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Data-driven learning is becoming an integral part of many robotic systems.

Robots can be used as mobile sensors to learn about the environment in which they

operate. Robots can also seek to learn essential skills, such as navigation, within

the environment. A critical challenge in both types of learning is sample efficiency.

Acquiring samples with physical robots can be prohibitively time-consuming. As a

result, when applying learning techniques in robotics that require physical interac-

tion with the environment, minimizing the number of such interactions becomes a

key. The key question we seek to answer is: How do we make robots learn efficiently

with a minimal amount of physical interaction? We approach this question along two

fronts: extrinsic learning and intrinsic learning. In extrinsic learning, we want the

robot to learn about the external environment in which it is operating. In intrinsic

learning, our focus is on the robot to learn a skill using reinforcement learning (RL)

such as navigating in an environment. In this dissertation, we develop algorithms

that carefully plan where the robots obtain samples in order to efficiently perform



intrinsic and extrinsic learning. In particular, we exploit the structural properties

of Gaussian Process (GP) regression to design efficient sampling algorithms.

We study two types of problems under extrinsic learning. We start with the

problem of learning a spatially varying field modeled by a GP efficiently. Our goal

is to ensure that the GP posterior variance, which is also the mean square error

between the learned and actual fields, is below a predefined value. By exploiting the

underlying properties of GP, we present a series of constant-factor approximation

algorithms for minimizing the number of stationary sensors to place, minimizing

the total time taken by a single robot, and minimizing the time taken by a team

of robots to learn the field. Here, we assume that the GP hyperparameters are

known. We then study a variant where our goal is to identify the hotspot in an

environment. Here we do not assume that hyperparameters are unknown. For this

problem, we present Upper Confidence Bound (UCB) and Monte Carlo Tree Search

(MCTS) based algorithms for a single robot and later extend them to decentralized

multi-robot teams. We also validate their performance on real-world datasets.

For intrinsic learning, our aim is to reduce the number of physical interactions

by leveraging simulations often known as Multi-Fidelity Reinforcement Learning

(MFRL). In the MFRL framework, an agent uses multiple simulators of the real

environment to perform actions. We present two MFRL framework versions, model-

based and model-free, that leverage GPs to learn the optimal policy in a real-world

environment. By incorporating GPs in the MFRL framework, we empirically observe

a significant reduction in the number of samples for model-based and model-free

learning.
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Chapter 1: Introduction

1.1 Learning in Robotics

There has been a huge interest recently in incorporating learning in robotics.

This is not surprising. Given the advancements in the Machine Learning (ML)

community [2–6], there has been a push to leverage powerful learning-based meth-

ods to provide robots more autonomy [3, 7–10]. The recent progress in machine

learning techniques has been spurred, in part, by access to large datasets [11, 12].

However, when it comes to applying these techniques in robotics, acquiring this

dataset itself is a challenge since it requires physical interaction. Dealing with robots

presents unique challenges. For example, while the state-of-the-art ML techniques

can achieve super-human performance on certain tasks, these algorithms often re-

quire billions of training samples by interacting with the environment [4, 13–15].

Acquiring these many samples with physical robots may not be feasible [16]. While

it may be possible in specific cases, such as robot manipulators [17], mobile robots

in general present a different proposition. They are costly to operate, have signifi-

cant energy requirements, and suffer from hardware degradation that can result in

failure if made to interact endlessly with the environment. Maintaining robots for

long periods of time can be labor and cost-intensive. As a result, when applying

1



ML techniques in robotics that require physical interaction with the environment,

minimizing the number of such interactions becomes key.

While there is work on reducing the sample complexity of ML algorithms [18–

21], reducing just the number of samples may not be sufficient for physical agents.

This is because obtaining a sample may require the mobile robot to travel to a new

location [14, 22]. As such, we need algorithms that can directly take into account

the cost to obtain a sample by a mobile robot. When there is a team of robots,

these algorithms must factor in the communication capabilities between the robots.

The key contribution we make in this dissertation is how to make robots learn

as efficiently as possible with a minimal amount of physical interaction. Current

deployment of robots requires lots of guesswork in terms of how much data one

should collect, how many robots to deploy, and where are the interesting regions in

the environment from where one should collect the data? The algorithms presented

in this dissertation provide a systematic way to answer these questions for a practi-

tioner. For example, an environmental scientist may be interested in mapping the

concentration of certain algae in a water body. One way could be to go and collect

the data in a lawn-mower pattern. However, figuring out the resolution of the lawn-

mower pattern is not trivial. Further, this can be inefficient in practice and does not

come with any theoretical guarantees on the prediction accuracy. The algorithms

proposed in this dissertation answer these questions about how much data should

they collect and from which locations so that they can build an accurate map in

such situations.

We measure the cost of collecting data as the total operating time for the

2



physical robot which consists of the travel time and measurement time. The time

to obtain an individual measurement may be negligible (e.g., if the sensor is a

camera) or may be substantial (e.g., if the sensor is a soil probe that needs to be

physically inserted in the ground to get a sample). We devise algorithms to reduce

the cost of data collection and eliminate the guesswork in robot deployment by

answering two broad sets of questions: where to collect the data from and when to

collect the data? The former is motivated by extrinsic learning scenarios where the

robot is learning about the environment that it is operating in. In these scenarios,

it may not be necessary for the robot to collect the data everywhere. We devise

algorithms that carefully choose measurement locations to reduce the cost of data

collection. Intrinsic learning deals with the problem of robot learning by itself a

skill or solving a task. We develop algorithms that provably reduce the number of

physical interactions needed by the robot to learn by leveraging simulators (where

the cost of data collection is low) and carefully choosing when to collect data with

physical robots.

1.1.1 Extrinsic Learning

In extrinsic learning, the goal for the robot is to learn about the external

environment where it is operating. This problem is often known as Informative

Path Planning (IPP) in the robotics literature [23–27]. In IPP, the robots are

generally equipped with sensors and the objective for the robots is to learn the

environment as quickly as possible. It has significant applications. For example,

3



robots can be used to learn the concentration of nitrogen present in the soil within

a farm [28]. Knowing the content of various nutrients in the soil within a farm

can help the farmers to improve the yield and reduce the application of fertilizers.

Robots are increasingly used to learn about the environments, such as a chemical

spill in a water body (Figure 1.1(a)) which can have a significant impact on marine

life. Learning the spatial variation of rock minerals can help in efficient mining

strategies [29]. Such applications can be abstracted as IPP where the robot equipped

with appropriate sensors is tasked with learning the spatially and/or temporally

varying representation of the environment.

There are many factors to consider when deploying robots to efficiently learn

the external environment. Usually, a trade-off must be made between the number

of sensing resources (e.g., number of deployed robots, energy consumption, mission

time) and the quality of data collected. The robots can be deployed to act as sta-

tionary or mobile sensors depending on the application (Figure 1.1(b)). Deploying

robots to function as mobile sensors is especially challenging because of the need for

path planning. While deploying mobile robotic sensors, one needs to plan the most

informative resource-constrained observation paths to minimize the uncertainty in

modeling and tracking the spatial phenomena.

While there has been significant empirical work in this area, most results

lack theoretical soundness. By exploiting the properties of Gaussian Process (GP)

regression [30], we present several constant-factor polynomial-time approximation

algorithms to learn a given spatial field. We validate these algorithms in various

real-world scenarios as well. We study two related problems. We start by seeking

4



(a) An unmanned aerial vehicle (UAV)
flying over a lake to find the chemical
spill hotspots [31].

(b) A single quadcopter can fly over
a farm and measure the height of the
crop using a LIDAR sensor.

Figure 1.1: Robots used as mobile sensors to efficiently learn an environment.

to minimize the time required for mobile robots to learn a given spatial field at

each location (Chapter 2). We assume that the underlying GP hyperparameters

are known. In some applications, it is not crucial to learn the entire spatial field

but to rather learn about the interesting points in the environment. Motivated by

this, we seek to minimize the time in finding hotspots in a spatial field (Chapter 3).

The hotspots are defined as the locations in the spatial field where it attains their

maximum values. There can be multiple hotspot locations. In this case, we plan

adaptively, i.e., not assuming that the GP hyperparameters are known a priori. In

both cases, time includes the time required by the robot to travel as well as the time

required to obtain measurements.

1.1.2 Intrinsic Learning

As mentioned previously, in intrinsic learning, we focus on the robot to learn a

skill such as navigating autonomously while avoiding collisions with obstacles. This

falls under the umbrella of Reinforcement Learning (RL) [32].

RL can be traced back to the early days of machine learning and work in

5



statistics, psychology, neuroscience, and computer science [33]. An agent is linked to

its environment through perception and action in a standard reinforcement-learning

model. In robotics applications, the agent is usually the robot. The agent’s goal

is to find a strategy often termed as policy represented by π that maximizes some

long-run measure of reward by mapping states to actions. A typical RL problem

is mathematically formulated as a Markov Decision Process (MDP) [34]. In the

last ten to fifteen years, it has attracted rapidly increasing interest in the machine

learning and artificial intelligence communities due to the gains in computational

resources and rise of deep learning [35]. Deep reinforcement learning has achieved

superhuman performance on several benchmark tasks [36]. The strength of these

approaches stems from the convergence of a well-established and powerful area of

deep learning with the unique nature of RL methods.

There has also been a significant interest for using RL in robotics [3,14,37–39]

recently. Reinforcement learning provides robotics with a structure and collection

of methods for creating complex and difficult-to-engineer behaviors. Robotic prob-

lems, on the other hand, provide motivation, effect, and validation for advance-

ments in reinforcement learning. The interdisciplinary relationship between RL and

robotics has significant promise. A major limitation of using RL for planning with

robots is the need to obtain a large number of training samples. Obtaining a large

number of real-world training samples can be expensive and potentially dangerous.

In particular, obtaining exploratory samples–which are crucial to learning optimal

policies–may require the robot to collide or fail, which is undesirable. Motivated by

these scenarios, we focus on minimizing the number of real-world samples required
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for learning optimal policies.

One way to reduce the number of real-world samples is to leverage simula-

tors [40]. Collecting learning samples in a robot simulator is often inexpensive and

fast. One can use a simulator to learn an initial policy which is then transferred

to the real world — a technique usually referred to as sim2real [40]. This lets the

robot avoid learning from scratch in the real world and hence, reduces the number

of physical interactions required. However, this comes with a trade-off. While col-

lecting learning samples in simulators is inexpensive, they often fail to capture the

real-world environments perfectly, a phenomenon called the reality gap. While sim-

ulators with increasing fidelity with respect to the real world are being developed,

one would expect there to always remain some reality gap.

Our idea is to leverage not just one simulator, but rather a chain of simulators

of increasing fidelities (with real hardware as the highest fidelity at the top of the

chain). The slowest fidelity simulators can be used at the start to learn quickly, which

can then be transferred to the next fidelity simulator. Furthermore, unlike previous

work, the transfer is bidirectional. After transferring, if the robot realizes that the

policy in its current state has high uncertainty, the robot drops to a lower fidelity

simulator to collect additional samples. The key is to show when to switch simulators

and how to transfer data across environments. This technique is often known as

Multi-Fidelity Reinforcement Learning (MFRL) [41]. In the MFRL framework, an

agent uses multiple simulators of the real environment to perform actions. These

simulators have varying fidelity levels with the real environment. The lower fidelity

simulators can be used at the start to learn quickly and subsequently the policy can
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Figure 1.2: MFRL framework: The first simulator captures only grid-world move-
ments of a point robot while the second simulator has more fidelity modeling the
physics as well. Control can switch back and forth between simulators and real
environment which is the third simulator in the chain.

be transferred to the next fidelity simulator. With increasing fidelity in a simulator

chain, the number of samples used in successively higher simulators can be reduced.

The simulators have increasing levels of fidelity with respect to the real environment.

For example, the first simulator can be a simple simulator that models only the robot

kinematics, the second one can model the dynamics as well as kinematics, and the

highest fidelity simulator can be the real world (Figure 1.2). We provide more details

and results on the MFRL framework in Chapter 5.

The common objective in both extrinsic as well as intrinsic learning settings is

to minimize the cost of obtaining samples by the robots. Unlike traditional notion of

sample complexity (that measures only the number of samples used for learning), we

focus on the cost of sampling with a robot which includes time to physical travel to

a measurement location and to actually obtain the measurement. We use structural

properties of GPs to reduce this cost.
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1.2 Contributions and Roadmap

This dissertation proposes several algorithms for efficient extrinsic learning

as well as intrinsic learning. Next, we provide a brief description of the contribu-

tions made in this dissertation starting with extrinsic learning where the goal is to

minimize the time required to learn a spatially varying entity.

1.2.1 Extrinsic Learning

We study two versions here – learning the entire environment and finding the

hotspot by using GP regression. In the first version, we use the squared-exponential

isotropic kernel [30] and assume that the kernel hyperparameters are known. In

the second version, we use the anisotropic squared-exponential kernel and propose

algorithms that do not assume that the hyperparameters are known. We focus on

learning a stationary field in both cases.

Learning the Entire Environment. In many real-world robotics applications,

it is crucial to learn about the entire environment efficiently. For example, in map-

ping the radiological activity inside a nuclear power plant, it is important to predict

the nuclear radiation level at each point in the environment accurately. This can

help in closely monitoring for any potential leakages or breakdowns [42]. In another

application, stationary sensors are often deployed to monitor temperature in a geo-

graphical region [43]. Normally sensors are expensive. Hence, in these scenarios it

is important to monitor the temperature using as few sensors as we can. Further,
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a farmer may be interested in learning about the nutrient concentration at various

locations in a farm. Learning about the nutrient concentration in the farm can help

in better resource planning [44]. These are just a few examples but there are many

others where learning of the entire environment is important [24,45–47].

For learning the entire environment, we study three versions of the problem

in Chapter 2. Our goal is to ensure that the GP posterior variance, which is also

the mean square error between the learned and actual fields, is below a predefined

value. In the placement version, the objective is to minimize the number of mea-

surement locations while ensuring that the posterior variance is below a predefined

threshold. In the mobile robot version, we seek to minimize the total time taken by

the robot to visit and collect measurements from the measurement locations using

a single robot. We further extend it to multi-robot systems (MRS). An MRS can

exhibit better system reliability, flexibility, and versatility. Robots with diverse abil-

ities can be combined together to deal with complex task [48]. In the multi-robot

version, the objective is to minimize the time required by the last robot to return

to a common starting location called a depot. By exploiting the properties of GP

regression, we present constant-factor approximation algorithms. In summary, our

main contributions here include:

• introducing stationary sensor placement and mobile sensor algorithms for en-

suring that the prediction error at each location in the environment is below

a predefined threshold,

• providing polynomial-time constant-factor approximation guarantees on their
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performance, and

• showing their performance on a real-world dataset comprising of organic mat-

ter concentrations at various locations within a farm.

We show that it is possible to learn a given spatial field accurately with high confi-

dence without planning adaptively.

The single robot and the stationary placement algorithms were presented at

the 13th International Workshop on the Algorithmic Foundations of Robotics [49].

The multi-robot version appeared in the IEEE Transactions on Robotics in 2020 [28].

Finding the Hotspot. In many real-world applications, finding the hotspot is

more important than learning the entire environment accurately. The hotspot here

is defined as the location where the underlying field achieves its maximum value.

For example, consider the case of a chemical spill in a water body. This can have a

significant impact on the marine life. We might be interested in finding the hotspot

here to locate the source of the spill [31]. In another application, robots can be

used as scouts to potentially identify the regions of high values. After the scouting

mission, the robots can report the hotspot locations for further data collection from

those regions [50]. For hotspot identification, our goal is to identify the hotspot in

the environment using a mobile sensor(s). We again use GPs to model the underlying

spatial field. In many practical applications, the GP hyperparameters are not known

and must be optimized during the process. Optimizing GP hyperparameters is

computationally prohibitive. We propose two algorithms that finds the hotspot

with or without the need for hyperparameter optimization. In the latter case, we
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provide a computationally inexpensive way of adapting the hyperparameters. The

first algorithm follows an Upper Confidence Bound (UCB) [51] style exploration

while the second algorithm is based on Monte Carlo Tree Search (MCTS) [52]. We

compare their empirical performance on carefully designed synthetic spatial fields

of varying complexities as well as two real-world datasets. The first dataset is the

concentration of organic matter at various locations in a farm. The second dataset

is the Chromophoric Dissolved Organic Material (CDOM) concentration collected

from a subregion inside the Gulf of Mexico. In summary, our main contributions

include:

• introducing two single and multi-robot adaptive path planning algorithms to

minimize the terminal regret given that the robot is allowed to operate for a

predefined time budget of T ,

• showing their performance on two real-world datasets comprising of OM con-

centrations at various locations within a farm and Chlorophyll concentration

in a Pacific Ocean subregion, and

• introducing a computationally efficient way of adapting the GP hyperparam-

eters.

The terminal regret is defined as the difference between the actual maximum field

value f(x∗) and the actual field value f(x̂) at the location x̂ of maxima reported by

the robot. We present a more thorough discussion on the terminal regret in later

chapters.

The single robot and the multi-robot versions are presented in Chapters 2 and
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3 respectively.

1.2.2 Intrinsic Learning

Often, in the task of learning, many times we may have access to robot sim-

ulators so we can ease the burden of learning only with physical robots to use sim-

ulators. For example, in training a robot to do certain maneuvers, we may use its

dynamics simulator and collect some data in that simulator. This makes our foun-

dation for intrinsic learning where we can leverage simulators to collect the data.

In Chapter 5, we show how to combine function approximators with the MFRL

framework. We leverage the GP regression as a function approximator to speed up

learning in the MFRL framework. GPs can predict the learned function value for

any query point, and not just for a discretized state-action pair. Furthermore, GPs

can exploit the correlation between nearby state-action values by an appropriate

choice of a kernel [53]. GPs have been extensively used to obtain optimal policies in

simulation-aided reinforcement learning [16]. We take this further by using GPs in

the MFRL setting for both versions, model-based and model-free [32]. In summary,

our contributions for the single robot case include introducing:

1. a model-based MFRL algorithm, GP-VI-MFRL, which estimates the tran-

sition function and subsequently calculates the optimal policy using Value

Iteration (VI); and

2. a model-free MFRL algorithm, GPQ-MFRL, which directly estimates the

optimal Q-values and subsequently the optimal policy.
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We verify the performance of the algorithms presented through simulations as

well as experiments with a ground robot. Our empirical evaluation shows that the

GP-based MFRL algorithms learn the optimal policy faster than the original MFRL

algorithm using even fewer real-world samples.

The model-free version appeared in the AAAI 2018 Fall Symposium on Rea-

soning and Learning in Real-World Systems for Long-Term Autonomy [54] and

the model-free and model-based algorithms appeared in a special issue of Machine

Learning in Robotics of the IEEE Robotics and Automation Magazine [53].
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Chapter 2: Planning to Efficiently Learn an Environment

We start with the problem of efficiently learning a spatially-varying field. This

is motivated by applications such as environmental monitoring (Figure 2.1) where

robots are used to learn a model of an environmental phenomenon such as temper-

ature.

The underlying field is typically modeled as a Gaussian Process [24,55,56]. The

question we seek to answer in this chapter is where should be obtain measurements

from so as to learn the entire field accurately using few measurements. In this

chapter, we will study three versions of the problem: placing stationary sensors,

using a single mobile sensor (robot), and using a team of mobile sensors (robots).

Specifically, our objective will be to minimize the number of sensors place and time

taken by the robot(s) while ensuring that the posterior GP is accurately estimated.

For all the problems, we present polynomial-time approximation algorithms to

ensure that the mean square error in prediction the underlying spatial field is smaller

than a pre-defined threshold at each point. We also derive the lower bounds on the

performance of any algorithm (including optimal) to solve respective problems are

provided. We show that it is possible to learn a given spatial field accurately with

high confidence. Note that, if the kernel parameters are optimized online, then, one
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Figure 2.1: The environmental field here is the sea surface temperature of an area
that is modeled as a GP in Sea of Japan on January 21, 2018 [1] from the data
collected using a robotic boat.

would require an adaptive strategy. We will investigate this further in Chapter 3

but assume known hyperparameters for the algorithms presented in this chapter.

2.1 Related Work

We begin by reviewing the related work in sensor placement where the goal

is to cover a given environment using sensors placed at fixed locations and mobile

sensing where sensors can move and collect measurements from different locations.

Stationary Sensor Placement. When monitoring a spatial phenomenon, such

as temperature or humidity in an environment, selection of a limited number of

sensors and their locations is an important problem. The goal in this problem is to

select the best k out of n possible sensor locations and use the measurements from

these to make predictions about the spatial phenomenon. The typical formulation

of a sensor selection problem makes it NP-hard [57]. Previous work used global

optimization techniques such as branch and bound to exactly solve this problem [58,
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59]. However, these exact approaches are often computationally intensive.

