculation with constant G. On the other hand, the
results obtained using a B-dependent G are in reasonable
good agreement with LQCD ones. A similar observation
have been made in Ref. [34] in the context of a two-flavor
NJL model. This seems to also provide further support to
the relation between the IMC effect and the reduction of the
neutral pion mass at finite B mentioned in Ref. [42]. In the
case of K0 and K̄0 masses (central panel), the only LQCD
result that has been reported is that of Ref. [42]. We observe
that, once again, a much better agreement with these results
are obtained when a B-dependent coupling G is used in the
NJL model. Finally, in the right panel we show our
predictions for the behavior of the normalized η-meson
mass. They turn out to be quite similar to the ones obtained
for the K0 and K̄0 relative masses.
Finally, we consider the masses of charged pseudoscalar

mesons π� and K�. In Fig. 5 we display the differences in
their squared lowest energies from the case of a zero
magnetic field, i.e., E2ðBÞ − E2ðB ¼ 0Þ. We also include
their masses in the top graphs for completeness. We show
results for G and GðBÞ as compared to a pointlike charged
meson and LQCD simulations from Refs. [41,42]. We
observe that for both charged pion and kaons our results
show a stronger increase with growing B as compared with
the ones associated with pointlike mesons. Those obtained
using a B-dependent G are, however, somewhat closer to
them.As for the comparisonwith LQCD results we note that
in the case of charged pions there are significant differences
between the results reported by the two different LQCD
groups, specially at large magnetic fields. Although our
results seem to be more consistent with those of Ref. [41] it
should be recalled that they correspond to a larger (unphys-
ical) value of theB ¼ 0 pionmass and have larger error bars.
In any case, we see that, for both charged pions and kaons,
our NJL results show no sign of the strong nonmonotonous
behavior found in the LQCD calculation of Ref. [42].
Results obtained within the SU(2) version of the model
[30], seem to indicate that the inclusion of quarks anomalous
magnetic moments does not modify the trend of the charged
pion mass obtained in the present work.

IV. CONCLUSIONS

In this work we have considered the masses of the light
pseudoscalar masses under the influence of strong mag-
netic fields in the framework of the SU(3) Nambu–Jona-
Lasinio model that includes the ’t Hooft-Maekawa flavor
mixing interaction. The model parameters have been

determined on fixing that for vanishing external field
one reproduces the physical values of the π, K, and η0
meson masses together with the pion weak decay constant.
The possibility of using a magnetic field dependent four-
fermion coupling constant in order to reproduce the inverse
magnetic catalysis at finite temperature has also been
considered. Since the NJL model is not renormalizable,
the calculation of observables requires an appropriate
regularization scheme in order to deal with ultraviolet
divergences. Here we have used the magnetic field inde-
pendent regularization procedure, in which only divergent
vacuum contributions to quantities at zero external mag-
netic field are regularized. This scheme has been shown to
provide more reliable predictions in comparison with other
regularization methods often used in the literature [70].
At the mean field level, effective quark masses, shown in

Fig. 1, steadily increase with B for constant G but display a
nonmonotonous behavior for GðBÞ, which resembles the
one found in Ref. [24]. Moreover, our results for the
difference and average of the condensates calculated for
both constant G and GðBÞ and their comparisons with the
available LQCD results, as shown in Fig. 2, support the fact
that the parametrizations used in this paper are in a very
reasonable agreement with LQCD results.
In order to study meson masses we go beyond the mean-

field approximation, considering second order corrections
to the bosonized Euclidean action of the SU(3) NJL model.
Mesons are treated as quantum fluctuations in the random
phase approximation. While for neutral mesons one can
take the usual momentum basis to diagonalize the corre-
sponding polarization functions, this is not possible for
charged mesons since Schwinger phases do not cancel out.
In that case, we have employed a method based on the Ritus
eigenfunction approach to magnetized relativistic systems.
As discussed in Sec. II, at the quadratic level the inverse
propagators corresponding to the neutral π3, η0, and η8
fields are arranged in terms of a symmetric 3 × 3 matrix;
the pole masses and widths of the physical mesons (π0, η
and η0) are obtained as the roots of this inverse propagator
matrix determinant. Note that in the B ≠ 0 case, besides the
’t Hooft-Maekawa interaction which breaks the UAð1Þ
symmetry and is responsible for the coupling between
the η0 and η8, the magnetic field also breaks the isospin
symmetry, leading to a mixing between all three states [72].
This is in contrast to the B ¼ 0 case where due to the
isospin symmetry (Mu ¼ Md) the π3 field is decoupled
leaving only η0 and η8 mixed in a symmetric 2 × 2 matrix.
As already known from the usual SU(3) NJL model at

