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This dissertation addresses the asymptotic theory behind parametric estimation in

spatial regression models. In spatial statistics, there are two prominent types of

asymptotic frameworks: increasing domain asymptotics and infill asymptotics. The

former assumes that spatial data are observed over a region that increases with the

sample size, whereas the latter assumes the observations become increasingly dense

in a bounded domain. It is well understood that both frameworks lead to drasti-

cally different behavior of classical statistical estimators. Under increasing domain

asymptotics, we use recently established limit theorems for random fields to prove

consistency and asymptotic normality of estimators in a nonlinear regression model.

The theory presented here hinges on a crucial assumption that the covariates and

error are independent of one another. However, when covariates also exhibit spatial

variation, this assumption of independence becomes questionable. This possibility

of spatial correlation between the covariates and error is known as spatial confound-

ing. We examine several possible parametric models of spatial confounding and



under increasing domain asymptotics, we determine that the degree of confound-

ing can be estimated with good precision through maximum likelihood methods.

Finally, under infill asymptotics, we focus our attention on linear regression mod-

els in a Gaussian setting. Existing literature in infill asymptotics tends to ignore

estimation of the mean and emphasizes estimation of variance components in the

error. For estimation of the mean, the sample path properties of the mean relative

to the error play an important role. We show that when the sample paths of the

covariates are sufficiently rough, it is possible to obtain consistent, asymptotically

normal estimates of regression parameters through maximum likelihood estimation.
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Chapter 1 Introduction

Spatial statistics is concerned with modeling data observed over a spatial do-

main D, typically a subset of d-dimensional Euclidean space Rd. In most appli-

cations, the spatial index set D is a subset of R2, but the dimension can be any

integer d ≥ 1. The case d = 1 is the familiar time series and stochastic process

setting. Extending the theory from one-dimension to multidimensional index sets

presents difficulties because unlike time, space does not have a natural notion of

order. However, many concepts and techniques in spatial statistics borrow from

the time series literature and prove to be useful. More information regarding the

historical applications and development of spatial statistics can be found in Cressie

(1993) and Gelfand et al. (2010).

1.1 Spatial regression models

The primary model of interest in this thesis is the spatial regression model,

also known as universal kriging in geostatistics (Cressie (1993)),

y(s) = m(s) + e(s) (1.1)

1



where m(s) represents an unknown trend or mean (large scale variation) and e(s)

represents a centered error term (small scale variation). When a set of covariates

{xi(s)}mi=1 is also observed, a common approach is to parametrically represent the

trend as a function f(x1(s), · · · , xm(s);β) where β ∈ Rp is a vector of real valued

regression parameters. A typical choice of trend function is the linear regression

model f(x1(s), · · · , xp−1(s);β) = β0 +

p−1∑
i=1

βixi(s). The covariates can either be

modelled as deterministic or random. We adopt the latter approach and interpret

the trend as a conditional expectation on the observed covariates. In parametric

models, we assume that the errors are spatially correlated through a parametric

covariance function C(s, t;θ). The overarching theme of this work is the joint

estimation of the unknown parameters β and θ. We consider the behavior of these

estimators under different asymptotic frameworks.

1.2 Spatial confounding

In the regression model (1.1), it is customary to assume independence of the

mean and error. However, since the mean and error vary spatially over the same

domain, the possibility of correlation arises. This problem has been discussed ex-

tensively in the econometrics literature and is referred to as endogeneity (Hayashi

(2000)). However, this is a relatively recent topic in the spatial statistics literature.

Clayton et al. (1993) are generally cited as the first to discuss this problem in a

statistical setting, and were the first to coin the term, spatial confounding. In the

case of a Gaussian setting, with a linear mean, one may argue that this is exclusively

2



a stochastic regression problem, and cannot occur under classical i.i.d. assumptions.

As an example, consider the following simple linear regression model,

yi = α + βxi + ei, ei
i.i.d∼ N(0, σ2)

where xi
i.i.d∼ N(0, σ2

x) represents an observed covariate and ei represents an unob-

served error. Assume that xi and ei are confounded in the sense that Cov(xi, ei) =

ρσxσe. Then using properties of the Gaussian distribution, ei−
ρσe

σx

xi is independent

of xi. Letting ϵi = ei −
ρσe

σx

xi, we can re-parametrize our original model as,

yi = α + γxi + ϵi, ϵi ∼ N(0, σ2
e(1− ρ2))

where γ = β +
ρσe

σx

. Under this new parametrization, we have effectively removed

the confounding in our original model, since the regression slope and correlation

parameter are not separately identifiable, but γ is. Since Clayton’s article, more

attention has been brought to this problem and various methods of mitigating the

effects have been proposed (Hodges and Reich (2010), Hodges et al. (2006), Hughes

and Haran (2013), Hanks (2015)). More recently, Paciorek (2010) and Page et al.

(2017) showed that confounding can lead to bias in classical least squares estima-

tors in the linear regression model, assuming a known covariance structure of e(s).

We generalize the results by these authors and consider spatial confounding with

nonlinear trends and unknown covariance parameters of e(s).

3



1.3 Outline of thesis

In Chapter 2, we present some relevant background probability theory. In par-

ticular, we highlight concepts pertaining to asymptotic theory in spatial statistics,

such as mixing and microergodicity. We review two prominent asymptotic frame-

works in spatial statistics: increasing domain asymptotics and infill asymptotics.

Chapter 3 explores nonlinear regression models under increasing domain asymp-

totics. The novel contribution of this chapter is to bridge a gap between spatial

econometrics and statistics by unifying notable results in these respective fields.

We use recently developed spatial limit theorems in econometrics to give a thorough

theoretical justification of the use of well known estimators in spatial statistics. This

is accompanied by a simulation study and real data analysis in Chapter 4.

In Chapter 5, we discuss confounding in nonlinear spatial regression models

under increasing domain asymptotics. In this chapter, we give a survey of various

possible models of confounding and address identifiability concerns with these mod-

els. We then perform a numerical study of these models in Chapter 6, concluding

with an analysis on real data.

Chapter 7 discusses linear regression models under infill asymptotics. Current

literature tends to emphasize estimation of the error covariance structure and ignores

inference on the mean. The main contribution of this chapter are results concerning

the identifiability and estimation of the regression parameters. This is followed by

a simulation study in Chapter 8.

In Chapter 9, we give a summary of our contributions and discuss possible

4



directions for future research. This includes a brief introduction to a hybrid asymp-

totic framework at the intersection of the two frameworks previously mentioned.

All computations and simulations were performed using R software (R Core

Team (2020)). In particular, we use the R Studio IDE (RStudio Team (2019)). In

addition, datasets used in this thesis can be found in various R libraries, which we

refer to in the main text of the chapter they appear in.

5



Chapter 2 Modeling with spatial random fields

In this thesis, spatial data are assumed to come from a realization of a random

field over some domain D ⊂ Rd. Formally, let (Ω,F ,P) be a probability space and

D ⊂ Rd a spatial index set. In this work, the index set can either be thought

of as varying continuously or discretely over Rd. The former is generally called

geostatistical data while the latter is called lattice data (Cressie (1993)). Then,

a random field is a measurable mapping y(s, ω) : D × Ω → R. That is, for any

location s0 ∈ D, the quantity y(s0, ω) is a random variable. From a spatial profile

point of view, for any ω0 ∈ Ω, the function y(s, ω0) represents a realization of a

sample path. For notational convenience, we omit the dependence on the element

ω ∈ Ω and just write y(s) to represent the random field. In statistical applications,

we take {s1, .., sn} to be a set of locations in D. Then, y = (y(s1), ..., y(sn))
T is a

random vector that represents the response data at n locations.

2.1 Gaussian random fields

If y(s) is a Gaussian random field with mean function µ(s) = E
[
y(s)

]
, and

covariance function C(s, t) = E
[
(y(s) − µ(s))(y(t) − µ(t))

]
, then the vector of

realizations y = (y(s1), · · · , y(sn))T , follows a multivariate normal distribution y ∼

6



N(µ,Σ), where µi = E
[
µ(si)

]
and {Σ}i,j = C(si, sj), i, j = 1, ...., n. In a regression

context, suppose y represents the response variable and we have set of observed

covariate data x = (x(s1), · · · , x(sn))T . If the response y and covariate x vectors

are jointly Gaussian, that is,Ü
y

x

ê
∼ N

ÜÜ
µy

µx

ê
,

Ü
Σy Σyx

Σxy Σx

êê
(2.1)

then the conditional distribution of y|x is also Gaussian, specifically,

y|x ∼ N(µy +ΣyxΣ
−1
x (x− µx),Σy −ΣyxΣ

−1
x Σxy) (2.2)

This formula is utilized extensively when discussing confounding models in Chapter

5. Particularly, this formula is used to determine the conditional distribution of

e|x, where e,x are respectively the error and covariate vectors at the n locations.

When there is no confounding, their joint distribution in (2.1) has a block diagonal

covariance matrix, indicating independence.

2.2 Stationarity and intrinsic stationarity

If the mean function is constant, µ(s) = µ, and the covariance function C(s, t)

depends only on the difference s− t, then the random field is called stationary. For

a stationary random field, C(h) must be a non-negative definite function on Rd. A

well known result by Bochner (see for example, p. 20-21 of Gelfand et al. (2010))

states that a real-valued function C(h) on Rd is non-negative definite if and only if

7



for some symmetric positive measure Λ with distribution function F on Rd,

C(h) =

∫
Rd

eiω
ThdF (ω) (2.3)

Moreover, if F is absolutely continuous with respect to the Lebesgue measure, then

F has a density f , called the spectral density. If f is integrable over Rd, then the

following inversion formula gives a relationship between f and C,

f(ω) =
1

(2π)d

∫
Rd

e−iωThC(h)dh (2.4)

A less restrictive form of stationarity is intrinsic stationarity. For a constant mean

random field y(s), the variogram is defined as γ(s, t) =
1

2
E
[
(y(s) − y(t))2

]
. If

the variogram depends only on the difference between locations s − t then the

random field is said to be intrinsically stationary. All stationary random fields are

intrinsically stationarity, but the converse is not true (e.g. Brownian motion on R

is intrinsically stationary, but not stationary).

2.2.1 The Matérn class of covariance functions

When the covariance function depends on h only through its Euclidean length

||h||, it is said to be (weakly) isotropic. A popular choice of isotropic covariance

functions comes from the Matérn family,

C(h) = σ2 2
1−ν

Γ(ν)
(θ
√
2ν||h||)νKν(θ

√
2ν||h||), σ > 0, θ > 0, ν > 0 (2.5)
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where Kν(z) is a modified Bessel function of the second kind (Watson (1995)) and

θ > 0 and ν > 0 represent scale and smoothness parameters respectively. The

corresponding family of spectral densities takes the form,

f(ω) = σ2Γ(ν + d
2
)

Γ(ν)π
d
2

(2νθ2)ν

(2νθ2 + ||ω||2)ν+ d
2

(2.6)

Stein (1999), p.12, strongly advocates the use of the Matérn class when modelling

stationary random fields due to its flexibility. The flexibility of this family lies

in the choice of smoothness parameter ν. For example, the exponential family

C(h) = σ2e−θ||h||, can be thought of as a member of the Matérn family when ν = 1/2

and the limiting case ν → ∞ leads to the Gaussian class of covariance functions

C(h) = σ2e−
1
2
θ2||h||2 .

2.3 Multivariate random fields

When dealing with several random fields, it will sometimes be necessary to

model their dependence through a multivariate covariance function. A multivari-

ate random field takes the form y(s) = (y1(s), ..., yp(s))
T , where each component,

yi(s), i = 1, ..., p is a scalar random field. Assuming that y(s) is mean zero and

stationary, the multivariate extension of the covariance function is a p × p matrix

valued function,

C(h) =


C11(h) · · · C1p(h)

...
. . .

...

Cp1(h) · · · Cpp(h)
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where Cij(h) = E
[
yi(s)yj(s+ h)

]
is a scalar cross-covariance function between the

components yi(s) and yj(s), 1 ≤ i, j ≤ p. The corresponding spectral density matrix

is,

f(ω) =


f11(ω) · · · f1p(ω)

...
. . .

...

fp1(ω) · · · fpp(ω)


A result due to Cramér gives a multivariate extension of Bochner’s theorem (see for

example, Gneiting et al. (2010), p. 1176).

Theorem 2.3.1. The matrix function C(h) is the cross covariance function for a

stationary multivariate random random field if and only if the corresponding matrix

of cross spectral densities f(ω) is almost everywhere nonnegative definite.

Gneiting et al. (2010) developed a bivariate version of the Matérn model using

this criterion. This was followed by a multivariate extension to any number of

components by Apanasovich et al. (2012). When discussing possible confounding

models in Chapter 5, we describe the dependence between the error and covariates

using a multivariate random field structure.

2.4 Mixing for random fields

Since we are dealing with dependent spatial data, standard laws of large num-

bers and central limit theorems cannot be applied directly. We use a concept called

mixing, which is a way of controlling the asymptotic dependence in a spatial random

field. Mixing has been well studied in the time series and random process context,
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where there is a notion of order in the index set. Going from R to Rd requires a

little more care, particularly in both the cardinalities and distances between index

sets. Bradley (2005) and Doukhan (1994) give an overview of some results of mixing

in random fields. There are different versions of mixing stated by these authors, so

we focus our attention on α-mixing random fields. Below are definitions related to

α-mixing, one in terms of σ-algebras, and the other in terms of random fields.

Definition 2.4.1. The α-mixing coefficient between σ-algebras F and G is

α(F ,G) := sup(|P(A)P(B)− P(A ∩B)| : A ∈ F , B ∈ G) (2.7)

Definition 2.4.2. For n ∈ N, let Dn = {s1, ..., sn} ⊂ D denote the sampling do-

main. For A ⊂ Dn and B ⊂ Dn, and a random field y(s), let σn(A) := σ(y(si), si ∈

A), the σ-algebra generated by {y(si), si ∈ A}, and similarly for σn(B). The α-

mixing coefficient for the random field y(s) is defined as,

αn(k, l, h) := sup(α(σn(A), σn(B)) : |A| ≤ k, |B| ≤ l, d(A,B) ≥ h) (2.8)

where d(A,B) = inf{||a− b|| : a ∈ A, b ∈ B} is the Euclidean distance between the

sets A,B.

To account for possibly non-nested sampling domains Dn, define the uniform α-

mixing coefficient α(k, l, h) = sup
n

αn(k, l, h). The following bound (Heyde and Hall

(1980), Corollary A.2, p. 278) allows us to control the dependence a random field

between two sets of locations.
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Lemma 2.4.3. Suppose A and B are finite sets in D with |A| = k, |B| = l

and d(A,B) = h. Let X and Y be σn(A) and σn(B) measurable respectively. If

E
[
|X|p

]1/p
= ||X||p < ∞ and E

[
|Y |q

]1/q
= ||Y ||q < ∞ with

1

p
+

1

q
+

1

r
= 1 with

p, q > 1 and r > 0, then,

Cov(X, Y ) ≤ 8(α(k, l, h))1/r||X||p||Y ||q (2.9)

This is helpful in establishing LLNs and CLTs for random fields. Under specific

conditions on the α-mixing coefficient, various LLNs and CLTs have been proved

(see for example, Jenish and Prucha (2009), Bolthausen (1982) and Guyon (1995),

among others). We will explore these results in more depth in Chapter 3.

2.5 Asymptotic frameworks

2.5.1 Increasing domain asymptotics

Suppose the spatial domain D is unbounded and for each n, there is a δ > 0,

independent of n such that ||si − sj|| > δ, si, sj ∈ Dn. This precludes the spatial

locations from becoming too dense as the number of observations grow. This asymp-

totic framework is called increasing domain asymptotics. Under this framework, it

has been shown that under certain regularity conditions, classical estimators of re-

gression and covariance parameters satisfy some sort of consistency and asymptotic

normality result (Mardia and Marshall (1984), Cressie and Lahiri (1996), Crujeiras

and van Keilegom (2010)). This asymptotic framework is more compatible with the
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concept of mixing since it is natural to assume the dependence between observations

decays as the distance between their respective locations grows.

2.5.2 Infill asymptotics

Suppose now that the spatial domain D is compact and the sampling locations

become increasingly dense in D with the number of observations. This asymptotic

framework is referred to as infill asymptotics. Unlike in increasing domain asymp-

totics, typical estimators do not behave as expected. In particular, it has been

shown (Ying (1991), Chen et al. (2000), Zhang (2004), Du et al. (2009), Wang and

Loh (2011), Kaufman and Shaby (2013), Tang et al. (2021)) that for a zero mean

Gaussian random field with Matérn covariance, not all covariance parameters can

be consistently estimated, but only certain functions of them, called the microer-

godic parameters (Stein (1999)). Before we define this term, we review the measure

theoretic concepts of equivalence and mutual singularity.

Definition 2.5.1. Let P1 and P2 be two probability measures on a measurable space

(Ω,F). Then P1 is absolutely continuous with respect to P2 if for all A ∈ F , P2(A) =

0 implies P1(A) = 0. P1 and P2 are said to be equivalent, denoted as P1 ≡ P2, if

they are absolutely continuous with respect to each other. P1 and P2 are said to be

mutually singular, denoted as P1 ⊥ P2, if there is some A ∈ F such that P1(A) = 1

and P2(A) = 0.

In particular, for two equivalent measures P1 and P2, it would be impossible to

determine with certainty which measure is correct based on observing ω ∈ Ω. In
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general, two probability measures may be neither equivalent nor mutually singular.

However, for Gaussian probability measures, there is a dichotomy: they are either

equivalent or mutually singular (Feldman (1958), Hájek (1958)). We describe the

approach by Hájek (1958), who used a form of information theoretic divergence in

determining the equivalence or mutual singularity of two Gaussian measures P1,P2.

Let Dn = {s1, .., sn} be a nested sequence of locations whose countable union is

dense in D and y = (y(s1), ..., y(sn))
T be the corresponding realization of the ran-

dom field y(s). Recall from Section 2.1 that y follows a multivariate normal dis-

tribution under P1,P2. Denote by pn, the likelihood ratio of P2 to P1 based on the

observations y.

Definition 2.5.2. The entropy distance between P2 and P1 is defined as,

Jn = E2[log pn]− E1[log pn] (2.10)

Here Ei, i = 1, 2 denotes the expectation of log pn under Pi, i = 1, 2.

The term entropy distance has other names in literature, including “symmetrized

Kullback-Liebler divergence” and “Jeffreys divergence” (Hájek (1958)). It is known

that Jn is monotonically increasing (Stein (1999), p. 116) and thus, Jn either tends

to a finite limit or ∞. The condition lim
n→∞

Jn = ∞ is necessary for P1 ⊥ P2 to hold,

even in the non-Gaussian case. For Gaussian measures, the condition lim
n→∞

Jn = ∞

is sufficient for P1 ⊥ P2 to hold as well. We now formally state this result by Hájek,

of which a translated version can be found in Theorem 1, p. 77, of Ibragimov and

Rozanov (1978), also in Theorem 4, p. 117, of Stein (1999).
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Lemma 2.5.3. The Gaussian measures P1 and P2 are either equivalent or mutually

singular. They are mutually singular if and only if lim
n→∞

Jn = ∞.

Various results on the equivalence and singularity of Gaussian measures have

been known for decades by probabilists (Ibragimov and Rozanov (1978), Skorokhod

and Yadrenko (1973)), with Lemma 2.5.3 being an example. It was only until

relatively recently that these results began to permeate into the statistics literature

(Stein (1988)). A literature review of these results can be found in Chapter 7. We

now are ready to define the concept of microergodicity, which in statistical terms,

is a form of identifiability.

Definition 2.5.4. Let {Pθ,θ ∈ Θ} be a family of measures on a measurable space

(Ω,F). Then a function h(θ) is microergodic if for any two θ1,θ2 ∈ Θ, h(θ1) ̸=

h(θ2) implies that Pθ1 ⊥ Pθ2. We say that h(θ) is non-microergodic if h(θ1) ̸= h(θ2)

implies that Pθ1 ≡ Pθ2

Zhang (2004), p. 252, shows that a consistent estimator of h(θ) cannot exist in

the non-microergodic case. We state this formally as a theorem below. Note this

theorem holds for any probability measures, not necessarily Gaussian.

Theorem 2.5.5. Let {Pθ,θ ∈ Θ} be a family of probability measures. If h(θ) is

non-microergodic, then h(θ) cannot be consistently estimated.

Appendix: Gaussian sample path behavior

In this appendix, we give a few background results on Gaussian sample path

behavior. As we show in Chapter 7, the microergodicity of regression parameters
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depends on properties of the covariate sample paths. The behavior of the sample

paths is conveniently determined by properties of the covariance function. Adler

(1981) (Theorem 3.4.1 and its Corollary, p. 61-62) presents results on the sample

path continuity of a Gaussian field over a compact domain D ⊂ Rd.

Theorem 2.5.6. Let {e(s), s ∈ D} be a zero-mean, Gaussian random field with

continuous covariance function. If for some 0 < C < ∞ and some ϵ > 0,

E
[
(e(s)− e(t))2

]
≤ C

| log(||s− t||)|1+ϵ

for all s, t ∈ D, then e(s) has continuous sample paths over D almost surely.

Corollary 2.5.7. Let {e(s), s ∈ D} be a zero-mean, stationary Gaussian random

field with continuous covariance function C(s). If for some 0 < C < ∞ and some

ϵ > 0,

C(0)− C(s) ≤ C

| log(||s||)|1+ϵ
, ∀s ∈ D

then e(s) has continuous sample paths over D almost surely.

Abrahamsen (1997), p. 20, conjectures that any Gaussian random field with a

continuous covariance function satisfies the above inequalities and thus, all such

random fields possess continuous sample paths almost surely. For the Matérn case,

the following result (see Theorem 3.4.3 of Adler (1981)) implies this conjecture.

Theorem 2.5.8. Let {e(s), s ∈ D} be a zero-mean, stationary Gaussian random

field with spectral density f(ω). Then e(s) has continuous sample paths on D almost
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surely if for some α > 0,

∫
Rd

[log(1 + ||ω||)]1+α f(ω)dω < ∞

We apply this result to the case where e(s) has Matérn spectral density defined in

(2.6).

Proposition 2.5.1. Let {e(s), s ∈ D} be a zero-mean, stationary Gaussian random

field with Matérn covariance. Then the condition of Theorem 2.5.8 is satisfied and

thus, e(s) has continuous sample paths on D almost surely.

