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Global climate change and sea-level rise will cause significant risks to coastal 

communities. To make inclusive and cost-effective adaptation planning decisions, we 

need to understand who may be impacted and when. Currently, planning literature 

generally focuses on housing impacts; when will a house be inundated, and what 

adaptation strategies are useful to keep a house habitable? Housing, though, is only one 

of many types of infrastructures people need to reside in an area. Reliable roads are 

another. This dissertation conducts an analysis of parcel-level impacts of SLR on local 

residents’ ability to reach key amenities such as emergency services, grocery stores, 



  

and schools. Furthermore, it strategically evaluates where road protection should be 

implemented so that access is maintained in an equitable manner. Next, I use the 

accessibility analysis to identify the important roads for gathering high-resolution flood 

data to improve the accuracy of the analysis. I use Dorchester County, Maryland, U.S., 

as a case study. It is an extremely low-lying rural county and is expected to shrink in 

half by the end of the century due to SLR. The results from the case study indicate that 

some parcels are not expected to be inundated by SLR but are expected to experience 

accessibility impacts. Road protection appears to be a temporary strategy that can buy 

time for long-term adaptation strategies such as relocation. However, the protection 

strategies should be cautiously selected based on decision-makers priorities. The 

insight obtained by this dissertation highlights that when policy and decision-makers 

are deciding among adaptation strategies, they need to reach some level of consensus 

about assumptions for which a possible future is planned, and also the trade-off 

between increasing accessibility levels and balancing the distribution of accessibility 

among different demographic groups.  
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1 Chapter 1: Introduction 

Global climate change brought on by greenhouse gas emissions is likely to 

cause heavier precipitation, increased temperatures, and more frequent extreme 

weather events (IPCC 2021; Mendelsohn et al., 2012). Sea-level rise, which is 

primarily caused by thermal expansion of the ocean as it is warmed and the melting of 

ice on land, is predicted to be among the more consequential impacts from climate 

change and will lead to significant human displacement and changes to ecosystem 

services (Nicholls, 2011; Pugh, 2004). There are also studies that demonstrate that 

climate change will change storm surge patterns which will increase the frequency and 

intensity of coastal flooding (Emanuel, 2005). While the localized impacts may vary, 

sea-level rise and more nuisance flooding will have serious impacts on communities 

(P. Jacobs et al., 2000). Coastal areas with shallow slope shorelines and proclivity to 

subsidence, such as the U.S. mid-Atlantic region, are especially threatened (Boon, 

2012; McLean et al., 2001). Approximately 50% of the U.S. population (more than 164 

million people) live or work in coastal counties (Moser et al., 2014), and more than 9.2 

million people (about 3% of the U.S. population) reside in 100-year coastal floodplains 

(Crowell et al., 2010). The changes in temperature and rainfall patterns due to climate 

change also affect agriculture sectors worldwide. The changes in temperature and 

rainfall patterns due to climate change also affect infrastructure reliability. While global 

changes are likely to be small or moderate, regional changes could be significant in 

many parts of the world (Paudel et al., 2014). This highlights the importance of 
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understanding the risks from climate change and its impact on communities and 

provides a strong basis for investments in resilience actions.  

In spite of many existing studies addressing the negative impacts of global 

changes on infrastructure components, the comprehensive evaluation of climate change 

and SLR on networked infrastructure and communities' well-being is missing 

(Wilbanks & Fernandez, 2014). A significant portion of the research in this field has 

explored the impact of SLR and coastal flooding on housing. For example, Pistrika & 

Jonkman (2010) and  Cox et al. (2019) evaluate the impact of climate change and SLR 

on where individuals reside, and if a resident needs to relocate due to flooding, and 

when that may happen. Sadler et al. (2017) evaluate the percentage of the roadways 

with a high likelihood of flooding in the Hampton Roads area of Virginia under SLR 

and storm surge. However, the negative impact of flooding may not be limited to the 

inundated area; inundation of networked system components (e.g., roads, pipelines, or 

power assets) can cause cascading disruptions to large portions of the community. To 

better be prepared for climate change, it is necessary to understand who may be 

impacted by climate change and when this will happen.  

Over the last two decades, more studies have focused on the role of flooding on 

the performance of transportation networks. On the East Coast of the U.S., more than 

7,500 miles of roadways are currently threatened by nuisance flooding, which results 

in 100 million vehicle hours of delay annually (Jacobs et al., 2018). These numbers will 

increase in the future due to SLR (Wu et al., 2002). The negative impacts of flooding 

on transportation systems are usually evaluated in two different ways: assessment of 
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which roads will be inundated (Sadler et al. 2017, Ju et al. 2019) and evaluation of 

networked impacts of flooding in an aggregated spatial areas, such as longer travel 

times or losing access to a specific destination (Kermanshah & Derrible, 2017; Lu & 

Peng, 2011; Sohn, 2006). However, studying the roads and housing separately or 

focusing on single components does not provide a strong basis regarding which regions 

will be forced to adapt and when that may happen. 

1.1 Resilience 

Arguably, in order to build resilience to climate change and sea-level rise, it 

must first be defined with clear associated measures. Definitions of resilience vary 

from one field of study to another (Meerow et al., 2016), though core concepts center 

around individual and community well-being over time in the face of adversities, 

such as natural hazards and climate change. Resilience in the context of climate 

change adaptation is generally considered to be the capacity of a system to cope with 

hazardous events through response, adaptation, recovery, and learning (Change, 

2014). Existing studies can be divided into two groups: one that concentrates on 

physical assets such as critical infrastructure and their ability to operate while 

responding to threats, and one that focuses on social characteristics that influence 

community recovery capacity (Bruneau et al., 2003; S. L. Cutter, 2014; Haimes, 

2002; Hosseini Nourzad & Pradhan Anu, 2016a). Physical assets, including critical 

infrastructure, play a fundamental role in the operation and development of current 

societies, and their failure can result in a considerable reduction in serviceability and 
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can significantly cascade impacts on communities (Deshmukh et al., 2011). For 

example, disruption in a segment of a road network can have significant effects on the 

entire system. Therefore, it is necessary to evaluate the ability of these systems to 

withstand the stresses of hazard-related disruptions.  

As the frequency and severity of disasters grow, there is increasing 

recognition of the fact that not all threats can be avoided. This highlights the 

importance of community resilience - a mechanism to ensure that minimum 

disturbances happen. In addition to physical assets such as road networks, the social 

units such as organizations, communities, and individuals also experience direct or 

indirect impacts of hazard-related damage and losses, and the socioeconomic and 

demographic characteristics of people and units influence their capacity to absorb 

losses, recover from adverse events, and to make changes that enhance their system 

resilience (Cutter, 2003). Ultimately, however, there is a significant knowledge gap in 

how the performance of the physical assets impacts community resilience and 

wellbeing. As the impacts of climate change are becoming recognized, and that inter-

governmental agreement on climate mitigation is unlikely to be sufficient at 

preventing future climate extremes (Warner et al., 2009), policy-makers are looking 

towards not only mitigation strategies such as hardening but also considering 

adaptation strategies such as managed retreat from sea-level rise, or spreading risks 

through insurance (Siders, 2019; Warner et al., 2009).  

The knowledge gap for building infrastructure and community resilience is 

especially significant for rural areas. Their limited resources combined with a wide-
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scale flooding threat may cause more challenges for the residents in these areas to 

maintain their access to critical services. In the case of mitigation and hardening of the 

roads, rural communities face more problems due to the sparse roadway network that 

offers fewer alternatives for motorists.  

The knowledge gap for building infrastructure and community resilience is 

often especially significant for rural areas. Their limited resources, often combined with 

a wide-scale flooding threat, may cause more challenges for the residents in these areas 

to maintain their accessibility to critical services. While both urban and rural areas are 

vulnerable to flood hazards and SLR, research on adaptation to SLR mostly focuses on 

urban areas because the greatest losses in property value are more possible in urban 

areas(Weiss et al., 2011). Rural communities also tend to be home for populations that 

are more vulnerable to SLR impacts due to poverty and being isolated from central 

planning agencies (Donner & Rodríguez, 2008; Hardy et al., 2017). The economic 

impacts of flooding could be more significant in rural areas than urban areas due to 

more self-employment and more dependency on natural resources  (Twigger-Ross et 

al., 2005). Rural areas also have fewer facilities per capita, and the loss of services and 

shops can disproportionately impact small communities. In terms of health, physical 

injuries may become worse because of the longer distance to services and also loss of 

access due to flooded roads. Moreover, during and after floods, rural communities may 

receive less attention due to having less political visibility than urban residents  (Bukvic 

& Harrald, 2019).  
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Understanding the impact of climate change, especially sea-level rise, and 

storm surge flooding, at a finer spatial resolution in coastal communities, especially 

rural areas, can enable decision-makers, policymakers, and other experts to make more 

informed decisions regarding mitigation and adaptation strategies and to help improve 

the resilience of the communities.   

1.2 Dissertation objectives 

The main objective of this dissertation is to conduct a comprehensive evaluation 

of how sea-level rise and storm surges intersect with roads in rural communities and 

how these disruptions impact local residents. I also advance techniques that inform how 

to effectively build local resilience through roadway improvements and local 

monitoring. Through a series of three research questions, the body of work broadly 

advances the field of resilience engineering through both the methods that are used to 

evaluate local impacts and how the results demonstrate a reconsideration of adaptation 

trigger points. 

The research questions and associated research activities are discussed briefly 

in the subsections below, and details are provided in Chapters 2-4.  In addition, research 

on the impact of climate change on agriculture in rural coastal counties is provided in 

Appendix A. Chapter 5 responds to the research question raised in each chapter and 

summarizes the main findings of each section. Furthermore, it also describes the 

limitations and future directions of this dissertation.  
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1.3 Research Question 1: Roadway flooding as a bellwether for household 

retreat in rural, coastal regions vulnerable to sea-level rise 

Coastal flooding will significantly impact the road networks in low-lying rural 

coastal areas, and this will impact residents’ daily lives. The localized impacts of 

flooding will vary, though the threat is expected to increase due to SLR (Azevedo de 

Almeida & Mostafavi, 2016; Fang et al., 2020). In the U.S., almost 50% of the 

population live or commute to the coastal counties, and their daily lives rely on 

transportation networks. Floods and inundation from storm surges and sea-level rise 

not only damage buildings and businesses; they also can significantly disrupt 

networked infrastructure, including roads and powerlines. A disruption in one segment 

of a networked system can have cascading impacts and ultimately has the potential of 

negatively impacting the entire system. To date, a significant portion of the research 

evaluating the impact of repetitive coastal flooding and SLR focuses on residential 

structures flooding and mitigation (Cox et al., 2019; Pistrika & Jonkman, 2010). The 

assumption is that household inundation is an adaptation trigger point that will force 

relocation. However, repetitive temporary loss or permanent loss of critical networked 

infrastructures, such as roadways and electricity, impact individual’s ability to reside 

and access economic opportunities in flood-prone places and are each likely to 

influence migration from coastal, flood-prone areas even if houses themselves are not 

flooded (Cole, 2008). 

This chapter focuses on road infrastructure and the impact that SLR could have on local 

residents as a result of roadway flooding. Over the past decades, more emphasis has 
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been placed on the impact of flooding on local residents. I will focus on the impacts of 

the flood on communities using accessibility analysis. Accessibility is described as an 

ability to reach desired destinations such as grocery stores. The following gaps are 

identified:  

• At present, there is not a body of literature that examines the relationship 

between the failure of critical infrastructure services such as transportation 

networks and parcel inhabitation. 

• Most accessibility evaluations are conducted at spatially aggregated scales, 

such as census tracts, which can easily mask important information about some 

neighbors or parcels. 

• Existing studies that consider roadway flooding use a limited number of 

flooding scenarios, such as 1 meter of water or a 100-year flood scenario which 

cannot provide a comprehensive understanding of the threat. 

The following research questions are explored in Chapter 2 to address the 

knowledge gaps in the existing literature. 

• How do different SLR scenarios with different exceedance probabilities impact 

parcel-level accessibility and travel distance in the rural coastal regions? 

• Which parcels may experience the impacts of flooding, regardless of whether 

their structure floods? 
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• What is the warning time between accessibility loss and future household 

inundation for each parcel in the area? 

To address these research questions, a computational-geospatial framework is 

developed that assesses the parcel-level accessibility to everyday facilities, including 

emergency services, and the impacts that SLR will have on that access. The focus of 

this work is on parcel-level impacts, as a coarser spatial aggregation can mask 

distributions, causing some parcels to appear less vulnerable to SLR-related 

transportation disruptions than they truly are. This allows me to identify parcels that 

may experience the impacts of flooding, regardless of whether their structure floods. It 

also helps us to define the warning time between accessibility loss and future household 

inundation. Finally, this framework has been implemented in a realistic case study in 

Dorchester County, MD. 

• More details of the study are provided in Chapter.2. 

1.4 Research Question 2: Bridging adaptation resources across the urban-rural 

divide: A comparison of equity-focused roadway investment strategies 

against flooding 

Coastal communities are increasingly facing disruptions as a result of sea-level 

rise-induced coastal flooding (Wu et al., 2002). Inundation of transportation 

infrastructure can affect travel to critical services and economic opportunities (Alabbad 

et al., 2021). Flooding of only a few road segments may disconnect some parts of the 

community or increase the distance to reach key amenities (Sohn 2006).  Roadway 
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inundation can be more problematic in rural areas, which have more sparse road 

networks and offer fewer alternative routes to access services. 

A well-known and standard approach for investing mitigation resources is to 

protect high traffic volume roads under the threat of inundation. This approach is 

practical and politically defensible, though it may not result in maximal accumulated 

benefits. Specifically, because this method is not considering a systems-level 

perspective, it is not evaluating the ability of all residents to get to key facilities, such 

as fire stations. Moreover, ignoring the spatial distribution of floods in a network and 

protecting high traffic volume roads without investigating the network-wide impact of 

other road inundation may offer limited benefits (Alipour et al., 2020; Douglas et al., 

2017).  

Over the past decade, most of the studies that explored optimal systems-level 

resource allocations for road armoring in flood-prone areas end up emphasizing the 

protection of urban regions for reasons of efficiency. This leads to uneven distribution 

of the benefits among groups of the communities, especially in rural areas. The 

following gaps are identified in the literature: 

• Existing approaches simplify their analysis by evaluating the impact of 

protection strategies on network performance by simply adapting one road 

segment at a time, as opposed to the impact that a suite of roadway adaptations 

may offer.Studies that focus on protection strategies and transportation equity 

consider the spatial distribution of benefits among different sociodemographic 
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and socioeconomic groups, but to the best of the author's knowledge, none of 

them aim to balance access between rural and urban communities.  

• Further, these studies use performance measures, including road volume and 

capacity, and not accessibility, and thus do not consider each resident’s basic 

need of travel during periods of extremes.  

• Most of the existing studies on optimal protection strategies do not provide 

information about the robustness of their strategies under other flood scenarios 

with different return periods. 

The following research questions are explored in Chapter 3 to address the 

knowledge gaps in the existing literature. 

• How will different storm surge scenarios impact parcel-level 

accessibility in the rural coastal regions? 

• What are optimal road protection strategies under different budget limits 

to address the following objectives? 

o Maintain accessibility of more parcels. 

o Improve the accessibility share of all block groups, considering 

all the same. 

o Improve the accessibility share of all block groups, considering 

different weights. 

o Balance accessibility of parcels in rural and urban block groups. 
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o Balance accessibility of parcels in vulnerable and non-

vulnerable block groups. 

• How robust are the protection strategies under different storm surge 

flooding scenarios? 

To address these research questions, a framework is developed that evaluates 

the benefits and burdens of road protection strategies under different flood scenarios 

on a rural community. The focus of this work is to consider transportation equity by 

finding the optimum protection strategies that distribute the benefits evenly among 

different groups of the community. This study also aims to evaluate the impact of 

combinations of roadway adaptations instead of studying the links individually and 

independently. For this reason, two different storm surge flooding scenarios (10-year 

and 100-year) are used and compared, and also different budget limits are considered. 

More details of the study are provided in Chapter 3. 

1.5 Research Question 3: Identification of Critical Road Segments that reduce 

uncertainty surrounding access to emergency services if monitored 

Road networks are a key infrastructure service for communities, designed to 

provide reliable access to opportunities and to critical services. During disasters and 

other emergency situations, roads are vital resources that play a significant role in 

rescue operations, evacuation, community recovery, and reconstruction. However, 

they often fail to maintain their original orientation due to being highly exposed to 

flood inundation, resulting in transportation network performance degradation. The 
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disruption of links is not equal in terms of their impact on network performance; the 

failure of certain links can be highly problematic in a resident’s accessibility, while 

others only result in longer trips for a few residents. A challenging issue for decision-

makers and stakeholders during periods of high tides and heavy precipitation is not 

knowing which roads will flood, and thus should be avoided. In rural areas, the sparse 

network can mean that alternative routes are considerably longer, and this can be 

particularly problematic for emergency vehicles which rely on speed.  

This work “flips” the threat-consequence modeling paradigm to investigate 

where the impacts of floods on a road network are most consequential (in terms of lack 

of access and longer routes) in order to inform where localized monitoring and finer-

scale, computationally intensive hydrodynamic modeling should take place. The 

project was born from the question “where should we improve the accuracy of our 

hydrodynamic modeling?” which requires better forensic investigation of localized 

water conveyance infrastructure (e.g., location of culverts), closer monitoring of actual 

hydraulic conditions, and finer-scale hydrodynamic modeling. Having better localized 

information about the potential flooding can help inform motorists and emergency 

managers with trip-planning. 

In order to better inform decision-makers, this work leverages the transportation 

network and evaluates the network-wide impacts of certain links failure based on 

accessibility changes. Then uses the results to identify the critical links to understand 

where more accurate flood data maximizes information about the consequences of 

floods. Previous studies have mostly focused on links with a higher chance of flooding 
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or the limited high traffic volume roads to identify the critical links for gathering more 

accurate data. The following gaps are identified: 

Existing approaches that aim to identify critical links simplify their analysis by 

evaluating the criticality of an individual link on a network at a time as opposed to the 

analysis of a combination of roadways. 

• Most studies that focus on candidate links for more accurate data 

consider a deterministic flood water amount and ignore the uncertainty 

of the flood depth. 

• To the author’s best knowledge, no previous work uses the 

consequences of flooding on transportation networks to identify the 

critical links for which more accurate hydraulic understanding is 

warranted. 

The following research questions are explored in Chapter 4 to address the 

knowledge gaps in the existing literature. 

• Can an accessibility analysis of a roadway network help to inform where 

the accuracy of hydrodynamic models should improve? 

• How do varying storm surges with different confidence limits impact 

motorists and emergency managers? 
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• Which roads are most critical to install flood monitoring equipment, so 

as to provide maximal information to the most local residents and 

emergency services? 

To address these research questions, a framework is developed that first 

determines the road links that may flood under a 1-year flood scenario under different 

uncertainty analyses (confidence limits). I then evaluate parcel-level access to 

understand the value of gathering accurate flood data. I also use different budget limits 

to evaluate the sensitivity of the results to the number of monitoring equipment. 

More details of the study are provided in Chapter 4. 
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2 Chapter 2: Roadway Flooding as a Bellwether for Household 

Retreat in Rural, Coastal Regions Vulnerable to Sea-level 

Rise 

2.1 Introduction 

While localized impacts will vary, the threat of coastal flooding is expected to 

increase due to periods of heavier precipitation and sea-level rise (SLR) (Azevedo de 

Almeida and Mostafavi, 2016; Fang et al., 2021). In the U.S., more than 164 million 

people (approximately 50% of the population) live or work in coastal counties (Moser 

et al., 2014), and more than 9.2 million people (approximately 3% of the population) 

reside in 100-year coastal floodplains (Crowell et al., 2010). However, this figure does 

not fully reflect the extent to which coastal flooding impacts Americans (and people 

throughout the world) now and into the future. Floods not only damage homes and 

businesses; they also can significantly impact networked infrastructure, including roads 

and pipelines. A disruption in one segment of a networked system can have ripple 

effects on the entire system. For example, an individual who resides outside a 

floodprone coastal area may rely on surface transportation with segments inside flood-

prone areas, forcing repetitive detours and longer travel times - if they can reach their 

destination at all. This is particularly concerning when considering a potential lack of 

access to emergency services. In some instances, repetitive loss of infrastructure may 

prove to be a bellwether for future residential inundation. 

To date, a significant portion of the research (and government planning 

documents) that explore how individuals and communities may be impacted by 
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repetitive coastal flooding and SLR focuses on where individuals reside (Cox et al., 

2019; Hauer et al., 2016; Pistrika & Jonkman, 2010), and if and when a resident would 

be forced to relocate under different climate scenarios. However, residential structures 

are only one of many types of infrastructure required for individuals to maintain 

residence; repetitive temporary loss or permanent loss of other critical infrastructures, 

such as roadways, electricity, and access to healthcare impact residents’ ability to 

recover after floods and are each likely to influence migration from coastal, flood-prone 

areas even if houses themselves are unaffected (Cole, 2008). This is a particular issue, 

given that more than 60,000 miles of roads in the U.S. are within FEMA's coastal flood 

zone (Douglass & Krolak, 2008). Furthermore, in rural areas, especially areas with 

highly fractal coastlines, large-scale coastline protection is infeasible. 

Coastal flooding and its impact on networked infrastructure could also create 

and exacerbate existing regional and economic inequalities. The transportation 

literature has consistently highlighted how low- and moderate-income communities, 

along with communities of color, consistently experience poorer access and other 

transportation quality metrics (Ermagun and Tilahun, 2020; Zuo et al., 2020). More 

recently, there has been an emphasis on evaluating the distributional impacts of 

disruptions and investments in transportation infrastructure (Bills and Walker, 2017; 

Kelobonye et al., 2019). It is reasonable to hypothesize in areas with coastal flooding 

that, repetitive loss of infrastructure services, such as transportation access, may induce 

retreat among the wealthy before their house is threatened and, conversely, limit 

economic and job opportunities among the most vulnerable who are unable to relocate 
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without assistance. Understanding which regions will be forced to adapt and when can 

support long-term regional planning and enable just transitions. 

The work in this paper specifically focuses on road infrastructure and the impact 

that SLR could have on local residents as a result of roadway flooding. However, the 

approach is flexible enough to consider any networked infrastructure (e.g., electricity 

or water) and the impacts that disruptions in one area of the network could pose on 

other areas. I create and implement a computational-geospatial framework that 

evaluates parcel-level accessibility to everyday amenities and facilities, including 

emergency services, and the impacts that SLR will have on that access. Accessibility, 

here, refers to the availability of a route connecting a specific location (e.g., a parcel) 

to a desired destination and, if a route exists, the travel distance of that route (Litman, 

2008). The focus of this work is on parcel-level impacts, as opposed to impacts at more 

aggregated geospatial levels such as census tracts - which is a more common approach 

due to previous computational limitations (Logan et al., 2019). This allows us to 

pinpoint which parcels may experience the impacts of flooding, regardless of whether 

the structure on the parcel floods. It also supports questions about when limited 

accessibility becomes a bellwether for future household inundation. The framework is 

illustrated using Dorchester County, Maryland. Dorchester County has 1,700 miles of 

shoreline and is highly vulnerable to SLR (Cole, 2008). It is expected to lose 

approximately 60% of its landmass by 2100 (Chanse, 2016). 

This work expands upon the literature in three ways. First, it provides a 

framework for quantifying parcel-level accessibility to critical facilities (here, 
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emergency services, grocery stores, and schools) for different SLR scenarios. Second, 

it identifies when parcels will be inundated by SLR under different climate scenarios 

in order to quantify the warning time that residents have between accessibility loss and 

parcel inundation. Third, this approach is demonstrated using a realistic case study in 

Dorchester County, MD. 

2.2 Literature review 

2.2.1 Transportation Resilience to Flooding 

Over the past two decades, in both the literature and in practice, there has been 

a shift in emphasis from hazard avoidance to impact reduction and whole-community 

resilience (S. Cutter, 2016; Sharifi, 2016). The idea is that it is both too costly and, in 

many ways, impossible to avert impacts from all possible threats, but that there are 

ways to empower communities to withstand and overcome them. To achieve this ideal, 

communities must act as a system to manage and minimize risks and improve their 

ability to recover (Gillespie-Marthaler et al., 2019). Policymakers, too, have adopted 

this approach, and many have turned their attention to efforts to strengthen 

communities against various types of disasters (Reiner & McElvaney, 2017). However, 

to improve resilience, I need to measure it (S. L. Cutter et al., 2010). At present, efforts 

to measure community resilience are inconsistent and differ on what should be 

measured (Cutter, 2014). The existing studies can be divided into two camps: one that 

focuses on a region’s physical assets, such as critical infrastructure and its ability to 

operate while resisting threats, and one that focuses on social factors that impact 
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community recovery capacity (Bruneau et al., 2003; S. L. Cutter, 2014; Haimes, 2002; 

Hosseini Nourzad Seyed Hossein & Pradhan Anu, 2016b). The methodology presented 

in this work makes progress in bridging this divide by identifying the parcels (and thus 

residents) who are most affected by flooding and infrastructure disruption. While 

resilience indicators are usually provided at a community-level resolution, my work 

focuses on much more granular scales. 

There are multiple ways researchers have quantified transportation network 

resilience, including reliability, robustness, and vulnerability measures (Jenelius & 

Mattsson, 2012; Nagurney & Qiang, 2012; Vromans et al., 2006). These metrics tend 

to focus on the functionality of the network and not on its users. Accessibility and 

mobility are two additional concepts used in transportation planning to evaluate 

performance changes in transportation systems and the impact on members of the 

community (Ross, 1999). While not usually discussed in a disaster context, both can 

indicate resilience from the perspective of individuals. Accessibility describes an 

ability to reach a destination. When a disruption occurs on a road network, such as one 

or more road closures, residents could lose their ability to access particular destinations 

such as workplaces or grocery stores if no alternative route exists (Taylor & Susilawati, 

2012). This can often be the case in rural areas which may have limited alternative 

routing options. If at least one route to the destination remains viable, the travel distance 

may be longer. Taylor and Susilawati (2012) explored this concept using an inverse of 

accessibility (remoteness) metric in their analysis to capture the impact of link failures 

on rural populations’ ability to access services and facilities. On the other hand, 
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mobility describes the physical movement and is usually measured in terms of distance 

or speed of travel from an origin to a destination, and often includes the impacts of 

congestion due to vehicle rerouting (Litman, 2008). In some instances, it is possible 

that some destinations are still accessible despite road disruptions, though the distances 

to those destinations may be longer due to detours and the time to those destinations is 

longer due to congestion.  

Over the past decade, more emphasis has been placed on the role of flooding 

on the functionality of transportation infrastructure. Flooding is increasingly 

problematic on coastal roads both in the U.S. and globally (Douglass et al., 2014). 

Flooding can originate in multiple ways, including pluvial and fluvial sources, but 

increasingly, tidal nuisance flooding is an additional stressor, and its frequency will 

increase significantly by the end of the century. Jacobs et al. (2018) find that tidal 

nuisance flooding threatens over 7,500 miles of roadways across the East Coast of the 

U.S. and likely causes 100 million vehicle hours of delay annually. SLR also increases 

the mean sea-level height upon which surge builds, meaning storm surge heights will 

increase and penetrate farther inland in the future (Wu et al., 2002). 

A suite of work, including Castrucci and Tahvildari (2018, 2017), Jacobs et al. 

(2018), Ju et al. (2019), and Sadler et al. (2017), evaluates what will be inundated by 

floods by overlaying flood inundation with the geo-positioning of infrastructure. For 

example, Sadler et al. (2017) assess the percentage of the roadways with a high 

likelihood of inundation in the Hampton Roads area of Virginia under SLR and storm 

surge. Ju et al. (2019) quantify the percentage of the population, lifeline infrastructures 
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(including roads), emergency response assets, and developed land that are exposed to 

different flood scenarios in the San Francisco Bay Area. Jacobs et al. (2018) consider 

both spatial and temporal inundation of road assets for the entire eastern seaboard of 

the U.S. resulting from nuisance flooding and combines these inundation metrics with 

current roadway demand to equate future impacts. 

Many approaches additionally consider networked impacts of flooding and how 

users of the system could be impacted in terms of longer travel times or inability to 

reach a destination. These approaches are usually conducted at spatially aggregated 

levels and not for individual parcels. For example, Sohn (2006) calculates the 

accessibility score for each county in Maryland as a function of its population, the 

shortest travel distance, and the average traffic volume between the county and all other 

counties both under normal conditions and a 100-year flood. However, this analysis 

evaluates county-level impacts and only considers state and federal roads, meaning 

adaptation (e.g., traffic diversion) that uses local roads is not considered. Lu and Peng 

(2011) identify the most vulnerable traffic analysis zones in Miami, Florida, for two 

different SLR scenarios, as measured by the travel time from one zone to another after 

inundation relative to before. This measure is then summed over all zones and weighted 

by population. This work considers the entire road network, though individual impacts 

are not evaluated. Lu et al. (2015) expand on their 2011 work to include a more 

sophisticated gravity model that considers how vehicles will be rerouted to avoid water 

and thus compute the impact on traffic and travel delays. Kermanshah and Derrible 

(2017) is similar in that it focuses on the travel between urban neighborhoods due to 
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floods but also consider how topological properties of the road network evolve as a 

result of flooding. 