Since cameras are most commonly used as sensors, there has been significant

work on stationary camera placement. This is typically formulated as an instance

of the art-gallery problem [60, 61]: Find the minimum set of guards inside a polyg-

onal workspace from which the entire workspace is visible. However, this version of

the problem only covers vision-based sensors and does not consider noisy measure-

ments [43].

An alternative approach from spatial statistics is to learn a model of the phe-

nomenon, typically as a GP [62, 63]. The learned GP model can then be used to

predict the effect of placing sensors at locations and thus optimize their placement.

For a given GP model, many criteria including information-theoretic ones have been

proposed to evaluate the quality of placement. Shewry and Wynn introduced the

maximum entropy criterion [64] where the sensors are placed sequentially at the lo-

cations of highest entropy. Ko et al. [65] proposed a greedy algorithm by formulating

the entropy maximization as maximizing the determinant of the covariance matrix.

However, the entropy criterion tends to place the sensors at the boundary of the

environment thus wasting sensed information [66]. Mutual information (MI) can

be used as well [62, 67, 68]. Krause et al. [43] study the problem of maximizing MI

for optimizing sensor placement problem. They present a polynomial-time approxi-

mation algorithm with constant factor guarantee by exploiting submodularity [69].

Eventually, they show that MI criterion leads to improved accuracy with a fewer

number of sensors compared to other common design criteria such as entropy [64],

A-optimal, D-optimal, and E-optimal design [70].
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The above-mentioned methods estimate the prediction error indirectly. Nguyen

et al. [71] consider choosing a set of n potential sensor measurements such that the

root mean square prediction error is minimized. They present an annealing based

algorithm for the sensor selection problem. Their algorithm starts by selecting a po-

tential subset of cardinality k from the entire population of sensor locations. After

that, it iteratively attempts to substitute the members of the selected subset by its

neighbors according to an optimization criterion.

None of the criteria discussed above cannot directly make any guarantees on

the MSE in predictions at each point in the environment. Instead, we design a sensor

placement algorithm which results in an accurate reconstruction of the spatial field

using the collected sensor measurements. Most works in the past have focused on

optimizing an objective function (entropy, MI, etc.) given the resource constraints

(limited energy, number of sensors, and time, etc.). We optimize the resource re-

quirement given the objective constraint (MSE below a predefined threshold ∆),

predictive accuracy more than a predefined threshold in our case.

Mobile Sensing. The goal in the mobile sensing problem, also known as Informa-

tive Path Planning (IPP), is to compute paths for robots acting as mobile sensors.

Paths are being computed in order to accurately estimate some underlying phe-

nomenon, typically a spatial field [24, 72]. A central problem in IPP is to identify

the hotspots in a large-scale spatial field. Hotspots are the regions in which the

spatial field measurements exceed a predefined threshold. In many applications,

it is necessary to assess the spatial extent and shape of the hotspot regions accu-
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rately. Low et al. presented a decentralized active robotic exploration strategy for

probabilistic classification/labeling of hotspots in a GP-based spatial field [73]. The

time needed by their strategy is independent of the map resolution and the number

of robots, thus making it practical for in situ, real-time active sampling. Another

formulation in hotspot identification is that of level set identification [74].

Previous works on level set boundary estimation and tracking [75–77] have

primarily focused on communication of the sensor nodes, without giving much at-

tention to individual sampling locations. Bryan et al. [78] proposed the straddle

heuristic, which selects sampling locations by trading off uncertainty and proximity

to the desired threshold level, both estimated using GPs. However, no theoretical

justification had been given for its use and its extension to composite functions [79].

Gotovos et al. proposed a level set estimation algorithm, which utilizes GPs to

model the target function and exploits its inferred confidence bounds to drive the

selection process. They provided an information-theoretic bound on the number of

measurements needed to achieve a certain accuracy, when the underlying function

is sampled from a GP [80].

In many mobile sensing problems, it is not enough to identify only a few specific

regions but estimate the entire spatial field accurately. It can be formulated as a

path planning problem to observe a spatial field at a set of sampling locations, and

then making inference about the unobserved locations [81]. Choosing and visiting

the sample locations so that one can have an accurate prediction (point prediction

and/or prediction interval) is of great importance in soil science, agriculture, and

air pollution monitoring [68]. The objective functions used are usually submodular
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and thus exhibit a diminishing returns property. Submodularity arises since nearby

measurement locations are correlated [82]. Chekuri and Pal introduced a quasi-

polynomial time algorithm [83] for maximizing a submodular objective along the

path using a recursive greedy strategy. This algorithm was further extended by

Binney et al. [84] for spatiotemporal fields using average variance reduction [85] as

the objective function.

Zhang and Sukhatme proposed an adaptive sampling algorithm consisting of a

set of static nodes and a mobile robot tasked to reconstruct a scalar field [46]. They

assume that the mobile robot can communicate with all the static nodes and acquire

sensor readings from them. Based on this information, a path planner generates a

path such that the resulting integrated mean square error is minimized subject to

the constraint that the boat has a finite amount of energy.

An important issue in designing robot paths is deciding the next measurement

location [86–89], often referred to as the exploration strategy. Traditionally, con-

ventional sampling methods [47] such as raster scanning, simple random sampling,

and stratified random sampling have been used for single-robot exploration. Low

et al. presented an adaptive exploration strategy called adaptive cluster sampling.

It was demonstrated to reduce mission time and yield more information about the

environment [45]. Their strategy performs better than a baseline sampling scheme

called systematic sampling [90] using root mean squared error as a metric. A dif-

ferent adaptive multi-robot exploration strategy called MASP was presented in [91]

which performs both wide-area coverage and hotspot sampling using non-myopic

path planning. MASP allows for varying adaptivity and its performance is theo-
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retically analyzed. Further, it was demonstrated to sample efficiently from a GP

and logGP. However, the time complexity of implementing it depends on the map

resolution, which limits its large-scale use. To alleviate this computational difficulty,

an information-theoretic approach was presented in [92]. The time complexity of

the new approach was independent of the map resolution and less sensitive to the

increasing robot team size. Garnett et al. [93] considered the problem of active

search, which is also about sequential sampling from a domain of two (or more)

classes. Their goal was to sample as many points as possible from one of the classes.

Yilmaz et al. [94] solved the adaptive sampling problem using mixed inte-

ger linear programming. Popa et al. [87] posed the adaptive sampling problem as

a sensor fusion problem within the extended Kalman filter framework. Hollinger

and Sukhatme proposed a sampling-based motion planning algorithm that gener-

ates maximal informative trajectories for the mobile robots to observe their en-

vironment [95]. Their information gathering algorithm extends ideas from rapidly-

exploring random graphs. Using branch and bound techniques, they achieve efficient

optimization of information gathering while also allowing for operation in contin-

uous space with motion constraints. Low et al. [27] presented two approaches to

solve IPP for in situ active sensing of GP-based anisotropic spatial fields. Their

proposed algorithms can trade-off active sensing performance with computational

efficiency. Ling et al. [96] proposed a nonmyopic adaptive GP planning framework

endowed with a general class of Lipschitz continuous reward functions. Their frame-

work can unify some active learning/sensing and Bayesian optimization criteria and

offer practitioners flexibility to specify choices for defining new tasks. Tan et al. [97]
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introduced the receding-horizon cross-entropy trajectory optimization. Their focus

was to sample around regions that exhibit extreme sensory measurements and much

higher spatial variability, denoted as the region of interest. They used GP-UCB [51]

as the optimization criteria which helps in exploring initially and converging on

regions of interest eventually.

A naive implementation of GP prediction scales poorly with increasing training

dataset size. Sparse GP frameworks can overcome this problem by using only a

subset of the data to provide accurate estimates. A state-of-the-art sparse GP

variant is SPGP [98–101]. The SPGP framework learns a pseudo subset that best

summarizes the training data. Mishra et. al. introduced an online IPP framework

AdaPP [1] which uses SPGP.

Sensing with Multiple Robots. Mobile sensing can be made faster by distribut-

ing the task among several robots. Multi-robot systems can do complex tasks and

have been widely used in environmental sampling [102], coverage [103]. Robots can

use local communication or control laws to achieve some collective goals.

Singh et al. [89] proposed a sequential allocation strategy that uses GP re-

gression, which can be used to extend any single robot planning algorithm for the

multi-robot problem. Their procedure approximately generalizes any guarantees

for the single-robot problem to the multi-robot case. However, the approach works

only when MI is the optimization objective. Cao et al. [27] presented two approaches

along with their complexity analysis addressing a trade-off between active sensing

performance and time efficiency. Luo et al. [104] combined adaptive sampling with
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information-theoretic criterion into the coverage control framework for model learn-

ing and simultaneous locational optimization. They presented an algorithm allowing

for collaboratively learning the generalized model of density function using a mixture

of GPs with hyperparameters learned locally from each robot. Kemna et al. [105]

created a decentralized coordination approach which first splits the environments

into Voronoi partitions and makes each vehicle then run within their own partition.

Other multi-robot approaches used in other domains, e.g. exploration and esti-

mation with ground vehicles, include auction-based methods [106–108] and spatial

segregation, typically through Voronoi partitioning [25,109].

Tokekar et al. [110] presented a constant factor approximation algorithm for

the case of accurately classifying each point in a spatial field. The first step in

the algorithm is to determine potentially misclassified points and then to find a

tour visiting neighborhoods of each potentially misclassified point. In this chapter,

we study a regression version of the problem where every point is of interest. We

exploit the properties of GP and squared-exponential kernel to find a constant-factor

approximation algorithm.

2.2 Problem Formulation

We use GPs for formulating our problems.
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2.2.1 Gaussian Processes

GPs are Bayesian non-parametric function approximators. GPs can be de-

fined as a collection of infinitely many random variables, any finite subset X =

{x1, . . . ,xk} of which is jointly Gaussian with mean vector m ∈ Rk and covariance

matrix K ∈ Rk×k [30].

Let X = {x1, . . . ,xk} denote the set of the training inputs. Let y = {y1, . . . , yk}

denote the corresponding training outputs. GPs can be used to predict the output

value at a new test point, x, conditioned on the training data. Predicted output

value at x is normally distributed with mean µ̂(x) and variance σ̂2(x) given by,

µ̂(x) = µ(x) + k(x,X)
[
K(X,X) + ω2I

]−1

y, (2.1)

σ̂2(x) = k(x,x)− k(x,X)
[
K(X,X) + ω2I

]−1

k(X,x), (2.2)

where K(X,X) is the kernel. The entry Kxl,xm gives the covariance between two

inputs xl and xm. µ(x) in Equation (2.1) is the prior mean of output value at x.

Some of the commonly used kernels are squared-exponential and Matern kernel [111,

112].

In this section, we formally define the problems and the algorithms. We assume

that the environment is a two dimensional area U ⊂ R2 and the underlying spatial

field is an instance of a GP, F [113]. F has an isotropic covariance function of the

form,

CZ(x, x′) = σ2
0 exp

(
−(x− x′)2

2l2

)
;∀x, x′ ∈ U, (2.3)
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defined by a squared-exponential kernel where the hyperparameters σ2
0 and l are

known a priori. Let X denote the set of measurement locations within U produced

by an algorithm.

Problem 1 (Placement). Find the minimum number of measurement locations,

such that the MSE at each location in U is below ∆< σ2
0, i.e.,

minimize |X|,

subject to MSE(x) ≤ ∆,∀x ∈ U,

where |X| is the cardinality of X and MSE(x) is the MSE at location x.

Problem 2 (Mobile). Find the minimum time trajectory for a mobile robot that

obtains a finite set of measurements at one or more locations in U , such that the

MSE at each location in U is less than ∆, i.e.,

minimize len(τ) + ηn(X),

subject to MSE(x) ≤ ∆,∀x ∈ U.

τ denotes the tour of the robot. Robot travels at unit speed, obtains one measurement

in η units of time and obtains n(X) total measurements.

The robot may be required to obtain multiple measurements from a single

location. Therefore, the number of measurements n(X) can be more than |X|. For

multiple robots, their tours can start at the same starting location (often referred

to as a depot) or can start at different locations. In this chapter, our focus is on the

former case. The latter case is more appropriate when the robots must persistently
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monitor the environment.

Problem 3 (multi-robot). For k robots starting from a given starting location (de-

pot), design a set of trajectories that collectively obtain a finite set of measurements

at one or more locations in U , such that the MSE at each location in U is less than

∆, i.e.,

minimize max
i∈{1,...,k}

len(τi) + ηn(Xi),

subject to MSE(x) ≤ ∆, ∀x ∈ U.

τi denotes the tour of the ith robot and Xi the subset of measurement locations covered

by the ith robot. The robots travel at unit speed, obtain one measurement in η units

of time. ith robot obtains n(Xi) total measurements.

The solution for Problem 1 is a subset of the solution to Problem 2. Further,

the solution for Problem 3 is derived from the solution for Problem 2. The three

algorithms build on top of each other by: (1) finding a finite number of measurement

locations for the robot; (2) finding a tour to visit all the measurement locations; and

(3) splitting the tour from step 2 in multiple sub-tours for k robots. We exploit the

properties of squared-exponential kernel to find the measurement locations. By

knowing the value at a certain point within some tolerance, values at nearby points

can be predicted albeit up to a larger tolerance.

2.3 Algorithms

Before we discuss our algorithms, we provide a mathematical proof that Mean

Squared Error (MSE) is equal to the posterior GP variance if the hyperparameters
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are known. MSE measures the expected squared difference between an estimator

and the parameter the estimator is designed to estimate [114]. The MSE at a

location x for an estimator f̂ is,

MSE
(
f̂(x)

)
= V ar

(
f̂(x)

)
+
(
E[f̂(x)− f(x)]

)2

, (2.4)

where the Equation 2.4 is the bias-variance expression for the estimator. GP pre-

dicted value f̂(x) at a location x is an unbiased estimator of the true value f(x) [113]

and has a normal distribution with mean given by Equation 2.1, and variance given

by Equation 2.2. Among all linear and non-linear estimators, GP is the best in terms

of minimizing MSE [115,116]. Further, GPs are unbiased and hence, the MSE at a

location x is equal to the posterior variance of the predicted value, i.e.,

MSE(x) = σ̂2
x|X . (2.5)

From Equation 2.5, one can deduce that MSE for GPs is same as the posterior

variance and hence, any guarantees for the posterior variance hold for MSE as

well. Further, we derive two mathematical results for our algorithms. These two

conditions provide a framework to prove the theoretical guarantees for the presented

algorithms.
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2.3.1 Necessary and Sufficient Conditions

We start by deriving necessary conditions on how far a test location can be

from its nearest measurement location. A test location corresponds to a point in

the environment where we would like to make a prediction.

Lemma 1 (Necessary Condition). For any test location x, if the nearest measure-

ment location is at a distance rmax away, and,

rmax > l

√
− log

(
1− ∆

σ2
0

)
, (2.6)

then it is not possible to bring down the MSE below ∆ at x.

Proof. Consider the posterior variance σ̂2
x(n) at x (which is also equal to the MSE

at x from Equation 2.5) after collecting n measurements, possibly from different

locations. A lower bound on σ̂2
x(n) can be obtained by assuming that all measure-

ments were collected at the nearest location xi to x. This is based on the fact that

the closer the observation, lower the predictive variance. This can be proved as

follows:

Consider two measurement locations x1, x2 and a test location x such that x1

is closer to x. The posterior variance at x if a measurement was collected at x1 can

be computed as follows:

σ̂2
x|x1

= k(x, x)− k(x, x1)K(x1, x1)−1k(x1, x) (2.7)

= σ2
0

(
1− exp

(
−||x− x1||2

l2

))
. (2.8)
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Similarly, the posterior variance at x if a measurement was collected at x2,

σ̂2
x|x2

= σ2
0

(
1− exp

(
−||x− x2||2

l2

))
. (2.9)

From ||x−x1||2 < ||x−x2||2 and f(x) = − exp (−x) being a monotonically increasing

function, we have,

− exp

(
−||x− x1||2

l2

)
< − exp

(
−||x− x2||2

l2

)
. (2.10)

Using this to compare Equations 2.8 and 2.9 one can easily see that σ̂2
x|x1

< σ̂2
x|x2

.

Let the nearest measurement location xi is distance r away from x. Assuming

that all n measurements were collected at xi, lower bound for posterior variance at

x can be calculated using Equation 2.2,

σ̂2
x(n) ≥ σ2

0 −
[
k(x, xi), . . . , k(x, xi)

]

σ2

0 + ω2 σ2
0

. . .

σ2
0 σ2

0 + ω2



−1 
k(x, xi)

...

k(x, xi)

. (2.11)

It is worth mentioning that the square matrix in Equation 2.11 is of order n × n

since there are n measurements. Substituting the value for k(x, xi) = σ2
0 exp

(
− r2

2l2

)
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in Equation 2.11 and performing the required matrix operations, we get,

σ̂2
x(n) ≥ σ2

0 −
σ4

0

ω2
exp

(
−r2

l2

)[
1, . . . , 1

]
×

1− 1

n+ω2

σ2
0

−1

n+ω2

σ2
0

. . .

−1

n+ω2

σ2
0

1− 1

n+ω2

σ2
0




1

...

1

 .
(2.12)

Therefore,

σ̂2
x(n) ≥ σ2

0 −
σ4

0

ω2

(
n

(
1− 1

n+ ω2

σ2
0

)
− n(n− 1)

n+ ω2

σ2
0

)
, (2.13)

≥ σ2
0

1−
exp

(
− r2

max

l2

)
1 + ω2

nσ2
0

 . (2.14)

Even if we had collected infinitely many measurements at the nearest location xi,

the posterior variance will still be lower bounded as,

σ̂2
x(n) > lim

n→∞
σ2

0

1−
exp

(
− r2

max

l2

)
1 + ω2

nσ2
0

 , (2.15)

=σ2
0

(
1− exp

(
−r

2
max

l2

))
. (2.16)

If the posterior variance at x even with the infinitely many measurements collected
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at the nearest measurement location xi (Equation 2.16) is greater than ∆, i.e.,

∆ < σ2
0

(
1− exp

(
−r

2
max

l2

))
=⇒

rmax > l

√
− log

(
1− ∆

σ2
0

)
,

(2.17)

then it is not possible to bring down the MSE at x below ∆ in any circumstance.

Next, we prove a sufficient condition that if every point in the environment

where no measurement is obtained (test location) is sufficiently close to a measure-

ment location, then we can make accurate predictions at each point.

Lemma 2 (Sufficient Condition). For a test location x ∈ U , if there exists a mea-

surement location xi ∈ X, r distance away from x with nsuff measurements at xi,

such that,

r ≤ l

√
− log

((
1 +

ω2

nsuffσ2
0

)(
1− ∆

σ2
0

))
, (2.18)

then GP predictions at x will be accurate, i.e., MSE at x will be smaller than ∆.

Proof. From Equation 2.14, we have an expression for variance of the posterior pre-

dictive distribution at x. Taking the other measurement locations into consideration

can not increase the posterior variance at x. Information never hurts [117]! To prove

the sufficiency, we consider nsuff measurements at xi only and discard others know-

ing that the other locations can not increase the posterior variance at x. Bounding
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Figure 2.2: Collecting nα measurements at O suffices to make accurate predictions
at all points inside disk D2 (Sufficient condition). No number of measurements at
O can ensure predictive accuracy on points outside disk D1 (Necessary condition).

the expression in Equation 2.14 with ∆ results in,

∆ ≥ σ2
0

1−
exp

(
− r2

l2

)
1 + ω2

nsuffσ
2
0

 , (2.19)

exp

(
−r

2

l2

)
≥
(

1 +
ω2

nsuffσ2
0

)(
1− ∆

σ2
0

)
, (2.20)

r ≤ l

√
− log

((
1 +

ω2

nsuffσ2
0

)(
1− ∆

σ2
0

))
. (2.21)

Lemma 2 gives a sufficient condition for GP predictions to be accurate at

any given test location x ∈ U . The following lemma shows that a finite number

of measurements nsuff =nα, are sufficient to ensure predictive accuracy in a smaller

disk of radius 1
α
rmax around xi, where α > 1 (Figure 2.2).

Lemma 3. Given a disk of radius 1
α
rmax centered at xi, nα measurements at xi
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suffice to make accurate predictions for all points inside the disk, where,

nα ≥


ω2

σ2
0

1(
1− ∆

σ2
0

) 1
α2−1

− 1

 . (2.22)

Proof. We want a sufficiency condition on the number of measurements nα inside a

disk of radius 1
α
rmax. Lemma 2 gives an upper bound on the radius of a disk such

that all points inside the disk will be accurately predicted after nα measurements at

the center. We construct a disk (D2 in Figure 2.2), whose radius is equal to 1
α
rmax

such that,

1

α
rmax ≤ l

√
− log

((
1 +

ω2

nασ2
0

)(
1− ∆

σ2
0

))
. (2.23)

Plugging in the value of rmax from Lemma 1, squaring both sides in Equation 2.23

and re-arranging for nα gives the required bound stated in Lemma 3. Ceiling func-

tion in Equation 2.22 accounts for the fact that nα is an integer.