Proof. Due to isotropy and after converting to spherical coordinates, it sufficient to

show that, ∫ ∞

0

[log(1 + r)]1+α

(1 + r2)ν+
d
2

rd−1dr < ∞

Splitting the integral over [0, 1] and [1,∞), we have,

∫ ∞

0

[log(1 + r)]1+α

(1 + r2)ν+
d
2

rd−1dr =

∫ 1

0

[log(1 + r)]1+α

(1 + r2)ν+
d
2

rd−1dr +

∫ ∞

1

[log(1 + r)]1+α

(1 + r2)ν+
d
2

rd−1dr

The first integral is easily seen to be convergent for α, ν > 0 and d ≥ 1. For the

second,

∫ ∞

1

[log(1 + r)]1+α

(1 + r2)ν+
d
2

rd−1dr =

∫ ∞

1

[log(1 + r)]1+α

r2ν+d(1 + 1/r2)ν+
d
2

rd−1dr

≤
∫ ∞

1

[log(1 + r)]1+α

r2ν+1
dr
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since 1 + 1/r2 ≥ 1 on [1,∞). Since lim
r→∞

[log(1 + r)]1+α

rν
= 0 for any α, ν > 0, there

exists an M > 0 so that,

∫ ∞

1

[log(1 + r)]1+α

r2ν+1
dr ≤ M

∫ ∞

1

1

rν+1
dr

The above integral converges for ν > 0.

Since e(s) has continuous sample paths on D, the notion of the integral

∫
D

e(s)ds

is well defined and exists almost surely.

Smoothness plays a major factor in the microergodicity of regression param-

eters. The next few results involve the classes of functions W ℓ
2(D), called Sobolev

spaces. Informally, functions in this class are square integrable with square in-

tegrable derivatives up to order ℓ. First, let α = (α1, ..., αN) be an N -tuple of

nonnegative integers and denote |α| =
N∑
i=1

αi. Next, let Dαf(x) be the set of all

|α|th order partial derivatives of f . Finally, let C∞(D) denote the space of infinitely

differentiable functions with supports contained in D. There are two slightly dif-

ferent definitions of W ℓ
2(D) depending on whether ℓ is an integer or fractional. We

first give the definition for integer order ℓ.

Definition 2.5.9. For ℓ ∈ N, the Sobolev space W ℓ
2(D) of integer order ℓ is defined

as the closure of C∞(D) relative to the norm,

||f ||2W ℓ
2 (D) =

∫
D

|f(x)|2dx+
∑
|α|=ℓ

∫
D

|Dαf(x)|2dx

Next, we give the definition for fractional order ℓ.
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Definition 2.5.10. For ℓ > 0, we can write ℓ = k + γ, where k ∈ N is the integer

part of ℓ and γ ∈ (0, 1) is the fractional part. Then the Sobolev space W ℓ
2(D) of

fractional order ℓ is defined as the closure of C∞(D) relative to the norm,

||f ||2W ℓ
2 (D) =

∫
D

|f(x)|2dx+
∑
|α|=k

∫
D

∫
D

|Dαf(x)−Dαf(y)|2

||x− y||2γ+d
dxdy

Scheuerer (2010) gives spectral conditions for the sample paths of a stationary Gaus-

sian random field x(s) to be in W ℓ
2(D) almost surely. For integer order ℓ, Scheuerer

(2010) gives a necessary and sufficient condition (Corollary 1 and Proposition 1).

Theorem 2.5.11. Let {x(s), s ∈ D} be a stationary Gaussian random field with

spectral density f(ω). Then the sample paths of x(s) are in W ℓ
2(D) almost surely if

and only if,

∫
Rd

||ω||2ℓf(ω)dω < ∞ (2.11)

For fractional order ℓ, Scheuerer (2010) gives a sufficient condition (Theorem 3).

Theorem 2.5.12. Let {x(s), s ∈ D} be a stationary Gaussian random field with

spectral density f(ω). If for some α > 0 and ℓ ∈ R+ \ N,

∫
Rd

[log(1 + ||ω||)]1+α ||ω||2ℓf(ω)dω < ∞ (2.12)

then the sample paths of x(s) are in W ℓ
2(D) almost surely.
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Chapter 3 Nonlinear regression under increasing

domain asymptotics

We consider the nonlinear regression model with several covariates,

y(s) = f(x1(s), · · · , xm(s);β) + e(s), s ∈ D ⊂ Rd

where (x1(s), ..., xm(s))
T is a multivariate random field and e(s) is a mean zero

random field. We assume that the form of the function f is known and β ∈ B ⊂ Rp

is a vector of unknown regression parameters. In this chapter, the covariates are

assumed to be independent of the error e(s). We assume D is a countably infinite,

possibly irregularly spaced lattice in Rd, where the minimum euclidean distance

between a given pair of spatial locations is bounded below.

Assumption 3.0.1. There exists a δ > 0 such that ||s − t|| ≥ δ > 0, ∀s, t ∈ D.

Without loss of generality, we can assume that δ = 1.

Assume n > p and let Dn = {s1, ...., sn} ⊂ D be a sequence of finite sets,

not necessarily nested, converging to D. The sequence Dn represents the spatial

locations at which y(s) and xj(s), j = 1, ...,m are observed. In vector notation, we
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write the regression model as y = f(x1, ...,xm;β) + e where,

y = (y(s1), ..., y(sn))
T

xj = (xj(s1), ..., xj(sn))
T , j = 1, ...,m

e = (e(s1), ..., e(sn))
T

and f(x1, ...,xm;β) is a n×1 vector containing f(x1(s), ..., xm(s);β) when evaluated

at each spatial location. Let Σ(θ) be the n × n parametric covariance matrix of

e where θ ∈ Θ ⊂ Rq are unknown covariance parameters. We investigate the

joint estimation of the unknown parameters β and θ using the following multistage

approach.

1. As a provisional estimator of β, use ordinary least squares,

β̂OLS = argmin
β

1

n
(y − f(x1, ...,xm;β))

T (y − f(x1, ...,xm;β)) (3.1)

2. Form the residuals ϵ̂ = y − f(x1, ...,xm; β̂OLS) as a proxy for the true errors.

Then estimate θ using a least squares variogram approach (see Section 3.2 for

a description).

3. Using θ̂ from step 2 as a plug-in estimator, re-estimate β using feasible gen-

eralized least squares (FGLS),

β̂FGLS = argmin
β

1

n
(y − f(x1, ...,xm;β))

TΣ−1(θ̂)(y − f(x1, ...,xm;β)) (3.2)
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Note that this procedure is not novel (see for example, Chapter 3 of Gelfand

et al. (2010) for a discussion) and is well known to statisticians and econometricians.

However, to our knowledge, there is a lack of careful theoretical consideration of the

above steps in the spatial statistics literature. Our novel contribution in this chapter

is to justify the above steps by unifying the results of Jenish and Prucha (2009),

Lahiri et al. (2002) and Crujeiras and van Keilegom (2010). Jenish and Prucha

(2009) establish laws of large numbers for random fields, which allow us to prove

the consistency of the OLS estimator (3.1) in step 1. Crujeiras and van Keilegom

(2010) prove the consistency of least squares variogram estimators in step 2, while

Lahiri et al. (2002) establish the asymptotic normality of these estimators. Finally,

Crujeiras and van Keilegom (2010) prove the consistency and asymptotic normality

of the FGLS estimator in step 3.

This work was inspired by Crujeiras and van Keilegom (2010), who investi-

gate the same estimation procedure. However, we generalize some of their results.

First, we relax their assumption that the sampling points {s1, · · · , sn} are regularly

spaced. Next, these authors only mention in passing, without proof, that the OLS

estimator in step 1 is consistent, citing a result by Gallant and Goebel (1976). How-

ever, this cited result was given in a time series context with autoregressive errors.

The laws of large numbers by Jenish and Prucha (2009) allow us to justify step 1

adequately in a spatial random field setting. Finally, Crujeiras and van Keilegom

(2010) use a fairly restrictive assumption that e(s) is Gaussian, which essentially

gives asymptotic normality of the FGLS estimator for free. We make use of a spa-

tial central limit theorem proved by Jenish and Prucha (2009), which allows us to
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bypass this Gaussian assumption. In the results that follow, the proofs are deferred

to Section 3.5, unless otherwise stated in the main section. The first step is proving

the consistency of the OLS estimator β̂OLS in (3.1) as a function of known θ.

3.1 Consistency of ordinary least squares

3.1.1 Linear trend

First, consider the linear regression model,

f(x1, · · · ,xm;β) = β∗1+

p−1∑
j=1

βjxj = Xβ, X =
[
1 x1 · · · xp−1

]
n×p

(3.3)

where the OLS estimator has a closed form, β̂OLS = (XTX)−1XTy. Letting β0

denote the true regression parameters, we can write,

β̂OLS − β0 =

(
1

n

∑
si

XiX
T
i

)−1
1

n

∑
si

Xiei (3.4)

where Xi = (1, x1(si), · · · , xp−1(si)) is the ith row of the design matrix X, and

ei = e(si), i = 1, ...., n. The following are L1 and L2 laws of large numbers which

can be applied directly to β̂OLS. The L1 LLN can be found in Theorem 3 of Jenish

and Prucha (2009), and so we state it without proof. The L2 LLN is not directly

stated by these authors, but is proved in Section 3.5 as an extension using their

assumptions and arguments. Naturally, the L2 law requires stronger moment and

mixing conditions. Recall the definition of α-mixing coefficient in (2.8).
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Theorem 3.1.1. Suppose that {z(si), si ∈ Dn} is a realization of an α-mixing ran-

dom field with mixing coefficient α(k, l,m) and that the limit
1

n

∑
si

E
[
z(si)

]
exists.

1. (L1 LLN) If for some η > 0,

sup
si∈Dn

E
[
|z(si)|1+η] < ∞ and

∞∑
m=1

md−1α(1, 1,m) < ∞ (3.5)

then
1

n

∑
si

(z(si)− E
[
z(si)

]
)

L1−→ 0.

2. (L2 LLN) If for some η > 0,

sup
si∈Dn

E
[
|z(si)|2+η] < ∞ and

∞∑
m=1

md−1(α(1, 1,m))
η

2+η < ∞ (3.6)

then
1

n

∑
si

(z(si) − E
[
z(si)

]
)

L2−→ 0. In fact, the variance of
1

n

∑
si

(z(si) −

E
[
z(si)

]
) is O( 1

n
).

Since both L1 and L2 convergence imply convergence in probability, we can use

either to show that β̂OLS is consistent. In the following result, we establish the L2

consistency of β̂OLS and the proof can be found in Section 3.5.

Proposition 3.1.1. Assume that the Rp-valued random field (x1(s), ..., xp−1(s), e(s))

is jointly α-mixing with mixing coefficient α(k, l,m) satisfying (3.6) in Theorem

3.1.1. Moreover, assume that the squared covariates {x2
j(s)}

p−1
j=1 and mean zero er-

ror e(s) satisfy the uniform integrability condition in (3.6) of Theorem 3.1.1. Let

A = lim
n→∞

1

n

∑
si

E
[
XiX

T
i

]
be the limiting expectation of the matrix defined in (3.4).
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If A exists and is non-singular, then the OLS estimator in the linear regression

model (3.3) satisfies β̂OLS − β0
L2−→ 0.

Note in Proposition 3.1.1, we do not require intrinsic stationarity of e(s).

3.1.2 Nonlinear trend

For a more general nonlinear trend f(x1, ...,xm;β), we look for an estimator

solving the following least squares criterion,

β̂OLS = argmin
β

1

n

n∑
i=1

q(si;β) (3.7)

where q(si;β) = (y(si) − f(x1(si), · · · , xm(si);β))
2. Generally, for M-estimation

problems such as this, we require a uniform law of large numbers. The following

result on consistency of M-estimators can be found in Theorem 5.7 from van der

Vaart (1998).

Lemma 3.1.2. Let Mn be random functions and let M be a non-random function

of β so that,

1. sup
β∈B

|Mn(β)−M(β)| P−→ 0

2. inf
||β−β0||≥ϵ

M(β) > M(β0), ∀ϵ > 0

Then, any sequence of minimizers, β̂n, such that Mn(β̂n) ≤ Mn(β0)+op(1) converges

in probability to β0.

The second condition is an identifiability condition that ensures the limiting function

M has a unique minimum at β0. The first condition is the one that needs to be
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proved in these types of problems. Our random function in this case is the sequence

of averages Mn(β) =
1

n

n∑
i=1

q(si;β). Jenish and Prucha (2009) give a result that

establishes the uniform convergence of a sequence of spatial random averages like

Mn(β). First, we need to define the concept of stochastic equicontinuity.

Definition 3.1.3. Let {g(si;β), si ∈ Dn,β ∈ B} be a sequence of random functions.

Then {g(si;β)} is stochastically equicontinuous on B if for every ϵ > 0,

lim
δ→0

lim sup
n→∞

1

n

∑
si

P
Ç
sup
β′∈B

sup
||β−β′||<δ

|g(si;β)− g(si;β
′)| > ϵ

å
= 0

We also need the following uniform integrability condition on {g(si;β)},

lim sup
n→∞

1

n

∑
si

E
[
d(si)1(d(si) > k)

]
= 0, as k → ∞ (3.8)

where d(si) = sup
β∈B

|g(si;β)|. We are now ready to state, without proof, the ULLN

result found in Theorem 2 of Jenish and Prucha (2009).

Theorem 3.1.4. Let B be a bounded subset of Euclidean space. Suppose that the

sequence of random function {g(si;β)} are stochastically equicontinuous as in Def-

inition 3.1.3 and satisfy the condition in (3.8). If for any β ∈ B, the {g(si;β)}

satisfy a pointwise law of large numbers in the sense that,

1

n

∑
si

(g(si;β)− E
[
g(si;β)

]
)

P−→ 0 (3.9)
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then, it follows that a uniform law of large numbers holds,

sup
β∈B

∣∣∣∣∣ 1n∑
si

(g(si;β)− E
[
g(si;β)

]
)

∣∣∣∣∣ P−→ 0

We should remark that this type of generic ULLN is not recent and has been

discussed historically in non-spatial settings (Pötscher and Prucha (1994), Newey

(1991)). The concept of stochastic equicontinuity even dates back to at least Billings-

ley (1968), whose book covered the convergence of stochastic processes. In fact, the

only spatial aspect of Theorem 3.1.4 is the pointwise LLN in (3.9). If one can prove

that (3.9) holds, then the ULLN holds. Theorem 3.1.1 can be used to establish

a pointwise LLN for {q(si;β), si ∈ Dn}. Indeed, assume that for each β ∈ B,

the {q(si;β), si ∈ Dn} have uniformly bounded moments as in (3.6) of Theorem

3.1.1. Since we assume that (x1(s), ...., xm(s), e(s)) is jointly α-mixing with mixing

coefficient α(k, l,m), the mixing conditions in (3.6) of Theorem 3.1.1 are preserved

for {q(si;β), si ∈ Dn} since it is a measurable transformation of the covariates and

error. So by Theorem 3.1.1, the pointwise LLN in (3.9) holds for {q(si;β), si ∈ Dn}.

These arguments establish the following uniform LLN for our nonlinear estimator.

Proposition 3.1.2. Let Mn(β) =
1

n

n∑
i=1

q(si;β) denote the sequence of random

functions given in (3.7). If the {q(si;β), si ∈ Dn} satisfy the mixing and moment

conditions of Theorems 3.1.1, and the the stochastic equicontinuity and domination

conditions of 3.1.4, then,

sup
β∈B

|Mn(β)− E
[
Mn(β)

]
| P−→ 0
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Therefore, the first condition of Lemma 3.1.2 is satisfied with the non-random func-

tion being M(β) = lim
n→∞

1

n

∑
si

E
[
q(si;β)

]
. Together with the identifiability condi-

tion of Lemma 3.1.2, this in turn, implies the consistency of the OLS estimator.

Corollary 3.1.5. The OLS estimator β̂OLS = argmin
β

Mn(β) is consistent.

This finishes our discussion of step 1 in the FGLS estimation procedure. The next

step is finding a consistent estimator of the covariance parameters θ.

3.2 Consistency and asymptotic normality of least squares

variogram estimation

In this section, we show under some general conditions that the least squares

variogram estimators in step 2 are consistent and asymptotically normal. In the

previous section, we did not require the error to be intrinsically stationary, but

we impose that condition here. These results stem from the work of Lahiri et al.

(2002), later discussed by Crujeiras and van Keilegom (2010) for nonlinear trends.

Recall from Section 2.2 the definition of the variogram of an intrinsically stationary

random field. A classical non-parametric estimator of the variogram is the empirical

variogram,

γ̂(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

(ϵ̂(si)− ϵ̂(sj))
2 (3.10)

where ϵ̂(si), i = 1, ..., n are elements of the residual vector ϵ̂ = y−f(x1, ...,xp; β̂OLS)

fitted from OLS and N(h) = {(si, sj) : si−sj = h}. Since our data are not assumed
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to be regularly spaced, this estimator needs a slight modification,

γ̂(h) =
1

2|T (h)|
∑

(si,sj)∈T (h)

(ϵ̂(si)− ϵ̂(sj))
2 (3.11)

where T (h) is a neighborhood of h. Cressie (1993) refers to this as a tolerance

region. For instance, we can take our tolerance region to be

T (h) = {(si, sj) : si − sj ∈ B(h, δn), for some δn > 0}, δn → 0 (3.12)

The empirical estimator γ̂(h) generally does not satisfy the non-positive definiteness

property needed. To avoid this issue, it is common to assume a parametric form,

γ(h;θ) and estimate θ using a least squares approach. Let hi, i = 1, ..., K be a

set of K lag-vectors and γ(h;θ) a valid (non-positive definite) parametric family of

variogram functions. Then, the least squares estimator is,

θ̂ = argmin
θ

ℓ(θ)TV (θ)ℓ(θ) (3.13)

where ℓ(θ) = (γ̂(h1) − γ(h1;θ), ...., γ̂(hK) − γ(hK ;θ))
T and V (θ) is a positive

definite weight matrix. The choice of V (θ) determines the asymptotic efficiency of

this class of estimators. There are three common choices for the weight matrix, each

having its own benefits and drawbacks:

1. Ordinary least squares (OLS) where, V (θ) is the K ×K identity matrix.

2. Weighted least squares (WLS) where, V (θ) = diag(w1(θ), · · · , wK(θ)) is a
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diagonal matrix containing non-negative weights.

3. Generalized least squares (GLS) where, V (θ) = Σ−1(θ) and Σ(θ) is the co-

variance matrix of (γ̂(h1), ..., γ̂(hK))
T .

Under certain conditions, Lahiri et al. (2002) show that the GLS estimator is the

optimal choice in the sense that limiting variance is the smallest among all estimators

in the class (3.13). However, this optimality comes at the cost of inverting Σ(θ),

which often does not even have an exact expression. When the number of lag

vectors K equals the dimension of the parameter space, the authors show that all

three have the same asymptotic efficiency. Regardless of the choice of V (θ), it

is shown that the least squares estimator is consistent and asymptotically normal.

Lahiri et al. (2002) give the result for a linear regression model, while Crujeiras and

van Keilegom (2010) extends this to a nonlinear regression model with Gaussian

errors. Both papers assume that the regressors are deterministic functions. Here,

we assume stochastic regressors and remove the Gaussian assumption, imposing

mixing conditions and bounded moments as before. For simplicity, we consider the

ordinary least squares estimator,

θ̂ = argmin
θ

K∑
k=1

(γ̂(hk)− γ(hk;θ))
2 = argmin

θ
Qn(θ) (3.14)

since it is computationally the easiest to work with and still has desirable asymptotic

properties. Note that this can be considered as another M-estimation type problem

like the one in Lemma 3.1.2. First, the following conditions are imposed.
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(C1) (Identifiability of θ) For all ϵ > 0, there exists a µ > 0 such that,

inf
||θ−θ0||≥ϵ

K∑
k=1

(γ(hk;θ)− γ(hk;θ0))
2 > µ

(C2) (Mixing and boundedness of moments of e(s)) The error random field e(s) is

intrinsically stationary, has mean 0 and for some η > 0,

(a) sup
si∈Dn

E [|e2(si)|2+η] < ∞

(b)
∞∑

m=1

md−1α(k, l,m) < ∞, k + l ≤ 4

(c)
∞∑

m=1

md−1(α(1, 1,m))
η

2+η < ∞

(d) α(1,∞,m) = O(m−d−ϵ) for some ϵ > 0

(C3) (Regularity and boundedness of the trend function) Let the parameter space

B for β be compact in Rm. The gradient of the trend function with respect

to β exists and,

E
ñ
max

j=1,..,m
sup
β∈B

∣∣∣∣ ∂

∂βj

f(x1(s), ..., xp(s),β)

∣∣∣∣
ô
< ∞

Moreover, the trend satisfies the following Lipschitz condition,

|f(x1(s), .., xp(s);β1)− f(x1(s), .., xp(s);β2)| ≤ C(s)||β1 − β2||

where C(s) satisfies sup
s

E
[
|C(s)|2

]
< ∞ and is the same for all β.

(C4) (Regularity of the variogram) The variogram γ(h;θ) and its partial derivatives
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∂γ(h;θ)

∂hk

, k = 1, ..., K are uniformly bounded in θ ∈ Θ ⊂ Rq and h ∈ Rd.

(C5) (Rate of convergence of β̂OLS) ||β̂OLS − β0||2 = op(
1√
n
).

(C6) (Size of tolerance region T (h)) For every n, |T (h)| > 0 and |T (h)| = o(n).

Condition (C1) ensures that a unique minimum exists in a neighborhood of the

true θ0. Condition (C2) is borrowed from Jenish and Prucha (2009). Under these

conditions, they state the following CLT (given in Theorem 1 of their paper).

Theorem 3.2.1. Let Dn be a sequence of sampling domains satisfying the increasing

domain property. Let {z(si), si ∈ Dn} be a realization of a zero mean random

field, with mixing coefficient α(k, l,m) satisfying (C2). If lim
n→∞

n−1σ2
n > 0 where

σ2
n =

∑
si,sj∈Dn

Cov(z(si), z(sj)), then,

1√
n

∑
si∈Dn

z(si)
D−→ N(0, lim

n→∞
n−1σ2

n)

Condition (C3) is a regularity condition that is used in the proof of the asymptotic

normality of the LS variogram estimator. It is an analog of condition (C.6) of

Lahiri et al. (2002), who assume a deterministic linear trend. Condition (C4) is a

smoothness condition on the variogram that can be directly verified for the choice of

variogram model (e.g. exponential variogram). If the variogram and its gradient are

continuous in θ and Θ is a compact neighborhood of θ0, then this condition holds.

In the linear regression model, assumption (C5) is satisfied as seen in the proof of

Proposition 3.1.1. In fact, we show in the proof that E[||β̂OLS − β0||2] = O( 1
n
),

which implies (C5).

32



Before stating the consistency result of the variogram estimator, we require

another lemma. First, define the quantity,

γ∗(h) =
1

2|T (h)|
∑

(si,sj)∈T (h)

(e(si)− e(sj))
2 (3.15)

This expression differs from the estimator γ̂(h) where the residuals ϵ̂(si) are replaced

with the true errors e(si). This is an analog of Matheron method of moments

variogram estimator (Cressie (1993)). However, since the errors are not observed,

this is not exactly an estimator, but rather a theoretical tool.

