
ABSTRACT

Title of Dissertation: The Evolution of Cloud Data Architectures:
Storage, Compute, and Migration

Gang Liao
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Daniel J. Abadi
Department of Computer Science

Recent advances in data architectures have shifted from on-premises to the

cloud. However, new challenges emerge as data explosion continues to expand

at an exponential rate. As a result, my Ph.D. research focuses on addressing the

following challenges.

First, cloud data warehouses such as Snowflake [1, 2], BigQuery [3], Red-

shift [4] often rely on storage systems such as distributed file systems or object

stores to store massive amounts of data. The growth of data volumes is accompa-

nied by an increase in the number of objects stored and the amount of metadata

such systems must manage. By treating metadata management similar to data

management, we built FileScale, an HDFS-based file system that replaces meta-

data management in HDFS with a three-tiered distributed architecture that in-

corporates a high throughput, distributed main-memory database system at the

lowest layer, along with distributed caching and routing functionality above it.

FileScale performs comparably to the single-machine architecture at a small scale,

while enabling linear scalability as the file system metadata increases.

Second, Function as a Service, or FaaS, is a serverless model that allows

users decompose their applications into short-lived cloud functions. FaaS pro-

vides more fine-grained elasticity with sub-second start-up times that can dynam-

ically match the per-query basis with continuous scaling. Customers are only

charged for the execution time they consume, often at a granularity of one mil-

lisecond. To explore the promise of function services for stream processing, we

built Flock, a cloud-native streaming query engine that runs on FaaS platforms.

Flock is low cost to operate under low demand and can scale automatically to a

high load at a proportional cost.

Third, Software as a Service, or SaaS, is a method of software product de-

livery to end-users over the internet and via pay-as-you-go pricing in which the

software is centrally hosted and managed by the cloud service provider. Contin-

uous Deployment (CD) in SaaS, an aspect of DevOps, is the increasingly popular

practice of frequent, automated deployment of software changes. To realize the

benefits of CD, it must be straightforward to deploy updates to both front-end

code and the database, even when the database’s schema has changed. Unfor-

tunately, this is where current practices run into difficulty. So we built BullFrog,

a PostgreSQL extension that is the first system to use lazy schema migration to

support single-step, online schema evolution without downtime, which achieves

efficient, exactly-once physical migration of data under contention.

The Evolution of Cloud Data Architectures:
Storage, Compute, and Migration

by

Gang Liao

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Daniel Abadi, Chair/Advisor
Professor Amol Deshpande
Professor Michael Hicks
Professor Louiqa Raschid
Associate Professor Pete Keleher

© Copyright by
Gang Liao

2022

Acknowledgments

My Ph.D. journey leaves me with wonderful great memories and experi-

ences on research and life. Looking back to the past four years, I want to thank

many people for their support and encouragement.

First and foremost, I would like to express my gratitude to my advisor, Daniel

Abadi, an excellent research mentor and a remarkable person who has made my

graduate study a precious and enjoyable experience. Dan allows me to work on

a wide range of research topics, broadening my horizons and deepening my un-

derstanding of the data system field. He listens patiently to my immature ideas

and continually encourages me to tackle open problems involving technical inno-

vation. His sincerity to the research work impacts me to conduct solid research,

which helps me construct my research style and shapes my personality into the

way I wish I could be. I feel lucky to have had Dan accompanying me walking

through this Ph.D. journey.

Thank you, Amol Deshpande, Michael Hicks, Pete Keleher, and Louiqa Raschid,

for serving as my committee members. I appreciate their time for reading my dis-

sertation and providing insightful feedback for helping me improve the quality

of my dissertation. My Ph.D. work was done in collaboration with Amol and

Michael. Without their consistent help in formulating ideas and writing papers,

ii

the thesis would be far from being completed.

I am fortunate to work with many fantastic mentors and peers who con-

tributed their time and insights. Thank you, Souvik Bhattacherjee, for encour-

aging me to take over the research project despite my little relevant experience.

We worked together even when I spent nearly a year in China struggling with a

travel ban during the pandemic. I am also fortunate to have had multiple brilliant

research mentors from internships. Thank you, Yinan Li, Badrish Chandramouli,

and Donald Kossmann from Microsoft Research, for their valuable comments and

discussions, which helped frame the way I conduct research. Their serious atti-

tude to the research, the habit of seeking the root cause, and the system way for

results analysis impact my research style. Thank you, Chang Lan and Chuanx-

iong Guo, for my first Ph.D. internship at ByteDance AI Lab. Thank you, Zejun

Liu, Dennis Li, Zhichao Liu, and Zhenghang Hu, for participating and contribut-

ing to my Ph.D. research projects. I especially thank Yanfang Le and Rui Guo for

sharing their Ph.D. experience and research ideas.

Thank you, Bingfa Li, who introduced me to the systems research field, serv-

ing as my undergraduate research advisor. Thanks to his mentorship, I started

along the path to where I am today. Thank you, Markus Hadwiger, David Keyes,

and Yi Wang, for understanding and supporting my return from industry to academia

for my Ph.D. study.

Finally, I am incredibly grateful to my parents and sisters. They provide me

with their support in all possible ways. My heartfelt thanks to my wife, Jane, who

gives me her unlimited support and encouragement, making my everyday life

iii

much more colorful and joyful, and to my three-year-old son, Jimmy, who brings

me tons of memorable moments. This dissertation would not be possible without

their constant love, support, and encouragement.

iv

Table of Contents

Acknowledgements ii

Table of Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xi

Chapter 1: Introduction 1
1.1 Overview . 1
1.2 FileScale . 1
1.3 Flock . 3
1.4 BullFrog . 5
1.5 Outline . 6

Chapter 2: FileScale: Fast and Elastic Metadata Management for Distributed
File Systems 8

2.1 Introduction . 9
2.2 HDFS Background . 12
2.3 System Architecture . 13
2.4 Database Layer . 15

2.4.1 Data Model . 15
2.4.2 Transaction Processing . 18

2.5 Caching Layer . 18
2.5.1 Object Cache . 19
2.5.2 Durability . 22

2.6 Proxy Layer . 23
2.6.1 Request Routing . 24
2.6.2 Multi-partition requests . 27

2.7 Performance Evaluation . 28
2.7.1 Experimental Setup . 29
2.7.2 Single-node Experiments . 30
2.7.3 Multi-server Experiments . 38
2.7.4 Disaster Recovery . 45
2.7.5 The Impact of Database System Choice 47

v

2.8 Related Work . 54
2.9 Summary . 58

Chapter 3: Flock: A Practical Serverless Streaming Query Engine 59
3.1 Motivation . 59
3.2 Background . 64

3.2.1 AWS Lambda . 64
3.2.2 Apache Arrow and DataFusion 64
3.2.3 Streaming Query Processing 65

3.3 System Architecture . 67
3.3.1 SQL Interface . 68
3.3.2 Distributed Planner . 69
3.3.3 Microbatch Execution Mode 71
3.3.4 Fault Tolerance . 72

3.4 Function Templates . 74
3.4.1 Template Specialization . 74
3.4.2 Generic Function . 77

3.5 Serverless Actors and Communication 82
3.5.1 One-way Communication . 82
3.5.2 Sync and Async . 84
3.5.3 No Coordinator . 86
3.5.4 Function Name . 88
3.5.5 Function Group . 89

3.6 Flock Dataflow Paradigm . 92
3.7 Evaluation . 98

3.7.1 Experimental Setup . 99
3.7.2 x86 vs Arm Architectures . 100
3.7.3 Performance Cost . 102
3.7.4 Invocation Payload . 104
3.7.5 Distributed Query Processing 106
3.7.6 Cold Start . 108

3.8 RELATED WORK . 109

Chapter 4: BullFrog: Online Schema Evolution via Lazy Evaluation 112
4.1 Introduction . 113
4.2 Request-Driven Lazy Migration . 117

4.2.1 Basic approach . 118
4.2.2 Background migrations . 124
4.2.3 Consistency . 124
4.2.4 Limitations . 125

4.3 Lazy Migration, Concurrently . 126
4.3.1 Migration categories . 126
4.3.2 Migration transaction processing 129
4.3.3 Bitmap migrations . 130
4.3.4 Hashmap migrations . 133

vi

4.3.5 Migration aborts . 135
4.3.6 Joins . 136
4.3.7 Conflict detection . 139

4.4 Experimental Evaluation . 140
4.4.1 Table split migration . 142
4.4.2 Aggregate Migration . 148
4.4.3 Join Migration . 149
4.4.4 Tracking Overhead . 152
4.4.5 Integrity Constraints . 155

4.5 Related Work . 157
4.6 Summary . 161

Chapter 5: Conclusion and Future Work 162
5.1 Conclusion . 162
5.2 Future Work . 163

Bibliography 166

vii

List of Tables

2.1 Data model in FileScale. 17

3.1 Comparison with Existing Serverless Data Analytics Systems. . . . 63
3.2 The latency comparison (seconds). 84
3.3 Distributed query processing. 108

viii

List of Figures

2.1 System Architecture of FileScale. Inodes are small circles that sit in
the NameNode’s memory. 14

2.2 Path resolution. 21
2.3 The workflow of file-create (metadata) operation. 23
2.4 Request Routing in FileScale. 26
2.5 Move a folder across NameNodes. 28
2.6 The throughput of basic operations including create, open, delete, re-

name and mkdirs on a EC2 instace—t3a.2xlarge. 31
2.7 Recursive delete all files under the root directory. 33
2.8 Large directory experiment. 35
2.9 Cache miss penalty. 37
2.10 A five-node deployment. 39
2.11 Throughput when scaling NameNodes. 42
2.12 Local vs. distributed move operations. 43
2.13 Local vs. distributed chmod operations. 44
2.14 Hotspot Mitigation. 45
2.15 System restore operations. 46
2.16 Cache miss penalty. 49
2.17 Dirty data flush penalty. 50
2.18 Distributed chmod and move operations. 53

3.1 System Architecture. 68
3.2 Physical Plan Partition. 70
3.3 Generic Function and Template Specialization. 75
3.4 The duration charge comparison. 86
3.5 Cloud Function Group. 90
3.6 Multi-level Shuffling. 95
3.7 Lambda function on x86 and Arm processors. 99
3.8 Performance cost of executing 20 million NEXMark events and 1

million events per second. 101
3.9 Flock Payload versus Flock S3 on NEXMark Q3. 105
3.10 Lambda cold start cost on NEXMark Q3. 109

4.1 Schema migration during transaction processing. 131
4.2 Transaction abort handling. 137
4.3 Throughput during table-split migration. 143

ix

4.4 Latency during table split migration. 147
4.5 Throughput during aggregation migration. 149
4.6 Latency during aggregation migration. 150
4.7 Throughput during join migration. 151
4.8 Latency during join migration. 152
4.9 Data structure maintenance cost. 153
4.10 Skewed data access. 154
4.11 Varying access skew and migration granularity. End points are

marked by the corresponding circles. 156
4.12 FOREIGN KEY constraints on table split migration. 157

x

List of Abbreviations

CD Continuous Deployment
TPC-C Transaction Processing Performance Council Benchmark C
DDL Data Definition Language
UDF User-defined Function
SQL Structured Query Language
OLTP Online Transaction Processing
OLAP Online Analytical Processing
TPS Transactions per Second
ACID Atomicity, Consistency, Isolation, Durability
TTL Time to Live
HA High Availability
SLO Service-level Objective
SLA Service-level Agreement
YSB Yahoo Streaming Benchmarks
SIMD Single Instruction/Multiple Data
DAG Directionally-acyclic Graph
UUID A Universally Unique Identifier
DLQ Dead-letter Queue
FaaS Function as a Service
SaaS Software as a service

xi

Chapter 1: Introduction

1.1 Overview

The cloud benefits have driven many recent efforts to port data analytics

from on-premises to cloud. The migration of workloads has led in a fast expansion

of cloud services, resulting in significant innovation and new research problems.

In this dissertation, we aim to address the following question: How can cloud in-

frastructure be used to rethink the next-generation cloud data systems to tackle

large-scale storage, computation, and data migration concerns as the data explo-

sion proceeds at an exponential rate? We built three systems: FileScale, Flock, and

Bullfrog to study and tackle the difficulties of the cloud data architecture, includ-

ing scalability of storage, fine-grained elasticity of computing, and exactly-once

online schema evolution. We now describe each of these works in more detail in

the following sections.

1.2 FileScale

Cloud data warehouses such as Snowflake [1, 2], BigQuery [3], Redshift [4]

often rely on storage systems such as distributed file systems or object stores to

1

store massive amounts of data. The growth of data volumes is accompanied by

an increase in the number of unstructured byte contents of the files stored and

the amount of the structured metadata such systems must manage. In general,

it is easier to scale the unstructured data than the structured data, since there is

no requirement to perform atomic transactions that update the unstructured bits

across multiple files.

However, scaling the structured data is more challenging for several reasons:

First, there is a requirement for ACID transactions that may access data in multi-

ple partitions. For example, recursively deleting or changing the permissions of a

directory affect that directory and all its contents (sub-directories are treated re-

cursively), and must occur atomically. Similarly, moving or copying a file from a

location inside one partition to a location inside another partition also must occur

atomically and serializably. Second, metadata is repeatedly accessed throughout

file system requests for verifying paths, checking permissions, and finding data

relevant to a request, and cannot afford excessive delays for multi-node coordina-

tion.

An alternative approach is to store the metadata in a distributed database

system that manages the partitioning of the metadata, and guarantees atomicity,

isolation, and durability of all transactions. However, performance and efficiency

can be a problem. When the file system logic is running outside of the database

system, there are typically many round trips between the file system logic and

database layer for each file system request. These round trips can add up to sub-

stantial increased latency, and reduced efficiency of system resources.

2

To enhance storage scalability and improves availability to handle the mas-

sive growth in data needs of an ever-growing number of applications, by treating

metadata management similar to data management, we built FileScale, an HDFS-

based file system that replaces metadata management in HDFS with a three-tiered

distributed architecture that incorporates a high throughput, distributed main-

memory database system at the lowest layer, along with distributed caching and

routing functionality above it, so that most requests can be served with asyn-

chronous, batched interactions with the database layer. This architecture enables

FileScale to be a simple upgrade over existing HDFS implementations in which

all interfaces — both internally and externally — remain the same, and the per-

formance on a single node is nearly identical to the original HDFS implementa-

tion. However, as the metadata scales, the architecture transparently partitions

the metadata over a shared-nothing cluster of nodes, achieving linear scalability

relative to performance on a single node.

1.3 Flock

Many high-volume data sources, such as sensor measurements, machine

logs, user interactions on a website or mobile application, and the Internet of

Things, operate in real time. Stream processing systems are critical to provid-

ing the freshest possible data and driving organizations to make faster and better

automated decisions. These jobs show high variability and unpredictability, up

to an order of magnitude more than the average load [5, 6]. This, along with the

3

broad variety of user SLOs, makes statically configuring and tuning streaming

systems extremely difficult. Furthermore, traditional server-centric deployments

use clusters provisioned with a fixed pool of storage and compute resources to exe-

cute these jobs, it can frequently suffer from resource under- or over-provisioning,

leading to resource wastage or performance degradation, respectively.

Serverless platforms [7, 8, 9] fulfill the promise of transparent resource elas-

ticity in the cloud [10, 11, 12]. Under the Function as a Service (FaaS) serverless

model, developers decompose their applications into short-lived cloud functions.

The ease of programming, fast elasticity, and fine-grained pricing in FaaS plat-

forms allow for fine-grained scaling of resources to meet spiky demand, making

them an appealing solution for streaming processing. The FaaS model provides

more fine-grained elasticity with sub-second start-up times that can dynamically

match the per-query basis with continuous scaling. Further, its billing methods

are more fine-grained with millisecond granularity. Therefore a FaaS-based ser-

vice is low cost to operate under low demand and can scale automatically to a

high load at a proportional cost.

To explore the promise of function services for stream processing, we built

Flock, a cloud-native streaming query engine that runs on FaaS platforms. Ex-

isting approaches [13, 14, 15, 16] take advantage of the on-demand elasticity of

cloud object storage services, such as Amazon S3 [17] to shuffle data, which in-

creases the performance cost and compromises the advantages of a serverless sys-

tem. Instead, Flock passes data through the invocation’s payload between cloud

functions. This removes the need to read and write data from an external store

4

service. Payload invocation also eliminates the requirement for a query coordi-

nator from the data architecture since Flock does not leverage any external stor-

age service as a communication medium between functions. Flock supports the

vectorized processing on ARM processors, which brings 20% speedup and re-

duce costs by more than 30% on x86. Flock is thus the first streaming query en-

gine, to the best of our knowledge, to support standardized abstractions, SQL and

Dataframe API, on cloud function services, allowing users and engineers to avoid

the time-consuming process of manually translating SQL into cloud workflows

on heterogeneous hardware.

1.4 BullFrog

Software as a Service, or SaaS, is a method of software product delivery to

end-users over the internet and via pay-as-you-go pricing in which the software

is centrally hosted and managed by the cloud service provider. Continuous De-

ployment (CD) in SaaS, an aspect of DevOps, is the increasingly popular practice

of frequent, automated deployment of software changes. To realize the benefits

of CD, it must be straightforward to deploy updates to both front-end code and

the database, even when the database’s schema has changed. Unfortunately, this

is where current practices run into difficulty. Schema changes occurred roughly

once per week in a dozen open-source applications [18]. Application developers

should be free to change the code and database schema as they see fit, without

concern for the complexities of deploying those changes later. Since downtime

5

frequently is a concern, and with multiple updates happening per day, the simple

shutdown-and-restart approach is unacceptable.

We builtBullFrog [19], a PostgreSQL extension that is the first system to use

lazy schema migration to support single-step, online schema evolution without

downtime, which achieves efficient, exactly-once physical migration of data un-

der contention. When a schema migration is submitted, BullFrog initiates a log-

ical switch to the new schema, but physically migrates affected data lazily, as it is

accessed by incoming transactions. BullFrog’s internal concurrency control algo-

rithms and data structures enable concurrent processing of schema migration op-

erations with post-migration transactions, while ensuring exactly-once migration

of all old data into the physical layout required by the new schema. BullFrog can

achieve zero-downtime migration to non-trivial new schemas with near-invisible

impact on transaction throughput and latency.

1.5 Outline

The remaining of the thesis is organized as follows. In Chapter 2, we present

FileScale, a three-tier architecture that incorporates a distributed database system

as part of a comprehensive approach to metadata management in distributed file

systems. In Chapter 3, we propose Flock, a cloud-native streaming query engine

on cloud function services. In Chapter 4, we describe BullFrog, a relational DBMS

that supports single-step schema migrations — even those that are backwards

incompatible — without downtime, and without need for advanced warning. We

6

conclude this dissertation and discuss the future work directions in Chapter 5.

7

Chapter 2: FileScale: Fast and Elastic Metadata Management for

Distributed File Systems

Recent work has shown that distributed database systems are a promising

solution for scaling metadata management in scalable file systems. This work has

shown that systems that store metadata on a single machine, or over a shared-

disk abstraction, struggle to scale performance to deployments including billions

of files. In contrast, leveraging a scalable, shared-nothing, distributed system for

metadata storage can achieve much higher levels of scalability, without giving up

high availability guarantees. However, for low-scale deployments – where meta-

data can fit in memory on a single machine – these systems that store metadata in a

distributed database typically perform an order of magnitude worse than systems

that store metadata in memory on a single machine. This has limited the impact

of these distributed database approaches, since they are only currently applicable

to file systems of extreme scale.

To address the challenge, we built FileScale, a three-tier architecture that

incorporates a distributed database system as part of a comprehensive approach

to metadata management in distributed file systems. In contrast to previous ap-

proaches, the architecture described in the chapter performs comparably to the

8

single-machine architecture like HDFS at a small scale, while enabling linear scal-

ability as the file system metadata increases.

2.1 Introduction

As the data stored by organizations rapidly expands, both the structured

metadata and unstructured byte contents of the files managed within file sys-

tems scale commensurately. In general, it is easier to scale the unstructured data

than the structured data, since there is no requirement to perform atomic transac-

tions that update the unstructured bits across multiple files. Therefore, unstruc-

tured data can simply be placed in blocks that are partitioned across a shared-

nothing cluster of nodes (machines), and all operations on the unstructured data

are straightforward to parallelize across this cluster, with little-to-no coordination

across nodes except for replication.

However, scaling the structured data is more challenging for several rea-

sons: First, there is a requirement for atomic, isolated, and durable transactions

that may access data in multiple partitions. For example, recursively deleting or

changing the permissions of a directory affect that directory and all its contents

(sub-directories are treated recursively), and must occur atomically. Similarly,

moving or copying a file from a location inside one partition to a location inside

another partition also must occur atomically and serializably. Second, metadata is

repeatedly accessed throughout file system requests for verifying paths, checking

permissions, and finding data relevant to a request, and cannot afford excessive

9

delays for multi-node coordination.

The first generation of scalable file systems, such as GFS, HDFS, Lustre, Ursa

Minor, Farsite, and XtreemFS [20, 21, 22, 23, 24, 25], focused on scaling the un-

structured data linearly, but stored metadata in memory on a single machine. De-

spite the lack of scalability of metadata management, they managed to scale to

petabytes of data by using block sizes on the order of megabytes or gigabytes, and

limiting the number of unique files and directories under management, so that in-

formation about blocks, files and directories can fit in memory on the metadata

node (which was typically provisioned with copious amounts of memory). These

restrictions typically present no problems for data processing and large scale anal-

ysis workloads, which usually involve large scans and prefer large block sizes any-

way. However, these restrictions are problematic for workloads that access data in

smaller quantities. In addition, even large scale analysis workloads that use large

blocks sizes are reaching the metadata limits of existing scalable file systems with

increasing frequency.

Furthermore, using a single machine [26] to handle all metadata requests

can become a performance bottleneck when it is overwhelmed by many concur-

rent client requests, along with processing heartbeats from the increasingly large

numbers of block-store servers in the system. Furthermore, it becomes a single

point of failure unless another machine that has identical provisions of copious

memory and processing capability runs alongside it, ready to take over at any mo-

ment. Therefore, solutions that remove the memory limitations by incorporating

fast external storage attached to the metadata node (e.g. [27, 28, 29, 30, 31, 32, 33,

10

34, 35]) will not be sufficient in the long run.

One approach to scaling metadata is to partition it, but restrict atomicity and

isolation guarantees to only those requests that can be processed by a single par-

tition. This is the approach taken by HDFS’s federation option [36, 37] where

the file system namespace is statically partitioned across completely independent

"NameNode" servers that store disjoint partitions of file system metadata, with

optional client-side routing tables [38] or a routing layer [39, 40, 41, 42] that di-

rect metadata requests to the correct NameNode. Nonetheless, preventing multi-

partition requests limits the general applicability of these approaches, and reduces

the functionality of the file system.

An alternative approach is to store the metadata in a distributed database

system that manages the partitioning of the metadata, and guarantees atomicity,

isolation, and durability of all transactions — even those that span partitions [43,

44, 45]1. These approaches have demonstrated that scalable database systems can

successfully scale all aspects of file system metadata management. However, per-

formance and efficiency can be a problem. When the file system logic is running

outside of the database system, there are typically many round trips between the

file system logic and database layer for each file system request. These round trips

can add up to substantial increased latency, and reduced efficiency of system re-

sources. For example, the HopsFS paper reported that it took 3 NameNodes and 2

database servers to match the throughput that the single active HDFS NameNode
1Although Colossus[46] and Giraffa [47] use scalable data stores (BigTable [48] and

HBase [49]), they do not support multi-partition requests because they lack strongly consistent
distributed transactions.

11

is able to achieve [44]. On the other hand, building the file system logic into the

database system requires rip-and-replace upgrades of existing file system tech-

nology and has yet to be shown to be a generally applicable approach.

In this chapter, we describe the design of FileScale, an HDFS-based file sys-

tem that replaces metadata management in HDFS with a three-tiered distributed

architecture that incorporates a high throughput, distributed main-memory database

system at the lowest layer, along with distributed caching and routing functional-

ity above it, so that most requests can be served with asynchronous, batched inter-

actions with the database layer. This architecture enables FileScale to be a simple

upgrade over existing HDFS implementations in which all interfaces — both in-

ternally and externally — remain the same, and the performance on a single node

is nearly identical to the original HDFS implementation. However, as the meta-

data scales, the architecture transparently partitions the metadata over a shared-

nothing cluster of nodes, achieving linear scalability relative to performance on a

single node. Experiments that compare FileScale to a recently published state-

of-the-art file-system-over-database-system implementation show that FileScale

is orders of magnitude more efficient.

2.2 HDFS Background

HDFS is perhaps the most widely deployed distributed file system today for

machine learning and data analytics [50, 51, 52]. It uses a leader/follower archi-

tecture in which a NameNode manages all file system metadata and regulates

12

data access on behalf of clients. Files are split into one or more blocks, and these

blocks are replicated across a set of DataNodes in a shared-nothing architecture.

NameNodes execute metadata operations over the set of inodes accessed by a re-

quest. Each inode stores information about a file or directory. For read requests,

it returns the list of blocks (and their DataNode location) that are accessed by the

request. DataNodes interact directly with clients, serving read and write requests.

They also perform block creation, deletion, and replication when instructed to do

so by the NameNode.

NameNode durability is implemented via a write-ahead log called the EditLog.

Recovery is performed by loading a checkpoint called a FSImage and then re-

playing the EditLog over this image file. This process can be time consuming.

Therefore, for improved high availability, HDFS allows for the deployment of a

hot-standby that continuously, asynchronously, keeps the FSImage merged with

the EditLog, so that it can take over with only minor delay when the primary

NameNode crashes or temporarily goes down.

2.3 System Architecture

FileScale is designed to serve as a drop-in replacement for HDFS, main-

taining an identical API at the client side, and intercepting communication with

the HDFS NameNode and redirecting it across FileScale’s distributed NameNode

implementation. FileScale replaces HDFS’s single NameNode with a three-tiered

architecture that collectively provide a more scalable implementation of the iden-

13

Proxy Proxy

DB

DB

DB

NameNode NameNode NameNode

34

Proxy Layer

Database Layer

DataNode DataNode DataNode
5

1

Proxy

Caching Layer

2

Figure 2.1: System Architecture of FileScale. Inodes are small circles that sit in
the NameNode’s memory.

tical NameNode functionality. These three tiers implement routing, caching, and

stable storage of file system metadata.

The high level architectural design of FileScale is illustrated in Figure 2.1.

When a client makes a request to FileScale, a proxy server receives the request

and routes it to a NameNode based on the file path of that request. The NameN-

ode functions in FileScale as a cache of a subset of metadata. If the metadata

relevant to the request is currently in the cache of the NameNode that receives it,

it can respond immediately. Otherwise, either the relevant data is brought into

cache, or this request is forwarded and processed as a transaction in the database

layer. The results of the request are then returned to the client, which typically

contain locations of DataNodes where the raw data is stored. The DataNode code

14

in FileScale is identical to the DataNode code in HDFS. The following sections

2.4, 2.5 and 2.6 provide more detail on each layer of FileScale’s architecture.

2.4 Database Layer

FileScale stores all file system metadata in a distributed database system

that is partitioned and replicated across a shared-nothing cluster. FileScale uses

a modular architecture such that any ACID-compliant SQL database system could

be used. However, some functionality is implemented within stored procedures

(see Section 2.4.2) so some new code is necessary to add support for a new system.

The codebase currently supports VoltDB [53] and Apache Ignite [54].

2.4.1 Data Model

File systems typically store metadata as a tree of inodes with a root corre-

sponding to the root directory, and children corresponding to directories and files

located in the parent directory. Files are always leaves of this tree (i.e. they have

no children) and they point to data block references from which the data associ-

ated with this file can be read. In HDFS this entire tree is stored in the memory of

the NameNode.

Since FileScale uses a relational database system, the tree data structure

must be transformed into a relational schema. The relational schema in FileScale

contains 14 tables, consisting of two tables associated with the two main entities:

inodes and datablocks, along with several relationship tables such as mappings

15

from inodes to blocks, and blocks to storage locations (DataNodes). Table 2.1

shows a simplified version of the schema used in FileScale. The pid and pname

attributes of the inodes table enables the reconstruction of the parent-child rela-

tionships from the original tree.

We partition the inodes table across the database system cluster via the at-

tribute pname2. All tables that have 1:n relationships with the inodes table, such as

the datablocks table, are partitioned based on their association with the inodes

table, in order to maximize locality. The remaining (small) tables are replicated

across the cluster.

2The full file path (pname, name) is the primary key of the inode table.

16

in
od

e2
bl

oc
k

bl
oc

k-
id

id
in

de
x

10
73

74
18

25
16

38
6

0
10

73
74

18
26

16
38

6
1

10
73

74
18

27
16

38
6

2
10

73
74

18
28

16
38

8
0

10
73

74
18

29
16

38
9

0

da
ta

bl
oc

ks
bl

oc
k-

id
kb

yt
es

st
am

p
re

pl
ic

a
10

73
74

18
25

13
10

72
10

01
1

10
73

74
18

26
13

10
72

10
02

1
10

73
74

18
27

45
05

6
10

03
1

10
73

74
18

28
6.

6
10

04
1

10
73

74
18

29
16

28
.2

10
05

1

bl
oc

k2
st

or
ag

e
bl

oc
k-

id
id

x
st

or
ag

e-
id

10
73

74
18

25
0

D
S-

e3
d5

de
23

10
73

74
18

26
0

D
S-

e3
d5

de
23

10
73

74
18

27
0

D
S-

08
98

95
47

10
73

74
18

28
0

D
S-

dc
8a

a5
4e

10
73

74
18

29
0

D
S-

dc
8a

a5
4e

in
od

es
id

pi
d

pn
am

e
na

m
e

ac
ce

ss
-ti

m
e

up
da

te
-ti

m
e

he
ad

er
pe

rm
is

si
on

16
38

5
0

nu
ll

/
0

15
45

26
15

71
02

4
0

10
99

51
16

93
80

5
16

38
6

16
38

5
/

ev
en

t_
da

ta
15

45
26

76
85

27
8

15
45

26
42

31
09

0
28

14
74

97
67

10
67

2
10

99
51

16
93

82
3

16
38

7
16

38
5

/
dn

n_
m

od
el

0
15

45
26

76
85

10
4

0
10

99
51

16
93

80
5

16
38

8
16

38
6

/d
nn

_m
od

el
gr

ap
h.

ck
pt

.p
bt

xt
15

45
26

76
85

12
5

15
45

26
76

85
12

5
28

14
74

97
67

10
67

2
10

99
51

16
93

82
3

16
38

9
16

38
6

/d
nn

_m
od

el
m

od
el

.c
kp

t.d
at

a0
15

45
26

76
85

22
4

15
45

26
76

85
22

4
28

14
74

97
67

10
67

2
10

99
51

16
93

82
3

Ta
bl

e
2.

1:
D

at
a

m
od

el
in

Fi
le

Sc
al

e.

17

2.4.2 Transaction Processing

After storing metadata in the database, metadata operations are performed

as atomic transactions over the database system. The metadata component of

some file system commands can be transformed into a series of simple INSERT,

UPDATE, or SELECT statements over the database system. However, other com-

mands require computation between these statements such that there is an inter-

leaving of statement execution and application code. Either way, FileScale imple-

ments all interactions with the database system via atomic, pre-compiled stored

procedures in order to leverage its more advanced knowledge of data partitioning

details.

2.5 Caching Layer

Each metadata operation in a file system must resolve path components re-

cursively to validate the entire path and check user permissions and quota con-

figuration. The multiple round trips back and forth to the database system re-

quired during the recursive path resolution process can result in substantial la-

tency — even when the underlying database system stores all data in main mem-

ory. FileScale therefore introduces a caching layer in each NameNode’s memory

that enables a copy of a set of metadata objects (such as inodes) to be stored in

local memory, which can be accessed directly by metadata operations and thereby

avoid communication with the database system upon a cache hit. Updates to

metadata stored inside a FileScale cache are not propagated to the underlying

18

database system until an event occurs that requires propagation, such as an ex-

piration, periodic flush, or distributed transaction. Thus, the database layer lags

behind the cache layer, and up-to-date access to records in the database layer may

require synchronization activities with the cache layer prior to serving those ac-

cessed records.