B ¼ 0, the η0 meson comes out in the model as a resonance
or unstable particle. In this case, the propagator becomes a
complex number and from the analysis of the complex
pole, the mass of the resonance is obtained. In the presence
of a finite magnetic field, the situation is more dramatic
since the propagators may develop several poles depending
on B, which have to be properly treated. We have
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developed in this paper a new formalism to deal with this
situation. Of course, the results for the η0 meson are less
reliable and its calculation certainly approaches the limit of
applicability of the NJL model, since this model does not
include confinement. In fact, we find that using GðBÞ the
coupling strength is not enough to form an η0 resonance
for eB≳ 0.5 GeV2.
Our results for the normalized π0 mass in Fig. 4 show

that, for constant G, the mass displays a non-monotonous
behavior with B, which initially decreases but is afterwards
enhanced for eB≳ 0.5 GeV2. On the other hand, using
a B-dependent coupling GðBÞ we recover the monotonous
decreasing behavior found in LQCD results. Something
similar happens with K0 and K̄0 masses. For η, our
prediction is similar to that of K0 and K̄0. We thus conclude
that incorporating the inverse magnetic catalysis in the NJL
model, here through the GðBÞ coupling, is fundamental for
qualitatively reproduce the available LQCD results.
Concerning charged mesons, our results for the differences
in their squared lowest energies from the B ¼ 0 case are
shown in Fig. 5, where a strong enhancement with B is
seen. This increase even surpasses the one associated with a
pointlike charged meson. Our NJL results are in reasonable
agreement with LQCD results of Ref. [41] within error
bars. On the other hand, no sign of the nonmonotonous
behavior found in the LQCD calculation of Ref. [42] is
observed.
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APPENDIX A: EXPLICIT EXPRESSION
OF THE VACUUM FUNCTION cvacf f 0 ðq2Þ

The functions cvacff0 appear in Eqs. (26) and (42). In their
unregularized form they are defined by

c0ff0 ðq2Þ ¼ 2Nc

Z
p
trD½S̃f;0p− γ5S̃

f0;0
pþ γ5�; ðA1Þ

where S̃f;0p ¼ 1=ðpþMfÞ is the usual vacuum propagator
for a quark of mass Mf. Here, p� ¼ p� q=2. We recall
that in this work all four-momenta are defined in Euclidean
space. By taking the trace and integrating over p one

obtains

c0ff0 ðq2Þ ¼
Nc

2π2

Z
∞

0

dz
Z

1

0

dy exp f−z½yM2
f þ ð1 − yÞM2

f0 þ yð1 − yÞq2 − iϵ�g 1
z

�
MfMf0 þ

2

z
− yð1 − yÞq2

�
: ðA2Þ

We have expressed this function in the proper time formalism. Through some algebraic manipulation, it can also be
written in the following standard form

c0ff0 ðq2Þ ¼ 2Nc

�I01f þ I0
1f0

2
þ ½q2 þ ðMf −Mf0 Þ2�I02ff0 ðq2Þ

�
; ðA3Þ

where the integrals I01f and I0
2ff0 are defined by

I01f ¼ 4

Z
p

1

p2 þM2
f

;

I0
2ff0 ðq2Þ ¼ −2

Z
p

1

ðp2
− þM2

f − iϵÞðp2þ þM2
f0 − iϵÞ : ðA4Þ

In order to regularize the vacuum loop integrals we introduce a 3D cutoff Λ. For I01f one gets the regularized function

Ivac1f ¼ 1

2π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ Λ2
q

þM2
f ln

�
Mf

Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ Λ2
q ��

: ðA5Þ
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For I0
2ff0 ðq2Þ we note that in order to determine the meson masses, the external momenta q in the loop integrals has to be

extended to the region q2 < 0. Hence, we find it convenient to introduce q2 ¼ −q2m, with qm > 0. In this case the function
has several poles. To treat them, we go from Euclidean to the original Minkowski space by taking p4 ¼ −ip0. Then, by
choosing appropriate contours the p0 integral can be calculated in the complex plane to yield

Ivac
2ff0 ðq2Þ ¼ −

1

8π2q2m

Z
Λ

0

dp
p2

p2 − r − iϵ

�q2m þM2
f −M2

f0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q þ q2m −M2
f þM2

f0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f0

q �
; ðA6Þ

where

r ¼ 1

4q2m
½ðMf −Mf0 Þ2 − q2m�½ðMf þMf0 Þ2 − q2m�: ðA7Þ

Depending on the value of qm, this expression may still have a pole in a point of the integration line if r > 0. For those
regions of qm where a pole exists, we proceed by employing a generalized version of the Sokhotski-Plemelj formula.
Assuming there exists a function fðxÞ that has single poles at a set of values xj, for which exist two other functions gðxÞ and
hðxÞ such that gðxjÞ ≠ 0 and hðxjÞ ≠ 0, then

lim
ϵ→0þ

Z
b

a
dx

hðxÞ
fðxÞ þ iϵgðxÞ ¼ PV

Z
b

a
dx

hðxÞ
fðxÞ − iπ

X
j

hðxjÞ
jf0ðxjÞj

sign½gðxjÞ�; ðA8Þ

where PV denotes the Cauchy principal value of the integral. By using this property we can fully calculate the complex
function Ivac