A packing of disks of radius rmax gives a lower bound on the number of mea-

surements required to ensure predictive accuracy. On the other hand, a covering

of disks of radius 1
α
rmax gives us an upper bound on the number of measurements

required. To solve Problem 1, what remains is to relate the upper and lower bound

and present an algorithm to place the disks of radii 1
α
rmax.
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2.3.2 Placement of Sensors for Problem 1

We use an algorithm similar to the one presented by Tekdas and Isler [118] for

stationary sensor placement in order to track a target using bearing sensors. In their

case, the goal is to place sensors such that irrespective of where the target is in the

environment, there are at least three sensors forming a triangle that get good quality

bearing information of the target. They show how to cover the environment with

disks and place a triangle of sensors within each disk. The setup is different from

the one we have; however, we use a similar disk coverage strategy as a subroutine

here. The exact procedure is outlined in Algorithm 1.

Algorithm 1 DiskCover

1: procedure
2: Input: An environment.
3: Output: Measurement locations.
4: begin

1. Design a set X of disks of radii rmax which covers the environment and
calculate a Maximal Independent Set (MIS) I of X greedily i.e., I =
MIS(X ).

2. Place disks of radii 3rmax concentric with disks in I. Let the set of 3rmax
radii disks is X̄ .

3. Cover each disk in X̄ with disks of radii 1
α
rmax as shown in Figure 2.3 and

label centers of all disks of radii 1
α
rmax.

4. Return all the labeled points in previous step as measurement locations.

5: end procedure

Theorem 1. DiskCover (Algorithm 1) gives an 18α2-approximation for Problem

1 in polynomial time.

Proof. Denote the set of measurement locations computed by the optimal algorithm

to solve the Problem 1 by X∗. The function MIS in Step 1 of Algorithm 1 computes
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a maximally independent set of disks: the disks in I are mutually non-intersecting

(independent) and every disk in X\I intersects at least one disk in I (maximal).

The set I can be computed by a simple polynomial greedy procedure: choose an

arbitrary disk d from X , add it to I, remove all disks in X which intersect d, and

repeat the procedure until no such d exists.

An optimal algorithm will collect measurements from at least as many mea-

surement locations as the cardinality of I. This can be proved by contradiction.

Suppose an algorithm visits measurement locations fewer than the number of disks

in I. In that case, there will exist at least one disk of radius rmax in I which will

not contain a measurement location. This means that there will be at least a point

in that disk which will be more than rmax away from each measurement location.

From Lemma 1, the robot can never make accurate predictions at that point and

hence violating the constraint in Problem 1. Hence,

|I| ≤ |X∗|. (2.24)

Every disk in X intersects at least one disk in I and hence, lies within 3rmax of the

center of a disk in I. As a result, X̄ disks cover all the X disks and hence, the entire

environment.1

Collecting measurements from 18α2 locations inside a 3rmax disk suffice to

make accurate predictions in that disk (satisfying the Problem 1 constraint for

1Note that 3rmax is the minimum radius of the bigger disks to guarantee that the entire en-
vironment is always covered. In specific instances, it may be possible to cover the environment
with smaller than 3rmax by selecting the MIS using a well-designed heuristic. However, there are
environments where 3rmax will be necessary.
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disk

Figure 2.3: We cover each 3rmax radius disk with 1
α
rmax radii disks (smaller gray

disks) in lawn-mower pattern. 18α2 disks suffice to cover the bigger disk. The
locations of disks of radii 1

α
rmax inside a disk of radius 3rmax are obtained by covering

the square circumscribing bigger disk with smaller squares inscribed in smaller disks.
The centers of smaller squares coincide with the centers of smaller disks.

points belonging to that disk) as illustrated in Figure 2.3. DiskCover collects

measurement from 18α2 such locations per disk in X̄ . It collects measurements

from a total of 18α2|X̄ | locations, hence, satisfying the constraint for all points in

the area covered by union of X̄ disks. Since, union of X̄ disks covers the entire

environment, DiskCover satisfies the constraint for all points in the environment.

Multiplying both sides of Equation 2.24 with 18α2, we get, 18α2|I| ≤ 18α2|X∗|.

Note that |X̄ | = |I|. Hence,

18α2|X̄ | ≤ 18α2|X∗|, (2.25)

nDiskCover ≤ 18α2|X∗|, (2.26)

where, nDiskCover is the number of measurement locations for DiskCover.
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2.3.3 Finding an Approximate Optimal Trajectory for Problem 2

The algorithm for Problem 2 builds on the algorithm presented in the previous

section. The locations where measurements are to be made become the locations

that are to visited by the robot. The robot must obtain at least nα measurements at

the center of each disk of radius 1
α
rmax. A pseudo-code of the algorithm is presented

in the Algorithm 2.

Algorithm 2 DiskCoverTour

1: procedure
2: Input: A set of measurement locations calculated from Algorithm 1.
3: Output: An approximate optimal tour visiting all the measurement locations.
4: begin

1. Calculate approximate TSP tour visiting centers of the 3rmax radius disks
(set X̄ ) disks.

2. Cover X̄ disk containing the starting location in lawn-mower pattern vis-
iting the centers of corresponding disks of radius 1

α
rmax and make nα

measurements at each center point.
3. Move to the center of next X̄ disk along the tour calculated in Step 1.
4. Repeat Steps 2 and 3 until all X̄ disks are covered.

5: end procedure

Theorem 2. DiskCoverTour (Algorithm 2) yields a constant-factor approxima-

tion algorithm for Problem 2 in polynomial time.

Proof. From Theorem 1, we have a constant approximation bound on number of

measurement locations. Let the time (travel and measurement time) taken by the

optimal algorithm be T ∗1 . Using notation from Theorem 1, we assume that the

optimal traveling salesperson with neighborhoods (TSPN) time to visit disks in I

be T ∗I . In TSPN, we are given a set of geometric neighborhoods, and the objective

is to find the shortest tour that visits at least one point in each neighborhood (disks
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in this case) [110]. The optimal algorithm will visit at least all disks once in I which

gives the following minimum bounds on the optimal travel time (T ∗travel) and optimal

measurement time (T ∗measure),

T ∗I ≤ T ∗travel; η|I| ≤ T ∗measure. (2.27)

Let the optimal time to visit the centers of disks in I be T ∗IC . An upper bound on

T ∗IC can be established by the fact that upon visiting each disk, the robot can visit

the center of that disk and return back by adding an extra tour length of 2rmax,

i.e., a detour of maximum length |I| × 2rmax for all disks in I. As a result: T ∗IC ≤

T ∗I+2rmax|I|. Using inequality from Equation 2.27: T ∗IC ≤ T ∗travel+2rmax|I|. For any

disk in X̄ , the length of lawn-mower path starting from the its center and return back

(Figure 2.3) after visiting all center points of 1
α
rmax disks will be of order O(α2)rmax.

Hence, the total travel time for DiskCoverTour is: TC + |I|O(α2)rmax, where TC

is the (1 + ε)-approximated time with respect to the optimal TSP tour returned by

the (1+ ε)-approximation algorithm to visit the centers of the disks in X̄ (or I disks

since they are concentric). TC can be calculated in polynomial time [119] having

bounds: TC ≤ (1 + ε) T ∗IC , with T ∗IC being the optimal TSP time to visit the

centers of X̄ disks. Measurement time for DiskCoverTour is 18α2ηn2|I|. Hence,
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the total time T 1
alg for DiskCoverTour is,

T 1
alg = TC + |I|O(α2)rmax + 18α2ηn2|I| (2.28)

≤ (1 + ε) T ∗IC +O(α2)rmax|I|+ 18α2ηn2|I|, (2.29)

≤ (1 + ε) (T ∗travel + 2rmax|I|) +O(α2)rmax|I|

+ 18α2ηn2|I|.
(2.30)

n2 is the number of sufficient measurements required inside a disk of radius 1
2
rmax

(Lemma 3 with α = 2). Length of any tour that visits k non-overlapping equal size

disks of radii r is at least 0.24kr [120], which gives 0.24rmax|I| ≤ T ∗I . Combining

this result with Equation 2.27 modifies the bounds in Equation 2.30 as,

T 1
alg ≤

(
(1 + ε)

(
1 +

2

.24

)
+
O(α2)

.24

)
T ∗travel

+ 18α2n2T
∗
measure,

(2.31)

≤ max
(
9.33(1 + ε) + 82

.24
, 72n2

)
(T ∗travel + T ∗measure) , (2.32)

≤ max

(
9.33(1 + ε) +

O(α2)

.24
, 18α2n2

)
T ∗1 (2.33)

≤ cT ∗1 , (2.34)

where c, a constant, is larger one of the two quantities inside the bracket in Equa-

tion 2.34.

Note that the Algorithm 2 collects same number of measurements from each

measurement location. There may be another algorithm that collects different num-
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ber of measurements from different locations which may result in better performance.

This modification is an avenue for future work.

2.3.4 Finding an Approximate Optimal Trajectory for Problem 3

When one robot can not handle a large territory, to speed up the task, k robots

can be sent to collectively visit1 all measurement locations. A natural objective is

to ensure that no robot has too large of a task. Hence, We choose our optimization

criterion as minimizing the maximum of the k-robot tour costs. This is equivalent to

minimizing the time taken by the last robot to return back to the common starting

location. Our proposed algorithm only works if the robots start and return back to

the same location – called depot. Any measurement location can be chosen as the

depot but in our case, we assume that the robots start from and return back to a

pre-defined depot.

We now describe an algorithm which employs a tour-splitting heuristic to plan

for k robots. We modify the heuristic proposed by Frederickson et al. [121] to

account for the measurement time, and not just the travel time.

Let the output tour of the robot from Algorithm 2 be denoted by τ and lmax

be the distance of farthest measurement location from the depot.

Theorem 3. k-DiskCoverTour (Algorithm 3) yields a (c + 2) approximation

algorithm for Problem 3 in polynomial time, given a c-approximation algorithm for

Problem 2.

Proof. First, we prove that the time taken along every subtour is bounded and
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Algorithm 3 k-DiskCoverTour

1: procedure
2: Input: Tour calculated from Algorithm 2, Depot location x1.
3: Output: k approximate optimal paths visiting all measurement locations col-

lectively.
4: begin

1. For jth robot, 1 ≤ j < k, find the last measurement location xp(j) such
that the time taken to travel from x1 to xp(j) along τ is not greater than
j
k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2).

2. Obtain k subtours as R1 = (x1, . . . , xp(1), x1), R2 =
(x1, xp(1)+1, . . . , xp(2), x1), . . . Rk = (x1, xp(k−1)+1 . . . , xn, x1).

5: end procedure

eventually show that the bound is within a constant factor of the optimal time.

With k robots, let the subtours for 1st and kth robot are x1 → xp(1) −→ x1 and

x1 → xp(k−1)+1 → x1 respectively (an example with k = 5 is shown in Figure 2.4).

Subtours for the remaining robots can be denoted by x1 → xp(j−1)+1 → xp(j) → x1,

where 1 < j < k.

Substituting j = 1 in Algorithm 3, the time to travel from x1 to xp(1) along

τ , T (x1
τ−→ xp(1)) is no greater than 1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2). Time

for the first subtour is hence bounded by T (x1
τ−→ xp(1)) + T (xp(1) −→ x1), i.e.,

1
k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2) + lmax. From the condition in Algorithm 3,

we know that xp(k−1) is the last location such that,

T
(
x1

τ−→ xp(k−1)

)
≤ k − 1

k

(
T 1
alg − (2lmax + ηn2)

)
+

(lmax + ηn2) ,

(2.35)
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and hence,

T
(
x1

τ−→ xp(k−1)+1

)
≥ k − 1

k

(
T 1
alg − (2lmax + ηn2)

)
+

(lmax + ηn2) .

(2.36)

Subtracting both sides from T 1
alg,

T 1
alg − T

(
x1

τ−→ xp(k−1)+1

)
≤T 1

alg −
k − 1

k

(
T 1
alg − (2lmax

+ ηn2)
)

+ (lmax + ηn2) ,

(2.37)

which gives,

T
(
xp(k−1)+1

τ−→ x1

)
≤ 1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (3lmax + 2ηn2), (2.38)

and hence, time for the last subtour is bounded by T
(
x1 −→ xp(k−1)+1

)
+T

(
xp(k−1)+1

τ−→ x1

)
,

i.e., 1
k

(
T 1
alg − (2lmax + ηn2)

)
+ (3lmax + 2ηn2) + lmax. Similar inequalities can be

derived for remaining subtours as follows. For 1 ≤ j ≤ k − 2, following inequalities

hold from Algorithm 3,

T (x1
τ−→ xp(j)+1) ≥ j

k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2) , (2.39)

T (x1
τ−→ xp(j+1)) ≤ j+1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2) . (2.40)
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Subtracting Equation 2.39 from 2.40 results in,

T (xp(j)+1
τ−→ xp(j+1)) ≤

1

k

(
T 1
alg − (2lmax + ηn2)

)
, (2.41)

i.e., the time taken along remaining subtours, T
(
x1 → xp(j−1)+1

τ−→ xp(j) → x1

)
,

where 1 < j < k, is also bounded by 1
k

(
T 1
alg − (2lmax + ηn2)

)
+2lmax. Hence, we can

conclude that the time taken along each subtour does not exceed 1
k

(
T 1
alg − (2lmax + ηn2)

)
+

(4lmax + 2ηn2).

Let T kalg be the time taken for largest of the k subtours generated by the

Algorithm 3, and T ∗k be the cost of the largest subtour in an optimal solution to

Problem 3. We have,

T kalg ≤
1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (4lmax + 2ηn2) (2.42)

≤
T 1
alg

k
+ (2lmax + ηn2)

(
2− 1

k

)
. (2.43)

From the triangle inequality, T ∗k ≥ 1
k
T ∗1 . It is natural to think that at least one

robot will have to go to the farthest location from the depot and come back from

there after collecting n2 measurements which gives us a lower bound on the output

of the optimal algorithm, i.e., 2lmax + ηn2 ≤ T ∗k . Combining these results with
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Subtours

Figure 2.4: Splitting the tour for one robot (τ) into 5 subtours. The solid line shows
an initial single robot tour τ starting and ending at x1. The dotted lines denote the
individual robot subtours starting and ending at x1 obtained by splitting the single
tour τ .

Equation 2.34, we get,

T kalg ≤
c

k
T ∗1 + T ∗k

(
2− 1

k

)
(2.44)

≤
(
c+ 2− 1

k

)
T ∗k (2.45)

≤ (c+ 2)T ∗k . (2.46)

2.4 Empirical Evaluation

In this section, we report results from empirical evaluation of the theoretical

results. We show qualitative and quantitative comparison of our algorithms with
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other baseline strategies through simulations using precision agriculture as our mo-

tivating example.

Dataset We use a real-world dataset [122], collected from a farm, consisting of

organic matter (OM) measurements manually collected from several hundred loca-

tions within the farm. The maximum and minimum values of the underlying field

are 54.6 parts per million (ppm) and 25.4 ppm respectively shown by the colorbar

(Figure 2.5(a)). Taking this into account, we set ∆ to be equal to 4 which is 10% of

the average of maximum and minimum field values. We use a simulated sensor that

returns a noisy version of the ground truth measurement with an additive Gaussian

noise of variance, ω = 0.0361.

The squared-exponential kernel has three hyperparameters: length scale (l),

signal variance (σ2
0), and noise variance (ω2). The values of l, σ0, and ω2 were

estimated to be 8.33 meter, 12.87, and 0.0361 respectively by minimizing the neg-

ative log-marginal likelihood of the manually collected data. We assume that the

estimated values are the true values of the kernel hyperparameters. In a general

application where some prior data is available, the hyperparameters can be esti-

mated in a similar way. We used the GPML toolbox to perform the necessary GP

operations [123].

2.4.1 Qualitative Example

Stationary Sensor Placement The final predicted OM content after performing

inference using the measurements obtained is shown in Figure 2.5(b). This predicted

45



OM content is the average of ten trials. In each trial, the reported value by the

sensor can be different even at the same location because of the simulated noise.

Figure 2.5(c) shows a plot of the prediction error averaged over those ten trials. We

observe that the average prediction error is below ∆ = 4 ppm at each location in the

environment. It is important to mention that average prediction error is not same as

the MSE. The MSE at a location is the expected squared error in prediction at that

location. The average prediction error, referred as empirical MSE in the following

text, is an empirical estimate of that expectation. As the number of runs increases,

the empirical MSE will converge to the actual MSE. We verify it through simulations

and report the results later. Our theoretical guarantees hold for the MSE and not

for the empirical MSE. However, one can expect that the empirical MSE will also

be less than the pre-defined threshold ∆ given enough trials. The regions where the

OM content changes sharply tend to be more erroneously predicted as shown by

the lighter colored regions in Figure 2.5(c). This can be attributed to the inherent

smoothness assumptions of a squared-exponential kernel.

Single and Multi-Robot Tours The measurement locations computed by the DiskCover-

Tour are shown in Figure 2.6(a). As post-processing, we removed the redundant

measurement locations in overlapping 3rmax radii disks. After performing this step,

the total number of measurement locations was 2320. A covering of the farm with

disks of radii 3rmax and an approximate optimal tour visit the centers of those disks

calculated by DiskCoverTour is shown in Figure 2.6(b). We compute the opti-

mal TSP tour since this is a reasonably sized instance. The lawn-mower detours
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(a) The actual organic matter content (ppm).

(b) The predicted organic matter content (ppm).

(c) Prediction error between the actual and the
predicted OM content (ppm).

Figure 2.5: Actual and predicted OM content comparison. The farm is shown as
the colored region with the colorbar denoting concentrations at different locations.
All distance units are in meter.
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visiting individual 3rmax disks have been omitted to make the figure more legible.

For the multi-robot version, we assume that we have three robots. Splitting of a

single robot tour (Figure 2.6(b)) in three subtours is shown in Figure 2.6(c). The

robots start from a common depot.

Varying values of ∆: In some applications, one may be interested in having more

accurate predictions in some parts of the environment than others. Our algorithms

provides a way to choose locations and plan paths in such applications as well. To

demonstrate this, we divide the farm in three sub-environments that have differ-

ent ∆ tolerances. The left-most, middle, and right-most regions have thresholds

of ∆ = 6, 4 and 2 ppm respectively. We solve for the measurement locations in-

dependently in each region. The corresponding rmax values were calculated to be

4.97, 3.93, and 2.70 meters respectively using Equation 2.17. Figure 2.7 shows the

measurement locations. One can qualitatively observe that the algorithm places

fewer measurement locations in the left-most sub-environment which allows for the

highest error tolerance.

An approximate TSP tour visiting the centers of all 3rmax disks, in all three

regions, is shown in Figure 2.8. The size of the disks shrinks as one moves to the

right-most sub-region which has the least tolerance for prediction error. The TSP

tour goes outside the environment in this case, which may be feasible if an aerial

robot is used to monitor the farm. In case of applications, where the robot must stay

inside the environment, we can enforce this constraint by replacing the Euclidean

edge weights in the TSP input graph with the length of the shortest path between
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(a) Measurement locations calculated by the
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Figure 2.6: Measurement locations and the tours computed by DiskCover and
k-DiskCoverTour. For Figures 2.6(b) and 2.6(c), the complete tours that take
detours to visit all the locations in Figure 2.6(a) have been omitted to make the
figures more legible.
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Figure 2.7: Measurement locations for different values of ∆. .
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Figure 2.8: An approximate TSP tour to visit the 3rmax disks. rmax values depend
on ∆ (Equation 2.17) and hence, vary in different ∆ sub-regions. Note the shrinking
size of disks as one moves towards right.

.

two vertices inside the environment.

2.4.2 Comparisons with Pre-defined Lawn-mower Tours

One can observe from Figure 2.6(a) that the measurement location pattern

closely resembles a lawn-mower pattern. It motivated us to compare the performance

of our algorithms and with lawn-mower plan. Figure 2.9 and 2.10 show the average

posterior variance and average empirical (for ten trials) MSE respectively for a
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pre-defined lawn-mower pattern with varying grid resolutions on a semi-logarithmic

scale. Note that the posterior variance at a test location is always same in each trial

because it is not a function of the actual measurement value. The blue horizontal

line corresponds to DCT and is shown for the sake of comparison.

A plot of the time taken by the robot to cover lawn-mower patterns with

various grid resolutions is shown in Figure 2.11. The lawn-mower lines in Fig-

ures 2.9, 2.10, and 2.11 intersect the DCT lines at approximately a resolution of

2 meters. It suggests that one would need to create a grid of approximately that

resolution to achieve same performance as DCT. Figure 2.12 shows the average pos-

terior variance for DCT and a pre-defined lawn-mower of resolution 2.4 meter as

a function time elapsed along a deployment (averaged over 10 deployments). We

chose a resolution of 2.4 meters since a lawn-mower planner with this resolution has

approximately the same number of measurement locations as DiskCoverTour.

