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Phase change materials (PCMs) are widely used in thermal energy storage sys-

tems, as they can absorb and release a large amount of heat during the phase change

process. Numerical simulations can be used for parametric studies and analysis of

the thermal performance of the PCM heat exchanger (HX) to produce an optimal

design. Among various numerical methods, the lattice Boltzmann method (LBM),

a mesoscopic approach that considers the molecular interactions at relatively low

computation costs, offers certain key advantages in simulating the phase change

process compared with the conventional Navier-Stokes-based (NS-based) methods.

Moreover, LBM is ideal for parallel computing, by which numerical analysis can be

efficiently performed. Therefore, a comprehensive solid-liquid phase change model

is developed based on LBM which is capable of accurately and efficiently simulating

the process of convective PCM phase change with and without porous media in

both Cartesian and axisymmetric domains. Double distribution functions (DDF)



coupled with a multi-relaxation-time (MRT) scheme are utilized in the LBM formu-

lation for the simulation of the fluid flow and the temperature field. A differential

scanning calorimetry (DSC) correlated equation is applied in LBM to model en-

thalpy, by which the solid-liquid interface can be automatically tracked. The source

term in the MRT scheme is modified to eliminate numerical errors at high Rayleigh

numbers. Moreover, the conjugate thermal model is adopted for the consideration

of heat transfer fluid (HTF) flow and conducting fins. The new model is verified

and validated by various case studies. The results indicate that the new model

can successfully predict the process of PCM phase change with errors confined to

less than 10%. Parametric studies are then performed using the validated model

to quantitatively evaluate the effect of convection on PCM melting, from which the

acceleration rates (ac) of PCM melting and the threshold Rayleigh numbers (Radc)

at various aspect ratios are defined and quantified. Furthermore, PCM melting in

porous cylindrical HX is also investigated. The results indicate that the acceleration

of melting could reach 95% compared to that in pure PCM at 60% energy storage.

Moreover, the negative effect of uneven temperature distributions on thermal per-

formance of the HX caused by convection is quantified and analyzed. A modified

cylindrical HX that offsets this negative effect by varying the geometry is also eval-

uated. The results indicate that the modified geometry can successfully enhance

heat transfer and balance the uneven temperature distributions.
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Chapter 1: Introduction

1.1 Motivation

With the rapid growth of the human population and economy, the demand

for energy has increased dramatically over the past few decades. The ensuing huge

energy consumption results in the massive emission of carbon dioxide (CO2) and

the production of other harmful substances, which contributes to global warming

and environmental pollution. The greenhouse gas (GHG) emissions are expected

to increase by 50% by 2050, of which mainly 70% comes from the contribution of

energy-related CO2 emissions [13]. In response to these issues, an agreement was

adopted by 196 parties (countries) at the 21st United Nations Conference of the

Parties in Paris on 12th December 2015, also well-known as the Paris Agreement [14].

The goal of this agreement is to limit global warming to below 2 degrees Celsius,

compared to pre-industrial levels. Following the guiding principles of the Paris

Agreement, many countries have pledged to achieve carbon neutrality (net-zero

CO2 emissions) by 2050 or 2060 [15]. The United States has set the goal to reduce

GHG emissions by 50-52% from 2005 levels by 2030 and achieve net-zero emissions

by 2050 according to the Federal Sustainability Plan [16]. China has announced

a long-term plan aiming to mitigate carbon emissions by 60-65% and reach peak
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emissions by 2030, then achieve carbon neutrality before 2060 [17]. The European

Commission has also proposed to reduce the GHS emissions by at least 55% by 2030

and no net emissions of GHG by 2050 [18]. It is obvious that the achievement of

those ambitious goals relies on the supporting energy policies, where (1) the shift

from fossil fuel to renewable energy, (2) improving energy efficiency, and (3) ensuring

energy security are widely emphasized by various countries and districts [19,20].

Many developed techniques in thermal applications can be adopted to address

the issues mentioned above. Among them, the thermal energy storage system is one

of the most useful and attractive tools, as it can efficiently store (1) the renewable

energy such as solar energy and geothermal energy, (2) the low-grade waste heat,

or (3) the electricity at night with low price [19], and then release the stored energy

when needed, which can balance the mismatch between energy demand and supply

in time, space and intensity dimensions. Therefore, the thermal energy storage

system can efficiently utilize renewable energy, recover industrial waste heat, and

balance the energy intensity on time scales, which can improve the efficiency and

security of the overall energy system.

Generally, there are two types of thermal energy storage systems: sensible

heat thermal energy storage (SHTES) system and latent heat thermal energy storage

(LHTES) system. LHTES system utilizes phase change material (PCM) to store the

energy, which enables the system to absorb and release a large amount of heat with

little temperature variation by the phase change process of PCM. Therefore LHTES

system has higher energy densities with more stable temperatures during the energy

storage process compared with the SHTES system. The PCM heat exchanger (HX)
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is the component utilized in the LHTES system to contain PCM and perform heat

transfer between the PCM and the working fluid. The performance of the PCM

HX directly affects the efficiency of the LHTES system, improving the heat transfer

performance of the PCM HX is therefore of primary importance for improving the

efficiency of the LHTES system, which consequently benefits the overall energy

system.

To better study the PCM HX performance, both experimental and numerical

studies are necessary. Numerical studies are relatively more adept at quantitatively

analyzing the PCM HX and performing numerous parametric studies that can guide

the design and optimization of the PCM HX.

This dissertation focuses on the numerical studies of the PCM HX to provide

insights into the physical mechanisms and the basis of the PCM HX design.

1.2 Literature Review

1.2.1 Latent Heat Thermal Energy Storage (LHTES) System

Owing to the features of LHTES mentioned in Section 1.1, LHTES system

has been widely applied in many fields such as the building [21, 22], solar energy

system [23, 24], heating and cooling system [25, 26], electronic cooling system [27],

and heat recovery system [28]. Latent heat storage can be achieved through either

solid-liquid phase change, or liquid–gas phase change. Although liquid-gas phase

change has higher latent heat than solid-liquid phase change, its application is not

realistic as the thermal storage in gas phase requires large volumes or high pressures,
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which makes the system complex and impractical [29]. Therefore, solid–liquid phase

change is commonly adopted for latent heat storage.

Both experimental and numerical investigations for LHTES system have in-

creased substantially in the past two decades. Most studies have been conducted

on the melting or solidification process of the PCM heat exchanger (HX) at the

component level [30,31], while a few studies focus on the overall performance at the

system level [32–34]. The main differences between these two levels with respect to

the numerical analysis of LHTES system are that:

1. The system-level study establishes an entire LHTES system and evaluates

the performance of the PCM based on it. Consequently, to be consistent

with other parts of the system and the computational efficiency of the entire

model, its PCM HX part should be simplified, such as the neglect of the

natural convection and the effect of the porous media.

2. The component-level study looks at the PCM HX itself in detail and usually

considers the complexity of the thermal flow. Its PCM HX model is usually

more detailed and therefore more accurate compared with the model of the

HX component in the system-level model.

In this dissertation, simulation is conducted at the component level for solid-

liquid LHTES system by using the CFD method to reveal the basic physical mech-

anisms and evaluate the performance of the PCM HX.
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1.2.2 PCM Heat Exchanger (HX)

As introduced in Section 1.1, the PCM HX is the component that transfers

heat between the PCM and the working fluid. There are several methods to enhance

heat transfer in PCM HX, such as increasing the heat transfer area by fins [35]

or capsules [36] and increasing the effective conductivity by porous media, e.g.,

nanoparticles [37], metal foam [38] and graphite [39]. Unlike nanoparticles which

can move with the liquid flow of PCM, metal foam and graphite embedded in PCM

HX are fixed structures.

Among those different configurations of the HX, the basic shapes of the HX

can be rectangular, cylindrical, spherical or other more complicated shapes. Ac-

cording to the experimental and numerical studies, as well as the practical PCM

HX prototypes, the cylindrical container is one of the common shapes [40].

Therefore, the research in this dissertation focuses more on the PCM melting

in a cylindrical HX, where the natural convection of the liquid PCM. Moreover, the

PCM HX enhanced by fins, embedded porous media and modified geometries are

also considered in this dissertation.

1.2.3 Phase Change Material (PCM)

The types of PCM can be categorized as organic, inorganic, and eutectic [21],

where organic PCMs can be further divided as fatty acids, paraffin, and non-paraffin

[41], while inorganic materials include the salt hydrate and metallics. Different types

of PCM behave differently in terms of thermal, kinetic, and chemical properties.
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For the PCM used in the LHTES system, high latent heat, high thermal

conductivity, good thermal stability, and low weight with compact size are recom-

mended. In that regard, paraffin and fatty acids are widely chosen as the PCM

in the HX owing to their high latent heat with stable thermal properties, excellent

performance in thermal cycles, and low weight with high compactness. In this dis-

sertation, the PCM properties used in the simulation are mainly based on paraffin

wax.

PCM Melting temperature (°C) Latent heat (kJ/kg)

RT35 35 157
RT35 HC 35 240
PT37 37 210

Capric acid 36 152

Table 1.1: Selected PCMs for Melting Temperatures between 35 °Cand 37 °C

The melting temperature is one of the key properties of the PCM, which plays

an important role in PCM selection for a specific operating condition. For instance,

if the PCM HX is used as a condenser in a cooling cycle, the efficiency of the system

increases as the melting temperature of the PCM decreases. However, the melting

temperature should be at least higher than the ambient temperature for practical

use. Thus, the desired melting temperature range of PCM for the condenser is

confined, and is recommended to be around 35 to 37 °C. Table 1.1 lists four PCMs

that satisfy this operating condition. Among them, the enthalpy equations of RT35,

RT35 HC, and PT37 are modeled from differential scanning calorimetry (DSC) test

data in this dissertation since they are used in the experiments for the validations.

The detailed thermal physical properties for these three PCMs can be found in
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Chapter 5.

The thermal physical properties of the PCM in HX can be used to deter-

mine the Rayleigh number (Ra), which measures the thermal convection over the

thermal conduction in the PCM liquid zone. The definitions of critical dimension-

less numbers including Ra are provided in Section 2.7. For the paraffin wax and

fatty acids, their thermal properties are very similar and do not vary much among

the PCMs at different melting temperatures. Therefore, after reviewing numerous

properties for these two substances at different melting temperatures, the proper-

ties that are required for calculating the Rayleigh numbers are actually within a

certain range, such as the specific heat cp (1.41 − 3.26 kJ/(kg K)), thermal con-

ductivity k (0.14− 0.51 W/(m K)), density ρ (750− 1580 kg/m3), fluid viscosity vl

(1.0− 9.0 mm2/s) and thermal expansion coefficient β (0.0001− 0.02 K−1), where

the differences between the solid and liquid phases have been considered in those

ranges. For the HX with a given size and temperature difference between the in-

let temperature of HTF flow and the melting temperature of the PCM, the range

of potential Rayleigh numbers can be determined for paraffin wax and fatty acids.

Based on the size of the HX and temperature settings studied in this dissertation,

such as R = ro − ri (10− 100 mm) and ∆T (10− 20 °C), the Rayleigh numbers of

the PCM HX could be roughly between 18 and 1.4×108 if choosing radius gap R as

the characteristic length, which indicates that natural convection in the PCM HX

could be qualitatively very different over the range of Rayleigh numbers covered in

this study.
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1.2.4 Lattice Boltzmann Method (LBM)

Computational fluid dynamics (CFD) can be divided into three broad cat-

egories: macroscopic, mesoscopic, and microscopic approaches. Macroscopic ap-

proaches such as the Reynolds-averaged Navier-Stokes (RANS) method, large eddy

simulation (LES), and direct numerical simulation (DNS) are based on the assump-

tion of continuum and solve Navier-Stokes (NS) equations to simulate fluid flow.

The macroscopic approach is obviously not well suited for the physical problems

where molecular interactions are important.

The microscopic approaches such as molecular dynamics (MD), direct simu-

lation Monte Carlo (DSMC), and dissipative particle dynamics (DPD), are devel-

oped to simulate the microscale problems where the continuum assumption breaks

down [42]. However, the microscopic approaches consider the motion of every

molecule, which leads to a massive computational cost. Therefore, the lattice Boltz-

mann method (LBM), a mesoscopic approach based on the Boltzmann equation, has

an advantage as it serves as a bridge to combine microscopic physics with macro-

scopic properties at a reasonable computation cost. The three categories of the CFD

methods are summarized in Table 1.2.

Physical scale Numerical simulation methods Theory basis

Macroscopic RANS, LES and DNS NS equations
Mesoscopic LBM Discrete Boltzmann equation
Microscopic MD, DSMC and DPD Particle dynamics

Table 1.2: Numerical Simulation Methods.
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Among various numerical methods, LBM is an attractive and promising ap-

proach to simulate the fluid flow and heat transfer process. Unlike the conven-

tional CFD method which solves the Navier-Stokes (NS) equations, LBM solves

the Boltzmann equations in discrete form. Moreover, LBM is an explicit method

of second-order accuracy with the ability to use molecular motions for determining

macroscopic properties. Owing to these features, LBM can have several advantages

compared with the conventional CFD method in terms of the computation costs,

parallel computing, and the multiphase flow with phase change [43].

In this dissertation, the model for PCM HX is developed based on LBM instead

of the convection CFD methods.

1.2.5 Numerical Modeling of PCM HX

Generally, the numerical modeling of PCM HX can be deconstructed as one

algorithm solving the flow field in the liquid PCM zone, one algorithm solving the

temperature field across the entire PCM domain and one algorithm to treat the

interface between the solid and liquid. In some conduction-dominated cases, con-

vection can be neglected and thus no algorithm for fluid flow is needed. However, for

the common PCM HX, where the Rayleigh number is usually above 104, convection

should be considered, and thus both flow and temperature field should be modeled.

The modeling of the PCM with respect to energy conservation and transport

can be categorized by whether the latent heat is treated as a source term or modeled

as variable specific heat capacity. The former approach is named as the enthalpy
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method and the latter is called the effective heat capacity method [44]. For the

numerical model based on LBM, since the specific heat capacity usually can not be

varied in LBM, the most commonly adopted LBM for solid-liquid phase change is

based on the enthalpy method, which is denoted as the enthalpy-based LBM.

1.2.5.1 Conventional CFD Model

For conventional CFD methods, they can be characterized by the discretization

methods as finite difference method (FDM), finite volume method (FVM), and finite

element method (FEM). Each of the methods can be used to simulate the PCM

phase change. The simulation can either be conducted through commercial software

or from self-developed programming. A detailed summary of the self-developed

numerical models can be found in the literature from Al-abidi et al. [44], where most

studies simulate the cylindrical HX, and a few of the studies focus on the rectangles

and spheres. For the simulation using commercial software, two examples are given

below, one in 2D and one in 3D.

Longeon et al. [4] studied the annular PCM storage as shown in Fig. 1.1 both

numerically and experimentally, where a 2D axisymmetric model was established

using the commercial CFD software Fluent. The results indicated that the charging

directions and convection heat transfer together affect the PCM melting front.

Youssef et al. [7] developed a 3D CFD model using ANSYS Fluent software for

the PCM HX with spiral-wired tubes as shown in Fig. 1.2 and validated the model

with the experimental results.
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Figure 1.1: Annular PCM HX [4].

Figure 1.2: PCM HX with spiral-wired tubes [7].

In this dissertation, the numerical results from convectional CFD methods can

be utilized to verify the developed lattice Boltzmann model.
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1.2.5.2 Solid-Liquid Lattice Boltzmann Model

Over the past two decades, many lattice Boltzmann (LB) models have been

developed for solid-liquid phase change. Generally, the existing solid-liquid LBM

can be classified into two categories based on the treatments of the phase interface

[9]: (1) phase-field LBM, which distinguishes the phase interface by introducing an

order parameter [45,46], and (2) enthalpy-based LBM, which distinguishes the phase

interface by solving the liquid fraction [47–49]. For the PCM phase change problem

where the microscopic effects and solid-phase motion can be neglected, enthalpy-

based LBM is commonly adopted due to its simplicity and effectiveness [50]. As for

the consideration of the porous media, it can be either modeled at the pore-scale

or the representative elementary volume (REV) scale. The REV-scale approach

ignores the detailed geometry of the porous media and therefore is unable to solve

the detailed local information of the flow and heat transfer in the pores [9]. However,

for the simulation of the PCM HX, where the actual physical size is usually much

larger than the pore size, modeling the porous media at the REV scale is more

efficient.

Among the recent developments and studies of the enthalpy-based lattice

Boltzmann methods, Huang et al. [47] developed a total enthalpy-based LB model

to treat the latent-heat source term, which can avoid the iteration steps in solv-

ing the energy equation. Liu and He [51] developed a double multi-relaxation-time

(MRT) LB model for PCM melting in porous media at the REV scale. Gao et

al. [48] utilized an enthalpy-based MRT-LB model at the REV scale to simulate the
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conjugate heat transfer problem, such as the porous PCM melting with conduction

fins. Ren et al. [52] utilized enthalpy-based immersed boundary LBM to simulate

PCM melting at pore-scale, where the detailed geometry of the porous media was

modeled. These studies have laid a solid foundation for investigating PCM phase

change with porous media using the enthalpy-based LBM. However, these models

need to be extended to 3D for simulating the convective PCM phase change in cylin-

drical HX. In that regard, the axisymmetric LB model stands out as it simplifies the

computation of the thermal flow in cylindrical HX from 3D to 2D, and thereby saves

considerable computation costs. In recent years, several axisymmetric LB models

were developed for simulating the thermal flow and phase change. For example, Li

et al. [49] proposed an enthalpy-based axisymmetric LB model for solid-liquid phase

change and validated their model by the experimental data from a PCM solidifica-

tion case. Wang et al. [53] developed a non-orthogonal double MRT-LB model for

axisymmetric thermal flow with porous media. Liu et al. [43] further modified this

model for simulating incompressible thermal flow. Recently, Dai et al. [8] developed

a new lattice Boltzmann model that follows the predictor-corrector step instead of

the streaming-collision step in traditional LBM and studied a partially heated rect-

angular PCM storage container as shown in Fig. 1.3, where optimal heat source

locations can be determined from their simulation results under varied conditions

such as the heat source length and Rayleigh numbers.

However, some of these axisymmetric models only simulate the porous thermal

flow without phase change, while the models that simulate the phase change usually

do not consider the porous media. In other words, axisymmetric LB models that
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Figure 1.3: Partially heated PCM container [8].

consider PCM in porous media are limited and need to be further investigated.

Moreover, the enthalpy-based LBM in literature always model the enthalpy

by step and linear functions, which can be inaccurate for the specific PCM. The

commonly adopted DSC correlated enthalpy equations in convectional CFDmethods

has not been applied to LBM.

Moreover, the simulations of PCM phase change using LBM, as reported in

the literature, usually do not consider the heat transfer fluid (HTF) flow, and the

temperature or the heat flux settings on the boundaries are often held constant

which is not consistent with the PCM heat transfer with the HTF. The enthalpy-

based LBM that simulates the PCM phase change with fins is also limited. In that

regard, the conjugate heat transfer schemes for the HTF flow and conducting fins

as well as their adaptions to LBM, require further investigations.
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In this dissertation, a comprehensive enthalpy-based lattice Boltzmann model

is developed for the solid-liquid phase change to address the issues mentioned in this

section.

1.2.6 Parallel LBM Scheme

Almost all the LBM articles highlight the advantage of LBM in developing the

parallel computing scheme. Owing to its explicit streaming process and local colli-

sion process, LBM is ideally suited for parallel computing using high performance

computing (HPC) resources. This is essential for performing parametric studies of

PCM HX efficiently. The general method to develop the parallel LBM is introduced

by Körner et al. [54].

Among all the articles that mention the benefits of applying LBM, the litera-

ture that talks about the development of the parallel LBM for the solid-liquid model

is very limited. Moreover, the literature that carries out the analysis of the parallel

scheme for the solid-liquid LBM is even less.

In this dissertation, the parallel LBM scheme is developed for solid-liquid LBM

and scaling analyses are performed by utilizing HPC resources.

1.2.7 Numerical Study of Thermal Convective PCM Phase Change

The analysis of the convection effect on PCM phase change mainly refers to the

PCM melting, as the convection effect is extremely limited in solidification cases.

Following the discussion in Section 1.2.3, the Rayleigh numbers can vary over a
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wide range. In some cases, the Rayleigh numbers of the PCM HX could reach

1× 108 or even higher. In fact, the simulation of thermal convective flow and PCM

melting in the literature is rare for Rayleigh number beyond 1 × 106. Such a high

Rayleigh number indicates an overwhelming convective heat transfer in the liquid

region over the heat conduction. But unlike the single-phase convective thermal

flow, such strong nature convection is also limited by the solid phase. Given the fact

that most of the numerical studies focus on the situations where either conduction

and convection are balanced or conduction is dominant, the behavior of thermal

flow at high Rayleigh numbers during the PCM phase change needs to be further

investigated. Moreover, the effect of such a convective flow on the PCM phase

change and HX performance also needs to be investigated.

In terms of the numerical models, a high Rayleigh number flow often leads to

an increase in numerical errors for a constant grid size. The flow field could also

become unstable and fluctuate, which further increases the difficulty to handle such

a case. Thus, a robust numerical treatment needs to be developed to address this

issue in order to analyze high Rayleigh number flows both accurately and efficiently.

Moreover, as discussed in Section 1.2.3, Rayleigh number flows are expected for

a wide range of practical problems. Thus, a robust and efficient numerical method

is required for a comprehensive parametric study over a wide range of Rayleigh

numbers. The parametric studies of PCM HX at various Rayleigh numbers in

the literature are limited because of the limited availability of suitable numerical

methods.

In this dissertation, the parallel LBM scheme is integrated with the developed
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solid-liquid lattice Boltzmann model to perform parametric studies of PCM HX

under various Rayleigh numbers and geometries.

1.2.8 Literature Review Summary

The applications and studies of LHTES, the common shape and enhancement

of PCM HX, categories of PCMs, and the detailed properties of paraffin wax and

fatty acids are reviewed and briefly introduced in Section 1.2.1, Section 1.2.2, and

1.2.3 respectively. An estimation of the Rayleigh number, for a common PCM HX

(R = 30 mm) using paraffin wax or fatty acids under a reasonable temperature

difference (∆T = 15 °C), is provided as 1× 104 − 5× 108 in Section 1.2.3.

Section 1.2.4 reviews general LBM and its comparison to the convectional NS-

based CFD methods, indicating why choosing LBM for modeling PCM HX is often

preferable over other methods.

After that, a detailed review is introduced in Section 1.2.5 of the numerical

models of PCM HX. For the solid-liquid LBM, the axisymmetric LB models based

on the enthalpy method have advantages of simulating circular structures such as

the cylindrical HX. However, some of these axisymmetric models only simulate the

porous thermal flow without phase change, while models that simulate the phase

change normally do not consider porous media. In other words, axisymmetric LB

models that consider both porous thermal flow and PCM phase change are limited

and need to be further investigated. Moreover, the enthalpy-based LBM in the liter-

ature always models enthalpy by step and linear functions, which can be inaccurate
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for some PCMs. And the commonly adopted DSC correlated enthalpy equations in

convectional CFD methods have not been applied to LBM. Moreover, the conjugate

heat transfer schemes for HTF flow and conducting fins as well as their adaptions

to LBM require further investigations.

Section 1.2.6 briefly introduces the parallel LBM scheme, mentioning that

both the development and analysis of the parallel scheme for solid-liquid LBM are

extremely limited, which requires further investigations.

As for the numerical studies of PCM HX, the validations of the numerical

models with experimental results for some cases such as the porous PCM melting

in cylindrical HX are limited. Few studies discuss the evaluations of the PCM HX

under various Rayleigh numbers and HX geometries, including the parametric stud-

ies and performance analysis. Section 1.2.7 further points out that the simulation

of the PCM HX at high Rayleigh numbers (Ra > 1 × 106) requires further studies

and the solid-liquid models should also be modified to minimize the numerical errors

caused by the flow and heat transfer at high Rayleigh numbers.