Andersson and Stalhut (2014), Coles et al. (2017), Fereshtehpour et al. (2018), 

and Green et al. (2017) are specific in that they consider how floods impact emergency 

response, though they generally focus on a limited number of origins and destinations. 

For example, Fereshtepour et al. (2018) compute how travel times would increase 

between a fire station and six health care facilities in Lower Manhattan, NY, for 100-

year coastal and pluvial flood events, though they do not consider how these floods 

would impact congestion - a potential shortcoming in a heavily urbanized region. 

Similarly, Green et al. (2017) evaluate the accessibility of emergency responders during 

different flood scenarios in Leicester, UK. They identify the percentage of the region 

that is accessible to ambulance, fire, and rescue service stations within 8 and 10 minutes 

(legislative mandates for emergency services) for pluvial and fluvial floods, though do 

not evaluate the impact of floods on residents. 

In some of the most refined work yet, Sun et al. (2020), Hummel et al. (2020), 

and Sun et al. (2021) go beyond examining a few origins and destinations to evaluate 

how flooding and localized flood protections could impact commuters in the San 

Francisco Bay. To do this, they merge high-resolution hydrodynamic models of 

inundation with an agent-based transportation simulation model to compute traffic 

delays for a deterministic future SLR scenario. They, however, consider only a small 

fraction of commuters due to computational constraints (though road capacity is 

proportionally constrained) and the works assume user equilibrium is achieved, though 



 

24 

 

this may not occur during times of disruption. Thus, some travel time estimates could 

be underpredictions. 

2.2.2 SLR and Residential Adaptation 

As property damage from coastal flooding continues to rise, finding tolerable 

and cost-effective strategies that mitigate or prevent these losses completely is 

becoming a key priority for communities (Highfield et al., 2014; Warren-Myers et al., 

2018). In practice, the dominant strategy is to identify and implement hardening 

strategies that enable individuals to remain in their homes. This includes shoreline 

protection and beach nourishment, seawalls and levees, and structural approaches that 

raise or armor a house (Longenecker, 2019; Peacock, 2003; Rao et al., 2015). While 

many of the strategies are evaluated in aggregate or at community-level, such as 

acquiring and conserving open space (S. D. Brody et al., 2017; Calil et al., 2015), and 

levees (Longenecker, 2019), there is growing recognition of the importance of parcel-

level evaluation. For example, Andreucci and Aktas (2017) assessed the vulnerability 

of coastal communities to the impacts of SLR in Connecticut. Their analysis revealed 

important information about efficient ways to protect homeowners from the adverse 

impacts of floods. This specific information can easily be masked by aggregated 

analyses at the community-level (Highfield & Brody, 2013). Brody et al. (2014) 

assessed the impact of adjacent land use and land cover on flood damages recorded on 

7,900 properties in Texas. The influence of proximity and built environment factors 

can be more thoroughly assessed in parcel-level analysis. 
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The unavoidable impacts of climate change and SLR on coastal communities 

will demand adding retreat to the adaptation strategies that up to now focus more on 

structural protection and recovery. Retreat allows residents to build new beginnings in 

safer places and helps create public amenities by removing homes in flood-prone areas 

and restoring the land for natural floodplain uses (Freudenberg et al., 2016). Despite 

the importance of this adaptation strategy, few studies have focused on retreat decisions 

(Hecht & Kirshen, 2019). Kirshen et al. (2008) find that it is economically 

advantageous to use structural protections, such as seawalls, in highly developed areas. 

Less structural approaches, such as retreat and floodproofing, can be more cost-

effective and flexible in responding to uncertain climatic changes in more rural areas, 

but uncertainty in the expected rate of SLR makes planning difficult. They also note 

that retreat is an expensive strategy, particularly in areas with high-value properties, 

which makes it less desirable unless substantial flooding has occurred (Kirshen et al., 

2008). Bier et al. (2020) argue that the government could encourage residents at-risk 

of SLR inundation to relocate before flooding happens using subsidies. However, there 

are many important factors other than economic costs, such as losses in social networks, 

access to healthcare, employment, and physical and mental health affecting the 

relocation (McMichael et al., 2012). Song and Peng (2017) study the impact of people’s 

risk perception, hazard experience, threat, and adaptation appraisal on households' 

likelihood to relocate away from low-lying coastal areas threatened by SLR. Their 

results show that households who believe SLR is happening and have experienced 

inundation due to sea-level changes have a higher willingness to relocate. Households 
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with existing adaptations such as seawalls and flood insurance are reluctant to relocate. 

At present, there is not a body of literature that examines how retreat intersects with 

issues related to transportation access or failures in other infrastructure services that 

support parcel inhabitation. 

2.3 Methodology 

The work presented in this section describes the framework for quantifying 

parcel-level accessibility to essential facilities under different flooding conditions, with 

a specific focus on SLR. An overview of the approach is presented in Figure 2.1. For 

each flood scenario discussed below, I overlay its water depth for the entire region onto 

the road network to identify which links (i.e., roads) within the network are inundated. 

I then evaluate whether residents at each parcel are able to reach essential destinations 

(specifically fire stations, grocery stores, and schools) during each scenario and, if so, 

the distance to the closest facility in each class. This work additionally considers (1) 

when residents lose accessibility to critical facilities due to SLR under different climate 

scenarios and (2) when the centroid of a parcel will become inundated by SLR and 

compares this to when the resident at that parcel will lose transportation access. This 

work is conducted in a geospatial computational framework designed and built in the 

computer language R.  
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Figure 2.1. Framework 

2.3.1 SLR Inundation Scenarios 

We consider the impact of relative sea-level rise (RSLR) - or localized sea-level 

rise that additionally considers changes in land movement and ocean circulation 

patterns - on accessibility in the region. The computational platform is flexible enough 

to consider alternative or additional sources of flooding, such as storm surge. Because 

ocean rise is not expected to be uniform across the U.S. and the world (Boesch et al., 

2013), I rely on recent RSLR projections developed by the State in partnership with the 

University of Maryland Center for Environmental Science. This work offers 

probabilistic projections through 2150 by downscaling global SLR projections to 

localized coastal areas in Maryland (Boesch et al., 2018). See Table 2.1. SLR scenarios 

used in the analysis.. Multiple states, including California and New Hampshire, have 

put forth similar studies (New Hampshire Coastal Risk and Hazards Commission, 

2016; State of California Sea-Level Rise Guidance, 2018). The analysis includes 

exceedance probabilities for the central probabilistic estimate (i.e., 50%), the most 

likely range (i.e., 17% - 83%), and 1% and 5% levels for the years 2030, 2050, 2080, 
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and 2100. For the years 2030 and 2050, there is one estimate of RSLR, but for the years 

2080 and 2100, the report considers three climate change scenarios (Representative 

Concentration Pathways (RCP) 2.6, 4.5, and 8.5). I exclude the RCP 2.6 scenario 

because of the general consensus of its improbability (Mora et al., 2013). While some 

argue that RCP 8.5 is unrealistically conservative, I include it to show the potential 

worst-case scenario (Hausfather & Peters, 2020). 

Multiple tidal datums exist. Some organizations, including NOAA, tend to use 

the Mean Higher High Water (MHHW) datum when reporting on RSLR (Zervas, 

2009). MHHW represents the daily average of the higher high-water height. It is 

possible that areas that are inundated during the worst high tide are not flooded during 

the rest of the day. To better capture sustained inundation, I use the Mean Sea Level 

(MSL) datum, which presumes that an area that is inundated under MSL conditions is 

inundated for at least (approximately) half of the day. To develop SLR inundation maps 

for my case study region, RSLR projections (e.g., 0.4 m) for the given years and 

exceedance probabilities under consideration are added to the mean sea level relative 

to the baseline of the year 2000, consistent with Boesch et al. (2018). 

Table 2.1. SLR scenarios used in the analysis. 

Year RCP Exceedance probabilities considered  

2030 - 1%, 5%, and "likely range" (17% and 83%) 

2050 - 1%, 5%, and "likely range" (17% and 83%) 

2080 
4.5 

1%,5%, and "likely range" (17% and 83%) 
8.5 

2100 
4.5 

1%, 5%, and "likely range" (17% and 83%) 
8.5 

 



 

29 

 

To understand which roads are inundated, this study overlays water levels raster 

files with a Digital Elevation Model (DEM) of the study region developed using USGS 

LiDAR data to compute flood depth (“Maryland’s GIS Data Catalog,” 2019). More 

specially, I use a “bathtub” approach to model the impact of RSLR, which assumes that 

all inland locations with elevations less than the RSLR depth are inundated by water. 

The hydraulic connectivity is not considered but could be in future work. This is 

hydrodynamically reasonable in my study region, given that the region is a large 

estuary with a shallow slope coastline and numerous tidally influenced streams, though 

it could result in unrealistic flooding in low-lying areas that are not tidally-influenced 

or directly impacted by RSLR. This limitation could be addressed in future work with 

the incorporation of hydrodynamic model results to calculate water depths and 

delineate inundation areas. Once the inundation data is overlaid onto the region, the 

maximum inundation depth for each road segment is computed, along with the depth 

of the water at the centroid of each parcel. (We assume that residences are at the 

centroid of each parcel and that they are at ground elevation, but this could be easily 

modified with additional data.) This approach assumes that even if a narrow section of 

the road is inundated by a depth above the prescribed depth parameter (described 

below), the road is impassable. This approach is completed using the ‘raster’ package 

(Hijmans et al., 2021) in the computing language R (R Core Team, 2019). This enables 

faster accessibility analysis later on. 
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2.3.2 Road Network 

The transportation network is built in silico using TIGER/Line Shapefiles road 

network data from the United States Census Bureau (U.S. Census Bureau, 2017), which 

includes all the federal, state, and local roads in the U.S. It also provides information 

about the road function and detailed road geometry. This data was merged with state 

LiDAR data on centerline roadway elevation. Because I specifically consider 

household-level accessibility to local critical facilities, I assume the parcel to be the 

origin and the facilities (grocery stores, schools, and fire stations) to be the destinations. 

It is straightforward to consider additional destinations. For both origins and 

destinations, the entrance to the parcel is found by identifying the location on the road 

network that minimizes the distance between the center of the parcel and the road. 

Travel restrictions on roads due to flooding have been addressed in previous 

studies using a binary variable - flooded or not - which means any road link located in 

a flooded area is restricted (Sohn, 2006; Suarez et al., 2005). Some studies have added 

a flood depth threshold, whereby travel on the road is restricted once the water level is 

above a prescribed threshold (Fereshtehpour Mohammad et al., 2018; Green et al., 

2017; Jotshi et al., 2009). I use this approach and more details are provided 

momentarily. Some studies additionally consider speed reductions when the water 

depth is low enough for a vehicle to traverse the road segment, but the water slows 

travel (Jotshi et al., 2009; Pregnolato et al., 2017). While I recognize that speed 

reduction for flood levels in a certain range is potentially important, I exclude speed 
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reduction factors for now. My models show that impassable roadways have a much 

more significant impact on accessibility than speed reductions. 

Many studies have evaluated what are “safe” thresholds for traversing flooded 

roads, while acknowledging that no threshold other than 0 cm, is truly safe. 

SmartDriving – a U.K. driving school - recommends motorists not traverse roads with 

a water depth greater than 15 cm, as it could result in a loss of vehicle control 

(SmartDriving, 2021). Fire trucks, on the other hand, have a tolerance for traversing at 

most 25 cm of floodwaters depth due to their size, weight, and power (Dawson et al., 

2011b; Green et al., 2017; Pregnolato et al., 2017). (This is not to say it is recommended 

that fire trucks and cars traverse flooded roads. For example, conversations with local 

fire and rescue squadrons report significant vehicle corrosion due to salt water.) For the 

purposes of this study, I use two different thresholds: roads with flood depth greater 

than 15 cm are considered closed when considering the accessibility to critical facilities 

such as grocery stores and schools; roads with flood water greater than 25 cm are 

considered closed when considering the accessibility to emergency services such as fire 

stations and hospitals. 

Some studies that explore the impact of floods on roadways additionally 

consider how road demand and traffic congestion might change (e.g., de Oliveira et al., 

2014); Feng et al., 2019). I do not consider this in my analysis because my study region 

is extremely rural, and congestion is not a significant concern - accessibility is. 

However, this implies that my metric that measures changes in travel distance may 
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underestimate the true impact due to longer travel times from road flooding and 

congestion. 

Once the network is built that includes road segments closed due to 

inundation, I apply a shortest path algorithm (i.e., Dijkstra's algorithm) to establish 

whether a parcel is able to reach a particular destination and, if so, the distance that 

is required. This is then compared to what the distance would have been without 

flooding. Dijkstra’s algorithm is a widely used method for identifying shortest paths 

and is also computationally efficient (Sniedovich, 2010). This is repeated using the 

R packages ‘shp2graph’(B. Lu & Lu, 2018) and ‘igraph’ ( v1.2.6; Csardi and 

Nepusz, 2006) for all inundation scenarios under consideration. 

2.4 Study area 

Our study area focuses on Dorchester County, Maryland, and small portions of 

some neighboring counties to capture critical facilities that residents in Dorchester 

County may rely on (Figure 2.2). This area, along Maryland’s Eastern Shore, is 

extremely low-lying and, as a result, experiences repetitive flooding that frequently 

isolates residents and forces them to plan trips in advance so as not to be stranded by 

rising tides. It has several long, narrow peninsulas and numerous creeks, streams, and 

man-made tidally influenced “tax ditches” dug mostly by enslaved people. In many 

places, roads are paved dikes that cross through tidal marshes (Cole, 2008). The county 

is rural with a small urban center in the City of Cambridge. As of 2010, the county’s 

population was 32,623. The population primarily relies on private vehicles. A public 
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transit operator (Delmarva Community Transit) exists in the region, though service is 

infrequent and the routes primarily connect Cambridge to towns in adjacent counties.  

 
Figure 2.2. Case study location (ESRI, 2021) 

SLR poses a significant risk to Dorchester County’s people and infrastructure, 

and its impacts are already apparent in shoreline erosion and the increased frequency 

of “sunny day” flooding. The county’s land area is expected to shrink in half by the 

turn of the century due to SLR (Cole, 2008). Limited economic and political resources 

constrain Dorchester County’s options for adapting to SLR (Miller Hesed & Paolisso, 

2015), and state and local officials and residents must make challenging decisions about 

what to protect and what to abandon. While the ethics of this point are debatable, the 

cost to maintain many roads and the culverts and ditches that drain them will soon 

become more expensive than the value of the properties that they serve (Cole, 2008). 

Table 2.2. Projected relative mean SLR estimates above 2000 levels for Dorchester 

County based on the Cambridge, MD tide gauge station. Columns show different 

exceedance probabilities, and rows correspond to different years and emissions 

(Boesch et al., 2018). presents the mean RSLR estimates for four exceedance 
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probability and two climate scenarios for Dorchester County. Under the RCP 4.5 

scenario, the most likely range of relative mean SLR is between 0.43 m and 0.82 m by 

2080 and between 0.55 m and 1.01 m by 2100. Under the RCP 8.5 scenario, the 

numbers shift to between 0.52 m and 0.98 m by 2080 and between 0.67 m and 1.34 m 

by 2100. 

Table 2.2. Projected relative mean SLR estimates above 2000 levels for Dorchester County 

based on the Cambridge, MD tide gauge station. Columns show different exceedance probabilities, and 

rows correspond to different years and emissions (Boesch et al., 2018). 

Year Emissions 

Pathway 

1% probability 

RSLR meets or 

exceeds (m)1: 

5% probability 

RSLR meets or 

exceeds (m): 

Likely probability 

range (i.e., 17% - 

83%) RSLR meets 

or exceeds (m): 

2030 N/A 0.40 0.34 0.12 - 0.27 

2050 N/A 0.73 0.64 0.27 - 0.52 

2080 RCP 4.5 1.28 1.01 0.43 - 0.82 

RCP 8.5 1.46 1.16 0.52 - 0.98 

2100 RCP 4.5 1.77 1.34 0.55 - 1.01 

RCP 8.5 2.16 1.65 0.67 - 1.34 

 

We include critical facilities in neighboring counties that are within a 15-minute 

drive of at least one resident in Dorchester County to more realistically capture the 

critical facilities that residents may rely on. I then evaluate whether residents at each 

parcel in Dorchester County are able to access at least one facility among each class of 

critical facilities (i.e., fire stations, grocery stores, and schools) and if so, I compute the 

network distance between the parcel and the closest facility. As an example, I evaluate 

 

1 There is a 1% chance that sea-level rise would exceed the corresponding amount for each S 

LR scenario (e.g., there is a 1% chance SLR would exceed 0.40 m in 2030).  



 

35 

 

whether routes exist between a given parcel and all grocery stores, and if at least one 

route does, I identify the grocery store that is closest. As a result of inundation and road 

configuration, that grocery store may not be the shortest Euclidean distance. While this 

work only considers accessibility to fire stations, grocery stores, and schools, other key 

public accommodations, such as hospitals, pharmacies, and important civic buildings 

could additionally be considered. 

2.5 Results 

The results are organized as followed: I first show the results for the scenario 

with no inundation. This forms the model baseline. I then present results for potential 

accessibility loss for possible climate futures. Finally, I compare these results to when 

parcel inundation is expected to evaluate the potential for forewarning due to 

accessibility reduction. 

2.5.1  Baseline scenario 

Figure 2.3 shows the distance required by residents, under dry conditions, to 

reach their closest (a) fire station, (b) grocery store, and (c) school. No resident lacks 

accessibility to any class of critical facility. Each box represents one parcel, and the 

darker the green, the closer the parcel is to the critical facility. Conversely, the orange 

parcels are further from their closest facility. These figures demonstrate which residents 

are access-poor for each class of service. The southern part of the county is more rural 

and isolated than other parts, and thus residents must travel greater distances to reach 

their closest fire station and school in particular - sometimes 30 km or more. The ogive 
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(i.e., the empirical distribution function) in Figure 2.4 shows the distribution of the 

distance that residents must travel to reach the closest critical facility in each class. This 

plot indicates that nearly 90% of the residents live within 10 km of fire stations, but 

this number decreases to 80% for schools and grocery stores. 

 

Figure 2.3. Distance from residents’ parcels to their closest (a) fire station, (b) grocery store, 

and (c) school, respectively, assuming 2000 mean sea-level. Between 2000 and 2020, the mean sea-

level has risen approximately 0.5 feet in this region.  
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Figure 2.4. ECDF of distance from residents’ parcels to the closest critical facilities for each 

class assuming current mean sea-level. 

2.5.2  RSLR 

We begin the discussion by examining the fraction of residents that lose 

accessibility during the 66% likely range of RSLR for different climate scenarios 

(Table 2.3). By 2030, between 1% and 2% of parcels are expected to lose accessibility 

to any fire station during periods of mean sea level and greater (even when allowing 

trucks to traverse 25 cm of water, as opposed to 15 cm as in the other classes of critical 

services). Between 1% and 4% of parcels are expected to lose accessibility to any 

grocery store and between 1% and 7% of parcels are expected to lose accessibility to 

any school. (We do acknowledge that students are assigned to a specific, grade-

appropriate school so this figure may be less relevant, though important civic events, 
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such as voting, typically occur at schools). Because 2030 is relatively soon compared 

to the other years under consideration and thus, uncertainty surrounding RSLR is less, 

the range of the percentage of people who lose access in the 66% likely range is fairly 

narrow (a few percentage points). Most people who lose access to one critical class of 

services lose access to others, though this is not universally true and depends on where 

the parcel is located relative to these services. 

Table 2.3. The percentage of parcels in Dorchester County, MD, that lose accessibility to the 

three classes of critical facilities under 66% likely range of RSLR for different climate scenarios. This 

is reported as a range with the lower end representing the 83% exceedance probability and the upper 

end representing the 17% exceedance probability. 

Year Emissions Pathway 66% likely range 

Fire stations Grocery stores Schools 

2030 N/A 1% – 2% 1% – 4% 1% – 7% 

2050 N/A 2% – 12% 4% – 13% 7% – 15% 

2080 
RCP 4.5 7% – 18% 10% – 19% 10% – 20% 

RCP 8.5 12% – 20% 13% – 20% 15% – 21% 

2100 
RCP 4.5 12% – 20% 14% – 21% 16% – 21% 

RCP 8.5 14% – 22% 18% – 23% 19% – 23% 

 

As time progresses, under all emissions pathways and for all classes of critical facilities, 

the fraction of parcels that lose accessibility increases. By 2050, the percentage of 

parcels that are expected to lose access to any fire station is least, in part because there 

are more fire stations than other critical services, and in part because the threshold 

through which vehicles are allowed to traverse flood waters is higher for this class of 

services. The range of the percentage of people to lose access to critical facilities in 
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2050 is generally wider compared to 2030, mostly due to uncertainty in RSLR. This 

could make local planning for SLR challenging, requiring a greater consensus for 

which exceedance probability is selected and used for planning. 

By 2080, the emissions pathway that is selected does have an impact - though 

not always a substantial one - on the expected outcome. The exceedance level that is 

selected is more consequential. Consider access to any fire station by 2080. Between 

7% and 18% of residents are expected to lose accessibility in the 66% most likely range 

for RCP 4.5 while between 12% and 20% are expected to lose accessibility for RCP 

8.5. There is significant overlap between these two climate scenarios, especially at the 

end of the more consequential exceedance probability (the 17%). I see similar trends 

for other classes of critical services. 

Figure 2.5 shows similar statistics to those shown in Table 2.3, though for a 

greater range of exceedance probabilities. Each vertical bar represents a different year 

in the future, except those two bars are shown for 2080 and 2100 to represent the two 

potential emissions pathways under consideration. The red horizontal line represents 

the 1% exceedance probability (worst case). The dark green bar represents the 83% 

exceedance probability, and the orange bar represents the 17% exceedance probability; 

together, they represent the 66% likely range. The reduction in accessibility is 

significant between the 17% and 1% exceedance probabilities for all years, classes of 

critical facilities, and emissions scenarios. For example, in 2100 for RCP 4.5, 20% of 

parcels are expected to lose access to a fire station for the 17% exceedance probability 

compared to 25% for the 1% exceedance probability - a difference of about 5% or 934 
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parcels. This difference jumps to about 7% or 1,264 parcels for RCP 8.5 in 2100. (Note 

that the difference between the 50% and 17% exceedance probabilities, a probability 

range that is near twice the range of 1% to 17%, is about 3% of parcels in both cases.) 

In both 2080 and 2100, for all classes of critical services, there is significant overlap 

between the emissions scenarios in terms of loss of accessibility. Thus, it is not the 

emissions scenarios that are driving the variability in possible outcomes in this area; it 

is the exceedance probabilities. (It is very possible that this is not the case in other 

regions of the world.) 

 

Figure 2.5. Distribution of accessibility loss under different RSLR scenarios to (a) fire 

stations, (b) grocery stores, and (c) schools. Note that these are not 95% confidence intervals, but 

rather distributions with key exceedance probabilities identified. 

The maps in Figure 2.6 show the spatial patterns of accessibility loss and travel 

distance change to fire station for the top end of the most likely range (the 17% 

exceedance probability) for multiple years in the future. Again, each colored square 

represents a parcel, and the parcels in red lose accessibility to any fire station. The 

parcels colored in gray represent parcels that are unaffected by RSLR and have no 

change in their accessibility. Parcels colored in dark green have minor increases in the 
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distance they would need to travel to reach a fire station (< 1 km) and whereas parcels 

colored in orange must travel a significant additional distance (10-20 km). Residents 

living in the peninsulas in the south and west of the county are particularly access-poor, 

and many parcels will lose consistent access to any fire station by 2030 (assuming that 

they have not already). This is, in part, driven by a dependence on a few critical but 

low-lying roads with no alternative routing options. 
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Figure 2.6. Residents’ accessibility to their nearest fire stations under different RSLR 

scenarios using the 17% exceedance probability. 

By 2050 of the 3,160 parcels whose accessibility to a fire station is affected by 

SLR, most will lose access. Specifically, 2,164 of the 18,484 total parcels in Dorchester 
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County (or 11.7% of existing parcels) lose access and 996 (or 5.4%) maintain access 

but require longer travel distances. Residents of parcels who need to travel further to 

reach a fire station generally reside along the Choptank River in the northeast of the 

county or along the Nanticoke River in the east of the county. By 2080, many parcels 

along tributaries in the center of the county will require longer distances to reach a fire 

station and the trend continues through 2100. The majority of parcels which are 

expected to experience longer travel distance due to inundation are projected to find 

that the critical facilities that were closest to them without inundation continue to be 

the closest; it will simply take longer to get to that location. 

Table 2.4 shows the average difference between the travel distance to a fire 

station without inundation and with various RSLR scenarios; the average is over all 

residents who maintain access to a fire station. The mean difference is relatively small 

for all RSLR scenarios for a few reasons. First, most parcels are inland, and thus are 

not impacted by RSLR. Second, of the parcels which will require longer travel to reach 

a fire station, the additional travel is usually minimal (the green and yellow squares in 

Figure 2.6). Third, most parcels that are impacted by RSLR lose access to a fire station 

as opposed to witnessing an increase in travel distance, and these parcels are excluded 

from the averaging. Figure 2.7 presents selected violin plots that show the distribution 

over the change in travel distances to a fire station for the residents of parcels who are 

forced to be rerouted due to inundation (i.e., the green, yellow, and orange parcels in 

Figure 2.6) By 2030, for the 1% exceedance probability, although very few parcels are 

required to take longer routes (1,176 parcels), the change in travel distance of these 
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routes’ ranges uniformly between a value close to 0 km and 34 km. For the 17% 

exceedance probability, fewer parcels are forced to find alternative routes (677 parcels) 

and those parcels are required to travel less than 5.3 km more. By 2050 for the 1% 

exceedance probability, the vast majority of the parcels that were forced to find an 

alternative route in 2030 will have lost access to a fire station altogether. Thus, the 

range of the density plot is much shorter (about 14 km) with the bulk of the distance 

change hovering between 0 and 5 km. 

Table 2.4. Average difference (in km) between distance from each parcel to its nearest fire 

station under no inundation scenario and different RSLR scenarios (for parcels that do not lose 

accessibility). 

Year Emissions 

Pathway 

Exceedance Probability 

1% 5% 50% 17% 83% 

2030 N/A 1.04  1.00 0.03 0.06 0.00 

2050 N/A 0.20 0.16 1.04 0.15 0.06 

2080 RCP 4.5 0.36 0.21 0.16 0.24 1.05 

RCP 8.5 0.34 0.23 0.20 0.21 0.15 

2100 RCP 4.5 0.33 0.33 0.26 0.24 0.16 

RCP 8.5 0.36 0.35 0.21 0.33 0.19 
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Figure 2.7. Distribution of changes in travel distance to the closest fire station for parcels’ 

whose accessibility is impacted by SLR. This is shown for the 1% and 17% exceedance probabilities 

for 2030, 2050, and 2080. 

Here, I reframe the question to ask in which year is a parcel expected to lose 

accessibility given the various RSLR scenarios. Understanding this spatial distribution 

can enable better temporal planning by local and state governments. To answer this 

question, I assume a linear increase in RSLR between the years for which I have 

estimates (Note: MD provides estimates to 2150). Figure 2.8 shows this spatial 

distribution for accessibility loss to fire stations for the 17% exceedance probability 
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under an RCP 4.5 change scenario. The parcels colored in gray are expected to continue 

to have access to fire stations through 2150. The red parcels lose accessibility before 

2030 and the blue parcels lose accessibility sometime between 2100 and 2150 

(assuming no significant adaptation measures are taken). As mentioned previously, 

residents in the peninsulas in the south and west are particularly access-poor, and those 

parcels are expected to lose consistent accessibility to any fire station by 2030 due to 

their dependency on a few low-lying roads with no alternative routing options. 

 
Figure 2.8. Spatial and temporal distribution of accessibility loss to fire stations for an 17% 

exceedance probability under an RCP 4.5 change scenario. 

2.5.3 Parcel inundation 

While not central to this research, I additionally evaluate the year in which 

parcel inundation is expected for different climate scenarios. This allows us to later 

evaluate the relationship among accessibility loss, changes in travel distances, and 
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parcel inundation. Figure 2.9 shows the year in which parcel inundation is expected for 

each parcel using the 17% exceedance probability and RCP 4.5 scenario. As expected, 

parcels closer to the water are expected to have their centroids be inundated sooner than 

parcels further inland. 

 
Figure 2.9. Spatial and temporal distribution of parcel inundation for the 17% exceedance 

probability under an RCP 4.5 change scenario. 

2.5.4 Relationship between parcel inundation and accessibility loss 

In addition to examining when parcels lose consistent access to critical services, 

I can compare this to when parcels themselves become inundated from SLR. The idea 

here is to see, of the parcels that will be inundated, the degree of forewarning that they 

receive from accessibility issues. If, in practice, a lack of accessibility was to influence 

retreat decisions in some regions, it may signal retreat sooner than what is expected 

based on parcel inundation alone. For obvious reasons, numerous confounding factors, 
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from income and demographics, to place attachment and policy will influence retreat 

decisions (Binder & Greer, 2016). Comparing roadway and parcel inundation can also 

inform decisions about SLR adaptation measures such as elevating homes, raising 

roadway segments, or retreat. For instance, if both roadways and parcels in an area are 

subject to inundation, retreat may make sense. 