2ff0 in the most general case. For the regularized real part we get

Re½Ivac
2ff0 ð−q2mÞ� ¼−

1

8π2q2m

�
ðq2mþM2

f−M2
f0 Þ
�
arcsinh

�
Λ
Mf

�
−Ff

�
þðq2m−M2

fþM2
f0 Þ

�
arcsinh

�
Λ
Mf0

�
−Ff0

��
; ðA9Þ

where

Ff ¼

8>>>>>>>><
>>>>>>>>:

yþffiffiffiffiffiffiffiffiffiffiffi
M2

fþy2þ
p arctanh

�
Λ
yþ

ffiffiffiffiffiffiffiffiffiffiffi
M2

fþy2þ
M2

fþΛ2

r �
for qm < qð0Þm orqm > qð3Þm

yþffiffiffiffiffiffiffiffiffiffiffi
M2

fþy2þ
p arccoth

�
Λ
yþ

ffiffiffiffiffiffiffiffiffiffiffi
M2

fþy2þ
M2

fþΛ2

r �
for qð0Þm < qm < qð1Þm orqð2Þm < qm < qð3Þm

y−ffiffiffiffiffiffiffiffiffiffiffi
M2

f−y
2
−

p arctan

�
Λ
y−

ffiffiffiffiffiffiffiffiffiffiffi
M2

f−y
2
−

M2
fþΛ2

r �
for qð1Þm < qm < qð2Þm

: ðA10Þ

Here y� ¼ ffiffiffiffiffiffi�r
p

, with r defined in Eq. (A7), and

q
ð0
3
Þ

m ¼
h
M2

f þM2
f0 þ 2Λ2 ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛ2 þM2

fÞðΛ2 þM2
f0 Þ

q i
1=2

; q
ð1
2
Þ

m ¼ jMf ∓ Mf0 j: ðA11Þ

For the regularized imaginary part we get

Im½Ivac
2ff0 ð−q2mÞ� ¼

�
− yþ

4πqm
for qð2Þm < qm < qð3Þm

0 otherwise
: ðA12Þ

Putting all together, the regularized version of the vacuum c0ff0 function defined in Eq. (A3) is given by

cvacff0 ðq2 ¼ −q2mÞ ¼ 2Nc

�Ivac1f þ Ivac
1f0

2
− ½q2m − ðMf −Mf0 Þ2�Ivac2ff0 ð−q2mÞ

�
: ðA13Þ
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APPENDIX B: EXPLICIT EXPRESSION OF THE NEUTRAL MAGNETIC FUNCTION cmag
f f 0 ðq2⊥;q2kÞ

The unregularized neutral function cff0 in momentum space was originally defined in Eq. (25). Following a standard
calculation (see [59] for details) and assuming Qf ¼ Qf0 we obtain

cff0 ðq2⊥; q2kÞ ¼
NcBf

2π2

Z
∞

0

dz
Z

1

0

dy exp f−z½yM2
f þ ð1 − yÞM2

f0 þ yð1 − yÞq2k − iϵ�g

× exp

�
−
q2⊥
Bf

γfðy; zÞ
���

MfMf0 þ
1

z
− yð1 − yÞq2k

�
cothðzBfÞ þ

Bf

sinh2ðzBfÞ
�
1 −

q2⊥
Bf

γfðy; zÞ
��

; ðB1Þ

where

γfðy; zÞ ¼
sinhðyzBfÞ sinh½ð1 − yÞzBf�

sinhðzBfÞ
: ðB2Þ

As usual, here we have used the changes of variables τ ¼ yz and τ0 ¼ ð1 − yÞz, τ and τ0 being the integration parameters
associated with the quark propagators as in Eq. (7). The B → 0 limit of this expression c0ff0 is given by Eq. (A2). Then, the
finite magnetic contribution is defined within the MFIR scheme as the difference

cmag
ff0 ðq2⊥; q2kÞ≡ cff0 ðq2⊥; q2kÞ − c0ff0 ðq2Þ: ðB3Þ

For the calculation of the meson masses we can take q2⊥ ¼ 0 and q2k ¼ −q2m, with qm > 0. Assuming that qm < Mf þMf0 ,
one can integrate by parts to write this function in the form

cmag
ff0 ðq2⊥ ¼ 0; q2k ¼ −q2mÞ ¼ 2Nc

�Imag
1f þ Imag

1f0

2
− ½q2m − ðMf −Mf0 Þ2�Imag

2ff0 ð−q2mÞ
�
; ðB4Þ

where the integral Imag
1f is defined as

Imag
1f ¼ Bf

4π2

Z
∞

0

dz
z
e−2zxf

�
coth z −

1

z

�
;

