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Abstract: In this paper, the validity of the state-space
averaging method is analyzed. We assume that the
state-space piecewise method is an exact model for a
fast switching circuit. Based on this model, we compute
the error predicted by the state-space averaging method.
It is found that the error for a polynomial input is
bounded by two polynomials with the same order as that
of the input. And the percentage error is bounded by a
constant. Hence, if the acceptable level is within that
constant, then the state-space averaging method can be
applied. Similar analysis is carried out on a
non-polynomial input. A sinusoidal function is chosen
because of its wide applications on AC circuits.
Although a similar result is obtained, the percentage
error for the sinusoidal input is much greater than that of
the polynomial input. Hence, the state-space averaging
method may not be so good for the AC analysis.
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. INTRODUCTION

Switching circuits are playing an increasingly
important role in power electronics in this decade [1].
Since they are non-linear and time-varying in nature due
to the non-zero initial energy stored in the circuit
elements and the changing status of switches, some
traditional methods, such as impulse response and
frequency response, cannot be readily applied to analyze
them.

In order to work on this problem, a state-space
averaging method has been proposed [2]. There are lots
of advantages for employing this method. Since it
involves only a first order differential vector equation,
the state vector function and the output function can be
computed implicitly at any instant easily. Also, as the

computation complexity is low, it is good for simulation.

However, the prediction error introduced by it may
cause some faults in analysis and design.

A state-space piecewise method has been
proposed for analyzing the switching circuits [3].
However, iterations are required to compute the state

vector function and the output function. It takes a very
long time to reach the steady state and the simulation
complexity is very high.

Some numerical methods have been proposed to
speed up the state-space piecewise method [4]. However,
the assumptions made and the approximations taken are
sometimes invalid and inappropriate, and these may
lead to significant prediction error.

In this paper, the state-space averaging method
and the state-space piecewise method are reviewed in
section Il and section Ill, respectively. The errors
predicted by the state-space averaging method for the
polynomial input and the sinusoidal input are discussed
in section IV and section V, respectively. Finally,
simulation results and concluding remarks are given in
section VI and section VI, respectively.

Il.  REVIEW ON STATE-SPACE AVERAGING
METHOD

Assume that a switching circuit consists of two
topologies, topology | and topology Il, and the duty
cycle at each topology is 50%. If A, By, C; and D, are
the matrices of a state-space representation of the circuit
at the topology | and A, B, C, and D, are that at the
topology 11, then the “average’ state-space representation
of the whole circuit is:

A:A1+A2leBl‘;leczcl“z'cle:Dl‘;Dz (D).

The state vector function and the output function of the
system are:

t
X(t) =€ x(t, )+ e - B-u(r)dr and
t

y(t)=C e x(t,)+C ~j[e("’)'A B-u(r)dr+D-ut) (),
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respectively, for t>t;, where X(to) is the initial condition
of the state vector at t=t, and u(t) is the input of the
system. For simplicity, assume that A is an NxN matrix
with distinct eigenvalues 4;, for i=1,2,...,N, respectively.
Apply the Cayley Hamilton expansion to the matrix
exponential terms in equation (2), that is:
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Then the state vector function and the output function
become:
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respectively. If the eigenvalues are not distinct, similar
results are obtained.

I1l. REVIEW ON STATE-SPACE PIECEWISE
METHOD

For simplicity, under the same assumptions made
in section I, if A; and A, are NxN matrices with distinct
eigenvalues 4; and 4;’, for i=1,2,...,N, respectively, then
the state vector function and the output function are:
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respectively, for to+n-T;<t <ty+(n+0.5) T, and
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respectively, for ty+(n+0.5)-T,<t <ty+(n+1)-Ts, where
T is the switching period, n=0,1,2,...,
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IV. ERROR PREDICTED BY THE
STATE-SPACE AVERGING METHOD FOR A
POLYNOMIAL INPUT
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There are many applications of building a
switching circuit using a polynomial input. For example,
a DC-DC converter is a switching circuit using the step
input [5]. It can be seen from equation (5) that the input
affects the output only through the following integration
term:

j.e’l"(l”) -u(e)de (10).

State-space averaging method

If the input is a polynomial function of time, then
we can compute the integral of (10) at the switching
instants using the following formula:
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By substituting equation (11) into equation (5), the state
vector function and the output function at the switching

instants are:
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respectively.