We first look at the intersection of the parcels that are inundated by SLR and 

the parcels that lack accessibility to any fire station for the four candidate years (Table 

2.5). Initially, the majority of parcels that lose accessibility to a fire station do not 

additionally experience parcel inundation. By 2030, using the 1% exceedance 

probability, only 11% of the parcels that lose accessibility additionally experience 

parcel inundation. The most likely range would expect that about 5% of parcels that 

lose access to a fire station are also inundated by SLR - representing only 0.16%-0.21% 

or 29-39 of all parcels. However, as time passes, this fraction increases. By 2050, of 

the 4%-11.7% of parcels (or 744 to 2,164 parcels) that lose access to a fire station in 

the most likely probabilistic range, between 5% and 35% of those parcels will 

additionally be inundated. By 2080, more than 50% of all parcels that lose accessibility 

under all exceedance probabilities except for the 83% exceedance probability are 

additionally inundated. 

Table 2.5. Of parcels that lose access to a fire station, the fractions that are also inundated. 

Year Emissions 

Pathway 

Exceedance Probabilities 

1% 5% 17% 50% 83% 

2030 N/A 11% 7% 5% 5% 5% 
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2050 N/A 58% 51% 35% 11% 5% 

2080 
RCP 4.5 87% 76% 66% 49% 13% 

RCP 8.5 90% 82% 75% 58% 35% 

2100 
RCP 4.5 89% 88% 81% 63% 40% 

RCP 8.5 83% 88% 88% 75% 53% 

It is important to additionally understand for parcels that are inundated, how 

many years prior to inundation that they lose accessibility. This is shown in Figure 2.10 

for the 17% exceedance probability and RCP 4.5. Accessibility loss to any fire station 

is considered. Figure 2.10(a) shows the distribution by decade of the forewarning that 

comes from losing accessibility. 41% of parcels that are expected to be inundated by 

2150 do not experience accessibility loss prior to initial inundation. In the vast majority 

of these cases, parcel inundation occurs simultaneously to accessibility loss; the road 

that connects the parcel to the road network becomes inaccessible at the same time as 

the parcel is inundated. In 12% of parcels that are inundated, the forewarning time is 

between 1 and 10 years. The median forewarning time is 8 years. Figure 2.10 (b) shows 

the spatial distribution of the time difference between accessibility loss to a fire station 

and parcel inundation, assuming a 17% exceedance probability. The parcels which have 

little forewarning are primarily concentrated along creeks in the northwest and 

southwest regions. Inland residents and residents along the western coast tend to have 

decades more forewarning. These results suggest that a local strategy focused solely on 

residential building mitigation (e.g., elevation) is insufficient for preventing the 

impacts of flooding to residents. The residents without access to critical facilities may 

ultimately need to relocate, in some cases, years before parcel inundation. 
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Figure 2.10. (a) Histogram, by decade, of the time between accessibility loss to a fire station 

and parcel inundation. Zero years indicates that the parcel is expected to be inundated before or 

simultaneous to accessibility loss. (b) Spatial distribution of the time between accessibility loss and 

parcel inundation. These plots assume an RCP of 4.5 and an exceedance probability of 17%. 
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2.6 Conclusion 

This paper investigates how sea level rise may impact parcel-level accessibility 

in rural areas with few options for wide-scale protection - a critical issue often 

overlooked in climate adaptation literature. Using a case study of Dorchester County, 

Maryland, I demonstrate the importance of parcel-level assessment, and how modern 

computers combined with geospatial libraries allow computation of parcel-level access 

under different climate scenarios relatively quickly. Understanding which parcels 

might be impacted by SLR, even if the parcel itself is not inundated, is important 

because it signals when an acute burden of SLR may begin, and when additional 

support infrastructure, such as electric-power, may become less reliable. 

The case study is unique because it is the first of which the authors are aware 

to compare expected parcel inundation to when residents at the parcels may lose access 

to critical facilities. The results from the case study suggest that in some regions, the 

forewarning stemming from accessibility loss could be significant. Projections on 

regional retreat that focus purely on parcel inundation may overestimate the time until 

retreat is needed. Obviously, the results for other areas of the country and world are 

likely to differ and localized evaluations should be conducted. Ultimately, it calls on 

decision and policy makers to take a more systematic and comprehensive approach to 

mitigation and adaptation; a strategy that focuses solely on elevating houses, for 

example, may be ineffective because residents will be unable to travel to key 

destinations. 
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The results also indicate that mitigation strategies such as raising roads may not 

be a permanent solution for Dorchester County residents without a coordinated attempt 

to also maintain the housing stock (and potentially other infrastructure systems). 

Focusing on long-term adaptation strategies that are coordinated among infrastructure 

sectors, such as relocation, could serve as a more collectively advantageous strategy 

than focusing solely on protecting the transportation system. 

While this work focuses on transportation infrastructure, it serves to highlight 

the importance of considering networked support infrastructures at large that enable 

parcel occupation when evaluating household retreat due to SLR. Unlike parcels, which 

are generally not considered networked infrastructure because they lack physical 

connections to other parcels, electric-power distribution, municipal water 

infrastructure, and others, are linked by wires, cables, and pipes. A disruption in one 

section of the network - say due to SLR inundation - can have ripple effects in the 

network.  Sparse networks - say due to being located in a rural area - are often plagued 

with lower system robustness when critical links are removed (Khademi et al. 2021). 

The outcome of this work suggests that other networked infrastructure and their 

proclivity to SLR inundation should be evaluated as well. 

Finally, while not a core theme of this paper, the work demonstrates the need 

for decision and policy makers in a region to reach some level of consensus about 

assumptions for which possible future is planned when deciding among adaptation 

strategies. This consensus will likely be driven by the amount of risk the community is 

able and willing to assume. Failure to build consensus could lead to piecemeal 



 

53 

 

adaptation strategies in different areas that are collectively inefficient, and potentially 

even harmful to some (Papakonstantinou et al., 2019). In the case study, while the 

results varied little between RCP 4.5 and 8.5, the results varied significantly among 

exceedance probabilities. Thus, in this case, more consensus is required around which 

exceedance probability is planned for, though this may not be the case in other regions. 

It also potentially highlights the importance of applying consistent exceedance 

probabilities for each sector of infrastructure when planning, given their 

interconnectedness. 

There are some significant limitations of this work which could be addressed in 

the future. First, the work relies on a bathtub inundation model, which lacks accuracy 

at finer levels of resolutions. Additionally, I did not consider travel time or congestion; 

while congestion tends to not be an issue in this area, numerous significant changes to 

route choice could force higher traffic volumes onto roads not designed for them. This 

presents an opportunity for model enrichment should fine-scale origin-destination data 

or traffic volume data become available. Finally, while I mentioned the importance of 

transportation equity when evaluating access, this concept was not formally evaluated. 

Future work could evaluate the distribution of burdens on various demographics within 

the region. 
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3 Chapter 3: Bridging adaptation resources across the urban-

rural divide: A comparison of equity-focused roadway 

investment strategies against flooding 

3.1 Introduction  

Coastal communities are facing more disruptions than ever from coastal 

flooding (Krishnamurthy, 2012; Wu et al., 2002). Inundation of transportation assets, 

such as roadways, is especially challenging because it can impede travel to essential 

services, such as grocery stores, hospitals, and economic opportunities 

(Papakonstantinou et al., 2019b).  Flooding of only a few road segments may isolate 

residents or increase their travel distance to these amenities for many (Chang et al., 

2010). This is especially problematic in rural areas, which tend to have sparse roadway 

topology that offers fewer alternative paths for motorists.  

In order to preserve access, resources are being directed increasingly to rural 

areas to armor roads vulnerable to storm surge and sea-level rise (Li et al. 2009). 

However, given the limited resources combined with the wide-scale threat of flooding, 

it is likely that many roads will remain unarmored. In these instances, the benefits of 

protection will accrue unevenly; some fraction of the population may experience longer 

travel distances or lose the ability to reach their destination altogether while others may 

experience no impact to travel as a result of interventions. It is important to understand 

who will benefit and, ultimately for decision-makers, whether it reflects the priorities 

and values of the region. 
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A practical approach for guiding armoring resources is to protect roads with 

higher traffic volumes under threat of inundation or to rehabilitate roads that currently 

flood periodically. This approach has led, for example, to some segments of roadway 

in the State of Maryland (the case study location used later in this work) having more 

than 6 feet of asphalt to merely keep up with the encroaching water (National programs-

Maryland public television, 2018). While this approach is practical and politically 

defensible, it may not offer similar accumulated benefits that other approaches do. 

More specifically, because it does not take a systems-level perspective, and does not 

evaluate the ability of all residents to access to key destinations, such as fire stations, 

while considering how the topology of the road network intersects with the flood 

hazard, the roads that are selected for protection may offer limited benefits (Alipour et 

al. 2020; Douglas et al. 2017). In this work, we construct a comparative systems-level 

framework to inform road-armoring strategies that additionally considers the spatial- 

and demographic equity of the interventions. It is the first work, to our knowledge, that 

leverages heuristic optimization approaches to inform strategic road-segment armoring 

in order to maintain parcel-level access to emergency services.  

Arguably, the most efficient engineering strategy would be to armor the 

combination of road segments that benefit the most people given budget constraints. 

“Benefit the most people” can have multiple interpretations, including maximizing the 

number of people who maintain access to some key amenity, such as emergency 

services, or minimizing the number of motorists forced to take longer paths. However, 

the justice literature has, for decades, argued that government resources should focus 

https://www.zotero.org/google-docs/?A939dd
https://www.zotero.org/google-docs/?A939dd
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on equity as opposed to simply being efficient and that efficient solutions could 

disproportionately benefit some populations while providing little to no benefit for 

others (Emrich et al., 2020a).  

One flashpoint over protection and adaptation resources stems from whether 

investments serve more rural or urban populations, and how this “should” be balanced. 

While this is likely to be a national-level issue, it is possible that this divide will 

additionally materialize on a smaller scale, as there are many rural areas with small 

urban cores. The cost of protecting rural infrastructure is more expensive on a per capita 

basis (The White House, 2022). However, evaluating investment in rural infrastructure 

on a per capita basis ignores the interconnection between rural and urban areas, 

including knowledge, goods, and capital, and how both need the other to succeed 

(Dower, 2013). Yet still, spatial inequities of resource distribution exist both within the 

U.S. and internationally, and this, to some extent, has driven people to move from rural 

areas to the citiesearch for more opportunities and justice (Tacoli & Mabala, 2010). 

Ravazzoli & Hoffmann (2020) argue that interactions and exchanges of food, goods, 

and services, between rural and urban areas build mutual resilience by building human 

and social capital. This will be even more important in future when climate change 

exposes more complex societal challenges. This highlights the importance of 

considering an equitable distribution of infrastructure benefits across urban and rural 

areas (Pearsall et al., 2021).  

Another flashpoint over adaptation resources stems from whether the 

interventions support socially vulnerable populations. Economically poor 
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communities, communities of color, indigenous communities, and other 

disenfranchised populations are often disproportionately impacted by hazards (Emrich 

& Cutter, 2011). In many instances, this is driven by racial and economic 

discrimination, forcing them to reside in areas more susceptible to hazards (Cutter & 

Emrich, 2006). Additionally, socially-vulnerable populations are less likely to have 

access to resources to support recovery and the political capital to advocate for more 

local investments and services (Emrich et al., 2020b). Thus, decisions involving 

adaptation and environmental protection investments require a broader understanding 

of economic, social, and environmental context, and also how the distributions of the 

benefits and burdens from such decisions differ across populations (Zamojska & 

Próchniak, 2017).  

In light of this, the work presented here builds a comparative systems-level 

framework for allocating road armoring resources in ways that balance the distribution 

of benefits in regions prone to flooding. To do this, we evaluate optimal interventions 

for a range of budget constraints using multiple equity metrics and other ways to 

balance resource allocation. This is also then compared to strategies that are often 

considered “efficient,” meaning here, strategies that benefit the most people. Rather 

than focusing on the vulnerability of individual road segments, the work focuses on 

strategically protecting links within a network so that residents maintain access to 

emergency services during floods. This implicitly assumes that residents and 

emergency vehicles understand how to reroute during times of flooding, and reach their 

destination, should an alternative route exist. We do not consider, in this work, the 
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impact of rerouting on congestion or travel time. We then compute the robustness of 

those strategies under different flood scenarios. The work highlights the tensions that 

could arise when resources are allocated in accordance with a particular objective, and 

how the benefits that accrue can be spatially and demographically heterogeneous.  

While there has been increased inquiry in recent years into the impact on society 

from flooding of transportation assets (e.g., Sohn 2006, Change et al. 2010), this work 

is the first, to the authors’ knowledge, to strategically evaluate where road protection 

should be implemented such that access is maintained and to additionally consider 

equity in this equation. The comparative framework is illustrated using Dorchester 

County, Maryland. The county is rural, except for a small population core in the City 

of Cambridge, and extremely low-lying. Roadway inundation happens frequently. 

Nearly 60% of the county’s landmass is within FEMA’s 100-year (Cole, 2008). The 

county also has a long and fraught history of racial segregation and limited economic 

and political resources constrain its ability to adapt to environmental threats (Miller 

Hesed & Paolisso, 2015). 

3.2 Literature review 

While research into the impacts flooding on transportation infrastructure is 

relatively limited, the concept of transportation network resilience has existed for more 

than a decade (Faturechi & Miller-Hooks, 2014). The focus tends to leverage 

engineering metrics, such as network reliability and robustness, to understand network 

performance should certain nodes or links fail (e.g., Gu et al., 2020; Johnson et al., 
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2021; Snelder et al., 2012). These metrics are limited, however, in that they cannot 

convey the impact that network degradation may have on users (Jasour et al., 2022). 

More recently, the impacts on users have been considered, and especially the 

contribution that flooding may play. This is especially important because knowing the 

impact on users and residents enables an equity analysis to see who disproportionately 

benefits and is harmed (Blanchard & Waddell, 2017).  

Access is one of the relevant approaches to evaluate the impact on residents. 

Access is simply the availability of a route that connects an origin (e.g., a parcel) to a 

desired destination (Litman, 2008). Though access is a more commonly used metric in 

urban planning (Ermagun et al. 2015), it has been used recently in the resilience 

literature to understand how individuals will fare after a disruption, and whether they 

will be able to reach (or be reached by) life-saving emergency services (Lu and Peng, 

2011). Travel distance and time changes are alternative metrics for measuring 

individual impacts and are more commonly used in the roadway flooding literature 

compared to access (Faturanchi and Miller-Hooks 2014, (Jenelius & Mattsson, 2015). 

In seminal work by Jacobs et al. (2018), the authors find that over 7,500 miles of 

roadway in the U.S. are threatened by tidal flooding, which may cause significant travel 

delays for motorists. However, these travel metrics can mask the extreme consequences 

of flooding – lack of access to say emergency service – and arguably measure more of 

the burden caused by flooding. Ultimately, for planning purposes, both approaches 

(access and travel time/distance) should be considered.  
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For the sake of brevity, the remainder of the literature review focuses on past 

work on roadway mitigation (or retrofitting) for floods and work that measures equity 

of mitigation investments. Jasour et al. (2022) and Alabbad et al. (2021) provides a 

contemporary review of the literature focusing on flooding and roadways. In summary, 

the body of work is fairly limited in the range of flooding scenarios that are considered 

(e.g., 0.5 m of sea-level rise or 100-year flood) and also it often spatially-aggregates 

origins instead of considering the spatial-heterogeneity of individuals (Fereshtepour et 

al. 2018; Sun et al. 2020). A significant number of open research questions remain.  

 One open research question is where roadway mitigation should be conducted 

in order to reduce the impacts of flooding. While some initial research has been done 

in this space, no frameworks that inform how such decisions potentially impact the 

spatial and demographic distribution of access have been built. Of those works that do 

consider flood mitigation, many do so exogenously. More specifically, the approach 

has been to iteratively evaluate the impacts on mobility from a predefined set of limited 

interventions - such as a levee or elevating a key roadway prone to flooding – as 

opposed to strategically identifying where interventions may offer maximal benefits 

(Madanat et al. 2019, Suh et al. 2019). For example, Sun et al. (2021) evaluated the 

impact from three protection strategies (levees in this case), designed to protect the San 

Francisco Bay transportation infrastructure from sea-level rise using an agent-based 

modeling approach that additionally considered dynamic rerouting and congestion. 

While all three strategies lead to net improvements in terms of commute times, the 

spatial distribution of those benefits was uneven. The work in Hummel et al. (2020) 
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similarly considers transportation infrastructure in the San Francisco Bay, though 

carefully demonstrates how shoreline hardening in one county could have delirious 

impacts on traffic in other counties due to the hydrodynamic response to the 

barriers. Again, the barriers were evaluated independent of specific objectives.  

A recent small, but growing, body of work has developed optimization 

frameworks to strategically identify where flood mitigation should be conducted. This 

work builds conceptually from a body of literature that seeks to make mitigation 

investments to maintain network connectivity given some probability of edge failures 

and a budget constraint (e.g., Peeta et al., 2010). Work that specifically considers 

flooding has developed bi-level optimizations that pick road protection strategies in the 

top level so as to reduce cumulative travel delays in the bottom level (Asadabadi & 

Miller-Hooks, 2017; Papakonstantinou et al., 2019a). While not an optimization 

approach, earlier work by Sohn (2006), develops an accessibility index based each 

link’s marginal contribution to regional access before and after a 100-year flood, and 

this prioritization, they argue, could inform road retrofitting strategy. Due mostly to 

computational limitations, the networks used in these works are smaller, and they do 

not consider the distributional impact of interventions on residents. 

It should be noted that the concept of roadway mitigation has been considered 

for other hazards - namely earthquakes (e.g., Chang et al., 2003; Furuta et al., 2011; 

Peeta et al., 2010). Peeta et al. (2010) focus on pre-disaster strategic highway network 

protections to maximize the post-disaster connectivity between various origin-

destination (O-D) pairs and minimize post-event travel time under a budget constraint. 
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They used a two-stage stochastic program, where the first stage identifies which links 

to protect and the second stage finds the minimum travel cost between the O-D pairs. 

Zhang & Wang (2016) proposed a resilience-based framework to identify and prioritize 

critical bridges for effective pre-disaster mitigation. To evaluate the resilience-based 

performance of transportation networks, they use a weighted average number of 

reliable interdependent pathways between any network O-D pair, the pathways with 

higher traffic flow and shorter length are weighted heavier.  

There are several options that decision-makers have to protect road 

infrastructure from flooding. The process through which segments are selected is often 

governed by cost, and arguably, a maximization of positive externalities. The 

interventions tend to focus on the hardening or “gray infrastructure,” - such as raising 

roadways or building levees ( Papakonstantinou et al., 2019a). Levees may have 

spillover effects and protect additional assets (e.g., homes) behind them; alternatively, 

they may displace water, and induce more flooding in unprotected areas (Hummel et 

al., 2021).  More recently, there has been an increased emphasis, in practice, on “nature-

based infrastructure” as a method for protecting transportation assets, given its 

relatively low cost, lower carbon footprint, and adaptive capabilities (Feagin et al., 

2021). To our knowledge, systems-level research on maintaining mobility during 

floods using nature-based infrastructure has not been evaluated, though Li et al. (2020) 

take a step toward this approach by developing an indicators-based tool for identifying 

priority areas for green infrastructure in urban spaces. In this work, we are, to some 

degree, agnostic about the type of intervention and rather focus on where interventions 
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should occur. This makes an implicit assumption that the unit cost for each strategy to 

achieve the same outcome is identical - an assumption known to be incorrect (ROKS, 

2022).  

A challenge of understanding the implications of protection strategies is 

understanding burdens and benefits that each can cause to the communities in order to 

give decision-makers a comprehensive picture of the proposed strategies. For instance, 

Sun et al., (2020) evaluated the distribution of impacts stemming from transportation 

related SLR protection strategies. They found, for example, that some strategies, such 

as protecting bridges, may improve the net travel time during periods of inundation but 

may significantly burdensome disadvantaged communities who would experience 

decreased mobility due to these protections. Besides Sun et al. (2020), the 

transportation asset protection literature does not evaluate the distribution of benefits, 

and no work has evaluated protection strategies endogenously as a function of 

balancing benefits.   

While there has been little evaluation of how the benefits of hazard protection 

strategies may accrue, the transportation literature has given significant credence to 

equity in other applications. For example, Feng & Zhang (2014) used numerous 

measures of equity to target link capacity enhancements, while Ermagun & Tilahun 

(2020) computed the distribution of travel time by public transit to key destinations for 

all census block groups in Chicago. Equity broadly is defined as the distribution of 

resources in the fairest manner (Welch, 2013). Equity is divided into two types: 

horizontal and vertical. Horizontal equity relates to the distribution of resources 
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between individuals considered equal in ability and need. It avoids favoring one group 

over another and is all about providing services equally to everyone (Delbosc and 

Currie, 2011). Vertical equity pertains to the distribution of resources among 

individuals with different needs and abilities (Litman 2002). There are many metrics to 

quantify resource equity - from GINI to Atkinson (ATK). These metrics are formally 

presented and defined in Section 3.3.3 

Equity often focuses on whether resources are being delivered to underserved 

populations, which often translates into a focus on socially vulnerable populations. This 

is reasonable, given that socially vulnerable populations tend to fare worse. Changes in 

the transportation system proved to create inequality among communities with different 

demographic backgrounds (Bills & Walker, 2017; Guo et al., 2018; Sun et al., 2020). 

To better understand the uneven effects of disasters on communities and quantify 

human dimensions of hazard vulnerability, researchers introduced the concept of social 

vulnerability in the 1970s when they realized that socioeconomic factors of the 

communities also affect community resilience and should be considered as a part of 

vulnerability (Juntunen, 2004). Vulnerability to hazards is influenced by various 

demographic and socioeconomic factors, such as age, income, race, and neighborhood 

characteristics (Gladwin and Peacock, 1997, Green et al., 2007). Race is one of the 

social vulnerable flood-related characteristics, because it may affect the residential 

locations in high hazard areas due to the lack of economic resources and discrimination 

(Clark et al., 1998; Spain & Bianchi, 1996). Moreover, wealth enables impacted 

communities to absorb losses quickly and respond more effectively due to having 
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insurance and access to social safety nets (Cutter, 2003). Wealth can be measured by 

per capita income, median household income, median house values, and median rents 

(Cutter et al., 2008). The changes in the transportation system during a disruption could 

cause inequality among communities with different demographic backgrounds (Bills 

& Walker, 2017; Guo et al., 2018). To maintain the regional development and protect 

equity, it may be desirable for decision-makers to be aware of the certain vulnerable 

groups' exposure and to direct investments aimed at reducing exposure in a way to 

particularly benefit these vulnerable groups (Mattsson & Jenelius, 2015).  

3.3 Methodology 

3.3.1 Overview 

The approach broadly evaluates optimal road armoring strategies to maintain 

parcel-level access during 10-year and 100-year floods using different equity measures. 

We then examine the demographic and spatial heterogeneity of those who benefit from 

the protections. This work considers six different objective functions. They are: (1) to 

maximize the number of parcels in the county that maintain their access, (2) to 

minimize the GINI index, and thus provide more equal access among all block groups 

in the county, (3) and (4) to minimize Atkinson index using two different equity 

parameters, and thus provide more equal access among all block groups in the county 

with assigning different weights to block groups with lower accessibility. …; (5) to 

more evenly balance accessibility loss among the vulnerable and non-vulnerable 

residents impacted by flooding, and (6) to more evenly balance accessibility loss among 
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the rural and urban communities impacted by flooding. For each objective, we consider 

accessibility loss from parcels to emergency services (i.e., fire stations) considering the 

criticality of constant availability of these services. In principle, other destinations 

could be considered. This work is conducted in a geospatial computational framework 

designed and built using R software. 

We assume that resources are not infinite, and the strategy that is selected is 

subject to a budget. The cost to elevate roads and conduct other armoring varies by 

state, environmental condition, road dimension, and road type. Stanton & Ackerman 

(2007) estimated that the average cost to elevate 1-meter of road by _<insert height> 

to be  1,243 USD (2006 dollars) (i.e., $2 million/mile in 2006 dollars). For simplicity, 

we assume that the unit cost of hardening 1 meter of roadway to withstand 1 meter of 

flooding is constant throughout the network and independent of the hardening 

approach. Thus, the budget constraints are defined using the meter-meter unit in this 

study. This is done to be place more emphasis on adaptation equity and to not be bogged 

down by differential road armoring costs, though this is admittedly a simplification. 

The marginal cost of hardening the roadway expected to be increasing, in that pouring 

a centimeter of asphalt is far less expensive on the margin than elevating a roadway’s 

foundation. This could readily be addressed in future work should construction and 

roadway maintenance costs be known for each road segment. We considered three 

budget constraints: 500 m2, 10,000 m2, and 100,000 m2.  
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3.3.2 Qualifying the impact of storm surge on transportation network 

The work specifically considers flooding from coastal storm surges, though the 

methods could be broadened to additionally consider other forms of flooding, such as 

inundation from sea-level rise and pluvial flooding. Surge depth data, along with its 

return periods and confidence limits for water depth, is obtained through the Coastal 

Hazards System (CHS) database (Coastal Hazards System, 2020). The CHS database 

is built and maintained by the US Army Engineer Research and Development Center 

(ERDC), a research organization within the US Army Corps of Engineers (USACE). 

While probabilistic information is provided for a range of return periods and confidence 

limits (which describes the epistemic uncertainty around flood depths), we focus only 

on 10-year and 100-year storm surge using a 50% CL, representing both higher-

likelihood-lower-consequence and lower-likelihood-higher-consequence scenarios. As 

with other sources of flooding, the computational platform is flexible enough to study 

alternative return periods. 

To model the impact of storm surge flooding, water depth raster files from the 

USACE are overlaid onto a Digital Elevation Model (DEM) of the study region 

developed using USGS LiDAR data and the elevations are subtracted. Road segments 

with more than 15 cm of flooding are considered impassible and removed from the 

road network (unless they are later targeted for protection, in which case, they remain 

in the road network presuming protection is adequate). Water with a depth greater than 

15 cm is more likely to cause loss of vehicle control, depending on water velocity 
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(SmartDriving, 2021). However, note that no depth of water is considered safe to drive 

through.  

The geographic centroid of each parcel is projected to the closest road segment, 

and this becomes the origin. Critical services are proxied by fire stations, but in 

principle, any destination could be used. Then, a shortest path algorithm (i.e., Dijkstra's 

algorithm) is applied to evaluate whether each parcel is able to reach a fire station or 

not. It is possible that a parcel is unable to reach a fire station that is closest based on 

Euclidean distance due to flooding but is able to reach a fire station that is further away. 

A Genetic Algorithm, described later, is then used to identify the combination of road 

links to protect that best achieve different equity and resource-efficiency priorities.  

We note that some studies that explored the impact of floods on roadways have 

considered the impact of rerouting on congestion and the impact this might have on 

travel time (e.g.,  Feng et al., 2019; Hummel et al., 2018). These studies were conducted 

in urban regions. We elect to not adopt this approach because it is unable to identify 

who loses access altogether - an arguably more important metric during extreme events 

- and because of the rural status of the study region where congestion is not a significant 

concern. Additionally, it is not obvious that assumptions made in previous studies about 

user equilibrium being achieved during periods of extreme weather are reasonable (Siri 

et al., 2020).  
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3.3.3 Transportation equity and metrics 

In this study, transportation equity is explored from two perspectives, horizontal 

equity and vertical equity. Horizontal equity refers to the equality of the service 

distribution in the area (Litman, 2002). This is evaluated using the GINI and ATK 

indicators which are explained in detail in sections 3.3.3.1, and 3.3.3.2. Vertical equity, 

on the other hand, studies the distribution of services among different groups of the 

community, such as residents with different demographics (Litman, 2002). To evaluate 

the vertical equity, I study the balanced accessibility between vulnerable and non-

vulnerable communities as well as rural and urban communities (Section 3.3.3.3).  

To identify the vulnerable communities, I developed a social vulnerability index (SVI) 

using five census variables that are available at block group level; age below 17, age 

above 65, unemployed civilian population, income, and minorities (all races other than 

white) (Census Bureau, 2020). These variables are chosen among the fifteen variables 

that Flanagan et al. (2011) used to develop the Center of Disease Control Social 

Vulnerability Index (CDC-SVI) at the tract level to be used in emergencies. It gives 

one SVI for each block group level between 0 and 1, with 0 indicating less vulnerable 

and 1 indicating highly vulnerable. Although skipping the other 10 variables impacts 

the social vulnerability index I calculated in this study, my focus was to use finer 

resolution. Moreover, the aggregate SVI at tract level was almost consistent with CDC-

SVI results. In this study, the population in the case study classifies into two groups; 

parcels inside the census block groups with SVI above the regional median, which are 

considered as a vulnerable population, and parcels in the census block groups with an 
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SVI below the regional median, that are not considered as vulnerable to disasters, and 

I call them non-vulnerable in this study.  

 Rural communities are defined based on population density; the block 

groups with population density less than 500 people per square mile are considered as 

rural block groups (USDA ERS, 2021) and the remaining block groups are considered 

as urban. This definition is consistent with my study area that is mostly rural county 

with a small urban area in the city of Cambridge in the North. 