We observe that both perform almost the same empirically.

One may wonder why we cannot simply use the lawn-mower pattern, instead

of DiskCoverTour. To create a lawn-mower pattern, one would need to pick

a grid resolution. There is no systematic way of picking this resolution without

enumerating a few combinations to analyze the trade-off between time and posterior

variance or MSE. This can be wasteful. Instead, we present a systematic way of

planning the measurement locations and give explicit theoretical guarantees on time

and MSE or variance.
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Figure 2.9: Average posterior variance for varying degree of lawn-mower resolutions.
.

2 4 6 8 10 12

Grid resolution

10
-1

10
0

10
1

10
2

A
v
e

ra
g

e
 e

m
p

ir
ic

a
l 
M

S
E

Lawn-mower

DCT

Figure 2.10: Average empirical MSE for varying degree of lawn-mower resolutions.
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Figure 2.11: Time spent by the robot with lawn-mower planners of different grid
resolutions.
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Figure 2.12: Average posterior variance as a function of time spent by the robot.

2.4.3 Comparison With Other Baselines

A comparison between DiskCoverTour and two baselines, entropy-based,

and MI-based planner is shown in Figure 2.13. The measurement locations for the

entropy-based and MI-based planners were calculated greedily, i.e., picking the next

location at the point of maximum entropy and MI respectively as described in [43].

We study the average posterior variance and average empirical MSE in prediction

as a function of the total time (measurement plus traveling) spent by the robot

on the farm for each planner. After finding the measurement locations for each

planner separately, TSP tours visiting those locations were calculated. The X axis

in Figure 2.13 shows the time taken along a tour and the Y axis shows the respective

metrics based on measurements collected until that point in time along the tour

(averaged over ten trials). We observe that DiskCoverTour performs at par with
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(a) Average empirical MSE (b) Average posterior variance

Figure 2.13: DiskCoverTour performs comparably with entropy-based and MI-
based strategies. The shaded regions correspond to the standard deviation taken
over ten trials.

other planners. The entropy-based planner results in the most significant reduction

in posterior variance and average empirical MSE initially. This can be explained by

the fact that the entropy-based planning tends to spread the measurement locations

far from each other resulting in covering a bigger portion of the environment initially.

However, DiskCoverTour converges to a lower value of average empirical MSE

and average posterior variance.

2.4.4 MSE and Variance

We verify our hypothesis that MSE is equal to the posterior variance for GPs.

A plot of the mean percent difference between the empirical MSE and the posterior

variance is shown in Figure 2.14. The mean is computed over approximately 5600

test locations which are different from the measurement locations and placed on a

grid. As the number of trials increases, the mean difference between empirical MSE,

which is essentially the MSE given enough number of trials, and the posterior vari-
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Figure 2.14: The mean percentage difference between the empirical MSE and the
posterior variance.

.

ance decreases implying that the empirical MSE converges to the posterior variance

asymptotically. In each trial, the measurement locations, test locations, and the

hyperparameters are same, and therefore the variance estimates are same as well.

However, the predicted value in each trial, and hence the prediction error, may be

different since the actual measurement collected can be different in each trial due

to the simulated noise. The effect of noise will decrease as one computes empirical

estimate over a larger number of trials.

2.5 Conclusions

In this chapter, we study several problems: Placing the minimum number of

stationary sensors to track a spatial field, mapping a spatial field by a single as

well as multiple robots while minimizing the time taken by the robots. For all the

problems, we propose polynomial-time approximation algorithms to ensure that the

mean square error in prediction the underlying spatial field is smaller than a pre-
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defined threshold at each point. We also derive the lower bounds on the performance

of any algorithm (including optimal) to solve respective problems are provided. We

show that it is possible to learn a given spatial field accurately with high confidence

without planning adaptively. Note that, if the kernel parameters are optimized

online, then, one would require an adaptive strategy.

The algorithms suggested in this chapter perform comparatively with the base-

line planners developed earlier. Our algorithms have theoretical bounds on their

performance. The algorithms can also be generalized to 3D mapping, even though

we illustrate using 2D examples. The disks in the 2D case will be replaced by spheres

in 3D. The disk packing/covering problem becomes a sphere packing/covering. The

tour will need to visit points in 3D, as opposed to 2D. The existing TSP algorithms

already apply to the 3D case [81].
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Chapter 3: Adaptive Planning for Finding Hotspot in an Environ-

ment with a Single Robot

In this chapter, we study an environmental monitoring problem where the

goal is to identify a hotspot in the environment using a mobile sensor. Identifying

hotspots is a crucial problem [124, 125]. For example, consider deploying robots in

a nuclear power plant to monitor potential leakages by measuring radiation levels.

Radiation levels will relatively be higher near the sites of potential leakages [126].

Hence, by identifying the sites of higher nuclear radiations using robot sensors,

we can efficiently find any potential leakage [127]. In these scenarios, one would

be better off just by identifying the hotspot (i.e., maxima) instead of learning the

entire environment accurately as we did in Chapter 2. We consider the case where

the robot operates for a pre-defined time in the environment. As in the previous

chapter, we will use Gaussian Processes (GPs) to model the underlying spatial field.

We also present an algorithm that relaxes the assumption of GP hyperparameters

being known. In general, GP hyperparameters are optimized during the process and

can be a computationally prohibitive task. We introduce a Monte Carlo Tree Search

(MCTS) [128] based algorithm that uses an Upper Confidence Bound (UCB) [51]

style exploration and finds a hotspot with or without the need to do hyperparameter
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optimization. In the latter case, we provide a computationally inexpensive way

of adapting the hyperparameters. We compare their empirical performance on a

carefully designed synthetic spatial field as well as a real-world dataset of Chlorophyll

density from a Pacific ocean subregion. Our results suggest that we may not always

need to accurately find the hyperparameters if finding a hotspot is the only goal in

a robotic mission.

3.1 Monte Carlo Tree Search (MCTS)

MCTS has gained popularity in various AI applications in last couple of

decades. MCTS is a best-first strategy. It explores the nodes in a tree which

are most promising to have higher rewards first. This is opposed to brute-force

exploration strategies such as Depth First Search and Breadth First Search which

require to traverse through all the nodes in a tree and do not take into account

the information collected from the already explored component of the tree. MCTS

progressively explores a tree, guided by the results of previous exploration of that

tree. MCTS is an anytime algorithm for which more computing power leads to bet-

ter exploration. A general MCTS approach has four fundamental steps: Selection,

Expansion, Simulation, and Backpropagation.

1. Selection: Starting at the root node, a child selection policy is applied re-

cursively to descend through the nodes until an expandable node is reached.

A node is expandable if it represents a non-terminal state and has unvisited

children.
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2. Expansion: An unvisited child node of the expandable node is added to

expand the tree.

3. Simulation: A simulation is run from the new node according to a random

policy to get the rewards.

4. Backpropagation: The simulation result is backpropagated through the newly

added node of the expanded node to the root node.

We explain these steps with one of the most popular and provably efficient

MCTS algorithm called UCT [128]. UCT is inspired from the idea of Upper Confi-

dence Bound (UCB) algorithm UCB1 from the multi-armed bandit literature [129].

UCB1 has been shown to have the best possible bound on the growth of regret.

It therefore makes a promising candidate to address the exploration-exploitation

dilemma in MCTS.

The UCT algorithm is shown in Algorithm 1. For each node v, we keep track

of the total reward collected (Q(v)) and the number of times that node has been

visited (nv). When deciding in the Selection step among all the possible children we

compare their UCT values in Line 11. The UCT expression contains the summation

of an exploitation term (average reward) and an exploration term (number of times

that child node has been visited). This is inspired from the idea of UCB1 and

is shown to achieve the best regret bound. In the Simulation step, we randomly

sample nodes starting from the new child node of the expanded node and then

backpropagate the reward collected from the new node to the root node. Note that

here we just use the reward at the end of the rollouts but in many implementations,
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one can use different reward functions, such as the average of the rewards collected

while doing the rollouts.

Algorithm 4 UCT

1: Input: root node v0 of the tree.
2: for iter ≤ MaxIter
3: vexpandable ← Selection(v0)
4: vnew ← Expansion(vexpandable)
5: reward← Simulation(vnew)
6: Backpropagate(reward, vnew)

7: return argmaxchild∈v0.children
Q(child)
nchild

+ 2
√

log(nv0 )

nchild
8:

9: function Selection(v)
10: while v is fully expanded

11: v ← argmaxchild∈v.children
Q(child)
nchild

+ 2
√

log(nv)
nchild

12: return v
13:

14: function Expansion(v)
15: Randomly pick and return an unvisited children of v
16:

17: function Simulation(v)
18: while roll ≤MaxRollout
19: v ← Randomly pick a child from v.children
20: roll+ = 1
21: return v
22:

23: function Backpropagate(r, v)
24: while v is not None
25: Q(v) = Q(v) + r
26: nv = nv + 1
27: Backpropagate(r, v.parent)

3.2 Related Work

The hotspot identification problem is closely related to several other common

problems in the IPP literature including the source-seeking problem. The aim of

the source-seeking problem is to direct an autonomous vehicle to move towards
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the source of the considered phenomenon and to reach it, in order to determine

its position [130, 131]. Marchant and Ramos used Bayesian Optimization (BO) to

effectively identify the ozone concentration over the contiguous USA [132]. They

also used BO to take continuous path planning into account. Unfortunately, these

works estimate the kernel a priori in an offline manner that requires some prior

access to at least a few data samples.

For hotspot mapping, Chen and Liu presented an anytime multi-objective

informative planning method called Pareto Monte Carlo tree search which allows

the robot to handle potentially competing objectives such as exploration versus

exploitation [133]. However, their approach focuses on all the regions that have a

value higher than the the median value of the spatial field and not reporting one of

the hotspot locations. Tan et. al., focused on adaptive sampling on a GP using the

receding-horizon Cross-Entropy trajectory optimization. By using GP-UCB as the

optimization criteria they adaptively planed sampling paths that leads to regions

of high values [97]. Sung et. al., studied the problem of hotspot identification in

limited time using a UAV [134].

There has been a lot of work on informative planning where the hyperparame-

ters are assumed to be known [28,43,49,77,84,95,135]. However, this may not always

be the case in real-world applications. In online planning, the hyperparameters are

estimated during the execution of the algorithm. Binney et al. [84] estimated hy-

perparameters by using data from an initial run executed before running any other

sampling routines. However, they do not specify how much prior data one would

need to estimate the hyperparameters well enough. Thompson et al. [136] initially
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estimated the hyperparameters by starting every adaptive mission with fixed-time

straight-line paths, and then periodically re-estimated the hyperparameters dur-

ing the sampling. This may make the sampling computationally expensive if the

hyperparameters are estimated too frequently. They also assume that that the mea-

surements collected initially during the straight-line paths are representative of the

entire field. Kemna et. al. [137] ran some pilot surveys to initialize the hyperparam-

eters and included the time taken during these pilot surveys into overall planning.

Garg and Ayanian [138] used the particle filtering approach to estimate the ran-

domly initialized hyperparameters during execution. Albeit, this approach allowed

them to learn spatio-temporal fields as well, the performance of the approach is sen-

sitive to random initialization. Contrary to the above approaches, we are interested

in finding a hotspot rather than learning the entire field.

Multi-Armed Bandits (MAB) [91,139] have also been used for hotspot identifi-

cation [51,140]. Tan et. al. [55] used cross-entropy as the optimization criterion in a

MAB setting. However, much recent work on multi-armed bandit problems focuses

on the cumulative expected regret and assumes that the GP hyperparameters are

known.

Monte Carlo Tree Search has been commonly used in informative path plan-

ning and hotspot identification [128, 133, 141, 142]. MCTS including the Upper

Confidence Tree (UCT) algorithm and its variants [143], have been investigated to

handle sequential decision problems. They have been shown to have consistencies

in balancing the exploration-exploitation efficiently in many applications [144,145].

Since exploration and exploitation are two conflicting objectives, they can not be
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achieved simultaneously generally [133]. Hence, it is crucial to devise a metric that

balances this trade-off. Our algorithm AdaptGP-MCTS uses GP-UCB values as the

reward heuristics and balances the exploration-exploitation. The performance of

UCB planners has been shown to be sensitive with respect to β value [146]. In order

to avoid, subjective tuning, a time-varying βt is used. A slower growth of βt can

result in exploitative behavior while a faster growth can result in overly exploratory

behavior. Audibert et. al. [147] show that a growth rate faster than the logarithmic

growth [51] is more efficient for the terminal regret. For a better performance on

terminal regret, Tolphin and Shimony recommend using. In this work, we use a

squared root growth of β which has been proved to achieve better performance on

terminal regret [148].

We present the MCTS based algorithm that does not require the GP hyper-

parameters to be known a priori as opposed to much of the past research [149,150]

that assume the hyperparameters to be known. We show that adapting the hy-

perparameters in a specific way without optimizing as described in latter sections

suffices to find the hotspots. Further, from a practical point of view, a robot oper-

ator may not always have access to very accurate sensors. Hence, we also provide

exhaustive empirical studies about how the sensor quality affects the performance

of the presented algorithms.
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3.3 Problem Formulation

In this section, we formally define the problem and the assumptions made.

We assume that the spatial field under consideration defined over a 2-dimensional

environment U ∈ R2 is an instance of a GP, F . F is defined by a covariance function

of the form,

CZ(x, x′) = σ2 exp

(
−(x− x′)2

2l2

)
;∀x, x′ ∈ U, (3.1)

defined by a squared-exponential kernel and the hyperparameters σ2 and l are not

known. We now formally describe the problem and the algorithms proposed in this

chapter.

Problem 4 (Terminal Regret). Given an operating time budget T , plan a trajectory

under budget T for a mobile robot that obtains measurements from U , and reports

the location of maxima of the spatial field f at the end, i.e.,

minimize f(x∗)− f(x̂),

subject to len(τ) + nη ≤ T.

τ denotes the tour of the robot. Robot travels at unit speed, obtains one measurement

in η units of time and collects n total measurements. x̂ is the location of the maxima

of the predicted field while x∗ is the location of maxima of the true spatial field. We

do not know x∗ and we also do not know f . We only know the GP prediction f̂ .

The task is to use f̂ to be able to predict x∗.
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3.4 Algorithm

Our algorithm AdaptGP-MCTS uses an MCTS-based planner [149]. AdaptGP-

MCTS (Algorithm 5) shows the main function that calls the planner MCTS shown

in Line 4. Once the planner returns the next measurement location (Line 4), the

robot goes there and collects the measurement. We do a full GP hyperparameter

optimization only at the end when the robot has used all the time budget.

Algorithm 5 AdaptGP-MCTS

1: Input: Initial hyperparameters σ0 = 1 and l0 = diam(Env), X = {}, y = {},
Planner().

2: while t ≤ Total time budget T
3: µ̂t(x), σ̂t(x)← GP.Predict(X,y)
4: xt ← Planner(µ̂t(x), σ̂t(x), t)
5: yt = f(xt) + ε
6: X.append(xt); y.append(yt)
7: Update σt = σ0 log(t); lt = l0/ log(t)
8: Do a full GP hyperparameter optimization with (X,y)
9: Estimate the posterior mean µ̂

10: return argmaxx∈U µ̂(x)

AdaptGP-MCTS does not optimize for GP hyperparameters (e.g., maximum

likelihood estimation) at each time step. Instead, it changes the hyperparameters

starting with an initial l0 and σ2
0 for the length scale and the signal variance, re-

spectively. Over the iterations, it monotonically decreases the length scale and

monotonically increases the signal variance so that the GP model can capture more

complex function candidates (Figure 3.1) [149]. As the length scale l decreases and

signal variance σ2 increases, we can capture rapidly changing and potentially more

complex functions. While the correct values of GP hyperparameters are important

in modeling the entire field correctly, that is not the case if we just have to monitor
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a few specific locations, i.e., a hotspot in this work. Eliminating the need to opti-

mize hyperparameters at each step by using AdaptGP-MCTS alleviates the cubic

complexity of the hyperparameter optimization. AdaptGP-MCTS starts with an

initial σ0 and l0 of the GP hyperparameters. We provide more description on the

choosing the σ0 and l0 in the section where we discuss our experimental results.

As AdaptGP-MCTS collects more measurements during the procedure, we

monotonically decrease the length scale and increase the signal variance in Line 7

of the Algorithm 5. The new values of hyperparameters are used to get the mean

and variance estimate in the next iteration in Line 3. In Line 5, we collect the

measurement at location xt. This measurement is corrupted by the sensor noise

ε which is modeled as a standard normal distribution with mean zero mean and

ω2 variance. The sensor noise variance ω2 is assumed to be known a priori. Once

the operating budget is exhausted, at the end we do a full GP hyperparameter

optimization (Line 8) using the measurements collected previously in Line 6. Finally,

the location of the predicted maxima is reported (Line 10) where the posterior mean

attains its maximum value.

Now we discuss the planner which is based on the idea of MCTS and uses

GP-UCB values as the reward heuristics to balance the the exploration-exploitation

trade-off.

3.4.1 Planner

The pseudocode for the planner is given in the Algorithm 6. In the Backprop-
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Figure 3.1: GP samples from a squared exponential kernel with various values of
hyperparameters. Notice the difference in the range of the functions on y-axis. l
controls the overall smoothness of the functions and σ controls the range of values
the sampled function can take.
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Algorithm 6 GP-MCTS

1: Input: µ̂t(x), σ̂t(x), t .
2: while within budget
3: v′ ← Selection(v)
4: vnew ← Expansion(v′)
5: rµ + β1/2rσ ← Simulation(vnew)
6: Backpropagation

(
vnew, rµ + β1/2rσ

)
7: end procedure
8: function Selection(v)
9: while v is fully expanded

10: v ← argmaxchild∈v.children
Q(child)
nchild

+ 2
√

log(nv)
nchild

11: return v

agation step, we use the GP-UCB values to update the values for ancestral nodes.

For the hotspot identification problem considered in this chapter, for reward calcu-

lation, we use a root squared growth of β1/2 in terms of the number of measurements

collected:

1. Mean: To encourage the exploitation, i.e., rµ = µ̂t(x),

2. Variance: To encourage the exploration, i.e., rσ = σ̂t(x).

The reward function is the summation of these two values. Now we experimentally

validate our algorithm on a real-world dataset and a carefully designed synthetic

spatial field. Next, we present our empirical results staring with the case where

the GP hyperparameters are assumed to be known. We call this strategy TrueGP-

MCTS.

3.5 Empirical Evaluation

In our application, the locations inside the environment are the search tree

nodes. At a given location, the robot has five motion primitives that serve as the
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five children of the current node. The maximum number of iterations to build

the MCTS was set to 50. A random policy was used for performing rollouts to

backpropagate the average GP-UCB values as the rewards. For rollouts, we do not

fix the number of simulation steps. Instead, we do the simulations for the remaining

time budget at the current instance minus the depth of the expanded node from

the root node. This captures the intuition that in the beginning, the robot should

explore more often which is encouraged by the higher number of simulation steps.

However, as the robot comes closer to finish the mission, it has learned a good

estimate of the underlying environment and will not benefit from higher number

of simulation steps [128]. An instance of an MCTS tree for a robot is shown in

Figure 3.2. The green arrows represent the entire tree and the blue arrows represent

the best trajectory based on this built tree. The blue path shows the the robot

path until that moment in time and background heatmap represents the learned

GP mean by the robot of the underlying spatial field. For the Expansion Step in

Algorithm 6 (Line 4), we expand randomly on any of the unvisited child.

We perform the empirical evaluation of the algorithms presented. One of the

most important features of our algorithm is that it does not estimate the hyperpa-

rameters at each iteration by running the computationally expensive optimization

of the marginal likelihood. Hence, we provide a quantitative comparison of our al-

gorithms with the strategies that optimize the hyperparameters adaptively at each

time step or use the true underlying hyperparameters. The experimental results

suggest that one would not lose much by not optimizing hyperparameters at each

time step but gain a significant advantage in computational time. Our experiments
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Figure 3.2: The robot has five motion primitives.

on the real-world dataset are on Chlorophyll density data collected from the a square

subregion in Pacific ocean spanning the geographical coordinates, longitude expan-

sion from -155.5 to -129.5 and latitude expansion from 9 to 35. Hence, we construct

an synthetic spatial field over the same lon/lat coordinates and start by doing a

study on this synthetic spatial field.

3.5.1 Synthetic Field

We construct a complex synthetic spatial field (Figure 3.3) over the given

lon/lat coordinates. This spatial field has four locations of maxima, three of which

are local maxima. For our experiments, we start the robot near lower left corner

from (-149, 16) so as to trick it into collecting measurements and spending time

near one of the local maxima. The actual hotspot is located near the top right

corner at (-135.6, 29) where the field attains a maximum value of 1. The lowest field
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value is 0. We estimated the hyperparameters apriori using a 30 × 30 grid on this

Figure 3.3: The environment has four locations of maxima, three of which are local
maxima.

field and minimizing the negative log marginal likelihood of the values at those grid

locations. The GP squared-exponential hyperparameters σ0, l1, l2, ω
2 for this field

were estimated to be 0.251, 5.04, 5.04, 10−5 respectively.