1.3 Research Gaps

According to the summary of literature review, The research gaps for the nu-

merical studies of the PCM HX based on LBM can be divided into three categories:

(A) Lack of development of LBM for practical PCM HX, (B) Requirements for ac-

curacy and efficiency of the numerical methods in solving the convective solid-liquid

phase change and (C) Insufficient parametric studies and analyses of PCM HX. The
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details are listed as follows:

A. Lack of development of LBM for practical PCM HX

A.1. No lattice Boltzmann models applying DSC correlated enthalpy equations

to the enthalpy-updating scheme were available prior to this study, thus

restricting the accuracy of the simulation for specific PCM

A.2. The consideration of the HTF flow and the conjugate heat transfer with

fins in solid-liquid LBM was limited, motivating the need for further

developments and validations

A.3. No lattice Boltzmann models solving the PCM phase change with the

porous media in axisymmetric coordinates were available prior to this

study, which motivated further developments and validations of LBM.

B. Requirements for accuracy and efficiency of the numerical models in solving

the convective solid-liquid phase change

B.1. Numerical errors increase for strong thermal convective flow (Ra > 106),

which is difficult to solve for both convectional CFD methods and LBM.

especially for higher Ra flow (Ra > 108)

B.2. Limited parallel schemes are reported to be developed for solid-liquid

phase change models in the literature, while the parallel computing in

fact is essential to efficiently perform the parametric studies of PCM HX

C. Insufficient parametric studies and analyses of PCM HX
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C.1. Numerical studies of thermal behavior of the convective PCM phase

change at various Rayleigh numbers and geometries need to be further

investigated

C.2. Further evaluations of the PCM HX including the parametric studies and

performance analyses are required for the design of the PCM HX

1.4 Research Objectives

In this section, the objectives for this research are proposed to fill the summa-

rized gaps in Section 1.3. Overall, this research aims to (A) Develop a solid-liquid

lattice Boltzmann model for PCM HX, (B) Improve the accuracy and efficiency of

the developed model, and (C) Perform the parametric studies for PCM HX based on

the developed model. From the simulation results, the basic physical mechanisms

of the solid-liquid phase change can be revealed and the analysis of the PCM HX

can be performed. The corresponding objectives of this research are as follows:

A. Develop a comprehensive solid-liquid lattice Boltzmann model for PCM HX

A.1. Model the enthalpy based on DSC correlated equations and couple with

the lattice Boltzmann model

A.2. Develop a conjugate heat transfer model to consider the HTF flow and

conducting fins and couple with the lattice Boltzmann model

A.3. Develop an enthalpy-based DDF-MRT lattice Boltzmann model that is

capable of solving porous PCM phase change both in Cartesian and ax-

isymmetric coordinates
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B. Improve the accuracy and efficiency of the developed model

B.1. Improve the lattice Boltzmann model to accurately solve PCM melting

at high Rayleigh numbers (Ra > 106)

B.2. Improve the lattice Boltzmann model to efficiently perform parametric

studies of PCM HX by applying the parallel scheme

C. Perform parametric studies and analyses of PCM HX under various Rayleigh

numbers, HX geometries, and enhancements

C.1. Perform parametric studies to quantify the natural convection effect on

PCM melting

C.2. Evaluate the thermal performance of PCM HX under various Rayleigh

numbers, HX geometries, and enhancements

1.5 Dissertation Overview

Objectives Chapters Sections

A 2, 3, 4, 5 –
A1 2, 4 2.5, 2.6, 4.4.1
A2 2, 4 2.4, 4.4.3, 4.5
A3 2, 3 4 2.6, 3.1, 4.3, 4.4
B 4, 5 –
B1 4 4.3, 4.4.2
B2 4, 5 4.6, 5.3
C 6 –
C1 6 6.1
C2 6 6.2, 6.3

Table 1.3: Dissertation Overview
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In the following chapters, the research described in this dissertation is intro-

duced in three main parts: (1) Development of solid-liquid LBM (Chapter 2, Chap-

ter 3, and Chapter 4), (2) Numerical verifications and validations of the developed

model (Chapter 5), and (3) parametric studies of the PCM HX (Chapter 6). Then

the conclusions and future work are discussed in Chapter 7, and the contributions

of the dissertation are provided in Chapter 8.

Categorizing the following chapters based on the research objectives, the index

of the chapters can be listed in Table 1.3
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Chapter 2: Macroscopic Governing Equations for PCM HX

Macroscopic governing equations are needed for the lattice Boltzmann models.

Solving the lattice Boltzmann equations is equivalent to solving the corresponding

macroscopic governing equations. Therefore, establishing valid macroscopic equa-

tions is the first step in developing a specific lattice Boltzmann model.

In this chapter, the macroscopic governing equations for PCM HX are intro-

duced for both Cartesian coordinates (Section 2.1) and axisymmetric coordinates

(Section 2.2). Section 2.3 introduces the governing equations for the porous PCM

and Section 2.4 gives the additional treatment for the conducting fins in the PCM

HX. It is worth noting that the macroscopic governing equations from these four

sections are based on the enthalpy method, where the enthalpy equations are re-

quired to complete the governing equations. In fact, the listed governing equations

can also represent the thermal convective flow without phase change by simply set-

ting the enthalpy h = cpT (Section 2.5). The enthalpy equations for simulating

the solid-liquid phase change are introduced in Section 2.5. To better couple the

DSC correlated enthalpy equations in Section 2.5.2 with the governing equations, a

modified energy equation is proposed in Section 2.6 which is more comprehensive

in solving various heat transfer cases of the PCM HX. Besides, several critical di-
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mensionless parameters are listed in Section 2.7. Additionally, this chapter does not

talk about the boundary and phase interface settings, since they are treated in the

lattice Boltzmann method, which are introduced in Chapter 4.

2.1 Pure PCM in Cartesian Coordinates

For a general PCM container in Cartesian Coordinates (x, y), the flow particle

within the liquid PCM zone that has velocity u = (ux, uy) is subjected to the

gravity G = (0, Gy). For the thermal convective flow in the liquid zone, where

the driven force is not drastic, it is reasonable to assume the fluid flow is laminar

and incompressible. In terms of the energy aspect, the heat transfer is conducted

through the whole container, including both the liquid and the solid PCM that has

temperature T and constant specific heat capacity cp as their thermal properties.

The energy equation based on total enthalpy is adopted for PCM melting. Based

on the assumptions above, the macroscopic governing equations can be described as

follows [47]:

∇ · u = 0, (2.1)

∂u

∂t
+ (u · ∇)u = − 1

ρl
∇P + vl∇2u+G, (2.2)

∂h

∂t
+∇ · (cpTu) = ∇ · (α∇(cpT )), (2.3)
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where ρl is the mean fluid density, P is the fluid pressure, T is the temperature, h is

the enthalpy, vl is the kinematic viscosity of liquid PCM, α is the thermal diffusivity

which can be different between solid and liquid phases.

Based on the Boussinesq approximation, the density difference due to the

temperature variation is combined with the gravitational constant for the calculation

of the buoyancy force, while this density difference can be ignored for the calculation

of other terms in the governing equations under the assumption of incompressible

flow. If the Boussinesq approximation is used for modeling the buoyancy force, then

G = (0, Gy) can be further described as

G = (0, gβ(T − T0)), (2.4)

where g is the gravitational acceleration, β is the thermal expansion coefficient that

describes the volume changes of the liquid PCM due to the temperature difference,

and T0 is the reference temperature.

2.2 Pure PCM in Axisymmetric Coordinates

The macroscopic governing equations in Cartesian coordinates can be readily

converted to axisymmetric coordinates under the same assumptions. The governing

equations are as follows [49]:

1

r

∂(rur)

∂r
+
∂uz
∂z

= 0, (2.5)
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∂ur
∂t

+
1

r

∂(rurur)

∂r
+
∂(uzur)

∂z
= − 1

ρl

∂(P )

∂r
+ vl

[
1

r

∂

∂r
(r
∂ur
∂r

) +
∂2ur
∂z2

− ur
r2

]
, (2.6)

∂uz
∂t

+
1

r

∂(ruzur)

∂r
+
∂(uzuz)

∂z
= − 1

ρ0

∂(P )

∂z
+ vl

[
1

r

∂

∂r
(r
∂uz
∂r

) +
∂2uz
∂z2

]
+Gz, (2.7)

∂h

∂t
+
∂(cpTur)

∂r
+
∂(cpTuz)

∂z
= α

[
∂2(cpT )

∂r2
+
∂2(cpT )

∂z2
+

1

r

∂(cpT )

∂r

]
− cpTur

r
,

(2.8)

where ur and uz are the components of the velocity u in the radial (r) and the axial

(z) directions respectively, Gz is the component of G in the axial direction and its

expression is exactly the same as Eq. (2.4) in Cartesian coordinates. It is worth

noting that unlike the Cartesian governing equations (2.1 - 2.3) which are in the

vector form, the axisymmetric governing equations are expanded into both radial

and axial directions so that they can be clearly demonstrated.

2.3 PCM with Porous Media

By means of adding the porous media with high thermal conductivity, heat

transfer in PCM HX is enhanced at the expense of reduced maximum energy stor-

age. From the basic assumptions of pure PCM, additional assumptions are made to
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model the interactions between the PCM and the porous media. First, the porous

media considered in this dissertation is fixed in PCM HX which enables the liquid

PCM to flow through. It is assumed that both the porous media and the PCM are

isotropic and homogeneous, and viscous heat dissipation is neglected. Based on the

REV-scale approach, the porosity of porous media ϕ is defined as the ratio of the

volume of the void space to the total volume of PCM HX. Within the liquid PCM

zone, the flow is subjected to the total external force F = (Fr, Fz) including gravity

and the drag force exerted by the porous media. The effect of the external force

on the solid PCM, however, can be neglected since the solid PCM and the porous

media are assumed to be rigid without any motion. Following the above assump-

tions, the Brinkman-Forchheimer extended Darcy approach is utilized to model the

momentum equation and account for the non-linearity of the fluid flow within the

porous media. For the energy aspect, the total enthalpy-based energy equation is

adopted with the local thermal equilibrium assumption for PCM melting, which

means that the temperatures of the porous media and the PCM are consistent at

one location. Moreover, an effective thermal conductivity is introduced to represent

the overall thermal conductivity of the combination of PCM and porous media at

the REV scale.

Based on all the assumptions from previous sections in this chapter, the macro-

scopic governing equations at the REV scale for porous PCM can then be expressed

as follows [48,51]:

∇ · u = 0, (2.9)
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∂u

∂t
+ (u · ∇)(

u

ϕ
) = − 1

ρl
∇(ϕP ) + ve∇2u+ F, (2.10)

∂h

∂t
+∇ · (cpTu) = ∇ · (αe∇(cpT )), (2.11)

where ϕ is the porosity of the porous media, ve is the effective fluid kinematic

viscosity, αe is the effective thermal diffusivity, and total external force F = (Fx, Fy).

is defined as

F = −ϕve
K

u− ϕC√
K

|u|u+ ϕG, (2.12)

where K is the permeability, C is the inertial coefficient which is a function of

the geometry of the porous media [55] and |u| is calculated as |u| =
√
u2x + u2y.

The first and second terms on the right-hand side in Eq. (2.12) represent the first

(Darcy’s term) and second (Forchheimer’s extension) order drag forces between the

fluid and the porous structures which are used to account for the effect of the porous

media to the fluid flow in the liquid zone. The third term on the right-hand side

in Eq. (2.12) represents the buoyancy force where the Boussinesq approximation is

applied, therefore G = (0, Gy) has the same expression as Eq. (2.4).

For axisymmetric coordinates, the governing equations are [43,49]:

1

r

∂(rur)

∂r
+
∂uz
∂z

= 0, (2.13)
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∂ur
∂t

+
1

rϕ

∂(rurur)

∂r
+

1

ϕ

∂(uzur)

∂z
=− 1

ρl

∂(ϕP )

∂r

+ ve

[
1

r

∂

∂r
(r
∂ur
∂r

) +
∂2ur
∂z2

− ur
r2

]
+ Fr, (2.14)

∂uz
∂t

+
1

rϕ

∂(ruzur)

∂r
+

1

ϕ

∂(uzuz)

∂z
=− 1

ρ0

∂(ϕP )

∂z

+ ve

[
1

r

∂

∂r
(r
∂uz
∂r

) +
∂2uz
∂z2

]
+ Fz, (2.15)

∂h

∂t
+
∂(cpTur)

∂r
+
∂(cpTuz)

∂z
= αe

[
∂2(cpT )

∂r2
+
∂2(cpT )

∂z2
+

1

r

∂(cpT )

∂r

]
− cpTur

r
,

(2.16)

where total external force F = (Fr, Fz) has the same form with Eq. (2.12) but in

the radial (r) and the axial (z) directions.

The above governing equations still have the terms that need to be further

defined and modeled, which are the inertial coefficient C, the permeability K, and

the effective thermal diffusivity αe. The effective viscosity can be set equal to the

kinematic viscosity of liquid PCM vl because the viscosity of liquid PCM can be

assumed to be independent of the properties of porous media.

The inertial coefficient C is modeled based on a correlation [56], and the per-

meability K can be calculated from the Kozeny-Carman equation [55], as shown in
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the following equations:

C =
1.75√
150ϕ3

, (2.17)

K =
ϕ3d2p

150(1− ϕ)2
, (2.18)

where dp is the mean diameter of the equivalent spherical pores for the porous media.

The effective thermal diffusivity is defined as αe = ke/ (ρlcp), where ke is

the effective thermal conductivity. The effective thermal conductivity is not only

determined by the thermal conductivities of the PCM and the porous media, but also

dependent on the structure of the porous media and the volume fraction of the PCM.

Many models have been developed to evaluate the effective thermal conductivity for

various porosity ranges. Taking the high porosity range (ϕ ⩾ 0.9) for instance,

an analytical model based on the tetradecahedron cells can be adopted, which was

proposed by Yang et. al [57]. Assuming the porosity ϕ of the porous media is known,

the equation to calculate the effective thermal conductivity is given by

ke
kp,m

=
1− ϕ(

1− e+ 3e
2a

)
[3(1− e) + 1.5ae]

+
kf
kp,m

ϕ, (2.19)

where kp,m is the thermal conductivity of the porous media, kf is the thermal con-

ductivity of the PCM, a and e are the two dimensionless parameters that are related

to the structure of the porous media. By setting a = 1.5 and e = 0.3, the results

from Yang et. al indicated that the correlated effective thermal conductivity ke in

the high porosity range (ϕ ⩾ 0.9) had a good agreement with the experimental

data [57]. Other models developed to describe the effective thermal conductivity
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were also summarized in [57], where the models for other porosity ranges could be

found.

2.4 PCM with Conducting Fins

Unlike the temperature-based method, the thermal transport of conducting

fins needs to be treated separately from that of the PCM that is modeled using

the enthalpy-based method. This is because the enthalpy equation for modeling the

PCM is different than that for modeling the fins. Such an inconsistency can only be

resolved by applying two versions of the thermal governing equation simultaneously.

Therefore, in addition to the same governing equations for the PCM and the porous

media (Eq. (2.1) - Eq. (2.3)), the thermal governing equations for conducting fins

are represented as

∂hfin
∂t

= ∇ · (αfin∇cp,finT ), (2.20)

where hfin is the fin enthalpy defined as hfin = cp,finT , and αfin is the thermal

diffusivity of fins calculated as αe = kfin/ (ρfcp,fin), where kfin, ρfin and cp,fin are

the thermal conductivity, density and specific heat of conducting fins respectively.

Additionally, if the governing equation of fins is expanded in axisymmetric

coordinates (r, z), Eq. (2.20) turns out to be

∂hfin
∂t

= αfin

[
∂2(cp,finT )

∂r2
+
∂2(cp,finT )

∂z2
+

1

r

∂(cp,finT )

∂r

]
, (2.21)
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2.5 Enthalpy Equations

For conducting fins mentioned in Section 2.4, the enthalpy can be simply

defined as hfin = cp,finT . However, it becomes more complicated for the PCM,

especially with the porous media. In order to elaborate the enthalpy modeling more

concisely, the enthalpy equations introduced in this section consider both the PCM

and the porous media. The weight of each component in the equations is adjusted by

the porosity ϕ of the porous media at the REV scale. So the enthalpy equations can

be simply reduced to describe the pure PCM by setting ϕ = 1. In solid-liquid LBM,

the most adopted enthalpy equations are based on the step and Linear functions,

which are introduced in Section 2.5.1. For better accuracy of the enthalpy modeling,

the enthalpy equations based on the DSC test data of the PCM are first introduced

into LBM and the details are demonstrated in Section 2.5.2

2.5.1 Enthalpy Modeling Based on Step and Linear Functions

For porous PCM, the local temperatures among the liquid PCM, the solid

PCM and the porous media remain the same under the local thermal equilibrium

assumption. Thereby the heat transfer process of the porous PCM can be described

by the governing equations mentioned above, where the local temperature is repre-

sented as T for all the components. The corresponding enthalpy h in the governing

equation can be then divided into the sensible enthalpy and the latent enthalpy, as
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shown in the equation below:

h = hsensible + hlatent. (2.22)

The general method followed in LBM to describe the enthalpy is by defining enthalpy

h as a linear function of the temperature and the liquid fraction of the PCM [51].

Based on this method, the sensible enthalpy and the latent enthalpy can be expressed

as

hsensible = hpcm + hp,m

= ϕ

[
flcp,l + (1− fl)

ρs
ρl
cp,s

]
T + (1− ϕ)

ρm
ρl
cp,mT, (2.23)

hlatent = ϕflLa, (2.24)

where hpcm is the sensible enthalpy of the PCM, hp,m is the sensible enthalpy of the

porous media, cp,l, cp,s and cp,m are the specific heat at constant pressure for the

liquid PCM, solid PCM and the porous media respectively, ρs and ρm are the mean

densities of the solid PCM and the porous media respectively and fl is the liquid

fraction of the PCM defined as,

fl =



0, h ⩽ hs,

hpcm−hs

hl−hs
, hs < h < hl,

1, h ⩾ hl,

(2.25)
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where hs is the enthalpy at the temperature Ts when the PCM starts to melt, and

hl is the enthalpy at the temperature Tl when the PCM fully turns into liquid. The

difference between Ts and Tl is also known as the temperature glide of the PCM

(∆Tglide = Tl − Ts). Given the fact that the phase transition of PCM is gradual,

it is hard to distinguish clear temperature points when the PCM begins and ends

the phase transition. Therefore, the temperature glide is always a manually set

parameter, and its value can even be different in the literature for the same PCM. In

the enthalpy modeling based on the step and linear functions, different temperature

glide settings can lead to different enthalpy profiles and thus affect the accuracy of

the enthalpy model. Based on the author’s modeling experience, the temperature

glide setting needs to be adjusted in order to obtain the best match of the enthalpy

profile, and this value is always slightly different from the specified temperature

glide from the PCM manufacturer or the settings from the literature.

In the case that the sensible enthalpy of the porous media is extremely small

compared with that of the PCM, the second term hp,m in Eq. (2.23) can be neglected.

Moreover, as the porosity ϕ of the porous media approaches unity, the enthalpy

equations (2.23) and (2.24) reduce to the equations for the pure PCM, and all the

macroscopic governing equations in Section 2.3 are simplified to the equations for

the PCM without the porous media.
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2.5.2 Enthalpy Modeling Based on DSC Test Data

For accurate modeling of enthalpy for a specific PCM, the step and linear

functions have limitations because of their simplified relationship between enthalpy

and temperature. Therefore a commonly used method in CFD based on the DSC

test data of the PCM is introduced in LBM to describe the real enthalpy profile.

The equation proposed by Buschle et al. [58] is adopted to do the curve fitting of

the DSC test data, which is given by

hpcm = La

[
arctan ((T − Tm)Cmr)

π
+ 0.5

]
+ (T − Tint)

cp,l + cp,s
2

, (2.26)

where Tint is the initial temperature of the PCM and Cmr is the coefficient that can

be determined based on the given DSC test data. And more importantly, all the

parameters related to the PCM properties and temperature settings in Eq. (2.26)

are only used to provide a good starting point to correlate the test data, they do

not need to be exactly the same as the real values. A better match with the DSC

test data can be achieved if these parameters are tuned to proper values.

One of the significant parameters of DSC test is scan rate which always leads

to the delay in the measurement of heat flow, deforming the enthalpy profile of

PCM. To minimize the error caused by the delay from DSC test, the calculated

enthalpy profile from Eq. (2.26) is shifted from the DSC profile to match the actual

enthalpy profile based on the melting temperature of PCM. For instance, Fig. 2.1

gives the enthalpy profile of PT37 from the DSC test at 1 K/min scan rate (green
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line) and the correlated enthalpy profile calculated based on Eq. (2.26) (red line).

Figure 2.1: Enthalpy profile of PT37.

Once the correlated enthalpy in Eq. (2.26) of a specific PCM is utilized in LB

models, the total enthalpy can be defined as

h = ϕhpcm + (1− ϕ)
ρm
ρl
cp,mT. (2.27)

Since the enthalpy equation is correlated with the real DSC test data of the specific

PCM, there is no need to determine a precise temperature glide for the enthalpy

modeling, which is another advantage of this model compared with the model based

on the step and linear functions in Section 2.5.1. And the temperature glide is then
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only utilized to calculate the liquid fraction that determines the phases of the PCM

in solid-liquid LBM, which does not require high precision of the temperature glide.

2.6 Modified Energy Equations for DSC Enthalpy Modeling

For the enthalpy modeling based on the step and linear functions, the latent

enthalpy part is based on the liquid fraction fl times the latent heat La, and thus

the specific heat capacities cp can be treated as constant both in the liquid and

solid phases respectively. This simplification is not valid upon using the DSC corre-

lated enthalpy equations because the specific heat capacity continues to vary as the

temperature changes. Consequently, the corresponding solid-liquid LBM based on

Eq. (2.3) and Eq. (2.11) are not sufficient to solve the PCM phase change accurately.

To address this issue, a modified macroscopic energy equation is proposed

to account for the variable specific heat capacity. The enthalpy-based governing

equations 2.3 and 2.11 are derived from the energy equation regarding the latent

heat as a source term. This basic energy equation is given by [59]

∂(cpT )

∂t
+∇ · (cpTu) = ∇ · ( k

ρl
∇T )− ∂(flLa)

∂t
−∇ · (flLau), (2.28)

where the second and third terms on the right-hand side are the source term rep-

resenting the latent heat. Combining the first term on the left-hand side with the

second term on the right-hand side and defining the enthalpy as h = cpT + flLa,

then the first term can be (∂h
∂t
). If the third term on the right-hand side is further

neglected and the thermal diffusivity based on constant cp is applied, the same form
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of Eq. (2.3) and Eq. (2.11) can be obtained.

For the modified energy equation, the third term on the right-hand side is not

canceled, but combined with the second term on the left-hand side to form the term

∇·(hu). Moreover, the basic solid-liquid LBM uses the thermal diffusivity defined as

α = k/(ρlcp) to calculate the relaxation parameter, which governs the heat transfer.

This relaxation parameter should keep constant for one phase to maintain numerical

stability. Therefore, the basic solid-liquid LBM is only effective for constant cp. To

address the variable specific heat capacity, a referenced specific heat capacity (cp,ref )

is utilized in the calculation of the thermal diffusivity [59]. This constant value can

make the thermal diffusivity only dependent on the fixed thermal conductivity k for

one phase. The choice of cp,ref is relatively arbitrary, but can not be larger than

twice the minimum value of cp between solid and liquid phases in order to maintain

the numerical stability [48]. The value of cp,ref is recommended to be the harmonic

mean of the specific heats between the solid and liquid phases [59]. It can also be

adjusted to a lower value to maintain the numerical stability of solid-liquid LBM if

the thermal conductivity is very small [60].

After the modifications above, the new macroscopic energy equation can be

derived, which is given by

∂h

∂t
+∇ · (hu) = ∇ · (αref∇(cp,refT )), (2.29)

where αref = k/(ρlcp,ref ) is the thermal diffusivity based on the referenced specific

heat capacity cp,ref , where the thermal conductivity k can be set to ke for the porous
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PCM.

Although the enthalpy h in Eq. (2.29) is defined as h = cpT +flLa, the expres-

sion can be modified without changing the form of the energy equation. Therefore,

the DSC correlated enthalpy equations (2.26 and 2.27) proposed in Section 2.5.2

can be directly applied to Eq. (2.29).

An expanded form of Eq. (2.29) in axisymmetric coordinates is also given here

as

∂h

∂t
+
∂(hur)

∂r
+
∂(huz)

∂z
= αref

[
∂2(cp,refT )

∂r2
+
∂2(cp,refT )

∂z2
+

1

r

∂(cp,refT )

∂r

]
− hur

r
.