3.3.3.1 Gini Coefficient 

As discussed before, I aim to measure transportation equity in this study using 

different metrics. One of these metrics is the GINI index, which is by far the most 

frequently used index for distributions of accessibility. GINI index assesses the spatial 

equality of distribution of services or accessibility among different groups. The GINI 

index was first developed to measure income inequality and evaluated as the difference 

between the perfect equality line (the same share of income for everyone in an area) 

and the actual line depicting people’s income (GINI 1912). A GINI index of zero means 

perfect equality, and a GINI index of one express minimum equality. In this study, I 

first evaluate the GINI index under a 10-year and a 100-year flood scenario to see the 

overall degree of inequality in terms of the access to emergency services in the study 

area. To be consistent with other indicators, I compare accessibility shares between 

different block groups. It ranges between 0 and 1, and a lower GINI index indicates a 

more equitable distribution of access across the block groups. In the last decades, this 

indicator has been used in transportation equity to evaluate the distribution of 
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accessibility (Feng and Zhang 2009). For example, (Z. Chen et al., 2019) used the GINI 

coefficient to evaluate the distribution of benefits of bike-sharing systems in Southern 

Tampa. Tahmasbi et al. (2019) evaluated the impact of development plans on changes 

in the accessibility level to urban public facilities and equity impacts using GINI. 

Mayaud et al. (2019) also adopted the GINI coefficient to evaluate the distributional 

impacts of accessibility to healthcare via public transit among different vulnerable 

populations in Vancouver, Seattle, and Portland.  
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Where E is the equity indicator, 𝐴𝑗 is the fraction of the block group 𝑗 with 

accessibility to a fire station, �̅� is the average accessibility share of the study area, and 

Nis the number of the block groups. 

3.3.3.2 Atkinson Index 

The second equity indicator is ATK, proposed by Atkinson (1970). ATK also evaluates 

the distribution of access, but it has a parameter that is used to measure changes in 

different segments of the distribution. Various types of decision-making concerns can 

be reflected using different values for the parameter 𝜀. As 𝜀 increases, the ATK index 

becomes more sensitive to changes at the lower end of the accessibility block groups. 

Conversely, as the level of 𝜀 approaches 0, the ATK index becomes less sensitive to 

changes in the lower end of the distribution. In this study, I evaluate the ATK index 

with two different values for the parameters 𝜀 , 0.25, and 0,75. Feng and Zhang (2014) 

incorporated GINI and ATK and five other indicators into an equity maximization 
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model to evaluate the performance of accessibility-based equity. They used different 

values between 0 and 1 for 𝜀  to explain the impact of different weights on the final 

results. Zuo et al. (2020) measured the capability of bicycles as first-and-last mile 

connectors to improve transit accessibility and equity. They used Atkinson with 

different values for 𝜀 between 0 and 2, and also other equity indicators to evaluate the 

distributional benefits among different races.  
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Where E is the equity indicator, 𝐴𝑗, �̅�, and Nare the same as above (equation 

1), and 𝜀 is the parameter to reflect decision-making concerns regarding the 

distribution of accessibility share across block groups. 

3.3.3.3  Balanced share of accessibility 

The next equity indicator focuses on differences between accessibility 

distribution in urban and rural areas. To evaluate this indicator, first, I define what 

portion of rural block groups has access to fire stations under each flood scenario and 

what is the ratio for urban block groups. The absolute difference between these two 

ratios is a number between 0 and 1 and defines the equity of distribution of services 

between two different groups of the study area. To have equitable access between urban 

and rural communities, I want the absolute difference to be close to zero, with zero 

meaning perfect equity.  
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Where E is the equity indicator, 𝐴𝑘 , 𝐴𝑚 are the ratio of urban block groups and 

rural block groups, respectively with access to fire stations.   

The last equity indicator is about the equity distribution of access among 

vulnerable and non-vulnerable communities. To evaluate this indicator, first, I define 

the portion of the vulnerable block groups as well as non-vulnerable block groups that 

have access to fire stations under each flood scenario. The equity is defined as the 

absolute difference between these two ratios, and it ranges between 0 and 1; being zero 

means perfect equity. 
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Where E is the equity indicator, 𝐴𝑣 , 𝐴𝑛 are the ratio of vulnerable block groups 

and non-vulnerable block groups respectively, with access to fire stations.   

3.3.4 Genetic Algorithm 

We apply a genetic algorithm (GA) to overcome the intractability of iteratively 

evaluating all combinations of road protection strategies for a given objective. GAs are 

a meta-heuristic optimization method, first introduced in Holland (1975), based on the 

process of natural selection. They have been widely used in resource-constraint 

problems involving hazard planning and mitigation for infrastructure. For example, 
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Dong & Frangopol (2017) employ a bi-objective GA to find cost-effective residential 

building mitigation strategies under climate change. Along similar lines, Hu et al. 

(2014) use a bi-objective GA to locate optimal post-earthquake shelter locations that 

simultaneously minimize cumulative travel time and cost.  

GAs generally work as follows. In each iteration, a population of binary strings 

or “chromosomes” is evaluated using a fitness function. In this case, each binary 

variable in the chromosome is a link, and a value of one indicates that it is selected for 

hardening. The population of chromosomes represents different hardening strategies. 

The strategy that is deemed best by the fitness function (i.e., the strategy that maximizes 

some measure of parcel-level accessibility) is stored and used in the next iteration. The 

other chromosomes in the next generation are generated using a binary tournament 

selection method (Mitchell 1998). Here, parent chromosomes are randomly selected, 

two at a time, in proportion to their fitness, and a new genetic code (or chromosomes) 

is made by swapping (or “crossing over”) the genetic code of the parents at a random 

point. A mutator operator then randomly changes the binary variables to their 

complement with a low probability. This adds genetic variability to prevent the 

optimization from becoming “stuck” at a local optimum. It is possible that new 

chromosomes violate one or more constraints. GAs address this by penalizing these 

strategies through the fitness function.  

A few notes about my implementation follow. First, only roads that experience 

more than 15cm of flooding for the given surge scenario are considered for hardening. 

This reduces the number of links under consideration. The initial population, P, where 
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|P| = 100,  is built from that subset of links, and each link is randomly assigned a 0 or a 

1. Mutations are done by choosing 3% of the population at each iteration and changing 

a randomly chosen gene from zero to one or vice versa. I also introduce ten new 

populations to the original population in each iteration to increase diversity and 

increase the chance of finding a global solution. The fitness functions that I use are 

described in more depth below, though each treat chromosome (or hardening strategy) 

that violate the resource constraint is prevented from going to the next generation due 

to the sorting of result and choosing the first 100 best values. The convergence 

criterion, which dictates when the algorithm stops, is to have 30 generations passed 

without any improvement in the best fitness value. 

In the end, a relevant fitness function is used to evaluate the performance of 

responses, and the best chromosome is saved as the optimal solution to the problem 

(Saeidian et al., 2016). The fitness function measures the satisfaction of each 

chromosome according to the objective function. The objective functions in this study 

are to maximize the number of parcels that maintain their access as a result of 

investments, to maximize the equity distribution of access in study areas using different 

equity metrics that are discussed in section 3.3.3.  

Multiple budget constraints are considered to identify different efficient 

strategies according to different decision-making concerns. I assumed that road 

protection means elevating the entirety of the flooded portion of the road so that it is 

no longer underwater. The cost of doing this is measured by the length of the flooded 

roadway times the water depth; I assume this is roughly proportional to actual costs. 
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For example, a road that has 50 meters beneath 10 centimeters of water would require 

0.01*50 m2 = 0.5m2 to be protected. For the purpose of this study, I used three different 

budget limits, 500m2, 10,000m2, and 100,000m2.  

3.4 Study Area 

We focus my study area on Dorchester County, Maryland, and areas of 

neighboring counties that possess fire stations that serve Dorchester County residents 

(Figure 3.1). Dorchester is on Maryland’s Eastern Shore and, with a population of 

around 32,500 and a population density of 55 people per square mile, is considered a 

good representative of a rural site (U.S. Census 2010). It has a small urban core in the 

City of Cambridge, Maryland. Most residents rely on private vehicles to reach their 

destination. Tourism and agriculture are among the main industries.  

This region sits along the Chesapeake Bay, and large areas of the county sit in 

low-lying coastal plains. The region is prone to repetitive flooding that often diverts 

motorists onto alternative roads. Currently, it is not uncommon for some motorists to 

lose access to key amenities, such as fire stations, altogether due to flooding. Nearly 

60% of the county is in the 100-year floodplain (Cole, 2008).  
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Figure 3.1. Case study location (Esri, 2021) 

3.5 Result 

To explore the benefits and burdens of each protection strategy and evaluate 

accessibility equity, I carry out a numerical analysis of Dorchester County. The 

candidate links to protect are selected from two flood scenarios, 10-year and 100-year 

storm surges. The results are organized as follows: first, the baseline networks are 

created, and inundated roads and impacted residents are identified. Then, I present 

results for protection scenarios under different objectives. Finally, a robustness analysis 

was conducted for a 10-year flood scenario to evaluate the effectiveness of road 

protection under different flood scenarios. 

3.5.1 Levels of equity without road protection 

Figure 3.2 shows the road network of Dorchester County, the inundated road 

links with flood depth above 15 cm are shown for a 10-year (dark red) and a 100-year 

(dark red and orange) storm surge flooding. (Cars are reasonably assumed to be able to 

drive through water of depths less than 15cm). To decrease the number of the roads 



 

78 

 

from consideration and thus the computational time, I focus on main roads (road types 

M and S in data) and remove the private roads from the analysis. Under a 10-year storm 

surge flooding, 284 roads experience a flood depth above 15 cm with a length of 

405,295 meters, and this number increases to 334 roads and 492,021 meters under a 

100-year storm surge. The percentage of impacted residents in terms of losing their 

access to any emergency services is provided in Table 3.1. To better understand how 

flooding impacts are distributed among different groups of the communities, I showed 

the results for two different categories, rural communities versus urban and vulnerable 

groups vs. non-vulnerable (others). In total, 4,176 parcels (22.6% of all parcels in 

Dorchester County) lose their access to any emergency services under a 10-year flood 

scenario, 21.3% of these parcels live in block groups with SVI equal to or below 0.478 

(the region median SVI), and only 1.3% live in block groups with SVI above 0.478, 

who are considered vulnerable. If I want to consider the impacted residents as rural vs. 

urban, 2.4% of impacted parcels are located in urban block groups, and 20.2% are 

located in rural block groups. Overall, results indicate that impacted parcels in 

Dorchester County are mostly non-vulnerable communities residing in rural areas.  
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Figure 3.2. Closed roads under a 10-year storm surge (dark red) and a 100-year storm surge 

(dark red and orange). 

 Table 3.1. The portion of impacted parcels under different flood scenarios. 

 

To preview the levels of equity measurements, I evaluated the indicators in case 

of the current situation without any road protection under both flood scenarios. It is 

found that the levels vary for different equity indicators while all range between 0 and 

1. Atkinson indicators change increasingly from 0.04 to 0.22 and 0.27 under 10-year 

and 100-year flood scenarios, respectively. In the case of Atkinson, a higher value of Ɛ 

indicates a higher degree of inequity, which means that block groups with low 

accessibility have higher weights. In this study, I use two different values for Ɛ 0.25 

and 0.75 to compare the results.  
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The first three indicators in Table 3.2 focus on the horizontal spatial distribution 

of equity; however, there are significant differences among those due to different 

formulations and different weights that are attached to transfer at different points in the 

distribution. The values change increasingly from 0.036 and 0.041 to 0.22 and 0.27 

under a 10-year and 100-year flood scenarios, respectively, when Ɛ changes from 0.25 

to 0.75. Here, a higher level of Ɛ means a higher weight is attached to the zones with 

low accessibility. The last two indicators look at slightly different equity issues, which 

are considered vertical equity, and focus on accessibility distribution among groups 

with different characteristics. The fourth indicator that evaluates the balance of 

accessibility between rural and urban areas is 0.23 and 0.21 for a 10-year and a 100-

year flood scenario, respectively, which means under a 10-year flood scenario, there is 

a gap of 0.23 between the fraction of parcels with accessibility in rural areas and those 

in urban areas. The gap decreases by a 100-year flood to 0.21 because a lower amount 

of flood impacts mostly the rural communities in coastal areas, but a higher amount of 

flood impacts urban communities in the North. The last indicator that focuses on the 

balance between vulnerable and non-vulnerable communities areas shows a higher gap 

of 0.43 and 0.42 for a 10-year and a 100-year flood scenario, respectively, which that 

means under a 10-year flood scenario, there is a gap of 0.43 between the fraction of 

parcels with accessibility in vulnerable areas and those in non-vulnerable areas. Since 

my focus is to provide equitable access for rural and urban communities as well as 

vulnerable and non-vulnerable communities, I use absolute differences and, in the next 

section, aim to reduce these numbers to zero.  
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Table 3.2. Levels of different equity indicators without road protection 

 

3.5.2  Accessibility and equity maximization 

We implemented six single-objective optimization models based on 

accessibility and equity maximization. The first objective discussed in this study is to 

maximize the number of parcels that maintain their accessibility to emergency services 

by protecting the impacted roads. As mentioned before, the analysis is conducted for 

two storm surge flooding, a 10-year and a 100-year storm surge flooding. Under a 10-

year flood scenario with a lower budget, the accessibility of 385 parcels will be 

maintained, and this number increases to 2934 parcels with 100,000 𝑚2 budget. The 

number is different for 100-year flooding events due to the changes in flood depth and 

the cost to protect the roads and the increase in the number of flooded roads (first 

column in Table 3.3). The values in Table 3.3 are calculated from the optimal solutions 

that are based on different protection scenarios. The first column indicates the model I 

used to optimize equity, and the bold number in the corresponding row is the optimal 

solution using that model. The other values are indirectly calculated using the other 

optimal protection strategies. The second column in Table 3.3. shows the number of 
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parcels that benefits the protection, which means a better strategy results in a larger 

number. Columns 3 to 7 are about maximizing equity, which means a smaller number 

close to 0 is the better solution. As expected, the bold numbers in each column (the 

optimal solution) is the best among other values calculated for that column with respect 

to the other models. For example, under a 10-year flood scenario, 385 parcels benefit 

from protection when I optimize model 1. However, this number is 384 when I optimize 

the protection using the GINI index or 52 when I decide to use model M5 and improve 

the balance of accessibility between rural and urban communities. The second objective 

of the meta-heuristic optimization model is to minimize the GINI coefficient, in other 

words, to maintain the accessibility of parcels in a way that all block groups have the 

same share of accessibility. The perfect GINI coefficient is zero, which means all block 

groups have the same share of accessibility but most of the time, due to budget limits, 

that is impossible. In the case of Atkinson indicators, the objective is to minimize the 

values to improve equity. However, the results have not changed a lot. Models sixth 

and seventh focus on optimizing protection benefits by balancing the accessibility 

distribution among different groups of the community. To have balanced access among 

different groups, I want all groups to have the same share of benefits, and the difference 

between the fraction of urban communities with access and rural communities with 

access gets close to 0. I have the same goal with the vulnerable and non-vulnerable 

communities. As discussed before, the optimal solution calculated in Table 3.3 with 

respect to one indicator is not optimal for with respect to other models. You can see the 

significant differences in accessibility gain for models 2, 3, and 5. The calculated 
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parcels that benefit from these three models are much smaller than the number of 

parcels that can benefit if I use model 1. That is due to the different objectives; for 

example, when model 5 reaches an optimal solution that provides access to rural areas 

to decrease the fraction of parcels maintaining access in rural and urban areas. Figure 

3.3 shows the spatial distribution of the parcels that maintain their access to fire 

stations; for model 1, that is the optimal numbers, and for other models, they are 

calculated based on the tagged model. The green block groups in M5 and the pink block 

groups in M6 show the urban and vulnerable communities, respectively.   

The distribution of vulnerable and non-vulnerable communities in Dorchester 

County makes non-vulnerable block groups more exposed to storm surge flooding than 

vulnerable groups. The accessibility loss mostly happens among the non-vulnerable 

communities living in the peninsulas. That results in a smaller portion of the non-

vulnerable with accessibility to emergency services and a big difference between them 

and the portion of vulnerable people with access.  

As shown in Table 3.3, the total length of the protected roads and the number 

of protected roads under each model are calculated. The differences between the 

numbers explain that based on different objectives, the roads that should be protected 

may change, and they may benefit different groups of the communities. In reality, 

decision-makers may decide to use a specific model according to their specific 

emphasis. One may concentrate on maintaining accessibility for a larger number of 

parcels and decide to use the first model. While another decision maker may decide to 
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investigate the available budget in a way that balances the accessibility share between 

rural and urban communities.  

Table 3.3. Optimal and calculated results for accessibility and equity maximization (budget 

500 m2). 
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Figure 3.3. Spatial distribution of parcels that maintain their access to at least one fire station under a 10-year storm surge because of 

road protection prescribed by intervention. Maps are zoomed to the parcels that maintain their access as a result of protection. 
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Sensitivity analysis 

In Dorchester County, the block groups near the coastline have low access to 

fire stations, and they frequently lose their access due to road inundation. To maintain 

their accessibility, it is necessary to protect a huge number of roads that require a higher 

budget limit. That is why the accessibility gain and other equity metrics do not change 

that much between 500 𝑚2 budget and 10,000 𝑚2 but they all changed a lot for both 

flood scenarios with a 100,000 𝑚2 budget. Due to budget constraints, it is impossible 

to protect all roads, but I decided to repeat my analyses for three different budget limits 

to better understand the sensitivity of the analysis to the allocated budget, the budget 

limits for this study are 500 𝑚2, 10,000 𝑚2, and 100,000 𝑚2(Table 3.4).   

Table 3.4. Results of sensitivity analyses across different objectives. 

Flood 

Scenario Budget 

Accessibility 

gain GINI 

 

ATK  

 

ATK 

  

Balanced 

Rural/Urban 

Balanced 

Vul/Non-

Vul 

10-Year  

500 385 0.147 0.035 0.189 0.230 0.386 

10K 978 0.123 0.020 0.088 0.204 0.351 

100K 2,934 0.049 0.002 0.007 0.037 0.122 

        

100-Year 

500 984 0.158 0.036 0.218 0.228 0.408 

10K 1,326 0.142 0.028 0.154 0.215 0.386 

100K 2,351 0.098 0.011 0.036 0.130 0.288 

 

3.5.3 Robustness analysis 

Our primary objective was to find the optimal protection strategies for two 

different flood scenarios. In this section, I evaluate the benefits of adopting one of the 

(𝜀 = 0.25) (𝜀 = 0.75) 
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protection strategies I discussed previously. Here, the protection strategy for model M1 

under a 10-year flood scenario is adapted to the road network of Dorchester County. 

To better understand how usable this protection is under other flood scenarios, I 

evaluate the protected road network under storm surge scenarios with different return 

periods. For this reason, first, I assume all 13 suggested road links in M1 (Table 3.3, 

first row) are elevated to the 10-year flood depth; then, using different flood scenarios, 

I identify the closed roads and impacted parcels that maintain their access to fire 

stations using the protected road network. Figure 3.4 explains the fraction of parcels 

that maintain their access as a result of road protection. The largest fraction relates to 

the 10-year storm surge, which is the one that I optimized my investment based on 

(Figure 3.4, yellow dashed line). The numbers decrease as the severity of the flood 

increases to a 10,000-year flood which is intuitively correct; as flood intensity increases 

water level on the road increases and gets higher than the elevated roads.  
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Figure 3.4. Fractions of parcels maintain access to fire stations as a result of protection roads 

under different storm surge scenarios. The protection strategy is applying M1 (maximizing 

accessibility) for a 10-year storm surge with a budget limit of 500 𝑚2. 

3.6 Conclusion 

The investment in road protection will benefit to increasing accessibility of 

parcels to critical services; however, it may not automatically lead to an optimal 

balance of accessibility among different groups of the community as equitable 

distribution. Although recently more studies have been focused on transportation 

equity, discussions on the balance accessibility among urban and rural communities as 

well as vulnerable and non-vulnerable communities are missing (or scarce) in previous 

studies.  

Therefore, in this paper, I investigated how storm surge flooding impacts the 

parcel-level accessibility in rural areas and measured the spatial equity indicators and 

proposed an optimization model to describe the trade-offs between equity 

improvements and the investment of protection strategies under different objectives. 

The equity was defined by accessibility and represented by indicators, GINI, ATK, 

balanced accessibility between urban and rural, and balanced accessibility between 

vulnerable and non-vulnerable block groups. Using the case study of Dorchester 

County, Maryland, I demonstrate that all of the accessibility-based equity indicators 

are sensitive to road protection. However, they change on different scales. The 

sensitivity analyses based on different budget limits and flood scenarios found that the 

level of equity depends on the severity of the flood and also the extent of road 
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protection. Moreover, road protection based on one objective would not always result 

in the same improvement in the other equity metrics or accessibility. In the case study, 

for a 10-year flood scenario improving balanced accessibility between rural and urban 

areas could not provide accessibility for a large number of people. The scenarios with 

the same budget limits select different roads to protect, suggesting the necessity to 

cautiously select equity indicators in decision-making processes. 

There are some limitations of this work that could be addressed in the future. 

First, I did not consider travel time or congestion in my analysis; congestion does not 

seem to be a problem in my case study, though the closure of some roads could cause 

an increase in traffic volume in other road links that are not designed for it. If finer 

origin-destination data and traffic volume data become available in the future, this 

limitation can be addressed. For the purpose of simplicity, I assumed in this paper all 

block groups had the same important weight. However, policymakers may assign 

different weights to different zones in reality. In this sense, the effect of different 

weights should be examined in the future.  

This type of work could additionally support cost-benefit of where protections 

strategies should go, such as where U.S. Army Corps of Engineers (USACE) should 

work. While this study only discussed the hardening road protection strategies to 

maintain the accessibility of communities, for low-lying coastal areas like Dorchester 

County, future works could focus on spending available mitigation and adaptation 

budgets on alternative transportation methods such as water transportation. For 

example, abandoning the road links that are facing frequent flooding and using a ferry 
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system to connect communities using these inundated roads to the rest of the county. 

However, to better understand the most optimal method, the problems with water 

transportation also need to be discussed, such as the fast corrosion of ferries due to 

saltwater.  
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4 Chapter 4: Identification of Critical Road Segments that 

reduce uncertainty surrounding access to emergency services 

if monitored 

4.1    Introduction 

Road networks are a significant body of transportation infrastructures for 

communities, which provide access to critical services and affect the travel of residents. 

During disasters and emergency circumstances, road networks are vital resources that 

play an important role in rescue operations, evacuation, community recovery, and 

reconstruction. However, they often fail to maintain their original function due to 

disruptions, and the transportation network performance degrades. This reduction does 

not happen equally; the failure of certain links can cause significant disruption in 

network performance. The most challenging issue for decision-makers and 

stakeholders is to properly assess the losses to communities and physical assets under 

disruption. Floods are among the most frequent and devastating all-natural hazards that 

cause frequent disruptions in road networks, especially in coastal areas. To properly 

evaluate the losses due to flood, several parameters are required, among which flood 

depth is highly important because it governs the models used to evaluate damages (Cian 

et al., 2018). The considerable number of flood-related deaths and financial losses 

reported annually across the world drive attention to improved response to flood 

consequences. For example, Hurricane Irene in 2011 affected over 2,500 miles of roads 

(Lunderville, 2011). Without a finer-scale, computationally intensive hydrodynamic 

modeling understanding the actual consequences is impossible. Therefore, to better 
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prepare coastal communities for future flooding impacts, better countermeasures could 

be proposed by studying transportation network vulnerability precisely (Chen et al., 

2015). 

In order to better inform decision-makers of the criticality of transportation 

links in case of flooding, this study proposes a two-step framework; first, to identify 

and select the links with risk of inundation and being closed, and second, to identify 

the critical links in terms of accessibility among those pre-selected links. In particular, 

the methodology presented in this paper evaluates the network-wide impacts of certain 

links failure based on accessibility changes. 

Flood maps serve as a critical decision-making tool for different end-users, such 

as infrastructure developers and disaster-response managers. They indicate the flood 

depth and the probability of flooding in an area. However, these data with high 

resolution are not available for all coastal areas due to the extremely high data and 

computational requirements (Sampson et al., 2015). Recent studies leveraged recent 

advances in remote sensing and hydrology to construct globally high-resolution data 

(Sampson et al., 2015), though this data still has a high level of uncertainty. Using this 

data to evaluate the local impact of flooding results in a high level of uncertainty in 

results.  

Taylor and D’Este ( 2007) define a link as critical if its removal from the 

network due to disruption results in a significant reduction in network accessibility 
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score or losing access to particular nodes.  Sohn (2006) also defines a link as critical if 

its failure reduces the network accessibility score. Sadler et al. (2017) focus on traffic 

volumes and elevation in their definition, roadways with high traffic volumes 

(AAWDT>75,000) and low elevation(<3m) are considered the most critical roadways. 

Sullivan et al. (2010) discuss that critical links are not necessarily those with high traffic 

volumes, but maybe the links with comparatively high traffic volume and few 

alternative routes. 

To evaluate network performance, Scott et al. ( 2006) propose a network 

robustness index (NRI) defined as the total change in vehicle travel time in a network 

that happens when a link is closed. Sohn (2006) assesses network performance using 

an accessibility index. He uses distance only and distance-traffic volume criteria to 

measure the accessibility index to evaluate the criticality of highway links in a 

transportation network under flood damage. Chang and Nojima ( 2001) measure 

network coverage and accessibility to assess network performance post-disaster. 

Sullivan et al. (2010) discuss a segment as critical if its removal causes a relatively 

notable increase in the overall network travel time compared to any other segment in 

the network. This metric is not applicable when there are disconnected parts in the 

network (travel time for a disconnected O-D is infinite). Jenelius et al. (2006) provide 

two different criticality measures to solve this problem. They propose quantifying 

unsatisfied demand for the case when removing a link result in dis-connectivity and 

network-wide total travel time change for the case that link failure does not cause dis-
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connectivity but affects the overall performance of the network. While the previous 

studies have been focused on identifying critical links by closing a link, Nourzad and 

Pradhan (2014) quantify the criticality of individual links by computing the impact of 

reducing the link capacity (using different disruption levels) on network connectivity. 

Another approach to identifying the critical links in a network is using topological 

measures such as betweenness centrality, that high betweenness centrality in 

transportation networks means the link is important, and it is on the largest number of 

the shortest paths in between network nodes (Furno et al., 2019).  

This work expands upon the literature in two ways. First, it selects the links 

with high  variability of flood depth around the defined threshold (25 cm). The identical 

characteristic of these links is that they all experience a flood depth that is around the 

threshold to make a road impassable. However, it can happen under different 

confidence limits (CL). This step helps us to remove the links with a huge amount of 

water (i.e., that are impassable) as well as the links with shallow water (i.e., that are 

considered passable due to flood depth below the threshold) from the analysis and 

improve the computational time. Second, it identifies the group of critical links among 

the preselected links in terms of accessibility to emergency facilities. Using the 

traditional entire scan method to find the critical roads can take prohibitive amounts of 

time (Mattsson & Jenelius, 2015). I use a meta-heuristic optimization method, Genetic 

Algorithm (GA), to identify the critical links in an appropriate time. This method is 

demonstrated using a realistic case study in Dorchester County, MD.  
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4.2 Methodology 

 The work discussed in this section describes the framework for identifying the 

critical links to improve hydrodynamic modeling. Through this framework, first, a 

group of candidate links is selected. The network-wide impact of restricted links on 

residents' accessibility is evaluated to identify the links that affect the accessibility of a 

large number of residents. An overview of the approach is presented in Figure 4.1. For 

this work, I consider a 1-year storm surge which is a more frequent storm surge 

scenario. The data includes flood depth for  four different confidence limits for each 

flood scenario, 50%, 84%, 95%, and 98%. Since the underlying goal of this analysis is 

to reduce the  uncertainty surrounding access during flood, I consider all road segments 

with flood depth between 20 sand 30 cm under all different confidence limits for further 

analysis. For this study, I overlay the water depth for storm surge data for the entire 

region onto the road network to quantify the amount of flood depth on each road 

segment in the network. I then evaluate the water level for each link that is flooded to 

identify the candidate links for the next step. Next, to evaluate the impact of a link 

failure on network vulnerability, I leverage GA analysis to find the impact of restricting 

a group of links instead of studying one link at a time. This work is conducted in a 

geospatial computational framework created in the computer language of R.  
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Figure 4.1. Framework 

4.2.1 Flood scenarios 

I consider the impact of storm surge on road vulnerability in the area. However, 

this platform is flexible enough to consider alternative or additional sources of flooding. 

For storm surge, I have multiple probabilistic scenarios. For the purpose of this study, 

I focus on 1-year storm surge as it is a more frequent scenario. I utilize the probabilistic 

Coastal Hazards System (CHS) database to model storm surges. This database was 

built and is maintained by the US Army Engineer Research and Development Center 

(ERDC) - a research organization within the US Army Corps of Engineers (Coastal 

Hazards system, 2020). It provides probabilistic storm surge depths with their return 

periods and confidence limits (50%, 84%, 95%, and 98%) for multiple regions in the 

United States, such as coastal regions from Maine to Virginia and the coastal regions 

of Texas and Louisiana and is publicly available and accessible for download. The data 

is a result of thousands of hydraulic simulation models, and the confidence limits 
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represent epistemic uncertainty associated with the errors in meteorological and 

hydrodynamic modeling and astronomical tide variability. 