We studied the effect of the sensor noise on the performance of the algorithms.

The sensor values are simulated as a normal distribution with mean as the actual

value at the measurement location. The sensor noise standard deviation was varied

to take values 0.01, 0.05, 0.1, and 0.30 (1, 5, 10, and 30% respectively of the spatial

field range) respectively, i.e., from using a very accurate sensor to a very bad sensor.

In all experiments, the robots plan the path using an MCTS planner with GP-UCB

values as the node rewards where the GP variance was multiplied with the square

root of 2
√
t log

(
|D|π2

6δ

)
as βt (termed as GP-UCBE in the plots). Here, |D| denotes

the number of grid locations used for estimating the GP mean and variance. We
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used a grid of resolution 130× 130. Hence, |D| is 16900 in our case and we choose δ

to be equal to 0.1 [51]. For each noise standard deviation, we run ten trials for the

robot that starts from (-149, 16). We compare the performance of TrueGP-MCTS

planner with a Boustrophedon (BST) path.

Table 3.1 shows the average mission Percent Terminal Regret, Percent Average

Cumulative Regret, Percent Root Mean Squared Error (RMSE) all with respect to

the range of the spatial field (i.e., 1), Percent Distance with respect to maximum

possible distance between any two points in the environment (i.e., diagonally oppo-

site locations) for four noise scenarios. For each noise case, we ran ten missions with

standard deviation shown over those ten missions. The TrueGP-MCTS outperforms

the BST on all metrics. We can see that for low-noise scenarios, BST tends to have

a higher standard deviation which can be attributed to the fact that depending on

the type of BST pattern (horizontal or vertical), the robot may get lucky sometimes

and find the hotspot very quickly. On the other extreme, it may get really unlucky

and not find the hotspot for a really long time. However, TrueGP-MCTS tends to

uniformly explore the environment and find the hotspot.

For a more exhaustive comparison, Figures 3.4, 3.5, 3.6, and 3.15 show the

Percent Terminal Regret, Percent Average Cumulative Regret, Percent Root Mean

Squared Error (RMSE) all with respect to the range of the spatial field values, Per-

cent Distance with respect to maximum possible distance between any two points

in the environment (i.e., diagonally opposite locations) for four noise scenarios.

We can see that in the beginning for the low to moderate noise cases, BST and

TrueGP-MCTS have almost same performance in terms of the terminal regret and
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Table 3.1: Mission average percentage values of four metrics. Time budget is 350
units. The first subcolumn in each column corresponds to the BST pattern and the
second to TrueGP-MCTS.

BST TrueGP-MCTS
1% Noise

Terminal Regret 12.5072± 3.6851 5.7712± 1.8836
Avg Cumulative Regret 63.7503± 0.6186 57.5540± 1.7510

RMSE 11.7810± 3.3208 6.7574± 0.7483
Distance 23.2970± 6.7337 9.7482± 3.7384

5% Noise

Terminal Regret 11.7130± 4.8586 5.3964± 2.1146
Avg Cumulative Regret 63.6402± 0.7974 54.8814± 1.9327

RMSE 11.9767± 4.2813 8.2699± 1.0573
Distance 19.7206± 9.3801 9.7927± 4.8182

10% Noise

Terminal Regret 15.5591± 4.7759 11.4409± 3.4391
Avg Cumulative Regret 63.7503± 0.6186 59.5152± 2.1726

RMSE 14.5763± 2.9520 11.4094± 1.0819
Distance 25.9312± 9.3238 18.2340± 7.5541

30% Noise

Terminal Regret 21.2261± 4.6456 15.1915± 6.8276
Avg Cumulative Regret 63.8433± 0.5179 58.5647± 2.4262

RMSE 18.4003± 1.7002 16.9728± 2.7193
Distance 33.8347± 9.8928 15.4725± 10.3717
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the distance. However, with medium budget the TrueGP-MCTS explores the envi-

ronment efficiently and converges quickly to report the hotspot location. We also

observe that for a high-noise setting (Figure 3.7), both algorithms have a lower

performance and high variation in the performance among different trials. We also

notice that as the sensor noise increases it takes longer for the TrueGP-MCTS to

find the hotspot.

Figure 3.4: The sensor noise standard deviation was set to 1% of the spatial field
values range.

Next, we empirically evaluate our algorithm on a synthetic spatial field defined

over the an environment with the same geo-coordinates.

3.5.2 Chlorophyll Dataset

We evaluate the performance of our algorithms on a real-world dataset of

Chlorophyll concentration measured on Oct 8, 2021 obtained from NASA Earth
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Figure 3.5: The sensor noise standard deviation was set to 5%.

Figure 3.6: The sensor noise standard deviation was set to 10%.
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Figure 3.7: The sensor noise standard deviation was set to 30%.

Observations from a Pacific ocean subregion shown in Figure 3.8(a). The actual

Chlorophyll concentration (mg/m3) is shown in Figure 3.8(b). The data collected is

from the a square region spanning the geographical coordinates, longitude expansion

from -155.5 to -129.5 and latitude expansion from 9 to 35 (Figure 3.8(a)) at 0.5

degree geo-coordinate grid resolution. To query a value at any non-grid location,

we used a radial basis function for interpolating and assume that the interpolated

values are the true values at that non-grid location.

The hotspot is located at (-148.67, 32.11) where the Chlorophyll density at-

tains the maximum value equal to 0.17 mg/m3 and lowest density value is 0.05

mg/m3. We estimated the hyperparameters apriori using a 30 × 30 grid on this

field and minimizing the negative log marginal likelihood of the values at those grid

locations. The GP squared-exponential hyperparameters σ0, l1, l2, ω
2 for this field

were estimated to be 0.0483, 2.33, 1.99, 10−5 respectively.
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(a) Geographical Subregion
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(b) Chlorophyll Concentration (mg/m3)

Figure 3.8: The environment has longitude expansion from -155.5 to -129.5 and
latitude expansion from 9 to 35.

Here also, we studied the effect of the sensor noise on the performance of

the algorithms. The sensor values are simulated as a normal distribution with

mean as the actual value at the measurement location. The sensor noise standard

deviation was varied to take values 0.0012, 0.006, 0.012, and 0.036 (1, 5, 10, and 30%

respectively of the spatial field range) respectively, i.e., from using a very accurate

sensor to a very bad sensor. In all experiments, the robots plan the path using an

MCTS planner with GP-UCB values as the node rewards where the GP variance

was multiplied with the square root of 2
√
t log

(
|D|π2

6δ

)
as βt (termed as GP-UCBE

in the plots). Here, |D| denotes the number of grid locations used for estimating

the GP mean and variance. We used a grid of resolution 130 × 130. Hence, |D| is

16900 in our case and we choose δ to be equal to 0.1 [51].

For each noise standard deviation, we run ten trials for the robot that starts

from (-142, 18). This starting location was chosen keeping in mind that it is closer to

the local maxima in the bottom right corner and hence more likely to trick the robot
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from identifying the actual hotspot. We compare the performance of TrueGP-MCTS

planner with a Boustrophedon (BST) path. For a qualitative analysis, we observe

the path of the robot in a low-noise setting (5%) for both strategies after the robot

has spent 100, 200, and 300 units of time in the environment in Figures 3.9, 3.10,

and 3.11 respectively. The leftmost subfigures in each figure shows the learned GP

mean µt as the heatmap. The black bubble in each leftmost subfigure denotes the

location of the GP mean maxima. This is the location we report as the hotspot

location. The middle subfigure shows the β1/2σt, where σt is the GP variance at the

given time. The right subcolumn shows the summation of both quantities, i.e., GP-

UCBE value. We can see from Figure 3.10 that the TrueGP-MCTS planner finds

the hotspot quickly and collects more samples there but also explores other regions

after it has collected the measurements near the actual hotspot. Even though it

collects measurements at other locations, the reported hotspot location does not

change. However, the Boustrophedon path finds the hotspot after the robot has

spent approximately 300 units of time in the environment. Although, a BST pattern

may get really lucky a few times and find the hotspot relatively quickly. Hence, we

did multiple runs to observe the average performance of the BST and TrueGP-MCTS

planner.

Table 3.2 shows the average mission Percent Terminal Regret, Percent Average

Cumulative Regret, Percent Root Mean Squared Error (RMSE) all with respect to

the range of the spatial field (i.e., 1), Percent Distance with respect to maximum

possible distance between any two points in the environment (i.e., diagonally oppo-

site locations) for four noise scenarios. For each noise case, we ran ten missions with
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(a) Boustrophedon path after the robot has spent 100 units of time.

(b) TrueGP-MCTS path after the robot has spent 100 units of time.

Figure 3.9: Boustrophedon vs TrueGP-MCTS comparison at time 100.
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(a) Boustrophedon path after the robot has spent 200 units of time.

(b) TrueGP-MCTS path after the robot has spent 200 units of time.

Figure 3.10: Boustrophedon vs TrueGP-MCTS comparison at time 200.
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(a) Boustrophedon path after the robot has spent 300 units of time.

(b) TrueGP-MCTS path after the robot has spent 300 units of time.

Figure 3.11: Boustrophedon vs TrueGP-MCTS comparison at time 300.
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Table 3.2: Average percentage values of four metrics. Time budget is 350 units.
The first subcolumn in each column corresponds to the Boustrophedon pattern and
the second to TrueGP-MCTS.

1% Noise 5% Noise

BST TrueGP-MCTS BST TrueGP-MCTS
Terminal Regret 34.99± 5.46 27.50± 6.15 32.21± 16.38 26.37± 7.76

Avg Cumulative Regret 77.56± 1.04 71.44± 3.32 76.52± 1.01 68.1± 1.91
RMSE 28.37± 5.86 36.01± 6.55 26.59± 5.16 20.58± 1.08

Distance 35.51± 11.57 13.39± 6.18 34.54± 12.14 16.84± 8.57
10% Noise 30% Noise

Terminal Regret 23.68± 11.92 22.36± 6.67 39.82± 13.42 27.39± 9.57
Avg Cumulative Regret 69.47± 0.98 70.63± 1.69 77.56± 1.04 62.78± 6.77

RMSE 28.38± 4.54 19.8± 2.8 32.59± 4.5 33.29± 6.26
Distance 31.13± 20.17 18.7± 8.7 48.50± 21.72 33.31± 15.7

standard deviation shown over those ten missions. The TrueGP-MCTS outperforms

the BST in terms of the percentage distance and the terminal regret for each noise

case. The TrueGP-MCTS planner outperforms Boustrophedon on Terminal Regret,

RMSE, and Distance and comparably on Cumulative Regret. The TrueGP-MCTS

outperforms the BST path and keeps accumulating the cumulative regret by con-

tinuously exploring the environment even though it has already found the hotspot.

Hence, while it might not be always traveling in the high-value regions (resulting in

a higher cumulative regret) but its GP-Mean estimate still has the maxima aligned

with the actual hotspot location.

For a more exhaustive comparison, Figures 3.12, 3.13, 3.14, and 3.15 show

the Percent Terminal Regret, Percent Average Cumulative Regret, Percent Root

Mean Squared Error (RMSE) all with respect to the range of the spatial field val-

ues, Percent Distance with respect to maximum possible distance between any two

points in the environment (i.e., diagonally opposite locations) for four noise scenar-
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ios. We can see that in the beginning for the low to moderate noise cases, BST

and TrueGP-MCTS have almost same performance in terms of the terminal regret

and the distance. However, with medium budget the TrueGP-MCTS explores the

environment efficiently and converges quickly to report the hotspot location. We

also observe that for a high-noise setting (Figure 3.7), both algorithms have a lower

performance and high variation in the performance among different trials. We also

notice that as the sensor noise increases it takes longer for the TrueGP-MCTS to

find the hotspot.

Figure 3.12: The sensor noise standard deviation was set to 1% of the Chlorophyll
values range.

3.6 Unknown GP Hyperparameters

In many practical applications, one may not have any prior data from the

underlying environment and henco no knowledge of true GP hyperparameters. We
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Figure 3.13: The sensor noise standard deviation was set to 5%.

Figure 3.14: The sensor noise standard deviation was set to 10%.
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Figure 3.15: The sensor noise standard deviation was set to 30%.

propose a computationally efficient algorithm AdaptGP-MCTS and compare its

performace with the case if the hyperparameters are known or if they are optimized

at every timestep.

3.6.1 Adaptive planning with AdaptGP-MCTS

We did the experiments with a single robot on the synthetic spatial field and

observe the performance of AdaptGP-MCTS with OptGP-MCTS that optimizes for

the hyperparameters at each timestep and TrueGP-MCTS as well for a low time

budget, medium, and high time budget. Table 3.3 shows the average mission Percent

Terminal Regret, Percent Average Cumulative Regret, Percent Root Mean Squared

Error (RMSE) all with respect to the range of the spatial field (i.e., 1), Percent

Distance with respect to maximum possible distance between any two points in the

environment (i.e., diagonally opposite locations) for 5% noise. We ran ten missions
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with standard deviation shown over those ten missions. In the beginning, TrueGP-

MCTS outperforms other two but only a slight advantage over OptGP-MCTS. There

is a large variation in the OptGP-MCTS performance in the beginning. This can

be attributed to the fact that the hyperparameters for the OptGP-MCTS depends

on the path itself which can be different in each mission and hence more variation.

Hence, if one has low operating time budget and does not know the underlying

hyperparameters, they can use OptGP-MCTS. Figure 3.16 shows the cumulative

GP operations time as a function of the operating budget for three algorithms. We

observe that TrueGP-MCTS and AdaptGP-MCTS have almost same computation

time but OptGP-MCTS complexity increases significantly. However, as the robot

spends more time in the environment, the AdaptGP-MCTS catches up and the

performance difference diminishes to less than 3%. Hence, if a user has sufficient time

to operate their mission with computational constraints due to the robot hardware,

they will be good with using AdaptGP-MCTS.
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Figure 3.16: The sensor noise standard deviation was set to 5%.
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Table 3.3: Average percentage values of four metrics. The first subcolumn in each
column corresponds to the AdaptGP-MCTS and the second to OptGP-MCTS and
the third subcolumn to TrueGP-MCTS.

AdaptGP-MCTS OptGP-MCTS TrueGP-MCTS
Time Budget 1-100

Terminal Regret 58.02± 13.10 17.58± 8.30 17.15± 3.31
Avg Cumulative Regret 59.27± 4.62 53.50± 2.80 50.70± 2.46

RMSE 34.33± 4.67 22.19± 4.98 21.06± 3.73
Distance 48.38± 4.13 27.64± 16.46 28.88± 5.21

Time Budget 101-200

Terminal Regret 18.13.20± 14.51 2.33± 3.34 0.56± 0.66
Avg Cumulative Regret 62.58± 0.96 59.71± 3.12 54.25± 3.85

RMSE 8.92± 1.00 5.98± 1.09 4.43± 0.47
Distance 21.23± 20.68 4.38± 7.20 1.10± 1.26

Time Budget 201-350

Terminal Regret 3.13± 2.07 0.07± 0.10 0.17± 0.22
Avg Cumulative Regret 62.39± 1.14 57.19± 1.61 53.88± 1.11

RMSE 6.36± 0.29 2.62± 0.38 2.71± 0.24
Distance 3.28± 2.84 0.30± 0.21 0.44± 0.34

3.7 Conclusions

In this chapter, we studied the problem of hotspot identification for various

sensor qualities. We also presented an algorithm AdaptGP-MCTS for the unknown

GP hyperparameters. Optimizing hyperparameters adaptively is a computationally

prohibitive task that scales cubically with the number of measurements [30]. We

show that if a user has sufficient mission time but not powerful computing hardware

on their robotic system, they can use AdaptGP-MCTS and will not lose much in

terms of the performance. For a low to medium mission time, the user should

use OptGP-MCTS if they prior hyperparameters of the kernel are not known. We

compared TrueGP-MCTS with a Boustrophedon pattern for each sensor type, from

a very accurate sensor to a very bad sensor. We also validated their performance
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on a real-world dataset of Chlorophyll density.
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Chapter 4: Planning for Finding Hotspots in an Environment with

Multiple Robots

In the previous chapter, we focused on using a single robot to identify the

hotspot in an environment. However, if the environment is large a single robot

may not be able to cover the entire environment. For these scenarios, we propose

a decentralized multi-robot coordination approach for hotspot identification in un-

known environments. As was the case in previous chapters, we use Gaussian Process

regression to model the stationary field whose hotspot (i.e., maxima) needs to be

found.

The field of coordination of multi-robot systems (MRS) has gained consider-

able attention in recent years. MRS can reduce the time required to explore an

area significantly by distributing the task among several robots. Using a MRS has

several advantages as well over a single-robot system. An MRS has a better spatial

distribution and can achieve better overall system performance. An MRS is more

robust and can benefit from information sharing among the robots. For example,

multiple robots can localize themselves more efficiently if they exchange information

about their position whenever they sense each other [151,152]. An MRS can have a

lower cost. Using a few simple robots can be simpler to program, cheaper to build
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than using a single powerful robot to perform a task.

Our goal is to plan the paths for robots to identify the hotspot quickly. Of

course, dealing with MRS presents unique challenges. There are two main challenges

that MRS present in comparison to the single-robot case that are particularly rele-

vant for our work:

1. Coordination and communication: It is often desired that the robots can

operate in a decentralized fashion when possible. This is especially crucial,

for example, in underwater environments where communication is severely

limited. We cannot assume continuous access to a reliable communication

channel. They can only communicate when coming to the surface and there-

fore have access to a satellite link [153,154].

2. Planning: In a multi-robot system, each robot should take into account for

the paths of the others in order to avoid any redundancy. Hence, the planner

should ensure that the robots are not very close to each other. As such,

we need some way of partitioning or covering the environment. However,

this partitioning cannot be done naively. For example, if a large part of the

environment has low values, then having too many robots covering that area

is not useful when the goal is to find the hotspot. Therefore, one would need

an efficient way to partition that is specifically tuned for finding hotspots.

We address these challenges by presenting a dynamic partitioning scheme

which splits the environment amongst the robots such that no robot is required

to cover an especially large portion of the environment. However, instead of parti-
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tioning the environment just based on the size, we use the GP estimates and the

size of the environment to determine the partitions. Specifically, our partitioning is

based on Voronoi tessellation [155] and the Upper Confidence Bound metric [51,97].

This partitioning scheme can work with several planners and finds hotspots effi-

ciently. We also allow for the robots to operate in a decentralized fashion with

periodic connectivity for coordination. We propose several planners and compare

their performance on a real-world data using terminal regret and average prediction

error as the metric. We also compare the performance of our partitioning algorithm

with a non-partitioning one.

4.1 Related Work

MRS can do complex tasks and have been widely deployed in many applica-

tions such as environmental sampling, coverage, and others, in which the robots em-

ploy local communication to achieve some common objective [156–160]. MRS have

been actively deployed in number of domains, such as precision agriculture [161,162],

and environmental monitoring and exploration [163–165]. One of the major chal-

lenges in MRS is dividing the task between robots efficiently especially in practical

scenarios when the robots operate in a decentralized manner [166].

Voronoi partitioning is a common approach for multi-robot coordination used

in various domains, such as, exploration and mapping with ground vehicles, include

spatial partitioning [167–171]. The foundational work on multi-robot Voronoi-based

partitioning and coverage was done by Cortes et al. [103]. The key idea in this paper
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was to show how Voronoi tessellation can be used to partition the environment

amongst a set of robots. In particular, they presented a control law that drives the

robots towards the centroid of their Voronoi cells and showed that this converged

to equitable partition of the environment.

Building on this work, several algorithms have been proposed over the years.

Cortes et al. presented area-constrained locational problems where a group of robots

seeks to optimize a notion of environmental coverage by partitioning the space into

Voronoi regions [158,172]. They characterized the critical points of this optimization

problem as center generalized Voronoi configurations. Martinez et al., focused on

the motion coordination and encoding various coordination tasks in MRS [173,174]

using Voronoi partitions.

Although the multi-robot coverage problems and its variants have been ex-

tensively studied with the optimal solutions, the results are often based on the

assumption that the density function is known beforehand [175], which may not be

applicable in real-world situations where the robots operate in unknown environ-

ments. This motivates the need for taking samples on the fly and efficiently learn

the distribution of environmental phenomenon via statistical models such as a GP.

Kemna et. al., used a dynamic Voronoi partitioning approach based on the

entropy in a decentralized fashion [176]. They repeatedly calculate weighted Voronoi

partitions for the space. Each vehicle then runs informative adaptive sampling

within its partition. The vehicles can share information periodically. Wenhao et. al.,

presented an adaptive sampling algorithm for learning the density function in multi-

robot sensor coverage problems using a Mixture of Gaussian Processes models [56].
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They also partitioned the environment in Voronoi cells and plan the robot paths to

move towards the centroid of their Voronoi cells.