2.5.1 Object Cache

The mappings of files to blocks and blocks to DataNodes in HDFS’s names-

pace are implemented as a light-weight hash table in HDFS whose primary goal

is to optimize memory usage within the NameNode [55]. This enables the en-

tire metadata to fit in memory and supports high throughput concurrent client

request processing. In contrast, in FileScale, these mappings are stored in an in-

memory object cache. This design enables FileScale to avoid the need to assume

that all data fits in main memory, and allows the caching layer to function like

a cache in which individual objects are continuously added and removed from

memory.

However, an important advantage of HDFS’s assumption that all metadata

fits in memory on the NameNode is that this metadata can be given a permanent

location in memory that can be directly referenced by all other metadata that refer

to it. For example, a directory needs to refer to all of its immediate children: the

files and directories stored inside of it. With HDFS’s design, the children of an

inode can be stored as an in-memory list of direct pointers to the location of these

19

children inodes in memory. In order to resolve a complete path, HDFS simply

needs to start at the root, and follow the series of direct pointers from root to the

next child, and from that child to the next child, etc.

In contrast, in FileScale’s cache-based design, metadata cannot live in a per-

manent location in memory, since each cached object may be evicted according

to the cache eviction algorithm. Therefore, each object is given a globally unique

identifier, and references to objects, such as the children of a directory, are done

via specifying the identifier instead of via a direct pointer. A separate lookup must

occur to find the current location of the identified object in memory.

Although the extra lookups can cause increased latency relative to a direct

pointer approach in some cases, it enables a performance optimization that al-

lows FileScale to validate paths quicker than the direct pointer approach. Using

the direct pointer approach, a search must occur at each level of the path being

validated: specifically the child specified by the path must be located amongst all

of the other children of the same directory. This is implemented in HDFS via a

binary search within the list of children of a directory. FileScale eliminates the

need for this search at each level since the reference to the child is derived di-

rectly from the path name of the child (see example below). For directories with

many children, the hash lookup by path is cheaper than a binary search within the

list of pointers to children. Furthermore, each element of a path can be searched

for independently, and in parallel, instead of sequentially having to traverse from

parent to child.

An example path resolution (/tmp/logs/data) is shown in Figure 2.2. In

20

the forward resolution, the root node has no parent, so it is searched for as </>.

The root node (16385) is retrieved to verify its existence and check its permissions.

The next element in the path is then searched for: </tmp> which returns the inode

with ID 16386. </tmp/logs> is then searched which returns the bucket with ID

16387. Finally, </tmp/logs/data> is searched which returns the bucket associated

with the end of the path. The steps outlined in this example do not need to be se-

quential. The nodes </>, </tmp>, </tmp/logs>, and </tmp/logs/data> can all be

searched for in parallel since these four lookup keys are all directly derived from

the full path (/tmp/logs/data). Thus, in practice, there is no distinction between

forward resolution and backward resolution of file paths. The performance ad-

vantages of this approach relative to performing a search at each level of the path

will be explored in Section 2.7.2.3.

/

/tmp

/tmp/logs

/tmp/logs/data

Hash Keys

File Path INode IDParent ID

Buckets

NameParent Name

1638716386logs/tmp

1638616385tmp/

1638816387data/tmp/logs

163850/null

Hash Function

/tmp/logs/dataPath Resolution

/ 16385lookup /tmp 16386lookup

/tmp/logs 16387lookup /tmp/logs/data 16388lookup

Object Cache

…

…

…

Attributes

…

…

…

…

Figure 2.2: Path resolution.

21

2.5.2 Durability

Since updates to data in cache are not immediately propagated to the database,

the database log is not sufficient to guarantee system-wide durability. Therefore,

the cache layer implements a write-ahead logging mechanism based on an exten-

sion of HDFS’s EditLog, and the database log is used only for transactions that

are not performed in cache. Each NameNode logs all modifications it makes to a

separate log file stored remotely in a network file system3. Locks are not released

until the logging service acknowledges the writes.

A periodic process asynchronously flushes recent writes from the cache layer

to the database layer, in batches. This limits the staleness of data in database layer.

A background process in the database layer takes periodic durable checkpoints of

a snapshot of transaction-consistent database system state. Recovery starts from

the most recent checkpoint, and plays forward any log records found in the log-

ging service that were not incorporated in the database state, which are merged

with log records found in the database log.

Log records that are reflected in any database layer checkpoint can be safely

removed from the logging service.

Figure 2.3 shows the workflow of file-create operation. When FileScale re-

ceives a request to create a file with ID = 7, the NameNode writes a log record to

the remote server and creates an inode object in the cache. After the NameNode

receives a success message from the logging service, it can make the inode visible
3HDFS similarly stores edit logs on Quorum Journal Machines [56] or NFS [57] for high avail-

ability.

22

DBDBDB

LOG

Enable Logging

Database as a Service

LOG LOG LOG

Logging as a Service

1

2 3

4 5 6 7

NameNode

1. CLIENT: Create a file (ID=7) 2. LOG: Create a file (ID=7)

3. DB: Insert a Tuple (ID=7)

Snapshot

4. DB: Checkpointing

Enable C
heckpointing

Transactions

Figure 2.3: The workflow of file-create (metadata) operation.

to subsequent requests prior to flushing the write to the database layer. Eventually

the write is flushed to the database layer and is incorporated into a database snap-

shot, after which the log record associated with that write can be safely truncated

from the log.

2.6 Proxy Layer

FileScale horizontally scales the name service through the creation of mul-

tiple, independent NameNodes in the caching layer. Each NameNode manages a

disjoint partition of the name space. However, the union of all the partitions need

not cover the entire namespace. Requests over partitions of the namespace not

covered by a NameNode are performed directly by the database layer. FileScale

implements a proxy layer to route requests to the appropriate NameNodes that

will process those requests. Unlike HDFS, FileScale supports multi-partition

(multi-NameNode) transactions.

23

2.6.1 Request Routing

FileScale stores the namespace partitioning across NameNodes in a "mount

table" stored in Zookeeper [58]. Specific file path prefixes are assigned to Na-

meNodes. The assigned NameNode manages all metadata associated with all

paths that begin with the specified prefix. Most of this metadata will be cached in

memory at that NameNode, and the rest only accessible from the database layer.

An example mapping of file paths to NameNodes is shown below.

File Path | NameNode

------------------+-------------------------

/nlps/train_data | hdfs://192.168.1.1:9000

/tmp/common/data | hdfs://192.168.1.2:9000

/tmp/common/logs | hdfs://192.168.1.3:9000

The mount table is updated when new NameNodes are added or removed

from the cluster, or when partitions need to be combined or split for improved

load balancing. In practice it is read far more frequently than it is updated. There-

fore, routing paths can be cached at the individual servers of the proxy layer for

improved performance. However, this results in the proxy layer occasionally rout-

ing a request to the wrong NameNode, and that NameNode must then forward

the request to the correct one (see below).

FileScale supports two modes to route user requests: (1) proxy mode and

(2) watch mode. In proxy mode, the proxy layer consists of multiple routers that

use the same communication protocols as HDFS. The router acts as a middleware

layer that includes an upstream manager that maintains communication sessions

24

for different clients, and intercepts client requests/responses to manipulate them

as needed. The proxy layer can share hardware with the caching layer, such that

there exists a router on each NameNode. When a client request is received by a

router, the file paths associated with that request are extracted, and longest prefix

matching is performed to locate the mount table entries relevant to that request. If

all items accessed by the request are managed by a single NameNode, the request

is forwarded there. Requests accessing data not associated with a NameNode are

sent directly to the database. Multi-partition requests are sent to the database

layer after a synchronization occurs between the cache layer and database layer

(Section 2.6.2).

Watch mode works identically to proxy mode, except that the client watches

ZooKeeper and caches the mount table at the client-side to save a network hop.

The performance benefits of watch mode will be explored in Section 2.7.3.1.

Figure 2.4 shows an example in which a file-open request (open file /a) is

routed to the appropriate NameNode. The two different sets of blue lines corre-

spond to the proxy and watch modes described above.

In both the watch mode and proxy mode, mount table data is cached locally

and a listener is registered in order to receive notifications when changes occur.

On occasion, a name space partition may be moved from one NameNode to an-

other, or an existing partition may be split or combined with a partition located on

a different NameNode, temporarily rendering these caches stale, and causing mis-

routing of requests. Each NameNode maintains a recent-memory of paths that it

25

/b nn4
/a nn1

/b nn1
/a nn1

Follower Follower
/b nn4
/a nn1

Mount Table
ZooKeeper

op
en

 fi
le

:/a

NN1 RouterCached Table

Cached Table

/b nn1
/a nn1

Cached Table

NN2 Router NameNode1

NameNode3 NameNode4

NameNode2

open file:/b

b

a

c

b

TT
L

U
R
L

PA
TH

90
s

nn
4

/b/b
 w

as
 m

ov
ed

!

Leader

as
yn

c
up

da
te

s

Figure 2.4: Request Routing in FileScale.

formally managed, but part or all of it was moved to a new NameNode4. This

enables the NameNode to immediately forward requests that were misrouted to

it based on stale information to the NameNode that took over the management

of that partition of the namespace. This recent memory of moved paths is main-

tained with a short Time to Live (TTL) for each entry, since the cache of the mount

table at each location is typically updated with short delay after it becomes stale.

In the rare occasion where a NameNode receives a misrouted request for which

it has no entry in its list of recent moves (because the TTL for that entry was too

short and the entry already expired), the NameNode must look up the correct

routing information in ZooKeeper to properly reroute the request.

In Figure 2.4, the two red lines sent from the client (open file /b) illustrate

this process. The requests are forwarded to the wrong NameNode because of out-

dated routing information and are then forwarded to the correct location directly
4There is always a root path ’/’ in the mount table. Therefore adding a new path to the mount

table is equivalent to splitting the root path into (1) the new path (2) everything else that was
formally included in the original root path partition.

26

from the old NameNode.

2.6.2 Multi-partition requests

File systems that partition by path prefixes reduce the frequency of multi-

partition transactions; however, they still occur. The main source of multi-partition

requests are ‘move’ or ‘copy’ operations in which data from the source partition

must be read (in the case of ‘copy’ operations) or removed (in the case of ‘move’

operations) and must also be inserted into the destination partition. Occasionally

multi-partition requests are submitted outside the context of move or copy op-

erations. For example, a recursive ‘chmod’ (change the file permissions) or ‘rm’

(delete) that starts high in the directory tree (close to the root) may span parti-

tions.

In FileScale, all multi-partition requests are performed by the database sys-

tem after all data accessed by the transaction are removed from cache (dirty data

is written to the database prior to removal) and prevented from being brought

into cache while the transaction is ongoing.

Figure 2.5 depicts the control flow between the NameNodes and associated

services when a directory move operation spans multiple partitions. In this ex-

ample, the directory with inode ID of 3 (along with its children) is being moved

from a source partition to a destination partition managed by a different NameN-

ode. (1) The source NameNode writes back all relevant dirty inodes in batches

and removes the subtree from the cache layer. (2) The database layer is updated

27

Source NameNode Destination NameNode

DB

1

3

6 7
DBDB

Database as a Service

Logging as a Service

1. DB: Write dirty data to DB
Cache: Invalidate the subtree

12

3

6

3. DB: Lazy Loading

2. DB: Rename subtree
via distributed transaction

transactions

Command Log

Src Log Dest Log

Figure 2.5: Move a folder across NameNodes.

synchronously via a (distributed) transaction that updates all affected inodes’

names and their parent names. The precise implementation of the transaction

depends on the underlying system, but can often be implemented via the SQL

LIKE or STARTS WITH clause.

(3) The destination NameNode can choose to load the entire new subtree or

lazily load it as needed.

FileScale’s cache layer log appends the offsets of the database log of the

multi-partition transaction after it completes. The helps FileScale properly inter-

leave log records from the cache layer and the database layer during recovery.

2.7 Performance Evaluation

The implementation of FileScale directly inside the HDFS codebase was a

large engineering effort and produced a total of 40k lines of code in HDFS 3.3.0.

This effort allows for direct comparison of the metadata scalability and perfor-

mance of FileScale with standard HDFS along with a state-of-the-art HDFS alter-

28

native that also stores data in a distributed database system (HopsFS) [44].

We initially use VoltDB [53] for FileScale’s database layer. VoltDB is an in-

memory DBMS that implements durability via a combination of asynchronous

checkpointing and synchronous command logging that can be deterministically

replayed to arrive at the state prior to a crash. In Section 2.7.5 we investigate the

performance consequence of replacing VoltDB with Apache Ignite [54].

2.7.1 Experimental Setup

Previous attempts to scale metadata management within HDFS have suc-

ceeded in scaling file system throughput far beyond what a single HDFS NameN-

ode is able to achieve. However, this comes at a cost of efficiency. For example,

the HopsFS paper reported that it took 3 NameNodes and 2 database servers to

match the throughput that the single active NameNode is able to achieve [44] (see

Figure 6 from that paper). A major goal of FileScale’s architecture is to enable file

system scalability with a higher amount of efficiency, so that it can be used from

the early stages of an application up through the later stages as the application

scales over time.

To that end, our experiments focus on both small and large deployments,

ranging from running on a single server to large clusters of servers running on

Amazon Web Services (AWS) EC2 instances. All experiments are run on EC2

t3a.2xlarge5 instances for NameNodes and database servers. Each EC2 instance
5Each instance contains 32 GiB of memory, 8 VCPUs feature the 2.5 GHz AMD EPYC 7000 series

processors and 5 Gbps of network burst bandwidth.

29

attached a EBS volume optimized for transactional workloads, and the volume

is a 128 GiB of Provisioned IOPS (io1) SSD that can provision up to 64000 IOPS.

Optimal NameNode heap size depends on many factors, such as the number of

files, the number of blocks, and the load on the system, and generally requires

tweaking since each workload has a unique byte-distribution profile. To reach the

NameNode memory bottleneck quickly for our experiments, we use 16 GB for

heap memory and garbage collection.

We use the NNThroughoutBenchmark [59] to generate test workloads. It’s

a NameNode throughput benchmark, which runs a series of client threads against

a NameNode. However, the benchmark code out of the box runs on a single node

without end-to-end network latency, so we extended the client workload genera-

tion in the benchmark codebase to run in the large-scale environments required

for our analysis in this section.

2.7.2 Single-node Experiments

We start by comparing FileScale with HDFS version 3.3.0 and HopsFS on a

single AWS EC2 instance. All systems use a single NameNode, and the database

servers used by FileScale (VoltDB) and HopsFS (NDB) run on the same machine

as the NameNode.

30

1 thread 4 threads 8 threads 16 threads 32 threads 64 threads

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
20

00
40

00
60

00
80

00

HopsFS - Create Files
100 1000 10000 100000

HDFS - Create Files
100 1000 10000 100000 1000000

FileScale - Create Files
100 1000 10000 100000 1000000

0
200
400
600
800

100 1000 10000 100000
Th

ro
ug

hp
ut

 (o
ps

/s
ec

)
0

2,
00

0
4,

00
0

6,
00

0
8,

00
0

10
,0

00

HopsFS - Open Files
100 1000 10000 100000

HDFS - Open Files
100 1000 10000 100000 1000000

FileScale - Open Files
100 1000 10000 100000 1000000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
20

00
40

00
60

00
80

00

HopsFS - Delete Files
100 1000 10000 100000

HDFS - Delete Files
100 1000 10000 100000 1000000

FileScale - Delete Files
100 1000 10000 100000 1000000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
2,

00
0

4,
00

0
6,

00
0

8,
00

0

HopsFS - Rename Files
100 1000 10000 100000

HDFS - Rename Files
100 1000 10000 100000 1000000

FileScale - Rename Files
100 1000 10000 100000 1000000

0

200

400

600

100 1000 10000 100000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
20

00
40

00
60

00
80

00

HopsFS - Mkdirs
100 1000 10000 100000

HDFS - Mkdirs
100 1000 10000 100000 1000000

FileScale - Mkdirs
100 1000 10000 100000 1000000

Figure 2.6: The throughput of basic operations including create, open, delete,
rename and mkdirs on a EC2 instace—t3a.2xlarge.

2.7.2.1 Basic Operations

Figure 2.6 shows the throughput of directory create and file create, open,

delete, and rename operations while varying the total number of each of these

operations run (i.e., the number of files created, opened, etc.), and the number of

31

client threads.

For all types of operations, the performance of FileScale and HDFS is simi-

lar. This is because both FileScale and HDFS store all metadata in memory when

it fits on a single node and the performance of their respective in-memory data

structures are similar. HopsFS ran out of memory after operations on over 100,000

files (a standard HopsFS deployment would divide the metadata and workload

across many machines in order to avoid running out of memory). For operations

on 100,000 files and fewer, the throughput of HopsFS was approximately one tenth

of HDFS and FileScale when creating files and renaming files, and one fifth when

opening files, deleting files, and creating directories. These results are roughly

consistent with the numbers reported in the original HopsFS paper where it was

reported that it took a total of 5 servers—3 NameNodes and 2 database servers—

to match the throughput that the single active NameNode [44]. The main reason

for the difference in performance between HopsFS and FileScale is that FileScale

is able to avoid a round trip to the database system on the critical path during re-

quest processing when all data fits in cache. FileScale persists all updates to its

write-ahead log (which has similar performance as writes to HDFS’s write-ahead

log) for durability and recovery. This enables FileScale to avoid being forced to

rely on the database system for durability, and therefore it can propagate updates

to the database system asynchronously, in batches. In contrast, every HopsFS re-

quest requires at least one synchronous round trip to the database system.

32

1.2

2.1

90.8

1.4

2.1

40.4

1.2

2.6

14.9

0.02

0.04

0.10

0.32

2.59

0.02

0.04

0.10

0.40

2.67

0.03

0.05

0.09

0.35

2.74

0.02

0.03

0.06

0.24

1.42

0.02

0.03

0.07

0.25

1.38

0.02

0.03

0.06

0.35

1.58

La
te

nc
y

(s
ec

on
ds

)

10−2

10−1

1

101

102

HopsFS - Remove Directory
100 1000 10000 100000 1000000

HDFS - Remove Directory
100 1000 10000 100000 1000000

FileScale - Remove Directory
100 1000 10000 100000 1000000

Figure 2.7: Recursive delete all files under the root directory.

2.7.2.2 Recursive Delete Operations

FileScale caches inodes in memory in a format that enables a one-to-one

mapping with relational tuples in the database system. In contrast, HDFS’s pri-

mary storage of file system metadata is in memory, and parent nodes can store di-

rect, in-memory pointers to children nodes. As was explained in Section 2.5, this

makes operations that traverse the directory structure, such as recursive file sys-

tem operations, slower in FileScale relative to HDFS. To understand this tradeoff

in more detail, we ran an experiment in which we measured the latency of per-

forming a recursive delete operation, while varying the number of files and the

depth of the tree being deleted. The results are shown in Figure 2.7.

The results show that the primary bottleneck is the process of deleting each

individual file. The latency of all systems therefore increased as the number of

files being deleted increased. To delete a file, HDFS needs to remove the file in

memory (along with writing a log record to stable storage), while FileScale inval-

idates nodes in its cache, writes a log record, and asynchronously deletes related

tuples in the database system. Since the latency of the individual deletes was the

bottleneck, the latency numbers were only slightly impacted when height of the

33

tree changed (when keeping the number of deleted files constant). Nonetheless,

as expected, the overall latency of HDFS was slightly faster than FileScale. This

is because FileScale’s caching layer must be robust to situations in which child

inodes are removed from the cache. Therefore, FileScale uses identifiers instead

of direct pointers to children, and require a hashmap lookup the current location

in memory of a particular ID.

The HopsFS codebase runs into problems in which transactions continu-

ously timeout when we ran this experiment at more than or equal to 100,000 files

(that appear to be caused by deadlocks). For the smaller experiments, we found

that the latency of HopsFS are between one and two orders of magnitude worse

than HDFS and FileScale (the figure uses a log scale y-axis). The relative per-

formance between HopsFS and HDFS is consistent with the results from Section

7.4.1 of the HopsFS paper [44] where it is explained that HopsFS performs poorly

on these types of workloads because they are executed in many separate small

transaction batches. Surprisingly, the performance of HopsFS improved when the

depth of the tree being deleted increased. This is because deleting directories that

contained a large number of files resulted in increased lock contention for the di-

rectory lock. By increasing the depth of the tree being deleted, there were fewer

files per directory to delete, which reduced lock contention.

34

FileScale - Open Files
FileScale - Rename Files

HDFS - Open Files
HDFS - Rename Files

Th
ro

ug
hp

ut
20

00
50

00
10

00
0

Files Per Directory
101 102 103 104 105 106

Total throughput varying the depth of 106 files.

11 11 15
29

91

312

10 10 14
29

91

317
FileScale
HDFS

La
te

nc
y

(m
s)

10

100

Files under a directory
10 100 1000 10,000 100,000 1,000,000

The latency of ls operations.

Figure 2.8: Large directory experiment.

2.7.2.3 Large Directories

Figure 2.8(a) shows the throughput across 64 threads performing file open

and rename operations within a directory that varies in size from 10 to 1,000,000

files stored within it.

As can been seen, for most directory sizes, the performance of HDFS and

FileScale are similar. However, in extreme cases, when directories contain a mil-

lion files, the performance of the rename operation in HDFS drops substantially.

This is because the list of children of a directory are stored as an ArrayList, and

renaming files requires deleting elements from this list and reinserting them in

order to keep the list in sorted order. Over time, these deletes and insertions re-

quire the entire ArrayList to be copied to a new location to improve the efficiency

of how it is laid out in memory. However, copying a list that contains 1,000,000

causes a noticeable increase in latency, which drags down system throughput.

35

In contrast, FileScale does not require the list of children be kept in sorted

order, since path validation does not require a binary search at each level (as we

explained in Section 2.5). Instead, they are stored in a standard linked list that

does not incur resize costs as the list grows in size. Figure 2.8(b) shows the latency

of performing ls operations within a directory. Even though FileScale requires

additional retrievals from object cache, FileScale and HDFS have similar latency

since the serialization step of providing the output is the performance bottleneck.

2.7.2.4 Cache Misses

One important difference in the design between FileScale and HDFS is that

HDFS requires that all inodes fit in memory, whereas FileScale treats memory

as a cache of the stable state of the inodes in the underlying database system.

This enables FileScale to stay online even for deployments where there is not

enough aggregate memory across the nodes in the deployment to store all inodes

in memory. To understand the extent of the performance drop at reduced memory

deployments, we ran an experiment in which we increase the cache miss rate of

FileScale from 0% to 30% and measure the throughput reduction and latency

increase on file create and open operations. The results are shown in Figure 2.9,

and the original results for HDFS and HopsFS (from the previous experiments)

are shown for comparison. For each experiment, we used 16 threads to operate

on 100,000 files concurrently.

The throughput of FileScale degrades gracefully as the cache miss rate in-

36

479

6803

6865
6746 5742 4242 2265

8720
8128

5359 3679 1802

8849

2703

0% 1% 5% 10% 30%

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
5,

00
0

10
,0

00
Create Files

HopsFS HDFS FileScale
Open Files

HopsFS HDFS FileScale

The throughput of creating and opening files.

209

15 15 15
17

24
44

11
12

19
27

55

11

37

La
te

nc
y

(s
ec

on
ds

)

1
10

10
0

Create Files
HopsFS HDFS FileScale

Open Files
HopsFS HDFS FileScale

The latency of creating and opening files.

Figure 2.9: Cache miss penalty.

creases, with the throughput of create file operations at 30% cache misses approx-

imately 3 times smaller than the throughput at 0% cache misses. Similarly, the

latency of FileScale increases gracefully as the cache miss rate increases, with the

latency of create file operations at 30% cache misses approximately 3 times longer

than the latency at 0% cache misses. The performance of open file operations de-

grades more rapidly than for create operations (a factor of 5 drop instead of a

factor of 3) because opening files can be served entirely from memory when data

is in cache6. In contrast, creating files always has to push a log record to stable stor-

age before the operation can commit regardless of whether the relevant directory

data is already in cache, so the relative cost of a cache miss is smaller.
6In the supplemental material submitted with this paper, we show that switching the database

system can reduce the size of this performance drop.

37

In practice, the number of cache misses in FileScale can be monitored and

action taken to alleviate performance problems due to cache misses. Specifically,

the proxy server in FileScale can leverage Hadoop’s existing monitoring compo-

nent (that collects various performance metrics) to immediately re-balance the

mount table in FileScale’s state store when performance decreases due to cache

misses.

2.7.3 Multi-server Experiments

We next experiment with multi-server deployments in order to investigate

the scalability of the different system architectures. We start with relatively small

five-node deployments. HDFS does not support partitioning the same file system

namespace across multiple NameNodes7, but it can use the additional nodes to

support HA (high availability). Therefore we set it up to use two NameNodes (in

an active/standby configuration) and three JournalNodes. The journal nodes are

used by HDFS to share logs between the active and standby NameNodes. When

a NameNode writes a log record, it must be written to a majority of JournalNodes

before it is considered durable.

FileScale and HopsFS use a similar configuration: two of the five nodes are

used for NameNodes (but unlike HDFS, the metadata can be partitioned across

them), and the remaining three nodes for the database system — VoltDB for

FileScale and NDB for HopsFS. For HA, log records written by FileScale and
7HDFS does support partitioning metadata across NameNodes for different namespaces. Al-

though being forced to partition the namespace significantly reduces the practical utility of HDFS
"federation", we will investigate the performance of this alternative architecture in Section 2.7.3.1.

38

1 101 102 103 104

HopsFS1nn

HopsFS2nn
HDFS-HAjns

HDFS-HAebs
FileScale1nn

FileScale2nn
HDFS-ebs-latency

18790

18648

16309

13957

9371

9277

8290

7016

9382

9258

8163

7118

9376

9125

4433

4516

8914

8359

581

405

4528

4262

308

218

0 104 2×104
53

5

61

7

107

11

121

14

107

11

122

14

107

11

226

22

112

12

1721

247

221

24

3252

458

O
pe

n
10

6
O

pe
n

10
5

C
re

at
e

10
6

C
re

at
e

10
5

Latency (seconds) Throughput (ops/sec)

Figure 2.10: A five-node deployment.

HopsFS are written to EBS volumes so that they remain persistent beyond the life

span of AWS EC2 instances (which use only ephemeral storage). For fairness,

we also run a version of HDFS in which log files are written to EBS (which we

call HDFS-HAebs) as an alternative to the version in which log files are written to

journal nodes as described above (which we call HDFS-HAjns).

Figure 2.10 shows the throughput and latency of file-create and file-open

operations under this deployment. The performance of HopsFS is almost two

orders of magnitude slower than FileScale for the file-create benchmark, so the

figure is uses a log scale. This difference is consistent with the results presented in

Figure 2.6 that show a large efficiency gap between FileScale and HopsFS. How-

ever, consistent with the claims from the original paper, HopsFS approximately

doubles its performance as the number of NameNodes doubles from one Na-

meNode (HopsFS1nn) to two NameNodes (HopsFS2nn). However, FileScale’s

39

performance also doubles, so the difference in performance between FileScale

and HopsFS remains constant. Since opening files does not require writes to the

database system, a disadvantage of HopsFS (that it must synchronously write

data to the underlying database) is not present, and the performance gap between

FileScale and HopsFS is more narrow for the ’file open’ workload relative to the

’file create’ workload.

Writing to EBS instead of the journal nodes significantly improves the per-

formance of HDFS for the file create workload, but makes no difference for the file

open workload which do not require log records to be written. This enables the

performance of HDFS and FileScale to be equivalent when running on one Na-

meNode as they were in Figure 2.6. However the performance of FileScale dou-

bles when doubling the number of NameNodes since it can partition data across

them, whereas HDFS does not partition data and performance remains constant

when adding the additional NameNode.

2.7.3.1 Scalability

We next increase the scale of our experiment by varying the number of Na-

meNodes from 1 to 32 while keeping the number of database nodes constant. The

workload consists of 50% file-create operations and 50% file-open operations that

are uniformly spread across the namespace. We run two distinct HDFS architec-

tures. The first is the default HDFS architecture in which the entire file system

belongs to a unified namespace, so that there are no restrictions in the file sys-

40

tem operations that can be run. However, this version must store all file system

metadata on a single NameNode, as we described above. We also experiment

with HDFS’s router-based federation (RBF) capability, in which the namespace

is partitioned, and the associated metadata for each partition can be managed by

different NameNodes. Although the functionality of HDFS RBF is severely lim-

ited — for example, the distributed rename operations across partitions (which

we experiment with in Section 2.7.3.2) cannot be supported — it can support the

simple file open and create operations used for this benchmark, so we experiment

with it in this section.

HopsFS ran into a bottleneck at the database layer at 16 NameNodes. There-

fore we ran two versions of HopsFS — one with only three database nodes where

the bottleneck is observed, and one with eight database nodes that avoids the bot-

tleneck. FileScale did not experience the same bottleneck since it puts less pres-

sure on the database layer by writing to the database in batches asynchronously

instead of issuing synchronous writes for each new file created. Furthermore,

HopsFS issues a batch query to the database layer at the beginning of every re-

quest in order to retrieve all the relevant inodes for the file path components of

the request. This can be avoided in FileScale when the relevant data is in cache.

Therefore, FileScale only requires 3 database nodes throughout this experiment.

The results of this experiment are presented in Figure 2.11. HopsFS-8 NDB,

HDFS-RBF, and both versions of FileScale are able to scale linearly — as the

number of NameNodes double, so too does the total system throughput. There-

fore, the original relative differences in performance between HopsFS, HDFS, and

41

HopsFS-3 NDB
HopsFS-8 NDB

HDFS-1NN
HDFS-RBF

FileScale-Client
FileScale-Proxy

0

20,000

40,000

1 2 4
Th

ro
ug

hp
ut

 (o
ps

/s
ec

)

0

1×
10

5

2×
10

5

3×
10

5

NameNodes
1 2 4 8 16 32

Figure 2.11: Throughput when scaling NameNodes.

FileScale observed when running on a single NameNode (see Figure 2.6) re-

main present as the system scales. However, HDFS-RBF has in effect half has

many NameNodes as FileScale and HopsFS since HDFS requires one hot standby

for every NameNode for high availability. As expected, HDFS-RBF outperforms

HDFS’s default implementation, since the default implementation cannot parti-

tion metadata across the additional NameNodes and thus cannot scale. Nonethe-

less, HDFS’s default implementation (along with HopsFS and FileScale) is able

support the full range of file system operations over all metadata, while HDFS-

RBF must partition the namespace.

FileScale-Client corresponds to the watch mode configuration of FileScale

described in Section 2.6, while FileScale-Proxy uses proxy mode. As expected,

watch mode performs better since it is able to save a network hop during request

processing, and avoid the overhead of processing and forwarding network mes-

sages at the proxy layer which shares physical hardware with the cache layer in

the FileScale-Proxy deployment for this experiment.

42

36

92

2,825

6,342

47

504

7,236

38,379

66

757

9,420

98,628

27

53

135

536

dist0%
dist50%

dist100%
local

La
te

nc
y

(m
s)

102

104

106

Move a directory with # files
10 1000 10000 100000

Figure 2.12: Local vs. distributed move operations.

2.7.3.2 Multi-Partition Transactions

As explained in Section 2.6.2, FileScale performs multi-partition transac-

tions at the database layer (after it is synchronized with the cache layer). To ob-

serve the performance impact of such transactions, we ran two experiments that

involved multi-partition move and chmod operations.

Figure 2.12 shows the average latency of multi-partition move requests as

the percentage of dirty data that must be written back to the database is varied.

When the move operation is single-partition ("local"), the latency of the opera-

tion is limited by the time to generate and write the associated log records to the

logging service. The more files being moved, the longer the latency. For multi-

partition move requests, log records need to be written to two different log files

(the log files associated with the source and destination NameNodes). Further-

more, the move operation requires updating the primary key (the full path of

the file), which is an expensive operation in the database layer that partitions by

the primary key and therefore must move data around when the primary key

changes. Nonetheless, when significant amounts of data need to be written back

to the database layer prior to the move operation, this write-back becomes the bot-

43

14
86 233 322 598 1339 2311 2970

La
te

nc
y

(m
s)

102

104

Chmod a directory with 104 files
local dist0% dist5% dist10% dist20% dist40% dist80% dist100%

The latency of changing a directory’s permission.