Lemma 3.2.2. Under conditions (C2), (C4) and (C6), γ∗(h)
P−→ γ∗(h;θ0).

The proof can be found in Section 3.5. Additional cardinality arguments needed for

this lemma are supplied in the Appendix. We note that a result like this was proved

in Davis and Borgman (1982), but for stationary, m-dependent Gaussian random

fields on a regular lattice. With the above lemma on hand, the following result on

consistency can be found in Proposition 3.1 of Crujeiras and van Keilegom (2010).

The proof, given in Section 3.5, requires a bit of modification since the authors

assume Gaussian errors as a way of bounding the moments. To relax the Gaussian

assumption, we apply the moment conditions in (C2).

Proposition 3.2.1. Denote θ0 as the true covariance parameter. Under conditions

(C1) - (C6), θ̂
P−→ θ0.

Lahiri et al. (2002) also give asymptotic normality results for θ̂. The following

result can be found in Theorem 3.3 of the aforementioned paper. The proof given
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in Section 3.5 is modified to take into account the nonlinear trend and somewhat

different assumptions used in (C1) - (C6). In addition, we use the spatial CLT

in Theorem 3.2.1, which is slightly different than the CLT given in Lemma A.1 of

Lahiri et al. (2002). The latter assumes stationarity and different mixing conditions.

Proposition 3.2.2. Assume conditions (C1) - (C6) hold. Then for any set of K

lag vectors, hk, k = 1, .., K,

√
n(γ̂(h1)− γ(h1;θ0), · · · , γ̂(hK)− γ(hK ;θ0))

T D−→ N(0,Ω(θ0))

where Ωkℓ(θ0) is lim
n→∞

1

4n

∑
si,sj∈Dn

Covθ0((e(si)− e(si + hk))
2, (e(sj)− e(sj + hℓ))

2).

From Proposition 3.2.2, asymptotic normality of θ̂ is then established in Corollary

3.1 of Lahiri et al. (2002) with a first order Taylor expansion argument, in the same

vein as typical M-estimators. We state this result without proof, because it requires

no modification in our context.

Corollary 3.2.3. Assume conditions (C1) - (C6) hold. Then,

√
n(θ̂ − θ0)

D−→ N(0,B(θ0)
−1Γ(θ0)

TΩ(θ0)Γ(θ0)B(θ0)
−1) (3.16)

where,

1. Γ(θ0) is the K×q Jacobian matrix of the vector (γ(h1;θ), · · · , γ(hK ;θ)) eval-

uated at θ = θ0

2. B(θ0) = Γ(θ0)
TΓ(θ0)
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3. Ω(θ0) is given in Proposition 3.2.2.

Finally, we re-estimate β using the FGLS estimator (3.2) in step 3, with θ̂ serving

as plug-in estimates for the covariance parameters.

3.3 Consistency and asymptotic normality of the FGLS es-

timator

For notational convenience, define f(β) = f(x1, ...,xm;β), but we stress that

f contains the covariate vectors. Note that the estimator can be seen as the solution

to another M -estimation problem,

β̂FGLS = argmin
β

1

n
(y − f(β))TΣ−1(θ̂)−1(y − f(β)) := argmin

β
Un(β) (3.17)

Define ∇f(β) to be the gradient of the trend function f(x1(s), ..., xm(s);β) with

respect to β. Let J(β) =
∂f

∂βT
be the n × m Jacobian matrix of the vector f(β)

with respect to β. In words, the ith row of J(β) is ∇f(β)T evaluated at the location

si, i = 1, ..., n. In addition to (C1) - (C6), we impose the following conditions,

(C7) (Identifiability of β) For all ϵ > 0, there exists a δ > 0 such that, inf
||β−β0||≥ϵ

R(β)

> δ where,

R(β) = lim
n→∞

1

n
(f(β)− f(β0))

TΣ−1(θ0)(f(β)− f(β0))

and the limit exists in probability as a non-stochastic quantity.
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(C8) (Regularity of the inverse covariance matrix, Σ−1(θ)) The limit,

lim
n→∞

sup
θ

∥∥∥∥ ∂

∂θk
Σ−1(θ)

∥∥∥∥ < ∞, k = 1, ..., q

where the norm ||A|| can either be the maximum absolute column sum or row

sum of the matrix A.

(C9) (Existence and invertibility of asymptotic covariance) The limiting asymptotic

covariance matrix lim
n→∞

1

n
J(β0)

TΣ−1(θ0)J(β0) exists in probability and is in-

vertible.

Once again, condition (C7) is an identifiability assumption that ensures the limiting

function is non-stochastic and has a unique minimum. Condition (C8) is a regular-

ity condition on the inverse matrix that is needed to control the error in the first

order Taylor expansion of Σ−1(θ̂). The limit in condition (C9) is the inverse of the

asymptotic variance of β̂FGLS. Assuming mixing conditions and moment bounds

on the covariates as in Theorem 3.1.1, this condition will hold. For example, in

the linear regression case, this matrix has the form
1

n
XTΣ−1(θ0)X. This can be

seen as a weighted version of the law of large numbers involving the covariates. The

extension to the nonlinear case is straightforward since the Jacobian J(β0) is just

a measurable function of the covariates.

The following results on the consistency and asymptotic normality of β̂FGLS

can be found in Crujeiras and van Keilegom (2010), in Proposition 3.2 and Theorem

3.3 respectively. Once again, we note that these authors use the Gaussian assump-
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tion on the errors to establish these results. We avoid imposing this distributional

assumption by using the spatial LLN and CLT of Theorem 3.2.1.

Proposition 3.3.1. Under conditions (C1) - (C8), β̂FGLS
P−→ β0.

Proposition 3.3.2. Under conditions (C1) - (C9),
√
n(β̂FGLS −β0)

D−→ N(0,V −1)

where V = lim
n→∞

1

n
J(β0)

TΣ−1(θ0)J(β0) and the limit exists in probability.

The modified proofs can be found in Section 3.5. Before we proceed to the proofs,

we briefly discuss spatial maximum likelihood estimation as an alternative to FGLS.

3.4 A note on spatial maximum likelihood estimation

If one does assume that the error is a Gaussian random field, we may employ

the method of maximum likelihood to jointly estimate β ∈ Rp and θ ∈ Rq. Sweeting

(1980) established general conditions for the consistency and asymptotic normality

of maximum likelihood estimators of a dependent sample of jointly Gaussian data.

Previous papers did consider maximum likelihood estimation for dependent obser-

vations, but these were mainly in a time series context, where various techniques

such as the martingale CLT could be employed (see for example, Bhat (1974) and

Crowder (1976)). Mardia and Marshall (1984) later applied the results of Sweet-

ing in a spatial linear regression model. Cressie and Lahiri (1993, 1996) similarly

applied the results of Sweeting for REML estimation in a spatial linear regression

model. For a nonlinear regression model y = f(x1, ..,xm;β) + e, we may still use

the results given in these papers. Due to the independence of e and x1, ...,xm we
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have,

y|x1, ...,xp ∼ N(f(x1, ..,xm;β),Σ(θ))

The second order partial derivatives (Hessian) of the likelihood can be calculated in

closed form. First, define the following matrices,

Σi(θ) =
∂Σ(θ)

∂θi
, Σi(θ) =

∂Σ−1(θ)

∂θi
, Σij(θ) =

∂Σ(θ)

∂θi∂θj
, Σij(θ) =

∂2Σ−1(θ)

∂θi∂θj

Next, define tij =
1

2
tr(Σ−1(θ)Σi(θ)Σ

−1(θ)Σj(θ)) for i, j = 1, .., q and ||A|| =

tr(ATA) as the Euclidean norm of a matrix A. Next, denote by λ1 ≤ · · · ≤ λn

as the eigenvalues of Σ(θ). Finally, let |λi
1| ≤ · · · ≤ |λi

n| and |λij
1 | ≤ · · · ≤ |λij

n | be

the eigenvalues of Σi(θ) and Σij(θ) respectively for i, j = 1, ..., q. After taking the

expectation of the Hessian, the Fisher information can be calculated as the following

block diagonal matrix,

I(β,θ) =

Iββ 0

0 Iθθ


(p+q)×(p+q)

(3.18)

where Iββ = JT (β)Σ−1(θ)J(β) and the ijth element of Iθθ is tij. We state the

result here without proof, as it can be found in Theorem 2 of Mardia and Marshall

(1984).

Theorem 3.4.1. Suppose that as n → ∞,

(i) lim
n→∞

λn = C < ∞, lim
n→∞

|λi
n| = Ci < ∞, lim

n→∞
|λij

n | = Cij < ∞

(ii) ||Σi(θ)||−2 = O(n−1/2−δ) for some δ > 0 for i = 1, ..., q
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(iii) lim
n→∞

tij√
tiitjj

= aij exists for all i, j = 1, ..., q and the resulting matrix with ijth

entry aij is nonsingular

(iv) (JT (β)J(β))−1 P−→ 0

Then the maximum likelihood estimator ϕ̂ = (β̂T , θ̂T )T is consistent and
√
n(ϕ̂ −

ϕ0)
D−→ N(0,V −1), where V = lim

n→∞

1

n
I(β0,θ0) and ϕ0 = (βT

0 ,θ
T
0 )

T are the true

parameters.

We note that the asymptotic variance of β̂ obtained from both FGLS estimation and

maximum likelihood estimation is the same. This is expected since in FGLS esti-

mation, we are minimizing the quadratic form (3.17) which resembles the quadratic

form found in the Gaussian likelihood function; the only difference being that we

are using the consistent least squares estimator θ̂ in place of the true θ. Regarding

estimation of θ, to our knowledge, there is no result in spatial statistics literature

that definitively compares the asymptotic variances of the LS estimator and MLE.

Zimmerman and Zimmerman (1991) determined through numerical simulations that

the least squares method performs just as well computationally as the MLE. Their

simulations were done with a constant mean Gaussian random field, with two dif-

ferent variogram models. We perform a similar study with a fitted trend in Chapter

4. We conjecture that the MLE in general has smaller variances. However, from

a practical standpoint, least squares estimation may be preferred because the in-

version of covariance matrices in maximum likelihood can be prohibitive for large

sample sizes. If the only goal is estimation of the regression parameters, then FGLS

is preferred for the computational advantage and no assumption of Gaussianity.
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3.5 Proofs of results

Proof of Theorem 3.1.1 (L2 part)

Proof. For i = 1, ..., n, let y(si) = z(si) − E
[
z(si)

]
. It suffices to prove that

Var

(
1

n

∑
si∈Dn

y(si)

)
tends to 0. We have,

Var

(
1

n

∑
si∈Dn

y(si)

)
=

1

n2

∑
si∈Dn

Var(y(si)) +
1

n2

∑
si ̸=sj∈Dn

Cov(y(si), y(sj))

≤ C

n
+

K1

n2

∑
si ̸=sj∈Dn

(α(1, 1, d(si, sj)))
η

2+η

≤ C

n
+

K2

n2

∑
si∈Dn

∞∑
m=1

md−1(α(1, 1,m))
η

2+η

=
C

n
+

K2

n

∞∑
m=1

md−1(α(1, 1,m))
η

2+η

The constant C comes from the bounded moment condition in (3.6). The constant

K1 comes from the covariance inequality of Lemma 2.4.3 with p = q = 2 + η.

The constant K2 comes from Lemma A.1 (iii) of Appendix A in Jenish and Prucha

(2009), which says that the number of points si that are within a distance m of sj is

O(md−1). Since the sum is bounded by assumption (3.6), the variance is O( 1
n
).

Proof of Proposition 3.1.1

Proof. First, notice that the matrix,
1

n

∑
si

XiX
T
i contains the upper left entry 1

because of the regression intercept. The remaining terms are of the form,
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1

n

∑
si

xj(si),
1

n

∑
si

x2
j(si),

1

n

∑
si

xj(si)xk(si), 1 ≤ j, k ≤ p− 1

Next, the vector
1

n

∑
si

xiei contains terms of the form,

1

n

∑
si

e(si),
1

n

∑
si

e(si)xj(si), j = 1, .., p− 1

All terms inside the sums above are measurable functions of the multivariate random

field (x1(si), ..., xp−1(si), e(si))
T , si ∈ Dn. So the σ-algebra generated by the above

terms is contained within the σ-algebra generated by (x1(si), ..., xp−1(si), e(si))
T for

si ∈ Dn. So, the mixing condition in (3.6) of Theorem 3.1.1 is preserved for each of

these quantities. Then an application of Theorem 3.1.1 gives,

1

n

∑
si

xj(si)
L2−→ 1

n

∑
si

E
[
xj(si)

]
lim
n→∞

1

n

∑
si

xj(si)xk(si)
L2−→ lim

n→∞

1

n

∑
si

E
[
xj(si)xk(si)

]

By assumption, the limiting p× p matrix lim
n→∞

1

n

∑
si

E
[
XiX

T
i

]
exists and is invert-

ible. Next, since e(s) is centered at 0, Theorem 3.1.1 gives,

1

n

∑
si

e(si)
L2−→ 0,

1

n

∑
si

xj(si)e(si)
L2−→ 0, j = 1, ..., p

and so the vector
1

n
XTe converges to the vector 0 in L2. So by the continuous

mapping and Slutsky’s theorems, β̂OLS − β0
P−→ 0.
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Proof of Lemma 3.2.2

Proof. First, recall the definition of the tolerance region T (h) = {{si, sj} ⊂ Dn :

si−sj ∈ B(h, δn)}, where δn is a sequence of decreasing positive numbers converging

to 0. Note that this estimator is not exactly unbiased, unlike in the regularly spaced

lattice case since,

E
[
γ∗(h)

]
=

1

2|T (h)|
∑

si,sj∈T (h)

E
[
(e(si)− e(sj))

2
]
=

1

|T (h)|
∑

si,sj∈T (h)

γ(si − sj,θ0)

and the difference si−sj is not necessarily equal to h. However, by assumption (C4),

the variogram is differentiable with bounded gradient on Rn. Then an application

of the mean value theorem gives γ(si−sj,θ0) = γ(h,θ0)+∇γ(u,θ0)
T (si−sj −h),

where u lies on the line segment between si−sj and h. The second term converges

to 0 since si − sj ∈ B(h, δn). Therefore, it is asymptotically unbiased and so by

Chebyshev’s inequality, it suffices to show that the variance,

1

4|T (h)|2
∑

i,j∈T (h)

∑
k,l∈T (h)

Cov((e(si)− e(sj))
2, (e(sk)− e(sl))

2) (3.19)

goes to 0 in the limit.

Note that the expression for the variance of γ∗(h) contains terms of the form,

Cov((e(si)− e(sj))
2, (e(sk)− e(sl))

2). Since all the terms inside the covariance are

measurable functions of {e(si), si ∈ Dn}, the α-mixing conditions are preserved for

these quantities. Moreover, in light of condition (C2) and the inequality |a− b|p ≤

42



2p−1(|a|2 + |b|2) for a, b ∈ R, p ≥ 1, we have,

sup
si,sj∈Dn

E
[
|(e(si)− e(sj))

2|2+η| ≤ C

ñ
sup
si∈Dn

E
[
|e(si)2|2+η

]
+ sup

sj∈Dn

E
[
|e(sj)2|2+η

]ô
where C = 23+2η. Thus, the squared differences (e(si) − e(sj))

2 will satisfy the

covariance inequality in Lemma 2.4.3 with p = q = 2 + η and r =
2 + η

η
. Next,

partition T (h) into two sets. Define An be the set of pairs of points {si, sj} and

{sk, sl} in T (h) with minimum distance between them greater than some arbitrary

M ∈ N, that is,

An = {{si, sj}, {sk, sl} ⊂ T (h) : d({si, sj}, {sk, sl}) > M}

Then, the variance expression in (3.19) becomes,

Var(γ∗(h)) =
1

4|Tn(h)|2
Gn +

1

4|Tn(h)|2
Hn (3.20)

where, Gn =
∑
An

Cov((e(si)−e(sj))
2, (e(sk)−e(sl))

2) and Hn is defined similarly on

Ac
n. For Hn, after applying the Cauchy-Schwarz inequality, condition (C2) implies

that the covariance terms are uniformly bounded. So there exists a constant C such

that,

Hn ≤ C|Ac
n| = C|{{si, sj}, {sk, sl} ⊂ T (h) : d({si, sj}, {sk, sl}) ≤ M}|

For a fixed pair, {si, sj}, the number of pairs {sk, sl} within a distance of M of
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{si, sj} is O(Md) by Lemma 3.5.2 of the Appendix. Since there are |T (h)| such

fixed pairs, we have the upper bound, Hn ≤ C|Ac
n| ≤ KMd|T (h)| for some constant

K. So the second term of (3.20) above goes to 0. Now, consider the first term, Gn.

In Lemma 2.4.3, take A = {si, sj} and B = {sk, sl}. Then, together with condition

(C2), the covariance terms on the set An are bounded by,

Cov((e(si)− e(sj))
2, (e(sk)− e(sl))

2) ≤ C(α(2, 2, d(A,B)))
η

2+η

for some C independent of n. It follows that,

Gn =
∑
An

Cov((e(si)− e(sj))
2, (e(sk)− e(sl))

2)

≤ C
∑
An

(α(2, 2, d(A,B)))
η

2+η

≤ C
∑

(si,sj)∈T (h)

∞∑
m=M

∑
d(A,B)∈(m,m+1]

(α(2, 2,m))
η

2+η

≤ K|T (h)|
∞∑

m=M

md−1(α(2, 2,m))
η

2+η

where K is independent of n. From the second to third line, we used the fact that

An ⊂
∞⋃

m=M

{{si, sj}, {sk, sl} ∈ T (h) : d(A,B) ∈ (m,m+ 1]}

and that α(2, 2, d(A,B)) ≤ α(2, 2,m) for d(A,B) ∈ [m,m + 1). For the third to

fourth line, note that for a fixed pair {si, sj}, the number of pairs {sk, sl} that satisfy

d({si, sj}, {sk, sl}) ∈ (m,m + 1] is O(md−1) by Lemma 3.5.3 of the Appendix. By

conditions (C2), (C6), the first term on the right hand side of (3.20) goes to 0.
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Proof of Proposition 3.2.1

Proof. Define the following quantities,

Q(θ) =
K∑
i=1

(γ(hi;θ0)− γ(hi;θ))
2, Q̂n(θ) =

K∑
i=1

(γ̂(hi)− γ(hi;θ))
2

To prove the proposition, we apply Lemma 3.1.2 to Mn = Q̂n and M = Q.

The second condition of the lemma is satisfied by (C1). It remains to prove that

sup
θ∈Θ

|Q̂n(θ)−Q(θ)| P−→ 0. By the triangle inequality,

|Q̂n(θ)−Q(θ)| ≤ |Q̂n(θ)−Q∗
n(θ)|+ |Q∗

n(θ)−Q(θ)| (3.21)

where Q∗
n(θ) =

K∑
i=1

(γ∗(hi) − γ(hi;θ))
2 and γ∗(h) =

1

2|T (h)|
∑

(si,sj)∈T (h)

(e(si) −

e(sj))
2. By Lemma 3.2.2, γ∗(h)

P−→ γ(h;θ0) and thus, sup
θ∈Θ

|Q∗
n(θ) − Q(θ)| P−→ 0,

since the variogram is uniformly bounded (C4). We now show that the first term

in (3.21) converges to 0 in probability uniformly in θ. By an identical algebraic

manipulation as that of Crujeiras and van Keilegom (2010), we have,

Q̂n(θ) = Q∗
n(θ)+

K∑
i=1

(An(hi)+Bn(hi))
2−2

K∑
i=1

(γ(hi;θ)−γ∗(hi))(An(hi)+Bn(hi))

where, after defining g(s;β) = f(s;β0)− f(s;β),

An(h) =
1

2|T (h)|
∑

(si,sj)∈T (h)

[g(si;β)− g(sj;β)]
2
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Bn(h) =
1

2|T (h)|
∑

(si,sj)∈T (h)

[e(si)− e(sj)] [g(si;β)− g(sj;β)]

Therefore,

sup
θ∈Θ

|Q̂n(θ)−Q∗
n(θ)| ≤

K∑
i=1

(An(hi) +Bn(hi))
2

+ 2
K∑
i=1

sup
θ∈Θ

|(γ(hi;θ)− γ∗(hi))(An(hi) +Bn(hi))|

In order to show that this term converges to 0 in probability, it suffices to show that

An(hi) and Bn(hi) both converge to 0 in probability for each i = 1, .., K. First, by

the mean value theorem applied to g(si;β)− g(sj;β), we have g(si;β)− g(sj;β) =

∇GT (β̄)(β̂OLS − β0), where

∇GT (β̄) =

Å
∂g(si; β̄)

∂β1

− ∂g(sj; β̄)

∂β1

, · · · , ∂g(si; β̄)
∂βm

− ∂g(sj; β̄)

∂βm

ã
and β̄ lies on the line segment between β̂OLS and β0. Then for the An(hi) terms,

An(h) =
1

2|T (h)|
∑

(si,sj)∈T (h)

î
∇GT (β̄)(β0 − β̂OLS)

ó2
= (β0 − β̂OLS)

T

 1

2|T (h)|
∑

(si,sj)∈T (h)

∇GT (β̄)∇GT (β̄)(β0 − β̂OLS)



Since β̂OLS
P−→ β0 and condition (C3) on the uniform boundedness of the trend, the

above converges to 0 in probability for any hi, i = 1, ..., K. For the Bn(hi) terms,
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Bn(h) =
1

2|T (h)|
∑

(si,sj)∈T (h)

(e(si)− e(sj))∇GT (β̄)(β0 − β̂OLS)

= (β0 − β̂OLS)
T 1

2|T (h)|
∑

(si,sj)∈T (h)

(e(si)− e(sj))∇G(β̄)

The fact that β̂OLS
P−→ β0, together with conditions (C2, C3) imply that the above

converges to 0 in probability for any hi, i = 1, ..., K.