Although equation (12) appears to be quite
complicated, the state vector can be written as the sum
of the zero-input response Fo(n)x(ty) and the zero-state
response F1(n)-go(to)+F2(n)-g:(te+n-Ts), as follows:

X(to +n 'Ts): Fo(n)' X(to)+ Fl(n)' go(to)+ Fz(n)' gl(to + n-Ts)(13),
where go(to) and gy (to+n-Ts) correspond to the k™ order

polynomial functions of t, and to+n-Ts, respectively.
And the output is:
ylty +n-T,) = Fg(n)-x(t, )+ F/(n)- g, (t, )+ F;(n)- 9, (t, +n-T,) (14).
State-space piecewise method

Similar to the state-space averaging method, the
corresponding integration terms at the switching instants
can be computed by the following formulae:




£k a% N
=y e (t,+n-T,)"-e2 —[to+(n+5]-Ts] , for k >0, and

t=ty +(n+1) T,

mzmm,“”l{[ (”*%}‘Ts]m‘e%*(t +(n+1)T )}fork>0(15)

respectively. The state vector function and the output
function at the switching instants are:
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By solving the difference equation (16), the state vector
function and the output function at the switching
instants can be expressed as:
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respectively. Similarly, the state vector in equation (18)
can be written as a sum of the zero-input response
Eo(n) x(to) and the zero-state response
E1(n) fo(to)+E2(n) f1(te+0.5-T)+... +E2 nsa () F2n(to+n T),
as follows:

X(t, +n-T,)=E +§:Ep+1 (t +g Tj (19),

where fy(to+p-T4/2) correspond to the k™ order
polynomial function of t,+p-T4/2. And the output is:
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Error equations
From equations (13), (14), (19) and (20), the

prediction errors are:
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respectively. As hy(to+t-Ts/2) is a polynomial with the
same order as that of the input, the error is bounded by
two characteristic polynomials of the same order as that
of the input.

The percentage errors are:
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respectively. Since the numerator and the denominator
are of the same order, the steady-state value is bounded
by a constant.



V. EFFECT OF NON-POLYNOMIAL INPUT

In many cases, the input cannot be assumed to be
a polynomial function of time. The most common type
of a non-polynomial input is a periodic signal, which is
made up of harmonically related sinusoids. Hence, the
sinusoidal input is addressed in this paper.
State-space averaging method

The integral of (10) can be computed by:

t
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The state vector function and the output function
computed at the switching instants are:

X(t0+n'Ts):SO(n)'X(to)
+T,(n)-sin(w-t,)+T,(n)-cos(w-t,)
~U, -sin(e-(t, +n-T,))-U} -cos(w-(t, +n-T,))and
Y(t0+n'Ts):C'So( ) (0)
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+D-sin(w-(t, +n-T,)) (24),
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The state vector function can be realized as the
sum of the zero input response So(n)X(to) and the zero
state response as
To(n)-sin(wtg)+To(N)-coS(w-ty)-Up-sin(e-(to+n-Ts))-U’y-
cos(w-(to+n-Ts)).

State-space piecewise method

The integral of (10) can be computed by:
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respectively, the state vector function and the output
function computed at the switching instant are:
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By solving the difference equation (27), we have:
X(ty +n-T,)=(S,-5,)" - x(t,)
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Error equations
From equations (24) and (29), the prediction

errors are:

+iM;(n)-cos(a)~(to+g~Ts j (30),

respectively. If Go(n) and G’y(n) converge to a constant,
then the error at the steady state can be approximately
by the sinusoids with a DC offset. That is:

2:n

AX(t, +n-T,)= \Pp(n)-sin[a)-(to+S-Tsj+¢pj+Qand
AY(t,+n-T,)= n\P;(n)-sin(m-(t0+S-Tsj+¢;j+9’ (31).

From equation (31), the error is mainly
contributed by the phase shift and the amplitude of the
sinusoids, which may be significant.

VI. SIMULATION RESULTS

Figure 1 shows a schematic example of a
switching circuit [5]. Figure 2 and figure 3 show the
output of the circuit predicted by the state-space
averaging method and the state-space piecewise method
for different polynomial inputs, respectively. Figure 4
and figure 5 show the corresponding prediction error
and the percentage error.

Figure 6 and figure 7 show the output predicted
by the state-space averaging method and the state-space
piecewise method for a sinusoidal input, respectively.
Figure 8 and figure 9 show the corresponding prediction
error and the percentage error.

VII. CONCLUDING REMARKS

The validity of the state-space averaging method
is studied in this paper. It is found that, in general, the
state-space averaging approach is applicable as a useful
tool for the analysis and design of switching circuits
with polynomial input, e.g., DC-DC converter. However,
it may not provide an appropriate model for the analysis
and design for non-polynomial input systems, e.g.,
AC-AC converter, as the prediction error terms are to be
quite large.
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