9
238 754 2933 4681 5236 5795x-axis: (mp%, sp%, cache%)

Th
ro

ug
hp

ut

1

102

104

Chmod a directory with 104 files
(100,0,0) (1,99,0) (0,100,0) (1,49,50) (1,19,80) (1,9,90) (0,0,100)

The total throughput of chmod operations.

Figure 2.13: Local vs. distributed chmod operations.

tleneck. The figure shows an order of magnitude difference when no data must

be written back (dist0%) vs. all data must be written back (dist100%). The experi-

ments in the supplemental material show that the choice of database system can

make a big difference in reducing this write-back bottleneck.

Figure 2.13(a), shows the same experiment for distributed chmod opera-

tions. The database layer can process the distributed chmod transactions with

much lower latency since they do not require updating the primary key. Nonethe-

less, the writing of dirty data prior to transaction processing still dominates the la-

tency. Figure 2.13(b) shows the throughput under varying mixes of multi-partition

(MP) transactions, single-partition (SP) transactions and cache operations. Pure

cache operations (100%) are 7x faster than SP transactions (100%). As soon as

there are any MP transactions in a workload, even SP transactions that access the

same data must be performed by the database layer. Therefore, there is more than

a 1% drop in performance between 0%MP and 1%MP.

44

Rebalancing Mount Table

Th
ro

ug
hp

ut

0

10,000

20,000

30,000

Timeline (sec)
0 50 100 150 200

Figure 2.14: Hotspot Mitigation.

2.7.3.3 Hotspot mitigation

Figure 2.14 shows FileScale throughput as a hotspot is mitigated by re-

balancing the mount table and distributing workloads across multiple NameN-

odes. We used benchmark utilities to create 4 subdirectories, all of which are ini-

tially mounted to NameNode 0. The proxy layer is triggered every 60 seconds to

modify the mount table and assign each subdirectory to a new NameNode. The

total throughput rises linearly as the hotspot workloads are re-distributed.

2.7.4 Disaster Recovery

Figure 2.15(a) shows that size of flush intervals do not impact system perfor-

mance, since the writes to the database layer are asynchronous. In essence these

overheads are pushed to recovery time. Therefore experiment with system restore

to investigate this overhead. As described in Section 2.2, HDFS HA keeps its states

(FSImage and EditLog) in a quorum-based storage so that a standby can take over

quickly if the active NameNode fails. Similarly, the database snapshot of FileScale

provides a transactional point-in-time consistent copy of all file metadata, and the

separated logging system records every changes from the last snapshot.

45

Th
ro

ug
hp

ut

1

102

104

Cache Sync Periods (ms)
101 102 103 104

Throughput when varying database sync periods.

177 183
41

374

Replay log in memory/cache
Restore snapshot (106 records)

Flush cache to DB (sync)
La

te
nc

y
(s

ec
s)

0

500

log records in HDFS
103 104 105 106

log records in FileScale
103 104 105 106

0 5.0×101 1.0×102 1.5×102 2.0×102

Restore snapshot (106 records)
Replay log (106 records)

N

am
eN

od
es

8 n
n

4 n
n

2 n
n

1 n
n

FileScale's Latency (seconds)

Latency when recovering from its backups.

Figure 2.15: System restore operations.

Figure 2.15(b) compares the latency of restoring snapshots and replaying

logs under the different system architectures. FileScale achieves comparable per-

formance to HDFS when restoring 106 records from a snapshot. In HDFS, the Na-

meNode only needs to replay edit logs in memory. However, FileScale must also

update the database system after replaying logs in the cache. When this is done

synchronously, this can add substantial latency to recovery. However, it can also

be done asynchronously similar to how the database layer lags behind the cache

layer in normal operations. In this experiment, as the number of NameNodes in-

creases from 1 to 8 and file metadata spreads more evenly, FileScale’s restore time

decreases linearly.

46

2.7.5 The Impact of Database System Choice

FileScale uses a modular architecture such that any database system could

be used for the database layer as long as it supports ACID transactions and pro-

vides an interface in which transactions can be submitted in SQL (with additional

support for stored procedures). Most of FileScale’s functionality is implemented

using SQL at the database layer, which makes adding support for a new database

system fairly straightforward. For example, the original version of FileScale was

built over VoltDB’s open source community edition, but when we were denied ac-

cess to their enterprise version, we added support for Apache Ignite within a few

weeks. In contrast, the rest of the FileScale codebase took two years of graduate

student work.

Most metadata operations require asynchronous interaction with the database

layer. Therefore, the choice of database system to use in the database layer often

makes no runtime performance difference. However, when the cache layer does

not have sufficient memory and cache misses are frequent, the performance of the

database layer starts to matter. Furthermore, multi-partition transactions always

require synchronous interactions with the database layer. We therefore explore

the impact of different database systems under these scenarios in which the choice

of database system becomes important.

47

2.7.5.1 Database Systems

VoltDB [53, 60] is an in-memory, high-throughput transactional database

that eliminates many overheads of traditional disk-based systems, such as write-

ahead logging, locking, latching, and buffer management [61]. It implements

durability via a combination of asynchronous checkpointing and synchronous

command logging in which all requests to the database are recorded in an in-

put command log, and the system relies on its deterministic nature of transaction

processing to ensure that replaying all input commands from a checkpoint results

in an identical state as what it had been prior to the crash [62].

In VoltDB, the transactions can be implemented in pre-compiled, determin-

istic stored procedures. Each metadata operation in FileScale is thus designed

within a VoltDB stored procedure that contains multiple SQL statements designed

for that operation.

Apache Ignite [54] is an open-source distributed database for high-performance

computing with in-memory speed. Ignite stores data in memory by default, but

also includes an optional disk tier which we enabled for these experiments. Apache

Ignite provides key-value APIs as well as MapReduce-like computations in addi-

tion to ANSI-99 SQL and ACID transactions.

2.7.5.2 Cache Misses

To understand the extent of the performance difference between using VoltDB

vs. Ignite as the database layer for FileScale, we ran an experiment in which we in-

48

15 15 18 19 21 25
15 15 17

24
32

44

6,759

6,472

5,648

5,373

4,705

3,964

6,865

6,746

5,742

4,242

3,214

2,265
Apache Ignite
VoltDB

La
te

nc
y

(s
ec

)

0

20

40
Th

ro
ug

hp
ut

0

5,000

10,000

Cache Miss Rate
0% 1% 5% 10% 20% 30%

Figure 2.16: Cache miss penalty.

crease the cache miss rate of FileScale from 0% to 30% and measure the through-

put reduction and latency increase on file create operations. For each experiment,

we used 16 threads to operate on 100,000 files concurrently, and the results are

shown in Figure 2.16. The throughput of FileScale with VoltDB and Ignite falls

smoothly as the cache miss rate rises, and the latency rises gracefully.

VoltDB’s performance declines faster than Ignite’s after 10% cache misses.

This is because Ignite’s Key-value API get() can access the needed data from

the storage using simple, light-weight access methods. In VoltDB, this was imple-

mented using a standard SQL statement. Although VoltDB supports pre-compiling

these SQL statements within a stored procedure, the performance of Ignite’s lighter-

weight key-value access methods is faster.

2.7.5.3 Multi-Partition Requests

As explained in Section 2.6.2, FileScale does a breadth-first search to find

all dirty inodes of the subtree in the cached layer and bulk writes them to the

49

0.02

0.06

0.27

2.78

21.82

0.03

0.10

0.67

7.10

70.51Apache Ignite
VoltDB

La
te

nc
y

(s
ec

)
10−2

1

102

Dirty INodes
10 100 1000 10000 100000

Figure 2.17: Dirty data flush penalty.

database. After the dirty inodes are written to the database, the entire multi-

partition transaction is performed there. We saw in Section 2.7.3.2 that this write-

back of dirty inodes is often the bottleneck for multi-partition transactions. There-

fore, in this section, we investigate the performance of this cache flushing within

the context of distributed transactions in more detail.

Cache Flushing: We first ran an experiment in which the amount of dirty

inodes to be refreshed in database systems was increased from 10 to 100,000. Fig-

ure 2.17 shows the latency of writing dirty data to VoltDB and Ignite, with Ignite’s

bulk writes putAll() being approximately 3 times faster than the SQL statement

INSERT in VoltDB as the number of dirty inodes increase.

Chmod: The pseudo code in Listings 2.1 and 2.2 depicts the differences in

how the distributed chmod operation is implemented in the different database

systems. We use the standard SQL APIs of VoltDB and Ignite to implement chmod

operations. The first SQL query updates all of the children’s permissions in a

directory by matching the common ancestor path of the files.

The transaction is implemented using the STARTS WITH <string-expression>

expression in VoltDB. Apache Ignite doesn’t provide STARTS WITH <string-expression>

50

in its SQL API, so we use the syntactically equivalent LIKE <string-expression>%

instead. The use of the STARTS WITH clause enables the utilization of available in-

dexes, whereas LIKE requires a sequential scan, since the compiler cannot tell if

the replacement text ends in a percent sign or not and must plan for any possible

string value. This allows VoltDB to be slightly faster than Ignite in Figure 2.18

when no dirty data needs to be flushed. However, when the amount of dirty data

that must be written back grows, Ignite outperforms VoltDB as we saw in Sec-

tion 2.7.5.3.

1. Update all children in the subtree

UPDATE inodes SET permission = ?

WHERE parent_name STARTS WITH ?;

2. Update the root inode of the subtree

UPDATE inodes SET permission = ?

WHERE parent_name = ? AND inode_name = ?;

Listing 2.1: Distributed chmod operation in VoltDB.

IgniteCache<Object, Object> cache =

ignite.cache("inodes").withKeepBinary();

// 1. Update all children in the subtree

cache.query(new SqlFieldsQuery("UPDATE inodes SET

permission = ? WHERE parent_name LIKE ?%")

.setArgs(permission, subtree_path)).getAll();

// 2. Update the root inode of the subtree

cache.query(new SqlFieldsQuery("UPDATE inodes SET

permission = ? WHERE parent_name = ? AND inode_name = ?")

.setArgs(permission, parent_name, inode_name)).getAll();

Listing 2.2: Distributed chmod operation in Apache Ignite.

Move: The pseudo code in Listings 2.3 and 2.4 shows the differences in how

51

the distributed move operation is implemented in VoltDB and Ignite8. The pri-

mary key of the inodes table is built up of parent and inode names. VoltDB and

Ignite do not allow directly updating a primary key since the the data is parti-

tioned by primary key (the partition is calculated using a hash function applied

to the primary key’s value), so changing the the primary key can cause the tuple

to end up in the wrong partition. Thus, if a key needs to be updated it has to be

removed and then re-inserted.

The move operation can be broken down into three parts: 1) Match the com-

mon ancestor path of inodes to obtain all fields of children inodes under the sub-

tree. 2) For each child obtained from the first query, change the identifiers such

as file path (parent name), inode name, and inode id. 3) Delete the old subtree

from the database using the old primary key and commit the transaction.

1. Select children from the current subtree

SELECT inode_id, inode_name, parent_id, parent_name,

permission, header, modification_time, ...

FROM inodes WHERE parent_name STARTS WITH ?;

for (int i = 0; i < children.size(); ++i) {

2. Create new substree with new parent_name (in a loop)

INSERT INTO inodes(

inode_id, inode_name, parent_id, parent_name,

permission, header, modification_time, ...)

VALUES (?, ?, ?, ?, ?, ?, ?, ...);

3. Delete old subtree with old parent_name (in a loop)

DELETE FROM inodes WHERE

parent_name = ? AND inode_name;

}

8For simplicity, unlike chmod operation, the corner case of the subtree’s root inode is omitted
here.

52

1.5
3.0

4.4
2.9

7.3

9.5

0.09

2.02

2.87

0.06

3.69

7.16

Apache Ignite VoltDB Apache Ignite VoltDB

Dist Chmod Op Dist Move Op

La
te

nc
y

(s
ec

)
0

5

10

Dirty Data (%) in 10,000 files
0% 50% 100%

Dirty Data (%) in 10,000 files
0% 50% 100%

Figure 2.18: Distributed chmod and move operations.

Listing 2.3: Distributed move operation in VoltDB.

For steps 2 and 3, in VoltDB’s stored procedure (Listing 2.3), we batch up

multiple SQL statements in a loop by calling voltQueueSQL() for each statement

then make a single call to voltExecuteSQL(). However, we eliminate the need

for this slew of SQL statements in Ignite by leveraging its key-value APIs such

as putAll() and removeAll() functions in Listing 2.4. Figure 2.18 (right) further

shows that Ignite’s distributed transaction for a move operation is around 2 times

faster than VoltDB.

IgniteCache<Object, Object> cache =

ignite.cache("inodes").withKeepBinary();

// 1. Select children from the current subtree

scan_query = new ScanQuery<>(

new IgniteBiPredicate<Object, Object>() {

@Override

public boolean apply(Object key, Object obj) {

return Key.field("parent_name").startsWith(old_parent);

}

}

);

List<Cache.Entry<Object, Object>> old_subtree

53

= cache.query(scan_query).getAll();

// 2. Create new substree with new parent_name

Set<Object> keys = new HashSet<>();

Map<Object, Object> map = new HashMap<>();

ObjectBuilder KeyBuilder = ignite.binary().builder("key");

for (Cache.Entry<Object, Object> entry : old_subtree) {

// new inode value

Object new_inode = entry.getValue();

new_inode = new_inode.toBuilder()

.setField("parent_name", new_parent_name)

.setField("parent_id", new_parent_id)

.setField("inode_id", new_inode_id)

.build();

// new primary key

Object new_key = KeyBuilder

.setField("parent_name", new_parent_name)

.setField("inode_name", inode_name)

.build();

keys.add(entry.getKey());

map.put(new_key, new_inode);

}

cache.putAll(map);

// 3. Delete old subtree with old primary key

cache.removeAll(keys);

Listing 2.4: Distributed move operation in Apache Ignite.

2.8 Related Work

Merging file systems and database systems. There has been a large body of

work which focuses on creating a hybrid system out of file system and database

system components. For example, Murphy et al. demonstrated the potential of

using a database system to store file system data and that the database-backed

54

file system is slower than a native file system by a small constant factor [63].

SQCK [64] employs declarative queries to check and repair a file system image ,

which improved functionality of e2fsck. BabuDB [30] uses log-structured merge

(LSM) trees to replace the ext4-based backend at the metadata server. DeltaFS,

TableFS, IndexFS and ShardFS [31, 32, 33, 34] store metadata in the local Lev-

elDB instance [65] running atop a file system. BlueStore [35], a new backend for

Ceph [66], stores metadata in RocksDB [67] as key-value pairs. However, all of

this work focuses on improving the performance a single metadata server, rather

than using the database system to implement scalable distributed transactions

across partitions.

In industry, WinFS [68], (Windows Future Storage) brought the benefits

of schema and relational databases to the Windows file system. Facebook Tec-

tonic [69] delegates file system metadata storage to ZippyDB [70], a linearizable,

fault-tolerant, sharded key-value store. However, ZippyDB only supports strong

consistency for single-shard operations and does not support cross-shard trans-

actions. Thus Tectonic only provides non-atomic cross-partition directory move

operations. ADLS [45], (Microsoft Azure Data Lake Store) uses Paxos [71, 72] to

maintain metadata that is stored in replicated Hekaton tables [73] and indexes.

However, ADLS does not implement the cache layer of FileScale, and instead

uses Hekaton directly by the NameNode, in which the quorum limits horizon-

tal scalability and increases end-to-end latency. Colossus, the next-generation of

GFS [20, 74], introduced a distributed metadata model using BigTable [48] which

does not allow distributed transactions and thus does not allow multi-partition

55

metadata operations [46, 75].

High throughput distributed database systems were also used to scale file

system metadata in the CalvinFS [43], HopsFS [44], and GiraffaFS [47] projects.

CalvinFS uses a deterministic database system called Calvin [76] to store meta-

data, which supports high throughput distributed transactions. HopsFS uses a

MySQL NDB cluster instead of Calvin, and shares FileScale’s focus on being a

drop-in replacement for HDFS. GiraffaFS uses HBase for a similar purpose. In

contrast to these architectures, FileScale uses a three-tiered architecture to avoid

synchronous interactions with the database system for requests that do not span

multiple NameNodes (i.e. distributed transactions), which enables similar (or

improved) performance relative to in-memory file system data structures. The

performance consequences of these architectural differences were discussed in

Section 2.7.

Federation. Giga+ [77] serves a similar purpose to FileScale’s Proxy layer in

that it divides each directory into a number of partitions that are distributed across

multiple servers using hash functions. Giga+ uses a bitmap to map filenames to

directory partitions and to a specific server. However, Giga must implement their

own version of atomic multi-partition transactions and high availability, whereas

FileScale gets these "for free" by leveraging the DB layer. This reduces the code

maintenance obligations of the system, and enables FileScale to take advantage of

advances in distributed transaction technology as the database community con-

tinues to make progress in this area. The View File System (ViewFs) [38] uses

the client-side mount points to split HDFS into multiple physical namespaces

56

and presents a single virtual namespace to users. However, client configuration

changes are required every time we add or replace a new mount point on ViewFs,

and it is difficult to roll out these adjustments without affecting production work-

flows [78]. HDFS Router based Federation [39, 40] and ByteDance NameNode-

Proxy [42] are extensions to ViewFS-based partitioned federation that uses routers

forward client calls to the correct NameNode. But the router incurs network hops.

The "watch mode" we called in Section 2.6 can update cached mount points auto-

matically without sacrifice of network delay and consistency. Furthermore, none

of these systems solve the general applicability limitation of HDFS Federation

caused by partitioning the namespace.

Rebalancer [79] is a tool designed (under development) for RBF to move

data to non-shared DataNodes among different subclusters. HDFS Federation

Rename (HFR) [80] is a proposal in the Hadoop community that enables renam-

ing files and folders across (federated) namespaces without migrating data on

shared DataNodes through hardlinks. However, this approach requires the seri-

alization of the entire directory subtree that is undergoing migration to external

storage and then deserialization at the target NameNode.

DBOS. The DBOS system [81] proposes a data-centric operating system in

which all operating system state is represented in a database system, and opera-

tions on this state are made via transactions initiated from stateless tasks. Many

practical techniques that are implemented in FileScale can be applied to DBOS.

57

2.9 Summary

Although many file systems are capable of scaling to petabytes of data, scal-

ing the metadata — specifically the number of unique files and directories — has

been more of a challenge. This is because file systems expect extreme low la-

tency interactions with metadata management, along with atomic, isolated, and

durable guarantees and therefore typically store metadata in memory on a sin-

gle machine. Recent attempts to scale metadata management via the use of dis-

tributed data stores that support distributed transactions have come at significant

performance and efficiency costs, especially at low scale. In contrast, FileScale’s

architecture enables comparable performance to file systems that store all data in

memory on a single machine at low scale, and yet can also scale linearly as the size

of the metadata scales. Our experiments showed that FileScale can achieve mul-

tiple orders of magnitude superior performance relative to other approaches for

scaling file system metadata. FileScale’s architecture also enables elastic scaling

of each layer in the architecture independently. For example, when cache misses

start to become frequent, new nodes can be added to the caching layer to improve

the performance of the deployment.

58

Chapter 3: Flock: A Practical Serverless Streaming Query Engine

3.1 Motivation

Many high-volume data sources, such as sensor measurements, machine

logs, user interactions on a website or mobile application, and the Internet of

Things, operate in real time. Stream processing systems are critical to providing

the freshest possible data and driving organizations to make faster and better au-

tomated decisions. To provide widespread access to streaming computation, an

ideal stream processing system must be performance competitive, scalable, highly

available, easy to use and low cost.

Streaming jobs typically comprise multiple stages of execution organized

as directed acyclic graphs (DAGs) based on their data dependencies, and each

stage comprises several parallel tasks. These jobs show high variability and un-

predictability, up to an order of magnitude more than the average load [5, 6]. This,

along with the broad variety of user SLOs, makes statically configuring and tun-

ing streaming systems extremely difficult. Furthermore, traditional server-centric

deployments use clusters provisioned with a fixed pool of storage and compute

resources to execute these jobs, it can frequently suffer from resource under- or

over-provisioning, leading to resource wastage or performance degradation, re-

59

spectively.

The cloud benefits have driven many recent efforts to port streaming an-

alytics applications to full managed streaming analytics services, e.g. Google

DataFlow [82, 83, 84, 85] and AWS Kinesis Data Analytics for Flink [86]. These

Backend as a Service (BaaS) serverless models are more elastic than on-premises

alternatives and avoid their upfront costs. However, these cloud services provide

elastic features that allow compute nodes to be added or removed dynamically,

this scaling can take minutes, making it impractical on a per-query basis. In con-

trast, serverless platforms [7, 8, 9] fulfill the promise of transparent resource elas-

ticity in the cloud [10, 11, 12]. Under the Function as a Service (FaaS) serverless

model, developers and users decompose their applications into short-lived cloud

functions. The ease of programming, fast elasticity, and fine-grained pricing in

FaaS platforms allow for fine-grained scaling of resources to meet spiky demand,

making them an appealing solution for streaming processing.

Compared to BaaS, the FaaS model provides more fine-grained elasticity

with sub-second start-up times that can dynamically match the per-query basis

with continuous scaling. Further, its billing methods are more fine-grained with

millisecond granularity. For example, Kenesis service [86] is charged an hourly

rate based on the number of Amazon Kinesis Processing Units (or KPUs) used to

run the streaming application. However, on AWS Lambda [7], customers are only

charged for the execution time they consume, often at a granularity of 1 ms [87].

Therefore a FaaS-based service is low cost to operate under low demand and can

scale automatically to a high load at a proportional cost.

60

To explore the promise of function services for stream processing, we built

Flock, a cloud-native streaming query engine that runs on FaaS platforms. Ta-

ble 3.1 shows the differences between Flock and other state-of-the-art data ana-

lytics systems on FaaS. Existing approaches [13, 14, 15, 16] take advantage of the

on-demand elasticity of cloud object storage services, such as Amazon S3 [17] to

shuffle data, which increases the performance cost and compromises the advan-

tages of a serverless system. Instead, Flock passes data through the invocation’s

payload between cloud functions. This is a general solution that can support Flock

in multi-cloud platforms [7, 8, 9]. For example, current AWS Lambda limits are

set at 6 MB for synchronous invocations, and 256 KB for asynchronous invoca-

tions [88]. The maximum HTTP request size for the 2nd iteration of Google Cloud

Functions is 32MB [89]. The HTTP request length of Azure Functions is limited to

100 MB [90]. With payload invocations, Flock can store complete objects directly

in query workflow state. This removes the need to read and write data from an

external store service. Under the FaaS billing model, you do not pay for payload

size but the cost of each job’s duration, which is proportional to the aggregated

runtimes across its component tasks – cloud functions. Therefore, this functional

programming paradigm has a lower latency via storing data directly in the work-

flow, consequently, execution cost.

Payload invocation also eliminates the requirement for a query coordina-

tor from the data architecture since Flock does not leverage any external storage

service as a communication medium between functions, there is no need for a co-

ordinator to monitor query stage completion and initiate new stages once depen-

61

dencies are met. Flock uses a unique way for passing many payloads/partitions

to the same function instance, and shared data structures that ensure exactly-once

aggregate of data on function services. When checkpointing is activated, query

states are persisted upon checkpoints to guard against data loss and recover con-

sistently.

We have implemented a prototype of Flock. We use this prototype to eval-

uate Flock by measuring its performance cost on the NEXMark [91] and Yahoo

Streaming Benchmarks (YSB) [92] that include windowing functions. We find

that under realistic deployment scenarios, compared with traditional streaming

systems like Flink [93] deployed on EC2 instances, Flock is able to reduce costs

more than an order of magnitude, with no observable effects on system through-

put and query time.

Since the FaaS platforms manage allocation of compute resources across

jobs, the goal of Flock is not to maximize resource utilization and enforce fairness

but to reduce execution costs by increasing query performance and shortening

function duration. Flock supports the vectorized processing on ARM processors,

which brings 20% speedup and reduce costs by more than 30% on x86. Flock is

thus the first streaming query engine, to the best of our knowledge, to support

standardized abstractions, SQL and Dataframe API, on cloud function services,

allowing users and engineers to avoid the time-consuming process of manually

translating SQL into cloud workflows on heterogeneous hardware.

62

SQ
L

SI
M

D
Ex

te
rn

al
C

om
m

.M
ed

iu
m

H
ar

dw
ar

e
C

lie
nt

C
oo

rd
in

at
or

Ty
pe

C
od

eb
as

e

Lo
cu

s
[1

3]
N

o
N

o
El

as
tiC

ac
he

,S
3

x8
6_

64
Ye

s
O

LA
P

Py
th

on
La

m
ba

da
[1

4]
N

o
N

o
D

yn
am

oD
B,

SQ
S,

S3
x8

6_
64

Ye
s

O
LA

P
Py

th
on

,C
+

+
St

ar
lin

g
[1

5]
N

o
N

o
S3

x8
6_

64
Ye

s
O

LA
P

C
+

+
C

ae
ru

s
[1

6]
Ye

s
N

o
Jiff

y
[9

4]
,S

3
x8

6_
64

Ye
s

O
LA

P
Py

th
on

Fl
oc

k
Ye

s
Ye

s
N

o
ar

m
64

,x
86

_6
4

N
o

St
re

am
in

g
Ru

st

Ta
bl

e
3.

1:
C

om
pa

ri
so

n
w

ith
Ex

is
tin

g
Se

rv
er

le
ss

D
at

a
A

na
ly

tic
s

Sy
st

em
s.

63

3.2 Background

3.2.1 AWS Lambda

AWS Lambda [7] is a compute service that lets users run code without pro-

visioning or managing servers. After uploading application code as a ZIP file

or container image, Lambda automatically and precisely allocates compute exe-

cution power on a high-availability compute infrastructure and runs application

code based on the incoming request or event, for any scale of traffic. When us-

ing Lambda, customers are responsible only for their code. Lambda manages the

compute fleet that offers a balance of memory, CPU, network, and other resources.

With AWS Lambda, users are charged based on the number of requests for

their functions and the duration, the time it takes for application code to execute.

Lambda counts a request each time it starts executing in response to an event

notification or invoke call. Duration is calculated from the time user code begins

executing until it returns or otherwise terminates, rounded up to the nearest 1

ms [87].

3.2.2 Apache Arrow and DataFusion

Apache Arrow [95] is a cross-language development platform for in-memory

data. It specifies a standardized language-independent columnar memory for-

mat for flat and hierarchical data, organized for efficient analytic operations on

modern hardware with SIMD optimizations. Arrow was introduced in 2016 and

64

has since become the standard for columnar in-memory analytics, and as a high-

performance interface between heterogeneous systems. Apache Arrow DataFu-

sion [96] is an extensible query execution framework on the single machine, writ-

ten in Rust, that uses Apache Arrow as its in-memory format. DataFusion sup-

ports both an SQL and a DataFrame API for building logical query plans as well

as a query optimizer and execution engine capable of parallel execution against

partitioned data sources.

The function executor in Flock is Arrow DataFusion, which has been ex-

tended to enable distributed query processing on cloud function services.

3.2.3 Streaming Query Processing

Any kind of data is produced as a stream of events, and it’s most valuable at

its time of arrival. Continuous queries are evaluated continuously as data streams

continue to arrive, always reflecting the stream data seen so far. Since data streams

are potentially unbounded in size, evaluating the query over different temporal

windows of recent data from the streams is a common pattern. For example, in a

tumbling window, events are grouped in a single window based on time or count.

A event belongs to only one window. In a sliding window, events are grouped

within a window that slides across the data stream according to a specified inter-

val. Sliding windows can contain overlapping data; an event can belong to more

than one sliding window.

Let’s illustrate the semantics of queries in Flock by the following example.

65

Consider a hypothetical online auction system containing two tables:

1 CREATE TABLE Auction (id INT, item_name VARCHAR(128),

2 description VARCHAR(255), initial_bid INT, reserve INT,

3 date_time DATE, expires DATE, seller INT, category INT);

4

5 CREATE TABLE Bid (

6 auction INT, bidder INT, price INT, date_time DATE);

The Auction table contains all items under auction, and the Bid table con-

tains bids for items under auction. At some point the user executes a continuous

query to determine the average winning bid price for all auctions in each cate-

gory across a series of fixed-sized, non-overlapping, 10-second contiguous time

periods1. In Flock, this query is expressed with the following DML:

1 -- Flock Context: Window::Tumbling(Schedule::Seconds(10));

2 SELECT category,

3 Avg(final)

4 FROM (SELECT Max(price) AS final,

5 category

6 FROM auction AS A

7 INNER JOIN bid AS B

8 ON A.id = B.auction

9 WHERE B.date_time BETWEEN A.date_time AND A.expires

10 GROUP BY A.id, A.category) AS Q

11 GROUP BY category;

When the user submits this query, it is continuously and transparently exe-
1We are assuming here that the auctions are very short-lived (with expiry time less than 10s)

and that each auction starts and ends in a single window.

66

cuted in a microbatch mode on the cloud functions.

3.3 System Architecture

Flock is a cloud-native SQL query engine for event-driven analytics on cloud

function services. Figure 3.1 illustrates the Flock’s high-level architectural design.

The cloud service provider packages and compiles the most recent query engine

code into a single generic cloud function on a regular iteration cycle, then stores

the resultant binary code in cloud object storage. When a user submits a SQL

query, it is parsed, optimized, and planned as a series of low-level operators that

the optimizer selects to execute the most efficient query. Flock breaks the execu-

tion plan into stages, with each stage consisting of a chain of operators with the

same partitioning serialized as a string as part of the cloud function context. Flock

creates cloud functions by using executable binary code from cloud storage and

passing the encoded string (cloud context) as a function argument through the

cloud vendor’s SDK. The cloud function is created at the speed of light, and the

query is processed in real time. Function arguments are deserialized as the cloud

context during the initial instantiation of function instances, and therefore each

function is customized for a specific set of parameters. The function is aware of

carrying out a certain sub-plan and sending the result to the next function, allow-

ing data flow in the cloud to occur without the intervention of a client coordinator.

67

Parser Logical Plan Optimizer

Aggregate

Filter

Projection

Aggregate

Source

Filter

Projection

Aggregate

Physical Plan

Plan Partition

Serialize Plan
to Contexts

Create
Cloud Functions

Plan 1

Plan 2

Stream Windows

Lambda 1: Concurrency > 1

Lambda 2: Concurrency = 1

CLIENT CLOUD

01010001
11010110
00011010

Cloud
Storage

Generic
Cloud Function

PUT(code)

1

3 4

Query Execution

select max(c1), min(c2) from stream where c2 < 99 group by c3

df.filter(col("c2”)).lt_eq(lit(99))?
 .aggregate(vec![col("c3")], vec![max(col("c1")), min(col("c2"))])?
 .collect().await?;

2

Figure 3.1: System Architecture.

3.3.1 SQL Interface

A query engine is a piece of code that can execute queries against data to pro-

duce answers to questions. Query engines provide a set of standard operations

and transformations that the end-user can combine in different ways through a

simple query language or application programming interface and are tuned for

good performance. For example, SQL query engines are included in the most

widely used relational databases, such as MySQL, Postgres, Oracle, and SQL Server.

In addition, all data warehouses and lakehouses [1, 3, 97, 98, 99, 100, 101] come

with a distributed SQL execution engine, such as Spark/Photon [102, 103], Flink [93],

Presto/Trino [104], F1 [105], Impala [106] and Hive [107], for interactively query-

ing massive datasets.