(2.30)

By substituting Eq. (2.29) and Eq. (2.30) into the governing equations from the

previous sections (Section 2.1 - Section 2.4), the modified macroscopic governing

equations are more comprehensive and can be utilized to describe the pure heat

conduction, thermal convective flow and PCM phase change, with and without

porous media, both in Cartesian coordinates and axisymmetric coordinates.

2.7 Critical Dimensionless Parameters

In addition to the porosity ϕ, the above macroscopic governing equations in

this chapter are also characterized by several critical dimensionless parameters which
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are defined s follows:

Rayleigh number Ra =
gβ(Th − Tm)L

3

vlαl

,

Stefan number Ste =
cp,l(Th − Tm)

La

,

Darcy number Da =
K

L2
,

Prandtl number Pr =
vl
αl

,

Reynolds number Re =
ucL

vl
,

viscosity ratio J =
ve
vl
,

thermal diffusivity ratio λ =
αe

αl

, (2.31)

where the subscript l denotes the properties of the liquid PCM, the subscript e

denotes the effective properties, Th is the highest temperature of the PCM, Tm

is the melting temperature of the PCM, La is the latent heat of the PCM, L is

the characteristic length and uc is the characteristic velocity which is defined as

uc =
√
gβ(Th − Tm)L for the convective thermal flow. The listed dimensionless

parameters in Eq. (2.31) are the Rayleigh number (Ra), the Stefan number (Ste),

the Darcy number (Da), the Prandtl number (Pr), the Reynolds number (Re), the

viscosity ratio (J) and the thermal diffusivity ratio (λ) respectively.

For the convective thermal flow, the Rayleigh number (Ra) measures the ther-

mal convection over the thermal conduction in the PCM liquid zone. When Ra is

below a critical value (Rac), the flow convection effect can be neglected, and thus

the heat transfer is dominated by the conduction heat transfer. If Ra exceeds Rac,
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natural convection starts to affect the heat transfer. The convection heat transfer

becomes more dominant as Ra continues to increase. By substituting the expression

of Ra with the Reynolds number (Re), the Prandtl number (Pr) and the charac-

teristic velocity uc, Rayleigh number can also be represented as

Ra = Re2Pr, (2.32)

where the Reynolds number (Re) with the characteristic velocity uc measures the

inertia force (buoyancy force in thermal convective flow) over viscous force, which

can be utilized to determine whether the generated liquid flow is laminar or turbu-

lent, and the Prandtl number (Pr) is defined as the ratio of momentum diffusivity

to thermal diffusivity, which depends only on the fluid properties.

For the thermal convective flow and phase change, the flow velocity in the

liquid zone is determined by the temperature difference and thermal expansion effect.

In other words, the fluid flow is driven by the density difference caused by the uneven

temperature field. The natural convection effect from the generated fluid flow in the

liquid zone further influence the heat transfer and the temperature field. Such an

interaction between fluid flow and heat transfer is better described by the Rayleigh

number (Ra) rather than the Reynolds number (Re).

For the pure PCM, the Stefan number (Ste) is defined as the sensible heat

over latent heat and can be calculated based on the thermal properties of the PCM.

The lower value of the Stefan number (Ste) represents the stronger ability of energy

storage. The Stefan number (Ste) is usually far less than one for the PCM with
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large latent heat.

For the porous media, the Darcy number (Da) represents the permeability

of the media over the cross-sectional area based on the characteristic length L. It

indicates the ability of the flow to pass through the porous media. A lower value of

the Darcy number (Da) leads to smaller generated thermal flow due to the presence

of the porous media. In addition to the Darcy number, the viscosity ratio (J) and the

thermal diffusivity ratio (λ) are also used to describe the fluid flow and heat transfer

in the porous media at the REV scale. The viscosity ratio (J) is less important and

usually set to unity for porous flow by assuming a constant viscosity of the fluid.

While the thermal diffusivity ratio (λ) matters more because the effective thermal

diffusivity αe calculated based on the effective thermal conductivity ke determines

the overall heat transfer of the fluid with porous media.

For the porous PCM, the above dimensionless parameters govern the fluid flow

and heat transfer in the liquid PCM zone. In the solid PCM zone, pure conduction

heat transfer is considered and calculated based on the thermal diffusivity of solid

phase (αs = ks/(ρcp,s)) for pure PCM and effective thermal diffusivity of solid phase

(αe = ke/(ρcp,s)) for porous PCM respectively. It is worth noting that the difference

in the thermal conductivities between the liquid and solid phases of the PCM is

relatively small compared with the thermal conductivity of the enhanced porous

media, which results in only a tiny variation of the calculated effective thermal

conductivities between solid and liquid phase. Such a variation can be neglected,

and therefore it is reasonable to assume ke = ke,l = ke,s.
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2.8 Chapter Summary

In this chapter, the detailed macroscopic governing equations of the convec-

tive thermal flow and phase change are introduced both in Cartesian and axisym-

metric coordinates, with and without porous media (Section 2.1, Section 2.2 and

Section 2.3). Moreover, the treatment of conducting fins is discussed in Section 2.4.

To complete the governing equations for the PCM phase change, the corre-

sponding enthalpy equations are introduced in Section 2.5, including the modeling

based on the step and linear functions in Section 2.5.1 and that based on the DSC

test data of PCM in Section 2.5.1. Moreover, a modified macroscopic energy equa-

tion is then proposed in Section 2.6, which is developed to better work with the

enthalpy modeling based on the DSC test data. Lastly, several critical dimensionless

parameters that characterize the fluid flow and heat transfer in thermal convective

phase change are introduced in Section 2.7.
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Chapter 3: Single-Phase Lattice Boltzmann Models

The single-phase LBM is fundamental to the solid-liquid LBM. Chapter 2

introduces the macroscopic governing equations for PCM HX from which the lattice

Boltzmann model is developed. Following that, this chapter talks about the single-

phase lattice Boltzmann model both for fluid flow and heat transfer. In terms of the

development of solid-liquid LBM, the general method is to simulate the liquid PCM

zone by applying single-phase LBM for flow field, while the heat transfer side needs

much more improvement from the single-phase thermal LBM than the flow side.

Therefore, the focus is on the flow field in this chapter, and only a brief introduction

of the single-phase thermal LBM is given in this chapter.

3.1 Single-Phase Lattice Boltzmann Models for Flow Field

In this section, the introduction of the basic lattice Boltzmann model for fluid

flow is given in Section 3.1.1. Moreover, the external forcing scheme (Section 3.1.2),

MRT scheme of the model (Section 3.1.3) and the development of the model in

axisymmetric coordinates (Section 3.1.4) are also discussed.
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3.1.1 Basic LBGK D2Q9 Lattice Boltzmann Model

The basic BGK LB model originated from the collision model proposed by

Bhatnagar, Gross and Krook in 1954 [61]. In 1991, Chen et. al [62] proposed a

single-relaxation-time (SRT) scheme to further simplify the collision process of the

BGK model. In 1992, Qian et. al [63] developed a model based on the same theory

and first named it as Lattice BGK (LBGK) model. LBGK model itself can only

solve for fluid flow. However a number of models based on the LBGK model have

been developed for heat transfer since then which are introduced later in Section 3.2.

The key feature of LBGK model is the replacement of the complicated collision

term in the Boltzmann equation with a solvable BGK collision operator, followed

by the discretization of the Boltzmann equation in both space and time. For a given

lattice meshgrid of the fluid field in Cartesian coordinates as shown in Fig. 3.1, the

discrete Boltzmann equation with the BGK collision operator is given as

f(x+ eδt,t+ δt)− f(x, t) = − 1

τv
[f(x, t)− f eq(x, t)] , (3.1)

where f(x, t) is the vector of the density distribution functions at a given location x =

(x, y) and time t, e is the vector of the discrete velocities, τv is the relaxation time of

the BGK collision operator, f eq(x, t) is the corresponding equilibrium distribution

functions.

For each grid point such as x0 in Fig. 3.1, together with its neighboring points,

form a basic lattice structure. The lattice structure can be either one dimensional,
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Figure 3.1: Lattice meshgrid in Cartesian coordinates.

two-dimensional or three-dimensional, and the lattice velocities starting from the

center point must orient towards its nearby points, including the center point itself

(representing the velocity of a group of particles that stay at the center point). It

is obvious that the number of components of the velocity vector can not exceed the

number of the points in the lattice structure. And other vectors such as the density

distribution function, which represents the number of particles in each group that

follow each corresponding velocity, should have the same number of the components

as the velocity vector. Therefore, the lattice structure is the basis of the lattice

Boltzmann model, which is characterized by its dimensions and the number of com-

ponents in the velocity vector. Generally, the lattice structure can be named as

DmQn, where m represents the space dimensions and n represents the number of

the lattice velocities per lattice node. The model that has a DmQn lattice structure

is also called DmQn lattice model. The formulation of f(x, t), f eq(x, t), e can vary
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for different lattice models. Taking the most commonly used two-dimensional lattice

model D2Q9 as an example, the lattice structure with the velocity vector is shown

in Fig. 3.2.

Figure 3.2: D2Q9 lattice structure.

The vector of the discrete velocities for D2Q9 e = {ei|i = 0, 1, ..., 8} are given

as

ei =



(0, 0), i = 0,

c(cos[(i− 1)π/2], sin[(i− 1)pi/2]), i = 1− 4,

√
2c(cos[(2i− 9)π/4], sin[(2i− 9)pi/4]), i = 5− 8,

(3.2)

where c = δx/δt is the lattice speed and δx is the discrete lattice spacing in the x
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direction. And the equilibrium distribution functions f eq(x, t) for D2Q9 is given by

f eq
i = ωiρ

[
ei · u
c2s

+
(ei · u)2

2ϕc4s
− |u|2

2ϕc2s

]
, (3.3)

where cs = c/
√
3 is the lattice sound speed of the D2Q9 model, and ωi is the weight

coefficient of the D2Q9 model given by

ωi =



4
9
, i = 0,

1
9
, i = 1, 2, 3, 4,

1
36
, i = 5, 6, 7, 8.

(3.4)

The fluid evolution process described by Eq. (3.1) can be divided into two

processes: the collision process and the streaming process. The collision process for

a lattice node is completely local and does not require the values of distribution

functions from its nearby nodes, which is given by

f∗(x, t) = f(x, t)− 1

τv
[f(x, t)− f eq(x, t)] , (3.5)

where f∗(x, t) denotes the redistributed functions at location x = (x, y) after the

collision process. And the streaming process can be described as

f(x+ eδt,t+ δt) = f∗(x, t), (3.6)

which means the redistributed functions f∗(x, t) are transferred from the current
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lattice node to its nearby nods after one time step. According to the Eq. (3.6), the

streaming process of the LB model is completely explicit for time steps.

The macroscopic fluid density ρ and velocity u = (ux, uy) can be recovered

from the density distribution functions fi through the statistical process. For D2Q9

lattice model, the calculations are given below:

ρ =
8∑

i=0

fi, (3.7)

u =
1

ρ

8∑
i=0

eifi. (3.8)

3.1.2 External Forcing Schemes

The basic LBGK model does not have the external force term. To extend the

application of LBM, many forcing scheme have been devised to solve the fluid flow

with external forces. Generally, the methods to account for the external force in

LBM are either adding force terms to the collision process or shifting the velocity

field [64]. In some proposed schemes, both methods are applied. In this section,

two forcing schemes widely adopted in further developing the solid-liquid LBM are

briefly introduced:

1. He et al. [65] devised a forcing scheme in which an external force term δtFv

was added to the lattice Boltzmann equations, where δt is the discrete time
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step and Fv is given by

Fv = (1− 1

2τv

F · (e− u)

ρc2s
f eq), (3.9)

where F is the external force which can be expressed as Eq. (2.4) or Eq. (2.12)

for thermal convective flow with and without porous media. Because of the

addition of the force term, the whole equation became implicit to solve. There-

fore, a transformation of the density distribution function f̄ was made to elim-

inate the implicitness. Following that, the lattice Boltzmann equation was

rewritten as

f̄(x+ eδt,t+ δt)− f̄(x, t) = − 1

τv

[
f̄(x, t)− f eq(x, t)

]
+ δtFv(x, t), (3.10)

The macroscopic density ρ and velocity u were then defined as

ρ =
∑
i

f̄i, (3.11)

and

ρu =
∑
i

eif̄i +
δt
2
F. (3.12)

2. Guo et al. [66] proposed a forcing scheme where the external force term was

added to the lattice Boltzmann equations without shifting the density distri-

bution functions. The components in the vector form of the external force
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term Fv can be expressed as

Fv = wi(1−
1

2τv
)

[
ei · F
c2s

+
(ei · u)(ei · F)

c4s
− uF

c2s

]
, (3.13)

where i denotes the ith component in the vector, and the total number of the

components is determined by the lattice structure (DmQn) as demonstrated

in Section 3.1.1. The macroscopic properties can then be calculated as follows:

ρ =
∑
i

fi, (3.14)

ρu =
∑
i

eifi +
δt
2
F. (3.15)

3.1.3 MRT Lattice Boltzmann Schemes

The Basic LBGK model is developed based on single-relaxation-time (SRT)

scheme which lacks numerical stability, especially for low fluid viscosity. Therefore,

LB models based on the multi-relaxation-time (MRT) scheme have been proposed

to increase the stability and feasibility of LBM [67]. The key feature of the MRT LB

model is utilizing a matrix to transform the distribution functions into a moment

vector, and the relaxation time can be set differently for each component of the

moment vector. Such a feature significantly increases the stability and versatility of

LBM, especially for PCM HX cases.

The MRT method was devised by d’Humières [68] based on the LBGK model

without an external forcing scheme. The MRT lattice Boltzmann model based on
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He et al.’s forcing scheme [65] was proposed later with an explicit treatment of the

forcing term [69]. Generally, the MRT scheme develops a transition matrix that can

be used to turn the density distribution functions from velocity space to a moment

space. For the D2Q9 model, the MRT form of the lattice Boltzmann equation with

an external forcing scheme can be expressed as

f̄(x+ eδt,t+ δt)− f̄(x, t) = −M−1S [m(x, t)−meq(x, t)] + δtM
−1

(
I− S

2

)
Fm,

(3.16)

where f̄(x, t) is the vector of the density distribution functions at given location

x = (x, y) and time t, e is the vector of the discrete velocities, M is the transition

matrix, S is the relaxation matrix, m(x, t) and meq(x, t) are the moment vector and

the corresponding equilibrium moment vector respectively , I is the identity matrix,

Fm is the forcing term in the moment space and δt is the discrete time step.

The fluid evolution process in the D2Q9 model can be described by Eq. (3.16)

from which the collision process is performed in the moment space as

m∗(x, t) = m(x, t)− S [m(x, t)−meq(x, t)]

+ δt

(
I− S

2

)
Fm, (3.17)

where m∗(x, t) denotes the redistributed moment vector at location x = (x, y)

after the collision process. This redistributed moment vector m∗(x, t) can then be

transferred to its nearby grids during the streaming process. However, the streaming

process is performed in the velocity space as specified in Eq. (3.16). Therefore the
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results from Eq. (3.17) should be transformed back to density distribution functions

in the velocity space for the calculation of the streaming process, as shown below:

f̄(x+ eδt,t+ δt) = M−1m∗(x, t). (3.18)

The most commonly used transition matrix M in the D2Q9 model is given by

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



. (3.19)

Based on the given transition matrix M, the vector of distribution functions f̄ =

{fi|i = 0, 1, ..., 8} in the velocity space can be transformed into the vector m in the

moment space, as shown below:

m = Mf̄ =

[
ρ, e, ε, jx −

δt
2
ρFx, qx, jy −

δt
2
ρFy, qy, Pxx, Pxy

]T
, (3.20)

where jx and jy are the components of the flow momentum, e and ε are the terms
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related to the flow energy, Pxx and Pxy are the terms related to the strain tensor, and

qx and qy are the terms related to the energy flux. For the flow with lowMach number

in the LBM (Ma = uc/cs ≪ 1), the incompressible approximation [70] is adopted

for the liquid PCM flow, which assumes the fluid density is composed of the constant

mean fluid density ρ0 and the density fluctuation δρ, i.e., ρ = ρ0 + δρ. According

to this approximation, the higher order terms such as δρ(u/c) and δρ(u/c)2 can be

neglected and therefore the equilibrium moment vector meq for the corresponding

moment vector m can be calculated by

meq = Mf eq

=
[
ρ, eeq, εeq, jx, q

eq
x , jy, q

eq
y , P

eq
xx, P

eq
xy

]T
, (3.21)

where

eeq = −2ρ+ 3ρ0(u
2
x + u2y),

εeq = ρ− 3ρ0(u
2
x + u2y),

jr = ρ0ux, jz = ρ0uy,

qeqx = −ρ0ux, qeqy = −ρ0uy,

peqxx = ρ0(u
2
x − u2y), p

eq
xy = ρ0uxuy, (3.22)

and the vector of the equilibrium distribution functions f eq = {f eq
i |i = 0, 1, ..., 8} in

velocity space is given by

f eq
i = ωiρ+ ωiρ0

[
ei · u
c2s

+
(ei · u)2

2c4s
− |u|2

2c2s

]
, (3.23)
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where cs = c/
√
3 is the lattice sound speed of the D2Q9 model, and ωi is the weight

coefficient of the D2Q9 model as Eq. (3.4) shows. Noting that Eq. (3.23) is developed

for incompressible flow, and it can be reduced to Eq. (3.3) by setting ρ0 = ρ.

Based on the moment vector given in Eq. (3.21), the relaxation matrix S can

be determined as

S = diag(sρ, se, sε, sj, sq, sj, sq, sv, sv), (3.24)

where overall the components of the relaxation matrix si ∈ (0, 2). Among them,

sρ = sj = 1.0 indicates the mass and momentum are conserved in the flow region,

and the critical relaxation rate sv, which determines the flow pattern, is related to

the fluid viscosity and can be expressed as

sv =
1

τv
, (3.25)

τv =
vl
c2sδt

+ 0.5, (3.26)

where vl is the fluid kinematic viscosity.

55



The forcing term Fm in the moment space is then defined as [69]

Fm = ρ0



0

6(uxFx + uyFy)

−6(uxFx + uyFy)

Fx

−Fx

Fy

−Fy

2(uxFx − uyFy)

uxFy + uyFx



, (3.27)

where Fx and Fy are the components of the total external force F determined by

Eq. (2.4).

The macroscopic fluid density ρ and velocity u = (ux, uy) can be recovered

by Eq. (3.11) and Eq. (3.12) respectively. And for the fluid pressure P under the

incompressible approximation [70], it can be determined by using ρ = ρ0 + δρ, and

the expression is given by

P = ρc2s. (3.28)

The model introduced above is the MRT form of a D2Q9 model in Cartesian

coordinates based on He. et al.’s forcing scheme [65,69]. This MRT model is widely

adopted to simulate the thermal convective flow, and with certain improvement

and modification, this model can be utilized to simulate the flow in asymmetric

56



coordinates and more complicated flow problems such as the porous thermal flow and

solid-liquid phase change. Besides, to minimize the confusion, the author wants to

clarify that the shifted density distribution function f̄ in this MRT model is directly

obtained through the fluid evolution process of LBM and there is no need to transfer

from or to the original f . In other word, there is no difference in the actual solving

process of MRT-LBM between f̄ and f . Therefore, the literature sometimes use the

term f instead of f̄ to keep the consistency of the lattice Boltzmann equations.

Additionally, this model utilizes the transition matrix given in Eq. (3.19).

Another widely adopted transition matrix is called the non-orthogonal matrix, which

is given as [71]

M =



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 1 1 1 1 2 2 2 2

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 1 1 1



. (3.29)

By applying this non-orthogonalM , some orders and values change correspondingly

for the equilibrium moment vector meq, the force term Fm and the relaxation matrix
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S. Since it is still based on the same theory, the non-orthogonal model is still very

similar to the original one. The detailed settings of those vectors can also be found

in Liu et al. [71].

3.1.4 Axisymmetric MRT-LBM for Fluid Field

Generally, there exist two ways to convert the lattice Boltzmann model from

Cartesian coordinates to axisymmetric coordinates. One approach is by adding extra

source terms while keeping basic lattice functions the same as those in Cartesian co-

ordinates. The other is by modifying the equilibrium distribution functions directly,

and thus the moment equilibrium functions and the force term change accordingly.

In the first approach, the basic lattice equations represent the terms that both

exist in Cartesian and axisymmetric coordinates, while the extra source terms are

utilized to retrieve the terms that appear only in the axisymmetric coordinates. Both

the SRT and MRT models based on this theory were proposed by Li et al. [72].

For the MRT D2Q9 model under the assumption of incompressible flow, all the

given equations, from Eq. (3.16) to Eq. (3.26), can be used simply by replacing the

subscript (x, y) by (r, z) for axisymmetric coordinates. While the extra source term
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is added to the force term, as shown below

F̄m = −ur
r
meq + ρ0



0

6(urar + uzaz)

−6(urar + uzaz)

ar

−ar

az

−az

2(urar − uzaz)

uraz + uraz



, (3.30)

where the equilibrium moment vector meq is in the form of Eq. (3.21) but with (r, z)

as its subscript, and ar, az are defined as

ar = −2vlur
r2

+ Fr,

az = Fz (3.31)

where vl is the fluid kinematic viscosity, Fr and Fz are the components of the total

external force F in axisymmetric coordinates.

Additional post-collision modification should be made to the 4th and 6th com-

ponents in the moment space to account for the extra term in axisymmetric coor-
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dinates [49], which are given by

m̄∗
3 = m∗

3 −
1

r
(1− 0.5sv)δ

2
t

[
(se/sv)m

(1)
1 + 0.5m

(1)
7

]
,

m̄∗
5 = m∗

5 −
1

r
(1− 0.5sv)δ

2
tm

(1)
8 , (3.32)

where m∗
3 and m

∗
5 are the post-collision values for 4th and 6th moments, m̄∗

3 and m̄
∗
3

are the new values of these two moments after the modification, and m
(1)
1 , m

(1)
7 and

m
(1)
8 can be calculated by

δtm
(1)
i = (mi −meq

i + 0.5δtF̄m,i), i = 1, 7, 8, (3.33)

where mi is the current value of ith moment (before collision). The macroscopic

density and velocity can be obtained as follows:

ρ =
∑
i

fi −
δt
2

ρ0ur
r
, (3.34)

u =

∑
i eifi∑

i fi + (δtvl/ρ0r2)δir
, (3.35)

where δir is equal to one for radial direction (r) and zero for axial direction (z).

The calculation of density in Eq. (3.34) requires the value of radial velocity ur, thus

the velocity should be calculated first by Eq. (3.35) and then the density can be

obtained by Eq. (3.34) based on the new radial velocity.

The model described above is the one approach for simulating axisymmetric

flow. In another approach, the lattice equations are rebuilt to represent the axisym-
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metric flow without extra modification. And the model developed by this method

can be found in Wang et al. [73]. For the MRT D2Q9 model, the equilibrium dis-

tribution functions in Eq. (3.23) are multiplied by the radius r, as given below:

f eq
i = ωirρ+ ωirρ0

[
ei · u
c2s

+
(ei · u)2

2c4s
− |u|2

2c2s

]
. (3.36)

Correspondingly, the expressions of the equilibrium moment vector in Eq. (3.21) are

also modified as

meq = Mf eq

= r [ρ, eeq, εeq, jr, q
eq
r , jz, q

eq
z , P

eq
rr , P

eq
rz ]

T , (3.37)

where

eeq = −2ρ+ 3ρ0(u
2
r + u2z),

εeq = ρ− 3ρ0(u
2
r + u2z),

jr = ρ0ur, jz = ρ0uz,

qeqr = −ρ0ur, qeqz = −ρ0uz,

peqrr = ρ0(u
2
r − u2z), p

eq
rz = ρ0uruz, (3.38)
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and for the forcing term Fm, a modified vector is given by [43]

F̄m = rρ0



0

6(urar + uzaz)

−6(urar + uzaz)

ar

−ar

az

−az

2(urar − uzaz)

uraz + uraz



, (3.39)

where ar, az are defined as [74]

ar = Fr +
c2s
r

[
1− 2(τv − 0.5)δtur

r

]
,

az = Fz. (3.40)

The macroscopic density and velocity can then be obtained as follows:

ρ =
1

r

∑
i

fi, (3.41)

62



ur =
r

r2 + c2s(τv − 0.5)δt

[∑
i eifi
ρ0

+
δt
2
rFr +

δt
2
c2s

]
,

uz = r

[∑
i eifi
ρ0

+
δt
2
rFz

]
. (3.42)

To conclude, the equations from Eq. (3.30) to Eq. (3.35) are developed by

adding extra source terms, which can replace the corresponding ones in Section 3.1.3.