To define which roads flood, this study overlays flood depth raster files with 

the Digital Elevation Model (DEM) of the study region developed using USGS LiDAR 

data (Maryland’s GIS data catalog, 2019). Then, I use a “bathtub” model, which 

assumes that all links with elevations less than the surge depth are inundated by water, 

which is hydrodynamically reasonable in my study area, knowing that it is a large 

estuary with a shallow slope coastline and numerous streams. This limitation could be 

addressed in future work. Then, the maximum flood depth for each road segment is 

computed. In this study, I assume that even if a narrow section of the road has a flood 

depth above the chosen depth parameter (described below), the road is closed because 

it is not safe for emergency vehicles. This approach is completed using the “igraph” 

package in the computing language R. 

4.2.2 Road Network 

I used the United States Census Bureau (U.S. Census Bureau, 2017) road 

network data (TIGER/Line Shapefiles) to build the transportation network. This data 

includes all the federal, state, and local roads in the United States, and it provides 

information about the road geometry and functionality. I specifically consider 

household-level mobility to local emergency services, so I assume the parcel to be the 

origin and the emergency services to be the destination. It is straightforward to consider 
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additional destinations. For both origins and destinations, I projected them onto the 

road network at a location that minimizes the distance between the parcel and the road.  

Road restriction due to flooding has been addressed in previous studies using a 

binary variable - flooded or not - which means any road link located in a flooded area 

is considered close (Sohn 2006; Suarez et al. 2005). Some studies have used a flood 

depth threshold, whereby travel on the road is restricted once the flood depth is above 

a prescribed threshold (Fereshtehpour Mohammad et al., 2018; Green et al., 2017; 

Jotshi et al., 2009, Jasour et al. 2022). This approach is used here. Although speed 

reduction due to flooded links is also an important factor in transportation, for the 

purpose of this study, I exclude speed reduction and restrict the roads using a prescribed 

threshold in the literature.  

Many studies have evaluated the “Safe” thresholds for traversing flooded roads 

while noting that the truly safe threshold is only 0. This threshold for fire trucks is 25 

cm, which means they have a tolerance for traversing at most 25 cm of floodwaters 

depth due to their size, Light, and power (Dawson et al., 2011a; Green et al., 2017; 

Pregnolato et al., 2017). For the purposes of this study, I focus on emergency vehicles, 

and I know that there is uncertainty surrounding access during  flood due to the lack of 

local flood depth information, and it’s not easy for drivers to identify the exact amount 

of the flood depth on the road. To identify the inundated road links I focus on a certain 

bound around the unsafe threshold; the roads with flood depth between 20 and 30 cm 

are considered as candidate links when considering the accessibility of residents to 
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emergency services such as fire stations and hospitals; roads with water level less than 

20 cm are considered open and passable; roads with flood water greater than 30 cm are 

considered closed.  

Some studies that explore the road criticality in terms of flooding additionally 

consider demand and traffic congestion changes too (e.g., Feng et al. 2019; Oliveira et 

al. 2014). This is not included in my analysis because my study region is extremely 

rural, and congestion is not a significant concern, but accessibility is. 

  The quickest routing (based on the distance taken to travel between two 

vertices) is selected to evaluate the accessibility to critical services. Road restrictions 

contained within the model included flood depth limits to pass the roads. The baseline 

network is created by restricting all the candidate links explained above and all the links 

with flood depth above 30 cm under a 1-year storm surge with CL 50%. The quickest 

routing between all points was then calculated to find the shortest path from each parcel 

to the nearest fire station under the baseline scenario. The quickest routing between 

each parcel and the nearest fire station was based on Dijkstra’s shortest path algorithm 

with a network weighted by distance. This algorithm is a widely used approach in 

solving routing problems and network analysis, and it is also computationally efficient 

(Sniedovich, 2010). For each parcel, then the closest fire station was chosen to see what 

the shortest distance from each parcel to its closest fire station is under a 1-year flood 

scenario. 
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Then, using GA analysis, I want to identify the group of the links that 

monitoring simultaneously helps a large number of residents in terms of accessibility 

to fire stations. In this study, to evaluate the significance of individual network links, I 

focus on network-wide accessibility, which means I want to identify the links that are 

likely to experience 20 to 30 cm of floodwater under a 1-year flood scenario, whose a 

huge number of residents rely on to reach an emergency service. More specifically, the 

hypothetical disruption of all restricted links due to flood damage is evaluated in terms 

of accessibility loss and using GA analysis, and I find a group of candidate links whose 

monitoring can provide more accurate information about the flood depth to a significant 

number of residents. For example, if a larger group of residents used link one to reach 

their distance, this means in terms of accessibility, link one is more significant than 

other links (Sohn 2006). I can extend it to a set of links instead of one link in a network 

and find the combinations of the links that are considered critical to monitoring.  

4.2.3 Genetic Algorithms 

 I used GA analysis to identify the critical links; GA works with a set of 

solutions (population) for a given problem. The problem variables are represented as 

genes in chromosomes in GA; each chromosome consists of a fixed number of genes. 

In this case, each gene is a candidate link, and 1 means the link is selected to monitor 

and 0 otherwise.  
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Initial population: for the purpose of this study, Because I only need to find a 

small number of the road links to monitor in each model, it is hard to have feasible 

solutions with a small number of chromosomes in the initial population. Therefore, a 

large number of initial populations is created randomly, and 100 populations with 

feasible solutions among them are chosen.   

Crossover: this operator is for the mating process (exchange of genes between 

two chromosomes) that speeds the convergence. It has a crossover rate which is 

denoted by 𝑃𝑐 and shows what portion of the population is used to create new offspring 

chromosomes. Two parents are chosen from the initial population, and both parents are 

cut from a random position, and the exchange happens to create two children. In this 

study, 𝑃𝑐 is 0.6 and single-point crossover is selected to create children.  

Mutation and immigrants: mutation is another operator to introduce new 

information. It changes one of the resulted genes, and the overall probability of 

mutation is called mutation rate and shown by 𝑃𝑚. Immigrants are created the same 

way as the initial population, and I add them to the generation in each iteration. In this 

study, 𝑃𝑚= 0.03, and one gene of the chromosome is randomly displaced, then 10 

immigrants are added to the new generation each time. 

Fitness function: for each chromosome, the satisfaction is measured according 

to the objective function. The objective function of this study is to maximize the 

number of residents impacted by monitoring the links. However, due to budget 
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constraints, I have a limited number of monitors, and for each model, I only want to 

monitor a specific length of the road links. In this study, I assume each monitor 

equipment can be used to monitor 50 meters of the link, which means if I have a road 

with a length of 100 meters, I need two pieces of equipment to monitor.  

Selection: the populations with the highest fit among the initial population, the 

crossover, the mutated, and immigrants are selected and used to generate the next 

generation. 

4.3 Study area 

I am applying this study to Dorchester County in Maryland (Figure 4.2). This 

county, along Maryland’s Eastern Shore, is a highly low-lying area and experiences 

frequent flooding that impacts residents’ accessibility and mobility to emergency 

services. The county is rural with a small urban area in the City of Cambridge in the 

North. It has several peninsulas and creeks with limited access to the transportation 

network. As of 2019, the county’s population was 31,929. The residents primarily rely 

on private vehicles. A public transit operator (Delmarva Community Transit) exists in 

the region, though service is infrequent, and the routes primarily connect the City of 

Cambridge to towns in adjacent counties. 

Almost 60% of the county lies in the 100-year floodplain, which is mostly a 

tidal floodplain (Cole, 2008). In September 2003, a huge part of the county experienced 

significant storm surge damage during Tropical Storm Isabel. Since almost half of the 
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county lies between elevations 2.0 and 4.9, even with minor storm surges that are not 

related to tropical disturbances, half of the county can experience damage (Cole, 2008). 

Limited economic and political resources constrain Dorchester County’s options for 

any adaptation strategy (Miller Hesed & Paolisso, 2015), and state and local officials 

and residents must make challenging decisions regarding what to monitor and what to 

ignore. While the ethics of this point are debatable, the cost to monitor all roads, the 

culverts, and ditches that drain them could be highly expensive than the value of the 

road and the properties that they serve (Cole, 2008), and this happens especially for the 

roads that serve only a few numbers of residents. 

 

Figure 4.2. Study area. 

I include only fire stations as a critical facility in this study to evaluate whether 

residents at each parcel in Dorchester County are able to access at least one fire station 

using a road network. As a result of road inundation, there can be no route to any fire 

station, which means the parcel loses its accessibility to any fire station in the county. 
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4.4 Result 

The results are organized as follows: First, I show the results for the inundated 

roads under a 1-year storm surge scenario with different confidence limits. This 

identifies the candidate links for further analysis and forms the baseline model. I then 

present the results of the road criticality analysis and compare the effect of different 

budget limits on optimal solutions.  

4.4.1 Identify candidate links 

Figure 4.3. shows the road network in Dorchester County, the links with flood 

depth above 30 cm are defined by red and are considered totally closed and impassable 

under a 1-year storm surge with a confidence limit of 50% (it includes 88.8 km of the 

roads). The candidate roads are shown in blue in Figure 4.3. Those are the roads that 

experience flood depth between 20 to 30 cm with a 1-year storm surge flooding with 

different confidence limits (50%, 84%. 95%, and 98%) with a total length of 117 km. 

To decrease the number of the roads from consideration, as well as computational time, 

I focus on main roads only (road types M and S in data) and remove the private roads 

from the analysis. The map in Figure 4.3 shows all the roads I studied. If I consider all 

candidate links and flooded links above 30 cm to be closed, it causes 3,921 parcels to 

lose their access to any fire station. As discussed above, the goal of this study is to 

define the links that are critical in terms of providing access to fire stations for more 

residents to maximize information by monitoring them. The network with all inundated 

links here is considered the baseline for the next section, and I evaluate the benefits of 
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monitoring different links (by assuming the selected links are passable) for gathering 

more accurate flood depth data among the candidate links in this network.  

 

Figure 4.3. Inundated roads under a 1-year storm surge and CL 50% with flood depth above 

30 cm (blue) and inundated links under a 1-year storm surge with CL 50%, 84%, 95%, and 98% that 

experience flood depth between 20 to 30 cm (red). 

4.4.2 Benefit maximization 

I implemented one single optimization model based on accessibility 

maximization; the objective is to maximize the number of residents who benefit from 

closer monitoring of actual hydraulic conditions using the installation of flood monitor 

equipment in the candidate link. Multiple budget constraints are considered to identify 

different critical roads according to a different number of flood monitoring equipment. 

The results could help us to identify the critical links in road network in terms of 

accessibility to emergency services for further monitoring and gathering local level 
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flood data. Hence  reduce the uncertainty surrounding access to emergency services. 

The plot in Figure 4.3 shows the number of parcels that benefit from the accurate flood 

data for the installation of 1 to 10 pieces of monitoring equipment. As mentioned above, 

I assumed one monitoring equipment could gather data from 50 m of the road, and with 

more than one piece of equipment, I can gather more accurate data from different links 

or even one link that has multiple flooded sections or one inundated section that is 

above 50 m. The first column in Table 4.1 shows the number of monitoring equipment, 

and columns 2 to 12 demonstrate the candidate links that are selected as the critical 

links in one or more optimization models (number 1,2, or 3 under each column 

demonstrate that the how many segments of the link is selected, and 0 means any 

segment from that link is not selected). For example, two segments of the link L2 are 

selected when I have two or more pieces of equipment and gathering more accurate 

flood data from this link benefits 151 parcels, which you can find in under two pieces 

of equipment. Table 4.1 explains that increasing the budget benefits more parcels. For 

scenarios with 2 to 8 pieces of equipment, the previous critical links stay in the 

combinations of selected links and adding to the budget adds a new link to the previous 

list of selected links. With 9 and 10 pieces of equipment, two new links are selected, 

and some old links are removed from the list, which demonstrates that increasing the 

budget does not always add new links to the previously selected links. When the 

objective is to benefit more parcels, it is possible to spend all of the budgets on one 

road that can benefit a huge number of parcels instead of different roads that only 

benefit a small number of parcels.  
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Figure 4.4 shows the spatial distribution of parcels benefits ten pieces of 

monitoring equipment. These parcels are mostly located in the middle and north parts 

of the County because the budget is small, and the model can only focus on the links 

in high density areas with a small, inundated segment to benefit a larger number of 

parcels. To benefit the parcels in peninsulas and southwest areas I need to increase the 

budget.  

Table 4.1. Critical link segments selected under each budget scenario and optimal results for 

the number of parcels benefit the corresponding link monitoring. 
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Figure 4.4. Spatial distribution of parcels benefits candidate links monitoring with 10 pieces 

of monitoring equipment (right plot) and the zoomed map that shows the spatial distribution of critical 

links in yellow (right plot).  

If policy and decision-makers have access to more accurate flood data, they can 

better evaluate the network-wide impacts of certain links failure based on accessibility 

changes and leverage the maximum information about the consequences of floods to 

better be prepared for future flood events. 

4.5 Conclusion 

Flooding is among the most destructive, widespread, and frequent natural 

hazards causing extensive damage to infrastructure and communities. The frequency 

and severity of flooding are increasing due to climate change. As a result, the 

techniques of monitoring and gathering flood data to improve flood maps are also 

increasing. However, it is a costly process to maximize flood data information at a 

local level with closer monitoring for all road segments.  
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Therefore, in this chapter I investigate where the impacts of floods in a road 

network could be most consequential and causes more parcel-level accessibility loss 

to the fire stations. I define these links as critical links. Using the case study of 

Dorchester County, Maryland, I identify the critical links for different budget limits to 

monitor closely by evaluating how many parcels rely on them to reach any fire 

station.  

There are some limitations of this work which could be addressed in the 

future. First, I only focused on accessibility loss as a consequence of floods in a road 

network, however, flood also impacts travel time. Although in rural regions 

congestion is not that much of problem but the increase in travel time can be 

significant due to inundated road links and could be studied if the traffic data gets 

available in future. While, this study only focuses on 1-year flood scenario, to have 

more comprehensive understanding of the critical links in the area for improving 

flood information other flooding scenarios could be studied too. Moreover, this study 

only focuses on identifying the road links that if monitored, maximize information in 

terms of access to fire stations but does not study the intersect of flood uncertainties 

and the road criticality, which can be studied in future. 
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5 Chapter 5: Conclusion 

This dissertation investigates how sea-level rise and coastal flooding may 

impact parcel-level accessibility in rural areas and what road protection strategies can 

maximize transportation equity by improving the accessibility of impacted parcels for 

different groups in the area. Finally, I used the transportation network and accessibility 

analysis to improve the flood data by identifying the roads that will be flooded and are 

also critical in terms of providing access to a large number of parcels.  This 

investigation is done under three research questions:  

Under the first research question, I evaluated the impact of sea-level rise in a 

low-lying rural area in terms of accessibility to critical facilities. Using Dorchester 

County, Maryland, as a suitable case study, I showed the importance of parcel-level 

accessibility assessment under different sea-level rise scenarios. Moreover, 

investigating the time that parcels lose their accessibility and also the time that parcels 

inundation happens provides great information for policy and decision-makers to better 

allocate the limited budgets on mitigation and adaptation strategies.  

Under the second research question, I investigated how transportation equity 

changes when storm surge flooding impacts parcel-level accessibility and proposed a 

metaheuristic optimization model to evaluate the trade-offs between investment in road 

protection strategies and equity improvements under various objectives. Using the case 

study of Dorchester County, MD, I explained that all the accessibility-based indicators 

improve with road protection, although they change on different scales, and not all of 

them maintain accessibility for a large number of residents. Most importantly, 
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improving balanced accessibility in rural areas may not provide access for a large 

number of people due to the sparse road network and a large budget to protect longer 

roads to maintain accessibility. 

Under the last research question, I used transportation network and accessibility 

analysis to improve the accuracy of flood maps in the area. Understanding which roads 

with risk of inundation are critical in term of accessibility to emergency services help 

us to improve the data collection equipment and models for those specific roads and 

provide better localized information about the potential flooding and inform motorists 

and emergency managers with trip-planning. Using Dorchester County as a case study, 

I explored the critical roads with the risk of flooding under a 1-year storm surge and 

different budget limits.  The results indicate that having more accurate data about a 

group of the roads could serve more numbers of residents than focusing solely on 

individual links independently.  

There are some significant limitations of this dissertation that could be 

addressed in the future. In the first study bathtub inundation model was used to evaluate 

the impact of sea-level rise on roads, which lacks accuracy at a finer level of resolution. 

In the second study, I assumed all the block groups have the same weight, which is not 

always true, and policymakers may assign different weights to different zones in 

reality.  Additionally, in none of the studies, the congestion and travel time have been 

considered; while congestion tends to not be a problem for the study area, having a 

large number of inundated roads could force higher traffic volume onto the routes that 

are not designed for them. 



 

112 

 

While I mentioned the importance of transportation equity in the first study, I 

have not conducted it when evaluating access. Future work could evaluate the 

distribution of burdens on different groups of the community within the region.  

Finally, this dissertation demonstrates the need for decision-makers and 

policymakers in any region to reach some level of consensus about flood scenarios and 

exceedance probability for which possible future is planned when deciding among 

adaptation strategies. The amount of risk the communities are able and willing to 

assume defines this consensus. Failure to build a general agreement results in piecemeal 

adaptation strategies in different areas that are collectively inefficient for the 

community and may even be harmful due to their interconnectedness 

(Papakonstantinou et al., 2019).  
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6 Chapter 6: Appendix; Climate change and agriculture: 

Combining publicly available data and machine learning 

approaches to predict corn yield in State of Maryland 

6.1 Abstract 

Evaluations of the impacts of climate change on agriculture require accurate 

yield response models. Typically, yield prediction models use field-collected data and 

fixed time intervals for weather variables. In this study, I attempt to analyze and 

compare different machine learning models, as well as parametric and non-parametric 

methods, to predict corn yield. Corn yield data was collected from the U.S. census 

bureau for years between1950 and 2012, and the meteorological data was obtained 

from the National Oceanic and Atmospheric Administration (NOAA-NCDC, 2018) for 

the corresponding year in the state of Maryland. Different growing stages, different 

spatial grouping, and different predictive modeling give us 60 various models to 

compare. I assessed the out-of-sample predictive ability of the candidate models using 

K-fold cross-validation to choose the best model based on  𝑅2 (e.g., for Allegany 

County, the best model is SVM predictive model using the four stages and county-level 

data with 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, and 𝑅2 are 0.16, 0.14, and 0.75, respectively). Results explain 

that spatial grouping and mostly clustering based on precipitation improves the 

accuracy of the predictions in most of the counties. 

Introduction 

Climate change is causing worldwide impacts on water resources, food security, 

and the production of agricultural products such as maize (Arora, 2019; Chami & 
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Moujabber, 2016; Karimi et al., 2018; Malek et al., 2018). If the current situation of 

climate change continues, then by the end of the century, the production of major cereal 

crops such as maize yields will experience a significant decline (20-45%) (FAO, 2016). 

Recent research has focused specifically on the impact of climatic variables (e.g., 

precipitation) on crop production. The rationale is that by understanding the 

relationship between climatic variables and production, researchers and farmers can 

better forecast the impact of climate change on future yields. This information can 

support long-term adaptation planning in agricultural and related sectors. Further, 

computationally efficient models that leverage readily available public information can 

help planners understand how climate is likely to change infrastructure needs in 

agriculture-dependent regions. 

The first step in understanding the impact of climate change on agricultural 

production is understanding the relationship between historic climate variables and 

production. The predictive capabilities of a model that explains this historical 

relationship can then be validated to assess its ability to forecast the impact of possible 

future changes in climatic variables on agricultural yield.   

The bulk of existing literature focusing on the relationship between climatic 

variables and crop yields relies on ordinary least-squared (OLS) regression to perform 

the analysis. While OLS regression is a powerful tool with highly interpretable results, 

issues exist that limit the insights and forecasting capabilities under future climate 

conditions. First, OLS regression makes an assumption that the response variable (i.e., 

production) is a monotonic and linear function of the predictor variable. This is unlikely 
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to be true. For example, Huong et al. (2019) examined the effect of temperature changes 

and rainfall on farming in Northwest Vietnam. Their study found a non-linear relationship 

between weather variables and farmers’ revenue.  Second, these OLS regression 

models are generally assessed using measures of performance tied to the assessment of 

fit (i.e., the ability of models to capture variations associated with prior observations) 

rather than “out of sample” predictive capability (i.e., the ability to forecast the values 

of the response variable under “unseen” values of the predictor). That is, they tend to 

focus on establishing a relationship that reflects past data, but not whether this 

relationship is robust under conditions that differ from the past.  Newer statistical 

modeling techniques offer opportunities to model more complex mathematical 

relationships that may or may not be readily explained parametrically. The model 

validation approaches typically used in conjunction with these newer techniques often 

focus specifically on assessing “out of sample” predictive capability rather than on 

measures of fit.  

The contribution of this paper is two-fold. First, this paper leverages recent 

advances in machine learning as well as parametric and non-parametric statistical 

modeling to develop predictive models of crop yield under climate forcing for the State 

of Maryland using readily available public data.  Second, in addition to presenting state-

specific results, this paper outlines a general framework for model development and 

validation to support long-term infrastructure planning in geographic regions for which 

agriculture represents a significant source of economic activity and is a driver of 

infrastructure needs.   
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6.2 Context 

Agriculture plays a critical role in the economy of the state of Maryland. Corn 

for grain is among the state of Maryland’s top five agricultural products. In 2017 

56,940,000 bushels of corn had been harvested from 390,000 acres of land. Corn was 

the highest value crop in the state. Because of corn’s economic importance, I seek to 

determine the impacts of climate change on corn yield to develop possible adaptation 

strategies.  

To date, there is no established predictive model for forecasting regional yields 

for the State of Maryland using climatological and hydrometeorology factors. That is, 

there are no studies that go beyond building an explanatory relationship between yield 

and climate factors to a paradigm where the model is fully validated based on its 

predictive accuracy on out-of-sample data.  I hypothesize that tree-based models such 

as random forests or more complex data-miners such as support vector machines work 

better than linear regression to predict the corn yield.  

Because data limitations present challenges in developing the proposed 

predictive models, this paper focuses on boosting the predictions of corn yield using 

models developed at different spatial and temporal scales. Using historical county-level 

data from across Maryland, I develop and validate multiple types of parametric and 

non-parametric models that allow for relationships between predictor and response 

variables to be non-linear and non-monotonic.  The value of these models is that they 

provide insight into the factors that are most important in predicting yield and provide 

the factor’s marginal influence over its entire domain.  In assessing model performance, 
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my focus is not on model fit (e.g., “R2”), which provides no information on a model’s 

predictive abilities but instead on how accurate the model is at forecasting out-of-

sample data (e.g., root mean square error). 

 Specifically, this study demonstrates how using different machine learning 

strategies at varying spatial and temporal scales can improve prediction when available 

data are limited. While this study focuses on Maryland, the overall approach 

demonstrates how the development of models at different spatial and temporal scales 

can lead to improvements in predictive modeling abilities. 

6.3 Review of Existing Studies  

Data-driven methods are empirical methods that do not require in-depth 

knowledge about the physical mechanisms that produce the data. These methods have 

frequently been applied for several decades to predict the yield prediction in agriculture 

using classical statistics such as linear regression (Dixon et al., 1994). For example, 

Schlenker and Roberts (2006) used OLS regression to examine the relationship 

between temperature and corn yield. They found a non-linear behavior for corn yield, 

which varies with temperature changes. Their result shows yield increases with 

temperature in the moderate range but decreases once the temperature exceeds 86o F.  

Studies have also sought to improve model performance by leveraging a range of data 

sources.  For example, remote sensing data such as climate factors, MODIS (Moderate 

Resolution Imaging Spectroradiometer), and NDVI (Normalized Difference 

Vegetation Index) have been widely used in the estimation of crop yields by adopting 
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statistical methods such as regression model (Das et al., 2020; Drummond et al., 2003; 

González Sánchez et al., 2014; Matsumura et al., 2015; Schlenker & Roberts, 2006; 

Wang et al., 2020).  Expanding beyond standard regression techniques, machine 

learning methods have been used to estimate crop yield in the last years (Gandhi et al., 

2016; Jaikla et al., 2008; Roel & Plant, 2004; Nari & Yang-Won, 2016). Table 4.1 

provides a summary of existing research that has leveraged machine-learning and 

conventional statistical modeling methods to predict agricultural yields.  

A number of studies have emphasized the potential modeling improvements 

that can be achieved through the application of machine-learning methods. Focusing 

specifically on the State of Maryland (which is the focus of this study), Kaul et al. 

(2005) studied the effectiveness of Artificial Neural Network (ANN) models in 

predicting Maryland corn and soybean yields for typical climatic conditions. They 

compared the prediction capability of their models at state, regional, and local levels. 

They used available rainfall data and nine different soil types for five locations in 

Maryland and created ANN and multiple regression models with various model inputs 

at the state and few regionals and local levels. Their comparison between ANN and 

multiple linear regression models indicates that ANN models consistently produce 

more accurate predictions than regression models, and local level models predicted 

yield more accurately than the region and state models for both corn and soybean. In 

this work, I consider several alternate machine-learning modeling approaches and 

systematically consider several options of spatial and temporal aggregation of data 
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across the State of Maryland. I leverage the publicly available data to study all counties 

in Maryland instead of focusing on a few locations with available data.  

More broadly, Nari and Yang-Won (2016) used machine learning methods to 

estimate corn yield in Iowa. They applied Support Vector Machine (SVM), Random 

Forest (R.F.), Extremely Randomized Trees (ERT), and Deep Learning (DL) 

technique. Their analysis indicates that the DL technique provides more stable results. 

Leng and Hall (2020) assessed the effect of climate change (global warming) on corn 

yield in the United States using machine learning methods, regression models, and 

process-based models. They found that machine learning models are able to explain 

93% of observed yield variability; however, regression models and process-based 

models only explain 51% and 42% of variability, respectively.  

The aforementioned studies focused on the assessment of the fit of models to 

past data.  However, validation of the model on an “unseen” data set (typically referred 

to as a “test set” or “hold outset”) is important when developing a predictive model. 

This test (holdout) data set is a set of data not used for training the model. It is reserved 

(held out) for testing predictive accuracy, i.e., the model’s ability to forecast future or 

unseen data.  

Wang et al. (2020) compared the performance of linear models with machine 

learning methods such as SVM, R.F., and DNN on wheat yield with climate, soil data, 

and vegetable indices at the county-level for the counties with available data in the 

conterminous United States. They trained the models on a dataset from 2008 to 2016 

and evaluated the dataset from 2017 and 2018 using metrics such as 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, 𝑅2. 
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Their results indicate machine learning methods perform better than linear regression 

models. Gonzalez-Sanchez et al. (2014) compared the capabilities of linear regression 

and ML techniques for predicting the crop yield in ten crop datasets using metrics such 

as 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, 𝑅𝑅𝑆𝐸, and 𝑅2. Nari et al. (2016) used one-year-out cross-validation 

to examine the accuracy of corn yield estimation using machine learning methods. 

Schwalbert et al. (2006) used one-year-out cross-validation and 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, and 

𝑀𝑆𝐸 to assess the accuracy of their model’s output. 

The use of machine learning methods described above for yield prediction 

improves the accuracy of the yield prediction relative to more conventional approaches. 

However, most of the models have sought to improve model performance through 

consideration of additional predictor variables. For example, several studies have used 

soil data obtained from laboratory analyses or field collection (Drummond et al., 2003; 

Pantazi et al., 2016).  However, the creation and collection of such data are time-

consuming and expensive. Existing studies have not attempted to utilize the spatial and 

temporal grouping techniques to “boost” the accuracy of predictive models that 

leverage only limited publicly available data. The aim of this study is to overcome the 

limitations of the above-mentioned linear and non-linear approaches for predicting the 

yield by integrating the spatial and temporal grouping and validating the range of 

candidate predictive models (as well as a “mean-only” null model) using K-fold 

validation.  
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Table 6.1.  A selection of articles in agriculture research that used machine learning and 

conventional statistical modeling methods. 

Article Crop type Location Modeling technique X variables 

Drummond et al. 

(2003) 

Grain Three fields near 

Centralia in 

central Missouri 

Stepwise multiple linear 

regression and neural 

network models 

Soil properties and 

climatological data 

Roel and Plant 

(2004) 

Grain Two rice fields 

near Marysville, 

CA 

Cluster analysis, 

classification, and regression 

trees (CART) methods 

Soil data 

Kaul et al. (2005) Corn and 

soybean 

Maryland ANN and multiple linear 

regression models 

Climate conditions 

Schlenker and 

Roberts (2006) 

Corn 2000 USA 

counties 

OLS regression Temperature 

Jaikla et al. (2008) Rice Thailand Support vector regression 

method (SVR) 

Day from planting 

to harvesting, 

temperature, and 

precipitation 

Schlenker and 

Roberts (2006) 

Corn, 

wheat, 

soybean, 

and cotton 

USA Counties 

east of the 100-

degree meridian 

Regression analysis Temperature and 

precipitation 

Gonzalez-Sanchez 

et al. (2014) 

Corn Mexico Linear regression and ML 

techniques (M5-Prime 

regression trees, N.N., 

Support vector regression, 

and k-nearest neighbor 

method) 

Planting area, 

irrigation water 

depth, cumulative 

rainfall, 

cumulative global 

solar radiation, 

temperatures, and 

duration of the 

season-duration 

cultivar 

Matsumura et 

al.(2015) 

Maize 

yield 

Jilin province, 

China 

Multiple linear regression, 

non-linear ANN models 

Climate conditions 

(precipitation) and 

fertilizer 

Pantazi et al. (2016) Wheat A field at Duck 

End Farm, UK 

Counter-propagation 

artificial neural network, 

XY-fused networks, and 

supervised Kohonen 

networks 

Online multi-layer 

soil data 

Gandhi et al. (2016) Rice 27 districts of 

Maharashtra, 

India 

SVM, the sequential 

minimal optimization (SMO) 

classifier algorithm using the 

WEKA tool. 