¼ Bf

2π2

�
lnΓðxfÞ −

�
xf −

1

2

�
ln xf þ xf −

ln 2π
2

�
; ðB5Þ

where xf ¼ M2
f=ð2BfÞ. On the other hand Imag

2ff0 is given by

Imag
2ff0 ð−q2mÞ ¼ −

1

8π2

Z
1

0

dy
Z

∞

0

dze−2zðx̄ff0−iϵÞ
�
coth z −

1

z

�
ðB6Þ

with

xff0 ¼
yM2

f þ ð1 − yÞM2
f0 − yð1 − yÞq2m

2Bf
: ðB7Þ

When qm < Mf þMf0 we always have that xff0 > 0. Then function Imag
2ff0 as given in Eq. (B6) is well defined and can

alternatively written as

Imag
2ff0 ð−q2mÞ ¼

1

8π2

Z
1

0

dy
�
ψðx̄ff0 − iϵÞ − lnðx̄ff0 − iϵÞ þ 1

2ðx̄ff0 − iϵÞ
�
; ðB8Þ

where ψðxÞ is the digamma function. Note that in this case one can safely take the ϵ → 0 limit.
On the other hand, when qm > Mf þMf0 it happens that x̄ff0 can be negative in the integration domain. In this case, the

integral in Eq. (B6) is not convergent. However, one can still proceed by considering the analytic extension of the form
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given in Eq. (B8). Since x̄ff0 is a positive quadratic function of y, it is immediate to see that ψðx̄ff0 Þ has N þ 1 poles,
where

N ¼ Floor

�
1

2Bf

�
1 −

�
Mf −Mf0

qm

�
2
��

q2m
4

−
�
Mf þMf0

2

�
2
��

: ðB9Þ

To proceed we first isolate the poles by using the digamma recurrence relation

ψðx̄ff0 − iϵÞ ¼ ψðx̄ff0 þ N þ 1Þ −
XN
n¼0

1

x̄ff0 þ n − iϵ
: ðB10Þ

Expressed this way, the first term in the right-hand side is pole free. Then

Imag
2ff0 ð−q2mÞ ¼

1

8π2

Z
1

0

dy

�
ψðx̄ff0 þ N þ 1Þ − lnðx̄ff0 − iϵÞ − 1

2

XN
n¼0

gn
x̄ff0 þ n − iϵ

�
; ðB11Þ

where gn ¼ 2 − δn0. The complex logarithm is defined by taking the principal branch. For the region where x̄ff0 < 0 we
have

lim
ϵ→0

lnð−jx̄ff0 j − iϵÞ ¼ lnðjx̄ff0 jÞ − iπ: ðB12Þ

Lastly, the third term on the right-hand side of Eq. (B11) contains two simple poles, which once again can be handled using
the generalization of the Sokhotski-Plemelj formula presented in Eq. (A8). After some algebra we finally obtain that for
qm > Mf þMf0

Imag
2ff0 ðq2k ¼ −q2mÞ ¼ −

1

8π2

�
ln

�ðMfÞ1−αðMf0 Þ1þα

2Bf

�
þ β0

2
ln

�
α2 − ð1þ β0Þ2
α2 − ð1 − β0Þ2

�
− 2þ Bf

q2m

XN
n¼0

gn
βn

ln

�
α2 − ð1 − βnÞ2
α2 − ð1þ βnÞ2

��

þ 1

8π2

Z
1

0

dyψðx̄ff0 þ N þ 1Þ þ i
8π

�
β0 −

2Bf

q2m

XN
n¼0

gn
βn

�
; ðB13Þ

with

α ¼ M2
f0 −M2

f

q2m
; βn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

�
Mf0 −Mf

qm

�
2
��

1 −
�
Mf0 þMf

qm

�
2
�
−
8nBf

q2m

s
: ðB14Þ

We remark that the calculation of Imag
2ff0 was performed here within the proper time formalism, which is well defined for

qm < Mf þMf0 and leads to Eq. (B8). For qm > Mf þMf0 we have taken the analytic continuation of this equation. As a
consistency check, we have repeated the calculation using the Landau level representation for the quark propagator in
Minkowski space, which is well defined for all qm, obtaining the same final result of Eq. (B13).
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