While the equations from Eq. (3.35) to Eq. (3.42) are developed by modifying the

equilibrium distribution functions. They are developed from different points of view,

but both ways can handle the convective flow in axisymmetric coordinates.

3.1.5 MRT-LBM for Porous Flow at REV Scale

As discussed in Chapter 1, the porous media can be either modeled at the

pore-scale or the REV scale. For the physical size of the flow field as large as the

PCM HX, modeling the porous media at the REV scale is more efficient. Following

the introduction of MRT-LBM above, the modification of MRT-LBM for the flow

field with porous media at the REV scale is provided in this section.

3.1.5.1 Porous MRT-LBM in Cartesian Coordinates

Based on the D2Q9 Cartesian MRT-LBM introduced in Section 3.1.3, the

equations of equilibrium moment vector meq (3.21, 3.22), equilibrium density dis-

tribution functions f eq
i (3.23), forcing term Fm (3.27), and fluid pressure P (3.28)

are modified for porous flow. Those equations after the modification are given as

63



follows:

meq = Mf eq

=
[
ρ, eeq, εeq, jx, q

eq
x , jy, q

eq
y , P

eq
xx, P

eq
xy

]T
, (3.43)

where

eeq = −2ρ+
3ρ0(u

2
x + u2y)

ϕ
,

εeq = ρ−
3ρ0(u

2
x + u2y)

ϕ
,

jr = ρ0ux, jz = ρ0uy,

qeqx = −ρ0ux, qeqy = −ρ0uy,

peqxx =
ρ0(u

2
x − u2y)

ϕ
, peqxy =

ρ0uxuy
ϕ

, (3.44)

f eq
i = ωiρ+ ωiρ0

[
ei · u
c2s

+
(ei · u)2

2ϕc4s
− |u|2

2ϕc2s

]
, (3.45)

Fm = ρ0



0

6(uxFx + uyFy)/ϕ

−6(uxFx + uyFy)/ϕ

Fx

−Fx

Fy

−Fy

2(uxFx − uyFy)/ϕ

(uxFy + uyFx)/ϕ



, (3.46)
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P =
ρc2s
ϕ
. (3.47)

Moreover, the calculation of the macroscopic velocity u needs special treat-

ment because of the presence of porous media. For the porous convective flow at the

REV scale, the total external force F can be expressed as Eq. (2.12) in Chapter 2,

which needs to be used in the calculation of the macroscopic velocity as specified in

Eq. (3.12) for D2Q9 MRT model. Unlike the convective flow without porous media,

where the total external force only contains the gravity as given in Eq. (2.4), the

porous flow, however, has the drag forces between the fluid and the porous struc-

tures, which are velocity-dependent as expressed by Eq. (2.12). Such a dependency

causes Eq. (3.12) to be implicit, which requires further treatment. According to the

method proposed by Guo and Zhao [75], the macroscopic velocity u can be explicitly

solved by

u =
v

d0 +
√
d20 + d1|v|

, (3.48)

where d0 and d1 are given by

d0 =
1

2

[
1 + ϕ

δt
2

vl
K

]
, (3.49)

d1 = ϕ
δt
2

C√
K
, (3.50)

where the inertial coefficient C and the permeability K are defined in Eq. (2.17)

and Eq. (2.18) from Chapter 2.
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And the temporal velocity v in Eq. (3.48) is defined as

v =
8∑

i=0

eifi/ρ0 +
δt
2
ϕG. (3.51)

3.1.5.2 Porous MRT-LBM in Axisymmetric Coordinates

Two D2Q9 MRT-LBM models for axisymmetric coordinates introduced in

Section 3.1.4 are developed based on the different concepts. Based on the one

proposed by Wang et al. [73], Liu et al. [43] developed a porous axisymmetric MRT-

LBM at REV scale, which modifies the equations (3.36, 3.37, 3.38, 3.39) as follows:

f eq
i = ωirρ+ ωirρ0

[
ei · u
c2s

+
(ei · u)2

2c4s
− |u|2

2c2s

]
. (3.52)

meq = Mf eq

= r [ρ, eeq, εeq, jr, q
eq
r , jz, q

eq
z , P

eq
rr , P

eq
rz ]

T , (3.53)

where

eeq = −2ρ+
3ρ0(u

2
r + u2z)

ϕ
,

εeq = ρ− 3ρ0(u
2
r + u2z)

ϕ
,

jr = ρ0ur, jz = ρ0uz,

qeqr = −ρ0ur, qeqz = −ρ0uz,

peqrr =
ρ0(u

2
r − u2z)

ϕ
, peqrz =

ρ0uruz
ϕ

, (3.54)
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and

F̄m = rρ0



0

6(urar + uzaz)/ϕ

−6(urar + uzaz)/ϕ

ar

−ar

az

−az

2(urar − uzaz)/ϕ

(uraz + uraz)/ϕ



. (3.55)

Other than the modifications above, the velocity calculation also needs spe-

cial treatment because of the same reason as mentioned in Section 3.1.5.1 for the

Cartesian porous model. The explicit method to calculate the macroscopic velocity

u in axisymmetric coordinates is given as

u =
v

d0 +
√
d2
0 + d1|v|

, (3.56)

where d0 = (d0r, d0z) and d1 are given by

d0r =
1

2

[
r2 + c2s(s

−1
v − 0.5)δt
r

+ rϕ
δt
2

vl
K

]
, (3.57)

d0z =
r

2

(
1 + ϕ

δt
2

vl
K

)
, (3.58)
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d1 = rϕ
δt
2

C√
K
, (3.59)

and v = (vr, vz) is a temporal velocity defined as

vr =
1

ρ0

8∑
i=0

eirfi +
δt
2
c2s,

vz =
1

ρ0

8∑
i=0

eizfi +
δt
2
rϕGz. (3.60)

Additionally, the fluid pressure is calculated in the same way as Eq. (3.47) in Sec-

tion 3.1.5.1.

3.2 Single-Phase Lattice Boltzmann Models for Temperature Field

From Section 3.1 in this chapter, the single-phase lattice Boltzmann models for

fluid flow are demonstrated. However, they are only for isothermal flow. Although

the external force from Eq. (2.4) and Eq. (2.12) based on Boussinesq approximation

can be brought into the forcing term Fm, the evolution of the temperature field

must be solved because the temperature difference is considered in the calculation

of the buoyancy force.

The simulation of heat transfer can be carried out using either a conventional

CFD or LBM. The former is called hybrid LBM, which uses isothermal LBM for

fluid flow and solves the temperature field separately using either FVM or FDM

[76,77]. While for the latter one, solving the temperature via LBM, the most popular

approach in LBM is called the double-distribution-function (DDF) method, as it has
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more numerical stability and versatility than other methods in thermal LBM [9].

The very basic DDF-LBM is free of the heat source term [78, 79]. So it is

not sufficient to solve thermal flow with heat source or PCM phase change. The

basic DDF-LBM and its MRT form thereby are only briefly introduced in this sec-

tion, while a detailed introduction is made to the DDF-LBM with the heat source

treatment in Chapter 4.

So in this section, the energy side of DDF-LBM is introduced in Section 3.2.1,

and the MRT scheme of the thermal lattice Boltzmann models is discussed in Sec-

tion 3.2.2

3.2.1 Double-Distribution-Function (DDF) Approach

Various DDF-LBM have been devised to model the single-phase flow with

temperature variations [42], while the key feature of DDF-LBM is to establish a

discrete energy equation in the similar form with Eq. (3.1) but solving the energy

distribution functions g(x, t) instead. The heat transfer can be simulated by solving

the discrete energy equation in the same way as solving the discrete Boltzmann

equation for fluid flow. The general discrete energy equation in DDF-LBM can be

described as

g(x+ eδt,t+ δt)− g(x, t) = − 1

τg
[g(x, t)− geq(x, t)] , (3.61)

where τg is the relaxation time for the energy equation, and geq are the equilibrium

energy distribution functions.
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Depending on the recovered macroscopic energy equation, the thermal DDF-

LBM can either be temperature-based or enthalpy-based. For temperature-based

DDF, the temperature T can be recovered from the distribution functions gi, given

by

T =
∑
i

gi, (3.62)

while for enthalpy-based DDF, the enthalpy h is what solved in LBM, as shown

below

h =
∑
i

gi. (3.63)

3.2.2 Thermal MRT Lattice Boltzmann Schemes

DDF-MRT models have been attractive in the past decade owing to their

versatility and numerical stability [9]. DDF-MRT models have been developed either

based on temperature or enthalpy. In this section, two commonly adopted DDf-MRT

models are introduced. One is D2Q5 temperature-based DDF-MRT model [9, 51]

and the other one is D2Q9 enthalpy-based DDF-MRT model [59].

3.2.2.1 D2Q5 Temperature-Based DDF-MRT Model

As its name suggests, D2Q5 model only has 5 velocity directions in one lattice

structure, as Fig. 3.3 shows. The corresponding MRT energy equation is given by

g(x+ eδt,t+ δt)− g(x, t) = −N−1R [n(x, t)− neq(x, t)] , (3.64)
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where n(x, t) and neq(x, t) are the moment vector and the equilibrium moment

vector, corresponding to g(x, t) respectively.

Figure 3.3: D2Q5 lattice structure.

The transition matrix N is defined as

N =



1 1 1 1 1

0 1 0 −1 0

0 0 1 0 −1

−4 1 1 1 1

0 1 −1 1 −1


, (3.65)
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based on which the equilibrium moment vector neq is defined as

neq = Ngeq

=

[
T, uxT, uyT, ω̄T, 0

]T
, (3.66)

where ω̄ is a constant of the D2Q5 model which can be set between -4 and 1, and

the equilibrium distribution function geqi is given by

geqi = ω̃iT (1 +
ei · u
c2sT

), (3.67)

where the csT is the lattice sound speed of D2Q5 model, which is different from that

in D2Q9. It can be calculated from the equation c2sT = (4 + ω̄)c2/10, where the

lattice speed is commonly set to c = δx/δt = 1 in LBM.

The weight coefficients ω̃i are given as

ω̃i =


(1− ω̄)/5, i = 0,

(4 + ω̄)/20, i = 1, 2, 3, 4,

(3.68)

and the macroscopic temperature T can be calculated with Eq. (3.62).

3.2.2.2 D2Q9 Enthalpy-Based DDF-MRT Model

As its name suggests, the lattice structure and velocity directions are the same

as Fig. 3.2 shows. The MRT governing equation is in the same form as Eq. (3.64),

but with nine velocity directions instead of five ones.
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The transition matrix is the same as the one in the MRT model for fluid flow,

which is given in Eq. (3.19). The equilibrium moment vector neq can then be defined

as

neq = Ngeq

=

[
h,−4h+ 2cpT +

3cpT |u|2

c2
, 4h− 3cpT − 3cpT |u|2

c2
,

cpTux
c

,−cpTux
c

,
cpTuy
c

,−cpTuy
c

,
cpT (u

2
x − u2y)

c2
,
cpTuxuy

c2

]
, (3.69)

where the vector of the equilibrium distribution functions geq = {geqi |i = 0, 1, ..., 8}

is given by

geqi =



h− cpT + ωicpT − ωicpT
|u|2

2c2s
, i = 0,

ωicpT

[
1 +

(ei · u)
c2s

+
(ei · u)2

2c4s
− |u|2

2c2s

]
, i ̸= 0,

(3.70)

where the weight coefficient ωi is the same as that in Eq. (3.4). And it is the enthalpy

solved by this model, which can be calculated by Eq. (3.63).

3.3 Other DmQn Lattice Boltzmann Models

For two-dimensional cases, the D2Q9 model is widely adopted for simulating

the flow field, and both D2Q5 and D2Q9 models are commonly utilized in solving

the temperature field. The example models for both D2Q9 and D2Q5 are provided

in the previous sections of this chapter.

While for three-dimensional cases, the widely adopted models for the fluid field
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are D3Q15 and D3Q19 LBM [9], and a thermal LBM based on D3Q7 [80] can be

used to solve for heat transfer in 3D. In this section, D3Q15 and D3Q19 for fluid

flow and D3Q7 for heat transfer are briefly introduced.

3.3.1 D3Q15 SRT-LBM for Fluid Field

For the D3Q15 lattice model, the lattice Boltzmann equation, equilibrium

density distribution functions and calculations of macroscopic properties are in the

same form with Eq. (3.1), Eq. (3.3), Eq. (3.7) and Eq. (3.8) in Section 3.1.1. Based

on the lattice structure shown in Fig. 3.4, the discrete velocities e can be given by

Figure 3.4: D3Q15 lattice structure [9].

74



e =




0

0

0




1

0

0




−1

0

0




0

1

0




0

−1

0




0

0

1




0

0

−1




1

1

1


−1

1

1




1

−1

1




−1

−1

1




1

1

−1




−1

1

−1




1

−1

−1




−1

−1

−1





, (3.71)

and the weight coefficients are

ωi =



2
9
, i = 0,

1
9
, i = 1 ∼ 6,

1
72
, i = 7 ∼ 14.

(3.72)

3.3.2 D3Q19 MRT-LBM for Fluid Field

D3Q19 lattice model has more velocity directions than the D3Q15 model, as

shown in Fig. 3.5. The basic SRT settings are almost the same as those in the D3Q15

model. The only differences are for discrete velocities e and the weight functions ωi,
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which are defined as follows:

e =




0

0

0




1

0

0




−1

0

0




0

1

0




0

−1

0




0

0

1




0

0

−1




1

1

0




−1

1

1




1

−1

0


−1

−1

0




1

0

1




−1

0

1




1

0

−1




−1

0

−1




0

1

1




0

−1

1




0

1

−1




0

−1

−1





, (3.73)

ωi =



1
3
, i = 0,

1
18
, i = 1 ∼ 6,

1
36
, i = 7 ∼ 18.

(3.74)

A D3Q19 MRT model developed based on the SRT model by d’Humières [81] is

then introduced in this section. The evolution process is still governed by Eq. (3.16),

but the transition matrix is replaced by a 19× 19 matrix, as shown below

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1


, (3.75)
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Figure 3.5: D3Q19 lattice structure [9].

based on which the equilibrium moment vector meq can be defined as

meq =Mf eq

=ρ

[
1,−11 + 19u2, 3− 11u2

2
, ux,−

2ux
3
, uy,−

2uy
3
, uz,−

2uz
3
, 3u2x − u2,

− u2x + 0.5(u2y + u2z), u
2
y − u2z, u

2
z − u2y, uxuy, uyuz, uz, ux, 0, 0, 0

]T
, (3.76)

and the forcing term in the moment space can be described as

Fm =

[
0, 38F · u,−11F · u, Fx,−

2Fx

3
, Fy,−

2Fy

3
, Fz,−

2Fz

3
, 6Fxux − 2F · u,

F · u− 3Fxux, 2Fyuy − 2Fzuz, Fzuz − Fyuy, Fxuy + Fyux,

Fyuz + Fzuy, Fxuz + Fzux, 0, 0, 0

]T
.

(3.77)
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Besides, the relaxation matrix S is given by

S = diag(0, se, sε, 0, sq, 0, sq, 0, sq, sv, sπ, sv, sπ, sv, sv, sv, st, st, st), (3.78)

where sv and se are related to fluid kinematic viscosity vl and bulk viscosity ζl,

described as

vl =
1

3
(
1

sv
− 0.5)δtc

2, ζl =
2

9
(
1

se
− 0.5)δtc

2. (3.79)

More details for D3Q19 MRT model can also be found in Premnath et. al [82].

3.3.3 D3Q7 MRT-LBM for Temperature Field

The lattice structure of D3Q7 is shown in Fig. 3.6.

Figure 3.6: D3Q7 lattice structure [10].

The evolution process of D3Q7 MRT-LBM is still governed by Eq. (3.64), with
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the transformation matrix defined as [83]

N =



1 1 1 1 1 1 1

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

6 −1 −1 −1 −1 −1 −1

0 2 2 −1 −1 −1 −1

0 0 0 1 1 −1 −1



, (3.80)

by which the equilibrium moment vector neq can be expressed as

neq =Ngeq

= [h, cpTux, cpTuy, cpTuz, 6h− 21ωT cp,refT, 0, 0] . (3.81)

The discrete velocities for D3Q7 are given by,

e =




0

0

0




1

0

0




−1

0

0




0

1

0




0

−1

0




0

0

1




0

0

−1



 , (3.82)
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and the equilibrium distribution functions are defined as

geqi =



h− cp,refT + ωicp,refT, i = 0,

ωicp,refT +
u · ei
c2sT

ωicpT i ̸= 0,

(3.83)

where the weight functions ωi can be calculated by

ωi =


1− 3ωT , i = 0,

0.5ωT , i ̸= 0,

(3.84)

where ωT is a constant between 0 and 1, by which the sound speed csT in D3Q7 is

determined as csT = (ωt)
1/2c. Finally the enthalpy can be recovered by Eq. (3.63).

3.4 Chapter Summary

In this chapter, various single-phase lattice Boltzmann models are introduced,

either for the flow field (Section 3.1) or for the temperature field (Section 3.2).

Generally, lattice Boltzmann models can be characterized by their lattice structures

(DmQn). Besides the models demonstrated in Section 3.1 and Section 3.2, other

DmQn models are introduced in Section 3.3, including the three-dimensional lattice

Boltzmann models.

In order to facilitate the indexing of the models introduced in this chapter,

Table 3.1 summarizes all the mentioned models based on their lattice structures
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(DmQn) and sorts them in the sequence of ascending values of m (dimensions) and

n (numbers of discrete velocities).

Lattice structures Lattice Boltzmann models Sections

D2Q5 Temperature-based DDF-MRT Section 3.2.2.1

D2Q9

LBGK (SRT) Section 3.1.1
Cartesian MRT Section 3.1.3

Axisymmetric MRT Section 3.1.4
Cartesian Porous MRT Section 3.1.5.1

Axisymmetric Porous MRT Section 3.1.5.2
Enthalpy-based DDF-MRT Section 3.2.2.2

D3Q7 Enthalpy-based DDF-MRT Section 3.3.3
D3Q15 Cartesian SRT Section 3.3.1
D3Q19 Cartesian MRT Section 3.3.2

Table 3.1: Summary of Single-Phase Lattice Boltzmann Models in Chapter 3.
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Chapter 4: Solid-Liquid Lattice Boltzmann Models

In Chapter 3, the focus is on single-phase LBM for the flow field, as it is

sufficient to solve the fluid flow in the liquid zone of the PCM phase change. In

this chapter, the solid-liquid lattice Boltzmann models are developed, applying a

single-phase LBM to the flow field in the liquid zone and an improved thermal LBM

to the temperature field in the entire domain. The focus of this chapter is on the

thermal side of the solid-liquid DDF-LBM.

4.1 Treatment of Latent Heat

Generally, the consideration of latent heat can be either by modeling the vari-

ation of specific heat capacity or by adding a heat source term. In solid-liquid LBM,

treating the latent heat as a heat source term is easier to achieve in terms of the

model development, and thus is widely used.

In Chapter 3, two thermal MRT models (D2Q5 and D2Q9) are introduced

in Section 3.2.2 for Cartesian coordinates, which are free of heat source terms,

i.e., single-phase thermal MRT-LBM. Between them, the D2Q9 enthalpy-based

MRT-LBM can be directly used in solving solid-liquid phase change by modeling

the enthalpy h based on the equations proposed in Section 2.5.1, while the D2Q5
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temperature-based MRT-LBM needs to add a latent heat source term to the thermal

lattice Boltzmann equation (3.64), which is then given as

g(x+ eδt,t+ δt)− g(x, t) = −N−1R [n(x, t)− neq(x, t)] + δtN
−1Qm, (4.1)

where Qm is the latent heat source term in the moment space, which is given by [51]

Qm =

(
−La∆fl
cp,lδt

, 0 , 0 , − ω̄
La∆fl
cp,lδt

, 0

)
, (4.2)

where ω̄ is a constant in D2Q5 which can be set between -4 and 1, and the change

of liquid fraction ∆fl can be obtained by a forward finite difference scheme given as

∆fl = fl(x, t+ δt)− fl(x, t).

Similar to the models for the flow field in Section 3.1.3, the collision process

of the thermal models executed in the moment space can be expressed as

n∗(x, t) = n(x, t)−R [n(x, t)− neq(x, t)] + δtQm, (4.3)

and the streaming process that calculates based on the distribution functions is

given as

g(x+ eδt,t+ δt) = N−1n∗(x, t). (4.4)

Although this D2Q5 model is based on temperature, the relationship between

the liquid fraction fl and the temperature T is determined by the enthalpy method.

The forward scheme of ∆fl in the heat source term, which is required for solving the
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temperature field, is also dependent on the temperature. Therefore, iterations are

necessary for solving the evolution equation at every time step of temperature-based

LBM to obtain the temperature field [47]. This limitation increases the computation

costs and thus makes it less competitive than the enthalpy-based LBM in solving

the solid-liquid phase change. In the following sections of this chapter, emphasis is

placed on introducing the development of enthalpy-based thermal MRT-LBM.

4.2 Porous Media Treatments

As mentioned in latent heat treatments (Section 4.1), the D2Q9 enthalpy-

based MRT-LBM in Section 3.2.2.2 can be directly used in solving solid-liquid phase

change by modeling the enthalpy h based on the equations proposed in Section 2.5.1.

In general, the enthalpy-based MRT-LBM can solve either single-phase or solid-

liquid heat transfer by setting corresponding enthalpy equations. For porous PCM

phase change at the REV scale, the enthalpy equations consider the porous media

by applying the porosity ϕ as specified in Section 2.5.1. Besides, the relaxation time

τg for the energy equation is calculated based on the effective thermal diffusivity αe

defined in Section 2.3, e.g., the relaxation matrix R is defined as

R = diag(σh, σe, σε, σj, σq, σj, σq, σp, σp), (4.5)

where σh is set to 1.0 representing the energy is conserved, and the critical relaxation

rate σj, which determines the heat transfer behavior, is related to the effective
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thermal diffusivity αe and can be expressed as

σj =
1

τg
, (4.6)

τg =
αe

c2sδt
+ 0.5, (4.7)

where the effective thermal diffusivity is defined as αe = ke/(ρlcp) with the effective

thermal conductivity ke solved by Eq. (2.19), where the thermal conductivity of the

PCM (kf ) can be determined by

kf = flkl + (1− fl)ks. (4.8)

If the referenced specific heat cp,ref specified in Section 2.6 is used for the

calculation of the thermal diffusivity. The effective thermal diffusivity is then re-

defined as αe = ke/(ρlcp,ref ). For pure PCM, the thermal conductivity between

solid and liquid phases may differ. However, this difference is minimized for the

effective thermal conductivity between the two phases, and therefore is negligible

when the thermal conductivity of porous media (kp,m) is high enough compared with

those of the PCM (ks and kl). If this difference can not be ignored in some cases,

another simplification can be made by assuming two effective thermal conductivities

(ke,s and ke,l) for both phases respectively, and neglecting the thermal conductivity

variations in the mushy zone (0 < fl < 1).
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4.3 Axisymmetric Thermal MRT-LBM

The adaptions of thermal LBM to axisymmetric coordinates have been devel-

oped in recent years for thermal convective flow and phase change. In this section,

the axisymmetric D2Q5 and D2Q9 thermal MRT-LBM are introduced.

4.3.1 D2Q5 Temperature-Based Thermal MRT-LBM

The D2Q5 temperature-based thermal MRT-LBM for axisymmetric coordi-

nates from Wang et al. [53] is introduced in this section. The thermal lattice equa-

tion can be expressed as

g(x+ eδt, t+ δt)− g(x, t) =−N−1R [n(x, t)− neq(x, t)] + δtN
−1Ψ

+ δtN
−1(I− R

2
)H, (4.9)

where the transformation matrix N is in non-orthogonal form, defined as

N =



1 1 1 1 1

0 1 0 −1 0

0 0 1 0 −1

0 1 1 1 1

0 1 −1 1 −1


, (4.10)
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and the equilibrium moment vector neq is expressed as

neq = Ngeq

=

[
rT, ruzT, rurT, rθT, 0

]T
, (4.11)

where θ is a constant between 0 and 1.