Precipitation, 

minimum, 

maximum, average 

temperature, 

reference crop 

evapotranspiration, 

and area 

Mokarram and 

Bijanzadeh (2016) 

Barley Online available 

data from 

Multiple linear regression, 

ANN including multi-layer 

Water E.C., 

irrigation regime, 

Nitrogen applied, 



 

122 

 

different 

literatures 

perceptron (MLP) and radial 

basis function (RBF) 

Phosphorous 

applied, Potassium 

applied, plant 

density, rainfall 

amount, … 

Nari and Yang-Won 

(2016) 

Corn Iowa SVM, R.F., Extremely 

Randomized Trees (ERT), 

and deep learning (DL) 

Remote sensing 

climate data 

Andrade et al. 

(2018) 

Corn Near Bushland, 

TX 

Artificial Neural Network Data from the soil, 

water, plant, 

weather using 

(ISCCADAS). 

Cai et al. (2019) Wheat Australia Regression method (LASSO 

as a benchmark) and 

machine learning methods 

(SVM, R.F., neural network) 

Satellite data 

(vegetation index, 

solar-induced 

chlorophyll 

fluorescence as 

metrics to 

approximate crop 

productivity) 

Das et al. (2020) Coconut Fourteen districts 

of the West coast 

of India. 

Different linear models such 

as stepwise multiple linear 

regression (SMLR), PCA-

SMLR, least absolute 

shrinkage, and selection 

operator (LASSO), and 

elastic net (ELNET) with 

non-linear models, namely 

ANN and PCA-ANN 

Weather indices 

using monthly 

cumulative 

rainfall, the 

monthly average 

value for 

maximum and 

minimum 

temperature, 

relative humidity, 

wind speed, and 

solar radiation 

de Oliveira and 

Antunes Rodrigues 

(2020) 

Sugarcane Brazil Mechanistic, regression, 

machine learning 

Daily minimum, 

maximum, and 

medium 

temperature. Pest 

and inspection data 

and fertilizers and 

agrochemicals. 

Leng and Hall 

(2020) 

Maize 

yield 

The U.S. Process-based models, 

regression model, and a 

machine learning algorithm 

Climate data 

Schwalbert et al. 

(2006) 

Soybean Brazil Multivariate OLS linear 

regression, random forest, 

and Long-short term 

memory (LSTM) neural 

network 

Satellite imagery 

and weather data 

Wang et al. (2020) Wheat Conterminous 

United States 

Ordinary least square (OLS), 

Least absolute shrinkage and 

selection operator (LASSO), 

SVM, R.F., Adaptive 

Climate data, Soil 

data, vegetation 

indices (VIs) 
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Boosting (AdaBoost), and 

deep neural network (DNN). 

Wolanin et al. 

(2020) 

Wheat Indian Wheat 

Belt 

Deep neural network Multivariate time 

series of 

vegetation 

variables and 

meteorological 

data such as 

minimum, 

maximum, average 

temperature, 

precipitation, and 

day-length.  

6.4 Data Collection and Processing 

In the current study, multiple machine-learning and statistical approaches are 

used to develop predictive models of corn yield for counties in the State of Maryland. 

Specifically, I consider a mean-only (null) model, a linear regression model, and three 

machine learning models (i.e., random forest, bagged CART, support vector machine). 

These models are described further in Section 6.5.3. For the implementation of this 

approach, crop yield and meteorological (e.g., temperature and precipitation) data for 

each county were gathered from online publicly available sources. The state of 

Maryland has twenty-three counties with agricultural data available. Baltimore city is 

not among those counties and is thus excluded from the analysis. Additional details 

regarding data collection and processing are provided in Sections 6.4.1.  

6.4.1 Crop Yield Data Collection and Processing 

The response variable (i.e., the variable to be predicted) is the area-normalized 

corn yield for all counties of the State of Maryland. Corn has two different usages in 
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the state: (1) corn for grain and (2) corn for silage or green chop. In this study, I focus 

on corn for grain.  

We collected agricultural census data for the harvested product and the 

harvested land area from the United States Department of Agriculture (USDA, 2018) 

and used it to compute the area-normalized corn yield in county 𝑖 and year 𝑡 (𝑌𝑖,𝑡):  

𝑌𝑖,𝑡 =
𝑃𝑖,𝑡

𝐴𝑖,𝑡
 ,     𝑖 = 1,… ,𝑁𝐶 ;  𝑡 = 1,… ,𝑁𝑡 (1) 

Where 𝑃𝑖,𝑡 and 𝐴𝑖,𝑡 are the total harvested product and the harvested area of the 

county 𝑖 in year 𝑡, respectively. 

USDA agriculture census data are available every five years. To account for 

general agricultural trends over time (e.g., due to changes in technology), the state-

specific data have been normalized using the corn yield for the U.S. The area-

normalized corn yield for county 𝑖 in year 𝑡 was divided by the area normalized corn 

yield for the U.S. in the corresponding year: 

𝑌𝑖,𝑡
[𝑁]
=

𝑌𝑖,𝑡
𝑌𝑈𝑆,𝑡 

=
𝑃𝑖,𝑡 × 𝐴𝑈𝑆,𝑡
𝑃𝑈𝑆,𝑡 × 𝐴𝑖,𝑡

 
(2) 

Where 𝑃𝑈𝑆,𝑡 and 𝐴𝑈𝑆,𝑡 are the total harvested product and the harvested area of 

the U.S. year 𝑡. 

6.4.2 Climate Data Collection and Processing 

The explanatory variables are the meteorological variables that affect the corn 

yield, which may change over time due to climate change. Data considered in this study 

include daily minimum and maximum temperatures and daily precipitation in the years 
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for which corn data is available between the years 1950 and 2012. These data were 

obtained from the National Oceanic and Atmospheric Administration (NOAA-NCDC, 

2018) for the 402 stations in the state of Maryland shown in.  

 

Figure 6.1. (a) Geographical location of weather stations (b) the geocentroid of each county 

in Maryland. 

Consistent with the existing state of practice, I processed “raw” climate data in 

several ways to produce indices that better reflect the physical relationship between 

weather and plant growth.  In general, the temperature is considered the most important 

factor controlling the rate of plant development, although other factors such as water 

and light availability are also important. There are established “bands” of temperature 

associated with growth, and crops can experience shock below and above those 

thresholds. For corn, this temperature band is between 50°F and 86°F (NDAWN 

center, 2018).  

A useful temperature index to estimate plant growth is growing degree days 

(GDD), which is calculated using daily maximum and minimum air temperature. In 

this work, I calculate daily corn growing degree days for day 𝑑 in county 𝑖 in year  𝑡 

(𝐺𝐷𝐷𝑖,𝑡) as: 
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𝐺𝐷𝐷𝑖,𝑡
[𝑑]
=

{
 
 

 
 50, 𝑇𝑚𝑖𝑛,𝑖,𝑡

[𝑑]
≤ 50

[(
𝑇𝑚𝑎𝑥,𝑖,𝑡
[𝑑] + 𝑇𝑚𝑖𝑛,𝑖,𝑡

[𝑑]

2
) −  𝑇𝐵𝑎𝑠𝑒] , 50 < 𝑇𝑚𝑎𝑥,𝑖,𝑡 , 𝑇𝑚𝑖𝑛,𝑖,𝑡 < 86

86, 𝑇𝑚𝑎𝑥,𝑖,𝑡
[𝑑]

≥ 86

 

(3) 

Where 𝑇𝑚𝑎𝑥,𝑖,𝑡
[𝑑]

 and 𝑇𝑚𝑖𝑛,𝑖,𝑡
[𝑑]

 are the maximum and minimum temperature on day 

𝑑 for county 𝑖 in year 𝑡. For corn, the base temperature (𝑇𝐵𝑎𝑠𝑒) is 50 degree-Fahrenheit. 

(NDAWN center, 2018).  

Building off the above, accumulated daily growing degree days (AGDD) 

through the day 𝑑∗ of the growing season can be calculated beginning with the day 

after the specified planting date and continuing until the specified ending date. 

Specifically, A𝐺𝐷𝐷𝑖,𝑡
[𝑑∗]

 for county 𝑖 and year, 𝑡 is computed as the sum of daily 𝐺𝐷𝐷𝑖,𝑡
[𝑑]

 

from the first post-planting day (i.e., 𝑑 = 1) to the specified end day (𝑑 = 𝑑∗):  

𝐴𝐺𝐷𝐷𝑖,𝑡
[𝑑∗]

=∑𝐺𝐷𝐷𝑖,𝑡
[𝑑]

𝑑∗

𝑑=1

 

 

(4) 

Where: 𝐺𝐷𝐷𝑖,𝑡
[𝑑]

 is computed as in equation 3.  

In this study, the planting time (i.e., day 𝑑 = 0) was selected as 14 days after 

the last frost in the spring for each county (Boeckmann, 2020).  The threshold for frost 

is 30 degree-Fahrenheit.   

As an example, Figure 6.2 shows the time series plot for daily 𝐺𝐷𝐷𝑖,𝑡
[𝑑]

 for Anne 

Arundel County in 2012.   (top) shows the accumulated GDD for Anne Arundel 
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County.  Based on the last frost in the spring, the planting date for Anne Arundel in 

2012 is selected as March 25.  

 

Figure 6.2.  Daily growing degree days for Anne Arundel County in 2012. 

We likewise “processed” precipitation data to generate accumulated daily 

precipitation time-series using daily precipitation data for each county:  

𝑃𝑅𝐶𝑖,𝑡
[𝑑∗]

= ∑𝑝𝑟𝑐𝑖,𝑡
[𝑑]

𝑑∗

𝑑=1

 

(5) 

Where 𝑃𝑅𝐶𝑖,𝑡
[𝑑∗]

  is the sum of daily 𝑝𝑟𝑐𝑖,𝑡
[𝑑]

 (i.e., precipitation on day 𝑑) for 

county 𝑖 in year 𝑡 from planting day to day 𝑑∗.   (bottom) shows the accumulated 

precipitation for Anne Arundel County in 2012. The starting point to accumulate the 

precipitation is the planting date, which was March 25 for Anne Arundel County in 

2012.  
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6.5 Model Development 

The objective of this study is to build predictive models for estimating corn 

yields under varying climatic conditions using conventional modeling approaches and 

supervised (machine) learning methods. The response variable (i.e., the variable to be 

predicted) is the area-normalized corn yield for each county in the State of Maryland. 

The explanatory variables are meteorological variables that affect the corn yield and 

which may change over time due to climate change. The predictive model takes the 

following form:  

�̂�𝑖
[𝑁]
= 𝑓(𝐗𝑀𝑖), 𝑖 = 1,… ,𝑁𝐶 (6) 

Where: �̂�𝑖,𝑡
[𝑁]

 is a predicted value of normalized corn yield for county 𝑖, and 𝐗𝑀𝑖
 

is a vector of explanatory variables related to meteorological variables for county 𝑖. In 

this study, explanatory meteorological variables include the number of days with a 

temperature below 50°F, the number of days with a temperature above 86°F, and 

accumulated precipitation.  

Figure 6.3 shows a flow chart of the overall process I used for building 

𝑁𝑚𝑜𝑑𝑒𝑙 = 60 candidate predictive models with a range of modeling assumptions. The 

logic tree in Figure 6.4 summarizes the combinations of candidate modeling 

assumptions I considered. These modeling assumptions relate to four key areas, which 

correspond to the “branching points” of the logic tree shown in Figure 6.4:  
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• The number of growing stages is used to temporally partition the data 

in each year (1-stage, 4-stage, and 8-stage). 

• The strategy for aggregating data spatially (state-level, county-level, 

and clustered). 

• The clustering approach is used (applicable only to spatial aggregation 

using clustering). 

• The supervised learning approach was used to build the predictive 

model (linear regression, bagging, random forest, and support vector 

regression).  

Regardless of the specific model assumptions, the overall process for model 

development follows Figure 6.3. The model development process begins with the 

collection and processing of county-level yield and climate data, as described 

previously in Section 6.4.  Then, for each candidate model 𝑖 = 1,…𝑁𝑚𝑜𝑑𝑒𝑙, the 

following key steps were executed: 

Data was temporally partitioned according to the number of growing stages 

defined for the specific candidate model 𝑖, and all necessary prediction and response 

parameters were created. Additional information regarding growing stages and the 

creation of prediction and response variables are provided in Section 6.4.2.  

Data were randomly partitioned into model training and testing sets to support 

model cross-validation. The cross-validation approach uses holdout sets containing a 

single year of data across all counties, as described in Section 6.5.2.  
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County-level data were spatially aggregated according to the spatial resolution 

associated with model 𝑖.  If clustering is used for spatial aggregation, a clustering model 

is developed using training data and applied to testing data. Additional information 

regarding spatial grouping and the development of clustering models is provided in 

Section 0.  

Training data are used to train and optimize supervised learning models. Section 

6.5.36.5.3 provides additional information regarding candidate models.  

The trained, supervised learning model is applied to the testing (holdout) data 

to create out-of-sample predictions, and performance is assessed using several 

measures.  Performance measures and results are presented in Section 6.6 
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Figure 6.3. The process of predictive modeling 
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Figure 6.4. The Logic tree of creating predictive models 

6.5.1 Temporal Grouping and Parameter Definition  

There are four main growth stages for corn:  emergence and stand 

establishment; rapid growth and dry matter accumulation; pollination; and grain fill 

(Dekalb, 2020). To reach a certain stage of maturity, a corn plant generally requires a 
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certain number of growing degree days. Extremely cold or hot temperatures in each 

stage may cause a yield reduction. However, the sensitivity of corn to moisture and 

heat stress differs by stage, with plants being more sensitive in the early and late stages. 

In this study, I selected predictors based on the four primary stages of corn 

growth. Table 6.2 explains these stages. The first column of Table 6.2 identifies the four 

primary stages of corn growth and the second column shows a conventional notation 

used to denote a more-refined breakdown of corn growing substages. The third column 

identifies the AGDD threshold for each of the substages (Nafziger, 2009). To illustrate 

the four primary growth stages, the vertical red lines in separate the four primary 

growth stages for Anne Arundel County in 2012 based on when the computed AGDD 

reaches the thresholds identified in Table 6.2 (i.e., AGDD equal to 795, 1180, and 1400 

degrees, respectively, for the three lines).  

In model development, I consider three options for partitioning the corn growth 

period. The 1-stage option does not partition the growth period. The 4-stage option 

considers the four main stages of corn growth. The 8-stage option breaks down the 

“grain fill” stage into a series of sub-stages. The 8-stage option is intended to study the 

effect of heat and moisture stresses at the last growing stage. These three stage-

breakdown options are identified in the 4th, 5th, and 6th columns of Table 6.2, along 

with the associated AGDD thresholds.  

 Table 6.2. Corn stages are based on growing degree days and three different sub-stages of a 

corn growth period for this study. 

Stages GDD 1-Stage 4- Stages 8- Stages 
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Emergence and stand 

establishment (VE to V9) 
VE1-V9 795  795 795 

Rapid growth and dry matter 

accumulation (V10 to V17) 

V10-

V17 
1180  1180 1180 

 

 

Pollination (V18 to R1) 

V18 1220  
 

 

1400 

 

1350 VT2 1350  

R13 1400    

 

 

 

 

Grain fill (R2 to R6) 

R2 1660  

 

 

 

 

2700 

 

R3 1925  1920 

R4 2190  2190 

R5 2450  2450 

R6 2700 2700 2700 

1. Vegetable emergence  

2. Vegetable tasseling 

3. Reproductive 

  

For the purpose of building a predictive model, I consider two temperature 

variables: (1) the number of the days that the temperature in stage 𝑠 in county 𝑖 in year 

𝑡 is above the optimal temperature growing range for corn  (𝑥𝑁𝐷𝐴𝑠,𝑡,𝑖) and (2) the 

number of the days in stage 𝑠 in county 𝑖 in year 𝑡 that temperature is below the optimal 

temperature growing range for corn (𝑥𝑁𝐷𝐵𝑠,𝑡,𝑖). For example, the horizontal dashed lines 

in   (middle) show the lower and the upper limits of the optimal temperature grow range 

for corn (upper threshold is 86°F and the lower is 50°F). The points of the curve above 

the upper dashed line define the number of days that the temperature is above the 

threshold (𝑥𝑁𝐷𝐴) and the points of the curve below the lower dashed line define the 

number of the days that temperature is below the threshold (𝑥𝑁𝐷𝐵). In this example, 

there is not any point below the lower line between the first, second, and the third red 
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lines, which means the number of days that the temperature is below the threshold 

(𝑥𝑁𝐷𝐵) is zero for both substages two and three.  

To study the sensitivity to the moisture, the accumulated precipitation in stage 

𝑠 in county 𝑖 in year 𝑡 (𝑥𝑃𝑅𝐶𝑠,𝑡,𝑖) is created for each sub-stages in each group of the data.  

The lowest plot in shows the accumulated precipitation in corn’s growing period for 

Anne Arundel County in 2012. 
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Figure 6-5. The process of creating the variables for Anne Arundel County and in 2012 for 

different stages of the corn. Figure 6.5 (top) shows the accumulated GDD from planting until the 

harvesting time (blue lines) and the dates used to separate the four different stages of the corn growth 

period (red vertical lines). Figure 6.5 (middle) shows the minimum and the maximum temperature 

(blue and green lines, respectively) and the upper and lower temperature thresholds (purple and red 
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dashed lines). Figure 6.5 (bottom) shows the accumulated precipitation curve for predictive models in 

the next section. 

6.5.2 Data Partitioning and Cross-validation 

We use K-fold cross-validation to assess the out-of-sample predictive ability of 

the candidate models considered in this study. This approach begins by splitting the 

data into 𝐾 subsets.  In this study, I partitioned the data by year, i.e., 𝐾 = 14 is the 

number of the years in the dataset. Then, for each year 𝑡 = 1,… , 𝐾, the data for year 𝑡 

is “holdout” (reserved) while a predictive model is trained (developed) using the 

remaining (𝐾 − 1 = 13) years of data.  For example, for the first iteration, one year of 

the dataset is selected as the holdout (testing) set and the remaining 13 years of data 

represent the training data (Hastie et al., 2009).  

Using the training set, spatial grouping (see Section 0) is performed, and all 

candidate models (see Section 6.5.3) are developed for that spatial group. The trained 

model is then applied to the holdout (testing) year of data, and measures of 

error/performance are computed at the county level. That is, for each county, the model 

predictions for the held-out year are compared against that year’s observed values in 

the dataset.  The process is repeated 𝐾 times, incrementally “holding out” each subset 

(year) of data. This holdout validation provides an assessment of the ability of each 

candidate model to predict corn yield for “unseen” years. The computed performance 

metrics are used to compare candidate models.  

Spatial grouping 
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In this study, I seek to build models to predict corn yield at the county level.  In 

building these models, there is a trade-off between geographic specificity and data 

availability.  To address this, I consider three different spatial model resolutions by 

developing state-level, county-level, and cluster models:  

For the state-level modeling approach, all the data for Maryland (23 counties) 

are combined and used to train a single model for each fold of the cross-validation. The 

single state-level model is then applied to predict corn yields in each county for the 

holdout year using the county-specific explanatory variables. The performance metrics 

are then calculated for each county.   

The county-level modeling approach builds and tests a predictive model for 

each of the 23 counties in Maryland using yield and meteorological variables for that 

county. Although available data for each county is limited, focusing on one county may 

capture local geographic effects and reduce the error due to spatial correlation between 

data.   

The cluster-level modeling approach seeks to balance geographic specificity 

and data availability by creating geographic clusters of counties in the state.  I do this 

using k-mean time-series clustering based on (1) total precipitation in the growth period 

and (2) yield. I used a hierarchical method, 4 clusters, and dynamic time wrapping 

(DTW) distance for both clustering options. To implement the cluster-level modeling 

approach, k-means clustering (using either total precipitation or yield) is applied to the 

training data for each cross-validation partition 𝑡, 𝑖 = 1,… , 𝐾 and the counties are 

clustered. Then, each of the remaining candidate model assumptions are used to train 
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models for each cluster. To assess performance, the clusters determined using the 

training data are applied to partition the testing data, and the trained models are applied 

to generate estimates for each county. The performance metrics are calculated for each 

county.   

6.5.3 Candidate predictive models 

Predictive models can be simple, like a linear model and logistic regression, 

which are relatively easy to interpret but limited in the types of variable interactions 

they can capture. Predictive models can also involve more complex models that capture 

the influence of multiple interacting factors, often leading to more accurate results but 

with the trade-off of being harder to interpret. This study considers both conventional 

parametric regression and statistical learning (non-parametric) approaches to build 

candidate numerical models. Specifically, I considered linear regression, support vector 

machine, random forest, and bagged classification and regression tree (CART).  I also 

included a simple null model (i.e., a simple average of the response variable) as a 

baseline against which the other models can be compared. In this way, I seek to 

understand the advantages of modeling, such as the high interpretability of linear 

models or tree-based models' ability to capture the structure of the data. Table 6.3 

provides a brief description of each model.  Different growing stages, different spatial 

grouping, and different predictive modeling give us 60 different models to compare 

(see Figure 6.4). Table 6.4 provides all abbreviations for the models, stages, and spatial 

grouping approaches used in the rest of the paper and plots. 
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Table 6.3. Descriptions of candidate predictive models. 

Model Description 

Null  Mean A simple average of the response variable can be used as a baseline to 

compare other models against it. 

Parametric Linear regression Appropriate for observations with a linear relationship between the 

explanatory and response variables.  

Non-

Parametric 

Random forest An ensemble learning technique by integrating a large set of decision 

trees for classification or regression. In R.F. regression, a random set of 

variables and a sample of the dataset are selected for each tree. It reduces 

the bias brought by a single decision tree due to randomness.  

Support vector machine 

(SVM) 

A class of algorithms characterized by the usage of Kernels and acting 

on margins. In the SVM regression, first, input is mapped to a higher 

dimensional feature space using a kernel function. Then a linear model is 

built in the feature space to balance between reducing the errors and 

overfitting.  

Bagged CART A classification and regression (CART) model is a decision tree model 

with high variance, and the bagging technique can decrease its variance 

and improve its performance by combining the prediction from different 

machine learning methods together to make more accurate predictions 

than an individual model. 

 

Table 6.4. Models’ abbreviations and descriptions. 

Model Stage Spatial 

LR Linear regression S1 1 stage ST State 

SVM Support vector machine S4 4 stages CNT County 

RF Random forest S8 8 stages CLP Cluster based on 

Precipitation 

B.G. Bagged CART   CLY Cluster-based on Yield 

Null Mean     

6.6 Result 

In this section, the best predictive models for each county are identified based 

on the three out-of-sample predictive performance measures.  

The mean absolute error (𝑴𝑨𝑬) is the mean of the absolute residuals taken 

across all holdout sets (years): 

𝑀𝐴𝐸𝑖 =
∑ |𝑦𝑖,𝑡 − �̂�𝑖.𝑡|
𝐾
𝑡=1

𝐾
 

(7) 
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Where 𝑦𝑖,𝑡 is the actual (observed) value in year 𝑡 for county 𝑖, �̂�𝑖,𝑡 is the 

predicted value of the observation in year 𝑡 for county 𝑖, and 𝐾 is the number of holdout 

sets (years). 

The root means square error (𝑹𝑴𝑺𝑬) is the square root of the mean of the 

squared errors: 

𝑅𝑀𝑆𝐸𝑖 =
∑ (𝑦𝑖,𝑡 − �̂�𝑖,𝑡)

2𝐾
𝑡=1

𝐾
 

(8) 

Where quantities are as defined for equation (7).  

The 𝑹𝟐 conventionally used to measure fit can also be used as a predictive 

measure if holdout data are used to calculate it. 

𝑅2𝑖 =1−
∑ (𝑦𝑖,𝑡−�̂�𝑖,𝑡)

2𝐾
𝑡=1

∑ (𝑦𝑖,𝑡−�̅�𝑖)
2𝐾

𝑡=1
 

(9) 

Where �̅�𝑖 is the average of actual (observed) value in year 𝑡, and other quantities 

are as defined for equation (7.  

These performance metrics are computed for each county and explored from 

several perspectives. Section 6.6.1 identifies the “best model” for each county, while 

Section 6.6.2 explores temporal and spatial patterns of performance. Section 6.6.3 

investigates variable importance and influence.  

6.6.1 Selection of the best model for each county 

We computed each of three performance metrics for each of the 60 candidate 

models. Figure 6.6 plots observed yield (y-axis) versus my model estimates (x-axis) for 

each county in the state of Maryland for the model with the highest 𝑅2. The model with 
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the highest 𝑅2 is identified in the titled for each plot under the county name. Figure 6.6 

also lists the 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, and 𝑅2 for the presented model.  For example, for Allegany 

County, the best model based on 𝑅2 is SVM/S4/CNT which means using SVM 

predictive model and the 4 stages and county level data gives the lowest errors and 

performs better than all the other combinations of the models and data grouping. 

𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, and 𝑅2 are 0.16, 0.14, and 0.75, respectively. In these plots, if the model 

predictions were perfect, the black points would lie along the red 1:1 line. For example, 

for Allegany County, the SVM/S4/CNT model overestimated for lower yield and 

underestimated for higher yield.  
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Figure 6.6. Observed corn yield for each county in the state of Maryland during study time 

(1950-2012) vs. predictions made using the model with the best 𝑅2. 

6.6.2 The best model, temporal, and spatial selection pattern for each county 

To better understand spatial patterns in the data, Figure 6.7 uses colors to 

identify the modeling approach (first row of maps), the model stage (second row of 

maps), and the spatial grouping approach (third row) of maps that yields the highest 𝑅2 

(first column of maps), lowest 𝑀𝐴𝐸 (second column of maps) and lowest 𝑅𝑀𝑆𝐸 (third 

column of maps) for each county.  
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Figure 6.7. The characteristics of the “best models” for each county when considering four 

predictive models (first row of maps), three different temporal groupings (second row of maps), and 

four different spatial groupings (third row of maps). The best models for each county have been chosen 

based on the best 𝑅2 (first column of maps), MAE (second column of maps) and the RMSE (third 

column of maps). 

Looking across the first row, the SVM modeling approach “wins” in a large 

number of counties and while random forest comes “second.”  SVM consistently 

performs best for the counties along the Chesapeake Bay (coastal areas in the right-

middle portion of the state). Results are somewhat mixed for the model stages, with the 

stage 1 model producing the best performance most frequently.  Looking across the last 

row of maps, the plots do not show that any particular spatial grouping strategy 

performs consistently well.  

Figure 6.8 depicts a map of the performance metrics (𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, and 𝑅2) 

associated with the “best performing model” (where “best” is selected based on the 
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respective metric) for each county, as well as a map of the average yield for each county 

taken across the study time period. For all performance metrics, the darker color 

indicates better performance (i.e., smaller 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸, larger 𝑅2).  Larger 

agriculture production in Maryland is found in counties located along the Eastern Shore 

of the Chesapeake Bay and in the region north of the Bay. Better model performance 

(darker colors) is observed for counties located along the Chesapeake Bay, and 

particularly along the Eastern shore. However, weaker performance is seen in the 

northern region, potentially suggesting a weaker relationship between climate and 

agriculture productivity changes.   

 

Figure 6.8.  The average yield for each county in studying years and the error metrics for the 

best model for each county. 
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6.6.3 Variable importance and influence 

To further explore the relationship between climate variables and agricultural 

yield, the “best” performing models (selected based on 𝑅2) for Anne Arundel and 

Wicomico are selected for further analysis.  Both counties were associated with 

relatively strong predictive model performance (i.e., there appears to be predictive 

power of climate variables and agriculture yield).  The model with the best performance 

for Anne Arundel is a random forest model with 1 stage data and counties clustered by 

precipitation. The best performing model for Wicomico is an SVM model with eight 

stages and counties clustered by precipitation. Figure 6.9 a-b depicts the relative 

importance of each of the explanatory variables in these two models.  Because of the 

large number of explanatory variables (24) shown in Figure 6.9 a, I focus on the two 

most important variables for further analysis: number of the days with temperature 

above threshold in substage 7 (𝑥𝑁𝐷𝐴7) and the accumulated precipitation in substage 4 

(𝑥𝑃𝑅𝐶4).  

The second variable importance plot (Figure 6.9. b) for Anne Arundel County 

is based on a model that only has three variables. The number of days with temperatures 

above the threshold and accumulated precipitation is the most important variable, with 

number of days with temperatures below the threshold having little importance. 