Proof of Proposition 3.2.2

Proof. By the Cramér-Wold device, it suffices to prove that for any a = (a1, ..., aK)
T ∈

RK , the quantity,

Tn =
√
n

K∑
k=1

ak(γ̂(hk)− γ(hk;θ0))

=
√
n

K∑
k=1

ak

 1

2|Tn(hk)|
∑
si,sj

(ϵ̂(si)− ϵ̂(sj))
2 − γ(hk;θ0))


converges in distribution to N(0,aTΣ(θ0)a). Define the quantities,

T1n =
√
n

K∑
k=1

ak

 1

2|Tn(hk)|
∑

Tn(hk)

(e(si)− e(sj))
2 − γ(hk;θ0))



T2n =
√
n

K∑
k=1

ak

{
1

2n

∑
si

(e(si)− e(si + hk))
2 − γ(hk;θ0))

}

The main idea of the proof in Lahiri et al. (2002) is that Tn is well approximated

by T2n for large n and that T2n has the desired asymptotic normality. First we
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show that |Tn − T1n|
P−→ 0 and |T1n − T2n|

P−→ 0 and then conclude by showing that

T2n
D−→ N(0,aTΣ(θ0)a). Letting g(s;β) = f(s;β0)− f(s;β), we have,

|Tn − T1n| ≤
√
n

K∑
k=1

|ak|
2|Tn(hk)|

∑
si,sj

|(ϵ̂(si)− ϵ̂(sj))
2 − (e(si)− e(sj))

2|

=
√
n

K∑
k=1

|ak|
2|Tn(hk)|

∑
si,sj

|(g(si; β̂OLS)− g(sj; β̂OLS))
2

+ 2(g(si; β̂OLS)− g(sj; β̂OLS))(e(si)− e(sj))|
©

≤
√
n

K∑
k=1

|ak|
¶
Akn||β̂OLS − β0||2 +Bkn||β̂OLS − β0|||

©
where we defined Akn, Bkn as (recalling the Lipschitz property of the trend in (C3)),

Akn =
1

2|Tn(hk)|
∑
si,sj

(C2(si) + C2(sj))

Bkn =
1

|Tn(hk)|
∑
si,sj

(C(si) + C(sj))(e(si)− e(sj))

Since ||β̂OLS − β0||2 = op(
1√
n
), it suffices to show that Akn and Bkn are bounded

in probability for k = 1, ..., K. This follows from the uniform boundedness of the

errors in condition (C2) and of the Lipschitz random variables C(s) in (C3). Thus,

|Tn − T1n|
P−→ 0.

Next, we heuristically reason why |T1n−T2n|
P−→ 0. We note that the indices of

the two sums in T1n and T2n differ slightly. For T1n, we are summing over Tn(hk) =

{(si, sj) : sj ∈ Bδn(si+hk)}, which is the tolerance region as defined before. For T2n,

we are summing over all pairs of the form {(si, si +hk) : i = 1, ..., n}. Since δn → 0

in the tolerance region, the difference between Tn(hk) and {(si, si+hk) : i = 1, ..., n}
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becomes negligible for large n and thus, |T1n − T2n|
P−→ 0. For more details in this

step of the proof, we refer to p. 82 of Lahiri et al. (2002).

Finally, we show that T2n is asymptotically normal. We can apply the CLT

result in Theorem 3.2.1. Write T2n as,

T2n =
√
n

K∑
k=1

ak

{
1

2n

∑
si

(e(si)− e(si + hk))
2 − γ(hk,θ0))

}
=

1√
n

∑
si

z(si)

where z(si) =
K∑
k=1

ak

ß
(e(si)− e(si + hk))

2

2
− γ(hk,θ0)

™
. Then, by Theorem 3.2.1,

1√
n

∑
si

z(si)
D−→ N

Ñ
0, lim

n→∞
n−1

∑
si,sj∈Dn

Cov(z(si), z(sj))

é
The covariance term can be calculated as,

lim
n→∞

1

n

∑
si,sj∈Dn

Cov(z(si), z(sj)) =
K∑
i=1

K∑
j=1

akaℓΣkℓ(θ0)

= aTΣ(θ0)a

where Σkℓ(θ0) = lim
n→∞

1

4n

∑
si,sj∈Dn

Cov((e(si)− e(si+hk))
2, (e(sj)− e(sj +hℓ))

2). So

asymptotic normality of T2n holds.

Proof of Proposition 3.3.1

Proof. By Lemma 3.1.2, consistency follows if we prove that,

∀ϵ > 0,∃ν > 0, s.t. inf
||β−β0||>ϵ

|U(β)− U(β0)| > ν
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sup
β

|Un(β)− U(β)| P−→ 0

where U(β) = 1 + R(β). The first part follows from condition (C7) and the fact

that R(β) is uniquely minimized at β0. It remains to prove the second part. By

an identical decomposition as that of Crujeiras and van Keilegom (2010), we have,

Un(β) = Un1 + Un2(β) + Un3(β), where,

Un1 =
1

n
eTΣ(θ̂)−1e

Un2(β) =
2

n
eTΣ(θ̂)−1(f(β0)− f(β))

Un3(β) =
1

n
(f(β0)− f(β))TΣ(θ̂)−1(f(β0)− f(β))

So it follows that

sup
β

|Un(β)− U(β)| ≤ |Un1 − 1|+ sup
β

|Un2(β)|+ sup
β

|Un3(β)−R(β)| (3.22)

and we show that these three terms converge to 0 in probability. By the Mean Value

Theorem, we can expand Un1 as,

Un1 =
1

n
eTΣ−1(θ0)e+

1

n

q∑
i=1

(θ̂i − θ0i)e
T ∂Σ

−1(θ̄)

∂θi
e (3.23)

where θ̄ lies on the line segment between θ0 and θ̂. Since θ̂i
P−→ θ0i, the second term

of (3.23) converges to 0 in probability if we show that
1

n
eT ∂Σ

−1(θ̄)

∂θi
e is bounded in
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probability. Denote cjk(θ̄) as the jkth element of
∂Σ−1(θ̄)

∂θi
. By condition (C2),

E
ï∣∣∣∣ 1neT ∂Σ(θ̄)

∂θi
e

∣∣∣∣ò = E

 1
n

∑
sj

∑
sk

|cjk(θ̄)e(sj)e(sk)|

 ≤ C sup
θ

∥∥∥∥ ∂

∂θk
Σ−1(θ)

∥∥∥∥

for some constant C > 0. Thus,
1

n
eT ∂Σ(θ̄)

∂θi
e is bounded in probability by (C8).

For the first term of (3.23), write,

1

n
eTΣ(θ0)

−1e =
1

n
zTz =

1

n

∑
si

z2(si)

where z = L(θ0)
−1e and L comes from the Cholesky factorization of Σ. If we

assume that e ∼ N(0,Σ0), then {y(si), si ∈ Dn} are i.i.d. N(0, 1) and a standard

LLN can be applied. Otherwise for non-Gaussian errors, note that {y(si), si ∈

Dn} is a linear transformation of the errors {e(si), si ∈ Dn}. Thus the uniform

boundedness and mixing properties of the error are preserved. Since E
[
y(si)

]
= 1

for each i = 1, ..., n, Theorem 3.1.1 implies that,

1

n
eTΣ(θ0)

−1e =
1

n

∑
si

y2(si)
P−→ 1

which shows that |Un1−1| P−→ 0 and so the first term of (3.22) goes to 0 in probability.

Next, we consider the term Un2(β) in (3.22). By the Mean Value Theorem,

we can expand Un2(β) as,

Un2(β) =
2

n
(f(β0)− f(β))TΣ(θ0)

−1e+
2

n

q∑
i=1

(θ̂i − θ0i)(f(β0)− f(β))T
∂Σ−1(θ̄)

∂θi
e
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where θ̄ lies on the line segment between θ̂ and θ0. By similar arguments as in the

preceding paragraph for Un1, both terms above converge to zero in probability. Thus,

|Un2(β)|
P−→ 0 pointwise for any β. Since the parameter space B is compact and

trend is smooth, convergence is uniform. Thus, the second term of (3.22) converges

to zero in probability.

Finally, for Un3(β), it suffices again to consider the term,

1

n
(f(β0)− f(β))TΣ(θ0)

−1(f(β0)− f(β))

where we replaced θ̂ with the true parameter θ0 since it can be shown by a Taylor

expansion argument that these terms are asymptotically equivalent. By definition

of R(β), the third term of (3.22) goes to 0 in probability.

Proof of Proposition 3.3.2

Proof. After taking the gradient of Un(β) =
1

n
(y − f(β))TΣ−1(θ̂)(y − f(β)) with

respect to β, and applying the Mean Value Theorem, Crujeiras and van Keilegom

(2010) arrive at the following expression,

√
n(β̂FGLS − β0) =

Å
1

n
JT (β̂FGLS)Σ

−1(θ̂)J(β̄)

ã−1 1√
n
JT (β̂FGLS)Σ

−1(θ̂)e (3.24)

where β̄ lies on the line segment between β̂FGLS and β0. By assumption (C9), the

limit V = lim
n→∞

1

n
JT (β0)Σ

−1(θ0)J(β0) exists in probability. Since θ̂ and β̂FGLS are

consistent, the limit inside the parentheses above equals V by the Continuous Map-
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ping Theorem. For the same reason, the limiting behavior of
1√
n
JT (β̂FGLS)Σ

−1(θ̂)e

and
1√
n
JT (β0)Σ

−1(θ0)e are the same. We now show that conditional on the covari-

ates, the limiting distribution of
1√
n
JT (β0)Σ

−1(θ0)e is N (0,V ). By the Cramér

Wold device, it suffices to prove that,

1√
n
aTJT (β0)Σ

−1(θ0)e
D−→ N(0,aTV a), ∀a ∈ Rp

After some matrix algebra, we can write,

1√
n
aTJT (β0)Σ

−1(θ0)e =
1√
n

p∑
i=1

ai
∑
sj

ci(sj)e(sj) =
1√
n

∑
sj

b(sj)e(sj)

where ci(sj) is the ijth element of the p × n matrix JT (β0)Σ
−1(θ0) and b(sj) =

p∑
i=1

aici(sj). By the spatial CLT in Theorem 3.2.1, we have,

1√
n

∑
sj

b(sj)e(sj)
D−→ N

Ñ
0, lim

n→∞
n−1

∑
si,sj

Cov(b(si)e(si), b(sj)e(sj))

é
The covariance term inside the sum above can be calculated as,

∑
si,sj

Cov(b(si)e(si), b(sj)e(sj)) =

p∑
k=1

p∑
ℓ=1

akaℓ
∑
si,sj

ck(si)Cov(e(si), e(sj))cℓ(sj)

The term
∑
si,sj

ck(si)Cov(e(si), e(sj))cℓ(sj) can be recognized as the kℓth element of

the p×p matrix JT (β0)Σ
−1(θ0)J(β0). Thus, in the limit as n → ∞, we have shown
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that,

1√
n
aTJT (β0)Σ

−1(θ0)e =
1√
n

∑
sj

b(sj)e(sj)
D−→ N(0,aTV a)

So by the Cramér Wold device,
1√
n
JT (β0)Σ

−1(θ0)e
D−→ N(0,V ). Finally applying

Slutsky’s Theorem to the expression given in (3.24),

√
n(β̂FGLS − β0) =

Å
1

n
JT (β̂FGLS)Σ

−1(θ̂)J(β̄)

ã−1

︸ ︷︷ ︸
P−→V −1

1√
n
JT (β̂FGLS)Σ

−1(θ̂)e︸ ︷︷ ︸
D−→N(0,V )

D−→ N(0,V −1)

Thus, asymptotic normality holds.

Appendix: Cardinality arguments

The following lemmas are needed in establishing the consistency of the Math-

eron variogram in Lemma 3.2.2. The arguments here are inspired by Appendix A

of Jenish and Prucha (2009).

Lemma 3.5.1. Any cube with side length 1 can contain at most one pair in T (h).

Proof. If there were two such pairs, say {s1, s2} and {s3, s4}, then the distance

between these pairs would be less than 1, which violates Assumption 3.1.1.

Lemma 3.5.2. Any ball of radius M , B(s,M), can contain at most (2M)d pairs

in T (h).
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Proof. Such a ball is contained inside a cube of side length 2M . Each such cube

can be partitioned into (2M)d unit cubes. Then the result follows from Lemma

3.5.1.

Lemma 3.5.3. Consider the annulus, B(s,M) \B(s,M − 1) = {t ∈ Rd : M − 1 <

d(s, t) ≤ M}. This annulus can contain at most O(Md−1) pairs in T (h).

Proof. From Lemma 3.5.2, and the inequality, bd − ad ≤ (b − a)dbd−1 for a, b ≥ 0,

this annulus can contain at most,

(2M + 2)d − (2M)d ≤ 2d(2M + 2)d−1 = 2ddMd−1(1 +M−1)d−1 ≤ CMd−1

pairs, where C is a constant independent of M ≥ 1.
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Chapter 4 Numerical study on increasing domain

asymptotics

4.1 A comparison of MLE versus least squares variogram

estimation

In Section 3.4 of Chapter 3, we gave a brief discussion on maximum likelihood

and least squares variogram estimation of the covariance parameters θ. In this

section, we perform a simulation study comparing the two methods of estimation.

Based on this simulation study, we conjecture that maximum likelihood estimation

is in general more efficient than least squares variogram estimation when the errors

are Gaussian.

4.1.1 Numerical setup

We take our spatial locations to be a regular rectangular lattice in R2 with

unit spacings. To simulate an increasing domain asymptotics framework, the size

of the grid also increases with the number of locations. For our numerical study,

we consider sample sizes of n = 50, 100, 200 and 400, nested within each other (see

Figure 4.1).
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Figure 4.1: Increasing domain asymptotics framework

We consider the simple linear spatial regression model,

y(s) = β0 + β1x(s) + e(s) (4.1)

where x(s) and e(s) are independent mean zero Gaussian random fields. For the

covariate, we consider an exponential covariance Cx(h) = e−
3
2
||h|| and generate one

realization x = (x(s1), · · · , x(sn))T according to this model. For the error, we

consider two different covariance functions,

1. Exponential: Ce(h) = σ2
ee

−θe||h||

2. Matérn with smoothness parameter ν = 3
2
: Ce(h) = σ2

e(1+
√
3θe||h||)e−

√
3θe||h||

We choose as the true parameters θ0 = (σ2
e0, θe0)

T = (1
2
, 1)T . Finally, for LS

variogram estimation, we consider 7 lag vectors h1 = (0, 1)T ,h2 = (1, 1)T ,h3 =

(1, 2)T ,h4 = (2, 2)T ,h5 = (3, 1)T ,h6 = (2, 3)T and h7 = (3, 3)T . Since we are on

a regular lattice with spacing one unit apart, we do not require a tolerance region

defined in (3.12).
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4.1.2 Comparison of asymptotic variances

First, we compare the asymptotic variances as predicted by MLE theory and

least squares variogram theory. Recall from Section 3.4 that the asymptotic variance

of the MLE is the inverse of the Fisher information as given in (3.18). Recall that the

asymptotic variance of the least squares variogram estimator is given in Corollary

3.2.3. We compute these asymptotic covariance matrices at the true θ0 and present

the diagonal elements of each matrix. For the exponential model, the results are

given in Table 4.1. For the Matérn model, the results are given in Table 4.2.

Variance for σ̂2
e Variance for θ̂e

n MLE Least Squares MLE Least Squares

50 0.01717 0.01923 0.14011 0.28313
100 0.00896 0.01098 0.07057 0.14384
200 0.00458 0.00584 0.03546 0.07313
400 0.00234 0.00311 0.01785 0.03692

Table 4.1: Asymptotic variances of (σ̂2
e , θ̂e)

T as predicted by MLE and least squares
for the exponential variogram model

Variance for σ̂2
e Variance for θ̂e

n MLE Least Squares MLE Least Squares

50 0.02013 0.02161 0.03787 0.09947
100 0.01054 0.01245 0.01866 0.05107
200 0.00540 0.00664 0.00929 0.02606
400 0.00277 0.00355 0.00463 0.01323

Table 4.2: Asymptotic variances of (σ̂2
e , θ̂e)

T as predicted by MLE and least squares
for the Matérn (ν = 3

2
) variogram model

We can see that the MLE asymptotic variances are in general smaller than those of

the least squares. In both tables, the relative efficiencies of LS compared to MLE
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for σ̂2
e begin roughly at 90% for n = 50 but surprisingly drop to approximately 75%

when n = 400. For θ̂e, the MLE outperforms LS by a significant amount. The

relative efficiencies of LS compared to MLE for θ̂e are roughly 50% in Table 4.1 and

roughly 35% in Table 4.2.

4.1.3 Comparison of Monte Carlo estimates

Next, we compare Monte Carlo estimates using MLE and least squares. Condi-

tional on x, we generate 1000 realizations y according to the simple linear regression

model in (4.1), that is, y|x ∼ N(β01+ β1x, σ
2
eΣ(θe)). For our simulations, we arbi-

trarily choose (β0, β1)
T to be (6, 3)T . Then, we compute MLE and LS estimates for

(σ2
e , θe)

T for each realization. We used the nlminb function of the base R package.
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Figure 4.2: MLE and LS estimates for σ2
e in the exponential model. In red and blue

are the theoretical asymptotic densities predicted by MLE and LS. Histograms are
based on 1000 MC simulations of y|x according to (4.1).
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Figure 4.3: MLE and LS histogram estimates for θe in the exponential model. In
red and blue are the theoretical asymptotic densities predicted by MLE and LS.
Histograms are based on 1000 MC simulations of y|x according to (4.1).

Histograms for the MLE and LS estimates for (σ2
e , θe)

T in the exponential model

are given in Figures 4.2 and 4.3 respectively. The histograms for the LS estimates

for (σ2
e , θe)

T in general are wider than those of the MLE. Both methods are not

well approximated by their theoretical asymptotic densities in small samples. The

approximation improves once we reach n = 200 observations. We should note that

the computation time for the MC estimation of the least squares estimates was

orders of magnitude less than MLE estimation, especially as we got to n = 400

observations (approximately 5 seconds for LS vs. 25 minutes for MLE on an 8-core

laptop computer). This is expected since we are inverting a large matrix in the

likelihood function, whereas no such matrix inversion occurs in least squares.
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Figure 4.4: MLE and LS histogram estimates for σ2
e in the Matérn (ν = 3

2
) model.

In red and blue are the theoretical asymptotic densities predicted by MLE and LS.
Histograms are based on 1000 MC simulations of y|x according to (4.1).
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Figure 4.5: MLE and LS histogram estimates for θe in the Matérn (ν = 3
2
) model.

In red and blue are the theoretical asymptotic densities predicted by MLE and LS.
Histograms are based on 1000 MC simulations of y|x according to (4.1).
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Histograms for the MLE and LS estimates for (σ2
e , θe)

T in the Matérn model are

given in Figures 4.4 and 4.5 respectively. On top of each subfigure are the MLE

estimates and on the bottom are the LS estimates. These estimates show similar

behavior as in the exponential model. In general, the MLE histograms are more

peaked than the LS ones and once again, the computation time for LS was much

less than MLE.

4.2 Real data example: Temperature and pressure in the

Pacific Northwest

To demonstrate the estimation procedure in Chapter 3, we explore a weather

dataset analyzed by Gneiting et al. (2010).
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Figure 4.6: Locations of 157 weather stations in the Pacific Northwest region of the
United States and Western Canada. Weather stations directly in the Pacific Ocean
correspond to buoys and ships.
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The dataset contains temperature and pressure forecast errors (forecasts mi-

nus observations) from 157 stations in the Northwestern US and Western Canada

region (see Figure 4.6). The dataset can be found in RandomFields package in R

(Schlather et al. (2022)). To showcase their novel Matérn cross covariance function,

Gneiting et al. (2010) modelled the temperature and pressure forecast errors as a

bivariate Gaussian random field. We take an another approach and model their

relationship through a linear regression model. Let y(s) represent the underlying

temperature forecast errors (degrees Celsius) and x1(s) represent the underlying

pressure forecast errors (kilopascals). From Figure 4.6, we can see that the tem-

perature gradient varies with the location. So we consider as two other covariates

x2(s) and x3(s) the east-west spatial coordinate and north-south spatial coordinate

of s ∈ R2 respectively. Then, consider the model,

y(s) = β0 + β1x1(s) + β2x2(s) + β3x3(s) + e(s) (4.2)

where e(s) is a random field independent of x(s). First, we consider the provisional

ordinary least squares estimator of β = (β0, β1, β2, β3)
T . In matrix-vector form,

the regression model (4.2) is y = Xβ + e. Then the OLS estimator is β̂OLS =

(XTX)−1XTy = (−0.9936,−7.7696, 0.0482,−0.3169)T . Next, after forming the

residuals ê = y−Xβ̂OLS, we perform a variogram analysis to estimate the variance

parameters of e(s). After doing a map projection of the latitude and longitude

coordinates into cartesian coordinates (done with the RFearth2cartesian function in

R), we found that the maximum distance between two pairs of points is 16 (in units
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of 100 km). For the number of lag vectors K, Crujeiras and van Keilegom (2010)

(p. 454) recommend using K ≤ U

2
, where U is the maximum distance between

two pairs of points. Thus, in our case, we decided to use 8 lag vectors. The fitted

variogram can be found in Figure 4.7.
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Figure 4.7: Variogram analysis of weather data from Gneiting et al. (2010). Using
the OLS residuals from model (4.2), the points represent the empirical variogram
values calculated from equation (3.11) at 8 different lag vectors. The red line rep-
resents the fitted exponential variogram.

According to Gneiting et al. (2010), temperature forecasts are not smooth,

which makes sense geophysically. Using a Matérn covariance, they estimated the

smoothness of the temperature random field to be approximately 0.6 which is close to

an exponential variogram (smoothness of 0.5). We fitted an exponential variogram

to the residuals and found that the model fits reasonably well (Figure 4.7). Thus, we

assume that e(s) has an exponential variogram structure γ(h;σ2, θ) = σ2(1−e−θ||h||).

The least squares variogram estimates of θ = (σ2, θ)T along with their estimated
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standard errors are presented in Table 4.3. The standard errors were computed

using Corollary 3.2.3.

σ̂2 θ̂

Estimate (S.E.) 5.2385 (1.9281) 0.5440 (0.3645)

Table 4.3: Least squares variogram estimates along with their estimated standard
errors

Finally, we re-estimate β using the FGLS procedure. With the estimated θ̂, we

compute β̂FGLS = (XTΣ(θ̂)−1X)−1XTΣ(θ̂)−1y, where the i, jth element of Σ(θ̂)

is given by σ̂2e−θ̂||si−sj ||. The FGLS estimates along with their estimated standard

errors are presented in Table 4.4. The standard errors were computed using Propo-

sition 3.3.2.

β̂0 β̂1 β̂2 β̂3

Estimate (S.E.) -0.3697 (0.7039) -3.4384 (0.7640) -0.0835 (0.1557) -0.0493 (0.1523)

Table 4.4: FGLS estimates along with their estimated standard errors

For completeness, we now give a comparison with maximum likelihood estima-

tion, assuming Gaussianity like Gneiting et al. (2010). Conditionally given x, the

distribution of y|x is N(Xβ,Σ(θ)). The conditional negative log-likelihood L(β,θ)

was then minimized in R using the nlminb function. The norm of the gradient was

small and the Hessian had positive eigenvalues, indicating that the estimates were

local minima. The estimates along with their estimated standard errors are pre-

sented in Tables 4.5 and 4.6. The standard errors were computed using the Fisher

information (Theorem 3.4.1).
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β̂0 β̂1 β̂2 β̂3

Estimate (S.E.) 0.0943 (0.4515) -4.0186 (0.9912) 0.0139 (0.1225) -0.0899 (0.1136)

Table 4.5: MLE estimates of β along with their estimated standard errors

σ̂2 θ̂

Estimate (S.E.) 5.0345 (0.9218) 1.1158 (0.2533)

Table 4.6: MLE estimates of (σ2, θ)T along with their estimated standard errors

Both the FGLS and MLE estimators for β suggest that the coefficient for pressure

β1 is the only significant one in the model. In contrast, a summary of the OLS model

in R revealed that both the intercept β0 and β3, corresponding to the north-south

spatial coordinate, were also significant. However, the OLS model assumes inde-

pendent, identically distributed errors which would be misleading with this spatial

data. A comparison of Tables 4.3 and 4.6 shows that MLE estimates of (σ2, θ)T

have smaller estimated variances, which agrees with the simulation study earlier in

this chapter. In fact, it appears that the least squares variogram estimate for σ2

achieves half the efficiency of the MLE. It is also noteworthy that the least squares

estimate for θ̂ is not very well resolved for n = 157 locations.