Some exploratory research has been done on doing data analytics on cloud

68

services [13, 14, 15]. However, there are yet no SQL-on-FaaS engines for data an-

alytics. The end-user is compelled to split the physical plan for each query by

hand when merging query stages into cloud functions as a dataflow execution

paradigm on cloud. Forcing customers to use cloud vendor lock-in APIs to or-

chestrate query stages has the same effect as forcing users to create query execu-

tion plans directly in database systems. The user plans may be suboptimal, result

in significant performance loss, and such customized directionally-acyclic graphs

(DAG) are error-prone and are rarely to be reused. Furthermore, some cloud

customers have raised concerns about vendor lock-in, fearing reduced bargain-

ing power when negotiating prices with cloud providers. The resulting switch-

ing costs benefit the largest and most established cloud providers and incentivize

them to promote complex proprietary APIs that are resistant to de facto stan-

dardization. Standardized and straightforward abstractions, such as SQL and

Dataframe API supported by Flock, would remove serverless adoption’s most

prominent remaining economic hurdle.

3.3.2 Distributed Planner

Flock uses rule-based optimizations to apply predicates and projection push-

down rules to a query plan that executed against the logical plan before the phys-

ical plan is created (see Figure 3.1). The physical plan is broken into a DAG of

query stages in the client-side, where each stage consists of a chain of operators

with the same partitioning. Each query stage is assigned to a cloud function using

69

MemoryExec MemoryExec

HashJoinExec

FilterExec

HashAggregateExec
mode=Partial

RepartitionExec
partitioning=Hash

RepartitionExec
partitioning=Hash

HashAggregateExec
mode=Partial

ProjectionExec

HashAggregateExec
mode=FinalPartitioned

ProjectionExec

HashAggregateExec
mode=FinalPartitioned

RepartitionExec
partitioning=Hash

RepartitionExec
partitioning=Hash

Arrow DataFusion Execution Plan

MemoryExec MemoryExec

RepartitionExec
partitioning=Hash

RepartitionExec
partitioning=Hash

Function 3

RepartitionExec
partitioning=Hash
HashAggregateExec

mode=Partial

ProjectionExec

HashAggregateExec
mode=FinalPartitioned

MemoryExec

MemoryExec

ProjectionExec

HashAggregateExec
mode=FinalPartitioned

Function 2

Function 1

Function 0

HashJoinExec

FilterExec

HashAggregateExec
mode=Partial

RepartitionExec
partitioning=Hash

MemoryExec MemoryExec

Function 0

Flock Execution Plan

Figure 3.2: Physical Plan Partition.

template specialization approach described in the next section. A directed edge

from one stage to another represents data flow between cloud functions.

Figure 3.2 shows the plan partition of the query example in Section 3.2.3.

The physical plan of Arrow DataFusion is a nested layout in memory in which

the data sink, not the data source, is the root reference. Flock uses top-down

breadth-first algorithm to split the physical plan into a DAG of query stages. Flock

separates the plan when it encounters aggregate2, join and sort operations so that

data can be shuffled around between query stages. Each stage or subplan deletes

the old reference to the child plan and replaces it with an empty MemoryExec that
2"HashAggregateExec: mode=partial" is the same as doing partial aggregate within individual

cloud functions or workers, and there is no requirement for plan partition.

70

has the same schema as the child plan. MemoryExec represents the execution plan

for reading in-memory batches of data. When the current stage receives all the

output of the previous stage, it will feed the data to its MemoryExec and complete

the query execution. Furthermore, while splitting the physical plan, Flock creates

a corresponding cloud context for each query stage in order to make the dataflow

paradigm operate on cloud function services.

3.3.3 Microbatch Execution Mode

Flock runs in a micro-batch execution mode, similar to Apache Spark’s Struc-

tured Streaming [102, 108, 109], that processes data streams as a series of mi-

cro batch tasks, achieving exactly-once fault-tolerance guarantees. In this mode,

epochs are typically set to be a few hundred milliseconds to a few seconds, and

each epoch executes as a traditional analytical job composed of a DAG of functions.

When compared to continuous operator model [110, 111, 112], micro-batch and

FaaS are more natural fits. There are two main reasons for this: 1) The cloud func-

tion is billed based on the number of invocations and duration, whereas record-by-

record is many orders of magnitude more expensive. 2) Some cloud providers,

e.g. AWS Lambda, only allow the function instance to execute one request at a

time, and a huge number of requests (via record-by-record) causes the function’s

latency to rise dramatically.

During query planning, Flock automatically chains together sequences of

functions, each of that corresponds to a query stage. Flock implicitly invokes the

71

first cloud function to trigger the execution workflow at recurring times. Although

all created functions have exactly the same binary code, when a function is instan-

tiated in the cloud, its environment variable contains the specific cloud context

carried when it was created. Therefore, different function instances can be spe-

cialised through the context (see Section 3.4). Functions share states by passing

arguments/payloads and return values to each other, which does not incur any

additional costs. The main challenge is determining how to send the shuffled

states to the same function instance without the need of an external communica-

tion medium. We accomplished this by setting the stateful function’s concurrency

to one and allocating global memory that allows the function to reuse "static con-

text" across multiple invocations to the same instance. More details on how to

mitigate hotspots are described in Section 3.5.5.

3.3.4 Fault Tolerance

3.3.4.1 State Management

Flock achieves fault tolerance through the employment of a write-ahead log

and a state store. Both of them run over object storage system such as S33 to allow

parallel access. 1) the log keeps track of which data has been processed from each

input source and reliably written to the output sink. 2) the state store holds snap-

shots of operator states for aggregate functions. Simiar to Spark Streaming [109],

states are written asynchronously, and can be behind the latest data written to the
3Starting from Dec 2020, all S3 GET, PUT, and LIST operations are now strongly consistent [113].

72

output sink. In the event of a failure, the system will automatically track whatever

state it last updated in its log and recompute state from that point in the data.

Input sources like Kafka [114] and Kinesis [86] are replayable that allow re-

reading recent data using a stream offset. The function writes the start and end

offsets of each epoch durably to the log. The stateful functions/operators regularly

and asynchronously write the epoch ID along with their state checkpoint to the

state store, utilizing incremental checkpoints if possible. These checkpoints aren’t

required to occur every epoch or to block processing. Upon recovery, the new

function instance starts by reading the log to find the last epoch that hasn’t been

committed to the sink, including its start and end offsets. It then uses the offsets

of earlier epochs to reconstruct the states in memory from the last epoch written

to the state store. Finally, the system reruns the last epoch, and then executes the

micro-batch from the new epoch.

3.3.4.2 Invocation Failure

If a cloud function times out or is terminated, the computed end-result is ac-

curate, with no data loss. This is because the new function is resumed using the

most recently stored checkpoint and states from S3. However, unlike traditional

nodes, function invocation errors can occur when the invocation request is rejected

by issues with request parameters and resource limits or when the function’s code

or runtime returns an error. If the asynchronous invocation fails, Lambda re-

tries the function since the payload is part of the invocation and hence no data

73

is lost. When an event fails all processing attempts or expires without being pro-

cessed, it’s put into a dead-letter queue (DLQ) [115] for further processing, which

is part of a function’s version-specific configuration. If the synchronous invoca-

tion fails, Flock implements a linear backoff algorithm for automatic retries (see

Section 3.5.3).

The function may receive the same request/payload multiple times for asyn-

chronous invocation because Lambda’s internal queue is eventually consistent [116].

The stateful function maintains a bitmap to avoid double-counting and to ensure

each payload is aggregated and processed exactly once (see Section 3.6.0.2).

3.4 Function Templates

3.4.1 Template Specialization

Legal cloud functions are only scripts or compiled programs, so many sys-

tems [15] embedded the physical plan to the function code during the code gener-

ation phase. They generate code for the individual tasks, compiles it and packages

it with necessary dependencies. To execute a job, a scheduler launches tasks as

serverless functions and monitors their progress. However, compiling cloud func-

tions and dependencies at query runtime might cause delays of seconds or even

minutes, slowing query response time. For example, Flock is a Rust-based cloud-

native query engine; if we build an x86_64-unknown-linux-gnu release version

with the features SIMD and mimalloc/snmalloc [117, 118] on an AWS EC2 in-

stance – c5a.4xlarge, the build time was roughly 4 minutes even with incremental

74

fn create_function(
 code: S3 URL,
 environment: Option<HashMap<String, String>>,
 architectures: Option<String>
 function_name: String,
 memory_size: Option<String>,
)
fn invoke(
 function_name: String, payload: Option<Bytes>,
 invocation_type: Option<String>,
)

Cloud Context Struct

Execution Plan

Function Name

Next Function Name

State Backend

Generic Function

Arrow DataFusion
Query Execution

Context Initialization

Data Preparation

Next Function
Invocation

S3 Object Encoded String

Lambda Client API

Figure 3.3: Generic Function and Template Specialization.

compilation. What’s worse, it takes 8m 33s to build from scratch. This is because

Flock requires a lengthy dependency tree to be built [119]. Another approach is

that Locus [13] is built on Pywren [120, 121], a pure Python implementation that

omits the code-generation and compilation steps and directly takes task code and

execution plan as input with sacrificing performance and cost (longer charged

duration).

We propose function template specialization as a way to completely eliminate

the compilation stage from the query execution pipeline. Template specialization

in programming languages allows alternative implementations to be presented

based on specific properties of the parameterized type that is being instantiated,

75

enabling for certain types of optimization and reducing code bloat. Similarly,

as shown in Figure 3.3, Flock’s service provider creates, builds, and archives a

generic cloud function as a bootstrap.zip file, which is primarily made up of

four components: cloud context initialization, data collection and preparation,

query execution and next function invocation (more details will be explored in

Section 3.4.2). The service provider then uploads the bootstrap.zip to the cloud

object storage, such as Amazon S3 [17], and makes new public release available

for Flock users.

Flock eliminates the requirement for the client or central registry to spend

time compiling SQL execution plans and new cloud functions into binary code,

resulting in much lower end-to-end latency4; Flock creates functions right away

using the S3 object of the generic function that the service provider has provided in

advance [124]. In addition, the cloud context, which includes the execution plan,

is serialized and sent as a string into the Lambda API create_function()’s pa-

rameter environment in Figure 3.3. The cloud context is compressed with Zstd [125]

after serialization by default since Lambda environment variables have a default

4 KB service quota that cannot be raised [126]. In that case, Flock can store the

execution plan in S3 and preserve the S3 object key in the cloud context if the

execution plan exceeds this limit. The environment variable settings that are ac-

cessible from function code during execution on cloud. The query launch time is

reduced by 10,000 times using this approach since launching a cloud function just
4For developers who want to write custom stream processing logic, Flock’s stateful operators

are UDFs with state that still require users to compile function code during query runtime. In this
case, JIT code generation for each query over LLVM [122] or Cranelift [123] is a better solution to
reduce branching overhead and the memory footprint.

76

requires the creation of a function without compilation.

Flock then invokes the newly created function name to execute the query on

the cloud function services via the Lambda API invoke() [127]. The context ini-

tialization is performed once per function instance to prepare the cloud environ-

ment for invocations; it reads the encoded string from the environment variable

and deserializes it as the cloud context. The generic function template specializa-

tion is then achieved. Even while all functions have the identical code — generic

template, each function can identify the specific execution plan and which func-

tion to deliver the output to via the cloud context when it is instantiated in the

cloud.

3.4.2 Generic Function

Flock is a new generation of cloud native query engine that consists sim-

ply of generic functions and a client library. The generic function can work with

any type, rather than a specific type only, allowing it to be designed, built, and

delivered to the cloud platform ahead of time. To take use of the latest query

engine capabilities, the cloud service provider only has to offer customers with

an updated version of the generic function on a regular basis without disclosing

the source code. The client library can translate SQL queries to executable cloud

functions.

A generic function is a function code whose behavior depends on the iden-

tities of the arguments supplied to it via environment (see Figure 3.3). When a

77

function is invoked, it deserializes the cloud context given by the client to discover

the appropriate code regions — those with specializers that are compatible with

the actual context.

The pseudo code in Listings 3.1 shows how the generic cloud function is im-

plemented and operated. The function code can be broken down into four parts:

(1) Cloud Context Initialization. INIT (line 5) is a synchronization primitive

for running a one-time global initialization. The given closure ctx_fn (line 9-

14) is used to deserialize environment variables into cloud context, and it will be

run if call_once (line 15) is used for the first time; otherwise, the routine will

not be invoked. Private data that is only used per invocation should be defined

within the handler. Global variables such as CLOUD_CONTEXT retain their value

between invocations in the same execution environment. As a result, the cloud

context is only initialized once throughout the lifetime of the instance, and future

invocations reuse the resolved static context. arena (line 11 and 23) is a type of

global resource that are created during initialization stays in memory between

invocations, allowing the handler to collect states across invocations. We explain

it in more details in Section 3.6.0.2.

(2) Data Preparation. The function essentially receives the payload in JSON

format from the HTTP request’s body, computes the result, and either returns it

to the client or forwards it to the next functions as HTTP requests. When the run-

time receives an event, it passes the event (line 22) to the function handler. Flock

leverages Apache Arrow [95] to save streaming data (line 24) in the in-memory

columnar format to maximize cache locality, pipelining and SIMD instructions on

78

modern CPUs. In the case of the function associated with the aggregate opera-

tion, such as HashAggregateExec, Flock uses Arena to collect all data partitions

before being given to the embedded query engine in the current function. More

details are described in Section 3.6.0.2.

(3) Query Execution. The function includes Arrow DataFusion [96], an in-

memory query engine that provides both a DataFrame and SQL API for querying

CSV, Parquet, and in-memory data. DataFusion leverages the Arrow compute

kernels for vectorized query processing. All rows with a particular grouping key

are in the same partitions, such as the case with hash repartitioning on the group

keys. Data partitions are processed in parallel in the cloud function (line 26).

(4) Next Function Invocations. Following the execution of the query stage

in the current function, the output is placed into the next function invocation’s

payload (see invoke() in Figure 3.3), and finally, a synchronous or asynchronous

invocation (line 27) is made to make distributed dataflow possible. The implicit

invocation chain is analogous to functional programming. More complex data

shuffling are described in detail in Section 3.6.0.3.

1 use lambda_runtime::{service_fn, LambdaEvent};

2 use serde_json::Value;

3

4 /// Initialize the function instance once and only once.

5 static INIT: Once = Once::new();

6 static mut CLOUD_CONTEXT = CloudContext::Uninitialized;

7

8 macro_rules! init_cloud_context {

79

9 let ctx_fn = || match std::env::var(&**CONTEXT_NAME) {

10 Ok(s) => { CLOUD_CONTEXT = CloudContext::Lambda((

11 ExecutionContext::unmarshal(&s), Arena::new()));

12 }

13 ...

14 };

15 INIT.call_once(ctx_fn);

16 match &mut CLOUD_CONTEXT {

17 CloudContext::Lambda((ctx, arena)) => (ctx, arena),

18 CloudContext::Uninitialized => panic!("uninitialized!"),

19 }

20 }

21

22 async fn handler(event: LambdaEvent<Payload>) -> Result<Value> {

23 let (mut ctx, mut arena) = init_cloud_context!();

24 let (input, status) = prepare_data(ctx, arena, event)?;

25 if status == HashAggregateStatus::Ready {

26 let output = collect(ctx, input).await?;

27 invoke_next_functions(ctx, output, ...).await

28 } else if status == HashAggregateStatus::NotReady {

29 Ok(json!("response": "data is not yet ready"))

30 } else if status == HashAggregateStatus::Processed {

31 Ok(json!("response": "data has been processed"))

32 }

33 }

34

35 #[tokio::main]

80

36 async fn main() -> Result<()> {

37 lambda_runtime::run(handler_fn(handler)).await?;

38 Ok(())

39 }

Listing 3.1: Generic Function Skeleton.

3.4.2.1 Heterogeneous Hardware

According to the AWS blog [128], AWS Lambda functions running on Gravi-

ton2 [129], using an Arm-based processor architecture designed by AWS, deliver

up to 34% better price performance compared to functions running on x86 pro-

cessors for a range of serverless applications including real-time data analytics.

To give users with better price-performance, Flock provides function binaries for

both x86 and Arm architectures, and users may select different generic function

binaries from AWS S3 bucket to create Lambda functions that operate on x86

and/or Arm processors. Currently, Flock has 4 versions on S3 — x86_64-gnu,

x86_64-musl, aarch64-gnu and aarch64-musl.

For Lambda functions using the Arm/Graviton2 processors, duration charges

are 20% lower than the current pricing for x86. However, the reported perfor-

mance difference (19%) between x86 and Arm by AWS may not include SIMD

optimization. An unanswered question is who performs better on query opera-

tions when AVX2 and Arm Neon intrinsic are employed. The Graviton2 processor

also has support for the Armv8.2 instruction set. Armv8.2 specification includes

the large-system extensions (LSE) introduced in Armv8.1. LSE provides low-cost

81

atomic operations and improves system throughput for CPU-to-CPU communi-

cation, locks, and mutexes. To measure the difference between architectures, we

compared the latency and duration cost between the two architectures in Sec-

tion 3.7.

3.5 Serverless Actors and Communication

The actor model is a highly popular computational pattern, which simpli-

fies the job of composing parallel and distributed executions by using a basic unit

of computation: the actor. Flock is an actor model that provides an isolated, in-

dependent unit of compute and state with multiple-threaded execution on cloud

functions for serverless event-stream processing service with pay-for-use.

3.5.1 One-way Communication

The most important element of the actor model is that actors can communi-

cate via asynchronous messages. Previous work has proposed solutions for data

exchange in the serverless context [13, 14, 15, 130, 131]. They rely on external stor-

age to exchange large amounts of data since cloud functions can’t accept incom-

ing connections. For example, Starling [15] uses Amazon S3 to pass intermediate

data between function invocations. However, the solutions consist of additional

services, which increases the latency (I/O), billed expenses of function duration

and S3 access, and therefore compromises the advantages of a serverless system.

Flock differs from earlier systems in that it is built for real-time stream pro-

82

cessing on gigabytes of data rather than OLAP workloads. AWS Lambda func-

tions have a 6 MB payload size limit for synchronous invocations and a 256 KB

size limit for asynchronous invocations [88]. The function’s concurrency is the

number of instances that serve requests at a given time, and the default regional

concurrency limit starts at 1000 [132] which can be easily increased to 5000 by con-

tacting Amazon. By combining these two AWS Lambda quotas above, as well as

data encoding and compression, Flock can transfer GB-level intermediate results

between functions without using external storage.

When a function is invoked (see invoke() in Figure 3.3), Flock passes data in

the payload and the payload is serialized to JSON bytes because the content type

of HTTP requests body is enforced to application/json in AWS Lambda. Data

partitioning guarantees that each partition can be placed in a function’s payload,

and the functional chain seamlessly passes the data to the next query stage. This

removes the need to persist and load data from data stores such as DynamoDB [133]

and S3 [17]. There is no additional cost associated with invoking Lambda func-

tions with a payload, which reduces bill cost and duration.

Table 3.2 shows the latency difference between AWS S3 and function pay-

load. By default, objects are compressed with Zstd [125], which provides a 4x

compression ratio on NYC Citi Bike trip data [134]. Therefore, the real single par-

tition size we tested reached up to 60MB, which is enough to handle streaming

workloads. The latency in the table also includes the overheads of marshalling/un-

marshalling and compression/decompression, this is because serialization and

deserialization phases happen in Lambda Rust Runtime [135]. However, these

83

Object (Zstd) S3 Read S3 Write S3 Total Lambda Sync Lambda Async
1.5 KB 0.471 0.113 0.584 0.020 0.030
15 KB 0.471 0.144 0.615 0.020 0.044
150 KB 0.653 0.205 0.858 0.036 0.066
1.5 MB 1.615 0.594 2.209 0.281 0.785
15 MB 11.720 1.828 13.548 2.201 6.054

Table 3.2: The latency comparison (seconds).

parts are not bottlenecks, accounting for less than 7% of total time. When the

compressed partition is less than or equal to 1.5MB, the payload communication

is an order of magnitude faster than S3. Since 15 MB exceeds the maximum size

of the function payload, Flock executed the same function instance three times

synchronously or 60 times asynchronously, resulting in a 6x or 2x improvement,

respectively. We’ll explain how multiple payloads are routed to the same running

instance in Section 3.5.5, which is the critical part of data shuffling.

The limitation of this approach is that AWS Lambda does not yet provide

per-instance concurrency like GCP Functions [136] for now. GCP function allows

for up to 1,000 concurrent requests on a single instance of an application, provid-

ing a far greater level of efficiency. In extreme cases, multiple data partitions shuf-

fling for aggregation may performs poorly when constrained to a single-request

model.

3.5.2 Sync and Async

When a function is invoked asynchronously, Lambda puts the event in a

Lambda-owned queue and returns right away, rather than exposing Lambda’s

84

internal queues directly. A separate process reads events from the queue and ex-

ecutes the function. AWS Lambda is a multitenant system that implements fair-

ness is by setting per-customer rate-based limits, with some flexibility for burst-

ing [137]. Therefore, there may be an occasional invocation delay while dealing

with heavy workloads.

Figure 3.4 shows the benefit of asynchronous calling that is when the current

function invokes the next function, it can return immediately instead of waiting for

the succeeding function to complete its execution. This significantly decreases the

expense of duration. Ifn represents the total number of query stages, fi represents

the lambda function or function group corresponding to the ith query stage. The

total asynchronous invocation cost of the bill is

n∑
i=0

λ(fi) +

n∑
i=0

d(fi)

λ(fi) indicates the cost of function invocations to the ith query stage with a

specific memory and processors. d(fi) is the billed duration cost of the ith query

stage. For the synchronous invocation, the duration cost (including waiting time)

of the ith stage is
∑n

j=i d(fj). The total cost of the bill is

n∑
i=0

λ(fi) +

n∑
i=0

n∑
j=i

d(fj)

However, compared to asynchronous invocation, synchronous invocation

is faster and more reliable, and it won’t be affected by internal queue throttling.

Furthermore, if the query is executed by a single function or the stages are shal-

85

Lambda Async InvocationLambda Sync Invocation

Charged Wait for response Charged Query ProcessingCharged Charged

Payload: 6MB

F0 F1 F2 F0 F1 F2

Invoke F1

Response F1

Response F0

Invoke F2
Payload: 6MB

Invoke F1Payload: 256KB

Invoke F2Payload: 256KB
Response F1

Response F0

Figure 3.4: The duration charge comparison.

low, the billed duration of synchronous invocation is lower and less expensive.

This is because its payload maximum is 6MB, which is 24 times larger than the

asynchronous’s 256KB, the synchronous approach requires 24 times fewer invo-

cations, alleviating the the single-request model problem of AWS Lambda. Since

each function call is charged for duration, the asynchronous approach may have

a higher cost in terms of invocation and duration time.

3.5.3 No Coordinator

Migrating streaming applications from a traditional serverful deployment

to a serverless platform presents unique opportunities. Traditional serverful de-

ployments rely on existing workflow management frameworks such as MapRe-

duce [138], Apache Spark [102, 109], Sparrow [139], Apache Flink [93] to provide

86

a logically centralized scheduler for managing task assignments and resource al-

location. The scheduler traditionally has various objectives, including load bal-

ancing, maximizing cluster utilization, ensuring task fairness, keeping track of

distributed tasks, deciding when to schedule the next task (or set of tasks), and

reacting to finished tasks or execution failures. A traditional serverful scheduler is

not required by serverless computing. This is because FaaS providers are respon-

sible for managing the containers or MicroVMs [140] and serverless platforms

typically provide a nearly unbounded amount of ephemeral resources. However,

existing data systems on FaaS platforms like Starling [15] and Lambada [14] still

require a coordinator to monitor task completion and start new stages once depen-

dencies are completed due to they use S3 as the communication medium between

functions. They would otherwise have no way of knowing if the current query

step is complete.

Flock completely eliminates the coordinator by putting the function name of

the next stage in the current function’s cloud context during the query planning

phase on the client-side (see Figure 3.3). When the current function finishes the

computation, it simply passes the result to the next function invocation’s pay-

load. 1) For asynchronous invocation, if the function is terminated abnormally

or thrown invocation errors, AWS Lambda retries the function. Flock configures

a dead-letter queue [115] on the function to capture events that weren’t success-

fully processed for further processing. 2) For synchronous invocation, Flock im-

plements truncated linear backoff algorithm that uses progressively longer waits

between retries for rate limit exceeded errors. The retries are only required in

87

synchronous invocations when Flock passes multiple payloads to a single func-

tion with concurrency equals to 1, more details are explained in Section 3.5.5. The

current function, in this approach, regularly re-invokes a failed function, increas-

ing the waiting time between retries until the maximum backoff time is reached.

The following is the duration of the wait:

min(50 ∗ increase_factor + random_milliseconds, max_backoff)

The increase_factor starts from 1, and reset to 1 when 50*increase_factor

exceeds the maximum backoff. random_milliseconds is bounded to 100ms that

helps to avoid cases in which many functions retry at once, sending requests in

synchronized waves. In conclusion, removing the query engine’s core coordina-

tor makes coding, operation, and maintenance easier while potentially reducing

query processing time.

3.5.4 Function Name

The name of the cloud function is made up of three parts:

Function Name: <Query Code>-<Query Stage ID>-<Group Member ID>

The query code is the hash digest of a query. The query stage id is a 2-digit

number that represents the position of a stage in the DAG, and the group member

id is the position of the function in a group it belongs to. The function name does

not include a timestamp so that the created function can be reused by continuous

queries without incurring a cold start penalty. This naming convention guarantees

88

that each cloud function is appropriately identified and categorized into a distinct

query, allowing Flock to detect and resolve issues efficiently.

The cloud function concurrency is the number of instances or execution en-

vironments that serve requests at a given time [141]. The first time you invoke a

function, AWS Lambda creates a function instance and runs its method to process

the event. After the invocation has ended, the execution environment is retained

for a period of time. If another request arrives, the environment is reused to han-

dle the subsequent request. However, if requests arrive simultaneously, Lambda

scales up the function instances to provide multiple execution environments, and

the events are processed concurrently. Each instance has to be set up indepen-

dently, so each instance experiences a full cold start. Flock uses Lambda SDK

API [142] to set the maximum concurrency for each function in the query DAG,

ensuring that the function has the ability to scale on its own, preventing it from

growing beyond that point.

3.5.5 Function Group

Flock sets the default 1000 concurrency to stateless (non-aggregate, e.g. scan,

filter and projection) functions. Each of them is preferentially executed on a data

partition contained the same keys to maximize data parallelism. If the concur-

rency of the stateful (aggregate, e.g. group by, sort and join) function is set to

more than 1, Flock is unable to ensure the integrity of the query results. Lambda

is likely to spawn multiple running instances to handle payloads from the non-

89

Q
S-01-01

F1

F1

F1

F1

F1

F1

F1

F1

QS-01-00

Function Group

QS-01-02

QS-01-03QS-01-04

Query Stage 1

F0

F0

F0

F0

Query Stage 0

Q
S-

00
-0

0
Q

S-
00

-0
0

Q
S-

00
-0

0
Q

S-
00

-0
0

QS-01-07

Q
S-

01
-0

6
QS

-0
1-

05

Figure 3.5: Cloud Function Group.

aggregate functions, causing the partial results to divergence and ultimately fail

to aggregate. Therefore, for aggregate function, Flock set its concurrency to 1,

which enforces AWS Lambda to create at most one running instance for the ag-

gregation function at any given time.

However, one of the key benefits of serverless query engine is the ease in

which it can scale to meet traffic demands or requests, with little to no need for

capacity planning. Setting the concurrency of aggregate functions to one goes

against the essence of serverless computing. Because there is only one function

instance for the current query stage, and AWS Lambda does not yet provide per-

instance concurrency [136] like GCP Functions to accept concurrent requests on

a single running instance, hot spots are caused by awaiting the completion of the

preceding aggregate task.

We proposes the function group technique that creates a set of cloud functions

90

in a group for each query stage after physical plan partition to reduce the hotspot

effect. 1) for non-aggregate function, its concurrency is 1000 by default. Flock

only makes one function member (name) in that group, and AWS Lambda gov-

erns its running instances and routes requests to them. 2) for aggregate function,

its concurrency is set to 1. Flock creates a group consisting of multiple identical

functions with different names.

Figure 3.5 shows an example of how the cloud function group works. The

function 0 contains the query stage 0 and has the default 1000 concurrency. Lambda

starts four instances of function 0, each of which conducts a local aggregation and

hash partitioning of the output into two distinct payloads – green and blue boxes.

The same color payload in different function instances includes the same shuffle

id (see Section 3.6.0.1) that is used to generate a deterministic random key to per-

form consistent hashing [143]. Because the cloud context of the function 0 (see

Figure 3.3) has the next function name — here is Group(QS-01,8), QS-01 is group

name and 8 is group size. Using the group information, Flock maps payloads as-

sociated with the same key on four distinct instances to the same function name

(same instance) in the next stage. This approach distributes shuffling operations

to multiple function instances and guarantees data integrity since all functions’

concurrency in the group equals to 1. To minimize serial aggregates on the same

function instance caused by hash collisions, each function 0 does a single con-

sistent hash lookup to determine the ring’s start point, then maps different data

partitions to different function names in a counterclockwise order. For example,

if green partitions are mapped to QS-01-06, then blue partitions is mapped to

91

QS-01-05.

With consistent hashing, on the other hand, the hashing function is inde-

pendent of the number of cloud functions in the group. This allows the extended

optimizer to dynamically routing the data as we add or remove functions, and

hence, scale on demand to balance hotspots and cold starts5. Furthermore, by

reading statistics from the state store, function instances can agree on dynami-

cally coalescing shuffle partitions for adaptive query execution [144].

3.6 Flock Dataflow Paradigm

For workloads using streaming data, data arrives continuously, often from

different sources, and is processed incrementally. The processing function does

not know when the data stream starts or ends. Consequently, this type of data

is commonly processed in temporal windows. Flock has native support for tum-

bling, sliding and session window functions, enabling users to launch complex

stream processing jobs with minimal effort. The first query stage is datasource

functions, which continue to fetch messages from the stream until a full batch is

obtained or the time window expires.

Flock’s execution plan, unlike traditional distributed execution engines, is a

dynamic directed acyclic graph that changes with time in the cloud rather than a

static one on-premise. This is because each stage in the query DAG represents a

cloud function group, AWS Lambda automatically scales up and down running

instances for each stage based on the number of incoming events. However, as the
5We have yet to implement this feature in the Flock codebase.

92

data shuffling is sent in pieces via the function invocation’s payload, the aggregate

function is likely to receive data partitions from many temporal windows. In this

section, we seek to answer the following questions: 1) When data partitions of

different shuffling operations or even different queries are delivered to the same

function instance, how to distinguish aggregation between data? 2) How to know

the aggregation is complete and it’s time to move on?

3.6.0.1 Payload Structure

The payload has a Data field that contains an "on-the-wire" representation

of Arrow record batches. The Schema field defines the tables, fields, relationships,

and types of the data carried. The payload also contains metadata about the data.

For example, the Encoding field provides different compression options, such as

Snappy [145], Lz4 [146] and Zstd [125], to compress Arrow data. The default

option is Zstd.

Payload: { UUID, EpochID, ShuffleID, Data, Schema, Encoding }

UUID: { QID, SEQ_NUM, SEQ_LEN }

QID: <Query Code>-<Job ID>-<Query Timestamp>

To make shuffling and aggregation more deterministic, Flock marks each

payload with a UUID. The QID copies the query code from the function name

(see Section 3.5.4). Unlike the function name, the QID also contains the query start

timestamp and job id. This allows different queries’ payloads to be differentiated

from one another. The Epoch ID indicates which microbatch the current data par-

tition comes from. The payload’s UUID also includes SEQ_NUM and SEQ_LEN in ad-

93

dition to the QID. SEQ_NUM is a monotonically increasing number used to identify

the uniqueness of the payload in a certain set of aggregated data, and the SEQ_LEN

field represents the total number of payloads needs to be aggregated. These two

fields ensure the aggregate function knows whether all payloads have been col-

lected for a certain job.

In the case of the partial aggregate inside the function, it produces multiple

payloads, and each of them may be shuffling to different functions in the next

function group (see Section 3.5.5). The Shuffle ID is used to assign an incremental

number to each output payload in the function, and payloads (across function

instances) in the same stage belonging to the same partition (range) are allocated

the same shuffle id. This is mainly used to distinguish different aggregate tasks

of the same query job since they can all be mapped the same next function. For

example, the green payload’s shuffle id is 1 and the blue payload is 2 in Figure 3.5.