Besides, Ψ is the source term given by

Ψ = (0, 0, αTσ2, 0, 0)
T , (4.12)

where thermal diffusivity α can be effective thermal diffusivity αe for porous flow

at REV scale, and σ2 is the third component of the relaxation matrix S calculated

as σ1 = σ2 = 1/τg, where τg can be determined by the thermal diffusivity as τg =

v/(c2sT δt) + 0.5. And H is a correction term defined as,

H = (0, TFz, TFr, 0, 0)
T . (4.13)

The temperature equilibrium distribution function geqi is given by

geqi = rT ω̄i(1 +
ei · u
c2sT

), (4.14)

where weight coefficients ω̄i equal to 1/2 for i = 0 and 1/8 for i = 1 − 4, and the

lattice sound speed is defined as csT =
√
θ/2 for D2Q5 model. And the temperature
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T can be determined by

T =
4∑

i=0

gi. (4.15)

4.3.2 D2Q9 Enthalpy-Based Thermal MRT-LBM

The modifications of D2Q9 enthalpy-based thermal MRT-LBM for axisymmet-

ric coordinates proposed by Li et. al [49] are introduced in this section. Although the

mechanism of the single-phase enthalpy-based MRT-LBM can be directly used for

phase change in Cartesian coordinates, the adaption of the model to axisymmetric

coordinates requires additional treatments.

First, the MRT lattice equation is modified as

g(x+ eδt, t+ δt)− g(x, t) = −N−1R [n(x, t)− neq(x, t)] + δtQm, (4.16)

where the relaxation matrix R is given by Eq. (4.5), the transformation matrix N

is the same as Eq. (3.19), and the equilibrium moment vector neq is defined in the

same form as Eq. (3.69) but with (r, z) subscripts.

The source term Qm in Eq. (4.16) is then expressed as

Qm = −cpTur
r

(1, 0, 0, 0, 0, 0, 0, 0, 0)T . (4.17)

Besides, the first component of post-collision moment vector is modified to retrieve
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the extra terms in axisymmetric coordinates, which is given by

n̄∗
0 = n∗

0 −
1

r
(1− 0.5σj)cδt(n3 − neq

3 ), (4.18)

where n∗
0 is the post-collision values for 0th moment, n̄∗

0 is the new value of the 0th

moment after the modification, and n3, n
eq
3 are 4th component of the moment vector

and equilibrium moment vector before the collision respectively.

Correspondingly, this D2Q9 axisymmetric thermal MRT-LBM is developed

based on the same concept as the second method used for the axisymmetric flow

field introduced in Section 3.1.4. And since it is based on enthalpy, the enthalpy can

be recovered from Eq. (3.63), which can be further used to calculate the temperature

field based on the prescribed enthalpy equations.

4.4 Modified D2Q9 Enthalpy-Based MRT-LBM

As discussed in this chapter, the enthalpy-based LBM has advantages in sim-

ulating the solid-liquid phase change. In this section, several improvements to the

enthalpy-based thermal MRT-LBM are proposed and developed in this disserta-

tion in order to make it more capable of solving various cases of the PCM HX. To

make the introduction more concise, the D2Q9 enthalpy-based MRT-LBM is used

to demonstrate those improvements.
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4.4.1 Coupling of DSC Correlated Enthalpy Equations

Based on the modified macroscopic energy equations specified in Section 2.6

for DSC correlated enthalpy equations. A corresponding D2Q9 enthalpy-based MRT

model is proposed in this dissertation. Compared with the D2Q9 thermal model

introduced in Section 3.2.2.2, the new expressions of equilibrium moment vector neq

and equilibrium distribution function geqi are given as follows:

neq = Ngeq

=

[
h,−4h+ 2cp,refT +

3h|u|2

c2
, 4h− 3cp,refT − 3h|u|2

c2
,

hux
c
,−hux

c
,
huy
c
,−huy

c
,
h(u2x − u2y)

c2
,
huxuy
c2

]
, (4.19)

geqi =



h− cp,refT + ωicp,refT − ωih
|u|2

2c2s
, i = 0,

ωicp,refT + ωih

[
(ei · u)
c2s

+
(ei · u)2

2c4s
− |u|2

2c2s

]
, i ̸= 0,

(4.20)

where the enthalpy h is modeled based on the DSC correlated equations as specified

in Section 2.5.2.

Additionally, for axisymmetric coordinates, the source term Qm defined in

Eq. (4.17) should also be modified as

Qm = −hur
r

(1, 0, 0, 0, 0, 0, 0, 0, 0)T . (4.21)
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4.4.2 High Rayleigh Number Flow Treatment

According to the Chapman-Enskog expansion, the recovered macroscopic en-

ergy equation contains the deviation term ∂t(hu), which can be ignored if the driven

force in the liquid zone is not drastic. This assumption is valid under the Boussinesq

approximation, but the error from the deviation term may become significant for

high Rayleigh number flow (Ra > 106), where the flow velocity driven from the

buoyancy force is high enough.

Based on the concept from [48, 84] and the developed D2Q9 thermal MRT-

LBM in Section 4.4.1, a modified source term Qm in the moment space for D2Q9

model is proposed in this dissertation to eliminate the mentioned deviation term,

which can be given by

Qm =

[
0 , 0 , 0 , (1− 1

2τg
)∆(hux) , − (1− 1

2τg
)∆(hux) ,

(1− 1

2τg
)∆(huy) , − (1− 1

2τg
)∆(huy) , 0 , 0

]
, (4.22)

where ∆(hux) and ∆(huy) can be calculated by a forward scheme defined as follows:

∆(hux) = h(x, t+ δt)ux(x, t+ δt)− h(x, t)ux(x, t)

∆(huy) = h(x, t+ δt)uy(x, t+ δt)− h(x, t)uy(x, t) (4.23)

By applying this modification to the source term, the error caused by the

term ∂t(hu) can be eliminated. And owing to this, the enthalpy-based MRT can be

91



capable of simulating high Rayleigh number flow (Ra > 108) accurately.

Similarly, the modified source term in axisymmetric coordinates can be given

as

Qm =

[
− hur

r
, 0 , 0 , (1− 1

2τg
)∆(hur) , − (1− 1

2τg
)∆(hur) ,

(1− 1

2τg
)∆(huz) , − (1− 1

2τg
)∆(huz) , 0 , 0

]
. (4.24)

4.4.3 Conjugate Heat Transfer

4.4.3.1 Conducting Fins in PCM HX

In Section 2.4, the governing equations for conducting fins are provided. A

separate D2Q9 thermal MRT model can be used to simulate the pure conduction in

fins by simply setting u = (0, 0) and α = αfin.

Besides, the enthalpy h is defined as hfin = cp,finT for conducting fins, and the

temperature and heat flux across the surface between the fins and the PCM should

be consistent, which can be expressed as

Tfin = TPCM , (4.25)

nv · (−k∇T )fin = nv · (−k∇T )PCM , (4.26)

where nv is the normal vector of the surface.
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4.4.3.2 Heat Transfer Fluid (HTF) Flow in PCM HX

For the HTF flow in the PCM HX, as shown in Fig. 4.1, the HTF is charged

from the inlet and go through the pipe to transfer the heat with the PCM. If the

PCM and the wall of the pipe are modeled, then the thermal boundary condition

for the left side of the PCM container should be determined.

Figure 4.1: Heat transfer fluid (HTF) with PCM HX.

For the boundary treatment in the LBM, the temperature on the surface be-

tween the HTF and the wall is required. And thus the thermal boundary condition

on the left side with the HTF is actually the temperature along the surface. How-

ever, if only the inlet temperature of the HTF is fixed, then the temperature along
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the surface also depends on the heat transfer of the PCM.

In order to model the HTF flow side efficiently, a one-dimensional model as

shown in Fig. 4.2 is used to simulate the temperature field of the HTF flow by

assuming the temperature variations only occur along the flow direction. Then, at

each time step, the temperature along the surface (wall) between the HTF and the

PCM can be determined by assuming the consistent temperature Twall and heat flux

Q̇wall between both sides of the surface, which can be calculated as

Twall = CHTFTHTF + CPCMTPCM , (4.27)

where CHTF + CPCM = 1, and the values of these two coefficients are determined

by the heat resistance on each side of the surface. Following that, the heat flux

Q̇wall(xi, t) from the HTF to the PCM can be obtained on each grid point in

Fig. 4.2. If then setting the inlet mass flow rate as ṁHTF and energy flux as

Q̇HTF (x0, t) = ṁHTF cp,HTFT (x0, t) for the HTF, the temperature of the HTF along

the flow direction for the next time step can be determined by performing the energy

balance on each grid point of the 1D HTF model, as given by

T (xi+1, t+ δt) =
Q̇HTF (xi, t)− Q̇wall(xi, t)

ṁHTF cp,HTF

,

= T (xi, t)−
Q̇wall(xi, t)

ṁHTF cp,HTF

, (4.28)

where subscript i is from 0 to n, where n refers to the number of the grid points in

the HTF flow direction.
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Figure 4.2: 1D HTF flow model.

By utilizing this 1D model for the temperature of the HTF and applying

the calculated temperature along the wall to the boundary conditions in LBM, the

variation of the temperature difference between the inlet and outlet of the HTF flow

during the PCM melting can be achieved in the thermal LBM.

4.5 Boundary Treatments in LBM for PCM HX

For a general PCM HX configuration as shown in Fig. 4.3, the flow boundary

conditions obviously can be the rigid wall with zero velocities, while the types of

thermal boundary conditions can be either adiabatic (top and bottom boundaries)

or convective (left and right boundaries). The application of boundary conditions in

LBM is particle-based, performed at lattice scale instead of the macroscopic level.

In this section, the boundary treatments in LBM are introduced both for the flow
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and temperature field.

Figure 4.3: Types of boundary conditions in a PCM HX.

In LBM, solving the boundary conditions is to obtain the unknown distribution

functions on the boundary nodes. Once the distribution functions on the boundary

nodes are calculated, the entire field can be solved.

For the flow field, the half-way bounce back scheme [85] is adopted to solve

the distribution functions on rigid walls by assuming the actual boundary surface is

placed halfway between the PCM nodes and the solid wall nodes. This method is

of second-order accuracy both in time and space.

For the temperature field, a half-way specular reflection scheme is applied

to handle the thermal distribution functions at adiabatic boundaries. The differ-
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ence between this scheme and the half-way bounce back scheme is demonstrated

in Fig. 4.4, where the dashed line denotes the boundary placed halfway between

the PCM layer and the wall layer, fi and gi are incident post-collision distribution

functions from PCM nodes, and fib and gib are the reflected distribution functions

at the boundary nodes.

Figure 4.4: Half-Way bounce back scheme and half-way specular reflection scheme.

For convection heat transfer, the boundary treatment is to first determine

the temperatures on the boundary nodes by using the method demonstrated in

Section 4.4.3.2. Then the distribution functions on the boundary nodes can be

obtained by an extrapolation scheme based on the boundary temperatures, and the

details can be found in the literature from Chen et al. [86].
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4.6 Parallel LBM Scheme

Owing to the completely local collision process and the explicit streaming

process in LBM, the development of the parallel scheme in LBM is fairly conve-

nient. The parallel LBM scheme is one of the common methods to solve large-

scale problems in a time-efficient way. Therefore, a parallel LBM scheme for the

enthalpy-based MRT LBM is developed in order to accelerate the simulation of the

solid-liquid phase change, by which the parametric study of the PCM HX can be

performed efficiently.

Figure 4.5: Parallel LBM scheme: (a) partial units (PUs) division and (b) data
transition between PUs.

Generally, the mesh grid of LBM can be divided into several partial units

(PUs), shown as the red rectangles denoted by 1, 2, 3, and 4 in Fig. 4.5. Because the

calculation of the streaming process at each grid point in LBM requires information
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from its nearby points, the data need to be transferred between partial units. Taking

the partial unit 1 shown in Fig. 4.5 as an example, an extra layer of the grid pints

shaded by the gray color is added to store the data transferred from the grid points

highlighted by the orange color of its nearby partial units (2, 3 and 4).

In terms of code development, the communication between PUs is achieved by

Message Passing Interface (MPI), and the parallel LBM scheme in this dissertation

is programmed in C++. Besides, Microsoft MPI (MSMPI) is used for Windows

environment and OpenMPI for Linux environment.

4.7 Unit Conversion from Macroscopic Units to Lattice Units

Unlike macroscopic units, there is only one system of units in LBM, i.e., lat-

tice units. Because of this, many LBM literature omitted the lattice units when

introducing their lattice Boltzmann simulations. But to demonstrate the unit con-

version clearly, it is worth mentioning that the primary lattice units in LBM are

length unit (lu), mass unit (mu), temperature unit (tu) and time unit (ts). In

most lattice Boltzmann models, the space and time steps can be set to unity, i.e.,

∆r = ∆z = 1 lu and ∆t = 1 ts. For incompressible flow, the density in LBM is

commonly chosen to be unity (ρlattice = 1.0 mu/lu3) and the characteristic velocity

(ulattice) in lattice units should be set carefully to maintain a low Mach number

(Ma ≪ 1) and avoid instability issues. Based on these pre-assigned values, and in

coupling with the matching of the critical dimensionless numbers and geometries,

other parameters in lattice units can be converted from those of macroscopic units.
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Taking the two-dimensional thermal convective flow in a vertical annulus with

SI units as an example, the annulus that has radius R = 0.1 m and length L = 0.2

m is filled with water at Tf = 293 K. The physical values of properties of water

at 293 K are density ρ = 998.29 kg/m3, kinematic viscosity v = 1.00 × 10−6 m2/s,

thermal diffusivity α = 1.43 × 10−7 m2/s and thermal expansion coefficient β =

2.07 × 10−4 1/K. Additionally, the wall of the annulus is kept at Tb = 323 K. To

solve this problem, an axisymmetric model based on LBM is established with the

computational domain [Nr, Nz] = [100, 200].

To convert these parameters in the example from SI units to lattice units, the

referenced values for the four primary units (lu, mu, tu, ts) need to be determined

initially. The referenced value Lr in the length unit can be calculated as

Lr =
R

Nr∆r
=

L

Nz∆z
= 1.00× 10−3 m/lu. (4.29)

The referenced value mr in the mass unit can then be determined by

mr = Lr3
ρ

ρlattice
= 9.98× 10−7 kg/mu, (4.30)

where ρlattice is pre-assigned to 1.0 as mentioned above in this section. Similarly, the

referenced value tr in the time unit can be determined by Lr in coupling with the

velocity ratio between SI units and lattice units. Assuming the caracteristic velocity
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in LBM is set to ulattice = 0.01 lu/ts, then tr can be expressed as

tr = Lr
ulattice
uc

= Lr
ulattice√

gβ(Tb − Tf )L

= 9.06× 10−5 s/ts, (4.31)

where gravitational acceleration g in SI units is 9.81m/s2. To covert g to lattice

units, the same method is applied, i.e., glattice = gt2r/Lr = 8.05 × 10−5 lu/ts2. The

last referenced value Tr in the temperature unit can be chosen arbitrarily, e.g.,

assuming ∆Tlattice = 1 tu, then Tr is given by

Tr =
Tb − Tf
∆Tlattice

= 30 K/tu. (4.32)

After the initial step, the parameters in lattice units, such as kinematic viscos-

ity, thermal diffusivity and thermal expansion coefficient, can be converted utilizing

the combination of the four basic referenced values from Eqs. (4.29)–(4.32). There-

fore in the given example, the parameters in lattice units are calculated as

vlattice = v
tr

L2
r

= 9.06× 10−5 lu2/s,

αlattice = α
tr

L2
r

= 1.30× 10−5 lu2/s,

βlattice = βTr = 6.21× 10−3 1/tu. (4.33)

In the same way, other parameters in LBM can be converted from the macro-

scopic units. Finally, the critical dimensionless numbers can be calculated with the
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parameters in lattice units to check the correctness of the unit conversion. These

dimensionless numbers, as shown in Eq. (2.31), need to be kept the same between

the lattice units and the macroscopic units. For instance, the Rayleigh number in

LBM is computed as

Ralattice =
glatticeβlattice∆Tlattice(Nz∆z)

3

vlatticeαlattice

= 3.40× 109, (4.34)

which is in the same value compared with the Rayleigh number calculated from SI

units. Additionally, the critical dimensionless numbers can act as bridges to link

the lattice units with the macroscopic units. Therefore, they also can be utilized

to calculate the values of the parameters in LBM to simplify the calculation of the

unit conversion.

4.8 Chapter Summary

The enthalpy-based method is widely used for the simulation of the PCM

phase change to track the liquid fraction by updating the enthalpy. The integration

of the enthalpy-based method with the LB model extends the application of LBM

in solving solid-liquid phase change problems. In this chapter, the development of a

solid-liquid MRT LB model is introduced from Section 4.1 to Section 4.4. Besides,

the boundary treatments in LBM for flow and temperature fields (Section 4.5), the

development of the parallel LBM scheme (Section 4.6) and the conversion from

macroscopic units to lattice units (Section 4.7) are also briefly discussed.
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To summarize and highlight the basic models and the modifications adopted

and developed for the solid-liquid phase change, the following subsections give a

comprehensive D2Q9 enthalpy-based DDF-MRT LBM either in Cartesian coordi-

nates or in axisymmetric coordinates.

4.8.1 D2Q9 DDF-MRT LBM in Cartesian Coordinates

The D2Q9 MRT-LBM for the flow with porous media at the REV scale intro-

duced in Section 3.1.5.1 can be used for simulating the convective flow in the liquid

PCM zone.

The D2Q9 enthalpy-based MRT-LBM introduced in Section 3.2.2.2, together

with the enthalpy equations in Section 2.5, porous media treatments in Section 4.2,

modifications proposed in Section 4.4, can be used for simulating the heat transfer

of the PCM with or without fins across the entire domain.

Through Chapman-Enskog expansion [50, 87, 88], the corresponding macro-

scopic governing equations (2.9, 2.10 and 2.29) can be recovered. By setting the

porosity ϕ equal to one, the model can be reduced to simulate the pure PCM con-

vective heat transfer problems.

4.8.2 D2Q9 DDF-MRT LBM in Axisymmetric Coordinates

The D2Q9 MRT-LBM for the axisymmetric flow with porous media at the

REV scale introduced in Section 3.1.5.2 is adopted to solve the axisymmetric porous

convective flow in the liquid PCM zone.
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The axisymmetric D2Q9 enthalpy-based MRT-LBM demonstrated in Sec-

tion 4.3.2, together with the enthalpy equations in Section 2.5, porous media treat-

ments in Section 4.2, modifications proposed in Section 4.4, is capable of simulating

the various cases of the convective PCM heat transfer.

Through Chapman-Enskog expansion [50, 87, 88], the macroscopic governing

equations (2.13, 2.14, 2.15 and 2.30) can be recovered. Similarly, by setting the

porosity ϕ equal to one, the model can be reduced to simulate the axisymmetric

pure PCM convective heat transfer problems.
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Chapter 5: Numerical Simulations

The enthalpy-based DDF-MRT lattice Boltzmann model is developed based

on the concepts and theories introduced in Chapter 2, Chapter 3 and Chapter 4. In

this chapter, various numerical simulations are conducted to verify and validate the

developed model, which is demonstrated in Section 5.1 and Section 5.2. Meanwhile,

the scaling analysis of the parallel LBM scheme is introduced in Section 5.3 for the

PCM HX.

5.1 Numerical Verification

5.1.1 Isothermal Flow in Lid-Driven Cavity

To verify the developed 2D single-phase LB model for flow field in Chapter 3,

a simulation has been conducted for a 2D rectangular cavity with its top lid moving

horizontally at a constant velocity U . Two cases are considered, Re = 1000 and

Re = 2000. The schematic of the lid-driven cavity is shown in Fig. 5.1.

The computational domain is set to 257 × 257, the lid velocity U = 0.1 and

the length L = 1 in the LB model. The streamlines of the flow within the cavity for

different Re are shown in Fig. 5.2 and Fig. 5.3.
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Figure 5.1: Lid-driven cavity.
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Figure 5.2: Streamlines of lid-driven cavity at Re = 1000.

There are three vortexes observed in the cavity due to the competition between

inertia and shear stress. It is observed that a large primary vortex locates near the
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Figure 5.3: Streamlines of lid-driven cavity at Re = 2000.

center of the cavity and two small secondary vortexes appear at the bottom left

and bottom right corners respectively. By measuring the exact center locations for

those vortexes and comparing them with the results from Vanka and S Pratap [1],

the single-phase LB model for the flow field is verified. The results are listed in

Table 5.1

Re Primary vortex Bottom left vortex Bottom right vortex

1000 (a) [0.5438, 0.5625] [0.0750, 0.0813] [0.8625, 0.1063]
1000 (b) [0.5334, 0.5660] [0.0821, 0.0730] [0.8610, 0.1108]
2000 (a) [0.5250, 0.5500] [0.0875, 0.1063] [0.8375, 0.0938]
2000 (b) [0.5230, 0.5486] [0.0864, 0.1021] [0.8421, 0.0963]

Table 5.1: Comparison of the Location of the Vortexes: (a) Vanka and S Pratap [1];
(b) Our Model.
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5.1.2 PCM Melting with Porous Media in Cartesian Coordinates

In this section, a simulation of the PCM melting in a porous square cavity is

conducted to test the performance of the basic Cartesian lattice Boltzmann model.

Figure 5.4: Schematic of the porous square cavity with PCM.

Rayleigh Number Prandtl Number Stefan Number Porosity

841,000 0.0208 0.1241 0.385

Table 5.2: Dimensionless number for PCM melting in the porous cavity.

The square cavity is shown in Fig. 5.4, where the left surface is maintained

at the highest temperature Th = 45 °C and the right surface is held at the lowest

temperature Tc = 20 °C. Both the top and bottom surfaces are adiabatic and the

porous cavity is filled with the solid PCM initially. The melting temperature of the
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Figure 5.5: Comparison of temperature profile of PCM melting in the porous cavity
with the numerical data [11] at Fo = 1.829 .

PCM Tm = 29.78 °C and the initial temperature Ti = Tc, whereby the solid PCM

starts to melt from the left side to the right side as time continues. Additionally,

the PCM melting is assumed with no temperature glide. To verify the developed

axisymmetric lattice Boltzmann model, the parametric settings listed in Table 5.2

are obtained from Liu et. al [51], and the computational domain is set to [Nx, Ny] =

[200, 200].

The temperature profile at Fourier Number Fo = αt/L2 = 1.829 is shown in

Fig. 5.5, where θ = (T − Tc)/(Th − Tc) is the dimensionless temperature, the lines

are the results from the present model and the dots are the numerical data points

from C. Beckermann and R. Viskanta [11]. The comparison shows a reasonable
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Figure 5.6: Isotherms at Fo = 1.829 with mesh size being 100× 100, 150× 150 and
200× 200.

agreement and indicates that the basic Cartesian lattice Boltzmann model is capable

of solving the convective PCM melting with the porous media. Additionally, a grid-

independent study is conducted for this case. Three simulations were run on mesh

sizes 100×100, 150×150 and 200×200 respectively and the results in Fig. 5.6 show

the isotherms at Fo = 1.829. Comparing the deviation of the isotherms among each

mesh size, the results indicate that the system with mesh size 150 × 150 is almost

grid-independent.
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5.1.3 Thermal Convective Flow in Axisymmetric Coordinates

Given that adapting the Cartesian LBM to axisymmetric coordinates alters

the terms in the MRT scheme [49] and natural convection in the liquid zone plays an

important role in PCM melting, it is necessary to verify the ability of the axisym-

metric model to solve thermal flow with natural convection. Therefore a vertical

annulus filled with the pure liquid is simulated based on this axisymmetric model,

as shown in Fig. 5.7.

Figure 5.7: Schematic of the vertical annulus with pure liquid.

The thermal flow is simulated without porous media at various Rayleigh num-

bers (Ra = 103, 104, 105), where the computational domain is [Nr, Nz] = [100, 200]

and both the aspect ratio L/(ro − ri) and the diameter ratio ro/ri are set to 2.

The highest dimensionless temperature Th is kept at 1 and lowest dimensionless
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Figure 5.8: Streamlines and isotherms of the thermal flow in the vertical annulus
for Ra = 103 (Left), 104 (Middle), 105 (Right).

temperature Tc is 0.