66



Chapter 5 Confounding in nonlinear spatial re-

gression models

In this chapter, we assume that we have one covariate confounded with the

error. Our nonlinear regression model takes the form,

y(s) = f(x(s);β) + e(s), s ∈ D ⊂ Rd (5.1)

where D is a countably infinite lattice in Rd. We assume that x(s) and e(s) are

both mean zero stationary Gaussian random fields that are dependent in the sense

that their cross covariance function is nonzero. Page et al. (2017) considers a linear

regression model in (5.1) where f(x(s);β) = β0 + β1x(s). Assuming a specific form

of the cross-covariance structure (see Section 5.2.5), they investigate the effect of

confounding on generalized least squares estimation of β = (β0, β1)
T . Under the

strict assumption that the variance components of e(s) are known, they conclude

that there can be significant bias in GLS if the confounding is not accounted for.

We investigate the confounding in (5.1) under a more general nonlinear setting, and

consider several different bivariate cross-covariance structures for (x(s), e(s))T . We

generalize the results of Page et al. (2017) a bit further by assuming the variance
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components of e(s) are unknown.

Recall from Section 2.3 that for a stationary bivariate random field, the cross

covariance function is a symmetric positive definite, 2× 2 matrix valued function,

C(h) =

Ü
Cxx(h) Cxe(h)

Cex(h) Cee(h)

ê
For symmetry, it is necessary that Cxe(h) = Cex(−h) and in general, Cxe(h) ̸=

Cex(h), that is, the off-diagonal functions are not equal. Following Paciorek (2010)

and Page et al. (2017), we entertain parametric cross-covariance functions of the

form,

C(h) =

Ü
σ2
xϕxx(h;θx) ρσxσeϕxe(h;θxe)

ρσxσeϕex(h;θex) σ2
eϕee(h;θe)

ê
(5.2)

where ϕxx, ϕxe, ϕee are parametric correlation functions equalling 1 at the origin.

The parameters σ2
x, σ

2
e and ρ represent the marginal variance of x(s), the marginal

variance of e(s) and the confounding parameter respectively. In a non-confounding

context, the parameter ρ is sometimes referred to as a collocated cross-correlation

coefficient (Genton and Kleiber (2015)). When ρ = 0, this reduces to the case

independent covariate and error as discussed in Chapter 3.

When analyzing possible confounding models for C(h), we first and foremost

must determine if they are valid, that is, if they are non-negative definite. By The-
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orem 2.3.1 of Cramér, this requires that the corresponding spectral density matrix,

f(ω) =

Ü
σ2
xfxx(ω;θx) ρσxσefxe(ω;θxe)

ρσxσefex(ω;θex) σ2
efee(ω;θe)

ê
(5.3)

be non-negative definite, that is, fxx(ω;θx)fee(ω;θe) ≥ ρ2fxe(ω;θxe)fex(ω;θex) for

almost all ω. Even for a bivariate model, this criterion may lead to non-trivial

restrictions on the parameters, as we see for some of the models discussed below.

5.1 Identifiability in confounding models

Once we have a valid model, we would like to determine if it is feasible for

analytical and practical use on real spatial data. We state two identifiability criteria

related to estimation of the parameters in the model (5.1).

1. (Formal identifiability) Since we are using likelihood estimation, we require

that the parameters in model (5.1) be identifiable. When y(s) and x(s) are

observed at locations {s1, · · · , sn}, the corresponding vector form of (5.1) is,

y = f(x;β) + e (5.4)

where,

y = (y(s1), ..., y(sn))
T
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x = (x(s1), ..., x(sn))
T

f(x;β) = (f(x(s1);β), ...., f(x(sn);β))
T

e = (e(s1), ..., e(s1))
T

By assumption, x and e have a joint Gaussian distribution with mean vector

0 and covariance matrix,

Ψ(θ) =

Ü
σ2
xΦxx(θx) ρσxσeΦxe(θxe)

ρσxσeΦex(θex) σ2
eΦee(θe)

ê
2n×2n

(5.5)

where {Φxx(θx)}i,j = ϕxx(si − sj;θx) and similarly for the other n× n block

matrices. The conditional distribution of y|x in model (5.4) is,

y|x ∼ N (f(x;β) + τ (θ),Σ(θ)) (5.6)

where θ ∈ Θ ⊂ Rq is a vector of covariance parameters containing the con-

founding parameter ρ. The quantity τ (θ) = Eθ[e|x] is the n × 1 conditional

mean vector of e|x. By the joint Gaussian assumption, the conditional mean is

a linear function of the covariate vector τ (θ) = A(θ)x, where A(θ) is an n×n

matrix which in some confounding models may simplify to a scalar function

of θ multiplied by the identity matrix. The covariance matrix Σ(θ) = Σe|x(θ)

is the n × n conditional covariance matrix of e|x. We define formal identifi-

ability as the likelihood resulting from (5.6) being one-to-one with respect to

the unknown parameters (βT ,θT )T , for any set of observed data y,x. Gen-
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erally, x(s) has unknown parameters (σ2
x,θ

T
x )

T parametrizing its covariance,

but since we have observations x = (x(s1), · · · , x(sn))T available, we assume

that they can be consistently estimated. In particular, since x is Gaussian,

the likelihood is given by,

x ∼ N(0, σ2
xΣx(θx)) (5.7)

Assumption 5.1.1. Consistent estimators of the parameters (σ2
x,θ

T
x )

T exist

using the x data alone, for example, MLE or least squares variogram estima-

tors. Thus, these parameters are identifiable in the sense that the likelihood in

(5.7) is one-to-one with respect to (σ2
x,θ

T
x )

T

2. (Practical identifiability) In theory, on an increasing domain asymptotics frame-

work, we expect the MLE estimates of the parameters to converge to a nor-

mal distribution with variance given by the inverse Fisher information matrix

(Mardia and Marshall (1984)). Through simulations in Chapter 4, we look at

the behavior of the Fisher information as the number of observations increase

on a regular lattice. We define practical identifiability as good numerical be-

havior of the model based on the following criteria,

(1) (The eigenvalues and condition numbers of the Fisher information ma-

trix ) An ill-conditioned Fisher information and/or Hessian matrix some-

times precludes the use of standard optimization methods like gradient

descent and quasi Newton-Raphson.
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(2) (The inverse of the Fisher information) Standard asymptotic theory sug-

gests the MLE estimates will have an asymptotic covariance matrix equal

to the inverse Fisher information. We expect the numbers to be small and

to scale down proportionately as the number of observations increase.

(3) (Empirical distributions of Monte Carlo estimates) A histogram of MC

MLE estimates of each parameter should be well approximated by their

theoretical asymptotically normal density. These estimates should also

be true minima, that is, the gradients should be small and the Hessian

matrix should be positive definite.

The Fisher information is III (β,θ) = Eβ,θ[H|x], where H is the Hessian matrix of

the negative log-likelihood of (5.6). The Fisher information has the general form,

III (β,θ) =

III ββ III βθ

III βθ III θθ


(p+q)×(p+q)

(5.8)

where the block matrices are given by,

1. III ββ = J(β)TΣ−1(θ)J(β), where J(β) is the n×p Jacobian matrix of f(x,β)

with respect to β. In the simple linear regression case, f(x,β) = α1+ βx =

Xβ, this Jacobian simply equals the design matrix X.

2. The ith column of III βθ equals J(β)TΣ−1(θ)Aθi(θ)x, where Aθi(θ) =
∂A(θ)

∂θi

is the element-wise partial derivative of A(θ) with respect to θi.
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3. The i, jth element of III θθ equals,

1

2
tr(Σ−1(θ)Σθi(θ)Σ

−1(θ)Σθj(θ)) + xTAθi(θ)
TΣ−1(θ)Aθj(θ)x

where Σθi(θ) is defined similarly to Aθi(θ) above.

Due to the presence of τ (θ) in the mean, the matrix in (5.8) is not block diagonal.

Thus, we cannot directly apply Theorem 3.4.1 of Mardia and Marshall (1984) since

the conditions they derived were based on the block diagonal structure of the Fisher

information (3.18) in the unconfounded model. Sweeting (1980) gives more gen-

eral conditions on the Fisher information that ensures consistency and asymptotic

normality of MLE estimates. These conditions are given in Chapter 7, Theorem

7.4.4, where they are applied in a simpler setting. Since it is difficult to verify the

conditions of Mardia and Marshall (1984) and Sweeting (1980) due to the complex

structure of the Fisher information in (5.8), we resort to numerical simulations.

Nevertheless, based on our simulation study of practical identifiability in Chapter 6,

we expect asymptotic normality of MLE estimates to hold with the inverse of (5.8)

as the asymptotic covariance matrix.

5.2 A survey of various confounding models

Here we survey various models of C(h) by exploring different bivariate cross

covariance models from spatial statistics literature. We note that apart from the

model by Page et al. (2017), the models below were not intended to describe the
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confounding structure between two random fields in a regression model. Rather,

they were analyzed for bivariate random fields where both components are observed

and data are readily available for both. In our setting, we make the distinction that

one of the components of the bivariate random field (x(s), e(s))T contains the error,

which is unobserved.

5.2.1 Separable model

One of the simplest models to consider is the separable model first introduced

by Mardia and Goodall (1993), where ϕxx = ϕxe = ϕex = ϕee = ϕ, that is, , there is

a shared correlation function ϕ, among all components of C(h),

C(h) =

Ü
σ2
xϕ(h;ϑ) ρσxσeϕ(h;ϑ)

ρσxσeϕ(h;ϑ) σ2
eϕ(h;ϑ)

ê
(5.9)

The spectral condition in Theorem (2.3.1) shows that this cross covariance is valid

as long as |ρ| ≤ 1. When taking into account the n spatial locations, the 2n × 2n

covariance matrix from (5.5) is,

Ψ(θ) =

Ü
σ2
xΦ(ϑ) ρσxσeΦ(ϑ)

ρσxσeΦ(ϑ) σ2
eΦ(ϑ)

ê
(5.10)

Using properties of the multivariate Gaussian distribution discussed in Section 2.1,

the conditional mean and variance of e|x are τ (θ) =
ρσe

σx

x and Σe|x(θ) = σ2
e(1 −

ρ2)Φ(ϑ). Paciorek (2010) used this cross covariance when analyzing the effect of
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confounding in a linear regression model f(x;β) = β01 + β1x. However, in this

linear regression model, we can plug in the formulas for τ (θ) and Σe|x(θ) into (5.6)

to obtain,

y|x ∼ N

Å
β01+

Å
β1 +

ρσe

σx

ã
x, σ2

e(1− ρ2)Φ(ϑ)

ã
We see that the parameters (β1, ρ, σ

2
e) are not identifiable but

Å
β1 +

ρσe

σx

, (1− ρ2)σ2
e

ã
are, akin to the i.i.d. regression setting discussed in Section 1.2. More specifically,

it would make no difference to a practitioner if the conditional distribution were,

y|x ∼ N (β01+ β∗
1x, σ

2Φ(ϑ))

where β∗
1 = β1+

ρσe

σx

and σ2 = (1−ρ2)σ2
e . In this formulation, there is no confounding

present. Thus, a drawback of the separable model is that it cannot be used to model

confounding when the trend function is linear. For a more general nonlinear trend,

we have,

y|x ∼ N

Å
f(x;β) +

ρσe

σx

x, σ2
e(1− ρ2)Φ(ϑ)

ã
(5.11)

Under appropriate linear independence assumptions between f(x;β) and x, this

identifiability issue is remedied. For example, f(x,β) should not contain a linear

term of the form γx for some constant β. Otherwise, the distribution in (5.11)

will contain

Å
γ +

ρσe

σx

ã
x in the mean, preventing one from identifying γ and ρσe

separately. More formally, we argue identifiability in the following proposition. We
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remark that the parameter ϑ is identifiable using the x data by Assumption 5.1.1.

Proposition 5.2.1. Assume that the trend f(x,β) in (5.11) does not contain a

linear term of the form γx for some constant γ. Moreover, assume that for any

x, f is one-to-one respect to the regression parameters β. Then the parameters in

(5.11) are identifiable.

Proof. Let Ωi = (βT
i , ρi, σ

2
ei)

T , i = 1, 2 be two possible sets of parameters in (5.11).

For identifiability, it suffices to consider the conditional moments separately. For the

conditional mean, the condition EΩ1 [y|x] = EΩ2 [y|x] implies that after re-arranging,

f(x,β1)− f(x,β2) =
1

σx

(ρ2σe2 − ρ1σe1)x

By the assumptions on f , this can only hold for all x if ρ2σe2 = ρ1σe1 and β1 = β2.

Finally, setting the conditional variances equal implies that σ2
e1 = σ2

e2 and ρ1 = ρ2

since we’ve identified ρσe.

5.2.2 Linear model of co-regionalization (LMC)

The linear model of co-regionalization (Banerjee et al. (2014)) assumes that

(x(s), e(s))T has the form,Ü
x(s)

e(s)

ê
=

Ü
a11 a12

a21 a22

êÜ
u(s)

v(s)

ê
where u(s) and v(s) are independent Gaussian random fields with correlation func-

tions ϕ1(h;ϑ1) and ϕ2(h;ϑ2) respectively and the coefficient matrix has full rank.

76



The resulting cross-covariance function is,

C(h) =

Ü
a211ϕ1(h;ϑ1) + a212ϕ2(h;ϑ2) a11a21ϕ1(h;ϑ1) + a12a22ϕ2(h;ϑ2)

a11a21ϕ1(h;ϑ1) + a12a22ϕ2(h;ϑ2) a221ϕ1(h;ϑ1) + a222ϕ2(h;ϑ2)

ê
We would like to specify the parameters of x(s) since we are observing data for this

random field. For this purpose, consider the lower triangular case (that is, a12 = 0)

where a11 = σx. Letting a21 = ρσe and a22 =
√

1− ρ2σe, we obtain the following

cross-covariance function,

C(h) =

Ü
σ2
xϕ1(h;ϑ1) ρσxσeϕ1(h;ϑ1)

ρσxσeϕ1(h;ϑ1) ρ2σ2
eϕ1(h;ϑ1) + (1− ρ2)σ2

eϕ2(h;ϑ2)

ê
(5.12)

Once again, Cramér’s criterion in Theorem 2.3.1 is satisfied as long as |ρ| ≤ 1.

This model has a very simple interpretation in that e(s) is linearly correlated with

x(s) through the relationship, e(s) =
ρσe

σx

x(s)+σe

√
1− ρ2v(s). The corresponding

2n× 2n covariance matrix from (5.5) is,

Ψ(θ) =

Ü
σ2
xΦ1(ϑ1) ρσxσeΦ1(ϑ1)

ρσxσeΦ1(ϑ1) ρ2σ2
eΦ1(ϑ1) + (1− ρ2)σ2

eΦ2(ϑ2)

ê
(5.13)

where Φ2(ϑ2) is correlation matrix of the vector, v = (v(s1), ...., v(sn))
T . The

conditional mean and variance of e|x are τ (θ) =
ρσe

σx

x and Σe|x(θ) = σ2
e(1 −
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ρ2)Φ2(ϑ2) respectively. Thus, the resulting conditional distribution in (5.6) is,

y|x ∼ N

Å
f(x;β) +

ρσe

σx

x, σ2
e(1− ρ2)Φ2(ϑ2)

ã
(5.14)

Note the similarity between this model and the separable model in (5.11). As in the

Proposition 5.2.1 for the separable model, the parameters can be made identifiable

as long as f(x;β) does not contain a linear term in x. Thus, for the same reason

as the separable model, the LMC cannot be used to study confounding in a linear

regression model due to lack of identifiability.

5.2.3 Bivariate Matérn model

If we choose to work with marginal Matérn random fields, then an appropriate

cross-covariance model to use would be the bivariate Matérn model (Gneiting et al.

(2010)). The cross-covariance function is of the form,

C(h) =

Ü
σ2
xM(h; θx, νx) ρσxσeM(h; θ, ν)

ρσxσeM(h; θ, ν) σ2
eM(h; θe, νe)

ê
(5.15)

where M(h; θ, ν) =
21−ν

Γ(ν)
(
√
2νθ||h||)νKν(

√
2νθ||h||) is the Matérn kernel from Sec-

tion 2.2.1. This model is flexible in that both marginals and the cross-covariance

functions can be separately parametrized. However, this flexibility comes at a cost

of parameter restrictions. Using Cramér’s theorem, Gneiting et al. (2010) list a set

of conditions needed for this model to satisfy the validity criterion. These conditions

involve very complicated constraints among the parameters, unless one chooses to
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make some extreme assumptions. For example, in the case of d = 2, equal scale

parameters θx = θe = θ, and ν =
1

2
(νx + νe), Gneiting et al. (2010) show that this

model is valid if and only if |ρ| ≤
√
νxνe
ν

. Thus, the confounding parameter lies

inside an interval smaller than [−1, 1], unless we take νx = νe (but this reduces back

to the separable model). The 2n× 2n covariance matrix from (5.5) is,

Ψ(θ) =

Ü
σ2
xΦx(θx) ρσxσeΦ(θ)

ρσxσeΦ(θ) σ2
eΦe(θe)

ê
(5.16)

The conditional mean and variance of x|e is τ (θ) =
ρσe

σx

Φ(θ)Φ−1
x (θx)x andΣe|x(θ) =

σ2
eΦ(θe) −Φ(θ)Φ−1

x (θx)Φ(θ). Then, the form of the conditional likelihood is given

in (5.6) is given by,

y|x ∼ N

Å
f(x;β) +

ρσe

σx

Φ(θ)Φ−1
x (θx)x, σ

2
eΦ(θe)− ρ2σ2

eΦ(θ)Φ−1
x (θx)Φ(θ)

ã
(5.17)

In either the linear or nonlinear regression models, it is difficult to see if the param-

eters are formally identifiable based on the above distribution. We believe that the

parameters are identifiable based on our numerical study in Chapter 6.

5.2.4 Markov model

Another type of model that we can consider is the so called Markov model

(Journel (1999)),
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C(h) =

Ü
σ2
xϕx(h;θx) ρσxσeϕx(h;θx)

ρσxσeϕx(h;θx) σ2
eϕe(h;θe)

ê
(5.18)

where ϕx and ϕe are the correlation functions of x(s) and e(s) respectively. If we

consider Matérn covariances only, one can see that this is a special case of the

bivariate Matérn model where the off-diagonal Matern correlations are equal to the

Matern correlation of x(s). The term “Markov” model was coined from the following

screening hypothesis,

E[e(s)|x(s) = x1, x(t) = x2] = E[e(s)|x(s) = x1] ∀s, t

that is, the effect of the random field x(s) at any location other than s gets screened

out. As a consequence of the bivariate Gaussian assumption, this conditional expec-

tation equals E[e(s)|x(s)] = Cx(s) for some constant C. From the Markov property

and Gaussianity, Journel (1999) shows that (5.18) is a consequence of these assump-

tions with the constant C = ρσxσe. By Cramér’s theorem, C(h) is valid if and only

if fee(ω;θe) ≥ ρ2fxx(ω;θx) for almost all ω, where fxx and fee are the spectral

densities of x(s) and e(s) respectively. Once again, if one decides to use Matérn

covariances, Gneiting et al. (2010) give a list of parameter restrictions that can be

simplified for this model. The corresponding 2n× 2n covariance matrix from (5.5)
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is,,

Ψ(θ) =

Ü
σ2
xΦx(θx) ρσxσeΦx(θx)

ρσxσeΦx(θx) σ2
eΦe(θe)

ê
(5.19)

The conditional mean and variance is τ (θ) =
ρσe

σx

x and Σe|x(θ) = σ2
eΦe(θe) −

σ2
eρ

2Φx(θx) respectively. Our conditional likelihood in (5.6) then has the form,

y|x ∼ N

Å
f(x;β) +

ρσe

σx

x, σ2
eΦe(θe)− ρ2σ2

eΦx(θx)

ã
(5.20)

Regarding formal identifiability, all parameters are identifiable in this confounding

model under linear independence assumptions on f(x;β) and x similar to Assump-

tion 5.2.1 in the separable model and LMC. However, when the trend is linear

f(x;β) = β01 + β1x, we have partial identifiability of ρ and β1 if we restrict the

sign of ρ.

Proposition 5.2.2. Suppose the regression model (5.1) is linear, f(x;β) = β01 +

β1x. Suppose the following assumptions hold.

(A1) (Linear independence of ϕx, ϕe) For any θe1,θe2 and fixed h ∈ Rd, there does

not exist a, b ∈ R such that ϕx(h;θx) = aϕe(h;θe1) + bϕe(h;θe2).

(A2) (Injectivity of ϕe) For any fixed h ∈ Rd, ϕe(h;θe) is one-to-one with respect

to θe.

(A3) (Sign of ρ) The correlation parameter ρ is known in advance to be either non-

positive or to be non-negative.
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Then the parameters in (5.20) are identifiable.

As an example of assumptions (A1), (A2), take ϕx and ϕe both to be exponential,

ϕx(h; θx) = e−θx||h||, ϕe(h; θe) = e−θe||h||. Then if either θx < θe1, θe2 or θx > θe1, θe2,

the assumptions hold. Assumption (A3) allows us to identify the parameters ρ and

β1 separately.

Proof. Let Ωi = (β0i, β1i, ρi, σ
2
ei
,θei), i = 1, 2 represent two sets of parameters. To

show that the likelihood in (5.20) is one-to-one with respect to Ω, it suffices to

consider the conditional moments separately. In particular, EΩ1 [y|x] = EΩ2 [y|x]

implies that,

β011+

Å
β11 +

ρ1σe1

σx

ã
x = β021+

Å
β21 +

ρ2σe2

σx

ã
x

Since x and 1 are linearly independent (i.e, the design matrix X is full rank), it

follows that β0 and β1+
ρσe

σx

are identifiable. Next, VarΩ1(y|x) = VarΩ1(y|x) implies

that,

σ2
e1
Φe(θe1)− ρ21σ

2
e1
Φx(θx) = σ2

e2
Φe(θe2)− ρ22σ

2
e2
Φx(θx)

The diagonal elements of these matrices imply that, ρ21(1 − σ2
e1) = ρ22(1 − σ2

e2) and

so ρ2(1− σ2
e) is identifiable. The off-diagonal terms of these matrices imply that,

(ρ21σ
2
e2
− ρ22σ

2
e2
)ϕx(si − sj;θx) = σ2

e1
ϕe(si − sj;θe1)− σ2

e2
ϕe(si − sj;θe2)
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By assumption (A1), this can only occur if ρ21σ
2
e2
= ρ22σ

2
e2
and thus ρ2σ2

e is identifiable.