94

F2

F2F2

F2

Q
ue

ry
 S

ta
ge

 2

F1 F1 F1 F1

Q
ue

ry
 S

ta
ge

 1

QS-01-00 QS-01-00 QS-01-00 QS-01-00

QS-03-06

F3

F3

F3

F3

F3

F3

F3

F3Q
S-

03
-0

5

Fu
nc

tio
n

G
ro

up

QS-03-07

QS-03-00
Q

S-03-01

Q
ue

ry
 S

ta
ge

 3

QS
-0

3-
04

Sh
uffl

e
ID

: 1
, S

EQ
_N

UM
: 1

Sh
uffl

e
ID

: 2
, S

EQ
_N

UM
: 1

Sh
uffl

e
ID

: 1
, S

EQ
_N

U
M

: 2

Sh
uffl

e
ID

: 2
, S

EQ
_N

U
M

: 2

Sh
uffl

e
ID

: 1
, S

EQ
_N

U
M

: 2

Sh
uffl

e
ID

: 2
, S

EQ
_N

U
M

: 1

Sh
uffl

e
ID

: 2
, S

EQ
_N

U
M

: 2

Sh
uffl

e
ID

: 1
, S

EQ
_N

U
M

: 1

QS-03-02QS-03-03

QS-02-06
QS-02-05

Sh
uffl

e
ID

: 2
, S

EQ
_N

U
M

: 3

Sh
uffl

e
ID

: 1
, S

EQ
_N

U
M

: 3

Sh
uffl

e
ID

: 2
, S

EQ
_N

U
M

: 4

Sh
uffl

e
ID

: 1
, S

EQ
_N

U
M

: 4

Q
ue

ry
 S

ta
ge

 0

QS-00-00

F0
In

vo
ke

Fi
gu

re
3.

6:
M

ul
ti-

le
ve

lS
hu

ffl
in

g.

95

3.6.0.2 Global Arena

Static initialization happens before the query code starts running in the func-

tion. Listings 3.1 (line 23) shows the INIT code runs when a new execution en-

vironment is running for the first time, and also whenever a function scales up

and the Lambda service is creating new environments for the function. The ini-

tialization code is not run again if an invocation takes effect on a warm instance.

Static initialization is the best place to allow a function to reuse global resource in

the same environment over multiple invocations. The cloud context and memory

arena are deserialized or created in the initialization phase and are only loaded

once per environment, avoiding them from being loaded on every invocation.

Arena is a global versioned hash map that aggregates data partitions outside

of the function handler to ensure the data integrity for further stream processing.

The key is a tuple including the QID and Shuffle ID of the payload. The value

containing the currently received payloads. The SEQ_LEN field in each payload

indicates the total number of payloads that the current session needs to collect.

AWS Lambda does not yet provide per-instance concurrency [136], Flock decom-

presses and deserializes data only after receiving all payloads, allowing for max-

imum parallelization.

The function can receive the same payloads several times for async function

invocation due to Lambda’s internal queue is eventually consistent [116]. The

bitmap field is provided for this reason: it guarantees that each payload is aggre-

gated and processed only once. The payload’s SEQ_NUM is a bitmap index that rep-

96

resents each payload as a single bit to track the aggregation state. The function

can handle the same payload many times without incurring repeated duration

expenses while utilizing bitmap. Even if the function output is empty, payloads

carrying just metadata must be passed to the next function.

3.6.0.3 Multi-level Shuffling

Let’s have a look at the query execution plan for an online auction system in

Figure 3.2. The query is divided into four stages by Flock, and the whole execution

flow on cloud functions is represented in Figure 3.6.

Stage 0: This stage reads upstream streaming data first, until the time win-

dow is reached. Separate cloud functions can be used for the auction and bid

data sources, however just for simplicity, both data sources (Bid and Auction) are

read in the same running instance. The repartition operator uses a hash of an ex-

pression (the join key) and the number of partitions (here, M=4) to map N input

partitions to M output partitions. The data to be distributed in such a way that

the same values of the keys end up in the same partition or payload. To deliver

payloads to the next query stage, Flock calls the next function 4 times.

Stage 1: Lambda starts four instances, one for each payload to process. Each

input payload has a distinct SEQ_NUM ranging from 1 to 4. The function then per-

formed a local hash aggregation and repartitioned the partitions into two output

payloads (green and blue boxes) after the hash join. The output payload inherits

the input payload’s SEQ_NUM. Based on the payload position, shuffle ids are as-

97

signed in increments of one. Each function uses the same deterministic seed to

generate the same hash key, then does a single lookup to establish a starting point

in the hash ring, then picks each next function counterclockwise for each payload

and calls it in parallel.

Stage 2: The current function, unlike stage 1, collects multiple input payloads

in the global arena (see Section 3.6.0.2). Shuffle ids are allocated in the same way

in the current function’s output payloads. The input’s shuffle id, on the other

hand, must be set to the output’s SEQ_NUM so that the next function name can

determine whether or not payloads are duplicates that can be aggregated by the

same aggregate job.

Stage 3: The third stage produces output partitions, and its next function is

a data sink action that delivers the result to downstream services in the current

function.

3.7 Evaluation

In our evaluation we seek to answer the following questions in correspond-

ing sections:

1. How does x86_64 and arm64 architecture affect Flock performance?

2. How performant is Flock compared to alternatives?

3. How does Flock’s operational cost compare to alternatives as query work-

loads change?

98

20.2 9.5 4.2 2.2

1.5

1.4

29.7 14.2 5.4 3.0

4.4 2.0

357.5 173.8 84.7

42.3

24.2

22.0

432.0 201.5 92.1 48.4

31.9

24.8

251.8 121.8 56.9

28.1

15.5

14.9

239.5 113.7 51.4

26.1

15.4

13.3

60.2

29.8 16.3

16.1

16.2

16.3

91.5 44.0 20.9

24.4

25.6

24.7

Graviton2: arm64 neon x86_64 avx2

Filter

JoinAggregate

Sort

 D

ur
at

io
n

(m
s)

0

200

400

0

50

100

 Lambda Function - Memory Size (GB)
0.5 1 2 4 8 10 0.5 1 2 4 8 10

Primitive query operators
-10% -28%

-14% -31%

N
EX

M
ar

k

N5

N6

Billed Duration (sec)
0 5 10 15 20 25

Lambda Pricing ($10-4)
0 2 4 6 8

NEXMark N5 and N6
Figure 3.7: Lambda function on x86 and Arm processors.

3.7.1 Experimental Setup

To evaluate Flock’s performance cost, we run our experiments on the fol-

lowing two streaming benchmarks: Yahoo Streaming Benchmark (YSB) [92] is a

simple advertisement application, and its job is to read various JSON events from

Kafka and store a windowed count of relevant events per ad campaign into Redis.

NEXMark Benchmark [91] is an evolution of the XMark benchmark for an online

auction house. NEXMark presents a schema of three concrete tables, and a set of

queries to run in a streaming sense. NEXMark attempts to provide a benchmark

that is both extensive in its use of operators, and close to a real-world applica-

tion by being grounded in a well-known problem. The original benchmark was

99

adopted and extended by the Apache Foundation for their use in Beam [147],

a system intended to provide a general API for a variety of streaming systems.

To make things a bit more dynamic, they changed the size of the windows to be

merely ten seconds, rather than the minutes and hours the original specification

sets. They also added more queries [148], for example, q1 - q8 are from original

NEXMark queries, q0 and q9 - q13 are from Apache Beam6. We follow the Beam

implementation, as it is the most widely adopted one.

3.7.2 x86 vs Arm Architectures

The AVX2 and ARM Neon intrinsics are used in this experiment, which rely

on Rust SIMD auto-vectorization as well as handwritten arrow kernels that explic-

itly employ SIMD intrinsics. We generated 500,000 NEXMark events, including

9995 person events, 29985 auction events, and 459770 bid events. Each subplot

performs a different operation on the events. The proportion of a function’s allot-

ted memory determines the CPU share dedicated to it. This is why we tweak total

memory to tune the CPU [149].

Figure 3.7(a) shows the performance of the lambda function executing fours

query operators (filter, join, aggregate and sort) under the x86 and Arm architec-

tures while varying the function’s memory size. Except that Arm is 5-10% slower

than x86 in aggregate operations, the billed duration of all other operations is less

on Arm than on x86. The filter’s duration accounts for 34% - 77% of total x86
6The NEXMark Query 13 is BOUNDED_SIDE_INPUT_JOIN: Joins a stream to a bounded side

input, modeling basic stream enrichment.

100

Flink-c4.2xlarge
Flink-c4.4xlarge
Flink-c4.8xlarge

Flock-512MB
Flock-2GB
Flock-8GB

0.4
1.0
1.0
0.9
1.0
1.0

0.4
1.0
1.0
0.9
1.0
1.0

0.4
0.9
1.0
1.0
1.0
1.0

0.3
0.6

1.0 0.5
0.7
0.7

0.3
0.6

0.9 0.7
0.7 0.5

0.9
0.9
0.9
0.9
0.9

0.5
0.8

1.0 0.9
0.9
0.9

0.4
0.8

1.0 0.9
0.9
1.0

N1 N2

N3 N5

N7

O
O

M

N10

N11 N12

 T
hr

ou
gh

pu
t (

M
 re

c/
s)

0

1

0

1

0

1

0

1

Flink-c4.2xlarge
Flink-c4.4xlarge
Flink-c4.8xlarge

Flock-512MB
Flock-2GB
Flock-8GB

53
21 21 21 21 21

50
20 21 21 21 21

52
23 20 21 21 21

62 31 20
37 30 29

63 35 22

31 29

42
23 21 22 21 21

44
24 21 22 21 21

51
25 21 22 21 21

N1 N2

N3 N5

N7 N10

N11 N12

O
O

M

 T

im
e

(s
ec

)

0

50

0

50

0

50

0

50

Flink-c4.2xlarge
Flink-c4.4xlarge
Flink-c4.8xlarge

Flock-512MB
Flock-2GB
Flock-8GB

52.9 20.6
20.7

13.7 4.7
4.3

49.9 20.3
20.8 12.6 4.3

4.2

52.2 22.9
20.1 10.8 4.2

4.1

61.5
31.2 20.3
31.7

9.9 7.8

62.9
35.2 21.8

14.7 8.8 5.6

42.4 23.0
21.4

31.2 15.4
11.0

44.4
23.8
20.8
15.4 8.4

8.3

51.0
24.9
20.8
18.7 8.8

8.8

N1 N2

N3 N5

N7 N10

N11

O
O

M

N12

 B

ille
d

D
ur

at
io

n
(s

ec
)

0
20
40

0

50

0

50

0
20
40
60

Flink-c4.2xlarge
Flink-c4.4xlarge
Flink-c4.8xlarge

Flock-512MB
Flock-2GB
Flock-8GB

0.40
0.80
1.01

0.02
0.02

0.08

0.40
0.80
1.01 0.02

0.02
0.08

0.40
0.80
1.01 0.01

0.02
0.08

0.40
0.80
1.01 0.04

0.05
0.15

0.40
0.80
1.01 0.02

0.04
0.11

0.40
0.80
1.01 0.04

0.07
0.21

0.40
0.80
1.01 0.02

0.04
0.17

0.40
0.80
1.01 0.02

0.04
0.16

N1 N2

N3 N5

N7 N10

N11 N12

 H

ou
rly

 C
os

t (
$)

0.01

1.00

0.01

1.00

0.01

1.00

0.01

1.00

Figure 3.8: Performance cost of executing 20 million NEXMark events and 1
million events per second.

101

time, the join’s duration for 76% - 91% of total x86 time, and the sort’s duration for

61% - 76% of total x86 time on Arm. Furthermore, Arm’s duration charge is 20%

less expensive per millisecond than x86. For example, the 1ms charge for ARM

512MB is $0.0000000067, which is 20% cheaper than $0.0000000083 for x86 [150].

When compared to traditional x86 architecture on cloud, Flock on AWS Graviton2

processor saves more billing cost due to the shorter duration and lower charge.

Figure 3.7(b) shows the difference between NEXMark N5 and N6 under dif-

ferent architectures. N5 introduces the first use of windowing in NEXMark, and

requires a sliding window to boot, which calculates the hot items in the last 10 sec-

onds and update every 5 seconds. N6 is the only one in NEXMark that makes use

of partition by. Both queries executed for 20 seconds, 1M event per second. N5

runs 14% faster than x86 on Arm, which is 31% cheaper than x86. Similarly, N6 is

also 28% cheaper. In comparison to x86, Arm is indeed faster and less expensive.

The rest of Flock experiments are run on Arm-based Graviton2 processors.

3.7.3 Performance Cost

Figure 3.8 compares the throughput, query time, billed duration and hourly

cost of executing 10 million events and 1 million events per second between Flink

and Flock under different configurations. Flink was deployed on EC2 instances –

c4.2xlarge, c4.4xlarge and c4.8xlarge respectively with different numbers of CPU

cores and memory sizes. EC2 instances are long-running, we set the duration

of Flink to be the same as the query time. However, for Flock, the billed duration

102

refers specifically to the execution part of the cloud functions and does not include

data preparation and transmission. We configured 3 memory sizes for Flock’s

cloud functions — 512 MB, 2 GB and 8 GB. Flink uses 8 workers, which equals

to the concurrency of Flock function. Flock updates the state asynchronously

to S3, whereas Flink updates the state to the local RocksDB [67]. To avoid the

compaction overhead in EC2 instances, we only compared Flock and Flink in our

experiments with the hashmap state backend enabled.

We ran the NEXMark queries 1, 2, 3, 5, 7, 10, 11, and 12 in the experiments.

N1, N2, and N3 are elementwise queries that feed Flock a micro-batch of events

per second. N5 is a sliding window query that schedules overlapping events that

occurred in the last 10 seconds and updates every 5 seconds. N7 is a tumbling win-

dow query that aggregates events using distinct time-based windows that open

and close at 10 second intervals. N10 is a query to log all occurrences to the file

system – Flink saves output to the local file system, whereas Flock saves data to

S3. N11 is a session window query that groups events for the same user that occur

at similar times, while filtering out periods of time when no data is available. N12

is a tumbling window query with a 10 second interval dependent on processing

time.

The c4.2xlarge has 8 vCPUs and 15.0 GiB of memory, but the performance

is still far inferior to the Flock-512MB. This is because Flink is a Scala-based im-

plementation, whereas Flock is a Rust-based high-performance query engine that

includes SIMD and mimalloc [117] and is based on Arrow DataFusion [96]. When

using the c4.4xlarge or c4.8xlarge, Flink can generally obtain similar throughput

103

and query time as Flock. The duration of Flock-512MB on N10 is greater than

query time, this is because the processing of events from distinct mini-batches or

windows can be separated, and then we can invoke new cloud functions to pro-

cess any stacking events so that pipeline parallelism hides part of the duration

delay, thereby shortening the query response time. The query time isn’t lower

than 20 seconds, since we produce 20 million events in total, and only process

1 million events per second. When Flock-512MB is operating on N7, an out of

memory error is thrown. This is due to N7’s need for 676 MB of RAM to collect,

decompress, and deserialize data. Even if the function is not completed correctly,

it will be charged for the time it took.

As illustrated in the hourly cost subgraph. Flock can reduce the hourly cost

to 1/10 with similar performance to Flink. When the streaming data rate is low,

the volume is modest, or the data is queried rarely, Flock’s cost performance is

more than two orders of magnitude better than Flink.

3.7.4 Invocation Payload

Table 3.2 shows the difference in latency of payload and S3 communication

when Lambda memory size is set to 128MB, rather than end-to-end query process-

ing. The coordinator overhead of the state-of-the-art system such as Starling [15],

for example, is not included. Figure 3.9 therefore compares the invocation with

payload to S3 communication in terms of latency, duration and billed cost while

varying the number of events on NEXMark Q3. The memory size of the Lambda

104

3534 3585 3773

6211

21 28 100
1045

Flock-S3
Flock-Payload

La
te

nc
y

(m
s)

0

2000

4000

6000

1k 10k 100k 1M
134 223

660

3488

2 5 52
545

Flock-S3
Flock-Payload

D
ur

at
io

n
(m

s)

0

2000

4000

1k 10k 100k 1M

54 54 54 54

0 0 0 0

Flock-S3 Flock-Payload

Bi
lle

d
S3

 ($
10

-4
)

0
20
40
60
80

Records
1k 10k 100k 1M

54.016 54.015 54.040 54.230

0.0001 0.0003 0.0035 0.0360

Flock-S3 Flock-Payload

To
ta

l C
os

t (
$1

0-4
)

0
20
40
60
80

Records
1k 10k 100k 1M

Figure 3.9: Flock Payload versus Flock S3 on NEXMark Q3.

function is set to 512MB in this experiment, and it is launched in us-east-1, with

Flock-S3’s coordinator is deployed on the client-side.

For Flock-S3, the latency minus the duration, which is about 3 seconds, is

used to indicate the overhead of coordinator and function calls. Flock-S3 is an

order of magnitude slower than Flock-Payload due to the round trips between

the coordinator and cloud functions. It also has a one-order-of-magnitude higher

billed duration cost than Flock-Payload. This is because S3 reads and writes all

happen during function execution, and I/O latency is billed. In the case of Flock-

Payload, however, raising the number of events increases the payload size, which

impacts delivery time and execution time, and hence query latency, but delivery

time has no effect on the billed duration.

The S3 subgraph shows the cost of utilizing S3 as an external communication

medium for query processing. PUT, COPY, POST, LIST requests are charged $0.005

per 1,000 requests, and GET, SELECT, and all other requests are charged $0.0004

per 1,000 requests [151]. For S3 reads and writes, it actually means we are billed

105

ceil(requests / 1000) * 0.0054 where requests is the number of that type of

request we made during a monthly billing interval within one S3 region. Here,

because the total number of S3 requests is less than 1000, we are directly charged

$0.0054. Flock-Payload does not use S3 to transmit data between functions, there

is no extra cost. The total cost is shown in the last subgraph, with the integer

component coming from S3 communication and the fractional part coming from

the duration cost.

3.7.5 Distributed Query Processing

When compared to query execution on a single function, distributed query

execution has a substantial overhead and should be applied only when there is

benefit in doing so [152]. Distributed execution splits the query plan into query

stages, each of which is handled by a lambda function or function group. First, it

can handle larger volumes of data. Due to each Lambda function can be allocated

up to 10 GB of memory [88], it partitions input data into distinct function instances

using hash shuffling, each of which performs the query independently. Further-

more, since AWS Lambda currently only supports the single request paradigm,

the aggregate function must obtain all shuffled data from the previous query stage

in a serial manner. Distributed execution can dramatically minimize latency by

lowering the payload size and number of aggregates.

Figure 3.3 shows the latency and billed duration of NEXMark Query 4 and

YSB under centralized and distributed executions. We produced 10 million events

106

for NEXMark N4. For centralized mode, Flock invoked the same function instance

65 times to complete N4. In distributed mode, ordinary lambda functions have a

concurrency of 1000 by default , the aggregate function group has a size of 8, and

each function member has a concurrency of 1. The latency of N4 is reduced by 4

times using distributed mode, but the billed duration is indeed 10 times that of

the centralized mode. This is because N4 is divided into four query stages, each

of which is called multiple times due to shuffle or aggregate, and each function

execution results in a billable duration.

YSB models a simple ad account environment, where events describing ad

views enter the system and those of a certain type are accounted to their associated

campaign. Every ten seconds Flock is expected to report the total ads for each

campaign within those ten seconds. YSB is a tumbling window of 10 seconds,

and we generate 1 million events per second. Because ad event characteristics are

all string types, and a single ad event is much larger than a NEXMark event, we

raised the capacity of the Lambda function to 8GB. This is because the centralized

mode cannot process queries in a 2GB memory environment. The centralized

version of YSB has a substantially higher latency than the distributed mode by an

order of magnitude. This is also because the ad event is excessively big, requiring

Flock to invoke the same function instance 540 times in order to collect 10 seconds

of window data and run the query. On the other hand, the billed duration in the

distributed mode is comparable to that in the centralized mode, implying that

distributed query processing has clear benefits on YSB.

107

Query Mode Memory Latency Billed Duration
N4 centralized 2G 17.49s 6.25s
N4 distributed 2G 4.12s 59.42s
YSB centralized 8G 113.38s 31.54s
YSB distributed 8G 2.95s 33.53s

Table 3.3: Distributed query processing.

3.7.6 Cold Start

Figure 3.10 shows the latency and billed duration while running NEXMark

N3 multiple times with different number of events per second. A cold start is

the first request that a new Lambda instance handles. This request takes longer to

process because the Lambda service needs deploy our code and spin up a new mi-

croVM [140] before the request can begin. The first request handled by a Lambda

instance will also trigger a one-time function that initializes the Lambda execu-

tion context from the cloud environment (see line 23 in Listings 3.1). When the

number of events per second is 1K or 10K, both the first and second invocations to

the lambda function have a long delay. The second call’s billed duration has de-

creased dramatically, indicating that it is not a new instance, but its overall time

has risen to 1.6 seconds. The third subgraph, on the other hand, only has one "cold

start". We believe this is some unexplained behavior of AWS Lambda infrastruc-

ture. As expected, warm runs had a one- to two-order-of-magnitude decrease

in latency. For stream processing, as long as the maximum idle time limit is not

exceeded, Flock won’t be troubled by cold run because Lambda is almost guar-

anteed to be warm since the query is executed continuously. For workloads that

108

401

1585

19 23 22 21 21

225 10 3 2 2 2 2

392

1531

33 32 25 24 23

222 14 7 5 4 4 4

1664

131

122

119

130

122

121

103 65 62 64 47 42 41

1k events - total time
10k events - total time

100k events - total time
billed duration

0

1000

2000

M
illi

se
co

nd
s

0

1000

2000

0

1000

2000

NEXMark Q3: # runs
1 2 3 4 5 6 7

Figure 3.10: Lambda cold start cost on NEXMark Q3.

exceed the idle time limit, AWS Lambda supports provisioned concurrency [153]

with extra cost that initializes a requested number of execution environments to

respond immediately to the function’s invocations.

3.8 RELATED WORK

Serverless workflows. Major cloud providers introduced serverless work-

flow services[154, 155, 156], which provide easier design and orchestration for

serverless workflow applications. Netherite [157] and Kappa [158] are distributed

execution engines that offers high-level language programming environment to

execute Durable Functions efficiently. These frameworks are complete program-

ming solutions that support advanced features (arbitrary composition, critical

109

sections), but they are not well-suited for supporting large, complex analytics

jobs. Because they involve manually combining operators into a DAG utilizing

vendor LOCK-in API. For example, Netflix’s Conductor [159], Zeebe [160], and

AWS Step Function [154] use a JSON schema for authoring workflows, and Fis-

sion Workflows [161], Google Cloud Composer [156], and Fn Flow [162], are

somewhat more code-based, as the schema is constructed in code. Without query

optimizer, the customized jobs are error-prone and suboptimal, resulting in signif-

icant performance loss, and are seldom reused for streaming workloads. Instead,

Flock supports Dataframe and SQL API to make streaming computation more

accessible to users.

Data passing is a key challenge for chained cloud functions. Pocket [131],

Locus [13] and Caerus [16] implement multi-tier remote storage solutions to im-

prove the performance and cost-efficiency of ephemeral data sharing in server-

less jobs. Cloudburst [163] proposes using a cache on each lambda-hosting VM

for fast retrieval of frequently accessed data in a remote key-value store, adding a

modicum of statefulness to serverless workflows. Lambada [14] and Starling [15]

use S3 as exchange operators for shuffling large amounts of data. SONIC [164]

uses a hybrid and dynamic approach to choose data passing methods (VM- or

Remote-Storage) automatically between any two serverless functions. Compared

to state-of-the-practice systems, Flock is the first system to build a steaming query

engine for data passing on cloud function services using the payload of function

invocations, which is a general solution aimed at major cloud vendors without

using external communication mediums.

110

Serverless streaming analytics. Flock shares the similar vision with Orleans

on the virtual actor model [165, 166], an actor is automatically activated on de-

mand to enable a serverless event-stream processing service with pay-for-use. The

most similar work to ours may be Apache Flink Stateful Functions [167]. Flink

takes care of the state and messaging, while the application runs as a stateless

Kubernetes deployment, or as FaaS functions. Flink’s TaskManagers are coordi-

nators that manage the state, handle the messaging, invoke the stateful functions

and go through a service that routes the resulting messages to the next respective

target functions, for example a Kubernetes (load-balancing) service, the AWS re-

quest gateway for Lambda, etc. Stateful Functions, which are atomic units of iso-

lation, distribution, and durability, are now the building blocks of applications

that are similar to Azure Durable Functions. Flock, on the other hand, is the first

cloud-native streaming processing engine to enable SQL on FaaS with heteroge-

neous hardware (x86 and ARM) with the ability to shuffle and aggregate data

without the need for a centralized coordinator or remote storage like S3.

111

Chapter 4: BullFrog: Online Schema Evolution via Lazy Evalua-

tion

BullFrog is a relational DBMS that supports single-step schema migrations

— even those that are backwards incompatible — without downtime, and with-

out need for advanced warning. When a schema migration is submitted, Bull-

Frog initiates a logical switch to the new schema, but physically migrates affected

data lazily, as it is accessed by incoming transactions. BullFrog’s internal con-

currency control algorithms and data structures enable concurrent processing of

schema migration operations with post-migration transactions, while ensuring

exactly-once migration of all old data into the physical layout required by the new

schema. BullFrog is implemented as an open source extension to PostgreSQL.

Experiments using this prototype over a TPC-C based workload (supplemented

to include schema migrations) show that BullFrog can achieve zero-downtime

migration to non-trivial new schemas with near-invisible impact on transaction

throughput and latency.

112

4.1 Introduction

Continuous Deployment (CD), an aspect of DevOps [168], is the increas-

ingly popular practice of frequent, automated deployment of software changes [169,

170], with some practitioners deploying multiple changes per day [171]. To re-

alize the benefits of CD, it must be straightforward to deploy updates to both

front-end code and the database, even when the database’s schema has changed. Un-

fortunately, this is where current practices run into difficulty. [171] stated in their

retrospective on CD practices at OANDA, ”database schema changes always were

always ad hoc and full of fear.” [169] and [170] confirmed via surveys of more

than 100 experts and practitioners that database schema changes are particularly

challenging to handle. Nonetheless, there is evidence that schema changes are

also frequent: [18] examined changes in releases to a dozen open-source applica-

tions and found that schema changes occurred roughly once per week, on average.

In our own examination of the development history of 20 open source Ruby on

Rails applications found on GitHub (including the Sharetribe and GitLab repos-

itories studied by Bailis et al [172]) we found 1,611 schema changes, of which

approximately 20% required significant physical data movement.

Application developers should be free to change the code and database schema

as they see fit, without concern for the complexities of deploying those changes

later. For example, they should be able to delete or add columns or constraints,

join tables, split tables, etc. according to their needs. To deploy an update, the

developer defines an evolution transaction that is used to migrate the existing data

113

to the new schema. The CD system uses that transaction to update the current

database, and then deploy the updated front-end instances. If downtime is not

a concern, then the simplest way to do this is to shut down all of the application

instances, migrate the data, and then restart with the new instances. Of course,

downtime frequently is a concern, and with multiple updates happening per day,

the simple shutdown-and-restart approach is unacceptable.

State-of-the-art approaches to schema migration without downtime use a

multi-step approach. In such approaches, the database system migrates a copy of

the data to the new schema in the background, before the front-end instances can

switch over to it. During this migration window, writes to the old schema must

be propagated to the new copy, typically via triggers or log shipping of updates

[173, 174, 175, 176, 177, 178, 179, 180]. Aside from the obvious side effect that

such approaches approximately double the resource requirements of the system,

the requirement to delay the front-end application migration until the database

is ready is fundamentally antithetical to the spirit of the continuous deployment

movement.

To avoid such delays, new-version transactions can be rewritten so they work

on the old schema while the data is migrated; rewriting can occur in the other di-

rection too, to allow both application versions to coexist [173, 181, 182, 183, 184,

185]. Unfortunately this limits schema evolution to backwards compatible migra-

tions, since transactions must be rewritable/processable over all active schema

versions. For example, if an application evolves such that data must be inserted

that violates previously defined integrity constraints, the constraints cannot sim-

114

ply be dropped in the new schema, because doing so would be backwards-incompatible:

this data cannot be inserted into the old schema. To cope, developers may be

forced to employ non-ideal structures and/or temporary tables and front-end code,

thereby accruing technical debt in applications and decay in databases [186], while

adding complexity to the update process (see the OANDA quote above). All of

these problems have pushed application developers toward "NoSQL" databases

that avoid predefined schemas entirely, and never reject writes that use a different

schema than has been previously used.

In this chapter we propose a mechanism for schema evolution, that we call

BullFrog1, that avoids the delayed deployment of the new schema required in the

multi-step approaches, while also avoiding the migration restrictions and database

decay of the backwards compatible approaches. BullFrogdeploys arbitrary schema

changes immediately, in a single step, in conjunction with CD-based updates to

a web-based or mobile service. Rather than introduce downtime by halting exist-

ing service while the evolution transaction takes place, BullFrog logically converts

the database to use the new schema immediately without any physical changes of

the stored data. Updated front-end instances may now submit transactions using

the new schema. Doing so prompts BullFrog to migrate any relevant tuples from

the old schema’s tables to the new/updated ones before processing the transac-

tion; i.e., tuples are migrated lazily, as needed. For backward-compatible schema

changes, BullFrog permits old-version front-end instances to be updated gradu-

ally; for incompatible changes, front-end instances are updated as a big flip [187];
1Bullfrogs do not sleep, much like our zero-downtime migration system.

115

the latter can be done by simply restarting them (e.g., when they submit an incom-

patible query [188]), or using a more sophisticated dynamic software updating

scheme [189, 190, 191].

BullFrog uses a light-weight concurrency control mechanism that ensures

exactly-once migration of data under contention. Shared data structures synchro-

nize record migration states and allow database system workers that are process-

ing separate transactions to cooperate in parallel without missing or duplicating

tuples, and without landing in stuck states due to aborts or cyclic dependencies.

We have implemented a prototype ofBullFrog as an extension to PostgreSQL.

We use this prototype to evaluateBullFrog by measuring its performance on vari-

ations of the standard TPC-C benchmark that include schema migration transac-

tions. We find that under realistic deployment scenarios, BullFrog is able to sup-

port complex schema migrations in a near invisible fashion, with no downtime,

no observable effects on system throughput, and limited latency increases. Bull-

Frog is thus the first system, to the best of our knowledge, to support single-step,

non-backwards compatible schema migrations without downtime.

In summary, BullFrog makes the following contributions:

• A proposed system design (BullFrog) that uses lazy schema migration to im-

plement single-step, on-line schema evolution; our proposal is that schema mi-

grations are installed quickly and data is migrated on demand as queries are

serviced subsequently. This approach has the benefit of reducing overall down-

time.

116

• Algorithms and data structures that achieve efficient, exactly-once physical mi-

gration of data under contention.

• An implementation of BullFrog in PostgreSQL supports three major categories

of schema migration: projections, aggregations and joins; they can be used as

primitives for expressing other schema migrations.

• An extension of the TPC-C benchmark that includes non-trivial and non-backwards

compatible schema migrations.Our experiments on this benchmark demonstrate

that our technique can reduce query latencies w.r.t the eager migration tech-

niques by more than an order of magnitude while maintaining acceptable trans-

actional throughput during schema migration.

4.2 Request-Driven Lazy Migration

Many modern database systems, however, allow the schema evolution to

be performed online. Such migrations are mostly restricted to simple schema

changes such as changing the name of a column, adding an index, etc. and does

not handle non-trivial schema changes. We focus on particularly those schema

changes that also results in data movement as a part of the schema change op-

eration. These schema changes take longer to execute with respect to the former

schema changes since it involves movement of data from one table to another.

Typical examples of such schema changes include adding a new column to a ta-

ble with data values obtained from other tables, selecting only certain columns or

joining two tables to form a new table, splitting a table into two tables, storing a

117

table aggregation into another table.

In particular, we propose BullFrog, a system that performs online schema

evolution, where the old schema is migrated lazily to the new schema.