The streamlines and isotherms for different Ra are displayed in Fig. 5.8 and
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Ra Li et. al [89] Wang et. al [90] Present model

103 1.692 1.688 1.685
104 3.215 3.210 3.207
105 5.787 5.793 5.741

Table 5.3: Comparison of the Average Nusselt Numbers.

Ra 50 × 100 100 × 200 200 × 400

103 1.602 1.685 1.685
104 2.975 3.207 3.209
105 4.764 5.741 5.744

Table 5.4: Average Nusselt Numbers at Steady-State with Mesh Size being 50 ×
100, 100 × 200 and 200 × 400.

the corresponding average Nusselt numbers are tabulated in Table 5.3 in comparison

with the numerical results from Li et. al [89] and Wang et. al [53]. A clear trend

can be seen in Fig. 5.8 that more hot fluid is driven from the bottom to the top near

the inner (left) plate as Ra becomes higher, which results in the different flow and

temperature distributions among these three cases. Moreover, the comparison of the

average Nusselt numbers indicates that the present axisymmetric model is capable

of solving the convective thermal flow accurately. A grid convergence study is also

conducted for this case with three mesh sizes: 50 × 100, 100 × 200 and 200 × 400.

The average Nusselt numbers at steady state are compared among the three mesh

sizes and the results tabulated in Table 5.4 indicate that this axisymmetric thermal

flow case with 100× 200 can be regarded as grid-independent.
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5.2 Numerical Validation

5.2.1 Thermal Convective Flow with Porous Media in Axisymmetric

Coordinates

The new axisymmetric model is verified by simulating pure convective thermal

flow as demonstrated in Section 5.1.3. The purpose of the case study in this section

is to validate the ability of the new axisymmetric model to simulate porous thermal

flow with natural convection. The schematic of the vertical annulus is similar to

Fig. 5.7 but with porous media and different geometric ratios. The highest temper-

ature Th is kept at 60 °C and the lowest temperature Tc is 50 °C, and the rest of

the settings are listed in Table 5.5.

Aspect ratio Diameter ratio Porosity Da Ra Pr

2.0 5.338 0.3698 1.66× 10−6 1.75× 108 1.0

Table 5.5: Dimensionless Numbers for Thermal Convective Flow with Porous Media
in the Annulus.

The numerical data in Fig. 5.9 show the steady-state dimensionless tempera-

ture (θ) profiles along the radial direction (r) at different heights (Z) in comparison

with the experimental data from V. Prasad and F. A. Kulacki. [12]. A small devi-

ation can be observed for the temperature profile at Z = 1 near the top left and

right corners. But the results, in general, indicate a good match of the temperature

distributions in the annulus between the simulation and the experiment. The com-

parison with experimental data in Fig. 5.9 demonstrates that the new model can

simulate the axisymmetric thermal flow with the porous media accurately.
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Figure 5.9: Comparison of temperature profiles (θ) of the thermal flow in the porous
annulus along radial direction with the experimental data [12] at Different Heights
Z = z/L.

5.2.2 PCM Melting in Axisymmetric Coordinates

To further validate the new axisymmetric model, a case study of the pure PCM

melting in the cylindrical HX is conducted to compare the numerical results with

the experimental data from CEEE group. The numerical model is set up based on

the experimental settings, as shown in Fig. 5.10, where the type of the PCM used in

the experiment is PT37 and its properties are listed in Table 5.6 [2]. The HX is well

insulated, and thus both top and bottom boundaries can be treated as adiabatic.

However, the right boundary, which is the outer wall of the cylinder, still has a tiny
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Figure 5.10: Schematic of the cylindrical PCM HX settings.

heat dissipation to the ambient air. Therefore, the convection boundary condition is

applied to the right boundary to model this tiny heat loss. On the left boundary, the

HTF is hot water pumped downward through the pipe, with the inlet temperature

at 59.25 °C. Other important settings including the critical dimensionless numbers

are tabulated in Table 5.7, where the Rayleigh number is calculated either based on

the length L of the HX or the radius gap R defined as R = ro − ri, and both values

are listed in Table 5.7. Moreover, it is worth noting that there is no exact data for

the thermal expansion coefficient β of PT37 in the literature, and consequently, the

value of β is assumed based on the properties of another paraffin wax, and is set to

3.85× 10−4 in the simulation.
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Property Unit Value

Nominal melting temperature (Tm) °C 37
Latent heat of fusion (La) kJ/kg 210

Density (solid) (ρs) kg/m3 920

Density (liquid) (ρl) kg/m3 840
Specific heat capacity (solid) (cp,s) kJ/(kg K) 2.21
Specific heat capacity (liquid) (cp,l) kJ/(kg K) 2.63
Thermal conductivity (solid) (ks) W/(m K) 0.25
Thermal conductivity (liquid) (kl) W/(m K) 0.15
Kinematic viscosity (liquid) (vl) mm2/s 6.074

Table 5.6: PCM Properties of PT37 [2].

Parameter Value

Initial temperature (Ti) 25 °C
Inlet temperature (Tinlet) 59.25 °C
Length of the HX (L) 400 mm
Inner radius of the HX (ri) 6.5 mm
Outer radius of the HX (ro) 22 mm
Rayleigh number based on length (RaL) 9.59× 109

Rayleigh number based on radius gap (RaR) 5.58× 105

Prandtl number (Pr) 89.5
Stefan number (Ste) 0.335

Table 5.7: Parametric Settings for the PCM Melting in the Cylindrical HX.

The simulation is conducted with mesh size 32 × 800 for the 2-hour PCM

melting in the cylindrical HX. According to the experiment, six levels are set to

place the thermocouples, where the temperature measurements at three levels (1, 3

and 5) are chosen to compare with our simulation results. The configuration of the

thermocouples at these three levels is shown in Fig. 5.11, where two thermocouples

are placed at each level, with one at radius rin and one at radius rout. And the

height of each level and values of rin and rout are listed in Table 5.8

The temperature profile at each level is compared with the experimental data,
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Figure 5.11: Configuration of thermocouples at three levels (L1, L3,L5).

as shown by Fig. 5.12,Fig. 5.13, and Fig. 5.14. Fig. 5.12 shows the comparison of

the temperatures at level one, which is located at the top part of the PCM HX. The

difference between the simulation and experimental results is relatively small, which

indicates a good match of the temperature field in the top part of the HX. Fig. 5.13

is for level three, which is located at the middle of the PCM HX, and relatively

larger differences can be observed for inner temperatures after t = 6000s and outer

temperatures after t = 4000s. Similarly, Fig. 5.14 shows the temperature profile for

level five at the bottom part of the HX, and differences can also be observed for

both inner and outer temperatures after t = 4000s.

For all the three figures (5.12, 5.13 and 5.14), the simulation matches the
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Level Height ri ro

L1 350 mm 2.88 mm 9.25 mm
L3 210 mm 1.76 mm 9.5 mm
L5 70 mm 2.75 mm 10.5 mm

Table 5.8: Detailed locations of thermocouples in the cylindrical HX.

Figure 5.12: Comparison of temperature profiles at level one (L1).

experiment relatively well below t = 2000s when the natural convection effect is

weak, being limited by the area of the liquid zone, and conduction is dominant.

As the liquid zone grows with the melting of the solid PCM, convection starts to

play an important role. Because of the assumptions and neglecting terms specified

in Section 2.1, the simulation can not be identical to the actual liquid flow in the

PCM HX. Consequently, the differences between the simulation and the experiment

become relatively large after t = 4000s. Such a deviation is minimized at level one
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Figure 5.13: Comparison of temperature profiles at level three (L3).

Figure 5.14: Comparison of temperature profiles at level five (L5).
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because of the convection heat transfer, which allows the top part to melt much

faster than the rest of the HX, and the temperatures near the top part lift quickly

and soon become relatively stable. In addition to, the heat transfer fluid (HTF) loop,

the measuring errors from thermocouples, and heat dissipation from the experiment

could also lead to the mismatch between the simulation and the experiment. Overall,

these deviations for the temperature profiles at these three levels are confined within

10 %, which indicates that the new model is capable of predicting the convective

PCM melting in the cylindrical HX relatively well. Moreover, it can be observed

that the difference between the temperature profiles at ri and ro becomes larger at

level three and five compared with level one. This phenomenon is also consistent

with convection heat transfer, which results in PCM melting almost simultaneously

between the inner and outer layers at the top part. Consequently, the hot fluid

from the lower part of the HX is moving up to the top, causing the melting time

difference between inner and outer layers of the PCM at lower parts of the HX to

increase.

To further validate the model, the average temperature of the PCM in the

HX is compared between the simulation and the experiment, as shown in Fig. 5.15.

Generally, the deviation of the average temperature of the PCM is kept within 5 %,

which is in better agreement with the temperature profiles at the specified levels.

This comparison further demonstrates the ability of the new model to predict the

heat transfer behavior of the PCM melting in cylindrical HX.
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Figure 5.15: Comparison of average temperature in the PCM HX.

5.2.3 PCMMelting with Porous Media in Axisymmetric Coordinates

A case study in this section is conducted to validate the ability of the new

axisymmetric model to simulate the porous PCM phase change in a cylindrical HX.

The model is set up based on the experiment conducted by Martinelli et. al [91],

where the PCM with the copper foam were contained in a vertical annulus, and

water was used as the heat transfer fluid (HTF) to heat the PCM from the inner

(left) side. According to the detailed PCM HX configuration provided by Martinelli

et. al [91], the schematic of the 3D and the half center-sliced cylindrical PCM HX

is shown in Fig. 5.16. The initial temperature of the PCM was kept at 15 °C and

hot water around 55 °C was pumped from top to bottom during the experiment.

A temperature profile of the inner wall (r = ri) is assigned to the left boundary
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of the computational domain based on the measured data at the inlet and outlet

temperatures of the HTF.

Figure 5.16: Schematic of the cylindrical PCM HX: (a) 3D cylinder sketch and (b)
2D half center-sliced cylinder sketch.

The PCM utilized in this experiment is RT35 HC and its thermophysical

properties can be found in the related source [3], as listed in Table 5.9. Additionally,

it is worth noting that the actual melting temperature is set to 33.75 °C (Tm) with

a temperature glide from 32 °C (Ts) to 35.5 °C (Tl) according to the experimental

data [91], which is slightly different from the nominal melting temperature (35 °C)

provided by the manufacturer.

Theoretically, the maximum stored energy in the HX filled with current porous
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Property Unit Value

Nominal melting temperature (Tm) °C 35
Latent heat of fusion (La) kJ/kg 220

Density (solid) (ρs) kg/m3 830.9

Density (liquid) (ρl) kg/m3 778.2
Specific heat capacity (solid) (cp,s) kJ/(kg K) 5.00
Specific heat capacity (liquid) (cp,l) kJ/(kg K) 2.10
Thermal conductivity (solid) (ks) W/(m K) 0.65
Thermal conductivity (liquid) (kl) W/(m K) 0.166
Thermal expansion coefficient (β) 1/K 0.021
Kinematic viscosity (liquid) (vl) mm2/s 5.654

Table 5.9: PCM Properties of RT35 HC [3].

PCM is given by Etotal = Epcm+Ep,m = 101.4kJ, where Epcm = 96.6 kJ is the energy

stored in RT35HC and Ep,m = 4.8 kJ is the energy stored in copper foam. To make

a comparison, the values of maximum stored energy for other settings of storage

materials in the same volume are 106.2 kJ for pure RT35 HC without porous media,

52.7 kJ for pure copper and 62.9 kJ for pure liquid water.

Based on the given PCM properties and the HX configurations, the primary di-

mensionless numbers are calculated and tabulated in Table 5.10, where the Rayleigh

number Ra in this case study is based on the length L of the cylinder. Moreover,

the average effective conductivity ke is calculated as 4.50 W/(m K) from Eq. (2.19)

for the porous PCM, neglecting the difference between the solid phase and the liq-

uid phase of the PCM. The simulation results are shown in Fig. 5.17 and Fig. 5.18.

Fig. 5.17 demonstrates the streamlines of the liquid PCM and the temperature fields

with the PCM melting fronts at various time steps, and Fig. 5.18 compares the tem-

perature profiles of the PCM at selected locations with the experimental data from
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Martinelli et. al [91].

For the analysis of the grid independence, additional simulations are conducted

with mesh sizes 10 × 400 and 40 × 1600 in order to compare with the results with

mesh size 20× 800. The temperature variations versus time at locations At, Ct and

Et are demonstrated in Fig. 5.19. It is obvious that the mesh size 20× 800 has been

grid-independent.

Dimensionless number Value

RaL 1.8× 109

Pr 55.6
Ste 0.196
Porosity ϕ 0.91

Table 5.10: Dimensionless numbers for the PCM melting with copper foam in the
cylindrical HX.

As shown in Fig. 5.17, the top part of the PCM melts in advance due to the

top-down charge of the HTF. Moreover, the natural convection in the liquid zone

drives the hot liquid PCM near the inner wall from bottom to top, which further

accelerates the melting of the upper PCM. Therefore, the uneven evolution of the

melting front along with the height, demonstrated by the red solid line in Fig. 5.17,

is due to the combination of two factors, i.e., the temperature difference of the HTF

and the natural convection effect in the liquid zone.

To further validate the new model, the temperature profiles of the PCM at

three different heights At, Ct and Et at radius rt =
1
3
(ro− ri) are compared with the

experimental data measured by the thermocouples at the corresponding locations

respectively [91]. As the side-view schematic in Fig. 5.18 demonstrates, the PCM

region is evenly divided into five sections (A to E), and At, Ct and Et are located at
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Figure 5.17: Streamlines and temperature fields with the melting fronts (red line)
of the PCM with copper foam in the cylindrical HX (divided in length for better
visualization).

the central height for each corresponding section. The comparisons are also shown in

Fig. 5.18, where the simulation results show a good agreement with the experimental

data for the overall heat transfer behavior of the PCM at the selected locations.
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Figure 5.18: Temperature variations of the PCM with copper foam in the cylindrical
HX at the selected locations.

With respect to PCM melting, small variations can be observed in Fig. 5.18

at locations Ct and Et, especially when the PCM both begins to melt (Ts) and has

completely melted (Tl). The reason for this discrepancy is that the enthalpy profile

used in the model is a correlation that is not accurate enough when entering or

leaving the two-phase region compared with the actual enthalpy profile of the PCM.

The reason why such a deviation is not found for the PCM at location At is owing to

its upper location where the intense heat transfer and the energy flowing in around

the top part leads to a rapid energy accumulation, which shortens the PCM melting

period and meanwhile reduces the error caused by the enthalpy function.
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Figure 5.19: Temperature variations versus time at locations At, Bt and Ct with
mesh size being 10× 400, 20× 800 and 40× 1600.

While for the simulation of the liquid PCM after the melting, though some

deviations can be found, the model is able to predict the time when the PCM be-

comes fully liquid. The deviations in the liquid region could be due to the inaccurate

enthalpy profile and the boundary conditions such as the uneven temperature dis-

tribution of the HTF and the heat dissipation to the surroundings. More precise

temperature profiles are expected to be obtained if the issues mentioned above could

be solved. Nevertheless, the prediction error is confined within 10 % which indi-

cates that the developed asymmetric model is capable of predicting the heat transfer

behavior of the porous PCM in cylindrical HX.

A further evaluation of the effect of natural convection on the porous PCM

128



is performed based on the validation case in this section. Generally, adding porous

material to the PCM can enhance the heat transfer because of its high thermal

conductivity. Meanwhile, it also exerts more drag which slows down the motion of

the liquid PCM and thereby dampening the effect of convection on PCM melting.

Some porous media with low porosity can even neglect the effect of natural convec-

tion because liquid PCM is confined within the cavities of the porous media. But

for those porous media that have higher porosity, such as the case in this section,

natural convection still plays an important role. Because of the porous media, the

natural convection effect can be different from that of the pure PCM. Therefore fur-

ther analysis is required to quantitatively estimate the effect of natural convection

on porous PCM.

For PCM melting, the Rayleigh number (Ra) mainly determines the intensity

of natural convection. Moreover, the geometry of the model, as well as the PCM

melting behavior, also play a role. To clearly identify the underlying physical mech-

anisms, further analysis is carried out using the same geometry as was used for the

validation cases described above. The strength of natural convection will be con-

trolled by changing Ra in the simulations. There are several terms in Ra that can

be adjusted, e.g., temperature difference ∆T , viscosity v, thermal diffusivity α and

thermal expansion coefficient β. From an application point of view, changing these

terms is equivalent to varying the boundary and initial conditions of temperature,

as well as replacing a new PCM with different fluid and thermal properties. Sev-

eral simulations that adjust different terms are conducted and the results indicate

that the heat transfer behavior almost remains the same under the same Ra, as
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expected. Therefore, a parametric study based on Ra is reasonable. Additionally,

the Rayleigh number in the following parametric study is also based on the length

L of the cylinder.

Figure 5.20: Comparison of the temperature profiles at Ra = 109, 108 and 107 with
those of the PCM conduction only at location At.

For this parametric study, Ra is adjusted by changing the thermal expansion

coefficient β as it directly contributes to the buoyancy force which drives natural

convection. Fig. 5.20 - Fig. 5.22 compare the temperature profiles at three locations

At, Ct and Et of the HX at various Ra with those of pure PCM conduction. The

three locations At, Ct and Et shown in Fig. 5.18 represents the top, middle and

bottom part of the HX. From these three figures, a clear trend can be observed

that the PCM melts faster at higher Ra among the three parts of the HX. Another

130



Figure 5.21: Comparison of the temperature profiles at Ra = 109, 108 and 107 with
those of the PCM conduction only at location Ct.

phenomenon found in the middle (Ct) and bottom (Et) parts of the HX is that a

higher value of Ra results in a lower average PCM temperature during the melting

process. This is due to the uneven temperature distribution caused by natural

convection. Higher Ra results in stronger nature convection, which can bring more

hot liquid PCM to the top and then cause the temperature at the middle and bottom

to remain low. This analysis can be corroborated by the temperature profile at the

top part (At) where the difference in temperature during melting is much smaller

compared with the rest of the two parts.

Fig. 5.23 displays the calculated cumulative energy in PCM versus time for

different Ra and the pure conduction case. The final stored energy in the PCM is
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Figure 5.22: Comparison of the temperature profiles at Ra = 109, 108 and 107 with
those of the PCM conduction only at location Et.

about Efpcm = 83 kJ . It is reasonable to set Epcm >= 0.9Efpcm as the condition for

determining whether the PCM has fully melted. By comparing the time at which

the energy satisfies this criterion, it can be concluded that natural convection can

enhance melting by 10 % on average for the HX configuration specified in Fig. 5.16.

5.2.4 PCM Melting with Conducting Fins in Axisymmetric Coordi-

nates

The new axisymmetric model is validated with respect to its capability for sim-

ulating PCM melting in cylindrical HX with and without porous media, as demon-
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Figure 5.23: Comparison of the cumulative energy stored in PCM versus time.

strated in Section 5.2.2 and Section 5.2.3. The simulations presented in this section

are carried out to validate the conjugate heat transfer model for simulating the PCM

phase change with conducting fins. The model is set up based on the experiment

conducted by CEEE group. The detailed geometry and experimental settings are

provided by J. Yang et al. [6]. To better demonstrate this case study, a figure is

given here as Fig. 5.24 to show the PCM HX with fins in a general form, and this

schematic does not represent the exact HX from our simulation and the correspond-

ing experiment.

The conducting fins and the wall of the HTF pipe shown in Fig. 5.24 are

modeled as a whole, based on the conjugate thermal LBM introduced in Section 2.4
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Figure 5.24: Schematic of the PCM HX with conducting fins: (a) 3D cylinder sketch
and (b) 2D half center-sliced cylinder sketch.

and Section 4.4.3. By integrating this with the enthalpy-based MRT-LBM for PCM,

together with the 1D HTF flow model for determining the wall temperatures on the

left boundary, the entire PCM HX with fins can be modeled.

The PCM used in the HX is RT35, which is different from RT35 HC, and its

properties are given in Table 5.11 [4,5]. The HTF flow is pumped through the center

pipe from the bottom to the top. Moreover, Table 5.12 summarizes the geometric

settings of the HX [6] and Table 5.13 gives other important settings, including the

temperature settings and the critical dimensionless numbers.

The simulation is conducted with mesh size Nr×Nz = 32×500, and the results

134



Property Unit Value

Nominal melting temperature (Tm) °C 35
Latent heat of fusion (La) kJ/kg 157

Density (solid) (ρs) kg/m3 880

Density (liquid) (ρl) kg/m3 760
Specific heat capacity (solid) (cp,s) kJ/(kg K) 1.8
Specific heat capacity (liquid) (cp,l) kJ/(kg K) 2.4
Thermal conductivity (solid) (ks) W/(m K) 0.2
Thermal conductivity (liquid) (kl) W/(m K) 0.2
Thermal expansion coefficient (β) 1/K 0.0006
Kinematic viscosity (liquid) (vl) mm2/s 3.3

Table 5.11: PCM Properties of RT35 [4,5].

Geometry Value

Length of the HX (L) 285 mm
Inner radius of the PCM container (ri) 6.35 mm
Outer radius of the PCM container (ro) 22.25 mm
Wall thickness of the HTF pipe (bp) 1.5 mm
Number of fins (Nfin) 19
Fin radius (rfin) 21.225 mm
Fin spacing (tfin) 12.7 mm
Fin thickness (bfin) 1.5 mm

Table 5.12: Geometric Settings of the Finned HX [6].

shown in Fig. 5.25 display the streamlines in the liquid zone and the temperature

fields for the PCM and the fins with the wall at various Fourier numbers (Fo) from

1.2 to 5.0. It can be observed that adding fins increases the effective heat transfer

area, which enhances PCM melting. Moreover, the fins confine the convection flow

in small blocks, which dampens the effect of convection, but makes the temperature

distributions more uniform compared to that in pure PCM.

A further comparison of the temperature profiles at two locations is shown

in Fig. 5.26, where the detailed locations of T18-out and T2-out can be found in the
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Parameter Value

Initial temperature (Ti) 25.2 °C
Inlet temperature (Tinlet) 54.5 °C
Rayleigh number based on length (RaL) 6.04× 109

Rayleigh number based on radius gap (RaR) 1.05× 106

Prandtl number (Pr) 22.6
Stefan number (Ste) 1.0

Table 5.13: Parametric Settings for the PCM Melting in the Finned HX.

Figure 5.25: Streamlines and temperature fields of the finned HX at Fo = 1.2, 2.5
and 5.0.
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Figure 5.26: Comparison of the temperature profiles at locations T18-out and T2-out
with the experimental data [6].

experiment from Yang, J. et al. [6]. Generally, T18-out is near the top between the

17th and 18th fins, and T2-out is just above the bottom between the 1st and 2nd

fins. Both the simulation results and the experimental data indicate the difference

between the temperatures at these two locations, which is mainly because of the

uneven temperature distributions of the HTF flow since the convection heat transfer

is extremely limited by the conducting fins in this case. Overall, the temperature

profiles have a good match despite the small deviations after t = 800s. And more

validations and case studies of the conjugate phase change model are still necessary

to further proves its capability of solving the PCM with different types of fins in the

HX.
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5.3 Scaling Analysis of the Parallel LBM Scheme

In Section 5.1 and Section 5.2, the developed enthalpy-based DDF-MRT lattice

Boltzmann model is verified and validated by several case studies. In this section,

a scaling analysis is performed to test the parallel LBM scheme introduced in Sec-

tion 4.6. The case study of porous PCM melting in cylindrical HX as discussed in

Section 5.2.3 is chosen as the baseline, which simulates 900 seconds of PCM melting

with the mesh size 20×800. Both the series code and parallel code are developed for

this case study and operated on the high performance computing (HPC) resources

from University of Maryland. Based on the computational time for different mesh

sizes and operating cores, both the strong and weak scaling analyses are conducted

to evaluate the developed parallel scheme in solving the solid-liquid phase change.

Figure 5.27: Strong scaling analysis of the parallel LBM scheme.