Together with ρ2(1−σ2
e), this implies that σ2

e and ρ2 are identifiable. If we restrict the

sign of ρ as in assumption (A3), then ρ is identifiable, which in turn, implies that β1 is

identifiable. Finally, if we set the left hand side to 0 above, then ϕe(||si−sj||;θe1) =

ϕe(||si − sj||;θe2) which implies that θe1 = θe2 by Assumption (A2).

We note that because of the restriction of ρ to be non-positive or non-negative,

caution should be exercised when applying hypothesis tests for ρ = 0 in the linear

regression model. This sign restriction cannot in general be relaxed. In the linear

regression model, the conditional likelihood in (5.6) has the form,

y|x ∼ N

Å
β01+

Å
β1 +

ρσe

σx

ã
x, σ2

eΦe(θe)− ρ2σ2
eΦx(θx)

ã
There are different pairs (β1, ρ) that lead to the same the likelihood function, for

example, (β1, ρ) and

Å
β1 + 2

ρσe

σx

,−ρ

ã
.

5.2.5 Page et al model

Page et al. (2017) take a different approach to modeling the cross-covariance.

Instead of assuming a cross-covariance function of the underlying bivariate random

field (x(s), e(s))T in (5.2), they decide to look directly at the corresponding 2n×2n

covariance matrix from (5.5). They assume the structure,

Ψ(θ) =

Ü
σ2
xΦx(θx) ρσxσeLx(θx)L

T
e (θe)

ρσxσeLe(θe)L
T
x (θx) σ2

eΦe(θe)

ê
(5.21)
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where L,LT are lower and upper triangular matrices which come from the Cholesky

decompositions of Φx(θx) = Lx(θx)L
T
x (θx) and Φe(θe) = Le(θe)L

T
e (θe) respec-

tively. The separable model is a special case of this one when Φx(θx) = Φe(θe),

thus it differs by allowing one to model the marginals of x(s) and z(s) separately.

By construction, the off-diagonal cross covariance matrices change depending on the

number of spatial locations. As a simple example, suppose we have three locations

{s1, s2, s3} = {(0, 0), (1, 0), (0, 1)} in R2. Take x(s) and e(s) to have exponential

correlation functions ϕx(si, sj) = e−
1
2
||si−sj || and ϕe(si, sj) = e−||si−sj || respectively.

Then the correlation matrices are,

Φx =

s1 s2 s3


1.00 0.61 0.61 s1

0.61 1.00 0.49 s2

0.61 0.49 1.00 s3

Φe =

s1 s2 s3


1.00 0.37 0.37 s1

0.37 1.00 0.24 s2

0.37 0.24 1.00 s3

After computing the Cholesky decompositions, the upper right cross correlation

matrix in (5.21) is,

LxL
T
e =

s1 s2 s3


1.00 0.37 0.37 s1

0.61 0.96 0.32 s2

0.61 0.37 0.96 s3
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However, if we do the same calculation using only the locations {s2, s3}, we have,

LxL
T
e =

s2 s3
1.00 0.24 s2

0.49 0.96 s3

We see that the exclusion of s1 changes the dependence structure of x(s) and e(s)

at the locations {s2, s3}. This type of triangular array structure that depends on

the number of spatial locations is used in spatial autoregressive models (Cressie

(1993)). In fact, Page et al. (2017) use an autoregressive model in their simulations

when studying confounding, which could have been the motivation behind this cross-

covariance. Extra care should be taken with this model as datasets are not easily

interpretable as the evaluations at a subset of locations from a well-defined random

field.

Since we do not have the form of an underlying cross covariance function C(h)

or spectral density matrix f(ω), Cramér’s theorem cannot be used to determine if

model is valid. However, we can still determine if the model is valid by directly

verifying if the covariance matrix in (5.21) is positive definite. This will hold if and

only if the Schur complement is positive definite (see Lemma 7.4.6 in Chapter 7).

Since the Schur complement of the above matrix is σ2
e(1 − ρ2)Φe(θe), the above

model is valid iff |ρ| ≤ 1. The conditional mean and variance of e|x are τ (θ) =

ρσe

σx

Le(θe)L(θx)
−1x and Σe|x(θ) = σ2

e(1 − ρ2)Φe(θe) respectively. Then, the form
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of the conditional distribution in (5.6) is,

y|x ∼N

Å
f(x;β) +

ρσe

σx

Le(θe)Lx(θx)
−1x, σ2

e(1− ρ2)Φe(θe)

ã
(5.22)

For a general nonlinear trend f(x;β), it is difficult to see if the parameters are

formally identifiable. We expect it to be true based on our numerical study of this

model in Chapter 6. For a linear regression model f(x;β) = β01 + β1x, we can

argue identifiability under suitable linear independence assumptions.

Proposition 5.2.3. Suppose that in our regression model (5.1), the trend function

is linear, f(x;β) = β01+ β1x. Assume that for any h ∈ Rd, the following hold,

1. ϕe(h;θe) is injective with respect to θe

2. ϕe(h;θe) and ϕx(h;θx) are linearly independent functions, that is, not scalar

multiples of one another.

Then the parameters (βT ,θT )T are identifiable.

Proof. First note that the intercept is automatically identifiable as the unconditional

mean E[y] = β01. For the remaining parameters, let (β1i, ρi, σ
2
ei,θ

T
ei)

T , i = 1, 2 be

two possible sets of parameters. Since the conditional distribution y|x in (5.22)

is Gaussian, it suffices to show that the conditional moments are one-to-one with

respect to the parameters. Setting the conditional variances equal,

σ2
e1(1− ρ21)Φe(θe1) = σ2

e2(1− ρ22)Φe(θe2)
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If we compare the diagonal elements of these matrices, the displayed equation implies

that σ2
e1(1 − ρ21) = σ2

e2(1 − ρ22) and so the parameter σ2
e(1 − ρ2) is identifiable.

Then the above implies that Φe(θe1) = Φe(θe2) or equivalently ϕe(||si − sj||;θe1) =

ϕe(||si − sj||;θe1) for i, j = 1, ..., n. By assumption 1 above, this implies that

θe1 = θe1 and thus θe is identified. Next, setting the conditional means equal,

β11x+
ρ1σe1

σx

Le(θe)Lx(θx)
−1x = β12x+

ρ2σe2

σx

Le(θe)Lx(θx)
−1x

Setting γ =
1

σx

L−1
x (θe)x, we can rearrange the above expression as,

(β11 − β12)σxLx(θx)γ + (ρ1σe1 − ρ2σe2)Le(θe)γ = 0

By assumption 2 above, since the correlation functions ϕe(h;θe) and ϕx(h;θx) are

linearly independent, this implies that the corresponding matricesLe(θe) andLx(θx)

are linearly independent (as vectors in the space of real n × n matrices). Thus,

β11 = β12 and ρ1σe1 = ρ2σe2 and so β1 and ρσe are identifiable. Together with

σ2
e(1− ρ2) being identifiable, this implies that ρ and σ2

e are identifiable.

5.2.6 Asymmetric Markov model

The final model we consider was inspired by the Markov model with a slight

modification,

C(h) =

Ü
σ2
xϕx(h;θx) ρσxσeϕx(h;θx)

ρσxσeϕe(h;θx) σ2
eϕe(h;θe)

ê
(5.23)
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Unlike the Markov model in (5.18), this cross covariance function is asymmetric as

one of the off-diagonal correlation functions is that of the error. Cramér’s Theorem

shows that this cross covariance is valid if |ρ| ≤ 1. Thus, this model does not have

parameter restrictions found in the Markov model. The corresponding 2n × 2n

covariance matrix from (5.5) is,,

Ψ(θ) =

Ü
σ2
xΦx(θx) ρσxσeΦx(θx)

ρσxσeΦe(θe) σ2
eΦe(θe)

ê
The conditional mean and variance of e|x are τ (θ) =

ρσe

σx

Φe(θz)Φ
−1
x (θx)x and

Σe|x(θ) = σ2
e(1 − ρ2)Φe(θe) respectively. Then the conditional distribution of y|x

is,

y|x ∼N

Å
f(x;β) +

ρσe

σx

Φe(θe)Φx(θx)
−1x, σ2

e(1− ρ2)Φe(θe)

ã
(5.24)

We note the similarity between this conditional distribution and that of the Page

confounding model in (5.22). Due to the similar structure as the Page model, formal

identifiability arguments transfer here. Specifically, all parameters are identifiable

under in both the linear and nonlinear regression models. In the linear regression

model, we refer to Proposition 5.2.3 and its proof for details, replacing the Cholesky

decompositions Lx and Le with the correlation matrices Φx and Φe themselves.

5.2.7 Other confounding models

There are many cross covariance functions in the statistical literature that one

may consider as a model of confounding; we gave a description of a select few that
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satisfy our identifiability criteria. One other notable model that we omitted is the

so-called convolution model (Genton and Kleiber (2015)),

C(h) =

Ü
(ϕ1 ∗ ϕ1)(h;θx) (ϕ1 ∗ ϕ2)(h;θx,θe)

(ϕ1 ∗ ϕ2)(h;θx,θe) (ϕ2 ∗ ϕ2)(h;θe)

ê
where (ϕ1 ∗ϕ2)(h) =

∫
Rd

ϕ1(h−k)ϕ2(k)dk and ϕ1, ϕ2 are correlation functions. The

reason for the omission is that in general it is difficult to find closed forms for these

convolutions and analyses must typically be done through numerical integrals. A

general overview of cross-covariance functions found in spatial statistics literature

is given in Genton and Kleiber (2015).
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Chapter 6 Numerical study of confounding

6.1 Practical identifiability of confounding models

In Chapter 5, we listed numerical criteria for the practical identifiability of un-

known parameters in confounding models. For each of the confounding models listed

in Section 5.2, we perform a simulation study based on these criteria to determine

if they are suitable for use on real data.

6.1.1 Numerical setup

We use the same spatial locations as in Figure 4.1. In each of the confound-

ing models, we choose exponential covariance functions Cx(h) = σ2
xe

−θx||h|| and

Ce(h) = σ2
ee

−θe||h|| for both x(s) and e(s). Recall that we treat the covariate pa-

rameters (σ2
x, θx)

T as known for our simulations. For our covariate, we arbitrarily

choose as the true parameters (σ2
x, θx)

T = (2, 3
2
)T and generate one realization of

x ∼ N(0, σ2
xΦx(θx)). For our nonlinear trend, we take f(x(s);β) =

β0

1 + e−β1x(s)

with true parameter values of (β0, β1)
T = (6, 3)T . For the remaining covariance

parameters and confounding parameter, we arbitrarily take as the true values,

(ρ0, σ
2
e0, θe0)

T = (1
4
, 1, 1

2
)T . For MC estimation, we generate 1000 realizations of
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y conditional on x according to (5.6). For each of these realizations we compute a

set of MLE estimates (β̂T , θ̂T )T using the nlminb function in the base R package.

This function uses a quasi-Newton method that allows for box-constraints on the

parameters. To find evidence that these estimates are true minima, we compute

the gradient and Hessian of the negative log-likelihood. We look for small gradient

norms and positive eigenvalues of the Hessian. For each set of MC estimates, we

plot them as a histogram and overlay the theoretical normal density as predicted

by Mardia and Marshall (1984).

6.1.2 Separable model

Recall that in this model, the covariate and error share the same scale parame-

ter in the exponential correlation function ϕ(h) = e−θ||h||. Thus, the scale parameter

θ is known here and thus the unknown parameters in this model are (β0, β1, ρ, σ
2
e)

T .

For n = 50, 100, 200 and 400 locations, we evaluate the Fisher information matrix

for the separable model at these true parameters. The maximum and minimum

eigenvalues of the Fisher information and diagonal elements of the inverse Fisher

information are given below in Table 6.1. We see that the numbers are generally

behaving as expected. By doubling the number of locations, the corresponding el-

ements of the Fisher information and its eigenvalues approximately double as well.

The condition numbers remain small as the number of observations increases.
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Eigenvalues Diagonals of inverse Fisher information

n λmax λmin β0 β1 ρ σ2
e

50 60.78 2.15 0.17289 0.40290 0.04428 0.04759
100 133.80 4.82 0.09069 0.18118 0.01852 0.02277
200 293.24 10.05 0.04656 0.08774 0.00783 0.01098
400 526.48 19.96 0.02506 0.04177 0.00476 0.00573

Table 6.1: Fisher information analysis of the separable model

For MC estimation, we generate 1000 realizations of y|x according to the conditional

distribution given in (5.11) and then compute MLE estimates for each. From a

separate gradient and Hessian analysis, there is no evidence of large gradients or

negative eigenvalues in the Hessians. The histograms of these estimates along with

their theoretical densities overlayed are given in Figure 6.1. The MC estimates

closely match the theoretical asymptotic normal densities.
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Figure 6.1: Separable model MLE estimates along with the theoretical densities
(red). Histograms are based on 1000 simulations of y|x from the model (5.11).
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6.1.3 Linear model of coregionalization (LMC)

For the LMC, the marginals of x(s) and e(s) are separately parametrized

and do not share a correlation function. The unknown parameters in this model

are (β0, β1, ρ, σ
2
e , θe)

T , with the additional unknown scale parameter θe compared to

the separable model. The eigenvalues and diagonal elements of the inverse Fisher

information matrix are presented in Table 6.2 below.

Eigenvalues Diagonals of inverse Fisher information

n λmax λmin β0 β1 ρ σ2
e θe

50 148.62 1.73 0.39418 0.22838 0.04261 0.15117 0.05665
100 243.95 2.55 0.26809 0.13924 0.03291 0.08867 0.03133
200 478.58 5.04 0.13462 0.07225 0.01668 0.04740 0.01660
400 1238.69 10.20 0.06369 0.03864 0.00637 0.02482 0.00884

Table 6.2: Fisher information analysis of the LMC
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Figure 6.2: LMC MLE estimates along with the theoretical densities (red). His-
tograms are based on 1000 simulations of y|x from the model (5.14).
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The condition numbers and variances are slightly larger than the separable model,

but remain relatively small. Moreover, the numbers show expected scaling behavior

with an increasing number of observations. For MC estimation, we generate 1000

realizations of y|x according to the conditional distribution given in (5.14) and then

compute MLE estimates for each. Once again, we find no evidence of large gradients

or negative eigenvalues of the Hessian matrices. The histogram of these estimates

along with their theoretical densities overlayed are given in Figure 6.2. The MC

estimates generally are well approximated by their theoretical asymptotic normal

densities. This is less evident for n = 50, especially for the parameters σ2
e and θe.

However, we get expected asymptotic behavior for larger n.

6.1.4 Bivariate Matérn model

For our simulations, we take the cross correlation function between x(s) and

e(s) to also be exponential ϕ(h; θ) = e−θ||h||, with θ = θx + θe. From Gneiting et al.

(2010), this leads to the nonlinear constraint, |ρ| ≤
√
θxθe

θx + θe
. The eigenvalues and

diagonal elements of the inverse Fisher information are presented in Table 6.3.

Eigenvalues Diagonals of inverse Fisher information

n λmax λmin β0 β1 ρ σ2
e θe

50 260.65 1.86 0.37458 0.18719 0.03491 0.16169 0.06281
100 529.49 3.75 0.18290 0.10431 0.01641 0.09155 0.03412
200 1088.68 6.27 0.10839 0.06162 0.00912 0.04919 0.01847
400 2298.51 13.30 0.04930 0.03063 0.00386 0.02630 0.00949

Table 6.3: Fisher information analysis of the bivariate Matérn model

The condition numbers are larger than the ones in the separable model and LMC,
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but still have reasonable magnitude. The variances scale as expected with increasing

number of observations. For MC estimation, we generate 1000 observations accord-

ing to y|x given in (5.17) and compute MLE estimates for each. The nonlinear

constraint above is made into a regular box constraint using the reparametrization

γ =
ρ√
θxθe

θx + θe

where |γ| ≤ 1. Finally, we recover the MLE estimate of ρ with the

transformation ρ̂ = γ̂

»
θxθ̂e

θx + θ̂e
. The histograms of these estimates along with their

theoretical densities are given in Figure 6.3. The estimates for ρ and θe are not very

well resolved in the n = 50 case, but improve for n = 100, 200, 400.
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Figure 6.3: Bivariate Matérn model MLE estimates along with the theoretical den-
sities (red). Histograms are based on 1000 simulations of y|x from the model (5.17).

This corresponds with our gradient and Hessian analysis, where a small proportion

of estimates are found to be on the boundary of the parameter space when n = 50.
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This proportion becomes smaller as the number of observations double. For sample

sizes larger than n = 100, the estimates seem to be closely approximated by their

theoretical asymptotic densities.

6.1.5 Markov model

When x(s) and z(s) both have exponential covariances, the constraint for this

model becomes either of the following two conditions (Gneiting et al. (2010)),


ρ2 ≤ θe

θx
if θe < θx

ρ2 ≤
Å
θx
θe

ã2

if θe ≥ θx

For our simulations, we choose the first condition where θe < θx. The other condition

yields comparable results and so the analysis is not shown here. We note that our

choice of true parameters does satisfy this constraint. The eigenvalues and diagonal

elements of the inverse Fisher information are presented in Tables 6.4.

Eigenvalues Diagonals of inverse Fisher information

n λmax λmin β0 β1 ρ σ2
e θe

50 235.16 1.58 0.37854 0.32518 0.04138 0.15767 0.05755
100 428.21 2.97 0.22516 0.13303 0.02210 0.08965 0.03205
200 792.10 4.89 0.13842 0.07253 0.01582 0.04904 0.01776
400 1646.67 10.71 0.06246 0.03445 0.00698 0.02613 0.00928

Table 6.4: Fisher information analysis of the Markov model

The condition numbers and variances are comparable to the bivariate Matérn. For

MC estimation, we generate 1000 observations according to y|x in (5.20) and com-

pute MLE estimates for each. Similar to the bivariate Matérn model, the nonlinear
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constraint above can made into a regular box constraint using the reparametriza-

tion γ =
ρ 
θe
θx

. Then we use the nlminb function in R with the box constraints

|γ| ≤ 1 and θe < θx. Finally, we recover the MLE estimate of ρ with, ρ̂ = γ̂

 
θ̂e
θx
.

The histogram of these estimates along with their theoretical densities overlayed are

given in Figure 6.4. There is a noticeable anomaly in the MC estimates for θe when

n = 50. The nlminb function estimated these parameters to be on the boundary

θe = θx. This behavior disappears once we get to n = 100 and larger where the

estimates are well approximated by their theoretical asymptotic densities.
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Figure 6.4: Markov model MLE estimates along with the theoretical densities (red).
Histograms are based on 1000 simulations of y|x from the model (5.20).
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6.1.6 Page et al. and asymmetric Markov models

Since the Page et al. and asymmetric Markov models display similar numerics,

we present them both here. The eigenvalues and diagonal elements of the inverse

Fisher information for both models are presented in Tables 6.5 and 6.6 respectively.

Eigenvalues Diagonals of inverse Fisher information

n λmax λmin β0 β1 ρ σ2
e θe

50 97.32 2.18 0.27290 0.23831 0.05944 0.15393 0.05523
100 200.23 3.47 0.18917 0.11988 0.04059 0.08980 0.03011
200 407.29 6.70 0.08929 0.06440 0.01738 0.04703 0.01549
400 820.90 11.57 0.05337 0.03298 0.01242 0.02667 0.00855

Table 6.5: Fisher information analysis of the Page et al. model

Eigenvalues Diagonals of inverse Fisher information

n λmax λmin β0 β1 ρ σ2
e θe

50 103.33 1.78 0.30264 0.27651 0.07343 0.12068 0.04235
100 204.17 4.47 0.12914 0.11387 0.03731 0.07826 0.02723
200 412.95 8.36 0.06756 0.05722 0.01891 0.04294 0.01439
400 834.01 17.92 0.03217 0.02761 0.00902 0.02453 0.00820

Table 6.6: Fisher information analysis of the asymmetric Markov model

The eigenvalues show no sign of ill-conditioned Fisher information matrices. More-

over, the numbers show expected scaling as the number of observations double.

For MC estimation, we generate 1000 observations y|x according to (5.22) for

the Page et al. model and (5.24) for the asymmetric Markov model, and compute

MLE estimates for each. The histogram of these estimates along with their theo-

retical densities overlayed are given in Figures 6.5 and 6.6 respectively. A separate

gradient and Hessian analysis showed no evidence of non-local minima.
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Figure 6.5: Page et al. model MLE estimates along with the theoretical densities
(red). Histograms are based on 1000 simulations of y|x from the model (5.22).
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Figure 6.6: Asymmetric Markov model MLE estimates along with the theoretical
densities (red). Histograms are based on 1000 simulations of y|x from the model
(5.24).
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The estimates for ρ are not very well resolved for n = 50 in either model, but there

is better resolution for larger sample sizes. The MC estimates for both models are

approximated well with the normal distribution predicted by Mardia and Marshall

(1984).

6.2 Real data example: Housing prices in Boston

We explore the Boston housing dataset first analyzed by Harrison and Ru-

binfeld (1978). The dataset contains observations related to housing prices in 506

Boston census tracts as determined in the 1970 long-form census (Figure 6.7).
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Figure 6.7: Centroids of 506 census tracts in Boston (1970). In dark blue are the
locations of the 16 tracts with a censored median house value of $50,000.

The original dataset did not contain any information on spatial coordinates. We

use an updated version of the dataset found in the boston dataset of the spData
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package in R (Bivand et al. (2022)). This update contains latitude and longitude

coordinates along with tract point coordinates projected to UTM zone 19. In our

analysis, the median housing value, labelled CMEDV, serves as our response variable

y(s). We omit the 16 data points median with a censored value of $50,000 (see Figure

6.7). To highlight the potential for confounding in a nonlinear regression model, we

select as our covariate x(s), the variable LSTAT. Harrison and Rubinfeld (1978)

described this variable as the proportion of population that is perceived to be of

lower socioeconomic status, that is, adults without some high school education or

classified as laborers.

We first perform an analysis on the covariate LSTAT. After a log-transformation

of the LSTAT variable, a histogram of the data was created (Figure 6.8).
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Figure 6.8: Histogram of the log-transformed LSTAT variable from the Boston
dataset.
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Although a bit skewed, the histogram offers some support to using a Gaussian ran-

dom field model. Since we are dealing with one realization of a correlated random

field, we should note that this exploratory tool is restricted in its use as a diagnostic

for normality. However, in the case of a stationary random field (or strictly station-

ary in the Gaussian case), it may be justified since the distribution at each location

is the same.