4.2.1 Basic approach

A schema migration request is submitted to BullFrog as one or more DDL

statements. These statements may create new tables or modify or delete existing

tables. Data from existing tables may be specified to initialize or update new or

modified tables. The new schema becomes immediately active as soon as it is pro-

cessed by BullFrog. For non backwards-compatible "big flip" migrations, the old

schema becomes inactive, and all subsequent requests that access it are rejected.

For requests over the new schema, BullFrog identifies tuples in the old tables that

are potentially relevant, physically migrates them to the new/modified tables, and

then processes the original request on the new/modified tables.

A key question is how to determine which old-schema tuples are “poten-

tially relevant” and should thus be moved to the new tables. In BullFrog this

is done in two steps. First, when the schema change is first installed, a read-only

VIEW is set up between the old and new tables based on the migration statements

submitted by the client. Then, when a user submits a query or transaction against

the new schema, BullFrog uses any predicates that are found in the query to

essentially refine this VIEW, i.e., to limit the set of tuples still located in the old

table(s) that are potentially relevant to the query result.

118

Once the relevant tuples are identified any required data movement can take

place (if all data is already present, the transaction can go ahead immediately).

This is done by (1) using the VIEW to convert queries over the new schema into

queries over the old schema using standard database VIEW expansion; (2) ex-

tracting clauses from the query plan over the old schema that restrict the set of

tuples that are accessed; (3) inserting these self-same restrictive clauses into the

previously submitted schema migration DDL;2 and (4) processing this subset of

the migration operation and inserting the results into the new tables.

BullFrog ensures that data is migrated from the old to new tables exactly

once, even in the presence of concurrent transactions. Indeed, concurrent trans-

actions can accelerate the migration process by simultaneously operating on dif-

ferent parts of the database, or different parts of the same tables. We discuss the

concurrency module in detail in Section 4.3; the remainder of this section focuses

on transaction rewriting as if there is but a single (sequential) client.

Consider a hypothetical airline flight application with an original schema

containing two tables:

CREATE TABLE FLIGHTS (FLIGHTID CHAR(6) PRIMARY KEY, SOURCE

CHAR(3), DEST CHAR(3), AIRLINEID CHAR(2), DEPARTURE_TIME

TIMESTAMP, ARRIVAL_TIME TIMESTAMP, CAPACITY INT);

CREATE TABLE FLEWON (FLIGHTID CHAR(6), FLIGHTDATE DATE,

PASSENGER_COUNT INT CHECK (PASSENGER_COUNT > 0));

The FLIGHTS table contains general information about active flight routes,

and the FLEWON table contains daily flight statistics.
2Since the new table has been created already, the original DDL statement is changed to a DML

statement.

119

At some point the application developer makes some schema changes: (i)

rename FLEWON to FLEWONINFO; (ii) add a derived attribute, EMPTY_SEATS; (iii) add

attributes ACTUAL_DEPARTURE_TIME and ACTUAL_ARRIVAL_TIME to track the delay

incurred by each flight; and (iv) drop constraint (PASSENGER_COUNT > 0) to allow

for the airline to take packages rather than passengers during a pandemic. Change

(iv) is backward-incompatible.

This change is expressed with the following migration DDL:

CREATE TABLE FLEWONINFO AS (

SELECT F.FLIGHTID AS FID, FLIGHTDATE, PASSENGER_COUNT,

(CAPACITY - PASSENGER_COUNT) AS EMPTY_SEATS,

DEPARTURE_TIME AS EXPECTED_DEPARTURE_TIME,

NULL AS ACTUAL_DEPARTURE_TIME,

ARRIVAL_TIME AS EXPECTED_ARRIVAL_TIME,

NULL AS ACTUAL_ARRIVAL_TIME

FROM FLIGHTS F, FLEWON FI

WHERE F.FLIGHTID = FI.FLIGHTID);

Once the migration has been submitted, BullFrog creates a new transac-

tion that creates new, empty tables corresponding to the tables that are created or

modified in the migration request, along with a temporary VIEW (that will only

be used during the migration process) that contains the contents of the migration

request:

CREATE VIEW FLEWONINFO_VIEW AS (

SELECT F.FLIGHTID AS FID, FLIGHTDATE, PASSENGER_COUNT,

...); -- exactly matches FLEWONINFO def above

BullFrog also creates data structures (described in Section 4.3) to control concur-

rent migration processes and track migration status.

120

When the database system receives a client request that references any table

that was added/modified, BullFrog first migrates any relevant data from the old

tables, and then processes the original request over the new ones. To do this,

it uses filtering statements in the client request, typically located in the WHERE

clause of SELECT, UPDATE, and DELETE statements, to limit the scope of the lazy

migration. BullFrog attempts to convert these filters over the new schema into

filters over the old schema that match as few tuples as possible while still yielding

the set needed to fully process the client request.

As an example, consider the following client request.

SELECT * FROM FLEWONINFO WHERE FID = ’AA101’

AND EXTRACT(DAY FROM FLIGHTDATE) = 9;

The FID = ‘AA101’ predicate will be converted into FLIGHTID = ‘AA101’ over the

FLIGHTS and FLEWON tables, while the predicate EXTRACT(DAY FROM FLIGHTDATE)

= 9 will be applied on the FLEWON table. Only those tuples from these old tables

that return true for these converted predicates need to be migrated; all other tu-

ples can be ignored and migrated at a later time.

Although for this example it was straightforward to convert the predicates

over the new schema into predicates over the old schema, in some cases such a

conversion is non-trivial or impossible. In the worst case, all tuples in the old

schema must be deemed potentially relevant (see Section 4.2.4).

BullFrog uses the VIEW that it created during the migration initialization

step discussed above to leverage existing capabilities in database systems to move

filters across schemas. Most database systems implement view expansion to rewrite

121

requests over a view into requests over the original tables. BullFrog accesses the

query plan that was generated after view expansion and query optimization, and

extracts any filtering statements over the old schema.

For the example client request, the output from PostgreSQL EXPLAIN (which

shows its query plan) is shown below:

QUERY PLAN

--

Nested Loop (cost=4.34..14.04 rows=1 width=99)

-> Seq Scan on flights f (cost=0.00..4.50 rows=1 width=27)

Filter: (flightid = ’AA101’::bpchar)

-> Bitmap Heap Scan on flewon fi

(cost=4.34..9.52 rows=1 width=15)

Recheck Cond: (flightid = ’AA101’::bpchar)

Filter: (date_part(’day’::text, (flightdate)::timestamp

without time zone) = ’9’::double precision)

-> Bitmap Index Scan on flewon_flightid_idx

(cost=0.00..4.34 rows=9 width=0)

Index Cond: (flightid = ’AA101’::bpchar)

The predicates over the view have been converted into predicates over the original

tables; we see the predicate FLIGHTID = ’AA101’ on both FLIGHTS and FLEWON ta-

ble (line 5 and 13 in the query plan) and the predicate EXTRACT(DAY FROM FLIGHTDATE)

= 9 on the FLEWON table (line 9-10 in the query plan). BullFrog inserts these pred-

icates into a version of the original schema migration DDL, except that the CREATE

TABLE statement in the query is substituted with an INSERT INTO statement, as

shown below.

INSERT INTO FLEWONINFO (

FID, FLIGHTDATE, PASSENGER_COUNT, EMPTY_SEATS,

EXPECTED_DEPARTURE_TIME, ACTUAL_DEPARTURE_TIME,

122

EXPECTED_ARRIVAL_TIME, ACTUAL_ARRIVAL_TIME)

(SELECT F.FLIGHTID, FLIGHTDATE, PASSENGER_COUNT,

(CAPACITY - PASSENGER_COUNT),

DEPARTURE_TIME, NULL, ARRIVAL_TIME, NULL

FROM FLIGHTS F, FLEWON FI

WHERE F.FLIGHTID = FI.FLIGHTID

AND F.FLIGHTID = ’AA101’ AND FI.FLIGHTID = ’AA101’

AND EXTRACT(DAY FROM FLIGHTDATE) = 9);

BullFrog implements DELETE and UPDATE statements by rewriting them

into SELECT statements on the old schema to migrate relevant tuples first, and

then processing the original request on the new schema. This limits BullFrog’s

reliance on views to read-only queries for which view expansion is trivial (via

nesting SQL statements in the FROM clause), and avoids the well-known problem

of performing updates through views.

INSERT commands generally can be performed over the new schema with-

out requiring any prior migration unless there are integrity constraints defined

on the new schema. Such constraints may expand the set of potentially relevant

data beyond the data specified by the client request. For example, if a unique-

ness constraint is defined on any column of the new table, then any INSERT com-

mands over the new schema (or updates to the unique attribute) must first mi-

grate records that have potentially conflicting values so that the constraint can be

properly checked over the new schema.

123

4.2.2 Background migrations

If parts of the input tables are never deemed relevant for client requests, a

purely lazy system will never migrate them. To ensure that all data is eventually

migrated, BullFrog initiates background migration threads that slowly inject sim-

ulated client requests that cumulatively cover the entirety of the old tables. When

these threads finish, the migration is complete and the old schema can be deleted.

4.2.3 Consistency

Unlike many of the state-of-the-art schema migration approaches discussed

in Section 4.1, BullFrog does not maintain replicas as part of its approach. Log-

ically, a given tuple starts in the old schema and eventually migrates to the new

schema, but never exists in both schemas simultaneously. Once it is migrated,

although a stale physical copy may remain in the old schema, the migration sta-

tus of that tuple prevents it from subsequently being accessed. Thus, there is no

concern for replica consistency in BullFrog3.

With regard to ACID consistency, BullFrogdoes not restrict what constraints

may be declared on the old schema or new schema. However, it does not automat-

ically generate integrity constraints based on the integrity constraints that existed

in the old schema. Rather, the schema migration DDL must explicitly (re)declare

any integrity constraints that must be enforced on the new schema. We will ana-

lyze the performance impact of needing to migrate coarser units of data in order
3Such as the notion of consistency used by the CAP [192] and PACELC [193] theorems.

124

to check integrity constraints in Section 4.4.5.

4.2.4 Limitations

BullFrog supports any legal SQL that can appear in DDL statements in the

database system, including any legally defined integrity constraint over the new

schema. However, some types of migrations reduce BullFrog’s effectiveness.

First, althoughBullFrogutilizes views in a read-only fashion, (thereby avoid-

ing the view update problem), any limitations in the view support of the under-

lying database system is passed through to BullFrog. One situation where this

limitation is manifested is when the migration is expressed using a user-defined

function (UDF) instead of standard SQL. Many database systems support the in-

corporation of calls to UDFs within views, but treat the UDF as a black box during

query planning. Any filtering conditions that appear within the UDF code will

be invisible to BullFrog and therefore will not be helpful to limit the scope of the

lazy migration.

Second, integrity constraints added during migration may cause arbitrary

data to be dropped. For example, if a uniqueness constraint is added to a table

with duplicates, most existing systems will return an error immediately upon the

ALTER TABLE command that attempted to add the constraint. However, a pure

lazy migration approach would prevent the system from becoming aware of the

problem until after the new schema is already live. Therefore, BullFrog must

either perform a synchronous check upon receiving a potentially problematic mi-

125

gration command so that it can return an error in advance, or otherwise proceed

with the pure lazy approach and give a warning that some records may fail to

migrate.

4.3 Lazy Migration, Concurrently

BullFrog must support concurrent client requests that may access overlap-

ping sets of data. Care must be taken to avoid migrating the same tuple more

than once, or deleting it from the old tables prematurely. BullFrog addresses

these problems by using custom data structures and mechanisms to track the sta-

tus of a tuple as it is migrated. At a high level, the technique involves locking

ranges of data in the old tables to ensure that once one worker begins to migrate

the data, no other concurrent worker can attempt to migrate it unless the first

worker fails. Care is taken to handle situations in which there is not a one-to-one

mapping of tuples under the old schema to tuples under the new schema. Fur-

thermore, efficient data structures are used to track the status of these locks and

the history of previously migrated data. In sum, BullFrog’s design allows con-

flicting migration efforts to continuously and efficiently make progress migrating

non-conflicting records, and avoid duplicating work for conflicting records.

4.3.1 Migration categories

A schema migration may involve one or more migration statements. Each

migration statement may involve one or more tables from the old schema (“input

126

tables") and generate one or more tables in the new schema (“output tables").4 For

each input table in a migration statement, BullFrog classifies it into four broad

categories that dictate how its tuples will be locked and tracked during migration.

One-to-one (1:1) migration. In a 1:1 migration, each tuple in an input table

has at most one corresponding tuple in the output schema (across all the output

tables). Examples of 1:1 migrations include adding one or more columns to a

table, dropping one or more columns from a table, changing the data type of a

column, adding constraints to a table (which may cause the output table to be a

subset of the tuples in the input table), or joining a table to another one using one

of its foreign keys, i.e., a foreign-key, primary-key (FK-PK) join. For 1:1 migra-

tions, BullFrog uses a bitmap to track migration and lock status. There are two

bits per tuple in the input table: one bit corresponding to that tuple’s migration

status, and the other corresponding to its lock status. Bitmaps provide a favorable

space-time trade-off, since they are effective at exploiting bit-level parallelism in

hardware and introduce limited overhead. Tuple-level granularity on migration

and lock status gives BullFrog the flexibility to migrate exactly those tuples that

it has determined to be potentially relevant to a particular client request without

having to drag along unnecessary data during the migration process. However,

BullFrog also provides the capability to track migration and lock status at less

granular levels (e.g. at a page level).

One-to-many (1:n) migration. In a 1:n migration, each tuple in the input

table may (but does not necessarily) produce more than one tuple in the output
4We ignore migrations that involve zero input or output tables since they are trivial.

127

schema. One example of such a migration is where an input table is split into

multiple output tables, with a single input tuple generating a tuple in each of the

output tables. Other examples include the primary key side of a FK-PK join and

either side of a many-to-many join. 1:n migrations work similarly to 1:1 migrations

in that a bitmap is used to track migration and lock status. The only additional de-

tail is that the migration bit for a tuple in the input table cannot be set (indicating

that it has been migrated) until all of its dependent tuples in the output schema

have been generated.

Many-to-one (n:1) migration. In a n:1 migration, a group of tuples from

the same input table combine to generate a single tuple in the output schema. An

example of an n:1 migration is where an output table is formed by performing a

group-by aggregation. For these migrations, BullFrog tracks migration and lock

status at the group level, and uses a hash table instead of a bitmap.

Many-to-many (n:n) migration. n:n migrations are implemented as an ex-

tension of n:1 migrations analogous to how 1:n migrations extend 1:1 migrations

as described above. Thus, a hash table is used instead of a bitmap, but the migra-

tion bit for a group in the input table is only set once all of the group’s dependent

tuples in the output schema have been generated.

We call 1:1 and 1:n migrations "bitmap migrations", and n:1 and n:n migra-

tions "hashmap migrations", and discuss each of these in more detail in the fol-

lowing subsections.

When the same input table is involved in separate migration statements,

BullFrog maintains multiple data structures for it. For example, if a column is

128

Algorithm 1: Per-transaction migration loop.
1 do
2 WIP, SKIP = empty list
3 Start transaction
4 Scan via client request predicates, for each tuple, T do
5 canMigrate = Call Algorithm 2 or 3 for T
6 if canMigrate == true then Include T in migration.
7 End transaction
8 for each tuple or group, G in WIP do
9 Update G’s status to migrated (not in-progress)

10 while SKIP is not empty
11 Run client request on new schema

added to a table (1:1 migration) in addition to it generating a new table via a 1:n

join (1:n migration), two bitmaps are allocated to manage the two migration op-

erations on that table.

4.3.2 Migration transaction processing

The migration work precipitated by a client request is performed in a se-

ries of transactions that is separate from, and completed prior to, processing the

client request transaction. Dividing work into multiple transactions simplifies

abort handling and avoids deadlock.

Algorithm 1 shows BullFrog’s per-worker logic for handling a client trans-

action during schema migration. Two worker-local lists, SKIP and WIP, start off

empty (line 2). After starting a transaction, it iterates through the records in the

old schema deemed to be potentially relevant via the predicate extraction process

described in Section 4.2.1 (lines 3-4). For each relevant record, T is migrated if

Algorithm 2 (bitmap migrations, Section 4.3.3) or Algorithm 3 (hashmap migra-

129

tions, Section 4.3.4) says it should be (lines 5-6).

Algorithms 2 and 3 add to WIP tuples or groups for which they returned true,

and add to SKIP those for which they returned false due to an existing migration

effort by a different worker. After the migration transaction completes, the status

of all tuples in WIP are updated to indicate that they have been migrated (lines

8-9) using the data structures to be discussed shortly. Finally, the loop body ends

and the SKIP list is checked (line 10). If it is non-empty, the do loop repeats (in a

fresh transaction) to recheck the status of these skipped tuples and migrate them

in the rare case that the other worker that was migrating them aborted (see Section

4.3.5).

4.3.3 Bitmap migrations

For 1:1 and 1:n migrations, lock and migration status are tracked using two

bits per migration granule, such as a tuple or page. (This section assumes tuple

granularity for simplicity.)

• A migrate bit that is initialized to 0 and is set to 1 when that tuple has been

migrated.

• A lock bit (or "in progress" bit) that is initialized to 0 and is set to 1 when

a worker begins the process of migrating this tuple. Setting the bit to 1 pre-

vents other migration workers from concurrently trying to migrate the same

tuple.

These two bits are stored in adjacent positions in the bitmap so both can be ac-

130

cessed in a single read of a memory word. The top of Figure 4.1 shows an ex-

ample bitmap, with [lock-bit migrate-bit] pairs associated with a set of 8 tuples. A

pair of [0 0] in the bitmap indicates that the tuple has not yet started the migra-

tion process, [1 0] means that the migration is "in-progress", and [0 1] means the

migration has completed. A state of [1 1] should never occur.

0����0 0����0 0����0 0����0 0����0 0����0 0����0 0����0

w0: migration granules [1, 2]

0����1 0����1 0����0 0����0 0����0 0����0 0����0 0����1

1 2 8

Time

BITMAP

lock-bit migrate-bit

BITMAP

w1: migration granule [8]

w2: migration granules [4, 6, 7]

4 3WIP

w3: migration granules [3, 5, 6]

WIP 6 7 5 SKIP 6

WIP WIP

0����1 0����1 1����0 1����0 1����0 1����0 1����0 0����1BITMAP

0����1 0����1 0����1 0����1 0����1 0����1 0����1 0����1BITMAP

Figure 4.1: Schema migration during transaction processing.

The bitmap is protected from concurrent workers by a read-write latch that

allows concurrent reads but requires exclusive access for writes. We partition the

bitmap into separate chunks protected by different latches to reduce cross-worker

latch contention.

To check whether to migrate a particular tuple, the worker runs the pseu-

docode shown in Algorithm 2. Line 1 checks the migration bit of the tuple. If it is

131

Algorithm 2: Check bitmap whether to migrate a given tuple.
Input : shared bitmap bitmap, tuple index in bitmap bkey, local

in-progress lists WIP and SKIP
Output: true, if the worker is permitted to migrate the tuple

1 if migrate bit of bkey in bitmap is not set then
2 if lock bit of bkey in bitmap is set then
3 append bkey to list SKIP
4 return false
5 acquire an exclusive latch on the bitmap
6 if migrate bit of bkey in bitmap is not set then
7 if lock bit of bkey in bitmap is not set then
8 set the lock bit of bkey in bitmap
9 release the latch on bitmap

10 append bkey to list WIP
11 return true
12 else
13 release the latch on bitmap
14 append bkey to list SKIP
15 return false
16 else release the latch on bitmap
17 return false

1, it has already been migrated, so it returns false (line 17). Line 2 checks the lock

bit. If it is 0, the code in lines 5-16 is run, that sets the lock bit to 1 and appends

the tuple identifier into the in-progress list WIP of that worker. All of this is done

after getting an exclusive latch on the bitmap partition and then rechecking the

migration and lock bits to confirm they were not changed before the worker ac-

quired the exclusive latch. If the lock bit is 1, another worker has already started

the process of migrating this tuple. In that case, the code in lines 3-4 and 13-15

adds that tuple to the“skipped tuple” list SKIP for that worker.

Algorithm 1 migrates the tuple and at line 9 sets its status: [0 1].

The example in Figure 4.1 depicts four queries issued over the new schema,

each of which spins up a worker to migrate relevant data (query q1 spins up

132

worker w1, query q2 spins up worker w2, etc.). w0 executes simultaneously with

w1, but they do not attempt to migrate the same data, and so can proceed inde-

pendently. After this, w2 and w3 run concurrently and both attempt to read data

located inside the 6th tuple. Although reads do not conflict with respect to data

access, they do conflict with respect to migration workers, since only one worker

is allowed to migrate this tuple. w2 acquires the lock bit on tuple 6 earlier than w3,

so w2 appends tuple 6 to its WIP, while w3 observes that tuple 6 is locked and so

appends it to its SKIP. When w3 finishes migrating tuples 3 and 5, it checks tuple

6 again to see if it was migrated. If it was, it allows q3 to run on the new schema.

Otherwise, it blocks the query until tuple 6 is migrated or the lock is released.

4.3.4 Hashmap migrations

Both n:1 and n:n migrations require accessing multiple tuples from an input

table in order to produce an output tuple. This means that tuple-level granularity

tracking of migration status is inappropriate—either an entire group of tuples

that combine to form an output tuple should be considered migrated, or none of

them. BullFrog therefore tracks lock/migrate status at the group level for these

migrations. Since mapping arbitrary group identifiers to unique offsets in a dense

bitmap would be complex without advanced knowledge of the complete set of

group identifiers, a hash table is used to track statuses, rather than a bitmap.

Given a tuple in an input table that is potentially relevant to a query result,

Algorithm 3, line 1, determines the group identifier to use as a key into the hash

133

Algorithm 3: Tuple eligibility checking for hash migrations.
Input : shared hash table htable and a tuple T,

local in-progress lists WIP and SKIP
Output: true, if the txn is permitted to migrate T

1 Generate group key hkey from T
2 if hkey exists in list WIP then return true
3 if hkey exists in list SKIP then return false
4 if hkey exists in htable then
5 if hkey state in htable is in-progress then
6 append hkey into list SKIP and return false
7 if hkey state in htable is abort then
8 update the pair (hkey, in-progress) in htable
9 append hkey into list WIP and return true

10 return false
11 if htable.insert (hkey, in-progress) already exists then
12 GOTO LINE 7
13 else append hkey into list WIP and return true

table. For example, for a GROUP BY migration statement, the group identifier is

constructed from the value of the attribute(s) that appear in the GROUP BY clause.

With this key, the worker executes the remaining code in Algorithm 3.

Line 2: If the key exists in the list WIP, this means that this same worker has

already decided to migrate a different tuple from the same group. Since the entire

group must be migrated together, the worker must migrate the current tuple as

well.

Line 3: If the key is found in the list SKIP, a different worker was already

found to be migrating the group associated with this tuple and so it will be skipped

by the current worker and revisited a later point to check whether the other worker

successfully completed the migration of this group, as we described in Section

4.3.2.

Lines 4-10: If the key is found in the global hash table (but not the local lists),

134

its current lock/migration status is checked. If it is locked but not yet migrated,

this implies that the migration is in-progress by another worker, and the key is

appended to the local list SKIP. If it is neither locked nor migrated, this implies

that a different worker started the process of migrating it, but aborted. The worker

thus (exclusively) updates the lock status to acquire the lock and appends the key

to the local list WIP.

Lines 11-13: If the key is not found in the hash table, this implies that the data

is neither locked nor migrated. The worker attempts to acquire a latch on the hash

table5 and insert the key with a value of “in progress" (locked but not migrated)

into the hash table. If after acquiring the latch it finds that the key had already

been inserted by another worker in between the initial check and the point where

the latch was acquired, it releases the latch and runs the same code that would

have been run if it had initially found the key in the hash table (line 12). Other-

wise, the key is inserted into the local list WIP and the migration of that tuple can

proceed (line 13).

Algorithm 1 performs the migration of the group, and updates its key in the

hash table to a status of migrated at line 9.

4.3.5 Migration aborts

When a migration transaction aborts, after the standard database system

code is run to handle the abort, BullFrog5 must inject additional code that tra-
5Similar to what we described in Section 4.3.3 for the bitmap, the hash table is partitioned and

each partition is protected by a separate latch in order to reduce cross-worker contention that
would arise if there were a global latch for the entire hash table. Deadlock does not occur since
two latches are never acquired simultaneously.

135

verses the aborted worker’s WIP list, and for each element, the corresponding key

is accessed in the bitmap or hash table and set to [0 0] in the bitmap or abort in

the hash table.

Figure 4.2 depicts an example of abort handling for bitmap migrations. Work-

ers w2 and w3 both access the 6th tuple in addition to other tuples. w2 accesses it

first and grabs that lock and puts it in its WIP, while w3 sees that it is locked and

puts it in its SKIP. After migrating tuples 4, 6, and 7, but before it commits, w2

gets aborted. This causes the underlying system to undo the insertion of the new

tuples in the output tables that were caused by the migration of tuples 4, 6, and

7. At the end of the abort logic, BullFrog iterates through w2’s WIP and resets the

lock and migration statuses of those keys back to [0 0]. When tuple 6’s status is

reset to [0 0], w3 (which had been looping, waiting for the migration of tuple 6 to

complete or abort) can migrate that tuple itself.

BullFrog’s status tracking data structures are stored in volatile memory.

Upon a crash, they must be reinitialized. While the REDO log is scanned dur-

ing recovery, for each tuple (or group) that is found in a committed migration

transaction, the corresponding status is set to [0 1] in the bitmap or migrated in

the hashmap.6

4.3.6 Joins

As we described in Section 4.3.1, joins can either be 1:1 migrations or 1:n

migrations depending on the type of join. For example, a foreign-key/primary-
6We have yet to implement this feature in the BullFrog codebase.

136

Time

w2: migration granules [4, 6, 7]

4 3WIP

w3: migration granules [3, 5, 6]

WIP 6 7 5 SKIP 6

0����1 0����1 1����0 1����0 1����0 1����0 1����0 0����1BITMAP

0����1 0����1 1����0 0����0 1����0 0����0 0����0 0����1BITMAP

0����1 0����1 0����0 0����0 0����0 0����0 0����0 0����1BITMAP

0����1 0����1 1����0 0����0 1����0 1����0 0����0 0����1BITMAP

0����1 0����1 0����1 0����0 0����1 0����1 0����0 0����1BITMAP

w2: aborted w3: waiting

w3: unblocked

Figure 4.2: Transaction abort handling.

key join is a 1:n migration relative to the primary key input table (PKIT), while at

the same time being a 1:1 migration relative to the foreign-key input table (FKIT).

However, we said for 1:n migrations, a tuple cannot be considered migrated until

the n tuples that it generates have been migrated. Consider a tuple to migrate

from the FKIT with a foreign key of 4. Since this is a 1:1 migration relative to the

FKIT, the tuple from the PKIT with a primary key of 4 is extracted and joined with

this tuple to produce the migrated version of it. After the migrated version has

been successfully inserted into the output table, the input tuple in the FKIT can be

marked in the bitmap as being migrated. However, the tuple in the PKIT that it

joined with (the one with primary key of 4) cannot be considered migrated, since

it is a 1:n migration and there may be other tuples in the FKIT with a foreign key

of 4. There are two options for what to do next in such a scenario:

137

(1) Immediately migrate all other tuples in the FKIT with the same foreign key. This

allows BullFrog to mark the key in the primary key table as migrated at the com-

pletion of this migration. However, this turns the 1:1 migration on the FKIT side

into a n:n migration.

(2) Stop at this point without adding any additional tuples to this particular migration

task. This option provides BullFrog with more flexibility to migrate lazily, and

maintains the simpler 1:1 migration semantics on the FKIT. However, maintain-

ing migration status for the PKIT requires occasional coordination with the FKIT

to learn when all tuples with a particular value have been migrated.

In general, the second option is preferable when the cardinality of the foreign

key is small or when there is skew such that large chunks of the FKIT would be

forced to be migrated at once. In practice, when BullFrog uses the second option

in the context of an inner join, it does not attempt to maintain the migration status

of the PKIT. Furthermore, it does not maintain the lock status on the PKIT, since

the unit of migration is entirely determined by individual tuples in the FKIT, and

there are no semantic issues that arise when two different tuples from the FKIT are

being migrated concurrently and access the same tuple from the PKIT. If an entire

PKIT tuple is to be migrated, then all tuples from the FKIT that it joins with must

be locked. Thus, there are no lock status or migration status bitmaps associated

with the PKIT. Correspondingly, when using the first option in the context of an

inner join, the unit of migration is entirely determined by individual tuples in the

PKIT, so BullFrog does not maintain lock or migration bitmaps on the FKIT.

For many-to-many joins, BullFrog provides the same two options for main-

138

taining the lock and migration status discussed above. However, both input tables

are considered a 1:n migration with respect to the other table so it may be impos-

sible to avoid migrating large chunks of data within individual migration tasks if

there is skew in the attribute(s) involved in the join condition. Therefore, Bull-

Frog also provides a third option of tracking status based on the combination of

tuples from the two tables involved in the join, which increases the granularity

of the lazy migration. I.e., instead of x.tupleID → (lock_status, migrate_status)

it is (x.tupleID, y.tupleID) → (lock_status, migrate_status). BullFrog uses the

hashmap technique described in Section 4.3.4 to track migration status.

4.3.7 Conflict detection

In some cases, instead of using BullFrog’s lock data structures, it would

be possible to leverage the underlying database system to prevent duplicate mi-

grations via SQL clauses such as ON CONFLICT DO NOTHING. Unfortunately, this

method of preventing duplicate migrations has limited applicability. First, the

output tables must have a uniqueness constraint declared on an attribute. Many

database systems, such as PostgreSQL, require a B-tree index on any attribute de-

clared to be unique. This uniqueness constraint must have been declared on a

deterministic attribute whose value is based directly on values of data in the in-

put table(s). Therefore, a primary key generated by an auto-increment function

would not be eligible. Even though this primary key is unique, the duplicate in-

sertion during the migration process will not be detected – instead the record will

139

be inserted twice, with the system generating different unique primary keys for

each record.

When applicable, this technique prevents the additional accesses to the old

schema on behalf of migration transactions that are blocked, waiting for the old

schema to be released. However, it detects conflict at a later stage (at the point

of insert into the new schema) and therefore may incur additional wasted work

upon a conflict. BullFrog supports both methods for handling migrations and

we experimentally compare them in Section 4.4.

4.4 Experimental Evaluation

We implemented a complete prototype of BullFrog on top of PostgreSQL

11.0. Our implementation leverages PostgreSQL’s existing view expansion and

query rewriting/optimization functionalities – we did not have to modify any core

PostgreSQL code. Our bitmap data structures (see Section 4.3.3) use PostgreSQL’s

existing TIDs for mapping tuples to bits in the bitmap.

The primary goal of our experimental evaluation is to understand the down-

time implications of single-step migration algorithms in which the database switches

from the old to new schema immediately; such single-step migrations historically

have required extensive downtime. To this end, we experimentally evaluate the

lazy migration algorithms of BullFrog and compare their performance under var-

ious configurations against eager migration. In eager migration, the system imme-

diately physically moves all data stored under the old schema into tables in the

140

new schema prior to becoming available to client requests over the new schema.

In addition, we also benchmark BullFrog against a multi-step migration

implementation in which a schema change is registered with the system ahead

of time, and the system copies data into the new schema in a background pro-

cess. Reads are served from the old schema, while writes go to both schemas.

Although BullFrog is targeted for single-step deployment scenarios where giv-

ing advanced notification of a schema change is impossible, impractical, or simply

too burdensome (see Sections 4.1 and 4.5), there are also some performance differ-

ences between single-step and multi-step algorithms that these experiments can

illuminate.

For the BullFrog algorithms, we compare solutions that perform duplicate

migration detection at time of insert into the new schema via PostgreSQL’s ON

CONFLICT clause (see Section 4.3.7) with solutions that detect duplication prior to

generation of the migrated record (see Sections 4.3.3 and 4.3.4).

Workload We developed a variation of TPC-C that includes schema migrations.

TPC-C models the transactions involved in placing and delivering orders in a re-

tail application; and querying stock levels of merchandise. The workload is de-

fined by a mix of transactions according to the following percentages: NewOrder

(45%), Payment (43%), Delivery (4%), OrderStatus (4%) and StockLevel (4%).