Instead of using entropy as the weight function in estimating Voronoi regions,

we use GP-UCB criteria with a squared root growth of βt term. GP-UCB criterion

has been shown more efficient in hotspot identification tasks in comparison to en-

tropy [97]. Further, unlike the work by Wenhao et. al., we use a planner to plan

the robot paths in their respective partitions.

4.2 Problem Formulation

In this section, we formally define the multi-robot hotspot identification prob-

lem. We assume that the spatial field under consideration defined over a 2-dimensional

environment U ∈ R2 is an instance of a GP, F . F is defined by a covariance function

of the form,

CZ(x, x′) = σ2 exp

(
−(x− x′)2

2l2

)
;∀x, x′ ∈ U, (4.1)

defined by a squared-exponential kernel and the hyperparameters σ2 and l are not

known. We now formally describe the problem and the algorithms proposed in this

chapter.

Problem 5 (Multi-robot Hotspot ID). Given an operating time budget T , plan a set

of trajectories under budget T for a set of k mobile robots that obtain measurements

from the environment U , and report the location of maxima of the spatial field f at
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the end, i.e.,

minimize f(x∗)− f(x̂),

subject to max
i∈{1,...,k}

len(τi) + niη ≤ T.

τi denotes the tour of the ith robot. Robots travel with unit speed, obtain one mea-

surement in η units of time. Here, let ith robot collect ni total measurements. x̂ is

the location of the maxima of the predicted field while x∗ is the location of maxima

of the true spatial field. We do not know x∗ and we also do not know f . We only

know the GP prediction f̂ . The task is to use f̂ to be able to predict x∗.

Note that while there may be individual GP models for each robot operating

in the environment, there is one combined GP model as well and we will report

the maxima of this combined GP model at the end. The combined GP model gets

the data from all the robots periodically but this communication can not occur

each time the robot gets a new measurement and can only occur after every few

measurements.

4.3 Algorithm

Our algorithm uses Voronoi regions for dynamic partitioning after each epoch

and uses the single robot TrueGP-MCTS (from Chapter3) as the planner. Voronoi

diagram is defined in the following manner:

Definition 1. Given a set of points p1, p2, . . . , pn in the plane S, a Voronoi diagram

divides the plane S into n Voronoi regions with the following properties [155]:

• Each point pi lies in exactly one region.
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• If a point q ∈ S lies in the same region as pi, then the Euclidian distance from

pi to q will be shorter than the Euclidean distance from pj to q, where pj is

any other point in S.

The points p1, . . . , pn are called generator points for the Voronoi partitions.

Similarly Voronoi regions partitions be defined for line segments as well where line

segments acts as generators. More formally,

Definition 2. Given a set of line segments l1, l2, . . . , ln in the plane S, a Voronoi

diagram divides the plane into n Voronoi regions with the following properties [155]:

• Each line segment li lies in exactly one region.

• If a point q ∈ S lies in the same region as li, then the distance of the closest

point on li to q will be shorter than the distance of the closest point on lj to

q, where lj is any other line segment.

We use UCB values defined in [51] (denominator in Equation 4.2) as the

weights from our GP model to estimate the weighted centroids of a Voronoi cell.

Let (x1
1, x

1
2), . . . , (xm1 , x

m
2 )i be the set of m points in ith Voronoi partition. Then its

centroid can be calculated as follows,

Centroid(V ori) =

∑k=m
k=1 (xk1, x

k
2)i(µ̂t(x

k
1, x

k
2)i + βtσ̂t(x

k
1, x

k
2)i)

µ̂t(xk1, x
k
2)i + βtσ̂t(xk1, x

k
2)i

. (4.2)

Here, µ̂t(x
k
1, x

k
2)i, and σ̂t(x

k
1, x

k
2)i are the GP mean and variance at location (xk1, x

k
2)i

respectively, and βt is the parameter that controls the exploration-exploitation.

A Voronoi partitioning of a unit square with some random generator points

is shown in Figure 4.1. Similarly, the Voronoi partitioning can be defined when the
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generators are the line segments. In that case, each point in a particular Voronoi

cell is closest to the generator line segment of that partition.
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Figure 4.1: Voronoi partitions. The blue bubbles denote the point generators.

Algorithm 7 Voronoi-TrueGP-MCTS

1: procedure
2: Input: Hyperparameters σ0 and l0, Planner().
3: for epoch = [1:n]
4: Create k individual copies GP1, GP2, . . . , GPk of the combined GP model
GPcombined

5: Calculate Voronoi regions using robot locations as the point generators
6: for t = [1:m]:
7: Plan and execute the next robot step computed using Planner() in

their respective Voronoi region.
8: Collect the next environment samples, (xt1, x

t
2)1, . . . , (x

t
1, x

t
2)k

9: GP1.update(xt1, x
t
2)1, GP2.update(xt1, x

t
2)2, . . . , GPk.update(x

t
1, y

t
2)k

10: Combine the samples from all robots and update the combined GP model
using all the samples.

11: end procedure

12:

In Algrothm 5, we assume that the robots run for n epochs where in each

epoch each robot takes m steps. Initially, the robots start from predefined starting

locations. We calculate the Voronoi regions for these robots using their current
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position as generators. In each epoch, we plan the robot trajectories using Planner()

in their respective Voronoi region. Note that during the epoch the robots can not

share information with each other so the Planner() uses only the local information

known to the corresponding robot in planning the trajectory during a particular

epoch. The measurement collected is subscripted by the robot index. For example,

(xt1, x
t
2)1, (x

t
1, x

t
2)2 denote the measurements collected by Robot 1 and 2 respectively

at timestep t. At the end of the epoch, the robots share information with each

other and we update the combined GP model GPcombined using all the measurements

collected cumulatively by every robot. The Voronoi partitions are recomputed using

the current robot locations as the point generators (Line 6). If the hyperparameters

of the underlying GP are not known, we can use the AdaptGP-MCTS planner for

a single robot described in Chapter 3.

4.4 Experiments

We do the experiments using four robots setting on the synthetic spatial field

from Chapter 3 in Figure 3.3.

4.4.1 Synthetic Environment

We start the robots near lower left corner so as to trick them into collecting

measurements and spending time near one of the maxima. The actual hotspot is

located near the top right corner at (-135.6, 29) where the field attains a maximum

value of 1. The four robots start from (-147, 18), (-144, 12), (-153, 20), (-154,
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11). First we show a qualitative example showing the comparison between using

partitioning and not using partitioning. We observe the path of the robots for both

strategies after the robot has spent 25, 50, and 75 units of time in the environment

in Figures 4.2, 4.3, and 4.4 respectively. Voronoi partitioning achieves much better

uniform exploration and reduces the variance in in almost the entire environment

by the time the robots have spent 50 units of time (Figure 4.3) while in case of no

partitioning, the robots have overlap between the regions they explore and there are

still regions in the environment that have high variance.

Table 4.1 shows the average mission Percent Terminal Regret, Percent Average

Cumulative Regret, Percent Root Mean Squared Error (RMSE) all with respect to

the range of the spatial field (i.e., 1), Percent Distance with respect to maximum

possible distance between any two points in the environment (i.e., diagonally op-

posite locations) for four noise scenarios. For each noise case, we ran ten missions

with standard deviation shown over those ten missions. For all the noise values,

the two TrueGP-MCTS algorithms (with or wothout partitioning) perform better

than the Boustrophedon (BST) pattern. Using Voronoi partitioning provides an

advantage in comparison to not using Voronoi partitioning at all. This can be at-

tributed to the fact that with no partitioning, the robots might end up collecting

measurements in the same area bringing redundancy. Voronoi partitioning helps in

dividing the exploration task efficiently and uniformly between robots and hence

has low standard deviation across missions. That is why we also observe the width

of the shades narrower for Voronoi partitioning. However, as the sensor becomes

bad, we observe that the performance difference between using partitioning and no
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(a) No partitioning path after the robots have spent 25 units of time.

(b) Voronoi partitioning path after the robots have spent 25 units of time.

Figure 4.2: Voronoi partitioning vs No partitioning comparison at time 25.
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(a) No partitioning path after the robots have spent 50 units of time.

(b) Voronoi partitioning path after the robots have spent 50 units of time.

Figure 4.3: Voronoi partitioning vs No partitioning comparison at time 50.
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(a) No partitioning path after the robots have spent 75 units of time.

(b) Voronoi partitioning path after the robots have spent 75 units of time.

Figure 4.4: Voronoi partitioning vs No partitioning comparison at time 75.
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partitioning diminishes. This is due to the fact that when the noise is higher we

would need more measurement at a particular location to become confident about

the prediction. With no partitioning, four robots may go and collect measurement

at the hotpot location and become confident very quickly. However, with partition-

ing, only one robot can collect the measurement at a given location at a given time.

Hence, using partitioning will not provide significant advantage if one has a very

noisy sensor.

For a more exhaustive comparison, Figure 4.5, 4.6, 4.14, and 4.15 show the

Percent Terminal Regret, Percent Average Cumulative Regret, Percent RMSE all

with respect to the range of the spatial field values, Percent Distance with respect

to maximum possible distance between any two points in the environment (i.e.,

diagonally opposite locations) for three noise scenarios. For all the noise values, the

two algorithms perform better than the Boustrophedon pattern (red plot). Using

Voronoi partitioning provides an advantage in comparison to not using Voronoi

partitioning at all (Green plot). This can be attributed to the fact that with no

partitioning, the robots might end up collecting measurements in the same area

bringing redundancy. Voronoi partitioning helps in dividing the exploration task

efficiently between robots. That is why we also observe the width of the shades

narrower for Voronoi partitioning.

We also compare the Voronoi partitioning and No partitioning in terms of

the time taken by them in finding all the hotspots (total 4 for the synthetic field).

Table 4.2 shows the earliest time for four robots to detect 1, 2, 3, and 4 hotspots. The

Voronoi partitioning achieves better exploration and outperforms No Partitioning
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Table 4.1: Average percentage values of four metrics. Time budget is 130 units.
The first subcolumn in each column corresponds to the Boustrophedon pattern and
the second to No Partitioning and the third subcolumn to Voronoi partitioning.

BST No Partition Voronoi
1% Noise

Terminal Regret 37.88± 0.53 12.6441± 10.7720 7.3440± 2.8197
Avg Cumulative Regret 72.4830± 1.4048 67.7062± 8.2693 72.7852± 1.5970

RMSE 15.2483± 1.0781 15.3704± 8.7345 18.2134± 0.6778
Distance 31.1011± 0.7507 26.1653± 21.3366 16.5787± 1.6818

5% Noise

Terminal Regret 40.0625± 1.8991 8.9615± 6.8710 6.5880± 2.0447
Avg Cumulative Regret 73.7904± 0.7451 63.4555± 1.5669 62.1019± 0.5412

RMSE 16.4405± 1.0196 8.2900± 0.5418 6.4329± 0.5843
Distance 31.2840± 1.0031 15.0227± 10.0851 12.4295± 3.5505

10% Noise

Terminal Regret 44.3363± 7.2250 6.3146± 1.1188 7.3816± 1.6857
Avg Cumulative Regret 72.2413± 1.7654 64.7636± 1.0904 62.3564± 1.0278

RMSE 18.0199± 0.8690 9.8770± 0.4835 8.1581± 0.7311
Distance 30.2471± 2.0042 10.6846± 2.1218 12.8723± 2.9458

30% Noise

Terminal Regret 48.7565± 1.8755 13.9792± 7.4808 12.9057± 3.2586
Avg Cumulative Regret 72.6008± 1.6435 62.4641± 2.0551 62.1961± 0.8107

RMSE 20.3622± 0.4279 14.6819± 1.0296 13.8190± 0.6759
Distance 28.7675± 1.9315 17.7905± 12.5539 18.3297± 7.7563
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Figure 4.5: The sensor noise standard deviation was set to 1%.

Figure 4.6: The sensor noise standard deviation was set to 5%.
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Figure 4.7: The sensor noise standard deviation was set to 10%.

Figure 4.8: The sensor noise standard deviation was set to 30%.
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Table 4.2: Averaged over 15 trials for four robots and the noise was set to 5%.

No Partition Voronoi

1 Hotspot 3.70± 1.15 4.60± 1.77
2 Hotspots 25.40± 8.09 11.40± 5.22
3 Hotspots 37.40± 6.96 21.10± 5.70
2 Hotspots 55.70± 14.10 34.20± 9.35

Table 4.3: Averaged over 15 trials for three robots and the noise was set to 5%.

No Partition Voronoi

1 Hotspot 4.73± 2.15 4.86± 1.88
2 Hotspots 31.46± 5.73 11.93± 4.00
3 Hotspots 50.06± 12.69 20.53± 8.81
2 Hotspots 71.13± 15.00 44.33± 9.80

when it comes to finding multiple hotspots. Table 4.3 shows the earliest time for

three robots to detect 1, 2, 3, and 4 hotspots. We observed similar trends for three

robots as well.

4.4.2 Chlorophyll Dataset

We evaluate the performance of our algorithms on a real-world dataset of

Chlorophyll concentration on Oct 8, 2021 obtained from NASA Earth Observations

from a Pacific ocean subregion shown in Figure 3.8(a). The actual Chlorophyll con-

centration (mg/m3) is shown in Figure 3.8(b). The hotspot is located at (-148.67,

32.11) where the Chlorophyll density attains the maximum value equal to 0.17

mg/m3 and lowest density value is 0.05 mg/m3. We estimated the hyperparameters

apriori using a 30× 30 grid on this field and minimizing the negative log marginal

likelihood of the values at those grid locations. The GP squared-exponential hy-

perparameters σ0, l1, l2, ω
2 for this field were estimated to be 0.0483, 3.33, 2.99, 10−5
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respectively.

Here also, we studied the effect of the sensor noise on the performance of

the algorithms. The sensor values are simulated as a normal distribution with

mean as the actual value at the measurement location. The sensor noise standard

deviation was varied to take values 0.0012, 0.006, 0.012, and 0.036 (1, 5, 10, and 30%

respectively of the spatial field range) respectively, i.e., from using a very accurate

sensor to a very bad sensor. In all experiments, the robots plan the path using an

MCTS planner with GP-UCB values as the node rewards where the GP variance

was multiplied with the square root of 2
√
t log

(
|D|π2

6δ

)
as βt (termed as GP-UCBE

in the plots). Here, |D| denotes the number of grid locations used for estimating

the GP mean and variance. We used a grid of resolution 130 × 130. Hence, |D| is

16900 in our case and we choose δ to be equal to 0.1 [51].

We performed experiments with four robots. In each scenario, we compared

the following three algorithms.

1. Boustrophedon (BST): All the robots follow a boustrophedon pattern indi-

vidually.

2. No partition: The robots can traverse the entire environment at any given

time without any constraint of being only in its Voronoi partition.

3. Site partition: The robots are constrained to be collecting measurement only

in their Voronoi partitions generated using robot sites at the last surfacing

event.

For each noise, we run ten trials for four robots that start with starting loca-
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tions (-135, 12), (-132, 12), (-137, 12), (-138, 11). These locations were chosen to

be close to the local maxima as to trick the robots to spend more time away from

the hotspot location. First we show a qualitative example showing the comparison

between using partitioning and not using partitioning. We observe the path of the

robots for both strategies after the robot has spent 25, 50, and 75 units of time in

the environment in Figures 4.9, 4.10, 4.11 respectively. The leftmost subfigures in

each figure shows the learned GP mean µt as the heatmap. The black bubble in

each leftmost subfigure denotes the location of the GP mean maxima. This is the

location we report as the hotspot location. The middle subfigure shows the β1/2σt,

where σt is the GP variance at the given time. The right subcolumn shows the

summation of both quantities, i.e., GP-UCBE value. We can see from Figure 4.10

and 4.11 that the partitioning the environment among robots helps in relatively

uniform exploration resulting in a lower GP variance. If we do not use the parti-

tioning, the robots tend to collect the measurements in the same subregion of the

environment and hence resulting in redundancy.

Table 4.4 shows the average mission Percent Terminal Regret, Percent Average

Cumulative Regret, Percent Root Mean Squared Error (RMSE) all with respect to

the range of the spatial field (i.e., 1), Percent Distance with respect to maximum

possible distance between any two points in the environment (i.e., diagonally op-

posite locations) for four noise scenarios. For each noise case, we ran ten missions

with standard deviation shown over those ten missions. Figures 4.12, 4.13, 4.14,

and 4.15 show the Percent Terminal Regret, Percent Average Cumulative Regret,

Percent RMSE all with respect to the range of the spatial field values, Percent Dis-
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Table 4.4: Average percentage values of four metrics. Time budget is 130 units.
The first subcolumn in each column corresponds to the Boustrophedon pattern and
the second to No Partitioning and the third subcolumn to Voronoi partitioning.

BST No Partition Voronoi
1% Noise

Terminal Regret 20.67± 0.19 17.57± 10.73 8.44± 1.67
Avg Cumulative Regret 75.04± .31 73.12± 1.15 73.68± 2.06

RMSE 25.87± 1.32 20.83± 1.82 18.63± 0.82
Distance 63.94± 16.98 25.70± 12.55 20.45± 8.75

5% Noise

Terminal Regret 20.20± 1.91 14.1± 9.43 7.34± 2.81
Avg Cumulative Regret 77.71± 0.52 72.81± 1.60 72.78± 1.59

RMSE 40.14± 0.86 22.20± 1.42 18.21± 0.67
Distance 67.54± 9.49 30.81± 13.71 16.57± 1.68

10% Noise

Terminal Regret 22.28± 3.1 8.36± 4.02 8.08± 2.86
Avg Cumulative Regret 77.51± 0.40 73.29± 1.26 71.83± 2.07

RMSE 40.97± 1.69 21.59± 1.46 20.08± 1.06
Distance 48.13± 22.61 28.62± 18.1 34.73± 18.12

30% Noise

Terminal Regret 36.52± 3.74 23.16± 8.62 23.14± 10.00
Avg Cumulative Regret 77.63± 0.37 70.09± 2.32 72.71± 1.00

RMSE 44.97± 1.07 31.68± 3.96 28.26± 1.65
Distance 28.11± 5.12 41.28± 29.08 43.02± 18.36
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(a) No partitioning path after the robots have spent 25 units of time.

(b) Voronoi partitioning path after the robots have spent 25 units of time.

Figure 4.9: Voronoi partitioning vs No partitioning comparison at time 25.
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(a) No partitioning path after the robots have spent 50 units of time.

(b) Voronoi partitioning path after the robots have spent 50 units of time.

Figure 4.10: Voronoi partitioning vs No partitioning comparison at time 50.
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(a) No partitioning path after the robots have spent 75 units of time.

(b) Voronoi partitioning path after the robots have spent 75 units of time.

Figure 4.11: Voronoi partitioning vs No partitioning comparison at time 75.
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tance with respect to maximum possible distance between any two points in the

environment (i.e., diagonally opposite locations) for three noise scenarios. For all

the noise values, the two algorithms perform better than the Boustrophedon pat-

tern (Red plot). Using Voronoi partitioning provides an advantage in comparison

to not using Voronoi partitioning at all (Green plot). This can be attributed to the

fact that with no partitioning, the robots might end up collecting measurements

in the same area bringing redundancy. Voronoi partitioning helps in dividing the

exploration task efficiently between robots. The Voronoi partitioning performs best

for low-noise cases. However, the difference between No Partitioning and Voronoi

Partitioning diminishes as the noise increases. This can be attributed to the fact

that as the noise increases one would require more measurement from the hotspot

region to identify it. In case of No Partitioning, all four robots are allowed to collect

measurements at any location. However, with partitioning only one robot can collect

the measurements at a location at a given time. Hence, if we use the partitioning,

it will require more time for the robots to become confident about a certain region.

4.5 Conclusions

In this chapter, we studied the problem of hotspot identification using a decen-

tralized multi-robot system. We focused on primarily two aspects of the problem:

Distributing the identification task between robots efficiently and planning the path

for those robots. We used a Voronoi region-based partitioning scheme to assign the
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Figure 4.12: The sensor noise standard deviation was set to 1%.

Figure 4.13: The sensor noise standard deviation was set to 5%.
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Figure 4.14: The sensor noise standard deviation was set to 10%.

Figure 4.15: The sensor noise standard deviation was set to 30%.
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subregions of the environment for individual robots to explore. For planning in these

Voronoi partitions, we make use of the UCB values of the learned GP model. This

encourages individual robots to to balance the exploration-exploitation trade-off.