For non-parametric models, partial dependence plots show the relationship 

between a covariate and the response variable by showing how the predicted quantity 

changes with changes in an input variable (holding all other quantities at their mean). 

The partial dependence plots (PDP) in Figure 6.9 c and Figure 6.9 d show the marginal 
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effect of the two selected variables (𝑥𝑁𝐷𝐴7 and 𝑋𝑃𝑅𝐶4 for Wicomico and 𝑥𝑃𝑅𝐶 and 𝑥𝑁𝐶𝐷 

for Anna Arundal) on predicted outcome (normalized yield). Figure 6.9 e and Figure 

6.9 f present conceptually analogous plots but varying two quantities at a time. The 

plotted relationship between variables and the predicted outcome can be linear, 

monotonic, or more complex. For example, in Figure 6.9 c, when I applied an SVM 

model, the single variable partial dependence plot shows a smooth monotonic 

relationship; however, in Figure 6.9 d, the relationship is much more complicated for 

the random forest model. Similar patterns of simplicity versus complexity are observed 

in the two-variable partial dependence plots (Figure 6.9 e-f) with SVM yield a smoothly 

varying surface. The random forest model yielded a more complicated surface with the 

“plaid-like” pattern apparent in the graph reflecting the tree-like structure used in the 

regression model. These two models provide an interesting example of better 

performance by a complex model using a small number of explanatory variables versus 

a “simpler model” mixed with many explanatory variables.  
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Figure 6.9.  Variable importance and partial dependence plot for the two most important 

variables for Anne Arundel and Wicomico County. 9. a.  

6.7 Discussion 

Accurate predictive models could provide valuable information for 

understanding the potential impacts of climate on the agriculture industry.  

Computationally efficient models that leverage readily available public information 

(rather than, for example, proprietary crop data) can help infrastructure and community 
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planners working in agriculture-dependent regions understand how climate is likely to 

change agriculture in the region and the associated infrastructure needs. Previous 

studies use site surveys and sample data to improve their models. However, this study 

shows how using various machine learning strategies, spatial groupings, and temporal 

can improve prediction when my available data is limited to publicly available climate 

and agriculture data, as may be the case for infrastructure and community planners.  

In the current research, I used data-driven approaches to predict corn yield in 

Maryland counties based on climate and precipitation data. I considered a null (mean; 

baseline) model, a linear regression approach, and three different machine learning 

methods. To help improve the accuracy of the models, I leveraged the spatial and 

temporal grouping. To have a more comprehensive and reliable measure of predictive 

capabilities used cross-validation. I found that machine learning methods performed 

better than linear regression in most of the counties. I found that spatial grouping and 

mostly clustering based on precipitation improves the accuracy of the predictions in 

most of the counties. I also explored variable importance and provided commentary on 

the potential trade-offs in modeling, including spatial specificity versus data quantity 

and the number of variables included in the model versus the inherent complexity of 

the modeling approach (algorithm).  

We judge that the modeling framework created in this study to predict the 

corn yield at the county level is applicable to other crops and geographic contexts. 



 

150 

 

Bibliography 

 

Alabbad, Y., Mount, J., Campbell, A. M., & Demir, I. (2021). Assessment of 

transportation system disruption and accessibility to critical amenities during 

flooding: Iowa case study. Science of The Total Environment, 793, 148476. 

https://doi.org/10.1016/j.scitotenv.2021.148476 

Alipour, A., Ahmadalipour, A., & Moradkhani, H. (2020). Assessing flash flood 

hazard and damages in the southeast United States. Journal of Flood Risk 

Management, 13(2), e12605. https://doi.org/10.1111/jfr3.12605 

Andersson, S., & Stålhult, S. (2014). Hospitals exposed to flooding in Manila City, 

Philippines: GIS analyses of alternative emergency routes and allocation of 

emergency service and temporary medical centre. 

http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-33042 

Andrade, M. A., Evett, S. R., & O’Shaughnessy, S. A. (2018). Machine learning 

algorithms applied to the forecasting of crop water stress indicators. 13. 

Andreucci, R., & Aktas, C. B. (2017). Vulnerability of coastal Connecticut to sea 

level rise: Land inundation and impacts to residential property. Civil 

Engineering and Environmental Systems, 34(2), 89–103. 

https://doi.org/10.1080/10286608.2017.1325878 

Arora, N. K. (2019). Impact of climate change on agriculture production and its 

sustainable solutions. Environmental Sustainability, 2(2), 95–96. 

https://doi.org/10.1007/s42398-019-00078-w 

Asadabadi, A., & Miller-Hooks, E. (2017). Assessing strategies for protecting 

transportation infrastructure from an uncertain climate future. Transportation 

Research Part A: Policy and Practice, 105, 27–41. 

https://doi.org/10.1016/j.tra.2017.08.010 

Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic 

Theory, 2(3), 244–263. https://doi.org/10.1016/0022-0531(70)90039-6 



 

151 

 

Azevedo de Almeida, B., & Mostafavi, A. (2016). Resilience of Infrastructure 

Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, 

and Implementation Challenges. Sustainability, 8(11), 1115. 

https://doi.org/10.3390/su8111115 

Bier, V. M., Zhou, Y., & Du, H. (2020). Game-theoretic modeling of pre-disaster 

relocation. The Engineering Economist, 65(2), 89–113. 

https://doi.org/10.1080/0013791X.2019.1677837 

Bills, T. S., & Walker, J. L. (2017). Looking beyond the mean for equity analysis: 

Examining distributional impacts of transportation improvements. Transport 

Policy, 54, 61–69. https://doi.org/10.1016/j.tranpol.2016.08.003 

Binder, S. B., & Greer, A. (2016). The Devil Is in the Details: Linking Home Buyout 

Policy, Practice, and Experience After Hurricane Sandy. Politics and 

Governance, 4(4), 97–106. https://doi.org/10.17645/pag.v4i4.738 

Blanchard, S. D., & Waddell, P. (2017). Assessment of Regional Transit Accessibility 

in the San Francisco Bay Area of California with UrbanAccess. 

Transportation Research Record, 2654(1), 45–54. 

https://doi.org/10.3141/2654-06 

Boeckmann, C. (n.d.). Growing Corn. Old Farmer’s Almanac. Retrieved November 

9, 2020, from https://www.almanac.com/plant/corn 

Boesch, D. F., Atkinson, L. P., Boicourt, W. C., Boon, J. D., Cahoon, D. R., 

Dalrymple, R. A., Ezer, T., Horton, B. P., Johnson, Z. P., & Kopp, R. E. 

(2013). Updating Maryland’s sea-level rise projections. 

Boesch, D. F., Boicourt, W. C., Cullather, R. I., Ezer, T., Galloway Jr, G. E., Johnson, 

Z. P., Kilbourne, K. H., Kirwan, M. L., Kopp, R. E., & Land, S. (2018). Sea-

level rise: Projections for Maryland 2018. 

Boon, J. D. (2012). Evidence of Sea Level Acceleration at U.S. and Canadian Tide 

Stations, Atlantic Coast, North America. Journal of Coastal Research, 28(6), 

1437–1445. https://doi.org/10.2112/JCOASTRES-D-12-00102.1 

 



 

152 

 

   

Bremmer D, Cotton KC, Cotey D, Prestrud CE, Westby G. Measuring Congestion: 

Learning from Operational Data. Transportation Research Record. 

2004;1895(1):188-196. doi:10.3141/1895-24 

  Brody, S., Blessing, R., Sebastian, A., & Bedient, P. (2014). Examining the impact 

of land use/land cover characteristics on flood losses. Journal of 

Environmental Planning and Management, 57(8), 1252–1265. 

Brody, S. D., Highfield, W. E., Blessing, R., Makino, T., & Shepard, C. C. (2017). 

Evaluating the effects of open space configurations in reducing flood damage 

along the Gulf of Mexico coast. Landscape and Urban Planning, 167, 225–

231. 

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. 

M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. 

(2003). A framework to quantitatively assess and enhance the seismic 

resilience of communities. Earthquake Spectra, 19(4), 733–752. 

Bukvic, A., & Harrald, J. (2019). Rural versus urban perspective on coastal flooding: 

The insights from the U.S. Mid-Atlantic communities. Climate Risk 

Management, 23, 7–18. https://doi.org/10.1016/j.crm.2018.10.004 

Cai, Y., Guan, K., Lobell, D., Potgieter, A. B., Wang, S., Peng, J., Xu, T., Asseng, S., 

Zhang, Y., You, L., & Peng, B. (2019). Integrating satellite and climate data 

to predict wheat yield in Australia using machine learning approaches. 

Agricultural and Forest Meteorology, 274, 144–159. 

https://doi.org/10.1016/j.agrformet.2019.03.010 

Calil, J., Beck, M. W., Gleason, M., Merrifield, M., Klausmeyer, K., & Newkirk, S. 

(2015). Aligning natural resource conservation and flood hazard mitigation in 

California. PLoS One, 10(7), e0132651. 

Castrucci, L., & Tahvildari, N. (2017). Hydrodynamic modeling of storm surge 

flooding in the transportation infrastructure in southeast virginia. OCEANS 

2017 - Anchorage, 1–8. 



 

153 

 

Castrucci, L., & Tahvildari, N. (2018). Modeling the impacts of sea level rise on 

storm surge inundation in flood-prone urban areas of Hampton Roads, 

Virginia. Marine Technology Society Journal, 52(2), 92–105. 

Chami, D. E., & Moujabber, M. E. (2016). Drought, climate change and sustainability 

of water in agriculture: A roadmap towards the NWRS2. South African 

Journal of Science, 112(9–10), 1–4. 

https://doi.org/10.17159/sajs.2016/20150457. 

Chang, H., Lafrenz, M., Jung, I.-W., Figliozzi, M., Platman, D., & Pederson, C. 

(2010). Potential Impacts of Climate Change on Flood-Induced Travel 

Disruptions: A Case Study of Portland, Oregon, USA. Annals of the 

Association of American Geographers, 100(4), 938–952. 

https://doi.org/10.1080/00045608.2010.497110 

Chang, S. E., & Nojima, N. (2001). Measuring post-disaster transportation system 

performance: The 1995 Kobe earthquake in comparative perspective. 

Transportation Research Part A: Policy and Practice, 35(6), 475–494. 

https://doi.org/10.1016/S0965-8564(00)00003-3. 

Chang, S. E. (2003). Transportation planning for disasters: an accessibility approach. 

Environment and Planning A, 35(6), 1051-1072. 

Change, I. P. O. C. (2014). Ipcc. Climate Change. 

Chanse, V. (2016). Engaging Stakeholders in the Sea Level Rise Design Process: A 

Pilot Project on Maryland’s Eastern Shore. International Journal of Climate 

Change: Impacts & Responses, 8(3). 

Chen, X.-Z., Lu, Q.-C., Peng, Z.-R., & Ash, J. E. (2015). Analysis of Transportation 

Network Vulnerability under Flooding Disasters. Transportation Research 

Record, 2532(1), 37–44. https://doi.org/10.3141/2532-05 

Chen, Z., Guo, Y., Stuart, A. L., Zhang, Y., & Li, X. (2019). Exploring the equity 

performance of bike-sharing systems with disaggregated data: A story of 

southern Tampa. Transportation Research Part A: Policy and Practice, 130, 

529–545. https://doi.org/10.1016/j.tra.2019.09.048 



 

154 

 

Cian, F., Marconcini, M., Ceccato, P., & Giupponi, C. (2018). Flood depth estimation 

by means of high-resolution SAR images and lidar data. Natural Hazards and 

Earth System Sciences, 18(11), 3063–3084. https://doi.org/10.5194/nhess-18-

3063-2018 

Clark, G. E., Moser, S. C., Ratick, S. J., Dow, K., Meyer, W. B., Emani, S., Jin, W., 

Kasperson, J. X., Kasperson, R. E., & Schwarz, H. E. (1998). Assessing the 

vulnerability of coastal communities to extreme storms: The case of Revere, 

MA., USA. Mitigation and Adaptation Strategies for Global Change, 3(1), 

59–82. 

Climate change widespread, rapid, and intensifying – IPCC — (2021). Retrieved 

September 14, 2021, from https://www.ipcc.ch/2021/08/09/ar6-wg1-

20210809-pr/ 

Costal Hazard System (2019). Retrieved 2019 from 

https://chs.erdc.dren.mil/Login/Login?ReturnUrl=%2fStorm%2fIndex 

Cole, W. D. (2008). Sea level rise: Technical guidance for Dorchester County. 

Maryland Eastern Shore Resource Conservation & Development Council. 

Coles, D., Yu, D., Wilby, R. L., Green, D., & Herring, Z. (2017). Beyond ‘flood 

hotspots’: Modelling emergency service accessibility during flooding in York, 

UK. Journal of Hydrology, 546, 419–436. 

https://doi.org/10.1016/j.jhydrol.2016.12.013 

Cox, D., Arikawa, T., Barbosa, A., Guannel, G., Inazu, D., Kennedy, A., Li, Y., Mori, 

N., Perry, K., Prevatt, D., Roueche, D., Shimozono, T., Simpson, C., 

Shimakawa, E., Shimura, T., & Slocum, R. (2019). Hurricanes Irma and 

Maria post-event survey in US Virgin Islands. Coastal Engineering Journal, 

61(2), 121–134. https://doi.org/10.1080/21664250.2018.1558920 

Crowell, M., Coulton, K., Johnson, C., Westcott, J., Bellomo, D., Edelman, S., & 

Hirsch, E. (2010). An Estimate of the U.S. Population Living in 100-Year 

Coastal Flood Hazard Areas. Journal of Coastal Research, 26(2), 201–211. 

https://doi.org/10.2112/JCOASTRES-D-09-00076.1 



 

155 

 

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network 

research. InterJournal, Complex Systems, 1695(5), 1–9. 

Cutter, S. (2016). The landscape of disaster resilience indicators in the USA. Natural 

Hazards: Journal of the International Society for the Prevention and 

Mitigation of Natural Hazards, 80(2), 741–758. 

Cutter, S. L. (2003). Social Vulnerability to Environmental Hazards*—Cutter—

2003—Social Science Quarterly—Wiley Online Library. 

https://onlinelibrary.wiley.com/doi/epdf/10.1111/1540-6237.8402002 

Cutter, S. L. (2013). Building disaster resilience: Steps toward sustainability. 

Challenges in Sustainability, 1, 72+. 

Cutter, S. L. (2014). Building Disaster Resilience: Steps toward Sustainability. 

Challenges in Sustainability, 1(2), 72–79. 

https://doi.org/10.12924/cis2013.01020072 

Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. 

(2008). A place-based model for understanding community resilience to 

natural disasters. Global Environmental Change, 18(4), 598–606. 

https://doi.org/10.1016/j.gloenvcha.2008.07.013 

Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster resilience indicators for 

benchmarking baseline conditions. Journal of Homeland Security and 

Emergency Management, 7(1). 

Cutter, S. L., & Emrich, C. T. (2006). Moral Hazard, Social Catastrophe: The 

Changing Face of Vulnerability along the Hurricane Coasts. The ANNALS of 

the American Academy of Political and Social Science, 604(1), 102–112. 

https://doi.org/10.1177/0002716205285515 

Das, B., Nair, B., Arunachalam, V., Reddy, K. V., Venkatesh, P., Chakraborty, D., & 

Desai, S. (2020). Comparative evaluation of linear and nonlinear weather-

based models for coconut yield prediction in the west coast of India. 

International Journal of Biometeorology, 64(7), 1111–1123. 

https://doi.org/10.1007/s00484-020-01884-2 



 

156 

 

Dawson, R. J., Peppe, R., & Wang, M. (2011a). An agent-based model for risk-based 

flood incident management. Natural Hazards, 59(1), 167–189. 

Dawson, R. J., Peppe, R., & Wang, M. (2011b). An agent-based model for risk-based 

flood incident management. Natural Hazards, 59(1), 167–189. 

https://doi.org/10.1007/s11069-011-9745-4 

Dekalb. (2020). Corn Growth Stages and Growing Degree Units. 

https://www.dekalbasgrowdeltapine.com/en-us/agronomy/corn-growth-stages-

and-gdu-requirements.html 

Delbosc, A., & Currie, G. (2011). Using Lorenz curves to assess public transport 

equity. Journal of Transport Geography, 19(6), 1252-1259. 

Department of Range and Watershed Management, Agriculture College and Natural 

Resources of Darab, Shiraz University, Iran, Mokarram, M., Bijanzadeh, E., 

& Department of Agroecology, Agriculture College and Natural Resources of 

Darab, Shiraz University, Iran. (2016). Prediction of biological and grain yield 

of barley using multiple regression and artificial neural network models. 

Australian Journal of Crop Science, 10(6), 895–903. 

https://doi.org/10.21475/ajcs.2016.10.06.p7634 

Deshmukh, A., Ho Oh, E., & Hastak, M. (2011). Impact of flood damaged critical 

infrastructure on communities and industries. Built Environment Project and 

Asset Management, 1(2), 156–175. 

https://doi.org/10.1108/20441241111180415 

Dixon, B. L., Hollinger, S. E., Garcia, P., & Tirupattur, V. (1994). Estimating Corn 

Yield Response Models to Predict Impacts of Climate Change. Journal of 

Agricultural and Resource Economics, 19(1), 58–68. JSTOR. 

Dong, Y., & Frangopol, D. M. (2017). Adaptation optimization of residential 

buildings under hurricane threat considering climate change in a lifecycle 

context. Journal of Performance of Constructed Facilities, 31(6), 04017099. 

Donner, W., & Rodríguez, H. (2008). Population Composition, Migration and 

Inequality: The Influence of Demographic Changes on Disaster Risk and 



 

157 

 

Vulnerability. Social Forces, 87(2), 1089–1114. 

https://doi.org/10.1353/sof.0.0141 

Douglas, E., Jacobs, J., Hayhoe, K., Silka, L., Daniel, J., Collins, M., Alipour, A., 

Anderson, B., Hebson, C., & Mecray, E. (2017). Progress and challenges in 

incorporating climate change information into transportation research and 

design. Journal of Infrastructure Systems, 23(4), 04017018. 

Douglass, S. L., & Krolak, J. (2008). Highways in the coastal environment: 

Hydraulic engineering circular 25. United States. Federal Highway 

Administration. Office of Bridge Technology. 

Douglass, S. L., Webb, B. M., Kilgore, R., & Keenan, C. (2014). Highways in the 

coastal environment: Assessing extreme events. United States. Federal 

Highway Administration. 

Dower, M. (2013). Rural development in the New Paradigm. New Paradigm in 

Action–on Successful Partnerships. Ministry of Regional Development, 

Warsaw, 30–50. 

Driving emergencies—Driving through flood water. (2021). Smart Driving. 

https://smartdriving.co.uk/Driving/Driving_emergencies/Floods.htm 

Drummond, S. T., Sudduth, K. A., Joshi, A., & Birrell, S. J. (2003). Statistical and 

Neural Methods for Site-Specific Yield Prediction. 46, 12. 

Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 

years. Nature, 436(7051), 686–688. 

Emrich, C. T., & Cutter, S. L. (2011). Social Vulnerability to Climate-Sensitive 

Hazards in the Southern United States. Weather, Climate, and Society, 3(3), 

193–208. https://doi.org/10.1175/2011WCAS1092.1 

Emrich, C. T., Tate, E., Larson, S. E., & Zhou, Y. (2020a). Measuring social equity in 

flood recovery funding. Environmental Hazards, 19(3), 228–250. 

https://doi.org/10.1080/17477891.2019.1675578 



 

158 

 

Emrich, C. T., Tate, E., Larson, S. E., & Zhou, Y. (2020b). Measuring social equity in 

flood recovery funding. Environmental Hazards, 19(3), 228–250. 

https://doi.org/10.1080/17477891.2019.1675578 

Ermagun, A., & Tilahun, N. (2020). Equity of transit accessibility across Chicago. 

Transportation Research Part D: Transport and Environment, 86, 102461. 

https://doi.org/10.1016/j.trd.2020.102461. 

Ermagun, A., Levinson, D., 2015. Accessibility and Transit Performance. Retrieved 

from 

https://conservancy.umn.edu/bitstream/handle/11299/179832/AccessibilityTra

nsitPerformance.pdf?sequence=1&isAllowed=yFang, J., Wahl, T., Fang, J., 

Sun, X., Kong, F., & Liu, M. (2020). Compound flood potential from storm 

surge and heavy precipitation in coastal China. Hydrology and Earth System 

Sciences Discussions, 1–24. https://doi.org/10.5194/hess-2020-377 

FAO (Ed.). (2016). Climate change, agriculture and food security. FAO. 

Faturechi, R., & Miller-Hooks, E. (2014). Travel time resilience of roadway networks 

under disaster. Transportation Research Part B: Methodological, 70, 47–64. 

https://doi.org/10.1016/j.trb.2014.08.007 

Feagin, R. A., Bridges, T. S., Bledsoe, B., Losos, E., Ferreira, S., Corwin, E., Lodder, 

Q., Beck, M. W., Reguero, B., Sutton-Grier, A., Figlus, J., Palmer, R., Nelson, 

D. R., Smith, C., Olander, L., Silliman, B., Pietersen, H., Costanza, R., 

Gittman, R. K., … Guidry, T. (2021). Infrastructure investment must 

incorporate Nature’s lessons in a rapidly changing world. One Earth, 4(10), 

1361–1364. https://doi.org/10.1016/j.oneear.2021.10.003 

Feng, H., Bai, F., & Xu, Y. (2019). Identification of critical roads in urban 

transportation network based on GPS trajectory data. Physica A: Statistical 

Mechanics and Its Applications, 535, 122337. 

Feng, T., & Zhang, J. (2014). Multicriteria evaluation on accessibility-based 

transportation equity in road network design problem. Journal of Advanced 

Transportation, 48(6), 526–541. https://doi.org/10.1002/atr.1202 



 

159 

 

Fereshtehpour Mohammad, Burian Steven J., & Karamouz Mohammad. (2018). 

Flood Risk Assessments of Transportation Networks Utilizing Depth-

Disruption Function. World Environmental and Water Resources Congress 

2018, 134–142. https://doi.org/10.1061/9780784481431.014 

Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L., & Lewis, B. (2011). 

A social vulnerability index for disaster management. Journal of Homeland 

Security and Emergency Management, 8(1), 0000102202154773551792. 

Freudenberg, R., Calvin, E., Tolkoff, L., & Brawley, D. (2016). Buy-in for buyouts: 

The case for managed retreat from flood zones. Lincoln Institute of Land 

Policy Cambridge, MA. 

Furno, A., El Faouzi, N.-E., Sharma, R., & Zimeo, E. (2019). Fast Approximated 

Betweenness Centrality of Directed and Weighted Graphs. In L. M. Aiello, C. 

Cherifi, H. Cherifi, R. Lambiotte, P. Lió, & L. M. Rocha (Eds.), Complex 

Networks and Their Applications VII (pp. 52–65). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-05411-3_5 

Furuta, H., Frangopol, D. M., & Nakatsu, K. (2011). Life-cycle cost of civil 

infrastructure with emphasis on balancing structural performance and seismic 

risk of road network. Structure and Infrastructure Engineering, 7(1–2), 65–

74. 

Gandhi, N., Armstrong, L. J., Petkar, O., & Tripathy, A. K. (2016). Rice crop yield 

prediction in India using support vector machines. 2016 13th International 

Joint Conference on Computer Science and Software Engineering (JCSSE), 

1–5. https://doi.org/10.1109/JCSSE.2016.7748856 

Gillespie-Marthaler, L., Nelson, K., Baroud, H., & Abkowitz, M. (2019). Selecting 

indicators for assessing community sustainable resilience. Risk Analysis, 

39(11), 2479–2498. 

Gini, C. (1912). Variabilità e mutabilità. Reprinted in Memorie di metodologica 

statistica (Ed. Pizetti E. 



 

160 

 

Gladwin, H. (1997). Warning and evacuation: A night for hard houses. Hurricane 

Andrew: Ethnicity, Gender and the Sociology of Disasters, 52–74. 

González Sánchez, A., Frausto Solís, J., & Ojeda Bustamante, W. (2014). Predictive 

ability of machine learning methods for massive crop yield prediction. 

Spanish Journal of Agricultural Research (2171-9292), 12(2). 

http://repositorio.imta.mx/handle/20.500.12013/1927 

Green, D., Yu, D., Pattison, I., Wilby, R., Bosher, L., Patel, R., Thompson, P., 

Trowell, K., Draycon, J., & Halse, M. (2017). City-scale accessibility of 

emergency responders operating during flood events. Natural Hazards and 

Earth System Sciences, 17(1), 1–16. 

Gu, Y., Fu, X., Liu, Z., Xu, X., & Chen, A. (2020). Performance of transportation 

network under perturbations: Reliability, vulnerability, and resilience. 

Transportation Research Part E: Logistics and Transportation Review, 133, 

101809. https://doi.org/10.1016/j.tre.2019.11.003 

Guo, Y., Chen, Z., Stuart, A., Li, X., & Zhang, Y. (2018). Measuring Impact of 

Emerging Transportation Technologies on Community Equity in Economy, 

Environment and Public Health [Report]. 

https://ecommons.cornell.edu/handle/1813/69733 

Haimes, Y. Y. (2002). A risk assessment methodology for critical transportation 

infrastructure. Virginia Transportation Research Council. 

Hardy, R. D., Milligan, R. A., & Heynen, N. (2017). Racial coastal formation: The 

environmental injustice of colorblind adaptation planning for sea-level rise. 

Geoforum, 87, 62–72. https://doi.org/10.1016/j.geoforum.2017.10.005 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning 

Data Mining, Inference, and Prediction (Second). 

Hauer, M. E., Evans, J. M., & Mishra, D. R. (2016). Millions projected to be at risk 

from sea-level rise in the continental United States. Nature Climate Change, 

6(7), 691–695. 



 

161 

 

Hausfather, Z., & Peters, G. P. (2020). Emissions – the ‘business as usual’ story is 

misleading. Nature, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-

00177-3 

Hecht, J. S., & Kirshen, P. H. (2019). Minimizing Urban Floodplain Management 

Regrets under Deeply Uncertain Climate Change. Journal of Water Resources 

Planning and Management, 145(2), 04018096. 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0001012 

Highfield, W. E., & Brody, S. D. (2013). Evaluating the effectiveness of local 

mitigation activities in reducing flood losses. Natural Hazards Review, 14(4), 

229–236. 

Highfield, W. E., Brody, S. D., & Blessing, R. (2014). Measuring the impact of 

mitigation activities on flood loss reduction at the parcel level: The case of the 

clear creek watershed on the upper Texas coast. Natural Hazards, 74(2), 687–

704. https://doi.org/10.1007/s11069-014-1209-1 

Hijmans, R. J., Etten, J. van, Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, 

R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Ghosh, A., Golicher, D., 

Gray, J., Greenberg, J. A., Hiemstra, P., Hingee, K., Geosciences, I. for M. A., 

Karney, C., … Wueest, R. (2021). raster: Geographic Data Analysis and 

Modeling (3.4-10) [Computer software]. https://CRAN.R-

project.org/package=raster 

Holland: Adaptation in natural and artificial systems:... - Google Scholar. (n.d.). 

Retrieved December 28, 2021, from 

https://scholar.google.com/scholar_lookup?title=Adaptation%20in%20natural

%20and%20artificial%20systems&publication_year=1992&author=J.H.%20

Holland 

Hosseini Nourzad Seyed Hossein & Pradhan Anu. (2016a). Vulnerability of 

Infrastructure Systems: Macroscopic Analysis of Critical Disruptions on Road 

Networks. Journal of Infrastructure Systems, 22(1), 04015014. 

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000266 



 

162 

 

Hosseini Nourzad Seyed Hossein & Pradhan Anu. (2016b). Vulnerability of 

Infrastructure Systems: Macroscopic Analysis of Critical Disruptions on Road 

Networks. Journal of Infrastructure Systems, 22(1), 04015014. 

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000266 

Hu, F., Yang, S., & Xu, W. (2014). A non-dominated sorting genetic algorithm for 

the location and districting planning of earthquake shelters. International 

Journal of Geographical Information Science, 28(7), 1482–1501. 

https://doi.org/10.1080/13658816.2014.894638. 

Hummel, M. A., Griffin, R., Arkema, K., & Guerry, A. D. (2021). Economic 

evaluation of sea-level rise adaptation strongly influenced by hydrodynamic 

feedbacks. Proceedings of the National Academy of Sciences, 

118(29).Hummel, M. A., Siwe, A. T., Chow, A., Stacey, M. T., & Madanat, S. 

M. (2020). Interacting Infrastructure Disruptions Due to Environmental 

Events and Long-Term Climate Change. Earth’s Future, 8(10), 

e2020EF001652. https://doi.org/10.1029/2020EF001652 

Huong, N. T. L., Bo, Y. S., & Fahad, S. (2019). Economic impact of climate change 

on agriculture using Ricardian approach: A case of northwest Vietnam. 

Journal of the Saudi Society of Agricultural Sciences, 18(4), 449–457. 

https://doi.org/10.1016/j.jssas.2018.02.006 

Jacobs, J. M., Cattaneo, L. R., Sweet, W., & Mansfield, T. (2018). Recent and Future 

Outlooks for Nuisance Flooding Impacts on Roadways on the U.S. East Coast. 