StockLevel and OrderStatus are external read queries. The schema defined by

the TPC-C benchmark consists of nine tables. Our experiments evolve the original

schema in various ways, the specifics of which will be discussed in the following

141

sections.

Experimental Platform We use OLTP-Bench [194] to set up and run our exper-

iments. OLTP-Bench has the ability to support tight control of transaction mix-

tures, request rates, and access distributions over time. We measure through-

put as transactions per second and the end-to-end latency as the time from when

the client issues a transaction request until the response is received. Maximum

throughput measurements are taken by increasing the rate that clients submit re-

quests until the latency of these requests starts to increase due to queuing de-

lays. The measurements for all of our throughput experiments are averaged over

10 runs, but we found that the variance across runs in each of our experiments

was negligible. Latency experiments are presented using cumulative distribution

functions (CDFs), and each plot shows a distribution over at least 50,000 points.

We run our experiments on an eight-core 2.50GHz Intel Core i7 using 16GB of

memory. We dedicate all eight cores to workers within the transaction processing

engine.

4.4.1 Table split migration

In our first experiment, the baseline TPC-C schema incurs a relatively sim-

ple migration: the customer table is split into two tables, where its original set of

columns are divided across the two new tables, except for the primary key which

appears in both new tables. Each new table contains the same number of tuples

as the original customer table. One table includes the customer’s personal finan-

142

cial information (balance, payment, credit, etc.) and the other has the customer’s

less private information (city, state, zip). Using the terms we described in Section

4.3.1, this is a 1:n migration with respect to the original customer table, since for

every row in the customer table there are two rows generated (one row for each of

the new tables). Therefore, BullFrog uses a bitmap data structure to track the mi-

gration. In this experiment, we use the TPC-C configuration with 50 warehouses,

which therefore causes the benchmark to generate 1.5 million records in the cus-

tomer table. Four out of the five TPC-C transaction types access the customer

table—NewOrder, Payment, Delivery and OrderStatus and are straightforwardly

modified to be compatible with the new customer tables.

Eager migration
Multistep migration
BullFrog (bitmap)
Migration starting-point

Eager migration end-point
Multistep migration end-point
BullFrog migration end-point
Background migration starting-point

Tx
ns

/s
ec

0

200

400

600

800

Seconds
0 50 100 150 200

Request rate: 450 transactions per second.

Tx
ns
/s
ec

0
200
400
600
800

Seconds
0 50 100 150 200 250

Request rate: 700 transactions per second.

Figure 4.3: Throughput during table-split migration.

Figure 4.3 shows how the throughput of transaction processing varies dur-

143

ing the different phases of the schema migration. Figure 4.3(a) shows the com-

mon case where the system is not overloaded at the time of the migration, and the

system can devote extra resources to the additional work involved in migrating to

a new schema. Figure 4.3(b) shows the same experiment, except that the clients

are already submitting requests at the maximum rate at which the system is able

to keep up (without falling behind) before the migration, and thus the additional

migration work necessarily forces the system to fall behind. The migration begins

for all implementations at the purple circle and ends for each system at the later

corresponding circles marked in the figure.

Eager migration takes approximately 80 seconds to complete. This time is

independent of client request load because all requests that access the customer

table during the migration are queued, and the performance of the migration it-

self is not affected by the size of this queue of waiting transactions. Throughput

does not dip all the way to 0 since the StockLevel transaction does not access the

customer table and can be processed even during an eager migration. When the

client load is 450 transactions per second (TPS), there is enough system headroom

for the eager migration system to catch up after the migration. This observed in

Figure 4.3(a) by a temporary increase in throughput after the migration relative

to the throughput before the migration began. When the client load is maxed out

at 700 TPS (Figure 4.3(b)), the eager system can never catch up after the migra-

tion and cannot decrease the size of the request queue that built up during the

migration.

For the lazy migration algorithms, the total time to complete the migration

144

is longer since they process active client requests concurrently with performing

the migration. Nonetheless, the background process discussed in Section 4.2.2

enables the migration to complete within the time window shown in the figure.

Without the background process (the dotted lines in the figure), the TPC-C bench-

mark does not access enough distinct tuples to complete the migration within the

experimental time window. Throughput steadily degrades as the tables in the

new schema become larger and slower to access, while access costs to the fixed-

size old schema remains constant despite the increasing percentage of transac-

tions that find out that all relevant tuples have already been migrated.

Lazy migration throughput is unaffected by the migration when the client

request rate is at 450 TPS. The additional per-transaction overhead of lazily mi-

grating relevant records to the new schema tables is hidden by the spare capac-

ity of the system. However, when the client load is maxed out at 700 TPS, the

throughput is ultimately affected by the migration. At first, the migration over-

head is visible in transaction latency, but throughput is not affected. Eventually,

OLTP-Bench is forced to queue transactions before sending them to PostgreSQL,

and the throughput drops along with the additional queuing latency. The per-

formance of the bitmap vs. on-conflict approaches are similar. In addition to

the more steady throughput curves, the lazy migration also performs 13% more

transactions overall than the eager migration approach during this experimental

window. We attribute this additional efficiency to the improved cache efficiency

of bringing in a tuple into cache just once to both migrate it and use it as part of

an active client request.

145

For lazy migration, background migration threads do not begin until 20 sec-

onds after migration initiates, since at first, the client requests themselves are suffi-

cient to keep the migration progress moving along. Only later do the background

threads start and search for data to migrate that has not yet been covered by a

client request. In contrast, for multi-step migration, the entire migration process

happens in the background. Therefore, the background threads start immediately

which causes an earlier performance drop.

Surprisingly, in contrast to lazy migration in which the background threads

help accelerate the completion of the migration, multi-step migration takes longer

to complete than lazy migration despite the presence of background threads through-

out the migration. The reason is that during the early stages of multi-step migra-

tion, most data exists only in the old schema, and updates are only performed in

the old schema. However, as migration continues, a larger percentage of data has

been migrated to the new schema. Any updates to migrated data must happen

twice – in the new and old schema – since the old schema must be able to serve

reads until the migration completes. Therefore, as the migration progresses, the

multi-step migration needs to perform additional work relative to lazy migration

(which never has to perform updates on the old schema). This is observed in the

experiments by a steadily dropping throughput for multi-step migration, until the

migration completes.

Figure 4.4 shows a CDF of client request latency for the same experiment,

starting at the point the migration begins until the end of the experimental win-

dow from Figure 4.3. Latency results are plotted for only one transaction type

146

Eager migration
Multistep migration

BullFrog (bitmap)
BullFrog (on-conflict clause)

Fr
ac

tio
n

of
 tr

an
sa

ct
io

ns

0

0.5

1.0

Latency (seconds)
10−3 10−2 10−1 1 101 102

Request rate: 450 transactions per second.

BullFrog w/o background migration (bitmap)
BullFrog w/o background migration (on-conflict)

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10 100

Request rate: 700 transactions per second.

Figure 4.4: Latency during table split migration.

(the most complex – NewOrder) in order to avoid variations due to the different

complexities of different TPC-C transaction types. When the client request rate is

700 TPS, the eager migration algorithm is never able to catch up. Thus, the 80 sec-

ond downtime required to perform the migration is experienced not only by the

requests that were submitted during the downtime, but also by the requests that

were submitted afterwards, since the size if the request queue never has a chance

to decrease. In contrast, at 450 TPS, the eager system is able to catch up. Therefore,

the CDF appears as a step – the left side of the graph shows the requests that were

submitted after the system catches up, while the right side shows the latency of

transactions before the system catches up. The multi-step and lazy schemes, are

also never able to catch up when then are no spare resources in the system at 700

147

TPS. However, because of its superior throughput, BullFrog never gets as far be-

hind as the other algorithms, and both the BullFrog and multi-steps algorithms

fall behind at a more steady rate because of their lack of downtime. The poor la-

tency for multi-step at 450 TPS is caused by the throughput dip from Figure 4.3

and resulting queuing delays. Overall, the latency of the lazy algorithms is up

to an order of magnitude better than the eager and multi-step algorithms and is

comparable to the latency of TPC-C without any migration.

4.4.2 Aggregate Migration

The Delivery transaction collects a number of the oldest undelivered orders

and marks them as having been delivered. As part of this process, it performs an

implicit aggregate operation as follows:

SELECT SUM(OL_AMOUNT) AS OL_TOTAL FROM ORDER_LINE

WHERE OL_O_ID = ? AND OL_D_ID = ? AND OL_W_ID = ?;

In our next experiment, we model a schema evolution in which this aggre-

gation is maintained as a separate table. This evolution can be thought of as a

materialized view that is maintained by the application instead of the database

system. The migration request runs the initial aggregation of the 15 million tu-

ples in the ORDER_LINE table, and all future transactions update both the original

and aggregated version of this table.

Figures 4.5 and 4.6 show the throughput and latency of this experiment us-

ing the same methodology as Figures 4.3 and 4.4 respectively. Using the termi-

nology from Section 4.3.1, this is a n:1 migration with respect to the ORDER_LINE

148

Eager migration
Multistep migration
BullFrog (hashmap)
Migration starting-point

Eager migration end-point
Multistep migration end-point
BullFrog migration end-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Seconds
0 20 40 60 80 100 120 140 160 180 200 220

Request rate: 450 transactions per second.

Tx
ns
/s
ec

0

500

Seconds
0 20 40 60 80 100 120 140 160 180 200 220

Request rate: 700 transactions per second.

Figure 4.5: Throughput during aggregation migration.

table (in contrast to the previous experiment which was a 1:n migration). There-

fore, BullFrog uses a hashmap data structure instead of a bitmap to track the

migration. Nonetheless, the results of this experiment are similar to the table-

split experiment where throughput and latency are not affected by the migration

at 450 TPS, but all systems fall behind at 700 TPS. However, the amount of data

that must be written as part of the aggregation migration is smaller (since the

output table is small), so the migration is cheaper and the window of throughput

reductions for all approaches is smaller and the systems fall less behind.

4.4.3 Join Migration

TPC-C’s StockLevel transaction is a read-only transaction that scans a ware-

house’s inventory for items which are (or close to being) out of stock. As part of

this process, a join occurs:

149

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
10−3 10−2 10−1 1 101 102

Request rate: 450 transactions per second.

TPC-C w/o migration
Eager migration
Multistep migration
BullFrog (hashmap)

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10 100

Request rate: 700 transactions per second.

Figure 4.6: Latency during aggregation migration.

SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT

FROM ORDER_LINE, STOCK WHERE S_I_ID = OL_I_ID ...;

We model a situation where the application developers prioritize the perfor-

mance of StockLevel queries by denormalizing the schema so that the order line

and stock tables are already joined. The new schema includes this new table –

named orderline_stock – instead of the original order line and stock tables. All

transactions that accessed the old tables are replaced by new transactions against

the orderline_stock table that consists of close to 8 million tuples.

Figure 4.7 shows the throughput results of this experiment and Figure 4.8

shows the latency results. This join is the most resource intensive of all the mi-

grations we have experimented with, and thus the throughput dip of all systems,

including multi-step migration, is more extended (except BullFrog at 450 TPS

which still has no throughput dip). The eager approach experienced over 200

seconds of downtime. The join involved in the migration is a many-to-many join,

150

Eager migration
Multistep migration
BullFrog (hashmap)
Migration starting-point

Eager migration end-point
Multistep migration end-point
BullFrog migration end-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Seconds
0 100 200 300 400 500

Request rate: 450 transactions per second.

Tx
ns
/s
ec

0

500

Seconds
0 100 200 300 400 500

Request rate: 700 transactions per second.

Figure 4.7: Throughput during join migration.

and BullFrog uses the hashmap-based n:n migration approach discussed in Sec-

tion 4.3.6. When BullFrog attempts to perform the migration during a period of

maximum load (700 TPS), latency steadily increases to 10 seconds per transac-

tion, until PostgreSQL reaches its maximum number of concurrent transactions.

At this point, throughput dips by approximately 100 TPS as OLTP-Bench queues

transactions. After the migration completes, the throughput returns to its origi-

nal level since the new pre-joined table is designed to accelerate the StockLevel

transaction which appears relatively infrequently in TPC-C (4% of transactions).

Furthermore, the orderline_stock table retains all secondary indexes of the two

tables that generated it. However, latency never returns to its original level since

the system is running at maximum load and can never catch up. The same is true

of the eager system, but since it got further behind, the steady latency after the mi-

gration is an order of magnitude higher than BullFrog. Thus the lazy approaches

151

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
10−3 10−2 10−1 1 101 102 103

Request rate: 450 transactions per second.

TPC-C w/o migration
Eager migration
Multistep migration
BullFrog (hashmap)

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10 100 1000

Request rate: 700 transactions per second.

Figure 4.8: Latency during join migration.

are superior to the eager and multi-step approaches, both in terms of the size of

the throughput dip and also the increase in latency.

4.4.4 Tracking Overhead

We now investigate some sources of overhead in BullFrog. All experiments

in this section use the table split migration.

4.4.4.1 Data Structure Maintenance

We first measure the overhead data structure maintenance in BullFrog by

comparing BullFrog performance with a version where no data structures are

necessary. Instead, the application is modified such that the NewOrder transac-

tions cumulatively access each tuple in the old schema exactly once, rendering

migration status tracking unnecessary. Figure 4.9 shows the throughput and la-

tency improvements of removing the tracking data structures is small since they

152

BullFrog (bitmap)
BullFrog (no bitmap)Tx

ns
/s

ec

0

500

Seconds
0 5 10 15 20 25 30 35 40 45

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10

Figure 4.9: Data structure maintenance cost.

do not introduce significant overhead.

4.4.4.2 Lock and Latch Contention

In this experiment, we create a variable number of hot records over which

transactions exclusively access. Decreasing the size of this hot set increases the

contention in the workload, and causes two potential problems for BullFrog.

First, it increases the probability of duplicate, simultaneous attempts to migrate

a tuple, which causes one of them to block until the first one completes the mi-

gration. Second, it increases latch contention for the hot partitions in BullFrog’s

data structures. Figure 4.10 shows that decreasing the hot set from 1,500,000 to

15,000 records indeed causes a longer drop in throughput during the migration.

We verified that this was due to lock contention (and not latch contention) by re-

running the same experiment without making transactions wait upon reaching a

locked record. We found that the performance drop was due to transactions re-

peating the loop through the set of records to migrate, waiting for the lock to be

153

Hot set = 1,500,000
Hot set = 3,000
Background migration starting-point

Hot set = 15,000
Migration starting-point
Migration end-point

Tx
ns

/s
ec

0

500

Seconds
0 50 100 150 200 250

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10 100

Figure 4.10: Skewed data access.

released (line 10 from Algorithm 1). This increases the latency of the transaction

and reduces the number of transactions that can processed concurrently, thereby

extending the migration time. However, for very small hot sets, the opposite phe-

nomena is observed. The hot set gets quickly migrated, and the rest of the migra-

tion is performed by the background threads which can proceed efficiently and

independently with minor impact on throughput.

4.4.4.3 Migration Granularity

We next vary the granularity of migration. Instead of tracking migration

status at the tuple level, it is done at the page level, and we vary the size of pages

and contention in the workload. Figure 4.11 shows that migrating data in larger

chunks increases the latency of each operation, but allows the migration to com-

plete more quickly. At 450 TPS, single-tuple granularity is best at low contention,

since no matter the granularity, BullFrog can keep up with the request rate, so the

154

latency advantage of fine granularity is preferable. However, under higher con-

tention, coarse granularity migration is preferred, since the latency benefit of mi-

grating with tuple granularity is negated by the additional queuing delays caused

by the extended migration period. This is also the case when running at 700 TPS.

4.4.5 Integrity Constraints

We next evaluate the overhead of constraint preservation during a migra-

tion. The TPC-C benchmark includes foreign key constraints from the Customer

table to Order and District. In Figure 4.12(a) we remove one (green line) or both

(pink line) constraints to observe the improvement in performance from avoid-

ing the overhead of migrating additional data in order to check the constraints. As

explained in Sections 4.2.1, 4.2.3, and 4.2.4, the presence of integrity constraints

in the new schema limits the laziness in which BullFrog can work, since it must

migrate not only the data being accessed by the client request, but also all data nec-

essary to check the integrity constraints in the new schema. Since not all transac-

tions in TPC-C access the customer table, the difference in performance was hard

to observe. Therefore, we repeated the same experiment, but removed the trans-

actions that do not access the customer table from the workload. These results are

presented in Figure 4.12(b), where the overhead of constraint preservation man-

ifests primarily as an earlier drop in throughput. This is because the additional

data that is migrated per transaction limits the number of transactions that can be

processed concurrently which accelerates the point at which the DB pushes back

155

Hot set: 15,000

Hot set: 1,500,000

Page: 1
Page: 64

Page: 128
Page: 256

Migration starting-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Tx
ns

/s
ec

0

500

Seconds
0 50 100 150 200 250

Request rate: 700 transactions per second.

Hot set: 15,000

Hot set: 1,500,000

Tx
ns

/s
ec

0
200
400

Tx
ns

/s
ec

0
200
400

Seconds
0 50 100 150 200 250

Hot set: 15,000

Hot set: 1,500,000

Fr
ac

tio
n

of

0

0.5

1.0 tr
an

sa
ct

io
ns

0

0.5

1.0

Latency (seconds)
0.1 1 10 100

Request rate: 450 transactions per second.

Figure 4.11: Varying access skew and migration granularity. End points are
marked by the corresponding circles.

156

PK: Customer
PK: Customer, FK: District
PK: Customer, FK: Order, District

Migration starting-point
Migration end-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Seconds
0 50 100 150 200 250

Full workload

Tx
ns
/s
ec

0

500

Seconds
0 10 20 30 40 50 60 70 80 90 100

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10

Partial workload.
Figure 4.12: FOREIGN KEY constraints on table split migration.

on OLTP-Bench to reduce the input workload.

4.5 Related Work

[173] describes online schema evolution using triggers in a telecom database

which is not allowed to be down for more than a minute in a year. The paper pro-

poses two different ways to update the schema: soft schema change and hard

schema change. For soft schema changes, old transactions are executed using the

old schema and new transactions are processed using new schema. Old and new

transactions can execute concurrently. For hard schema changes, transactions in

the old schema are executed until all of them have finished executing. Thereafter

157

the system switches over to using the new schema. However, even the hard switch

uses a multi-phase process in which triggers are used to prepare the new schema

in advance of the switch. In contrast, BullFrog supports single-step schema evo-

lution.

The work on non-blocking schema change in F1 by Google works similarly

to the “soft schema change” mechanism described by Ronstrom [184]. Schema

changes are done asynchronously across servers. Since F1 is a distributed sys-

tem with no synchronization across the servers, different servers may transition

to the new schema at different times and multiple schema versions may be in use

simultaneously. To simplify reasoning about correctness of the implementation,

the authors restrict the servers in an F1 instance from using more than two dis-

tinct schema versions. Tools such as LessQL [185] facilitate automatic rewriting

of queries to use evolved versions of a schema. However, soft schema change so-

lutions restrict the scope of the schema evolution to ensure capability across all

active schema versions. In contrast, BullFrog uses a more general approach that

does not restrict the scope of the migration operations.

A host of schema migration tools generalize the state-of-the-art multi-step

schema migration process, including Percona online schema change [174], Face-

book online schema change [175], OAK online alter table [176] and LHM [177].

In the first step, the new schema is registered without yet becoming actively used.

Writes performed to a source table (from the old schema) are propagated into a

shadow table (for the new schema) that is gradually synchronized in the back-

ground using triggers. After all the data has been migrated, the second step in-

158

volves switching over to the new schema by locking the source table briefly and

renaming the shadow table (if necessary) to bring it online. The work on Quan-

tumDB [183] along with the dissertation by [178] use a similar approach which

use a combination of materialized views and triggers for maintaining consistency

with the original tables while they are updated. In addition to the general dis-

advantages of multi-step migrations that we discussed in the introduction, all of

these tools use update/insert triggers for applying the changes from the old ta-

ble to the new table. Triggers are known to increase lock contention and at times

render the table or the entire database inaccessible due to contention [195].

[179] avoid the use of triggers by using log propagation to perform non-

blocking schema transformation. Similarly, Github’s online schema change tool

gh-ost slowly and incrementally copies existing data from the source table to

the shadow table while using the binary log stream in MySQL to capture ongo-

ing changes on the source table, and replaying them to the shadow table asyn-

chronously [180]. When the write load gets higher, gh-ost can’t keep up with

binary log, and may not finish at all [196]. Since these techniques read from the

log files, there is a delay in between the time the changes are committed in the

original table and the time they are applied to the shadow table. Similar to the

other multi-step migration techniques we discussed above, these techniques al-

low queries to execute over the new schema only after the shadow table is caught

up to the source.

Schema migration shares some complexities with database migration in which

a database is moved from a source node to a destination node, and the copy on

159

the source node is either kept or deleted after the migration [197, 198, 199, 200].

There also exists lazy implementations of database migration, in which data is

pulled to the destination node as it is needed [201, 202], with background pro-

cesses that ensure all data is eventually migrated, similar in theme to BullFrog.

However, these lazy approaches do not make significant changes to the schema

during migration. At most, simple 1:1 schema migrations are allowed such as type

changes of an attribute. In contrast, BullFrog implements lazy schema migration

that supports an arbitrary number of complex schema changes, including 1:n, n:1,

and n:n migrations.

Our goal of single-step schema evolution is driven by the software mainte-

nance community. For example, the work on KVolve starts with the same single-

step migration requirement [188] and uses a lazy migration approach in the con-

text of migrating an application on top of a NoSQL database (Redis). NoSQL

databases are widely used by continuous deployment practitioners since they

typically do not enforce schema constraints. Our work on BullFrog proves that

lazy migration can be used for traditional relational database systems that enforce

schema constraints and require physical data reorganization during a schema mi-

gration.

BullFrog’s lazy approach to schema migration can be thought of as combin-

ing previous work on lazy transaction processing in database systems [203] with

transaction decomposition [204, 205, 206] such that a large migration transaction

is decomposed into separate smaller transactions that are processed lazily.

160

4.6 Summary

As applications and database systems increasingly evolve in lockstep, the

database system must support single-step migration where the database must in-

stantaneously switch over to a new schema with no downtime. BullFrog suc-

ceeds in using a lazy migration approach so that the new schema can be instanta-

neously ready for access even when the physical data has not yet been migrated to

the new schema. Experiments show that BullFrog’s lazy approach only causes

a slight reduction in throughput and increase in latency during the migration,

in contrast to eager approaches that cannot process any transactions during the

migration.

161

Chapter 5: Conclusion and Future Work

5.1 Conclusion

With the growing scale of data and the demands on data analytics, the struc-

tured metadata and unstructured byte contents of the files managed within dis-

tributed file systems or object stores scale commensurately. We built FileScale, a

three-tiered distributed architecture that incorporates a distributed main-memory

database system at the lowest layer, along with distributed caching and routing

functionality above it, so that most requests can be served with asynchronous,

batched interactions with the database layer. FileScale’s architecture enables elas-

tic scaling of each layer in the architecture independently.

Stream-processing workloads and modern shared cluster environments ex-

hibit high variability and unpredictability. An ideal event-stream processing ser-

vice with pay-for-use and SLAs must be performance competitive, scalable, highly

available, and low cost. FaaS is a cloud computing service that allows developers

to build, compute, run, and manage application packages as functions without

maintaining their infrastructure. FaaS is becoming increasingly popular due to

its ease of programming, fast elasticity, and fine-grained billing. We built Flock,

a cloud-native streaming query engine that enables SQL on FaaS platforms with

162

heterogeneous hardware with the ability to shuffle and aggregate data without

the need for a centralized coordinator or remote storage like S3.

Continuous deployment is the increasingly popular practice of frequent,

automated deployment of software changes, with some practitioners deploying

multiple changes per day. To realize the benefits of continuous deployment, it

must be straightforward to deploy updates to both front-end code and the database,

even when the database’s schema has changed. Furthermore, as applications and

database systems increasingly evolve in lock-step, the database system must sup-

port single-step migration where the database must instantaneously switch over

to a new schema with no downtime. As a result, we built BullFrog, an extension

to PostgreSQL, to support single-step, non-backwards compatible schema migra-

tions without downtime.

5.2 Future Work

According to the Seattle report on database research [207], database systems

offered as cloud services are widely used and have witnessed explosive growth.

As a result, I believe there will be further tremendous opportunities to build the

next-generation cloud data architecture.

Cloud Functions. Cloud customers choose serverless computing because it

allows them to stay focused on solving problems unique to their domain or busi-

ness rather than on server administration or distributed systems problems. In

practice, customers realize substantial cost savings when porting applications to

163

serverless. In addition, the advent of modern FaaS platforms like AWS Lambda [7]

and Google Cloud Functions [8] heralded a new way of thinking about cloud-

based applications: a move away from monolithic, slow-moving applications to-

ward more distributed, event-based, serverless applications based on lightweight,

single-purpose functions where managing underlying infrastructure was a thing

of the past.

However, some cloud customers have raised concerns about vendor lock-in,

fearing reduced bargaining power when negotiating prices with cloud providers.

The resulting switching costs benefit the largest and most established cloud providers

and incentivize them to promote complex proprietary APIs that are resistant to

de facto standardization. Standardized and straightforward abstractions, such as

SQL introduced by Flock, would remove serverless adoption’s most prominent

remaining economic hurdle.

Differentiation of cloud functions amongst cloud suppliers is becoming more

common. Many traditional applications, for example, perform poorly when con-

strained to a single-request model in FaaS platforms. Google Cloud Functions

allows for up to 1,000 concurrent requests on a single instance of an application,

providing a far greater level of efficiency [136]. This per-instance concurrency is

a game-changer in the distributed query engine for cloud function services, since

it enables efficient shuffling. We can extend Flock to popular FaaS platforms and

assess which platform is best for developing a high-performance, low-cost query

engine.

Data Mesh and Governance. Data Mesh [208] proposes a peer-to-peer ap-

164

proach to scale out data sharing and consumption aligned with the axes of organi-

zational growth, enable agility by removing centralized bottlenecks of data teams

and warehouse or lake architecture, and increase resiliency of the analytics and

ML solutions by removing complex data pipelines. Data Mesh is a new approach

in sourcing, managing, and accessing data for analytical use cases at scale, which

shifts data governance from a top-down centralized operational model with hu-

man interventions, to a federated model with computational policies embedded

in the nodes on the mesh. There are many unanswered questions here. For ex-

ample, how can data mesh governance be automated for a consistent, connected,

and trustworthy experience?

We hope that continued experience with these systems will help us address

the challenges in cloud computing and lead to solutions that are applicable to

real-world scenarios.

165

Bibliography

[1] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov,
Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin
Hentschel, Jiansheng Huang, et al. The snowflake elastic data warehouse.
In Proceedings of the 2016 International Conference on Management of Data,
pages 215–226, 2016.

[2] Snowflake. https://www.snowflake.com.

[3] Google bigquery. https://cloud.google.com/bigquery.

[4] Amazon redshift. https://aws.amazon.com/redshift.

[5] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christo-
pher Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Sid-
darth Taneja. Twitter heron: Stream processing at scale. In Proceedings of
the 2015 ACM SIGMOD international conference on Management of data, pages
239–250, 2015.

[6] Netflix Blog. Stream processing with mantis (b. schmaus, et al., 2016), 2017.

[7] AWS Lambda. https://aws.amazon.com/lambda/.

[8] Google cloud functions. https://cloud.google.com/functions.

[9] Azure functions. https://azure.microsoft.com/en-us/services/
functions/.

[10] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. Cloud programming simplified: A
berkeley view on serverless computing. arXiv preprint arXiv:1902.03383,
2019.

[11] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Server-
less computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651, 2018.

166

https://www.snowflake.com
https://cloud.google.com/bigquery
https://aws.amazon.com/redshift
https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

[12] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slomin-
ski. The rise of serverless computing. Communications of the ACM,
62(12):44–54, 2019.

[13] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages 193–206,
2019.

[14] Ingo Müller, Renato Marroquín, and Gustavo Alonso. Lambada: Interac-
tive data analytics on cold data using serverless cloud infrastructure. In
Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, pages 115–130, 2020.

[15] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Mad-
den. Starling: A scalable query engine on cloud functions. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data,
pages 131–141, 2020.

[16] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and Ion
Stoica. Caerus:{NIMBLE} task scheduling for serverless analytics. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
21), pages 653–669, 2021.

[17] Amazon S3. https://aws.amazon.com/s3/.

[18] Dong Qiu, Bixin Li, and Zhendong Su. An empirical analysis of the co-
evolution of schema and code in database applications. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, pages 125–135,
2013.

[19] Souvik Bhattacherjee, Gang Liao, Michael Hicks, and Daniel J Abadi. Bull-
frog: Online schema evolution via lazy evaluation. In Proceedings of the 2021
International Conference on Management of Data, pages 194–206, 2021.

[20] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[21] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th Sym-
posium on Mass Storage Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[22] P. Schwan. Lustre: Building a file system for 1000-node clusters. In Proceed-
ings of the 2003 Linux Symposium, 2003.

167

https://aws.amazon.com/s3/

[23] Michael Abd-El-Malek, William V. Courtright, II, Chuck Cranor, Gregory R.
Ganger, James Hendricks, Andrew J. Klosterman, Michael Mesnier, Man-
ish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen,
John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie. Ursa mi-
nor: Versatile cluster-based storage. In Proceedings of the 4th Conference on
USENIX Conference on File and Storage Technologies - Volume 4, FAST’05, pages
5–5, Berkeley, CA, USA, 2005. USENIX Association.

[24] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer,
and Roger P. Wattenhofer. Farsite: Federated, available, and reliable storage
for an incompletely trusted environment. SIGOPS Oper. Syst. Rev., 36(SI):1–
14, December 2002.

[25] Felix Hupfeld, Toni Cortes, Björn Kolbeck, Jan Stender, Erich Focht,
Matthias Hess, Jesus Malo, Jonathan Martí, and Eugenio Cesario. The
XtreemFS architecture - a case for object-based file systems in Grids. Con-
currency and Computation - Practice and Experience, 2008.

[26] Konstantin V Shvachko. Hdfs scalability: The limits to growth. ; login:: the
magazine of USENIX & SAGE, 35(2):6–16, 2010.

[27] Removing name-node’s memory limitation. https://issues.apache.org/
jira/browse/HDFS-5389.

[28] Haoyuan Li. Alluxio: A virtual distributed file system. https://www2.
eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf, 2018.

[29] Andrew Audibert. Scalable metadata service in alluxio:
Storing billions of files. https://www.alluxio.io/blog/
scalable-metadata-service-in-alluxio-storing-billions, 2019.

[30] Jan Stender, Björn Kolbeck, Mikael Högqvist, and Felix Hupfeld. BabuDB:
Fast and Efficient File System Metadata Storage. 2010 International Workshop
on Storage Network Architecture and Parallel I/Os, pages 51–58, 2010.

[31] Kai Ren and Garth Gibson. TABLEFS: Enhancing metadata efficiency in
the local file system. In 2013 USENIX Annual Technical Conference (USENIX
ATC 13), pages 145–156, San Jose, CA, June 2013. USENIX Association.

[32] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. Indexfs: Scaling
file system metadata performance with stateless caching and bulk inser-
tion. In SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 237–248. IEEE, 2014.

[33] Lin Xiao, Kai Ren, Qing Zheng, and Garth A. Gibson. Shardfs vs. indexfs:
Replication vs. caching strategies for distributed metadata management in
cloud storage systems. In Proceedings of the Sixth ACM Symposium on Cloud

168

https://issues.apache.org/jira/browse/HDFS-5389
https://issues.apache.org/jira/browse/HDFS-5389
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions

Computing, SoCC ’15, page 236–249, New York, NY, USA, 2015. Association
for Computing Machinery.

[34] Qing Zheng, Charles D Cranor, Danhao Guo, Gregory R Ganger, George
Amvrosiadis, Garth A Gibson, Bradley W Settlemyer, Gary Grider, and Fan
Guo. Scaling embedded in-situ indexing with deltafs. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 30–44. IEEE, 2018.