138



The strong scaling analysis refers to the speed-up at different operating cores,

where the speed-up is defined as the computational time using the current number

of cores over the computational time for series code (one core). Moreover, each core

only allows one process in order to better perform the analysis. Then the strong

scaling analysis can be conducted by increasing the number of operating cores and

then calculating the speed-up for each running case, as shown in Fig. 5.27. Three

mesh sizes are tested, and the results are represented by colored lines. Theoreti-

cally, the speed-up should be linear. However, due to the series part in the LBM

parallel code, it cannot be perfectly parallel. Therefore the speed-up in practice

will gradually slow down and may even decline as the number of cores increases,

which is consistent with the trend of the lines in Fig. 5.27. Besides, it can also be

observed that the rate of the speed-up increases as the size of the model becomes

larger, which indicates that the optimal number of operating cores could be higher

for larger mesh sizes. In general, 40 operating cores, seems to be an effective working

load for all the mesh sizes in this case study.

The weak scaling analysis is carried out by increasing the mesh size and oper-

ating cores in the same proportion. So the computational time of the running case

should remain the same ideally. However, this does not happen for the same reason

as the strong scaling analysis as mentioned above. Therefore the computation time

should gradually lift when increasing the mesh sizes and operating cores, as Fig. 5.28

shows. Although the computational time increases throughout, the growth is small

below the mesh size of 20× 800 with 40 cores and it becomes rapid after that point.

The result of the weak scaling analysis is consistent with that of the strong scaling
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Figure 5.28: Weak scaling analysis of the parallel LBM scheme.

analysis, which shows that the benefit of using parallel computation to speed up the

calculation. Moreover, the analyses of the parallel LBM allows the determination

of the optimal number of processors for a given mesh size, which makes it possible

to perform parametric studies of various PCM HXs in a time-efficient way.

5.4 Chapter Summary

In this chapter, both the numerical verifications in Section 5.1 and validations

in Section 5.2 are demonstrated, and the results are discussed. Among them, the

porous PCM melting in the Cartesian cavity (Section 5.1.2), PCM melting in cylin-

drical HX with and without porous media (Section 5.2.2 and Section 5.2.3), and

PCM melting with conducting fins (Section 5.2.4) are essential for the parametric

studies presented in Chapter 6 and analyses discussed in Chapter 7. The results

indicate that the new model is capable of simulating PCM phase change both in
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Cartesian and axisymmetric coordinates, with and without porous media and con-

ducting fins, and from low to high Rayleigh numbers. Moreover, Section 5.3 in this

chapter introduces the scaling analyses of the parallel scheme, which is also one of

the key techniques to perform the various numerical studies of the PCM HXs.

Method CPU usage Computational time (hrs.)

Sequential LBM 1 core 65.3
Parallel LBM one 8 cores 8.6
Parallel LBM two 40 cores 2.2

Table 5.14: Computational Time for the Simulation of Porous PCM Melting in
Cylindrical HX.

Table 5.14 provides the computational time for the simulation of 900 seconds

porous PCM melting in cylindrical HX introduced in Section 5.2.3 using basic se-

quential LBM or newly developed parallel LBM. The computational time for other

verification and validation cases in this chapter as well as the parametric studies in

Chapter 6 is in the same magnitude as Table 5.14 for the PCM melting in the same

time period.
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Chapter 6: Parametric Studies of the PCM HX using Axisymmetric

DDF-LBM

The study of porous PCM in the cylindrical HX discussed in Section 5.2.3,

indicates that the enhancement of PCMmelting can only be up to 10 % by increasing

the Rayleigh number. From the comparisons of the figures in Section 5.2.3, it

can be observed that the temperature field is mainly governed by conduction and

heat transfer is limited by the inlet temperature of the HTF. Consequently, natural

convection has a limited effect on enhancing the heat transfer. In fact, the effect of

natural convection on PCM melting can be limited by several factors such as the HX

geometry, the drag force due to the presence of the porous media, the variation of

the HTF temperatures and heat dissipation at the outer walls. In order to further

study the natural convection effect on PCM melting under different conditions,

several parametric studies are conducted, which are demonstrated in the following

sections.

6.1 Effect of Aspect Ratio

In this section, a parametric study is introduced, focusing on the PCM melting

in the HX with different aspect ratios A under various Rayleigh numbers Ra.

142



Figure 6.1: Schematic of the cylindrical HX at various aspect ratios.

The schematic of the cylindrical HX at various aspect ratios is given in Fig. 6.1,

where the aspect ratio A in this parametric study is defined as A = R/L, where the

radius gap R can be calculated by R = ro − ri. Based on this definition, the HX

with smaller aspect ratios turns out to be more slender, while the 2D shape of the

PCM domain in the HX becomes more like a rectangle as A approaches one. The

parametric study in this section is performed at five aspect ratios selected as A =

1.0, 0.75, 0.5, 0.25, and 0.05, and meanwhile maintaining the total volume of the

HX as constant so that the theoretical maximum energy storage for different cases

can be the same.

For the PCM HX with each aspect ratio, the simulation is conducted for several

Rayleigh numbers, which indicates the variation of the convection heat transfer

conditions. It is worth noting that the Rayleigh numbers (Ra) in this parametric

study are based on the radius gap R, and the variation of Ra is achieved by adjusting

the thermal expansion coefficient β, which reflects the strength of the buoyancy force.

The parametric settings are similar to those in Section 5.2.2. The PCM prop-

143



Figure 6.2: Energy storage ratio (η) versus Fourier number (Fo) at various Rayleigh
numbers (Ra) for aspect ratio A = 1.0.

erties are set based on PT37, though the exact settings in the simulation differ as

the Rayleigh number changes. The purpose of using PT37 as a basis is to con-

sider the real paraffin PCM properties so that the parametric settings can be more

practical. The energy storage ratio η, defined as the current energy stored in the

PCM HX over the theoretical maximum energy that the HX can attain, is plotted

over the Fourier numbers (Fo) defined as Fo = αt/R2, which can be treated as

the dimensionless time. The plot for A = 1.0 is shown as Fig. 6.2, where different

curves refer to the energy storage ratios versus Fo at corresponding Ra. The trend

indicates that melting is accelerated as convection heat transfer becomes stronger.

By setting a portion of the theoretical maximum energy storage as a criterion to

evaluate the HX performance, such as 80 %, denoted by the red bar in Fig. 6.2, the

accelerations of the PCM melting at different Ra can be quantified by comparing
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the Fo (dimensionless time) at which the energy storage ratios reach 80 %.

Figure 6.3: Acceleration of melting for different Rayleigh numbers (Ra) at η = 0.8
and A = 1.0.

Based on the concept above, melting accelerations at various Ra can be ob-

tained, as shown in Fig. 6.3, where the y-axis denotes the acceleration rate ac of the

PCM melting, defined as the ac = (Focv,0.8−Focd,0.8)/Focd,0.8, where Focv,0.8 denotes

the Fo at which η = 0.8 for the convection cases, while Focd,0.8 represents the Fo

at which η = 0.8 for the pure conduction case. The setting of the criterion can be

adjusted, and it is set to 0.8 in this parametric study. For a better demonstration

of the curve, the x-axis is modified to be log(Ra).

The red star in Fig. 6.3 denotes ac = 10%, and its corresponding Ra can be

defined as a threshold Rayleigh number (Radc), above which the acceleration of the

PCM melting is larger than 10 %, and thus the convection heat transfer becomes

important or starts to play an important role. For the cases Ra < Radc, convection
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has limited effect on melting and can be neglected for the modeling of heat transfer

in the PCM HX.

Figure 6.4: Energy storage ratio (η) versus Fourier number (Fo) at various Rayleigh
numbers (Ra) for aspect ratio A = 0.75.

Fig. 6.2 and Fig. 6.3 are for A = 1.0, while other cases are shown from Fig. 6.4

to Fig. 6.7, which also indicate the melting of PCM becomes faster as Ra increases

for all of the aspect ratios. The melting acceleration ac is calculated based on the

curves from Fig. 6.2 to Fig. 6.7 for each aspect ratio, and the details are shown in

Fig. 6.8, where each line refers to an acceleration curve of its corresponding aspect

ratio. The criterion for all the curves is set to 0.8 for consistency. From the figure,

a clear trend can be found that the acceleration curve starts to shift to the right as

the aspect ratio becomes smaller, which indicates that higher Ra is required for the

HX with a smaller aspect ratio to achieve the same acceleration rate for the PCM

melting. But this phenomenon does not indicate that the HX with a smaller aspect
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Figure 6.5: Energy storage ratio (η) versus Fourier number (Fo) at various Rayleigh
numbers (Ra) for aspect ratio A = 0.5.

Figure 6.6: Energy storage ratio (η) versus Fourier number (Fo) at various Rayleigh
numbers (Ra) for aspect ratio A = 0.25.
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Figure 6.7: Energy storage ratio (η) versus Fourier number (Fo) at various Rayleigh
numbers (Ra) for aspect ratio A = 0.05.

Figure 6.8: Acceleration of melting for different Rayleigh numbers (Ra) at η = 0.8
with various aspect ratios A = 1.0, 0.75, 0.5, 0.25, 0.05.
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ratio is less efficient in the convective PCM melting, since the rate of acceleration

is also determined by the pure conduction curve, and it can be different for each

aspect ratio. Therefore, the acceleration curve for each aspect ratio in Fig. 6.8

actually identifies how much the melting can be accelerated compared to its pure

conduction curve, correspondingly. In other words, the trend in this figure, can not

determine which aspect ratio is better for the HX at a certain Ra, but it can tell

which HX can benefit more from the convection based on the aspect ratio of the

HX.

As discussed above, if setting a further criterion for acceleration of the melting,

such as ac = 10%, the threshold Rayleigh number Radc can be obtained for each

aspect ratio. And for this parametric study, the values of Radc are tabulated in

Table 6.1. The values of Radc can be different by setting different criterions of η

and ac. The criteria adopted in this dissertation are η = 0.8 and ac = 10%, which

can be considered as a kind of general settings based on the practical performance

of the PCM HX.

Aspect ratio (A) Deciding Rayleigh number (Radc)

1.0 2962
0.75 4029
0.50 6619
0.25 8480
0.05 58067

Table 6.1: Threshold Rayleigh Numbers (Radc) Based on η = 0.8 and ac = 10% for
Aspect Ratios A = 1.0, 0.75, 0.5, 0.25 and 0.05.

From Table 6.1, a big jump in Radc can be observed, from 8480 at A = 0.25

to 58067 at A = 0.05, while the variation of Radc from A = 1.0 to A = 0.25 is
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almost linear. To interpret this behavior, the cases for both A = 0.25 and A = 0.05

are discussed in detail. Attention is focused on the case A = 0.25. Fig. 6.9 and

Fig. 6.10 show the overall liquid fraction and the average temperature of the PCM

respectively for A = 0.25, which can be used to demonstrate the uneven temperature

distribution caused by convection.

Figure 6.9: Overall liquid fraction fl versus Fourier number (Fo) with aspect ratio
A = 0.25.

It can be observed from Fig. 6.9 that the liquid fraction for both Ra =

1.52 × 104 and Ra = 1.52 × 103 is lower than that for pure conduction between

Fo = 3 and Fo = 4, which indicates that there should be residual solid PCM for

these two cases, which are relatively difficult to melt uniformly because of uneven

convection. Moreover, the average temperature for these two cases are almost above

the conduction curve according to Fig. 6.10. Lower liquid fraction with higher av-

erage temperature further reveals the uneven temperature distributions caused by
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Figure 6.10: Average temperature Tmean in PCM HX versus Fourier number (Fo)
with aspect ratio A = 0.25.

Figure 6.11: Overall liquid fraction fl versus Fourier number (Fo) with aspect ratio
A = 0.25 (zoomed).
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Figure 6.12: Energy storage ratio (η) versus Fourier number (Fo) at various Rayleigh
numbers (Ra) for aspect ratio A = 0.25 (zoomed).

Figure 6.13: Streamlines and temperature field of the PCM HX with aspect ratio
(A = 0.25) at Fo = 3 for Ra = 1.52×103, 1.52×104, 1.52×105 and pure conduction.

the convection heat transfer. The differences among those curves can be seen more

clearly by zooming into Fig. 6.9, which is shown in Fig. 6.11. Another zoomed in
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Figure 6.14: Overall liquid fraction fl versus Fourier number (Fo) with aspect ratio
A = 0.05 (zoomed).

view is also provided for the energy storage ratio in Fig. 6.12. According to Fig. 6.11

and Fig. 6.12, the uneven temperature distribution resulting in a higher average tem-

perature of the PCM reduces the heat transfer from the HTF to the PCM, which

can be observed by the energy storage curve at Ra = 1.52× 103, where the thermal

performance is even worse than pure conduction. For the case of Ra = 1.52 × 104,

enhancement of heat transfer by convection can already compensate for the decrease

in performance due to the uneven distribution, therefore making it more efficient

than pure conduction.

Fig. 6.13 further supports this interpretation by comparing the streamlines

and isotherms between the convection cases and the pure conduction at Fo = 3, as

denoted by the vertical bar in Fig. 6.11. Compared with the temperature field for

pure conduction, in the convection cases with lowRa, such as that ofRa = 1.52×103,
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convection only alters the melting front and is not strong enough to enhance heat

transfer. However, such a deformation of the melting front results in an uneven

temperature distribution, which keeps producing liquid PCM on the top part which

become superheated and thus harms the thermal performance of the HX. As Ra

becomes larger, the convection effect starts to govern the heat transfer, as shown

by the cases of Ra = 1.52 × 104 and Ra = 1.52 × 105 in the Fig. 6.13, where

the convection effect is strong enough as it leads the melting front along the axial

direction towards the bottom. In such a situation, the enhancement of heat transfer

from convection can offset and even exceed the weakening of thermal performance

caused by uneven temperature distributions.

Figure 6.15: Streamlines and temperature field of the PCM HX with aspect ratio
(A = 0.05) at Fo = 3 for Ra = 1.3× 104, 1.3× 105 and pure conduction.
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Figure 6.16: Overall liquid fraction fl versus Fourier number (Fo) with aspect ratio
A = 1.0 (zoomed).

As for the HX with an aspect ratio of 0.05, it is more difficult to overcome the

adverse effect of uneven convection even for larger values of the Rayleigh number. A

much higher level of convection is needed to compensate for the uneven distribution,

as shown in Fig. 6.14. The streamlines and temperature field of the PCM HX at Fo

= 3 are displayed in Fig. 6.15, where the difference of the temperature fields can be

observed between a low Ra (Ra = 1.3× 104) which can barely offset the weakening

of heat transfer at the bottom, and a moderate Ra (Ra = 1.52×105) which is strong

enough to further enhance the heat transfer.

The compensation for the weakening of the heat transfer caused by the uneven

temperature distributions can explain the big jump of the threshold Radc from A =

0.25 to A = 0.05. As the aspect ratio becomes smaller, the shape of the cylindrical

HX becomes taller and thinner, which makes the conduction more significant under
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the assumption of the fixed inlet temperature of the HTF and the constant total

volume of the HX. And thus, higher Ra is needed to achieve the same acceleration

effect of the melting compared with the larger aspect ratio. And for a larger aspect

ratio, the weakening effect from the uneven distribution is almost negligible, ac-

cording to Fig. 6.16. For the general PCM design, the Rayleigh numbers calculated

based on the PCM types and working conditions should avoid the range where the

thermal performance of the HX is degraded due to low Ra. The threshold Radc in

Table 6.1 based on the aspect ratios and the melting acceleration chart in Fig. 6.8

can then be utilized as references to determine the geometries and suitable PCM for

a cylindrical HX under given working conditions.

6.2 Effect of the Porous Media on Convective Melting in Cylindrical

HX

Based on the parametric study in Section 6.1, a simulation is conducted for

the PCM melting with the porous media in the cylindrical HX, The HX with aspect

ratio at 0.5 is chosen, the Ra is set to 108 and the rest of the settings are the same

as the parametric study in Section 6.1. The porosity of the porous media is set

to 0.9, and thus its corresponding effective thermal conductivity is calculated as

14.6 W/(m K) based on Eq. (2.19), by setting kp,m = 170 W/(m K).

The simulation results, shown in Fig. 6.17 and Fig. 6.18, are compared with the

pure PCM melting of the HX at the same aspect ratio and Rayleigh number. From

Fig. 6.17, adding porous media accelerates PCM melting as it enhances the thermal
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Figure 6.17: Streamlines and temperature field of the PCM HX with aspect ratio
(A = 0.5) at Fo = 0.027 for Ra = 1× 108.

Figure 6.18: Comparison of energy storage ratios (η) versus Fourier number (Fo)
at Ra = 1× 108, A = 0.5.

conductivity across the entire domain. According to Fig. 6.17, the acceleration of

the porous melting at ϕ = 0.9 could be up to 95 % for reaching the 60 % of total
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energy storage.

Figure 6.19: Streamlines and temperature field of the PCM HX with aspect ratio
(A = 0.5) at Fo = 2.0 for Ra = 1.37× 106.

If calculating the Ra based on the effective thermal conductivity ke instead

of the thermal conductivity of the liquid PCM, the actual Ra for the porous PCM

would be less, which is approximately 1.37 × 106 in this case study. Moreover,

the Prandtl number should also change accordingly, which is about 1.2 based on

the effective thermal diffusivity αe in this case. Moreover, the drag force due to

the presence of the porous media undermines the convection flow in the liquid zone,

which further attenuates the impact of convection. From the streamlines in Fig. 6.17,

it can be observed that the flow is more uniform and less uneven for the porous

PCM. To further identify the flow regulation due to the presence of the porous

media, a comparison with the pure PCM at Ra = 1.37× 106 is performed, and the

results are shown in Fig. 6.19. The purpose of this comparison is that the porous

media is modeled at the REV scale, where αe is directly utilized in solving the

energy equations. Therefore, the simulation of the porous PCM melting would be
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equivalent to that of the pure PCM at Ra = 1.37 × 106 if the drag force caused

by the porous media is set equal to zero. By comparing the two, the effect of the

porous media on the fluid flow becomes apparent, and the effect on the temperature

field due to the specific characteristics of the flow field is also revealed.

Figure 6.20: Comparison of energy storage ratios (η) versus Fourier number (Fo)
for porous PCM HX with various porosities at Ra = 1.25× 106, A = 0.5.

To further investigate the effect of porous media on PCM melting, the sim-

ulations of cylindrical PCM HX with aspect ratio at 0.5 and Rayleigh number at

1.25 × 106 under various porosities are conducted, with other settings the same as

those in Section 6.1. The results shown in Fig. 6.20 demonstrate the energy storage

ratios of PCM HX along Fourier number for porous PCM with various porosities

(0.75 ≤ ϕ ≤ 0.99) compared with pure PCM (ϕ = 1.0). As the porosity decreases,
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the effective thermal conductivity increases due to the addition of porous media,

which results in the acceleration of PCM melting. Meanwhile, the theoretical max-

imum energy storage ratio decreases as the porosity decreases because the PCM is

taken up by the porous media. From Section 6.1, the melting acceleration rate ac

is calculated at each porosity by setting 80 % energy storage rate as the criterion.

Table 6.2 summarizes the effective thermal conductivity (ke), theoretical maximum

energy storage ratio (ηmax) and melting acceleration rate (ac) for each porosity.

Porosity 1.0 0.99 0.95 0.90 0.85 0.80 0.75

ke (W/(m K)) 0.2 1.64 7.4 13 20 30 39
ηmax 1.0 0.99 0.97 0.95 0.92 0.89 0.87
ac 0 68% 82 % 86 % 86 % 86 % 86%

Table 6.2: Effective Thermal Conductivity ke, Theoretical Maximum Energy Storage
Ratio ηmax and Melting Acceleration Rate ac for Porous PCM Melting at Various
Porosities.

From Table 6.2, the melting acceleration rate increases dramatically at high

porosity (ϕ ≥ 0.95). The acceleration effect reaches its maximum at 86 % around

ϕ = 0.90 and it remains at 86 % if the porosity further decreases (ϕ ≤ 0.90). This

stagnation of acceleration rate below a certain porosity is because of the negative

effect of porous media on convective flow and maximum energy storage, which limits

the heat transfer performance of PCM HX. The results from Table 6.2 indicate

that there exists an optimal porosity where the maximum acceleration rate can be

achieved at the cost of the least reduction in maximum energy storage. In this

study, the porous media with high porosity (ϕ ≥ 0.9) is recommended for PCM HX

to gain a high acceleration rate of melting and meanwhile maintain a small reduction

in maximum energy storage.
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6.3 Evaluation of the Modified Cylindrical HX for Enhancing PCM

Melting

According to the parametric study in Section 6.1, there always exists a residual

solid PCM that is hard to melt near the bottom left corner due to convection,

which leads to uneven temperature distribution, and consequently, causes thermal

performance to deteriorate. Many techniques have been developed to address this

issue and improve the thermal efficiency of PCM HX. Among them, one of the

methods is to modify the shape of the HX based on the concept that removing part

of the PCM from the locations with poor heat transfer conditions to other locations

where convective heat transfer is more effective in melting the PCM. In this section,

simulations are conducted for a modified cylindrical HX as shown in Fig. 6.21.

Figure 6.21: 3D modified cylindrical HX sketch (left) and its 2D half center-sliced
sketch (right).
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The modified cylinder is based on the normal cylinder with an aspect ratio of

0.5 by keeping the same total volume of the HX. The detailed geometric settings in

LBM are listed in Table 6.3, where R1 and R2 are the radius gap. All the values

are in LBM units, where the units are lu (length unit in LBM). Other settings are

consistent with the parametric studies in Section 6.1.

Geometry R1 R2 L1 L

Straight cylinder 76 76 - 152
Modified geometry one 23 100 76 152
Modified geometry two 46 90 76 152

Table 6.3: Geometric Settings for the Modified Cylindrical HX.

The temperature fields are plotted in Fig. 6.22 at various Fourier numbers

for modified geometry one (R1 = 23, R2 = 100) in (a), modified geometry two

(R1 = 46, R2 = 90) in (b) and straight cylinder (R = 76) in (c). It can be observed

that at each Fo, the melting of PCM is more rapid for the modified geometry

compared with the basic straight cylinder. The acceleration rate for the modified

geometry is dependent on the radius gap (R1 and R2). Generally, the acceleration of

melting increases as the bottom radius gap R1 narrows down and the top radius gap

R2 becomes larger, as shown by the comparison between (a) and (b) in Fig. 6.22.

This indicates that shrinking R1 and meanwhile enlarging R2 under the same total

volume, which results in the HX shape with a narrow bottom half and a wider top

half, can enhance thermal performance by taking the advantages of convection heat

transfer.

A more detailed comparison between the modified geometry and the basic
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Figure 6.22: Streamlines and temperature field of the PCM HX with A = 0.5 and
Ra = 1.25× 106 at Fo = 0.1, 0.25 and 0.5: (a) modified geometry one, (b) modified
geometry two and (c) basic straight cylinder.

straight cylinder are demonstrated in Fig. 6.23, Fig. 6.24 and Fig. 6.25 in terms of

the variations of the energy storage ratio (η), the overall liquid fraction (fl) and the

average temperature (Tmean) in the PCM HX. From Fig. 6.23, the acceleration rates

of melting (ac) at η = 0.8 could reach 45% for the modified geometry (R1 = 46, R2 =

90) and 57% for the modified geometry (R1 = 23, R2 = 100) compared with the
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Figure 6.23: Comparison of energy storage ratios (η) versus Fourier number (Fo)
at Ra = 1.25× 106, A = 0.5.

Figure 6.24: Comparison of overall liquid fraction fl versus Fourier number (Fo) at
Ra = 1.25× 106, A = 0.5.
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Figure 6.25: Comparison of average temperature Tmean versus Fourier number (Fo)
at Ra = 1.25× 106, A = 0.5.

straight cylinder at R = 76. Moreover, complete melting of PCM (fl = 1.0) occurs

earlier for the modified geometry. According to Fig. 6.24, the time for complete

melting of PCM is shortened by 25% for the geometry (R1 = 46, R2 = 90) and 33%

for the geometry (R1 = 23, R2 = 100) compared with the basic straight cylinder.

Generally, for the energy storage and liquid fraction shown in Fig. 6.23 and

Fig. 6.24, the average temperature for the modified geometry should also exceed

that for the basic straight cylinder since the PCM takes more energy from the HTF

flow. However, as Fig. 6.24 indicates, the average temperature of the PCM for the

modified geometries can be lower than that in the basic cylinder between Fo = 0.5

and Fo = 1, which can also be explained by the uneven temperature distributions.