Next, an empirical variogram was computed using the variogram function from

the gstat package (Gräler et al. (2016)) in R (Figure 6.9).
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Figure 6.9: Empirical variogram of the log-transformed LSTAT variable from the
Boston housing dataset. The empirical variogram was calculated using the Math-
eron variogram (see equation (3.15)), without any residuals. In red is the fitted
exponential variogram curve.

We fitted an exponential variogram curve using the fit.variogram function from the

gstat package R. A visual inspection determines that the model fits well and thus,

we use the exponential covariance function Cx(h;σ
2
x, θx) = σ2

xe
−θx||h|| to model the
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dependence structure of x(s). Since the covariate is not centered at 0, we also

estimate its unknown mean µx. The maximum likelihood estimates along with their

estimated standard errors (using the Fisher information) is given in Table 6.7.

σ̂2
x θ̂x µ̂x

Estimate (S.E.) 0.272 (0.028) 0.761 (0.097) 2.027 (0.059)

Table 6.7: Covariate parameter MLE estimates along with their estimated standard
errors

Next, we wish to determine the nonlinear relationship between LSTAT and

CMEDV. A preliminary scatterplot in Figure 6.10 shows a nonlinear relationship

between CMEDV and LSTAT.
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Figure 6.10: Scatterplot of CMEDV against LSTAT from the Boston dataset, with
the 16 censored datapoints omitted. In red is a fitted lowess curve and in blue is a
fitted exponential decay curve using OLS residuals from model (6.1).

We determined that an exponential decay curve approximated the loess curve well,
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and better than a straight line. Thus, the nonlinear model that we consider is,

y(s) = β1e
−β2x(s) + e(s) (6.1)

Let θ denote the unknown parameters in the model (6.1) other than β =

(β1, β2)
T . Using the observed data (xT ,yT )T , we compare estimates of (βT ,θT )T

under three different assumptions:

1. Independent, identically distributed errors

2. Spatially correlated errors without confounding

3. Spatially correlated errors with confounding using the confounding models for

(x(s), e(s))T described in Section 5.2.

In the first case, e(s) is just Gaussian measurement error, that is, e(s)
i.i.d∼ N(0, σ2)

for each s. Then, the conditional distribution of y|x is N
(
β1e

−β2x, σ2I
)
. From

this, the maximum likelihood estimates are computed along with their estimated

standard errors (using the Fisher information) and given in Table 6.8. The resulting

fitted trend is displayed in Figure 6.10.

β̂1 β̂2 σ̂2

Estimate (S.E.) 67.356 (0.111) 0.489 (0.001) 19.880 (0.898)

Table 6.8: OLS parameter MLE estimates along with their estimated standard errors

For spatially correlated errors without confounding, we must first model the covari-

ance structure of the error random field. Using the fitted OLS estimates (β̂1, β̂2)
T ,

we form the residuals ê = y − β̂1e
−β̂2x and perform a variogram analysis.
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Figure 6.11: Empirical variogram of OLS residuals from the nonlinear regression
model (6.1). The fitted exponential variogram is overlayed in red.

An exponential variogram curve was fitted using the fit.variogram function (Figure

6.11). Thus, we take the covariance function of the error random field to be ex-

ponential, Ce(h; θe, σ
2
e) = σ2

ee
−θe||h||. So the unknown parameters to be estimated

without confounding here are (β1, β2, σ
2
e , θe)

T . The conditional distribution without

confounding is y|x ∼ N
(
β1e

−βxx, σ2
eΣe(θe)

)
where {Σe(θe)}ij = e−θe||si−sj ||, i, j =

1, ..., 490. The maximum likelihood estimates along with their estimated standard

errors are presented in Table 6.9.

β̂1 β̂2 σ̂2
e θ̂e

Estimate (S.E.) 60.107 (2.207) 0.438 (0.020) 21.171 (1.932) 1.044 (0.128)

Table 6.9: GLS parameter MLE estimates along with their estimated standard errors

Finally, we estimate the parameters (βT ,θT )T taking into account the various con-

founding models described in Chapter 5. The parameter θ = (σ2
e , θe, ρ)

T now con-

tains the extra unknown confounding parameter. Recall that the separable model
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does not contain an estimate for θe since by assumption, the covariate and error

share a common correlation function. In general, this assumption is quite restrictive

and would not be practical. However, the variogram analyses for LSTAT and the

residual ê(s) both show that an exponential correlation for each is a good fit. More-

over, if we compare the MLE estimates θ̂x = 0.761 from Table 6.7 and θ̂e = 1.044

from Table 6.9, it appears that the estimated scale parameters are of roughly similar

magnitude. Thus, the assumption that they share a common correlation function is

at least plausible here and thus, we include the separable model in our analysis.

Estimates (S.E.)

Model β̂1 β̂2 σ̂2
e θ̂e ρ̂

1 71.117 (5.789) 0.526 (0.043) 26.931 (2.030) N/A 0.230 (0.093)
2 70.712 (5.819) 0.522 (0.043) 22.550 (2.273) 1.013 (0.124) 0.232 (0.103)
3 71.273 (5.148) 0.524 (0.038) 21.730 (2.148) 1.076 (0.123) 0.207 (0.076)
4 70.281 (5.813) 0.519 (0.044) 22.647 (2.279) 0.985 (0.115) 0.223 (0.103)
5 72.065 (5.541) 0.530 (0.040) 21.955 (2.195) 1.067 (0.126) 0.242 (0.089)
6 71.275 (5.252) 0.524 (0.038) 21.698 (2.150) 1.060 (0.124) 0.209 (0.080)

Table 6.10: MLE estimates along with their estimated standard errors for the sepa-
rable model (1), LMC (2), bivariate Matérn model (3), Markov model (4), Page et
al. model (5) and asymmetric Markov model (6).

The MLE estimates and estimated standard errors in are given in Table 6.10 for each

confounding model. A comparison with Table 6.9 shows that the presence of the

confounding parameter significantly changes the MLE estimates for the trend. Page

et al. (2017) concluded that in the linear regression model under known covariance

parameters, confounding could lead to bias in GLS estimators. This data analysis

suggests that something similar could happen with a nonlinear regression model.

For testing ρ = 0, we may construct confidence intervals using the above esti-
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mates along with their standard errors to a desired confidence level. Alternatively,

we may compute Wilks’ likelihood ratio statistics along with their p-values. Since

the model without confounding is nested within the confounding models, classical

theory (van der Vaart (1998), Chapter 16) suggests that the statistic,

W = −2 ln

Ö
sup

(β,θ):ρ=0

L(β,θ)

sup
(β,θ)

L(β,θ)

è
where L(β,θ) is the likelihood function of the model, is asymptotically distributed

as a chi-squared random variable with one degree of freedom. We present 95%

confidence intervals for ρ and Wilks’ statistics in Table 6.11. All models appear to

give significant evidence of the presence of confounding in this nonlinear regression

model.

Model 95% C.I. for ρ Wilks’ statistic p-value

Separable (0.048, 0.412) 4.935 0.026
LMC (0.030, 0.433) 4.054 0.044

Bivariate Matérn (0.059, 0.356) 6.229 0.013
Markov (0.020, 0.426) 3.829 0.050

Page et al. (0.068, 0.417) 6.038 0.014
Asymmetric Markov (0.053, 0.366) 6.175 0.013

Table 6.11: Confidence intervals for ρ and Wilks’ LRT statistics for each confounding
model

This was a rudimentary data analysis, but the main purpose was to illustrate

how confounding can be potentially be present in spatial regression models, espe-

cially if there are several omitted predictors. A more thorough analysis would take

into account the effect of other possible covariates, of which there are many in this

dataset. In fact, the underlying research question of the original paper by Harri-
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son and Rubinfeld (1978) was to determine if pollution affected the housing prices.

An analysis involving more covariates would involve modelling multivariate random

fields of the form (x1(s), ..., xm(s), e(s))
T with a more complicated confounding co-

variance structure. As we have stated previously, there is literature devoted to

the development of valid cross covariance functions for multivariate random fields

(Apanasovich et al. (2012)), but none in the context of confounding. This could be

possible groundwork for future development in multivariate confounding models.
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Chapter 7 Linear regression under infill asymp-

totics

We motivate the results of this chapter with the following example. Let x(t)

be a stationary Gaussian process on [0, 1], with unknown mean µ and exponential

covariance C(h) = σ2e−θh. This is known as the Ornstein-Uhlenbeck process or the

continuous-time version of the AR(1) model in time series analysis. For the case µ =

0, Ying (1991) and Abt and Welch (1998) investigated estimation of the covariance

parameters (θ, σ2) when sampling becomes increasingly dense in [0, 1]. Let P1 and

P2 denote two Gaussian measures induced by {x(t), t ∈ [0, 1]} corresponding to

(σ2
1, θ1)

T and (σ2
2, θ2)

T respectively. It was known to these authors, citing Ibragimov

and Rozanov (1978), that P1 and P2 are equivalent if and only if σ2
1θ1 = σ2

2θ2.

Ying (1991) was then able to prove that (σ2, θ)T cannot be consistently estimated

individually, but the microergodic parameter σ2θ can be. The following results on

consistency and asymptotic normality of the MLE of σ2θ can be found in Theorems

1 and 2 of Ying (1991).

Theorem 7.0.1. Let {tn}∞n=1 be a sequence in [0, 1] whose closure equals [0, 1]. Let

(x(t1), · · · , x(tn))T be a realization of the zero mean OU process based on the first n
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observations. Let Ln(σ
2, θ) be the likelihood function based on the observations and

let (σ̂2
n, θ̂n)

T = argmax
σ2,θ

Ln(σ
2, θ) denote the MLE of (σ2, θ)T . Then as n → ∞,

σ̂2
nθ̂n

a.s.−−→ σ2
0θ0

√
n(σ̂2

nθ̂n − σ2
0θ0)

D−→ N(0, 2(σ2
0θ0)

2)

under the true probability measure, where (σ2
0, θ0)

T are the true parameters.

Through a Fisher information analysis, Abt and Welch (1998) (section 5, p. 132)

conclude a similar result. They first show that the inverse Fisher information for

(σ2, θ)T does not decay to 0 as the number of observations increase. However, they

show that the inverse Fisher information I−1
σ2θ of the microergodic parameter σ2θ

satisfies lim
n→∞

nI−1
σ2θ = 2(σ2θ)2, matching the asymptotic variance given by Ying.

For estimation of the mean µ, Morris and Ebey (1984) sampled n equally

spaced locations ti =
i− 1

n− 1
, i = 1, ..., n in [0, 1]. For the corresponding observations

(x(t1), ..., x(tn))
T , they considered as an estimator for µ the sample mean x̄n =

1

n

n∑
i=1

x(ti). For any (σ2, θ)T , they explicitly calculated the limiting variance of the

sample mean to be,

lim
n→∞

Var(x̄n) =
2σ2

θ2
[
e−θ + θ − 1

]
(7.1)

Thus, the asymptotic variance is bounded away from 0. In fact, as we will show

in Section 7.3.2, the sample mean converges almost surely to the integral

∫ 1

0

x(t)dt

since the empirical measure of {t1, · · · , tn} converges to the Lebesgue measure on
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[0, 1]. This integral is well defined since the sample paths of x(t) are continuous

almost surely. Since it is the limit of a Gaussian sequence x̄n, it is also a Gaussian

random variable with mean µ and variance

∫ 1

0

∫ 1

0

σ2e−θ|s−t|dsdt, which has a closed

form solution (7.1). These surprising results contrast with their increasing domain

counterparts, where for example, consistency and asymptotic normality hold under

mild conditions.

In this chapter, we consider the linear regression model,

y(s) = β0 +

p∑
k=1

βkxk(s) + e(s), s ∈ D ⊂ Rd (7.2)

where D is compact. We assume that error e(s) is independent of the multivariate

random field (x1(s), · · · , xp(s))
T and all fields are mean zero Gaussian. We are in-

terested in the joint estimation of (βT ,θT )T where θ parametrizes the covariance

of e(s). For infill sampling, we observe y(s) and {xk(s)}pk=1 at locations {s1, ..., sn}

that become increasingly dense in D. Infill asymptotics literature emphasizes esti-

mation of the covariance parameters and typically assumes that the mean is zero or

known. When discussing estimation in an infill setting, Stein (1999), p. 12, states

that it is common to assume the mean is highly regular. He further states that

smooth covariates have little impact on spatial interpolation, and one does just as

well asymptotically by setting the regression coefficients to be 0. In the Matérn

case, we clarify these statements with explicit conditions on the smoothness of the

covariates relative to the error.

111



7.1 Equivalence of Gaussian measures with different means

7.1.1 Deterministic mean function

In this section, we give a literature review of some known results on the equiv-

alence and singularity of Gaussian measures with different mean functions. We

assume a general form of the regression model,

y(s) = m(s) + e(s), s ∈ D ⊂ Rd (7.3)

where e(s) is a mean zero Gaussian random field with jointly continuous covariance

function C(s, t) and m(s) is a deterministic function representing the mean of y(s).

In the case of a known covariance function, let Pm,P0 be the Gaussian probability

measures for y(s) corresponding tom(s) not identically 0 andm(s) = 0 respectively.

The solution to the problem of equivalence and mutual singularity of Pm and P0 has

been known for decades in the probability and time series literature. Cameron

and Martin (1944) studied the problem in the special case where D = [0, 1] and

e(s) is a Brownian motion on D. In Theorem 2 of their paper, they proved that

Pm ≡ P0 if and only if m(s) is absolutely continuous with first derivative being

square integrable on [0, 1]. As we shall see, it is no coincidence that the smoothness

of m(s) determines whether or not Pm ≡ P0. For broader classes of Gaussian

processes, Grenander (1950) derived conditions utilizing the Karhunen-Loève (K-L)

representation of y(s). The K-L representation of the random field in (7.3) takes
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the form of an infinite series (where convergence is defined in L2),

y(s) = m(s) +
∞∑
n=1

ξnφn(s) (7.4)

where {ξn}∞n=1 are independent N(0, λn) and (λn, φn) satisfy the integral equation,

∫
D

C(s, t)φn(t)dt = λnφn(s), φn(s) ∈ L2(D) (7.5)

The advantage of the representation in (7.4) is that the sigma algebra generated by

{y(s), s ∈ D} is equal to the sigma algebra generated by the countable sequence

{ξn}∞n=1 in (7.4). Thus, the measures Pm and P0 can be reduced to a countably

infinite product of measures induced by {ξn}∞n=1. A well known theorem of Kakutani

(1948) gives necessary and sufficient conditions for two countably infinite product

measures to be equivalent or mutually singular. Using the K-L representation of

Gaussian random fields and Kakutani’s theorem, Grenander proved the following

result (see Section 4.4 of Grenander (1950)).

Theorem 7.1.1. Let (λn, φn) be the eigenpairs of (7.5) and mn =

∫
D

m(s)φn(s)ds.

Then the Gaussian measures P0 and Pm are either equivalent or mutually singular.

They are equivalent if
∞∑
n=1

m2
n

λn

< ∞ and mutually singular if
∞∑
n=1

m2
n

λn

= ∞.

Grenander’s conditions of Theorem 7.1.1 are in general difficult to verify an-

alytically since the eigenpairs of (7.5) rarely exist in closed form. There are cases

such as Brownian motion and the Ornstein-Uhlenbeck process on R, where K-L

representations have closed forms, but these are exceptions. Hájek (1958) (and in-

113



dependently, Feldman (1958)) arrived at this Gaussian dichotomy result in another

way, using the entropy distance method described in Section 2.5.2. This method

has more statistical relevance because it allows us to formulate equivalence and sin-

gularity results in terms of observed data. Let {s1, .., sn} be a nested sequence of

countably dense locations in D and y = (y(s1), ..., y(sn))
T be the corresponding

observations of y(s) at these locations. Then, y is multivariate Gaussian with mean

vector m = (m(s1), · · · ,m(sn))
T and known covariance matrix Σ. Denote by pn,

the likelihood ratio of Pm to P0 based on the observations y. A simple calculation

of log pn yields,

log pn = mTΣ−1y − 1

2
mTΣ−1m (7.6)

Recall the definition of entropy distance given in (2.10) of Definition 2.5.2. In this

case, the entropy distance is Jn = Em[log pn]− E0[log pn] = mTΣ−1m. By Lemma

2.5.3, Hájek’s Gaussian dichotomy result can be stated as follows.

Theorem 7.1.2. P0 and Pm are either equivalent or mutually singular. They are

equivalent if lim
n→∞

mTΣ−1m < ∞ and mutually singular if lim
n→∞

mTΣ−1m = ∞.

There is a relationship between the conditions of Theorems 7.1.1 and 7.1.2. The

integral equation in (7.5) of the K-L representation is a continuous analog of the

eigenvalue decomposition of the covariance matrix Σ = PDP T . Here P is an

orthogonal matrix containing the eigenvectors of Σ and D is a diagonal matrix

containing the eigenvalues. Then mTΣ−1m = mTP TD−1Pm =
n∑

i=1

m2
i

λi

, where

mi, i = 1, ..., n is the ith entry of Pm. Letting n → ∞, this has a similar form to
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Grenander’s condition in Theorem 7.1.1.

In the context of signal detection theory, Parzen (1963) gave an answer to the

problem of equivalence and singularity of P0,Pm using the theory of reproducing

kernel Hilbert spaces (RKHS). The following definition of RKHS is given in terms

of a continuous covariance kernel, but in general applies to any positive definite

function. For a treatise on the theory of reproducing kernels, we refer to Aronszajn

(1950).

Definition 7.1.3. Let C(s, t) be a jointly continuous covariance function on D×D

where D ⊂ Rd is compact. For any fixed t0 ∈ D, consider the mapping s 7→

C(s, t0). Then there exists a unique Hilbert space of functions on D, denoted as

R(C), equipped with an inner product ⟨·, ·⟩ such that,

1. C(s, t0) ∈ R(C) for any t0 ∈ D

2. ⟨f, C(·, t0)⟩ = f(t0) for any f(s) ∈ R(C)

R(C) is called the reproducing kernel Hilbert space (RKHS) with kernel C(s, t).

This cursory definition does not give much insight into the structure of the space

R(C). For example, it does not give an explicit form of inner product or properties

of functions that lie in R(C). The uniqueness property of RKHS implies that as

long we can find a Hilbert space with inner product satisfying the properties of

Definition 7.1.3, then it will be the RKHS associated with C(s, t). It turns out that

RKHS are related to the K-L representation (7.4) of a random field. By a theorem

of Mercer (1909), the eigenfunctions {φn}∞n=1 in (7.5) form an orthonormal basis of
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L2(D), and the covariance function C(s, t) has representation,

C(s, t) =
∞∑
n=1

λnφn(s)φn(t) (7.7)

which converges uniformly on D × D by continuity. With this representation, we

have the following characterization of RKHS (p. 57 of Parzen (1962)), which shows

that RKHS are a subspace of L2(D).

Theorem 7.1.4. Let {φn}∞n=1 be the orthonormal basis of L2(D) given in (7.5). The

reproducing kernel Hilbert space R(C) is a subspace of L2(D) consisting of functions

with the representation,

f(s) =
∞∑
n=1

fnφn(s), fn =

∫
D

f(s)φn(s)ds (7.8)

such that ||f ||2 :=
∞∑
n=1

f 2
n

λn

< ∞. For f(s), g(s) ∈ R(C), the corresponding inner

product is ⟨f, g⟩ :=
∞∑
n=1

fngn
λn

.

For a fixed t0 ∈ D and Mercer’s representation of C(s, t0) in (7.7), one may verify

that,

1. ||C(·, t0)||2 =
∞∑
n=1

(λnφn(t0))
2

λn

= C(t0, t0) < ∞

2. ⟨f, C(·, t0)⟩ =
∞∑
n=1

fnλnφn(t0)

λn

= f(t0) for any f(s) ∈ R(C).

Thus, C(s, t) satisfies the properties of being a reproducing kernel given in Definition

7.1.3. Comparing Theorem 7.1.4 with Grenander’s conditions in Theorem 7.1.1,

Parzen (1963) formulated his equivalence and singularity result as follows.
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Theorem 7.1.5. Pm ≡ P0 if and only if m(s) ∈ R(C).

Parzen (1963) states that functions belonging to R(C) must be at least as

smooth as C(s, t0) for any t0 ∈ D. Thus, in order for the measures Pm,P0 to

equivalent, the mean function m(s) must be at least as smooth as the covariance

function C(s, t0). To see an explicit connection between smoothness of functions

and RKHS, we state a few more known results in the spectral domain. When e(s) is

stationary, the RKHS can be formulated in terms of its spectral density (Wendland

(2004), Theorem 10.12).

Theorem 7.1.6. Let C(s, t) be a stationary covariance function on Rd with cor-

responding spectral density f(ω). That is, C(s, t) = C0(s − t) for some function

C0. Then R(C) is the subspace of L2(Rd) consisting of functions g(s) whose Fourier

transform ĝ(ω) =
1

(2π)d

∫
Rd

e−iωT sg(s)ds satisfies,

||g||2 :=
∫
Rd

|ĝ(ω)|2

f(ω)
dω < ∞ (7.9)

For g, h ∈ R(C), the corresponding inner product is ⟨g, h⟩ :=
∫
Rd

ĝ(ω)ĥ(ω)

f(ω)
dω.

Using properties of the Fourier transform, one may verify that for any t0 ∈ D,

1. ||C(·, t0)||2 =
∫
Rd

f(ω)dω < ∞

2. ⟨g, C(·, t0)⟩ =
∫
Rd

ĝ(ω)eiω
T t0ds = g(t0) for any g(s) ∈ R(C).

Thus, C(s, t) satisfies the properties of a reproducing kernel in Definition 7.1.3.

This formulation of the RKHS shows that the Fourier transform of any function
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f(s) ∈ R(C) should decay faster than the Fourier transform of C(s, t0) for any

t0 ∈ D. Since the tail behavior of a Fourier transform of a function f(s) determines

the smoothness of f(s), this confirms that f(s) should be smoother than C(s, t0)

for it to belong to R(C). As a corollary to Theorems 7.1.5 and 7.1.6, the following

result gives a spectral condition for the equivalence and singularity of Pm,P0 and

can be found in Theorem 2 (p. 138) of Yadrenko (1983).

Theorem 7.1.7. Suppose that e(s) in (7.3) is stationary with spectral density f(ω).

Then P0 ≡ Pm if and only if m(s) can be extended to a square integrable function

on Rd and its Fourier transform m̂(ω) satisfies,

∫
Rd

|m̂(ω)|2

f(ω)
dω < ∞ (7.10)

Finally, we state another result relating RKHS to Sobolev spaces (see Definitions

2.5.9 and 2.5.10), which makes the role of smoothness become fully apparent. The

following result (Wendland (2004), Corollary 10.13) shows that if the spectral density

has a precisely polynomial decay, then the RKHS and Sobolev spaces coincide.