Further, our partitioning algorithm can be combined with several planners to plan

the individual paths for the robots. We also validate our algorithm on a real-world

Chlorophyll dataset collected from a subregion of the Pacific ocean.
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Chapter 5: Multi-Fidelity Reinforcement Learning for Navigation in

an Environment

In previous chapters, we focused on learning an environment or identifying

the hotspot in an environment. We showed that when the underlying function is

represented by a GP, by effectively choosing where to obtain measurements we can

speed up the learning process. In this chapter, we will focus on the same objective

but consider a different type of learning problem.

A crucial component of this endeavor is the robot mobility, i.e., how should

a robot navigate autonomously if instructed to collect data from an environment.

Hence, in this chapter, we focus on efficient ways for autonomous robot navigation

through an environment. More specifically, we will focus on Reinforcement Learning

(RL) using Gaussian Processes (GPs) as function approximators. As in the previous

chapters, we will exploit the structural properties of GPs to efficiently learn the

unknown function. The difference is that in the previous chapters we used GPs to

model a spatially varying field, here GPs will be used to model the robot dynamics

and reward (model-based) or Q-value (model-free) function in the context of RL.

A naive application of RL can be inefficient in real-world scenarios. We present

two versions of Multi-Fidelity Reinforcement Learning (MFRL), model-based and
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model-free, that leverage GPs to learn the optimal policy in a real-world environ-

ment. In the MFRL framework, an agent uses multiple simulators of the real en-

vironment to perform actions. With increasing fidelity in a simulator chain, the

number of samples used in successively higher simulators can be reduced. We also

examine the performance of our algorithms through simulations and through real-

world experiments for navigation with a ground robot.

5.1 Related Work

There has been a significant interest in using RL in robotics [3]. While RL

has achieved remarkable success in simulation environments its potential in robotics

has been quite limited. Not every RL method is equally suitable for each robotics

domain [3]. Hester and Stone [177] identify four properties of an RL algorithm that

would make it generally applicable to a broad range of robot control tasks:

1. The algorithm must learn from very few samples (which may be expensive

and time-consuming).

2. It must learn tasks with continuous state representations.

3. It must learn good policies even with unknown sensor or actuator delays (i.e.,

selecting an action may not affect the environment instantaneously).

4. It must be computationally efficient enough to take actions continually in

real-time.

Using simulators in the RL can alleviate many of the issued mentioned above [41].

The simulators can be used to train the agents, with real-world experience used later
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to update the simulator or the agent’s policy. The idea of simulator-based RL is

closely related to that of using multi-fidelity methods to optimize complex functions

in various applications.

Multi-fidelity methods are prominently used in various engineering applica-

tions. These methods are used to construct a reliable model of a phenomenon when

obtaining direct observations of that phenomenon is expensive. The assumption is

that we have access to cheaply obtained, but possibly less accurate observations

from an approximation of that phenomenon. Multi-fidelity methods can be used to

combine those observations with expensive but accurate observations to construct

a model of the underlying phenomenon [16]. For example, learning the dynamics of

a robot using real-world observations may cause wear and tear of the hardware [3].

Instead, one can obtain observations from a simulator that uses a, perhaps crude,

approximation of the true robot dynamics [22].

Let f : X → Y denote a function that maps the input x ∈ X ⊂ Rd to an output

y ∈ Y ⊂ Rd
′
, where d, d

′ ∈ N. Multiple approximations are available that estimate

the same output with varying accuracy and costs. More generally, K different fidelity

approximations, f (1), . . . , f (K), are available representing the relationship between

the input and the output, f (i) : X → Y , i = 1, . . . , K. Obtaining observations from

the ith approximation incurs cost c(i), and typically c(i) < c(j) for i < j.

There has been a significant surge in multi-fidelity methods research following

the seminal work on autoregressive schemes [178]. They used GPs to explore ways

in which runs from several levels of a computer code can be used to make inferences

about the output of the complex computer code. A complex code approximates the
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reality better, but in extreme cases, a single run of a complex code may take many

days. GP framework is a natural candidate to estimate a phenomenon by combining

data from various fidelity approximations [179,180].

The work by Kennedy and O’Hagan [178] focuses only on the scenarios where

low-fidelity approximations can capture the right trends, and the low- and high-

fidelity approximation outputs exhibit strong linear correlation across the input

space. Perdikaris et. al. extended the work to deal with the scenarios where low-

fidelity approximations are correlated to their high-fidelity counterparts only in a

specific range of inputs [179]. Cutajar et. al. developed a Deep GP [181] extension

for multi-fidelity methods [182]. They used the nested structure of GPs in a DGP to

propagate information where individual GPs model the transition from one fidelity

to the next. There is some work on the use of multi-fidelity methods in Bayesian

optimization [183] setting as well. Kandasamy et. al. formalized the notion of regret

in multi-fidelity BO setting [184]. Inspired by GP-UCB [51], their algorithm MF-

GP-UCB has theoretical guarantees on finding the optimum value at high-fidelity

levels. Further, MF-GP-UCB was tested on three hyperparameter tuning tasks and

one inference problem in Astrophysics.

Multi-fidelity methods have been widely used in RL applications to automati-

cally optimize the parameters of control policies based on data from simulations and

experiments. Transfer learning is a similar approach that aims to generalize between

different tasks [22,185]. Cutler et al. [41] introduced a framework that specifies the

rules on when to collect observations from various fidelity simulators. Marco et

al. [186] introduced a Bayesian Optimization algorithm which uses entropy [187] as
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a metric to decide which simulator to collect the observations from. They used their

algorithm for a cart-pole setup with a Simulink model as the simulator.

Two closely related techniques addressing sim2real are domain randomization

and domain adaptation. In both cases, the simulators can be controlled via a set

of parameters. The underlying hypothesis is that some unknown set of parameters

closely matches the real-world conditions. In domain randomization, the simulator

parameters are randomly sampled and the agent is trained across all the parameter

values. In domain adaptation, the parameter values are updated during learning.

However, it is important to note that the goal of these methods is to reduce the

reality gap by using a parameterized simulator [40, 188]. This restricts the use of

such approaches to scenarios where altering the parameters for a simulator itself

is trivial. Further, only one type of simulator is used. In contrast, MFRL tech-

niques leverage multiple simulators with varying fidelity levels as well as cost to

operate. Furthermore, in MFRL the policy learned in the highest fidelity simulator

(real-world) uses data from the same environment, unlike sim2real. As such, these

approaches are beneficial when there is a significant reality gap where maneuvers

learned in simulators may not translate to the real world.

5.2 Problem Formulation

We use Reinforcement Learning for formulating our problems.
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5.2.1 Reinforcement Learning

RL problems can be formulated as a Markov Decision Process (MDP): M =

〈S,A,P ,R, γ〉; with state space S; action spaceA; transition function P(st, at, st+1) 7→

[0, 1]; reward function R(st, at) 7→ R and discount factor γ ∈ [0, 1) [54, 189]. A pol-

icy π : S → A maps states to actions. Together with the initial state s0, a policy

forms a trajectory ζ = {[s0, a0, r0], [s1, a1, r1], . . .} where at = π(st). rt and st+1 are

sampled from the reward and transition functions, respectively.

We consider a scenario where the goal is to maximize the infinite horizon

discounted reward starting from a state s0. The value function for a state s0 is

defined as Vπ(s0) = E[
∑t=∞

t=0 γtrt(st, at)|at = π(st)]. The state-action value func-

tion or Q-value of each state-action pair under policy π is defined as Qπ(s, a) =

E[
∑t=∞

t=0 γtrt+1(st+1, at+1)|s0 = s, a0 = a] which is the expected sum of discounted

rewards obtained starting from state s, taking action a and following π thereafter.

The optimal Q-value function Q∗ for a state-action pair (s, a) satisfies Q∗(s, a) =

maxπQ
π(s, a) = V∗(s) and can be written recursively as,

Q∗(st, at) = Est+1

[
r(st, at) + γV∗(st+1)

]
. (5.1)

Our objective is to find the optimal policy π∗(s) = argmaxaQ
∗(s, a) when R

and P are not known to the agent. In model-based approaches, the agent learns R

and P first and then finds an optimal policy by calculating optimal Q-values from

Equation (5.1). The most commonly used model-based approach is Value Iteration
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(VI) [190,191]. We can also directly estimate the optimal Q-values, often known as

model-free approaches [112] or directly calculate the optimal policy, often known as

policy-gradient approaches [32]. The most commonly used model-free algorithm is

Q-learning.

Our multi-fidelity problem can be formally defined as follows: Given a chain

of simulators Σ1, . . . ,Σd, minimize the number of learning samples taken in Σd.

5.3 Algorithms

In this section, we describe both versions of our algorithm. We compare the

proposed algorithms with baseline strategies through simulations. A flow chart of

our algorithms is shown in Figure 5.1. We make the following assumptions for both

algorithms.

1. The reward function is known to the agent. We make this assumption for the

ease of exposition. In general, one can use GPs to estimate the reward func-

tion as well. This assumption is required only for GP-VI-MFRL algorithm.

2. State-space in simulator Σi−1 is a subset of the state-space in simulator Σi.

The many-to-one mapping ρi maps states from simulator Σi to states in

simulator Σi−1. We give an example of such mapping in subsequent sections.

Let ρ−1
i denote the respective inverse mapping (which can be one-to-many)

from states in Σi−1 to states in Σi. The action space is discrete and the same

for all the simulators and the real world.
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Figure 5.1: The simulators are represented by Σ1,Σ2, . . . ,Σd. The algorithms decide
the simulator in which the current action is to be executed by the agent. Also, the
action values in the chosen simulator are updated and used to select the best action
using the information from higher as well as lower simulators.

5.3.1 GP-VI-MFRL Algorithm

GP-VI-MFRL consists of a model learner and a planner. The model learner

learns the transition functions using GP-regression. We use VI [32] as our planner to

calculate the optimal policy with learned transition functions. Let st+1 = f(st, at)

be the (unknown) transition function that must be learned. We observe transitions:

D = {〈st, at, st+1〉}. Our goal is to learn an estimate f̂(s, a) of f(s, a). We can

then use this estimated f̂ for unvisited state-action pairs (in place of f) during

VI to learn the optimal policy. For a given state-action pair (s, a), the estimated

transition function is defined by a normal distribution with the mean and variance

given by Equations (2.1) and (2.2). Algorithm 8 gives the details of the proposed

framework.
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Algorithm 8 GP-VI-MFRL Algorithm

1: procedure
2: Input: confidence parameters σth and σsumth ; simulator chain
〈Σ, fidelity parameters β, state mappings ρ〉; L.

3: Initialize: Transition functions Pass′(i) and Di for i ∈ {1, . . . , d}; change =
False.

4: Initialize: i ← 1; Q̂i ← Planner (Pass′(i)).
5: while terminal condition is not met
6: at ← argmaxa Q̂i(s, a)
7: if σi(st, at) ≤ σth: change = True
8: if σ (ρi(st), at) ≥ σth and change and i > 1
9: st ← ρi(st), i ← i− 1, continue

10: 〈st+1, rt+1〉 ← execute at in Σi

11: append 〈st, at, st+1, rt〉 to Di
12: Pass′(i) ← update GPi using Di
13: Q̂i ← call Planner with input Pass′(i)
14: t ← t+ 1
15: if

∑j=t−1
j=t−L σi(sj, aj) ≤ σsumth and t > L and i < d

16: st ← ρ−1
i+1 (st) , i ← i+ 1;

17: change = False
18: end procedure

19:

20: procedure Planner(Pass′(i))
21: Initialize: Q(s, a) = 0 for each (s, a), ∆ =∞
22: while ∆ > 0.1
23: ∆ ← 0
24: for every (s, a)
25: temp ← Q(s, a), Q(s, a) = Q̂i−1 (ρi(s), a) + βi
26: for k ∈ {i, . . . , d}
27: sk = ρ−1

k . . . ρ−1
i+2ρ

−1
i+1(s)

28: if σk(sk, a) ≤ σth: Pass′(i) = Pass′(k)
29: Q(s, a) ←

∑
a

∑
s′ Pass′ [Ra

ss′ + γmaxaQ(s′, a)]
30: ∆← max(∆, |temp−Q(s, a)|)
31: return Q(s, a)
32: end procedure
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Before executing an action, the agent checks (Line 8) if it has a sufficiently

accurate estimate of the transition function for the current state-action pair in the

previous simulator, Σi−1. Specifically, we check if the variance of the current state-

action pair in previous simulator is less than σth. If not, and if the transition model

in the current environment has changed, it switches to Σi−1 and executes the action

in the potentially less expensive environment. The agent lands in the state ρi(s) in

lower fidelity simulator.

We also keep track of the variance of the L most recently visited state-action

pairs in the current simulator. If the running sum of the variances is below a

threshold (Line 15), this suggests that the robot is confident about its actions in the

current simulator and can advance to the next one. In the original work [41], the

agent switches to the higher fidelity simulator after a certain number of known state-

action pairs were encountered. In our implementation (Line 7), the model of current

environment changes if the posterior variance for a state-action pair drops below a

threshold value (i.e., agent has a sufficiently accurate estimate of the transitions

from that state). Lines 10–13 describe the main body of the algorithm, where the

agent executes the greedily chosen action and records the observed transition in Di.

The GP model for the transition function is updated after every step (Line 12).

New Q-value estimates are computed every time after an update of the transition

function (Line 13). Note that we use a separate GP to estimate the transition

function in each simulator.

One can use a number of termination conditions (Line 5), e.g., maximum

number of steps, changes in the value function or maximum number of switches. In
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our implementation, Algorithm 8 terminates if the change in new estimates of value

functions in the real-world environment is no more than a certain threshold (ten

percent) compared to the previous estimates.

The planner utilizes the knowledge of transitions from higher simulators (Lines

26–28) as well as lower simulators (Line 25) to encourage exploration in the current

simulator. For every state action-action pair (s, a), the planner looks for the maxi-

mum fidelity simulator in which a known estimate of transitions for (s, a) is available

and uses them to plan in the current simulator. An estimate is termed known if the

variance is below a threshold. If no such simulator is available, then it uses the Q-

values learned in the previous simulator plus a fidelity parameter β. This parameter

models the maximum possible difference between the optimal Q-values in consecu-

tive simulators. The higher fidelity simulator values will always be trusted over the

lower fidelity ones as long as we have low enough uncertainty in those estimates.

We assume that, for two consecutive simulators, the maximum difference between

the optimal action value of a state-action pair in Σi and corresponding pair in Σi−1

is not more than βi. Note that one needs to apply a state-space discretization to

plan the actions. However, the learned transition function is continuous.

5.3.2 GPQ-MFRL Algorithm

The agent learns optimal Q-values using GPs directly, instead of learning

the model first. The underlying assumption is that nearby state-action pairs will

produce similar Q-values. This assumption can also be applied to problems where
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the states and actions are discrete but the transition function implies some sense of

continuity. We choose the squared-exponential kernel because it models the spatial

correlation we expect to see in a ground robot. However, any appropriate kernel

can be used. We use a separate GP per simulator to estimate the Q-values using

only data collected in that simulator. Algorithm 9 gives the details of the proposed

Algorithm 9 GPQ-MFRL Algorithm

1: procedure
2: Input: confidence parameters σth and σsumth ; simulator chain
〈Σ, fidelity parameters β, state mappings ρ〉; L.

3: Initialize: Q̂i = initialize GP for i ∈ {1, . . . , d}; state s0 in simulator
Σ1; i ← 1; change = False.

4: Initialize: t ← 0; Di ← {} for i ∈ {1, . . . , d}.
5: while terminal condition is not met
6: at ← chooseaction(st, i)
7: if σi(st, at) ≤ σth: change = True
8: if σ (ρi(st), at) > σth and change and i > 1
9: st ← ρi(st), i ← i− 1, continue

10: 〈rt, st+1〉 ← execute action at in Σi

11: append 〈st, at, st+1, rt〉 to Di
12: Yi ← {}
13: for 〈st, at, st+1, rt〉 ∈ Di //batch training//
14: yt ← rt + γmaxaQ̂i (st+1, a)
15: append 〈st, at, yt〉 to Yi
16: Q̂i ← update GPi using Yi
17: if

∑j=t−L
j=t σi(sj, aj) ≤ σsumth and t > L and i < d

18: st ← ρ−1
i+1 (st) , i ← i+ 1

19: change = False
20: end procedure

21:

22: procedure chooseAction(s, i)
23: for a ∈ A(s)
24: Q(s, a) = Q̂i−1 (ρi(s), a) + βi
25: for k ∈ {i, . . . , d}
26: sk = ρ−1

k . . . ρ−1
i+2ρ

−1
i+1(s)

27: if σk(sk, a) ≤ σth: Q(s, a) = Q̂k(sk, a)
28: return argmaxaQ(s, a)
29: end procedure
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framework. GPQ-MFRL continues to collect samples in the same simulator until

the agent is confident about its optimal actions. If the running sum of the variances

is below a threshold (Line 17), this suggests that the robot has found a good policy

with high confidence in the current simulator and it must advance to the next one

(Line 18).

GPQ-MFRL uses similar thresholds (σth and σsumth ) as GP-VI-MFRL to decide

when to switch to a lower or higher fidelity simulator. GP-VI-MFRL checks if the

agent has a sufficiently accurate estimate of the transition function in the previous

simulator while GPQ-MFRL checks if the agent has a sufficiently accurate estimate

of optimal Q-values in the previous simulator (Line 8). Lines 10–15 describe the

main body of the algorithm where the agent records the observed transitions in Di.

We update target values (Line 14) for every transition as more data gets collected

in Di (Line 13). The GP model is updated after every step (Line 16).

The agent utilizes the experiences collected in higher simulators (Lines 25–27)

to choose the optimal action in the current simulator (Line 6). Specifically, it checks

for the maximum fidelity simulator in which the posterior variance for (s, a) is less

than a threshold σth. If one exists, it utilizes the Q-values from the highest known

simulator to choose next action in the current simulator. If no such higher simulator

exists, the Q-values from the previous simulator (Line 24) are considered to choose

the next action in the current simulator with an additive fidelity parameter β.

GPQ-MFRL performs a batch retraining every time the robot collects new

sample in a simulator (Lines 13–15). During the batch retraining, the algorithm

updates the target values in previously collected training data using the knowledge
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gained by collecting new samples. Then these updated target values are used to

predict the Q-values using GPs (Line 16). As the amount of data grows, updating

the GP can become computationally expensive. However, we can prune dataset

using sparse GP techniques [192]. It is non-trivial to choose values for confidence

bounds but for the current experiments we chose the σsumth to be ten percent of the

maximum Q-value possible and σth to be one fifth of σsumth .

5.4 Empirical Evaluation

We use two environments to simulate GP-VI-MFRL and three environments

for GPQ-MFRL. For GP-VI-MFRL, the goal is learning to navigate from one point

to another while avoiding the obstacles. Σ1 is a 21×21 grid-world with a point robot

whereas Σ2 is Gazebo (discretized in 21 × 21 grid) which simulates the kinematics

and dynamics of a quadrotor operating in 3D. For GPQ-MFRL, the goal is to learn

avoiding the obstacles while navigating through the environment. Σ1 is Python-

based simulator Pygame, Σ2 is a Gazebo environment, and Σ3 is the real world.

We further use sparse GPs to speed up the computations required to perform GP

inference. We report the improvements in computational time as well as a direct

comparison between GP-VI-MFRL and GPQ-MFRL on an obstacle avoidance task.

5.4.1 GP-VI-MFRL Algorithm

The task of the robot is to navigate from the start state to goal state. The start

and goal states and the obstacles for the environment used are shown in Figure 5.2.
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The state of the robot is given by its X and Y coordinates whereas the action is a

2D velocity vector. Both simulators have the same state-space, therefore, ρi is an

identity mapping. The robot gets a reward of zero for all transitions except when

it hits the obstacles in which case it gets a reward of -50 and a reward of 100 for

landing in the goal state.

Since the state space S ∈ R2 and the action space (velocity) A ∈ R2, the

true transition function is R4 → R2. However, generally GP regression allows for

single-dimensional outputs only. Therefore, we assume independence between the

two output dimensions and learn two components (along X and Y ) of the transition

functions separately, xi+1 = fx(xi, yi, ax) and yi+1 = fy(xi, yi, ay), where (xi, yi) and

(xi+1, yi+1) are the current and next states of the robot, and (ax, ay) is the velocity

input. The GP prediction is used to determine the transitions, (xi, yi, ax) → xi+1

and (xi, yi, ay) → yi+1 where (xi+1, yi+1) is the predicted next state with variances

σ2
x and σ2

y respectively.

Start State

Goal State

Figure 5.2: The environment setup for a multi-fidelity simulator chain. The grid-
world simulator (Σ1) has two walls whereas the Gazebo simulator (Σ2) has four walls
as shown.
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Figure 5.3 shows the switching between the simulators for one run of the GP-

VI-MFRL algorithm on the simulators shown in Figure 5.2. Unlike unidirectional

transfer learning algorithms, GP-VI-MFRL agent switches back-and-forth in simu-

lators collecting most of the samples in the first simulator initially. Eventually, the

robot starts to collect more samples in the higher fidelity simulator. This is the case

when the algorithm is near convergence and has accurate estimates for transitions

in lower fidelity simulator as well. Next, we study the effect of the parameters used

in GP-VI-MFRL and the fidelity of the simulators on the number of samples until

convergence.
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Figure 5.3: The figure represents the samples collected at each level of the simulator
for a 21×21 grid in a grid-world and Gazebo environments. σsumth and σth were kept
0.4 and 0.1 respectively.