By adopting the modified geometry, the entire PCM can melt within a relatively

short time range, leading to a more uniform temperature field. Because of the latent
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heat property of the PCM, the PCM can stay around the melting temperature

when the liquid fraction is less than one. But for the liquid PCM, its temperature

could rise quickly upon absorbing heat. Therefore, PCM melting with more even

temperature distributions can prevent the occurrence of the extremely hot liquid

PCM on the top, and thus the average temperature of PCM tends to be lower than

the uneven case. The lower average temperature of the PCM, in general, leads to a

larger temperature difference between the HTF flow and the PCM. Consequently,

heat transfer can be further improved by this larger temperature difference, which

benefits thermal performance of HX.

6.4 Chapter Summary

To conclude, the parametric study in Section 6.1 evaluates performance of the

PCM HX with various aspect ratios and Rayleigh numbers. The variation of the

aspect ratios and Rayleigh numbers represents the different shapes of the cylindrical

HX and the changes in the intensity of convective heat transfer. The results from

this parametric study provide quantified melting acceleration rates of the PCM HX

with various aspect ratios and Rayleigh numbers. The threshold Rayleigh number

(Radc) is proposed to serve as a reference for the design of the cylindrical HX.

Following that, the parametric study in Section 6.2 further investigates in detail

one case of PCM melting with porous media. The results demonstrate the positive

effect of adding porous media on heat transfer over the entire PCM domain, and the

negative effect of porous media on convective flow in the liquid zone. Finally, the
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parametric study performed in Section 6.3 evaluates the heat transfer enhancement

by modifying the geometry of cylindrical HX. The concept is to fully take advantage

of convective heat transfer by modifying the geometry to offset the negative effect

of uneven temperature distributions caused by convection. The results indicate

a significant improvement in thermal performance of the PCM HX by using the

modified geometry.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions

Owing to the feature of the lattice Boltzmann method in parallel computing,

lattice Boltzmann models using parallel schemes can perform numerical analysis

more efficiently compared with conventional NS-based models. This dissertation fo-

cuses on the development and application of the lattice Boltzmann model for PCM

HX. In terms of the development of the lattice Boltzmann model, the basic macro-

scopic governing equations are introduced in Chapter 2, where the modifications of

the governing equations for the porous media, DSC correlated enthalpy equations,

and conjugate heat transfer with conducting fins are proposed. The single-phase

lattice Boltzmann models based on the macroscopic governing equations are demon-

strated in Chapter 3, in which the single-phase LBM for fluid flow can be directly

utilized to simulate the flow field in the liquid PCM zone. The thermal LBM is

further developed based on the single-phase model to solve the temperature field of

the solid-liquid phase change, as discussed in Chapter 4. The major conclusions for

the development of the lattice Boltzmann model for the PCM HX are highlighted

as follows:
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1. The DSC correlated enthalpy equations were applied in the enthalpy-based

LBM for a more accurate enthalpy modeling of the PCM HX. (Section 2.5)

2. The modified macroscopic governing equations based on enthalpy were pro-

posed both in Cartesian and axisymmetric coordinates for the development

of the enthalpy-based LBM with DSC correlated enthalpy equations. (Sec-

tion 2.6)

3. A comprehensive lattice Boltzmann model based on the MRT scheme was pro-

posed and developed for simulating the flow and temperature fields in PCM

HX, which is capable of simulating the porous PCM under strong natural

convection effect both in Cartesian and axisymmetric coordinates. The new

model can be deconstructed as a single-phase MRT-LBM for the flow field in

the liquid zone, a DSC correlated enthalpy-based thermal MRT-LBM for the

temperature field across the entire PCM domain, and a scheme to automati-

cally track the interface between the liquid and solid PCM based on the liquid

fraction. (Section 4.1, Section 4.2, Section 4.3 and Section 4.4)

4. The conjugate heat transfer scheme was proposed and developed to model

the HTF flow and the finned HX, where the HTF flow was solved by the

developed 1D model, and the calculated temperatures on the surface between

the HTF and PCM were applied to the boundary conditions in LBM, and the

temperature field within the conducting fins are modeled separately based on a

different enthalpy equation, with a boundary treatment for the surface between

the conducting fins and the PCM. (Section 2.4, Section 4.4 and Section 4.5)
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5. The parallel LBM scheme was proposed and developed for the enthalpy-based

DDF-MRT lattice Boltzmann model. The decomposition of the entire domain

can be either 1D or 2D. And the exchange of information between each re-

lated partial unit was achieved by the code developed based on Microsoft MPI

(MSMPI) for Windows environment and OpenMPI for Linux environment.

(Section 4.6)

In terms of the numerical simulation, several case studies are conducted to

verify and validate the new model, as demonstrated in Section 5.1 and Section 5.2.

Besides, scaling analyses of the parallel LBM scheme are performed by using the high

performance computing (HPC) resources from University of Maryland, as demon-

strated in Section 5.3. Parametric studies of the cylindrical PCM HX are then

conducted based on the validated lattice Boltzmann model, as introduced in Chap-

ter 6. The main conclusions for the numerical simulation based on the developed

model are summarized as follows:

1. The enthalpy-based DDF-MRT LBM in Cartesian coordinates was verified by

the porous PCM melting in a rectangle cavity. The simulation results were

in good agreement and indicate that the basic Cartesian model is capable of

solving the convective PCM melting with the porous media. (Section 5.1.2)

2. The enthalpy-based DDF-MRT LBM in axisymmetric coordinates was vali-

dated by PCM melting in cylindrical HX. The validation of pure PCM melting

with the experimental data from CEEE indicated that the developed model

successfully predicted the temperature variations in the PCM HX with the

170



errors confined within 10 % for the local temperatures and 5 % for average

PCM temperature. The validation of porous PCM melting in cylindrical HX

also indicated that the error of the temperature predictions was under 10 %

for the developed model. (Section 5.2.2, Section 5.2.3 and Section 5.2.4)

3. A comprehensive parametric study was conducted for the cylindrical PCM

HX with various aspect ratios and Rayleigh numbers. Based on the criterion

(η = 0.8) proposed in this case, the accelerations of the PCM melting (ac)

at different Rayleigh numbers were quantified, and the threshold Rayleigh

numbers Radc at various aspect ratios were proposed to serve as references for

the design of the cylindrical HX. It was observed that Radc increases as the

aspect ratio becomes smaller, which indicated that higher Rayleigh numbers

are required for the PCM HX with smaller aspect ratios to reach the same

acceleration rate of the melting. (Section 6.1)

4. A case study of the porous PCM melting was performed and compared with

the pure PCM melting, which indicated that the acceleration of the melting

could be up to 86 % for energy storage at η = 0.8 by adding the porous media.

The porous media with high porosity ϕ ≥ 0.9 is recommended for PCM HX to

obtain a high acceleration rate of melting at the cost of a reasonable reduction

in maximum energy storage. (Section 6.2)

5. A parametric study was performed to evaluate the modified cylindrical HX

designed based on the concept of taking the advantages of convection effect

to offset the negative effect of the uneven temperature distributions caused by
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convection heat transfer. The modified geometry in two variants were simu-

lated, and the results indicated that the melting accelerations could reach 45

% and 57 % respectively compared with the straight cylinder under the same

total volume. The acceleration rates were higher for the modified PCM HX

with a more narrow bottom and wider top. Moreover, adopting the modified

geometry could balance the uneven temperature distributions due to convec-

tion, which further benefits thermal performance of HX. (Section 6.3)

7.2 Future Work

7.2.1 Extensions and Improvements of the Developed 2D Enthalpy-

Based DDF-MRT LBM

Following the validation of PCM melting with conducting fins introduced in

Section 5.2.4, more validations should be conducted to further proves the capa-

bility of the model. Besides, the parametric studies of the finned HX, especially

in combination with the porous media, are interesting topics that require further

investigations.

Following the case study of porous PCM melting in Section 6.2, the melting

with more settings of the porous media is expected to be performed by varying the

porosity and permeability of the porous media. The complete study of this porous

PCM melting can provide detailed data on HX performance with different porous

media settings, which can serve as the reference for the design of the enhanced PCM

HX.
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Following the evaluation of PCM melting in modified cylindrical HX as dis-

cussed in Section 6.3, more solidification cases are expected to be conducted. In

general, a PCM HX is evaluated by its performance of melting and solidification.

Given the fact that convection heat transfer is more influential in PCM melting,

and its effect becomes limited in the solidification case, conduction always domi-

nates the heat transfer in PCM solidification. And therefore the modified HX, such

as the one in Section 6.3, can have poor performance in the solidification process

compared with the straight cylinder since the top part of modified geometry is wider

which requires more time to solidify the PCM on the top. For the cases where the

solidification process of the HX is performed at non-occupied hours, and melting

performance is much more important, the modified geometry in Section 6.3 can be

a good choice. However, solidification performance is still worth investigating in

order to obtain a more comprehensive evaluation of the PCM HX. In general, the

analysis of solidification process is expected to be conducted to complete the full

evaluation of PCM HX.

7.2.2 3D Solid-Liquid Lattice Boltzmann Model

The new 2D model can only solve limited HX shapes, while more complicated

geometries of the PCM HX, such as the shell and tube HX [92] and helical tube HX

[93], require a 3D model. Therefore, the development of the 3D lattice Boltzmann

model for solving the solid-liquid phase change can extend the application of LBM,

and meanwhile benefit the design and analysis of the PCM HX.
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Figure 7.1: Streamlines (left) and velocity field (right) for a 3D lid-driven cavity
with (U, V ) = (0.1, 0.1) at steady state.

The 3D LBM for isothermal fluid flow has been developed in Cartesian coor-

dinates. A sample simulation is conducted for a 3D lid-driven cavity with its top

lid moving along a diagonal direction at velocities (U, V ) = (0.1, 0.1). And Fig. 7.1

shows the streamlines and velocity contours near steady state.

Following that, the models introduced in Section 3.3 can be utilized to further

develop the 3D enthalpy-based DDF-MRT LBM for the PCM HX, which could solve

PCM phase change problems in more complicated geometries.

7.2.3 Development of Liquid-Gas Lattice Boltzmann Model

The motivation for developing a specific liquid-gas lattice Boltzmann model

is to study the adiabatic two-phase flow in the microchannel header, analyze the

maldistribution due to the two-phase flow and evaluate its effect on the performance

of the microchannel HX (MCHX). MCHXs are widely used in HVAC&R because
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of their ability to enhance heat transfer performance. The microchannel headers

in MCHXs serve as the components to collect and distribute the working fluid to

individual microchannels. However, the headers suffer from the maldistribution of

the working fluid, which results in poor performance of MCHXs. The main causes

of the flow maldistribution can be summarized as the geometry of the headers, the

uneven heat transfer process, and liquid-gas flow in the headers [94]. To study this

issue numerically, many models have been developed for the single-phase flow in

the headers based on the conventional NS-based CFD methods [95–97]. While the

studies of the effect of the liquid-gas flow on the maldistribution in the headers are

limited due to the difficulties in the modeling and tracking of the phase interfaces

in the NS-based methods. Liquid-gas LBM, on the other hand, can solve the phase

behavior efficiently. Therefore it is considered to be one of the promising approaches

to studying the maldistribution of the liquid-gas flow in the headers.

Several multiphase lattice Boltzmann models have been developed over the

past three decades. Gunstensen et. al [98] developed the RK LB model which used

color gradients to separate and model the interaction at the multiphase interfaces.

Shan and Chen [99] proposed the pseudopotential LB model where a pseudopotential

function was introduced to account for the non-local particle interactions. Swift et.

al [100] developed the free-energy LB model which directly introduces the phase

effects into the collision process. He et. al [101] then proposed the phase-field

LB model based on the phase-field theory with a derived force term to describe

the multiphase behavior. Later, Li et. al [102] developed the entropy LB model

which utilizes the MRT scheme instead of the single-relaxation-time scheme (SRT)
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to increase the stability and support a wider range of the surface tension.

Among these multiphase LB models, the pseudopotential LB model and the

phase-field LB model are commonly adopted to simulate liquid-gas flow because of

their successful application of two-phase flow at large density ratios (ρl/ρg ∼ 103)

and relatively high Reynolds numbers [103,104]. For the cases in HVAC&R, e.g., the

two-phase refrigerant flow in the microchannel header, the pseudopotential LBM can

be selected as the basis to develop the liquid-gas LB model, owing to its simplicity

in development over the phase-field LB model and its ability to integrate with the

phase change scheme [105–108]. Currently, the developed model has the ability to

simulate the liquid-gas phase interactions, e.g., the bubble oscillation. However, the

model is still in its infancy as the MRT and the phase change scheme have not been

applied. And the model needs to be further developed to simulate the liquid-gas

flow with temperature variations.

The discrete Boltzmann equation of pseudopotential LB model is given by

f(x+ eδt,t+ δt)− f(x, t) = − 1

τv
[f(x, t)− f eq(ρ,u)] + Fsc. (7.1)

It is similar with Eq. (3.1) but with different equilibrium density distribution func-

tions f eq and forcing term Fsc. The forcing term Fsc in the pseudopotential LB

model is named as Shan-Chen forcing term [108], which is given as

Fsc = − 1

τv
[f eq(ρ,ueq)− f eq(ρ,u)] , (7.2)
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where ueq = u+ τvδtF/ρ, and then the term f eq(ρ,ueq) can be expressed as

f eq(ρ,ueq) = f eq(ρ,u) + ρωi

[
ei · τvδtF
ρc2s

+
(ei · τvδtF)2

2(ρcs)4
− u · τvδtF

ρc2s

]
, (7.3)

where f eq(ρ,u) can be calculated by Eq. (3.3) and F can be obtained by

F = −Gψ(x)
∑
i

ωiψ(x+ eiδt)ei, (7.4)

where G is the strength factor which controls the interaction force and the weight

coefficients ωi for D2Q9 are given as

ωi =


1
3
, |ei|2 = 1,

1
12
, |ei|2 = 2,

(7.5)

and the pseudopotential function ψ(x) can be determined by

ψ =

√
2(PEOS − ρc2s)

Gc2
, (7.6)

where PEOS is the pressure of the fluid calculated from its equation of state.

Refrigerants Density ratio Surface tension (mN/m)

R134 90 11.7
R1234yf 67 9.5

R1233zd(E) 500 17.0

Table 7.1: Properties of the Three Refrigerants at 0 °C.

A sample case is conducted to simulate the bubble oscillation of three different
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Figure 7.2: Initial gas bubble (red) in liquid region (blue).

Refrigerants Calculation steps Time (ms)

R134 14800 2.57
R1234yf 12600 2.19

R1233zd(E) 31700 5.51

Table 7.2: First Two Cycles of the Bubble Oscillations.

refrigerants: R134a, R1234yf, and R1233zd(E), as shown in Fig. 7.2. Table 7.1 lists

the density ratios and the surface tensions of the three refrigerants at 0 °C [109,110],

and the results are listed in Table 7.2. A clear trend can be observed from the results

that higher surface tension leads to lower elasticity of the bubble and therefore results

in higher time consumption to complete the first two cycles of the bubble oscillation.

The simulation results indicate the developed basic pseudopotential LB model could

simulate the phase interaction between liquid and gas. A more comprehensive liquid-

gas LB model is expected to be established based on the current model by adding the

following schemes: the MRT scheme, the DDF scheme for temperature variations,

the phase change scheme, and the scheme for the treatment of the high-density

ratios.
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Chapter 8: Contributions

8.1 Summary of Contributions

Generally, this dissertation proposed and developed a comprehensive model

for simulating the PCM HX based on the lattice Boltzmann method, by which

the parametric studies of PCM HX were conducted to quantitatively evaluate the

effect of natural convection, porous media, and HX geometries on PCM melting

performance. The contributions from this dissertation aim to fill the research gaps

summarized in Section 1.3. Correspondingly, the novelty and contributions of this

dissertation can be divided into three categories: (A) Model development based on

LBM, (B) Improvements of the developed model, and (C) Parametric studies and

analyses of the PCM HX using the new model, which are discussed in detail as

follows:

A. Model development based on LBM for solid-liquid phase change

A.1. Developed a comprehensive enthalpy-based lattice Boltzmann model for

solid-liquid phase change (Chapter 2, Chapter 3 and Chapter 4)

The new DDF-LBM based on the enthalpy method, adopting the multi-

relaxation-time (MRT) scheme, is capable of solving the thermal convec-
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tive flow and phase change problems. By modeling the porous media at

the REV scale, the new model can be used to simulate convective thermal

flow and phase change with porous media. By modeling the HTF flow

and conducting fins separately, the new model can be utilized to solve

practical conjugate heat transfer problems, while the enthalpy-based lat-

tice Boltzmann models that consider conjugate heat transfer are limited

in the literature. By adapting the developed model to axisymmetric co-

ordinates, the new model can be utilized to simulate the thermal flow

and PCM phase change in axisymmetric geometries such as the cylinder

and sphere efficiently.

Generally speaking, the new model in this dissertation is the first enthalpy-

based LB model solving porous PCM phase change in axisymmetric coor-

dinates, while there have been almost no axisymmetric LB models in the

literature that simulate PCM phase change together with the porous me-

dia. For Cartesian coordinates, the new model embedding the HTF and

fin schemes still excels the enthalpy-based LBM in the literature in terms

of the conjugate heat transfer, which is supposed to be very common in

PCM HX.

A.2. Developed a novel enthalpy-based thermal MRT-LBM for accurate en-

thalpy modeling (Section 2.5, Section 2.6 and Section 4.4.1)

The DSC correlated equations are commonly adopted in convectional

CFD for modeling the enthalpy. However, the basic enthalpy-based LBM

180



in the literature models the enthalpy by step and linear functions, which

can cause errors in the simulation results. Therefore, the DSC corre-

lated enthalpy modeling was applied, and the new model was modified

accordingly in this dissertation.

Generally, the new model in this dissertation is the first lattice Boltzmann

model calculating the enthalpy based on DSC test data of the PCM,

which improves the model accuracy of the LBM for the specific PCM.

And owing to the adoption of the DSC correlation, the consideration of

the variable specific heat capacity (cp) is automatically achieved, while

the most thermal LBM in the literature can not handle such a case.

B. Model improvements for better analyzing the PCM HX

B.1. Improved the LBM model for high Rayleigh number thermal flow (Ra >

106) (Section 4.4.2)

For the PCM melting, most of the studies focus on the cases where con-

duction and convection are balanced or conduction is dominated, espe-

cially when the porous media is considered. The corresponding Rayleigh

numbers are usually below or around 106, and seldom exceed 108. How-

ever, for the actual PCM HX, the calculated Rayleigh numbers can easily

go beyond 106 for the PCM such as paraffin wax and fatty acid, and even

exceed 108 for some HX settings, which causes the numerical models to

be unstable and inaccurate. Therefore, the developed model was further

improved for high Rayleigh numbers in this dissertation by adding the ex-
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plicit terms to the source term in moment space to eliminate the thermal

flow errors at high Rayleigh numbers in LBM.

In general, the proposed treatment embedded in the MRT scheme forms

a novel thermal MRT-LBM, which is capable of solving the thermal flow

and phase change stably and accurately under strong convection.

B.2. Improved the LBM model with parallel scheme (Section 4.6 and Sec-

tion 5.3)

Owing to the explicit streaming process and local collision process, LBM

is ideal for parallel computing. And this is also one of the key features

that makes the LBM competitive compared with the conventional CFD.

Specifically, for the simulation of PCM HX, the developed lattice Boltz-

mann model with the parallel scheme can perform numerous parametric

studies of the PCM HX in a time-efficient way, which benefits the design

and analysis of the PCM HX.

In this dissertation, the parallel scheme was applied to further improve

the enthalpy-based DDF-MRT model. The performance of the developed

parallel lattice Boltzmann model was tested through the scaling analy-

ses of a porous PCM melting simulation conducted on HPC resources.

The parallel model could either be operated both in Windows and Linux

systems. Given the fact that the detailed analysis of the parallel scheme

in solid-liquid LBM is limited in the literature, the results of the scaling

analyses in this dissertation can be served as the reference for choosing
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the operating cores for the parallel simulation of the PCM HX.

C. Parametric studies of the PCM HX using the new model, providing insights

into the physical mechanisms and the basis of the PCM HX design

C.1. Quantitatively evaluated the natural convection effect on PCM melting

(Section 6.1)

Unlike the solidification cases where natural convection effect is always

limited, PCM melting on contrary can be affected or even dominated

by convection heat transfer. Consequently, quantitatively evaluation of

natural convection effect on PCM melting is essential to the design and

analysis of the PCM HX. Such a kind of evaluation is limited in the lit-

erature since it requires many cases conducted numerically concerning

different HX geometries and Rayleigh numbers, which is very consuming

in terms of time and computational costs. Owing to the developed paral-

lel DDF-MRT LBM, this parametric study can be performed efficiently.

Generally, the parametric study in this dissertation evaluated thermal

performance of the cylindrical PCM HX with various aspect ratios and

Rayleigh numbers. The results provided the quantified melting accelera-

tion rates of the PCM HX at various aspect ratios and Rayleigh numbers.

And threshold Rayleigh numbers (Radc) were proposed to serve as refer-

ences for the design of the cylindrical HX at various aspect ratios.

C.2. Evaluated the enhanced PCM HX and analyzed the uneven temperature

distribution issues (Section 6.2 and Section 6.3)
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From the parametric studies in this dissertation, it can be observed that

the uneven temperature distributions caused by convection heat trans-

fer have a negative effect on thermal performance of the PCM HX. For

pure PCM melting in a straight cylinder, the heat transfer enhanced by

convection should be strong enough to offset its negative effect, which

means the Rayleigh number that characterizes PCM melting should be

above a certain value. And for common cylindrical HX under various

aspect ratios, the provided Radc can be served as the references, above

which the PCM melting is guaranteed to be enhanced by convection heat

transfer in the given PCM HX.

The PCM HX enhancements such as the porous media and the modified

geometry of the HX were also evaluated in this dissertation. The results

of porous PCM melting demonstrated the positive effect of adding porous

media on heat transfer over the entire PCM domain, and the negative

effect of porous media on convective flow in the liquid zone. And the

results of the modified cylindrical HX indicated a significant improvement

in the thermal performance of the PCM HX as it can address the uneven

temperature distribution issues by taking the advantage of the positive

effect of convection on heat transfer.
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8.2 List of Related Publications

Based on the work in this dissertation, one conference paper and one journal

paper were published, and two more journal papers are under development. They

are listed as follows:

• Peer-Reviewed Conference Papers

– Chen, D., Riaz, A. and Aute, V.C., and Radermacher, R., ”A Lat-

tice Boltzmann Model for Phase Change Material (PCM) Melting with

Porous Media in Heat Exchanger” (2021). International Refrigeration

and Air Conditioning Conference

• Journal Papers

– Chen, D., Riaz, A., Aute, V.C. and Radermacher, R., 2022. A solid–liquid

model based on lattice Boltzmann method for phase change material

melting with porous media in cylindrical heat exchangers.Applied Ther-

mal Engineering, p.118080.

– Chen, D., Riaz, A., Aute, V.C. and Radermacher, R., Numerical analysis

of PCM melting in cylindrical HX using a novel improved enthalpy-based

LBM. (manuscript completed)

– Chen, D., Riaz, A., Aute, V.C. and Radermacher, R., Numerical analysis

of porous PCM melting with circular fins in cylindrical HX using a novel

improved enthalpy-based LBM. (expected)
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turier, Jean François Fourmigue, and Philippe Marty. Experimental study of
a phase change thermal energy storage with copper foam. Applied Thermal
Engineering, 101:247–261, 2016.

[92] Mehdi Esapour, Arash Hamzehnezhad, A Ali Rabienataj Darzi, and Mah-
moud Jourabian. Melting and solidification of pcm embedded in porous metal
foam in horizontal multi-tube heat storage system. Energy conversion and
management, 171:398–410, 2018.

193



[93] Mustafa S Mahdi, Hameed B Mahood, Jasim M Mahdi, Anees A Khadom,
and Alasdair N Campbell. Improved pcm melting in a thermal energy storage
system of double-pipe helical-coil tube. Energy Conversion and Management,
203:112238, 2020.

[94] AC Mueller and JP Chiou. Review of various types of flow maldistribution in
heat exchangers. Heat transfer engineering, 9(2):36–50, 1988.

[95] Zhe Zhang and YanZhong Li. Cfd simulation on inlet configuration of plate-fin
heat exchangers. Cryogenics, 43(12):673–678, 2003.
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