[35] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R
Ganger, and George Amvrosiadis. File systems unfit as distributed storage
backends: lessons from 10 years of ceph evolution. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, pages 353–369, 2019.

[36] Hdfs federation. https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/Federation.html.

[37] Hdfs scalability with multiple namenodes. https://issues.apache.org/
jira/browse/HDFS-1052.

[38] Hdfs viewfs guide. https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/ViewFs.html.

[39] Pulkit A. Misra, Íñigo Goiri, Jason Kace, and Ricardo Bianchini. Scaling
distributed file systems in resource-harvesting datacenters. In Proceedings of
the 2017 USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’17, pages 799–811, Berkeley, CA, USA, 2017. USENIX Association.

[40] Hdfs router-based federation. https://hadoop.apache.
org/docs/current/hadoop-project-dist/hadoop-hdfs-rbf/
HDFSRouterFederation.html.

[41] Hdfs router-based federation. https://issues.apache.org/jira/browse/
HDFS-10467.

[42] Bytedance nnproxy. https://github.com/bytedance/nnproxy.

[43] Alexander Thomson and Daniel J. Abadi. Calvinfs: Consistent wan repli-
cation and scalable metadata management for distributed file systems. In
Proceedings of the 13th USENIX Conference on File and Storage Technologies,
FAST’15, pages 1–14, Berkeley, CA, USA, 2015. USENIX Association.

[44] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohss-
chmiedt, and Mikael Ronström. Hopsfs: Scaling hierarchical file system
metadata using newsql databases. In Proceedings of the 15th Usenix Confer-
ence on File and Storage Technologies, FAST’17, pages 89–103, Berkeley, CA,
USA, 2017. USENIX Association.

169

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://issues.apache.org/jira/browse/HDFS-1052
https://issues.apache.org/jira/browse/HDFS-1052
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs-rbf/HDFSRouterFederation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs-rbf/HDFSRouterFederation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs-rbf/HDFSRouterFederation.html
https://issues.apache.org/jira/browse/HDFS-10467
https://issues.apache.org/jira/browse/HDFS-10467
https://github.com/bytedance/nnproxy

[45] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi,
Balaji Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica
Manu, Spiro Michaylov, Rogério Ramos, et al. Azure data lake store: a
hyperscale distributed file service for big data analytics. In Proceedings of
the 2017 ACM International Conference on Management of Data, pages 51–63,
2017.

[46] Dean Hildebrand and Denis Serenyi. Colossus under the
hood: a peek into google’s scalable storage system. https:
//cloud.google.com/blog/products/storage-data-transfer/
a-peek-behind-colossus-googles-file-system, 2021.

[47] Konstantin V Shvachko and Yuxiang Chen. Scaling namespace operations
with giraffa file system. USENIX; login, 2017.

[48] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for structured data. In
Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, OSDI ’06, pages 15–15, Berkeley, CA, USA, 2006.
USENIX Association.

[49] Apache hbase. https://hbase.apache.org.

[50] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. In Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation - Volume 6, OSDI’04, pages 10–
10, Berkeley, CA, USA, 2004. USENIX Association.

[51] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA,
2012. USENIX Association.

[52] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’16, pages 265–
283, Berkeley, CA, USA, 2016. USENIX Association.

[53] Voltdb. https://www.voltdb.com, 2010.

[54] Apache ignite. https://ignite.apache.org.

170

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://hbase.apache.org
https://www.voltdb.com
https://ignite.apache.org

[55] Alternate hash table for namenode memory optimization. https://
issues.apache.org/jira/browse/HDFS-1114.

[56] Hdfs high availability using the quorum journal manager.
https://hadoop.apache.org/docs/current/hadoop-project-dist/
hadoop-hdfs/HDFSHighAvailabilityWithQJM.html.

[57] Hdfs high availability using nfs. https://hadoop.apache.
org/docs/current/hadoop-project-dist/hadoop-hdfs/
HDFSHighAvailabilityWithNFS.html.

[58] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In Proceed-
ings of the 2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX Associa-
tion.

[59] Nnthroughputbenchmark. https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-common/Benchmarking.html.

[60] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-store:
A high-performance, distributed main memory transaction processing sys-
tem. Proc. VLDB Endow., 1(2):1496–1499, August 2008.

[61] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael
Stonebraker. Oltp through the looking glass, and what we found there.
In Proceedings of the 2008 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’08, pages 981–992, New York, NY, USA, 2008. ACM.

[62] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main
memory oltp recovery. In 2014 IEEE 30th International Conference on Data
Engineering, pages 604–615, 2014.

[63] Nick Murphy, Mark Tonkelowitz, and Mike Vernal. The Design and Imple-
mentation of the Database File System. 2002.

[64] Haryadi S Gunawi, Abhishek Rajimwale, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. SQCK: A Declarative File System Checker. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 131–146, 2008.

[65] Leveldb. https://github.com/google/leveldb.

[66] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Car-
los Maltzahn. Ceph: A scalable, high-performance distributed file system.

171

https://issues.apache.org/jira/browse/HDFS-1114
https://issues.apache.org/jira/browse/HDFS-1114
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Benchmarking.html
https://github.com/google/leveldb

In Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation, OSDI ’06, pages 307–320, Berkeley, CA, USA, 2006. USENIX As-
sociation.

[67] Rocksdb. https://github.com/facebook/rocksdb.

[68] Winfs: Windows future storage. https://en.wikipedia.org/wiki/WinFS.

[69] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Za-
kharov, Abhinav Sharma, Mike Shuey, Richard Wareing, Monika Gangapu-
ram, Guanglei Cao, et al. Facebook’s tectonic filesystem: Efficiency from ex-
ascale. In 19th USENIX Conference on File and Storage Technologies (FAST’21),
pages 217–231, 2021.

[70] Muthu Annamalai. Zippydb: A distributed key value store. https://www.
youtube.com/embed/ZRP7z0HnClc.

[71] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

[72] Leslie Lamport. The part-time parliament. In Concurrency: the Works of Leslie
Lamport, pages 277–317. 2019.

[73] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: Sql
server’s memory-optimized oltp engine. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages 1243–1254,
2013.

[74] Marshall Kirk McKusick and Sean Quinlan. Gfs: Evolution on fast-forward.
Queue, 7(7):10:10–10:20, August 2009.

[75] Pavan Edara and Mosha Pasumansky. Big metadata: When metadata is big
data. Proc. VLDB Endow., 14(12):3083 – 3095, 2021.

[76] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’12, pages 1–12, New
York, NY, USA, 2012. ACM.

[77] Swapnil V Patil, Garth A Gibson, Sam Lang, and Milo Polte. Giga+ scalable
directories for shared file systems. In Proceedings of the 2nd international
workshop on Petascale data storage: held in conjunction with Supercomputing’07,
pages 26–29, 2007.

[78] Scaling uber’s apache hadoop distributed file system for growth. https:
//eng.uber.com/scaling-hdfs/.

172

https://github.com/facebook/rocksdb
https://en.wikipedia.org/wiki/WinFS
https://www.youtube.com/embed/ZRP7z0HnClc
https://www.youtube.com/embed/ZRP7z0HnClc
https://eng.uber.com/scaling-hdfs/
https://eng.uber.com/scaling-hdfs/

[79] Hdfs router-based federation rebalancer. https://issues.apache.org/
jira/browse/HDFS-13123.

[80] Hfr: Rename across federation namespaces. https://issues.apache.org/
jira/browse/HDFS-15087.

[81] Michael Cafarella, David DeWitt, Vijay Gadepally, Jeremy Kepner, Chris-
tos Kozyrakis, Tim Kraska, Michael Stonebraker, and Matei Zaharia.
Dbos: A proposal for a data-centric operating system. arXiv preprint
arXiv:2007.11112, 2020.

[82] Google dataflow. https://cloud.google.com/dataflow.

[83] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances
Perry, Eric Schmidt, and Sam Whittle. The dataflow model: A practical
approach to balancing correctness, latency, and cost in massive-scale, un-
bounded, out-of-order data processing. Proceedings of the VLDB Endowment,
8:1792–1803, 2015.

[84] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haber-
man, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam
Whittle. Millwheel: Fault-tolerant stream processing at internet scale. Pro-
ceedings of the VLDB Endowment, 6(11):1033–1044, 2013.

[85] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert
Henry, Robert Bradshaw, and Nathan. Flumejava: Easy, efficient data-
parallel pipelines. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 363–375, 2 Penn Plaza, Suite 701
New York, NY 10121-0701, 2010.

[86] Amazon kinesis data analytics. https://aws.amazon.com/kinesis/
data-analytics/.

[87] New for AWS Lambda – 1ms Billing Granularity Adds
Cost Savings. https://aws.amazon.com/blogs/aws/
new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/.

[88] Aws lambda quotas. https://docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html.

[89] Google cloud functions quota. https://cloud.google.com/functions/
quotas.

[90] Azure functions limits. https://docs.microsoft.com/en-us/azure/
azure-functions/functions-bindings-http-webhook-trigger?tabs=
csharp#limits.

173

https://issues.apache.org/jira/browse/HDFS-13123
https://issues.apache.org/jira/browse/HDFS-13123
https://issues.apache.org/jira/browse/HDFS-15087
https://issues.apache.org/jira/browse/HDFS-15087
https://cloud.google.com/dataflow
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://cloud.google.com/functions/quotas
https://cloud.google.com/functions/quotas
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-trigger?tabs=csharp#limits
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-trigger?tabs=csharp#limits
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-trigger?tabs=csharp#limits

[91] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. Nex-
mark—a benchmark for queries over data streams draft. Technical report,
Technical report, OGI School of Science & Engineering at OHSU, Septem-
bers, 2008.

[92] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas
Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil,
Boyang Jerry Peng, et al. Benchmarking streaming computation engines:
Storm, flink and spark streaming. pages 1789–1792, 2016.

[93] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 36(4), 2015.

[94] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion
Stoica. Jiffy: elastic far-memory for stateful serverless analytics. In Proceed-
ings of the Seventeenth European Conference on Computer Systems, pages 697–
713, 2022.

[95] Official rust implementation of apache arrow. https://github.com/
apache/arrow-rs, 2021.

[96] Apache arrow datafusion query engine. https://github.com/apache/
arrow-datafusion.

[97] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak,
Stefano Stefani, and Vidhya Srinivasan. Amazon redshift and the case for
simpler data warehouses. In Proceedings of the 2015 ACM SIGMOD interna-
tional conference on management of data, pages 1917–1923, 2015.

[98] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: interactive analysis
of web-scale datasets. Proceedings of the VLDB Endowment, 3(1-2):330–339,
2010.

[99] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey,
Slava Min, et al. Dremel: a decade of interactive sql analysis at web scale.
Proceedings of the VLDB Endowment, 13(12):3461–3472, 2020.

[100] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. Lake-
house: a new generation of open platforms that unify data warehousing
and advanced analytics. In Proceedings of CIDR, 2021.

[101] Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Ja-
gan Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Zongchang (Jim)
Chen, Ming Dai, Thanh Do, Haoyu Gao, Haoyan Geng, Raman Grover,

174

https://github.com/apache/arrow-rs
https://github.com/apache/arrow-rs
https://github.com/apache/arrow-datafusion
https://github.com/apache/arrow-datafusion

Bo Huang, Yanlai Huang, Zhi (Adam) Li, Jianyi Liang, Tao Lin, Li Liu,
Yao Liu, Xi Mao, Yalan (Maya) Meng, Prashant Mishra, Jay Patel, Rajesh S.
R., Vijayshankar Raman, Sourashis Roy, Mayank Singh Shishodia, Tian-
hang Sun, Ye (Justin) Tang, Junichi Tatemura, Sagar Trehan, Ramkumar
Vadali, Prasanna Venkatasubramanian, Gensheng Zhang, Kefei Zhang,
Yupu Zhang, Zeleng Zhuang, Goetz Graefe, Divyakant Agrawal, Jeff
Naughton, Sujata Kosalge, and Hakan Hacıgümüş. Napa: Powering scal-
able data warehousing with robust query performance at google. Proc.
VLDB Endow., 14(12):2986–2997, jul 2021.

[102] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali
Ghodsi, et al. Spark sql: Relational data processing in spark. In Proceed-
ings of the 2015 ACM SIGMOD international conference on management of data,
pages 1383–1394, 2015.

[103] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong,
David Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan
Johnson, Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth
Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart
Samwel, Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin,
and Matei Zaharia. Photon: A fast query engine for lakehouse systems. In
Proceedings of the 2022 ACM SIGMOD international conference on Management
of data, pages 239–250, 2022.

[104] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wen-
lei Xie, Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema
Shingte, et al. Presto: Sql on everything. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 1802–1813. IEEE, 2019.

[105] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner,
John Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. F1: A dis-
tributed sql database that scales. Proc. VLDB Endow., 6(11):1068–1079, aug
2013.

[106] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky,
Casey Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht,
Matthew Jacobs, Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang,
Nong Li, Ippokratis Pandis, Henry Robinson, David Rorke, Silvius
Rus, John Russell, Dimitris Tsirogiannis, Skye Wanderman-Milne, and
Michael Yoder 0002. Impala - A Modern, Open-Source SQL Engine for
Hadoop. CIDR, 2015.

[107] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Ning Zhang 0002, Suresh Anthony, Hao Liu 0018, and Raghotham
Murthy. Hive - a petabyte scale data warehouse using Hadoop. ICDE, 2010.

175

[108] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. Discretized streams: Fault-tolerant streaming computation
at scale. In Proceedings of the twenty-fourth ACM symposium on operating sys-
tems principles, pages 423–438, 2013.

[109] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong
Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. Structured
streaming: A declarative api for real-time applications in apache spark. In
Proceedings of the 2018 International Conference on Management of Data, pages
601–613, 2018.

[110] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey,
Alex Rasin, Esther Ryvkina, et al. The design of the borealis stream pro-
cessing engine. In Cidr, volume 5, pages 277–289, 2005.

[111] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J
Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R Madden, Fred Reiss, and Mehul A Shah. Telegraphcq: contin-
uous dataflow processing. In Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, pages 668–668, 2003.

[112] Lukasz Golab and M Tamer Özsu. Issues in data stream management. ACM
Sigmod Record, 32(2):5–14, 2003.

[113] Amazon s3 update – strong read-after-write con-
sistency. https://aws.amazon.com/blogs/aws/
amazon-s3-update-strong-read-after-write-consistency.

[114] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, volume 11, pages
1–7, 2011.

[115] Aws lambda: Dead-letter queues for async invocations. https:
//docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#
invocation-dlq.

[116] Aws lambda asynchronous invocation. https://docs.aws.amazon.com/
lambda/latest/dg/invocation-async.html.

[117] mimalloc. https://github.com/microsoft/mimalloc.

[118] snmalloc. https://github.com/microsoft/snmalloc.

[119] Flock function dependency tree. https://
bafybeidatseo6ixib6ceujgsuqwaj6hpdrujyfthyrtlhb4g2ibwbz2r3m.
ipfs.infura-ipfs.io/, 2022.

176

https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#invocation-dlq
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#invocation-dlq
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#invocation-dlq
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://github.com/microsoft/mimalloc
https://github.com/microsoft/snmalloc
https://bafybeidatseo6ixib6ceujgsuqwaj6hpdrujyfthyrtlhb4g2ibwbz2r3m.ipfs.infura-ipfs.io/
https://bafybeidatseo6ixib6ceujgsuqwaj6hpdrujyfthyrtlhb4g2ibwbz2r3m.ipfs.infura-ipfs.io/
https://bafybeidatseo6ixib6ceujgsuqwaj6hpdrujyfthyrtlhb4g2ibwbz2r3m.ipfs.infura-ipfs.io/

[120] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin
Recht. Occupy the cloud: Distributed computing for the 99%. In Proceedings
of the 2017 symposium on cloud computing, pages 445–451, 2017.

[121] Pywren. https://github.com/pywren/pywren.

[122] Chris Lattner and Vikram Adve. Llvm: A compilation framework for life-
long program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[123] Cranelift Code Generator. https://github.com/bytecodealliance/
wasmtime/tree/main/cranelift.

[124] Aws lambda api reference: Createfunction. https://docs.aws.amazon.
com/lambda/latest/dg/API_CreateFunction.html.

[125] Zstandard: a fast lossless compression algorithm. https://github.com/
facebook/zstd.

[126] Using AWS Lambda environment variables. https://docs.aws.amazon.
com/lambda/latest/dg/configuration-envvars.html.

[127] Aws lambda api reference: Invoke. https://docs.aws.amazon.com/
lambda/latest/dg/API_Invoke.html.

[128] Aws lambda functions powered by aws graviton2 processor.
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-
by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-
better-price-performance/.

[129] Aws graviton processor. https://aws.amazon.com/ec2/graviton/.

[130] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfefferle, and Animesh Trivedi. Understanding ephemeral storage for
serverless analytics. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pages 789–794, 2018.

[131] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfef-
ferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage for server-
less analytics. In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), pages 427–444, 2018.

[132] Aws lambda function scaling. https://docs.aws.amazon.com/lambda/
latest/dg/invocation-scaling.html.

[133] Amazon DynamoDB. https://aws.amazon.com/dynamodb/.

[134] Citi bike trip histories. https://ride.citibikenyc.com/system-data.

[135] Aws lambda rust runtime.

177

https://github.com/pywren/pywren
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://docs.aws.amazon.com/lambda/latest/dg/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/dg/API_CreateFunction.html
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://aws.amazon.com/ec2/graviton/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://aws.amazon.com/dynamodb/
https://ride.citibikenyc.com/system-data

[136] The next big evolution in serverless computing.
https://cloud.google.com/blog/products/serverless/
the-next-big-evolution-in-cloud-computing, 2021.

[137] David Yanacek. Avoiding insurmountable queue back-
logs. https://d1.awsstatic.com/builderslibrary/pdfs/
avoiding-insurmountable-queue-backlogs.pdf?did=ba_card-body&
trk=ba_card-body, 2019.

[138] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, Khaled
Elmeleegy, and Russell Sears. Mapreduce online. In Nsdi, volume 10,
page 20, 2010.

[139] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow:
distributed, low latency scheduling. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 69–84, 2013.

[140] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori,
Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight virtualization for serverless applications. In 17th {usenix} sym-
posium on networked systems design and implementation ({NSDI} 20), pages
419–434, 2020.

[141] Aws lambda execution environments. https://docs.aws.amazon.com/
lambda/latest/operatorguide/execution-environments.html.

[142] Aws lambda api reference: Putfunctionconcurrency. https://docs.aws.
amazon.com/lambda/latest/dg/API_PutFunctionConcurrency.html.

[143] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-
peer lookup protocol for internet applications. IEEE/ACM Transactions on
networking, 11(1):17–32, 2003.

[144] Adaptive query execution: Speeding up spark sql at
runtime. https://databricks.com/blog/2020/05/29/
adaptive-query-execution-speeding-up-spark-sql-at-runtime.html,
2020.

[145] Snappy: a fast compressor/decompressor. https://github.com/google/
snappy.

[146] Lz4: a extremely fast compression. https://github.com/lz4/lz4.

[147] Apache beam. https://beam.apache.org.

[148] Nexmark benchmark suite. https://beam.apache.org/documentation/
sdks/java/testing/nexmark/.

178

https://cloud.google.com/blog/products/serverless/the-next-big-evolution-in-cloud-computing
https://cloud.google.com/blog/products/serverless/the-next-big-evolution-in-cloud-computing
https://d1.awsstatic.com/builderslibrary/pdfs/avoiding-insurmountable-queue-backlogs.pdf?did=ba_card-body&trk=ba_card-body
https://d1.awsstatic.com/builderslibrary/pdfs/avoiding-insurmountable-queue-backlogs.pdf?did=ba_card-body&trk=ba_card-body
https://d1.awsstatic.com/builderslibrary/pdfs/avoiding-insurmountable-queue-backlogs.pdf?did=ba_card-body&trk=ba_card-body
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/dg/API_PutFunctionConcurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/API_PutFunctionConcurrency.html
https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://github.com/google/snappy
https://github.com/google/snappy
https://github.com/lz4/lz4
https://beam.apache.org
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/

[149] Aws lambda now supports up to 10 gb of mem-
ory and 6 vcpu cores for lambda functions. https:
//aws.amazon.com/about-aws/whats-new/2020/12/
aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/,
2021.

[150] Aws lambda pricing. https://aws.amazon.com/lambda/pricing/.

[151] Amazon s3 pricing. https://aws.amazon.com/s3/pricing/.

[152] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at
what {COST}? In 15th Workshop on Hot Topics in Operating Systems (HotOS
{XV}), 2015.

[153] Managing lambda reserved concurrency. https://docs.aws.amazon.com/
lambda/latest/dg/configuration-concurrency.html.

[154] Aws step functions. https://aws.amazon.com/step-functions/.

[155] Azure durable functions. https://docs.microsoft.com/en-us/azure/
azure-functions/durable/durable-functions-overview?tabs=csharp.

[156] Google cloud composer. https://cloud.google.com/composer.

[157] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo,
Konstantinos Kallas, Connor McMahon, Christopher S. Meiklejohn, and Xi-
angfeng Zhu. Netherite: Efficient execution of serverless workflows. Pro-
ceedings of the VLDB Endowment, 2022.

[158] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. Kappa: A pro-
gramming framework for serverless computing. In Proceedings of the 11th
ACM Symposium on Cloud Computing, pages 328–343, 2020.

[159] Netflix conductor. https://netflix.github.io/conductor/.

[160] Zeebe: A workflow engine for microservices orchestration. https://
zeebe.io/.

[161] Fission: Open source, kubernetes-native serverless framework. https://
fission.io/.

[162] Fn flow. https://github.com/fnproject/flow/.

[163] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-
Smith, Jose M Faleiro, Joseph E Gonzalez, Joseph M Hellerstein, and Alexey
Tumanov. Cloudburst: Stateful functions-as-a-service. Proceedings of the
VLDB Endowment, 13:2438–2452, 2020.

179

https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://cloud.google.com/composer
https://netflix.github.io/conductor/
https://zeebe.io/
https://zeebe.io/
https://fission.io/
https://fission.io/
https://github.com/fnproject/flow/

[164] Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang, Huangshi
Tian, Subrata Mitra, Yuxing Peng, Hongqi Wang, Ana Klimovic, Haoran
Yang, et al. {SONIC}: Application-aware data passing for chained serverless
applications. In 2021 USENIX Annual Technical Conference (USENIX ATC
21), pages 285–301, 2021.

[165] Philip A Bernstein, Todd Porter, Rahul Potharaju, Alejandro Z Tomsic, Shiv-
aram Venkataraman, and Wentao Wu. Serverless event-stream processing
over virtual actors. In CIDR, 2019.

[166] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen The-
lin. Orleans: Distributed virtual actors for programmability and scalability.
MSR-TR-2014–41, 2014.

[167] Flink stateful functions. https://nightlies.apache.org/flink/
flink-statefun-docs-release-3.2/docs/concepts/distributed_
architecture/.

[168] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A software architect’s per-
spective. Addison-Wesley Professional, 2015.

[169] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum.
On the journey to continuous deployment: Technical and social challenges
along the way. Information and Software technology, 57:21–31, 2015.

[170] Mojtaba Shahin, Muhammad Ali Babar, Mansooreh Zahedi, and Liming
Zhu. Beyond continuous delivery: an empirical investigation of continu-
ous deployment challenges. In 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 111–120.
IEEE, 2017.

[171] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck,
and Michael Stumm. Continuous deployment at facebook and oanda. In
2016 IEEE/ACM 38th International Conference on Software Engineering Com-
panion (ICSE-C), pages 21–30. IEEE, 2016.

[172] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Heller-
stein, and Ion Stoica. Feral concurrency control: An empirical investigation
of modern application integrity. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 1327–1342, 2015.

[173] Mikael Ronstrom. On-line schema update for a telecom database. In Pro-
ceedings of 16th International Conference on Data Engineering (ICDE), pages
329–338. IEEE, 2000.

[174] Percona Online Schema Change. https://www.percona.com/doc/
percona-toolkit/2.2/pt-online-schema-change.html, 2016.

180

https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/docs/concepts/distributed_architecture/
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/docs/concepts/distributed_architecture/
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/docs/concepts/distributed_architecture/
https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html

[175] Facebook Online Schema Change. https://www.facebook.com/notes/
mysql-at-facebook/online-schema-change-for-mysql/430801045932/,
2010.

[176] OAK Online Alter Table. https://shlomi-noach.github.io/openarkkit/
oak-online-alter-table.html, 2010.

[177] Large Hadron Migrator. https://github.com/soundcloud/lhm, 2012.

[178] Yu Zhu. Towards Automated Online Schema Evolution. PhD thesis, UC Berke-
ley, 2017.

[179] Jørgen Løland and Svein-Olaf Hvasshovd. Online, non-blocking relational
schema changes. In International Conference on Extending Database Technology
(EDBT), pages 405–422. Springer, 2006.

[180] GitHub Online Schema Change. https://github.com/github/gh-ost,
2016.

[181] Carlo A Curino, Hyun J Moon, MyungWon Ham, and Carlo Zaniolo. The
prism workwench: Database schema evolution without tears. In IEEE 25th
International Conference on Data Engineering (ICDE), pages 1523–1526. IEEE,
2009.

[182] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Automat-
ing the database schema evolution process. The VLDB Journal, 22(1):73–98,
2013.

[183] Michael de Jong, Arie van Deursen, and Anthony Cleve. Zero-downtime
sql database schema evolution for continuous deployment. In 2017
IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pages 143–152. IEEE, 2017.

[184] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek.
Online, asynchronous schema change in f1. Proceedings of the VLDB Endow-
ment, 6(11):1045–1056, 2013.

[185] Ariel Afonso, Altigran da Silva, Tayana Conte, Paulo Martins, João Cav-
alcanti, and Alessandro Garcia. Lessql: Dealing with database schema
changes in continuous deployment. In 2020 IEEE 27th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), pages 138–
148. IEEE, 2020.

[186] Michael Stonebraker, Dong Deng, and Michael L Brodie. Database decay
and how to avoid it. In IEEE International Conference on Big Data (Big Data),
pages 7–16. IEEE, 2016.

[187] Eric A Brewer. Lessons from giant-scale services. IEEE Internet Computing,
5(4):46–55, 2001.

181

https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://shlomi-noach.github.io/openarkkit/oak-online-alter-table.html
https://shlomi-noach.github.io/openarkkit/oak-online-alter-table.html
https://github.com/soundcloud/lhm
https://github.com/github/gh-ost

[188] Karla Saur, Tudor Dumitraş, and Michael Hicks. Evolving nosql databases
without downtime. In 2016 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 166–176. IEEE, 2016.

[189] Luís Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar.
Mvedsua: Higher availability dynamic software updates via multi-version
execution. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 573–585, 2019.

[190] Luís Pina, Luís Veiga, and Michael Hicks. Rubah: DSU for java on a stock
JVM. In Proceedings of the ACM Conference on Object-Oriented Programming
Languages, Systems, and Applications (OOPSLA), volume 49, pages 103–119,
2014.

[191] Christopher M Hayden, Karla Saur, Edward K Smith, Michael Hicks, and
Jeffrey S Foster. Kitsune: Efficient, general-purpose dynamic software
updating for c. ACM Transactions on Programming Languages and Systems
(TOPLAS), 36(4):1–38, 2014.

[192] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7,
pages 343477–343502. Portland, OR, 2000.

[193] Daniel Abadi. Consistency tradeoffs in modern distributed database sys-
tem design: Cap is only part of the story. Computer, 45(2):37–42, 2012.

[194] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. Oltp-bench: An extensible testbed for benchmarking relational
databases. Proceedings of the VLDB Endowment, 7(4):277–288, 2013.

[195] Why Triggerless? https://github.com/github/gh-ost/blob/master/
doc/why-triggerless.md, 2016.

[196] Gh-ost benchmark against pt-online-schema-change per-
formance. https://www.percona.com/blog/2017/07/12/
gh-ost-benchmark-against-pt-online-schema-change-performance/,
2017.

[197] Database migration: Concepts and principles
(Part 2). https://cloud.google.com/solutions/
database-migration-concepts-principles-part-2, 2020.

[198] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi.
Albatross: Lightweight elasticity in shared storage databases for the cloud
using live data migration. Proceedings of the VLDB Endowment, 4(8):494–505,
2011.

182

https://github.com/github/gh-ost/blob/master/doc/why-triggerless.md
https://github.com/github/gh-ost/blob/master/doc/why-triggerless.md
https://www.percona.com/blog/2017/07/12/gh-ost-benchmark-against-pt-online-schema-change-performance/
https://www.percona.com/blog/2017/07/12/gh-ost-benchmark-against-pt-online-schema-change-performance/
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2

[199] Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüş, and Prashant
Shenoy. "cut me some slack" latency-aware live migration for databases. In
Proceedings of the 15th international conference on extending database technology
(EDBT), pages 432–443, 2012.

[200] Takeshi Mishima and Yasuhiro Fujiwara. Madeus: database live migration
middleware under heavy workloads for cloud environment. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
pages 315–329, 2015.

[201] Aaron J Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
Zephyr: live migration in shared nothing databases for elastic cloud plat-
forms. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 301–312, 2011.

[202] Oliver Schiller, Nazario Cipriani, and Bernhard Mitschang. Prorea: live
database migration for multi-tenant rdbms with snapshot isolation. In Pro-
ceedings of the 16th International Conference on Extending Database Technology
(EDBT), pages 53–64, 2013.

[203] Jose M Faleiro, Alexander Thomson, and Daniel J Abadi. Lazy evaluation of
transactions in database systems. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 15–26, 2014.

[204] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. Trans-
action chopping: Algorithms and performance studies. ACM Transactions
on Database Systems (TODS), 20(3):325–363, 1995.

[205] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera,
and Jinyang Li. Transaction chains: achieving serializability with low la-
tency in geo-distributed storage systems. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP), pages 276–291,
2013.

[206] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. High perfor-
mance transactions via early write visibility. Proceedings of the VLDB En-
dowment, 10(5), 2017.

[207] Daniel Abadi, Anastasia Ailamaki, David Andersen, Peter Bailis, Mag-
dalena Balazinska, Philip Bernstein, Peter Boncz, Surajit Chaudhuri, Alvin
Cheung, AnHai Doan, et al. The seattle report on database research. ACM
SIGMOD Record, 48(4):44–53, 2020.

[208] Z. Dehghani. Data Mesh: Delivering Data-Driven Value at Scale. O’Reilly
Media, Incorporated, 2022.

183

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Overview
	FileScale
	Flock
	BullFrog
	Outline

	FileScale: Fast and Elastic Metadata Management for Distributed File Systems
	Introduction
	HDFS Background
	System Architecture
	Database Layer
	Data Model
	Transaction Processing

	Caching Layer
	Object Cache
	Durability

	Proxy Layer
	Request Routing
	Multi-partition requests

	Performance Evaluation
	Experimental Setup
	Single-node Experiments
	Multi-server Experiments
	Disaster Recovery
	The Impact of Database System Choice

	Related Work
	Summary

	Flock: A Practical Serverless Streaming Query Engine
	Motivation
	Background
	AWS Lambda
	Apache Arrow and DataFusion
	Streaming Query Processing

	System Architecture
	SQL Interface
	Distributed Planner
	Microbatch Execution Mode
	Fault Tolerance

	Function Templates
	Template Specialization
	Generic Function

	Serverless Actors and Communication
	One-way Communication
	Sync and Async
	No Coordinator
	Function Name
	Function Group

	Flock Dataflow Paradigm
	Evaluation
	Experimental Setup
	x86 vs Arm Architectures
	Performance Cost
	Invocation Payload
	Distributed Query Processing
	Cold Start

	RELATED WORK

	BullFrog: Online Schema Evolution via Lazy Evaluation
	Introduction
	Request-Driven Lazy Migration
	Basic approach
	Background migrations
	Consistency
	Limitations

	Lazy Migration, Concurrently
	Migration categories
	Migration transaction processing
	Bitmap migrations
	Hashmap migrations
	Migration aborts
	Joins
	Conflict detection

	Experimental Evaluation
	Table split migration
	Aggregate Migration
	Join Migration
	Tracking Overhead
	Integrity Constraints

	Related Work
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