5.4.1.1 Variance in learned transition function

To demonstrate how the variance of the predicted transition function varies

from the beginning of the experiment to convergence, we plot “heatmaps” of the

posterior variance for Gazebo environment transitions. The GP prediction for a
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Figure 5.4: Variance plot for Gazebo simulator after transition function initializa-
tion and after the algorithm has converged. Colored regions show the respective√
σ2
x + σ2

y values for the optimal action returned by the planner in each state.

state-action pair gives the variance, σ2
x and σ2

y, respectively for the predicted state.

After convergence (Figure 5.4), the variance along the optimal (i.e., likely) path is

low whereas the variance for states unlikely to be on the optimal path from start to

goal remains high since those states are explored less often in Gazebo environment.

Hence utilizing the experience from lower fidelity simulator results in more directed

exploration of the higher fidelity simulators.

5.4.1.2 Effect of fidelity on the number of samples

Next, we study the effect of varying the fidelity on the total number of samples

and the fraction of the samples collected in the Gazebo simulator. Our hypothesis is

that as the fidelity of the first simulator decreases, the agent will need more samples

in Gazebo. In order to validate this hypothesis, we varied the noise added to simulate

the transitions in the grid-world. The transition model in Gazebo remains the same.
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between the two plots) than samples col-
lected in grid-world.

Figure 5.5: As we lower the fidelity of grid-world by adding more noise in grid-world
transitions, the agent tends to spend more time in Gazebo. The plots show the
average and min-max error bars of 5 trials.

The total number of samples collected increases as we increase the noise in grid-world

(Figure 5.5(b)). As we increase the noise in grid-world, the agent learns less accurate

transition function leading to more samples collected in Gazebo. Not only does the

agent need more samples, the ratio of the samples collected in Gazebo to the total

number of samples also increases (Figure 5.5(a)).

5.4.1.3 Effect of the confidence parameters

GP-VI-MFRL algorithm uses two confidence parameters, σth and σsumth , which

quantify the variances in the transition function to switch to a lower and higher

simulator, respectively. Figure 5.6 shows the effect of varying the two parameters

on the ratio of the number of samples collected in Gazebo simulator to the total

number of samples. Smaller σth and σsumth results in the agent collecting more samples

134



in the lower fidelity simulator and may result in slow convergence. Depending on the

user preference, one can choose the values of confidence bounds from the Figure 5.6.

0.1 0.2 0.3 0.4 0.5

th

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
a
ti
o

th

sum
=.50

th

sum
=.60

th

sum
=.70

th

sum
=.75

Figure 5.6: The ratio of samples collected in Gazebo to the total samples as a
function of confidence parameter σth for four different values of σsumth . The figure
shows the average and standard deviation of 5 trials.

5.4.1.4 Comparison with RMax MFRL

Figure 5.7 compares GP-VI-MFRL with three other baseline algorithms,

1. RMax algorithm running only in Gazebo without grid-world (RMax),

2. GP-MFRL algorithm only in Gazebo with no grid-world present (GP-VI)

and

3. Original MFRL algorithm [41] (RMax-MFRL).

Specifically, we plot the value of the initial state, V (s0), as a function of the

number of samples in Gazebo, i.e., Σ2. We observe that GP-VI-MFRL uses fewer

samples in Gazebo to converge to the optimal value than the other methods.

GP-VI-MFRL performs a GP update at each time step. GP update grows
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Figure 5.7: Comparison of GP-VI-MFRL with three baseline strategies. The Y -axis
shows the value function for the initial state (V (s0)) in Gazebo as a function of the
number of samples collected in Gazebo. Value function estimation for GP-VI-MFRL
converges fastest.

cubically with number of training samples which will make GP-VI-MFRL computa-

tionally infeasible beyond a certain number of training samples. However this issue

can be addressed by using appropriate active learning strategies which select a sub-

set of samples to retain thereby keeping the size of the dataset constant. The total

computational time for GP-VI-MFRL to perform GP updates on collected samples

accounts for approximately 10 minutes.

5.4.2 GPQ-MFRL Algorithm

We use three environments (Figure 5.8) to demonstrate the GPQ-MFRL algo-

rithm. The task for the robot is to navigate through a given environment without

crashing into the obstacles, assuming the robot has no prior information about the

environments. There is no goal state.

The robot has a laser sensor that gives distances from obstacles along seven
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Figure 5.8: We use the Python-based simulator Pygame as Σ1, Gazebo as Σ2 and
Pioneer P3-DX robot in real-world as Σ3.

equally spaced directions. The angle between two consecutive measurement direc-

tions was set to be π
8

radians. The actual robot has a Hokuyo laser sensor that

operates in the same configuration. Distance measurements along the seven direc-

tions serve as the state in the environments. Therefore we have a seven-dimensional

continuous state space: S ∈ (0, 5]7. The linear speed of the robot was held constant

at 0.2 m/sec. The robot can choose its angular velocity from nineteen possible op-

tions: {−π
9
,−π

8
, . . . , π

9
}. The reward in each state was set to be the sum of laser

readings from seven directions except when the robot hits the obstacle. In case of a

collision, it gets a reward of -50.

We train the GP regression, Q(s, a) : R8 → R. Hyperparameters of the

squared-exponential kernel were calculated off-line by minimizing the negative log

marginal likelihood of 2000 training points which were collected by letting the robot

run in the real world directly. The parameter values for experiments in this section

are given in Table 5.1.
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Table 5.1: Parameters used in GPQ-MFRL

Description Type Value
σ 102.74

Hyperparameters
l [2.1, 5.1, 14, 6.2, 15, 2, 2, 1]

ω2 20

σsumth 60
Confidence parameters

σth 15
Algorithm L 5

5.4.2.1 Average Cumulative Reward in Real-World

In Figure 5.9, we compare GPQ-MFRL algorithm with three other baseline

strategies by plotting the average cumulative reward collected by the robot as a

function of samples collected in the real world. Three baseline strategies are,

1. Directly collecting samples in real world without the simulators (Direct),

2. Collect hundred samples in one simulator and transfer the policy to the Pio-

neer robot with no further learning in the real world (Frozen Policy) and

3. Collect hundred samples in one simulator and transfer the policy to the robot

while continuing to learn in the real world (Transferred Policy).

We observe that the Direct policy performs worst in the beginning. It can be

attributed to the fact that the robot started to learn from scratch. The Frozen

policy starts better since it has already learned a policy in the simulator. However,

it tends to a lower value of average cumulative reward which suggests that the

optimal policy learned in the simulator is not the optimal policy in the real world.

Although, the Transferred policy seems to perform better at the beginning than the

Frozen policy, it is difficult to dictate if it will always be the case. The Direct policy
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has a large performance variance in the beginning. GPQ-MFRL outperforms the

other strategies right from the beginning. We attribute this to the fact that the

GPQ-MFRL collects more samples from the simulator in the beginning and hence

starts better right from the start. If one would allow the Transferred Policy and the

Frozen Policy to collect more samples from the simulator they might have performed

the same as the GPQ-MFRL. However, deciding how many samples one should allow

is a non-trivial task and problem-specific. GPQ-MFRL can decide the number of

samples in each simulator by itself without the need for human intervention.

Figure 5.9: Average cumulative reward collected by the Pioneer robot in real-world
environment as a function of the samples collected in the real world. The plot shows
the average and standard deviation of 5 trials.

5.4.2.2 Policy Variation with Time

Figure 5.10 shows the absolute percentage change in the sum of the value func-

tions with respect to last estimated sum of value functions and average predictive

variance for states {1, 3, 5}7 in all three simulators. Observe that initially most of

the samples are collected in the simulator, whereas over time the samples are col-
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(a) Sum of absolute change in value func-
tions

(b) Average variances in value function esti-
mations

Figure 5.10: Yellow, green and white regions correspond to the samples collected in
the Pygame, Gazebo and real-world environments respectively. Plots are for state
set {1, 3, 5}7.

lected mostly in the real-world. The simulators help the robot to make its value

estimates converge quickly as observed by a sharp dip in the first white region. Note

that GP updates for ith simulator (Q̂i) are made only when the robot is running in

ith simulator.

5.4.2.3 Higher-dimensional spaces and sparse GPs

One of the limitations of GPs is their computational complexity which grows

cubically with the number of training samples. However, we use sparse approx-

imations to address this limitation. We also increase the dimensionality of the

state-space to verify if the proposed algorithms scale to higher dimensions. Specif-

ically, we increase the number of laser readings to 180 equally spaced directions.

Therefore, GP regression is used to estimate Q(s, a) : R181 → R.
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There are several methods for sparse GP approximations. We use the tech-

nique from [192]that finds a possibly smaller set of points (called inducing points)

which fit the data best. The GP inference is conditioned on the smaller set of induc-

ing points rather than the full set of training samples. Finding inducing points is

closely related to finding low-rank approximations of the full GP covariance matrix.

The inducing points may or may not belong to the actual training data.

We did several experiments with GPQ-MFRL to study the performance of the

algorithm for number of inducing points. We use Pyro [193] to implement sparse

GPs. Figure 5.11 shows the average cumulative reward collected by the robot in the

Gazebo environment when GP inference is done with the number of inducing points

set to 5%, 15%, 25% of the total training samples and using all the training samples.

We observe a significant increase in cumulative reward collected going from 5% to

15% but not much from 15% to 25% (y-axes in Figure 5.11). A plot of the wall

clock times to perform GP inference in Pygame is shown in Figure 5.12. The wall

time to perform GP inference in Gazebo exhibits a similar trend which we omit

for the sake of brevity. The wall clock time includes the time to perform all GP

operations including the time to update the hyperparameters as well as finding the

inducing points of both GPs. We update these after every ten new training samples

in an individual simulator. The experiments were run on a machine running Ubuntu

16.04 with Intel(R) Core(TM) i7-5600U CPU @ 2.60 GHz, Intel HD Graphics 5500

and 16 GB RAM.

The results suggests that a small fraction of inducing points are sufficient and

yields diminishing marginal gains in the performance when the number of inducing
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(a) Inducing points set to 5% of the training
sample size

(b) Inducing points set to 15% of the train-
ing sample size

(c) Inducing points set to 25% of the train-
ing sample size

(d) Full GP inference

Figure 5.11: Average cumulative reward collected by the robot in Gazebo environ-
ment as a function of the samples collected in Gazebo for different percentage of
inducing points. The plots show the average and standard deviation of 5 trials.
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Figure 5.12: The wall clock time required to perform all GP related operations
in Pygame for various degrees of GP sparse approximations in Pygame. The plot
shows the mean time over five trials for each case.

points increases. Doing inference on inducing points with 25% of the training data

performs almost as good as doing full GP regression, in terms of the reward collected

by the learned policy (Figure 5.11(d)) but is significantly faster.

5.4.3 Comparison between GP-VI-MFRL and GPQ-MFRL

We compare GP-VI-MFRL and GPQ-MFRL using average cumulative reward

collected by the robot in Gazebo as the metric in the obstacle avoidance task. To

do this comparison, we use full GP regression to perform the inference. The laser

obtains distance measurements from seven equally spaced directions and we train

seven independent GPs to learn the transition function in GP-VI-MFRL (one GP

corresponding to each direction). A performance comparison is shown in Figure 5.13.

Though both algorithms seem to perform the same asymptotically, GP-VI-MFRL

performs slightly better than GPQ-MFRL in the beginning.
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Figure 5.13: Average cumulative reward collected by the robot in Gazebo envi-
ronment as a function of the samples collected in Gazebo for GP-VI-MFRL and
GP-Q-MFRL. The plots show the average and standard deviation of 10 trials.

5.5 Conclusions

In this chapter, we present GP-based MFRL algorithms that leverage multi-

ple simulators with varying fidelity and costs to learn a policy in the real world.

We demonstrated empirically that the GP-based MFRL algorithms find the opti-

mal policies using fewer samples than the baseline algorithms, including the original

MFRL algorithm [41]. The computational limitations of sparse GPs can be miti-

gated to an extent by the use of sparse GP approximations. We also provided a

head-to-head comparison between the two algorithms presented here. GP-VI-MFRL

(model-based version) performs better than GPQ-MFRL (model-free version) in the

beginning. This is consistent with the outcomes for traditional RL techniques where

model-based algorithms tend to perform better than model-free ones.
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Chapter 6: Conclusion and Future Work

In this dissertation, we focused on bridging the gap between learning algo-

rithms and their application in the context of robotics. More broadly, the question

that underlines the work reported in this dissertation was: How do we make robots

learn as efficiently as possible with a minimal amount of physical interaction? Using

learning algorithms naively in robotics presents unique challenges and is often not

directly applicable to real-world robotics systems. This dissertation approached the

problem of robot learning along two fronts: extrinsic learning and intrinsic learning.

For both fronts, our goal was to develop algorithms that provably reduce the number

of physical interactions needed by the robots to learn.

While the algorithms we have developed are for specific (albeit canonical)

problems in extrinsic and intrinsic learning, we believe the techniques presented are

of broad applicability. We predominantly used GPs in all problems. There has been

work on sample efficiency in GP regression and classification [194]. However, our

definition of sample complexity is broader than just the actual number of physical

samples and we think of it in terms of the cost of learning samples. In extrinsic

learning, the cost of samples is the travel and measurement time while in intrinsic

learning is time spent on the real robot. It can be something different in other
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robotics applications (e.g., energy consumption, wear-and-tear of the robot hard-

ware, etc.). This dissertation has shown how to exploit the structural properties of

GPs to reduce the cost of learning samples in any learning task with robots.

The majority of the work in extrinsic learning literature focuses on minimizing

only the traveling time for robots to learn an environment. However, in many

scenarios, not only the traveling time but the measurement time to collect the

measurements also contributes significantly to the total robot operating time. For

example, in the case of a robot chemical sensor attached to a measurement probe has

to stop at a location for some time and wait until the probe makes the measurement.

Our algorithms provide guarantees on the total time which is the summation of the

traveling time as well as the measurement time. While there has been plenty of

work on simulator-based RL, there is no standard way of determining when should

the agents should switch the simulators. Our algorithms provide a concrete way

of using the GP variance for determining when should the agents switch between

simulators.

For extrinsic learning, we focused on two versions. In the first version, we

studied the scenarios where we deploy robots to learn an environment in its en-

tirety. This can be crucial in scenarios such as a farmer trying to identify the

farm regions that need fertilizer boost. This is an NP-Hard problem. We mod-

eled the underlying environment using Gaussian Processes (GPs), presented three

polynomial-time approximation algorithms, and provided the theoretical guaran-

tees of their performance. The first algorithm deals with placing a set of stationary

sensors in an environment. The second algorithm called DiskCoverTour plans

146



a tour for a single robot to collect the measurements from the environment. The

third algorithm called k-DiskCoverTour addresses the scenarios if we have mul-

tiple robots operating in the environment and how we distribute the task between

them in a manner that gives us a lower bound on the performance of the slowest

robot. We validated our algorithms using a real-world dataset of organic matter

content on a farm.

In the second version, we are interested in finding the hotspot in a given envi-

ronment. In many practical applications, finding the hotspot quickly is crucial. For

example, we can identify the regions with a high concentration of certain chemicals

in a water body, which can help scientists to study marine life. Here also we use

GPs to model the underlying environment, relax the assumption of GP hyperpa-

rameters being known and study both single-robot as well as multi-robot scenarios.

For the single-robot case, we provide two algorithms that vary the GP hyperpa-

rameters in a computationally tractable way and evaluate their performance on a

real-world dataset of organic matter content in a farm. However, if the environment

is large, one robot may not be sufficient to find the hotspot. Hence, we also study a

multi-robot decentralized approach that uses Voronoi partitioning for planning and

distributing the exploration task between robots. Our Voronoi partitioning makes

use of the Upper Confidence Bound (UCB) values of the learned GP model. This

makes sure that the robots get ample opportunity to explore the regions of higher

values. Further, we compare various planners on top of the Voronoi partitioning.

Some of the planners are a direct extension of the planners used in the single-robot

case as well as some heuristic planners. We also provide a direct comparison between
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using Voronoi partition and no partitioning.

While considering the problem of environmental monitoring, robot navigation

is a crucial component to consider. How do we autonomously make robots navigate

in unknown environments? Hence, our last chapter focused on learning optimal

behaviors for mobile robots in unknown environments autonomously. We used an

RL-based approach. RL has shown great promise in the context of robotics but

remains limited to simulations mainly. We do real-world experiments where our

task was to navigate in an indoor environment autonomously. We combined GPs

with the Multi-Fidelity Reinforcement Learning (MFRL) framework and provide

both model-based and model-free RL algorithms. These algorithms achieve up to

40% and 60% reduction in the real-world samples required respectively.

This dissertation sets the stage for some immediate and long-term future work.

We dealt only with stationary environments here that do not evolve with time. How-

ever, in many practical applications that is not the case and the underlying envi-

ronments can evolve quite a bit during the operation time. For example, a chemical

spill in a water body can evolve as the robots are collecting measurements [29,31]. It

would be interesting to extend and study our algorithms in such spatiotemporal en-

vironments. Leonard et al. [195] presented a formalization of the adaptive sampling

problem using non-dimensional numbers for non-stationary fields. Specifically, the

non-dimensional numbers included the size, shape, normalized robot speed, sensor

noise, and sampling time interval. Investigating this in the context of the problems

studied in this dissertation in extrinsic learning is an interesting direction for future

work. Exploring other kernels such as signature kernels would be one direct exten-

148



sion [196]. Although we designed our planners keeping only stationary environments

in mind, there is work on Voronoi partitioning for spatio-temporal fields [197, 198].

It would be interesting to extend our planners to such cases.

Deep learning-based approaches have been found to be very promising re-

cently. While the bulk of the work has been on intrinsic learning [4, 13], there is

potential for deep learning methods to be useful in extrinsic learning as well. For ex-

ample, Rangwala et al. presented a Deep Learning-based pasture prediction model

(DeepPaSTL) for predicting a spatiotemporal field in the context of precision agri-

culture [199]. DeepPaSTL can learn with new data accumulated over months, the

model has an inherent capacity to effectively adapt to varying climatic and envi-

ronmental conditions. Our planners can be integrated with such models and is a

promising direction for future work.
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alta. Autonomous science during large-scale robotic survey. Journal of Field
Robotics, 28(4):542–564, 2011.

[137] Stephanie Kemna, Oliver Kroemer, and Gaurav S Sukhatme. Pilot surveys
for adaptive informative sampling. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6417–6424. IEEE, 2018.

[138] Sahil Garg and Nora Ayanian. Persistent monitoring of stochastic spatio-
temporal phenomena with a small team of robots. arXiv preprint
arXiv:1804.10544, 2018.

[139] Keyu Nie, Zezhong Zhang, Ted Tao Yuan, Rong Song, and Pauline Berry
Burke. Efficient multivariate bandit algorithm with path planning, 2020.

[140] P. B. Reverdy, V. Srivastava, and N. E. Leonard. Modeling human decision
making in generalized gaussian multiarmed bandits. Proceedings of the IEEE,
102(4):544–571, 2014.

[141] Chenxi Xiao and Juan Wachs. Nonmyopic informative path planning based on
global kriging variance minimization. IEEE Robotics and Automation Letters,
2022.

[142] Lorenzo Pisani. Multi-objective pareto monte carlo tree search for informative
path planning of planetary rovers. 2021.
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der, and Barnabás Póczos. Gaussian process bandit optimisation with multi-
fidelity evaluations. In Advances in Neural Information Processing Systems,
pages 992–1000, 2016.

[185] Matthew E Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-
task mappings for temporal difference learning. Journal of Machine Learning
Research, 8(Sep):2125–2167, 2007.

[186] Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P Schoellig, An-
dreas Krause, Stefan Schaal, and Sebastian Trimpe. Virtual vs. real: Trad-
ing off simulations and physical experiments in reinforcement learning with
bayesian optimization. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 1557–1563. IEEE, 2017.

[187] Philipp Hennig and Christian J Schuler. Entropy search for information-
efficient global optimization. Journal of Machine Learning Research,
13(Jun):1809–1837, 2012.

[188] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 23–30. IEEE, 2017.

[189] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function ap-
proximation. In Advances in neural information processing systems, pages
1057–1063, 2000.

166



[190] Tobias Jung and Peter Stone. Gaussian processes for sample efficient rein-
forcement learning with rmax-like exploration. In Proceedings of the European
Conference on Machine Learning, September 2010.

[191] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine Learn-
ing Research, 3(Oct):213–231, 2002.
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