Transportation Research Record, 2672(2), 1–10. 

https://doi.org/10.1177/0361198118756366 

Jacobs, P., Blom, G., & van der Linden, T. (2000). Keynote Paper 2 Climatological 

Changes in Storm Surges and River Discharges: The Impact on Flood 

Protection and Salt Intrusion in the Rhine-Meuse Delta. ECLAT-2, 35. 

Jaikla, R., Auephanwiriyakul, S., & Jintrawet, A. (2008). Rice yield prediction using 

a Support Vector Regression method. 2008 5th International Conference on 

Electrical Engineering/Electronics, Computer, Telecommunications and 



 

163 

 

Information Technology, 1, 29–32. 

https://doi.org/10.1109/ECTICON.2008.4600365 

Jasour, Z. Y., Reilly, A. C., Tonn, G. L., & Ferreira, C. M. (2022). Roadway flooding 

as a bellwether for household retreat in rural, coastal regions vulnerable to 

sea-level rise. Climate Risk Management, 36, 100425. 

https://doi.org/10.1016/j.crm.2022.100425 

Jenelius, E., & Mattsson, L.-G. (2012). Road network vulnerability analysis of area-

covering disruptions: A grid-based approach with case study. Transportation 

Research Part A: Policy and Practice, 46(5), 746–760. 

https://doi.org/10.1016/j.tra.2012.02.003. 

Jenelius, E., & Mattsson, L. G. (2015). Road network vulnerability analysis: 

Conceptualization, implementation and application. Computers, environment 

and urban systems, 49, 136-147. 

Jenelius, E., Petersen, T., & Mattsson, L.-G. (2006). Importance and exposure in road 

network vulnerability analysis. Transportation Research Part A: Policy and 

Practice, 40(7), 537–560. 

Johnson, C. A., Reilly, A. C., Flage, R., & Guikema, S. D. (2021). Characterizing the 

robustness of power-law networks that experience spatially-correlated 

failures. Proceedings of the Institution of Mechanical Engineers, Part O: 

Journal of Risk and Reliability, 235(3), 403–415. 

https://doi.org/10.1177/1748006X20974476 

Jotshi, A., Gong, Q., & Batta, R. (2009). Dispatching and routing of emergency 

vehicles in disaster mitigation using data fusion. Socio-Economic Planning 

Sciences, 43(1), 1–24. 

Ju, Y., Lindbergh, S., He, Y., & Radke, J. D. (2019). Climate-related uncertainties in 

urban exposure to sea level rise and storm surge flooding: A multi-temporal 

and multi-scenario analysis. Cities, 92, 230–246. 

Juntunen, L. (2004). Addressing social vulnerability to hazards [PhD Thesis]. 

University of Oregon Eugene. 



 

164 

 

Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: 

Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 

17(1), 1–15. https://doi.org/10.1016/S2095-3119(17)61794-5 

Kaul, M., Hill, R. L., & Walthall, C. (2005). Artificial neural networks for corn and 

soybean yield prediction. Agricultural Systems, 85(1), 1–18. 

https://doi.org/10.1016/j.agsy.2004.07.009 

Kermanshah, A., & Derrible, S. (2017). Robustness of road systems to extreme 

flooding: Using elements of GIS, travel demand, and network science. 

Natural Hazards, 86(1), 151–164. 

Kim Nari & Lee Yang-Won. (2016). Machine Learning Approaches to Corn Yield 

Estimation Using Satellite Images and Climate Data: A Case of Iowa State -

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and 

Cartography | Korea Science. 

https://www.koreascience.or.kr/article/JAKO201625752504104.page 

Kirshen, P., Knee, K., & Ruth, M. (2008). Climate change and coastal flooding in 

Metro Boston: Impacts and adaptation strategies. Climatic Change, 90(4), 

453–473. https://doi.org/10.1007/s10584-008-9398-9 

Krishnamurthy, P. K. (2012). Disaster-induced migration: Assessing the impact of 

extreme weather events on livelihoods. Environmental Hazards, 11(2), 96–

111. https://doi.org/10.1080/17477891.2011.609879 

Leng, G., & Hall, J. W. (2020). Predicting spatial and temporal variability in crop 

yields: An inter-comparison of machine learning, regression and process-

based models. Environmental Research Letters, 15(4), 044027. 

https://doi.org/10.1088/1748-9326/ab7b24. 

Li, L., Uyttenhove, P., & Van Eetvelde, V. (2020). Planning green infrastructure to 

mitigate urban surface water flooding risk–A methodology to identify priority 

areas applied in the city of Ghent. Landscape and Urban Planning, 194, 

103703. 



 

165 

 

Li, Q., Zhang, Y. H., & Zhang, J. (2009). Practice and enlightenment of coordinated 

development between urban and rural areas in foreign countries. World 

Agriculture, 6, 25-28. 

Litman, T. (2008). Evaluating accessibility for transportation planning. Victoria 

Transport Policy Institute, Victoria, Canada. 

Litman, T. (2012). Evaluating accessibility for transportation planning: Measuring 

people’s ability to reach desired goods and activities. Victoria Transport 

Policy Institute. 

Logan, T. M., Williams, T. G., Nisbet, A. J., Liberman, K. D., Zuo, C. T., & 

Guikema, S. D. (2019). Evaluating urban accessibility: Leveraging open-

source data and analytics to overcome existing limitations. Environment and 

Planning B: Urban Analytics and City Science, 46(5), 897–913. 

Longenecker, H. E. (2019). Evaluating the Effects of Induced Development on Flood 

Hazards and Losses in U.S. Communities with Levees [Ph.D., University of 

Colorado at Boulder]. 

https://www.proquest.com/docview/2299814349/abstract/DA63194F1249485

APQ/1 

Lu, B., & Lu, M. B. (2018). Package ‘shp2graph.’ 

Lu, Q.-C., & Peng, Z.-R. (2011). Vulnerability analysis of transportation network 

under scenarios of sea level rise. Transportation Research Record, 2263(1), 

174–181. 

Lu, Q.-C., Peng, Z.-R., & Zhang, J. (2015). Identification and Prioritization of 

Critical Transportation Infrastructure: Case Study of Coastal Flooding. 

Journal of Transportation Engineering, 141(3), 04014082. 

https://doi.org/10.1061/(ASCE)TE.1943-5436.0000743 

Lunderville, N. (2011). Irene recovery report. A Stronger Future. A Report to the 

Governor of Vermont. State of Vermont, Montpelier, Vermont. 

Malek, K., Adam, J. C., Stöckle, C. O., & Peters, R. T. (2018). Climate change 

reduces water availability for agriculture by decreasing non-evaporative 



 

166 

 

irrigation losses. Journal of Hydrology, 561, 444–460. 

https://doi.org/10.1016/j.jhydrol.2017.11.046 

Madanat, S. M., Papakonstantinou, I., & Lee, J. (2019). The benefits of cooperative 

policies for transportation network protection from sea level rise: A case study 

of the San Francisco Bay Area. Transport Policy, 76, A1-A9. 

Maryland’s GIS Data Catalog. (2020). Retrieved April 9, 2021, from 

https://data.imap.maryland.gov/ 

Matsumura,  k, C. F. Gaitan, K. Sugimoto, & A.J. Cannon. (2015). Maize yield 

forecasting by linear regression and artificial neural networks in Jilin, China 

| The Journal of Agricultural Science | Cambridge Core. 

https://www.cambridge.org/core/journals/journal-of-agricultural-

science/article/maize-yield-forecasting-by-linear-regression-and-artificial-

neural-networks-in-jilin-china/18FABBC7B735E5237CBC8D23B4AD7416 

Mattsson, L.-G., & Jenelius, E. (2015). Vulnerability and resilience of transport 

systems–A discussion of recent research. Transportation Research Part A: 

Policy and Practice, 81, 16–34. 

Mayaud, J. R., Tran, M., & Nuttall, R. (2019). An urban data framework for assessing 

equity in cities: Comparing accessibility to healthcare facilities in Cascadia. 

Computers, Environment and Urban Systems, 78, 101401. 

https://doi.org/10.1016/j.compenvurbsys.2019.101401 

McLean, R. F., Tsyban, A., Burkett, V., Codignotto, J. O., Forbes, D. L., Mimura, N., 

Beamish, R. J., & Ittekkot, V. (2001). Coastal zones and marine ecosystems. 

Climate Change, 343–379. 

McMichael, C., Barnett, J., & McMichael, A. J. (2012). An Ill Wind? Climate 

Change, Migration, and Health. Environmental Health Perspectives, 120(5), 

646–654. https://doi.org/10.1289/ehp.1104375 

Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. 

Landscape and Urban Planning, 147, 38–49. 



 

167 

 

Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The 

impact of climate change on global tropical cyclone damage. Nature Climate 

Change, 2(3), 205–209. https://doi.org/10.1038/nclimate1357 

Miller Hesed, C. D., & Paolisso, M. (2015). Cultural knowledge and local 

vulnerability in African American communities. Nature Climate Change, 

5(7), 683–687. https://doi.org/10.1038/nclimate2668 

Mitchell: An introduction to genetic algorithms—Google Scholar. (n.d.). Retrieved 

December 28, 2021, from 

https://scholar.google.com/scholar_lookup?title=An%20introduction%20to%

20genetic%20algorithms&publication_year=1996&author=M.%20Mitchell 

Mora, C., Frazier, A. G., Longman, R. J., Dacks, R. S., Walton, M. M., Tong, E. J., 

Sanchez, J. J., Kaiser, L. R., Stender, Y. O., Anderson, J. M., Ambrosino, C. 

M., Fernandez-Silva, I., Giuseffi, L. M., & Giambelluca, T. W. (2013). The 

projected timing of climate departure from recent variability. Nature, 

502(7470), 183–187. https://doi.org/10.1038/nature12540 

Morrow, V. (1999). Conceptualising social capital in relation to the well-being of 

children and young people: A critical review. The Sociological Review, 47(4), 

744–765. 

Moser, S. C., Davidson, M. A., Kirshen, P., Mulvaney, P., Murley, J. F., Neumann, J. 

E., Petes, L., Reed, D., Melillo, J. M., & Richmond, T. T. (2014). Coastal 

zone development and ecosystems. Climate Change Impacts in the United 

States: The Third National Climate Assessment, 579, 591. 

Nafziger, E. (2009). Corn. In Illinois Agronomy Handbook. 

Nagurney, A., & Qiang, Q. (2012). Fragile networks: Identifying vulnerabilities and 

synergies in an uncertain age. International Transactions in Operational 

Research, 19(1–2), 123–160. 

National programs (2018, February 5). High tide in Dorchester. [video]. YouTube. 

https://www.youtube.com/watch?v=XNA7nopSESQ&t=7s. 



 

168 

 

Scribbr. (2020, August 20). Develop a theoretical framework in three 

steps [Video]. YouTube. https://youtu.be/4y1BAqOnhMM 

NDAWN center. (2018). NDAWN Corn Growing Degree Days Information. 

NDAWN Center. https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-

days.html 

New Hampshire Coastal Risk and Hazards Commission. (2016). Preparing New 

Hampshire for Projected Storm Surge, Sea-Level Rise, and Extreme 

Precipitation: Final Report and Recommendations. 

Nicholls, R. J. (2011). Planning for the impacts of sea level rise. Oceanography, 

24(2), 144–157. 

NOAA-NCDC. (2018). Select a Location | Data Tools | Climate Data Online (CDO) 

| National Climatic Data Center (NCDC). NOAA. 

https://www.ncdc.noaa.gov/cdo-web/datatools/selectlocation 

Nourzad, S. H. H., & Pradhan, A. (2014). Resiliency of Intelligent Transportation 

Systems to Critical Disruptions: An Eigenvalue-Based Viewpoint. Computing 

in Civil and Building Engineering (2014), 1731–1738. 

https://doi.org/10.1061/9780784413616.215 

Oliveira, E. L. de, Portugal, L. da S., & Junior, W. P. (2014). Determining Critical 

Links in a Road Network: Vulnerability and Congestion Indicators. Procedia - 

Social and Behavioral Sciences, 162, 158–167. 

https://doi.org/10.1016/j.sbspro.2014.12.196 

Oliveira, M. P. G. de, & Rodrigues, L. H. A. (2020). How good are the models 

available for estimating sugar content in sugarcane? European Journal of 

Agronomy, 113, 125992. https://doi.org/10.1016/j.eja.2019.125992 

Pantazi, X. E., Moshou, D., Alexandridis, T., Whetton, R. L., & Mouazen, A. M. 

(2016). Wheat yield prediction using machine learning and advanced sensing 

techniques. Computers and Electronics in Agriculture, 121, 57–65. 

https://doi.org/10.1016/j.compag.2015.11.018 



 

169 

 

Papakonstantinou, I., Lee, J., & Madanat, S. M. (2019a). Optimal levee installation 

planning for highway infrastructure protection against sea level rise. 

Transportation Research Part D: Transport and Environment, 77, 378–389. 

Papakonstantinou, I., Lee, J., & Madanat, S. M. (2019b). Game theoretic approaches 

for highway infrastructure protection against sea level rise: Co-opetition 

among multiple players. Transportation Research Part B: Methodological, 

123, 21–37. https://doi.org/10.1016/j.trb.2019.03.012 

Paudel, B., Acharya, B. S., Ghimire, R., Dahal, K. R., & Bista, P. (2014). Adapting 

Agriculture to Climate Change and Variability in Chitwan: Long-Term Trends 

and Farmers’ Perceptions. Agricultural Research, 3(2), 165–174. 

https://doi.org/10.1007/s40003-014-0103-0 

Peacock, W. G. (2003). Hurricane Mitigation Status and Factors Influencing 

Mitigation Status among Florida’s Single-Family Homeowners. Natural 

Hazards Review, 4(3), 149–158. https://doi.org/10.1061/(ASCE)1527-

6988(2003)4:3(149) 

Pearsall, H., Gutierrez-Velez, V. H., Gilbert, M. R., Hoque, S., Eakin, H., Brondizio, 

E. S., Solecki, W., Toran, L., Baka, J. E., Behm, J. E., Brelsford, C., Hinrichs, 

C., Henry, K. A., Mennis, J., Roman, L. A., Rosan, C., South, E. C., & 

Valletta, R. D. (2021). Advancing equitable health and well-being across 

urban–rural sustainable infrastructure systems. Npj Urban Sustainability, 1(1), 

1–6. https://doi.org/10.1038/s42949-021-00028-8 

Peeta, S., Sibel Salman, F., Gunnec, D., & Viswanath, K. (2010). Pre-disaster 

investment decisions for strengthening a highway network. Computers & 

Operations Research, 37(10), 1708–1719. 

https://doi.org/10.1016/j.cor.2009.12.006 

Pistrika, A. K., & Jonkman, S. N. (2010). Damage to residential buildings due to 

flooding of New Orleans after hurricane Katrina. Natural Hazards, 54(2), 

413–434. 



 

170 

 

Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J. (2017). The impact of 

flooding on road transport: A depth-disruption function. Transportation 

Research Part D: Transport and Environment, 55, 67–81. 

https://doi.org/10.1016/j.trd.2017.06.020 

Pugh, D. (2004). Changing sea levels: Effects of tides, weather and climate. 

Cambridge University Press. 

R Core Team. (2019). R: A language and environment for statistical computing. 

Rao, N. S., Ghermandi, A., Portela, R., & Wang, X. (2015). Global values of coastal 

ecosystem services: A spatial economic analysis of shoreline protection 

values. Ecosystem Services, 11, 95–105. 

https://doi.org/10.1016/j.ecoser.2014.11.011 

Ravazzoli, E., & Hoffmann, C. (2020). Fostering Rural Urban Relationships to 

Enhance More Resilient and Just Communities (pp. 1–7). 

https://doi.org/10.1007/978-3-319-71061-7_109-1 

Reiner, M., & McElvaney, L. (2017). Foundational infrastructure framework for city 

resilience. Sustainable and Resilient Infrastructure, 2(1), 1–7. 

https://doi.org/10.1080/23789689.2017.1278994 

Roel, A., & Plant, R. E. (2004). Spatiotemporal Analysis of Rice Yield Variability in 

Two California Fields. Agronomy Journal, 96(1), 77–90. 

https://doi.org/10.2134/agronj2004.7700 

ROCKS, 2022. retrieved from 

https://www.doingbusiness.org/content/dam/doingBusiness/media/Special-

Reports/road-costs-knowledge-system-Updated.pdf. 

Ross, W. (1999). Personal mobility or community accessibility: A planning choice 

with social, environmental and economic consequences [Phd, Murdoch 

University]. In Ross, William 

<https://researchrepository.murdoch.edu.au/view/author/Ross, William.html>   

(1999)  Personal mobility or community accessibility: A planning choice with 



 

171 

 

social, environmental and economic consequences.     PhD thesis, Murdoch 

University. https://researchrepository.murdoch.edu.au/id/eprint/52758/ 

Sadler, J. M., Haselden, N., Mellon, K., Hackel, A., Son, V., Mayfield, J., Blase, A., 

& Goodall, J. L. (2017). Impact of Sea-Level Rise on Roadway Flooding in 

the Hampton Roads Region, Virginia. Journal of Infrastructure Systems, 

23(4), 05017006. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000397 

Saeidian, B., Mesgari, M. S., & Ghodousi, M. (2016). Evaluation and comparison of 

Genetic Algorithm and Bees Algorithm for location–allocation of earthquake 

relief centers. International Journal of Disaster Risk Reduction, 15, 94–107. 

Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., & Freer, J. E. 

(2015). A high-resolution global flood hazard model. Water Resources 

Research, 51(9), 7358–7381. https://doi.org/10.1002/2015WR016954 

Schlenker, W., & Roberts, M. J. (2006). Nonlinear Effects of Weather on Corn 

Yields. Applied Economic Perspectives and Policy, 28(3), 391–398. 

https://doi.org/10.1111/j.1467-9353.2006.00304.x 

Scott, D. M., Novak, D. C., Aultman-Hall, L., & Guo, F. (2006). Network Robustness 

Index: A new method for identifying critical links and evaluating the 

performance of transportation networks. Journal of Transport Geography, 

14(3), 215–227. https://doi.org/10.1016/j.jtrangeo.2005.10.003 

Sharifi, A. (2016). A critical review of selected tools for assessing community 

resilience. Ecological Indicators, 69, 629–647. 

https://doi.org/10.1016/j.ecolind.2016.05.023 

Siders, A. R. (2019). Managed Retreat in the United States. One Earth, 1(2), 216–

225. https://doi.org/10.1016/j.oneear.2019.09.008 

Siri, E., Siri, S., & Sacone, S. (2020). Network performance evaluation under 

disruptive events through a progressive traffic assignment model. IFAC-

PapersOnLine, 53(2), 15017–15022. 

Snelder, M., van Zuylen, H. J., & Immers, L. H. (2012). A framework for robustness 

analysis of road networks for short term variations in supply. Transportation 



 

172 

 

Research Part A: Policy and Practice, 46(5), 828–842. 

https://doi.org/10.1016/j.tra.2012.02.007 

Sniedovich, M. (2010). Dynamic programming: Foundations and principles. CRC 

press. 

Sohn, J. (2006). Evaluating the significance of highway network links under the flood 

damage: An accessibility approach. Transportation Research Part A: Policy 

and Practice, 40(6), 491–506. https://doi.org/10.1016/j.tra.2005.08.006 

Song, J., & Peng, B. (2017). Should We Leave? Attitudes towards Relocation in 

Response to Sea Level Rise. Water, 9(12), 941. 

https://doi.org/10.3390/w9120941 

Spain, D., & Bianchi, S. (1996). Balancing act: Motherhood, marriage, and 

employment among American women. Russell Sage Foundation. 

Stanton, E. A., & Ackerman, F. (2007). Florida and climate change: The costs of 

inaction. Florida and Climate Change: The Costs of Inaction. 

State of California Sea-Level Rise Guidance. (2018). 84. 

Suarez, P., Anderson, W., Mahal, V., & Lakshmanan, T. R. (2005). Impacts of 

flooding and climate change on urban transportation: A systemwide 

performance assessment of the Boston Metro Area. Transportation Research 

Part D: Transport and Environment, 10(3), 231–244. 

Suh, J., Siwe, A. T., & Madanat, S. M. (2019). Transportation infrastructure 

protection planning against sea level rise: Analysis using operational 

landscape units. Journal of Infrastructure Systems, 25(3), 4019024. 

Sullivan, J. L., Novak, D. C., Aultman-Hall, L., & Scott, D. M. (2010). Identifying 

critical road segments and measuring system-wide robustness in transportation 

networks with isolating links: A link-based capacity-reduction approach. 

Transportation Research Part A: Policy and Practice, 44(5), 323–336. 

https://doi.org/10.1016/j.tra.2010.02.003 



 

173 

 

Sun, J., Chow, A. C. H., & Madanat, S. M. (2020). Multimodal transportation system 

protection against sea level rise. Transportation Research Part D: Transport 

and Environment, 88, 102568. https://doi.org/10.1016/j.trd.2020.102568 

Sun, J., Chow, A. C., & Madanat, S. M. (2021). Equity concerns in transportation 

infrastructure protection against sea level rise. Transport Policy, 100, 81–88. 

Tacoli, C., & Mabala, R. (2010). Exploring mobility and migration in the context of 

rural—urban linkages: Why gender and generation matter. Environment and 

Urbanization, 22(2), 389–395. https://doi.org/10.1177/0956247810379935 

Tahmasbi, B., Mansourianfar, M. H., Haghshenas, H., & Kim, I. (2019). Multimodal 

accessibility-based equity assessment of urban public facilities distribution. 

Sustainable Cities and Society, 49, 101633. 

https://doi.org/10.1016/j.scs.2019.101633 

Taylor, M. A. P., & D’Este, G. M. (2007). Transport Network Vulnerability: A 

Method for Diagnosis of Critical Locations in Transport Infrastructure 

Systems. In A. T. Murray & T. H. Grubesic (Eds.), Critical Infrastructure: 

Reliability and Vulnerability (pp. 9–30). Springer. 

https://doi.org/10.1007/978-3-540-68056-7_2 

Taylor, M. A. P. & Susilawati. (2012). Remoteness and accessibility in the 

vulnerability analysis of regional road networks. Transportation Research 

Part A: Policy and Practice, 46(5), 761–771. 

https://doi.org/10.1016/j.tra.2012.02.008. 

The White House, 2022. Strengthening the rural economy-strengthening rural 

infrastructure. Retrieved from , 

https://obamawhitehouse.archives.gov/administration/eop/cea/factsheets-

reports/strengthening-the-rural-economy/strengthening-rural-infrastructure 

Twigger-Ross, C., Great Britain, Environment Agency, Great Britain, & Department 

for Environment, F. & R. A. (2005). The impact of flooding on urban and 

rural communities. Environment Agency. 



 

174 

 

US Census Bureau. (2017). TIGER/Line Shapefiles. The United States Census 

Bureau. https://www.census.gov/geographies/mapping-files/time-

series/geo/tiger-line-file.html 

USDA. (2018). USDA - National Agricultural Statistics Service—Statistics by 

Subject. https://www.nass.usda.gov/Statistics_by_Subject/index.php 

Vromans, M. J., Dekker, R., & Kroon, L. G. (2006). Reliability and heterogeneity of 

railway services. European Journal of Operational Research, 172(2), 647–

665. 

Wang, Y., Zhang, Z., Feng, L., Du, Q., & Runge, T. (2020). Combining Multi-Source 

Data and Machine Learning Approaches to Predict Winter Wheat Yield in the 

Conterminous United States. Remote Sensing, 12(8), 1232. 

https://doi.org/10.3390/rs12081232 

Warner, K., Ranger, N., Surminski, S., Arnold, M., Linnerooth-Bayer, J., Michel-

Kerjan, E., Kovacs, P., & Herweijer, C. (2009). Adaptation to climate change: 

Linking disaster risk reduction and insurance. United Nations International 

Strategy for Disaster Reduction, Geneva. 

Warren-Myers, G., Aschwanden, G., Fuerst, F., & Krause, A. (2018). Estimating the 

Potential Risks of Sea Level Rise for Public and Private Property Ownership, 

Occupation and Management. Risks, 6(2), 37. 

https://doi.org/10.3390/risks6020037 

Weiss, J. L., Overpeck, J. T., & Strauss, B. (2011). Implications of recent sea level 

rise science for low-elevation areas in coastal cities of the conterminous 

U.S.A. Climatic Change, 105(3), 635–645. https://doi.org/10.1007/s10584-

011-0024-x 

Welcome to the NOAA Institutional Repository (2020). Retrieved December 9, 2020, 

from https://repository.library.noaa.gov/view/noaa/2565 

Wilbanks, T. J., & Fernandez, S. (Eds.). (2014). Climate Change and Infrastructure, 

Urban Systems, and Vulnerabilities. Island Press/Center for Resource 

Economics. https://doi.org/10.5822/978-1-61091-556-4 



 

175 

 

Wolanin, A., Mateo-García, G., Camps-Valls, G., Gómez-Chova, L., Meroni, M., 

Duveiller, G., Liangzhi, Y., & Guanter, L. (2020). Estimating and 

understanding crop yields with explainable deep learning in the Indian Wheat 

Belt. Environmental Research Letters, 15(2), 024019. 

https://doi.org/10.1088/1748-9326/ab68ac 

Wu, S.-Y., Yarnal, B., & Fisher, A. (2002). Vulnerability of coastal communities to 

sea-level rise: A case study of Cape May County, New Jersey, USA. Climate 

Research, 22(3), 255–270. 

Zamojska, A., & Próchniak, J. (2017). Measuring the social impact of infrastructure 

projects: The case of Gdańsk International Fair Co. Journal of 

Entrepreneurship, Management and Innovation, 13(4), 25–42. 

Zhang, W., & Wang, N. (2016). Resilience-based risk mitigation for road networks. 

Structural Safety, 62, 57–65. https://doi.org/10.1016/j.strusafe.2016.06.003 

Zuo, T., Wei, H., Chen, N., & Zhang, C. (2020). First-and-last mile solution via 

bicycling to improving transit accessibility and advancing transportation 

equity. Cities, 99, 102614. https://doi.org/10.1016/j.cities.2020.102614. 

 


	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Chapter 1: Introduction
	1.1 Resilience
	1.2 Dissertation objectives
	1.3 Research Question 1: Roadway flooding as a bellwether for household retreat in rural, coastal regions vulnerable to sea-level rise
	1.4 Research Question 2: Bridging adaptation resources across the urban-rural divide: A comparison of equity-focused roadway investment strategies against flooding
	1.5 Research Question 3: Identification of Critical Road Segments that reduce uncertainty surrounding access to emergency services if monitored

	2 Chapter 2: Roadway Flooding as a Bellwether for Household Retreat in Rural, Coastal Regions Vulnerable to Sea-level Rise
	2.1 Introduction
	2.2 Literature review
	2.2.1 Transportation Resilience to Flooding
	2.2.2 SLR and Residential Adaptation

	2.3 Methodology
	2.3.1 SLR Inundation Scenarios
	2.3.2 Road Network

	2.4 Study area
	2.5 Results
	2.5.1  Baseline scenario
	2.5.2  RSLR
	2.5.3 Parcel inundation
	2.5.4 Relationship between parcel inundation and accessibility loss

	2.6 Conclusion

	3 Chapter 3: Bridging adaptation resources across the urban-rural divide: A comparison of equity-focused roadway investment strategies against flooding
	3.1 Introduction
	3.2 Literature review
	3.3 Methodology
	3.3.1 Overview
	3.3.2 Qualifying the impact of storm surge on transportation network
	3.3.3 Transportation equity and metrics
	3.3.3.1 Gini Coefficient
	3.3.3.2 Atkinson Index
	The second equity indicator is ATK, proposed by Atkinson (1970). ATK also evaluates the distribution of access, but it has a parameter that is used to measure changes in different segments of the distribution. Various types of decision-making concerns...
	3.3.3.3  Balanced share of accessibility

	3.3.4 Genetic Algorithm

	3.4 Study Area
	3.5 Result
	3.5.1 Levels of equity without road protection
	3.5.2  Accessibility and equity maximization
	3.5.3 Robustness analysis

	3.6 Conclusion

	4 Chapter 4: Identification of Critical Road Segments that reduce uncertainty surrounding access to emergency services if monitored
	4.1    Introduction
	4.2 Methodology
	4.2.1 Flood scenarios
	4.2.2 Road Network
	4.2.3 Genetic Algorithms

	4.3 Study area
	4.4 Result
	4.4.1 Identify candidate links
	4.4.2 Benefit maximization

	4.5 Conclusion

	5 Chapter 5: Conclusion
	6 Chapter 6: Appendix; Climate change and agriculture: Combining publicly available data and machine learning approaches to predict corn yield in State of Maryland
	6.1 Abstract
	6.2 Context
	6.3 Review of Existing Studies
	6.4 Data Collection and Processing
	6.4.1  C  rop Yield Data Collection and Processing
	6.4.2 Climate Data Collection and Processing

	6.5 Model Development
	6.5.1 Temporal Grouping  and Parameter Definition
	6.5.2 Data Partitioning and Cross-validation
	6.5.3 Candidate predictive models

	6.6 Result
	6.6.1 Selection of the best model for each county
	6.6.2 The best model, temporal, and spatial selection pattern for each county
	6.6.3 Variable importance and influence

	6.7 Discussion

	Bibliography