Theorem 7.1.8. Let ℓ >
d

2
and suppose the spectral density f(ω) of e(s), s ∈ D

satisfies,

k(1 + ||ω||2)−ℓ ≤ f(ω) ≤ K(1 + ||ω||2)−ℓ

for constants k,K. Then the RKHS R(C) coincides with the Sobolev space W ℓ
2(D)

and the RKHS norm and Sobolev space norms are equivalent.
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This can be seen from (7.9), where the norm of any g(s) ∈ R(C) is finite iff,

||g||2 :=
∫
Rd

|ĝ(ω)|2(1 + ||ω||2)ℓdω < ∞, ℓ >
d

2

and this norm is known to be equivalent to the Sobolev norms given in Definitions

2.5.9 and 2.5.10 (Wendland (2004), p. 133). Once again, we obtain the following

equivalence and singularity result as a corollary to Theorems 7.1.5 and 7.1.8. It can

be found in Theorems 3 and 4 (p. 140) of Yadrenko (1983), for integer order and

fractional order W ℓ
2(D) respectively.

Theorem 7.1.9. Let ℓ >
d

2
and suppose the spectral density f(ω) of e(s) satisfies,

k(1 + ||ω||2)−ℓ ≤ f(ω) ≤ K(1 + ||ω||2)−ℓ

for constants k,K. Then P0 ≡ Pm if and only if m(s) ∈ W ℓ
2(D).

The Matérn spectral density in (2.6) is easily seen to satisfy the inequalities in

Theorem 7.1.9 with ℓ = ν +
d

2
. Thus, if e(s) has Matérn covariance, for any mean

function m(s) ∈ W ℓ
2(D), the measures Pm and P0 are equivalent.

7.1.2 Stochastic mean function

Now, we give a discussion of the case where m(s) is also a random field inde-

pendent of e(s). Assume that (m(s), y(s))T is a joint random field (not necessarily

Gaussian) taking values in a complete separable metric space E (also known as a

Polish space). An example of such a space is the set of continuous real valued func-
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tions on D ⊂ Rd endowed with the supremum norm. Then (m(s), y(s))T induces a

joint probability measure P on the measurable space (E,B(E)) where B(E) is the

Borel sigma-algebra. The problem is then to determine conditions under which two

alternative joint measures Pi = PM,Y
i for i = 1, 2 are either equivalent or mutually

singular. We assume that both measures Pi, i = 1, 2 have the same marginal proba-

bility measure Q = QM for m(s). Here, we show that this problem can be reduced

to determining whether the conditional probability measures of y(s) given m(s) are

equivalent or mutually singular. By the assumptions on the space E, the regular

conditional probabilities PY |M
i (·|m) = Pi(·|m), i = 1, 2 exist as measures that are

measurable functions of m(s) characterized by (Çinlar (2011), Theorem 2.10),

∫
h(m)Pi(A|m)dQ(m) =

∫
h(m)1y∈AdPi(m, y) A ∈ σ(y(s)) (7.11)

for all bounded measurable σ(m(s)) functions h. Then for all B ∈ σ(m(s), y(s)), by

Fubini and the disintegration theorem (Çinlar (2011), Theorem 2.18), there exists

a measurable family of sets Bm ∈ σ(y(s)) such that for all bounded measurable

σ(m(s)) functions h,

∫
h(m)Pi(Bm|m)dQ(m) =

∫
h(m)1(m,y)∈BdPi(m, y) (7.12)

Since the measures PY |M
i , i = 1, 2 are regular conditional probabilities, the Radon-

Nikodym derivative,
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f(m, y) ≡ dPY |M
1

d(PY |M
1 + PY |M

2 )
(m, y) (7.13)

exists as a jointly measurable function of (m, y) characterized for bounded measur-

able functions h(m), g(y) by the equation (Çinlar (2011), Theorem 4.44),

∫ ï∫
f(m, y)g(y)d(PY |M

1 + PY |M
2 )(y|m)

ò
h(m)dQ(m)

=

∫ ï∫
g(y)dPY |M

1 (y|m)

ò
h(m)dQ(m) (7.14)

On the other hand, equation (7.12) implies that the right-hand side of (7.14) is

alternately expressed as,

∫ ï∫
g(y)dPY |M

1 (y|m)

ò
h(m)dQ(m) =

∫
g(y)h(m)dP1(m, y)

while the left-hand side of (7.14) is equal to,

∫ ï∫
f(m, y)g(y)d(PY |M

1 + PY |M
2 )(y|m)

ò
h(m)dQ(m)

=

∫
f(m, y)g(y)h(m)d(P1 + P2)(m, y) (7.15)

Therefore, equations (7.14) and these last two equations imply that for all bounded

measurable g, h,

∫
f(m, y)g(y)h(m)dP1(m, y) =

∫
f(m, y)g(y)h(m)d(P1 + P2)(m, y) (7.16)
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But equation (7.16) uniquely characterizes the Radon-Nikodym derivative of P1 with

respect to P1 + P2,

f(m, y) =
dP1

d(P1 + P2)
(m, y) (7.17)

Comparing (7.13) and (7.17) the overall conclusion is that,

dPY |M
1

d(PY |M
1 + PY |M

2 )
(m, y) ≡ dP1

d(P1 + P2)
(m, y) almost surely P1 + P2 (7.18)

with both sides well defined as jointly measurable σ(m(s), y(s)) functions. Every

assertion above holds without the joint Gaussian assumption. In the Gaussian case,

recall that Pi, i = 1, 2 are either equivalent or mutually singular. Then the above

discussion leads to the following result.

Proposition 7.1.1. The joint Gaussian measures P1 and P2 are either equivalent

or mutually singular.

(1) P1 and P2 are equivalent if and only if the conditional measures PY |M
1 and

PY |M
2 are equivalent almost surely Q.

(2) P1 and P2 are mutually singular if and only if the conditional measures PY |M
1

and PY |M
2 are mutually singular almost surely Q.

Proof. For statement (1), P1 and P2 are equivalent if and only if the right hand

side of (7.18) is strictly between 0 and 1 almost surely with respect to both P1 and

P2. Define the set A = {(m, y) : 0 < f(m, y) < 1}. Then by the disintegration
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theorem (7.12), PY |M
1 (A|m) = PY |M

2 (A|m) = 1 almost surely Q. Therefore, the term

on the left hand side of (7.18) is strictly between 0 and 1 almost surely Q, which is

equivalent to the statement PY |M
1 ≡ PY |M

2 almost surely Q.

For statement (2), P1 and P2 are mutually singular if and only if the right

hand side of (7.18) is equal to 0 almost surely P2 and 1 almost surely P1. Define the

set A = {(m, y) : f(m, y) = 0}. Then P1(A) = 0 = P2(A
c) and by the disintegration

theorem (7.12), PY |M
1 (A|m) = 0 = PY |M

2 (Ac|m) almost surely Q, which is equivalent

to the statement PY |M
1 ⊥ PY |M

2 almost surely Q.

Proposition 7.1.1 implies that in order to establish equivalence and singularity results

for the joint Gaussian probability measures Pi, i = 1, 2, it is equivalent to consider

the conditional measures PY |M
i , i = 1, 2 instead. Then by the results of Parzen

(1963), it is a matter of determining if the sample paths of m(s) almost surely

belong to the RKHS of the covariance kernel of e(s). In fact, by a result of Driscoll

(1973), this holds with probability 0 or 1, once again highlighting the dichotomy

properties of Gaussian measures.

7.2 Microergodicity of the mean in ordinary kriging models

In this section, we consider a Gaussian random field with constant mean pa-

rameter, y(s) = µ+ e(s), with a known covariance function for e(s). This model is

also known as the ordinary kriging model in geostatistics (Cressie (1993)). Let Pµ

and P0 respectively denote the Gaussian measures parametrized by µ ̸= 0 and µ = 0

respectively. The objective of this section is to establish necessary and sufficient
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conditions for µ to be microergodic.

7.2.1 Microergodicity and Fisher information

The dichotomy result by Hájek (1958) in Theorem 7.1.2 can be applied di-

rectly. In this case, the mean vector is m = µ1 and the quadratic form becomes

mTΣ−1m = µ21TΣ−11. One may notice that the term 1TΣ−11 is also the Fisher

information for µ. Using Theorem 7.1.2, we can connect the concepts of microer-

godicity and Fisher information.

Proposition 7.2.1. Pµ and P0 are either equivalent or mutually singular. They are

mutually singular if and only if lim
n→∞

1TΣ−11 = ∞. In other words, µ is microergodic

if and only if the Fisher information diverges.

By Theorem 2.5.5 of Zhang (2004), we know that if µ is not microergodic, it cannot

be consistently estimated. Thus, divergence of the Fisher information is a necessary

condition for the existence of a consistent estimator of µ. In general, one might

expect microergodicity to also be sufficient for a consistent estimator to exist. In

particular, if {Pθ;θ ∈ Θ} is a family of probability measures and h(θ) is microer-

godic, then it might be plausible that there exists a sequence of estimators θ̂ such

that h(θ̂) is consistent for h(θ). However, as Stein (1999) shows (Section 6.2, p.

163), this is generally not the case without further restrictions on the parameter

space Θ (for example, if Θ is countable). Fortunately, in the Gaussian setting with

known covariance, we can prove that the microergodicity of µ is sufficient for a

consistent estimator to exist.
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Proposition 7.2.2. Let {y(s), s ∈ D} be a Gaussian random field with mean µ and

known covariance function. Then, a consistent estimator of µ exists if and only if

µ is microergodic.

Proof. As already stated in the above paragraph, necessity holds by Theorem 2.5.5.

For sufficiency, let y = (y(s1), · · · , y(sn))T be an observed realization of the Gaus-

sian random field. Then y is multivariate Gaussian with mean µ1 and covariance

matrix Σ. Consider the maximum likelihood estimator of µ,

µ̂ =
1TΣ−1y

1TΣ−11
(7.19)

This estimator is unbiased with variance
1

1TΣ−11
. By Proposition 7.2.1, if µ is

microergodic, then the Fisher information 1TΣ−11 diverges. Thus, µ̂
L2−→ µ and so

µ̂ is consistent.

Combining Propositions 7.2.1 and 7.2.2 connects the concepts of Fisher information,

microergodicity and consistency for estimation of the constant mean of a Gaussian

random field.

Corollary 7.2.1. Let {y(s), s ∈ D} be a Gaussian random field with mean µ and

known covariance function. The following are equivalent.

1. The Fisher information lim
n→∞

1TΣ−11 diverges.

2. The mean parameter is microergodic, that is, Pµ ⊥ P0 ⇐⇒ µ ̸= 0

3. A consistent estimator of µ exists, namely the MLE.
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In general, proving that lim
n→∞

1TΣ−11 diverges or converges is difficult to do ana-

lytically. In the Appendix, we show that for the Ornstein-Uhlenbeck process on

[0, 1], the quantity lim
n→∞

1TΣ−11 has a closed form and remains finite, confirming

the results of Morris and Ebey (1984) on the sample mean. In the next section, we

show that for any dimension d ≥ 1, and for a general class of covariance functions,

the quantity 1TΣ−11 is necessarily finite, even if we do not have an explicit form of

Σ−1.

7.2.2 Non-microergodicity for a special class of spectral densities

When e(s) has Matérn covariance, we stated in a remark after Theorem 7.1.9, that

Pµ ≡ P0. Here, we consider a more general class of spectral densities that are

bounded below,

f(ω) ≥ A

(1 + ||ω||2)τ
(7.20)

for some A > 0, τ >
d

2
. We give an explicit example of an extension of m(s) = µ

satisfying Theorem 7.1.7, thus showing that Pµ ≡ P0 for spectral densities satisfying

(7.20). Without loss of generality, we can take the constant µ to be identically 1. If

f(ω) satisfies (7.20), then the condition in Theorem 7.1.7 holds if,

∫
Rd

|m̂(ω)|2(1 + ||ω||2)τdω < ∞
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We take advantage of the isotropy of the spectral density and find an extension of

the mean that is also isotropic. Since D is compact, it is contained within some ball

B(0, R) of radius R. Without loss of generality, assume that R = 1. Then, for any

N ∈ N, consider the isotropic extension,

m(s) = 1||s||≤1(s) + g(||s||)11<||s||<∞(s) (7.21)

where g(r) = e−(r−1)N+1
. This extension is easily seen to be square integrable because

of its exponential decay. Before we continue, we state the following lemma which

gives a simplified form of the Fourier transform of an isotropic function.

Lemma 7.2.2. Let f(s) be an isotropic function, that is, a function that only de-

pends on s through its Euclidean length ||s||. Then, the Fourier transform of f is

also isotropic and has the form,

f̂(ω) =
c

||ω|| d−2
2

∫ ∞

0

J d−2
2
(r||ω||)f(r)r

d
2dr

where c is a constant depending on d and not f or ω. Here, Jα(z) is a Bessel

function of the first kind of order α (Watson (1995)).

The above lemma arises from converting the Fourier transform integral into spherical

coordinates. An example of such a calculation can be found Stein (1999) (p. 43), so

we omit the details here. Next, for our choice of m(s) in (7.21), we show that m(s)

satisfies a certain integral representation.

Lemma 7.2.3. For any N ∈ N, consider the extension given in (7.21). Then, for
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1 ≤ k ≤ N , we have the following integral representation for the Fourier transform

m̂(ω) of m(s),

m̂(ω) = (−1)k
c

||ω|| d2+k−1

∫ ∞

1

k∑
j=1

ajg
(j)(r)rj−1

r2k−1
J d

2
+k−1(r||ω||)r

d
2
+kdr (7.22)

where aj ∈ Z, ak = 1 and c is a constant depending on d and not f or ω. Here,

g(j)(r) represents the jth derivative of g(r).

The proof, while not complicated, involves repeated integration by parts. We defer

the proof to Section 7.5. As a consequence of this integral representation, we have

the following decay estimate for the Fourier transform m̂(ω).

Corollary 7.2.4. For any N ∈ N, there exists a square integrable extension of the

function 1D(s) to all of Rd, whose Fourier transform m̂(ω) satisfies,

|m̂(ω)| ≤ C

||ω|| d−1
2

+N
(7.23)

where C is a constant depending on d, k,N , but not f or ω.

Proof. Consider the extension given in Lemma 7.2.3 and the integral representation

of its Fourier transform for k = N . Using the bound Jα(z) = O(z−1/2) (Yadrenko

(1983), p. 38), we see that,

|m̂(ω)| ≤ K

||ω|| d−1
2

+N

∫ ∞

1

N∑
j=1

ajg
(j)(r)rj−1

r2N−1
r

d
2
+N−1/2dr
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=
K

||ω|| d−1
2

+N

∫ ∞

1

[
N∑
j=1

ajg
(j)(r)rj−1

]
r

d
2
−N+1/2dr

Since g(r) = e−(r−1)N+1
, the integral is seen to be convergent over (1,∞).

We can now show that Yadrenko’s condition in Theorem 7.1.7 holds.

Proposition 7.2.3. Let {y(s), s ∈ D} be a stationary Gaussian random field with

mean parameter µ and spectral density f(ω). Suppose there exist some constants

A > 0, τ >
d

2
such that f(ω) ≥ A

(1 + ||ω||2)τ
for all ω ∈ Rd. Then µ is not

microergodic.

Proof. Recall the condition (7.10) of Theorem 7.1.7. If m̂(ω) is isotropic, then the

condition is equivalent to showing,

∫ ∞

0

(m̂(r))2(1 + r2)τrd−1dr < ∞

Now, let N ∈ N satisfy N > τ + 1
2
and consider the isotropic Fourier transform from

Lemma 7.2.3. Splitting the integral from [0, 1] and [1,∞), we have,

∫ 1

0

(m̂(r))2(1 + r2)τrd−1dr +

∫ ∞

1

(m̂(r))2(1 + r2)τrd−1dr

Since Fourier transform of an integrable function is bounded, the first integral above

is finite. For the second, we have |m̂(r)|2 ≤ C2r−(d−1)−2N by Corollary 7.2.4. Thus,

the second integral satisfies,

∫ ∞

1

(m̂(r))2(1 + r2)τrd−1dr ≤ C2

∫ ∞

1

(1 + r2)τ

rd−1+2N
rd−1dr = C2

∫ ∞

1

(1 + r2)τ

r2N
dr
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Since the integrand asymptotically behaves like r−2N+2τ , the integral converges by

the assumption on N, τ . Thus, by Theorem 7.1.7, the probability measures Pµ,P0

induced by µ ̸= 0 and µ = 0 are equivalent.

We note that since the Matérn spectral density satisfies (7.20), Proposition 7.2.3

gives an alternative proof to the previously known Theorem 7.1.9 in showing that µ

is not microergodic. We state this formally as corollary.

Corollary 7.2.5. Let {y(s), s ∈ D} be a constant mean Gaussian random field with

mean parameter µ and Matérn covariance. Then µ is not microergodic.

Thus, Corollaries 7.2.1 and 7.2.5 show that lim
n→∞

1TΣ−11 must remain finite, where

Σ is the Matérn covariance matrix and so µ cannot be consistently estimated. The

implication of this result from a spatial statistics perspective is that one may set

the mean to zero in the ordinary kriging model and obtain asymptotically optimal

predictions (Stein (1999)).

7.3 Microergodicity and estimation in regression models

In this section, assume now that we have a covariate present in a simple linear

regression model,

y(s) = β0 + β1x(s) + e(s) (7.24)

where x(s) and e(s) are independent, mean-zero Gaussian random fields with Matérn

covariances. We assume in this section that the covariance parameters of e(s) are

130



known and that only β = (β0, β1)
T is unknown.

7.3.1 Microergodicity of the regression parameters

We want to determine conditions under which the regression coefficients β =

(β0, β1)
T are microergodic (or non-microergodic). That is, whether two probability

measures Pβ,Pβ∗ parametrized by β and β∗ are equivalent or singular. We note

that the probability measures Pβ,Pβ∗ are induced by the joint Gaussian random

field (x(s), y(s))T . For the intercept, we can use the results from the previous

section to conclude that β0 is not microergodic.

Proposition 7.3.1. Let {y(s), s ∈ D} be the random field given in (7.24). If e(s)

has Matérn covariance, then β0 is not microergodic.

Proof. Unconditional on the sample paths of x(s), y(s) is a stationary Gaussian

random field with constant mean β0 and spectral density f(ω) = β2
1fx(ω) + fe(ω),

where fx, fe are the spectral densities of x(s) and e(s) respectively. Then the same

extension from Theorem 7.1.7 applies here with f(ω) replacing fe(ω).

A consequence of this result is that the intercept β0 cannot be consistently estimated

and thus, we should exclude the intercept from the model. For microergodicity of the

slope parameter β1, by Proposition 7.1.1, it is equivalent to consider the Gaussian

probability measures conditional on x(s). Conditional on the sample paths of x(s),

the mean function is m(s) = β1x(s). By Theorem 7.1.9, β1 is microergodic if and

only if the sample paths of x(s) do not belong to W ℓ
2(D) almost surely. Here ℓ =

ν+
d

2
, where ν is the smoothness parameter of the error Matérn covariance. Recalling
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Theorems 2.5.11 and 2.5.12 of Scheuerer (2010), we have spectral conditions that

determine if the sample paths of x(s) belong W ℓ
2(D) almost surely. If x(s) also

has Matérn covariance, then these spectral conditions lead to a simple inequality

involving the Matérn smoothness parameters of x(s) and e(s).

Proposition 7.3.2. Let x(s) have Matérn covariance with smoothness parameter

νx and denote ℓ = ν +
d

2
. If ℓ is an integer, then x(s) ∈ W ℓ

2(D) a.s. if and only if

νx > ℓ. If ℓ is fractional, then the condition νx > ℓ is sufficient for x(s) ∈ W ℓ
2(D)

a.s.

Proof. By Theorems 2.5.11 and 2.5.12, we need to show that,


∫
Rd

||ω||2ℓfx(ω)dω < ∞ ℓ ∈ N∫
Rd

(log(1 + ||ω||))1+α||ω||2ℓfx(ω)dω < ∞ for some α > 0, ℓ ∈ R+ \ N

where fx(ω) ≍ (1 + ||ω||2)−νx− d
2 . The calculations for either integral lead to the

same conclusion that νx > ℓ. We note that the calculations are very similar to the

one given in the proof of Proposition 2.5.1, so we omit the details here.

The above result shows that if x(s) and e(s) both have Matérn covariances, then

the smoothness parameter of x(s) cannot be too large compared to that of e(s) if we

want to include a covariate with consistently estimated coefficient in the regression

model (7.24). In particular, Proposition 7.3.2 shows that the quantity ℓ = ν +
d

2

acts as a critical smoothness for x(s). If the smoothness parameter νx exceeds this

critical smoothness, then the slope parameter is not microergodic. This corroborates
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the remarks by Stein (1999) given at the beginning of this chapter. In light of these

remarks, it is reasonable to believe that the slope parameter can be consistently

estimated as long as x(s) /∈ W ℓ
2(D) a.s. where ℓ = ν +

d

2
. In the next section, we

consider two familiar estimators: the ordinary least squares (OLS) estimator and

the maximum likelihood estimator (MLE) of β1. Somewhat surprisingly, we show

that the OLS estimator remains inconsistent under mild conditions regardless of the

smoothness of x(s).

7.3.2 Inconsistency of the OLS estimator of the slope

First, let us consider the ordinary least squares estimator for β1. By Propo-

sition 7.3.1, we may set β0 = 0 without loss of generality. Then, conditional on

x = (x(s1), · · · , x(sn))T , the OLS estimator of β1 is given by,

β̃1,n =
xTy

xTx
=

∑
si

x(si)y(si)∑
si

x2(si)
= β1,0 +

∑
si

x(si)e(si)∑
si

x2(si)
(7.25)

where β1,0 denotes the true β1 parameter. Note that the asymptotic behavior of the

sums in (7.25) depends on the sampling scheme of {s1, · · · , sn}. In our setting, we

assume that the points become increasingly dense in D and fill out the entire region

as n → ∞. We formally state the assumption below.

Assumption 7.3.1. Let {s1, · · · , sn} ∈ D represent the sampling locations. For
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any Borel subset A ⊂ D, define the empirical measure of {s1, · · · , sn} as,

µn(A) =
1

n

∑
si

δsi(A) (7.26)

where δs(A) is the Dirac delta measure of the set A. Then µn converges weakly

(van der Vaart (1998)) to a measure µ with a strictly positive and bounded density.

That is,

lim
n→∞

∫
D

f(s)dµn(s) =

∫
D

f(s)dµ(s)

for any continuous function f on D. If the empirical measure is random, then we

assume that conditional on {s1, · · · , sn}, weak convergence holds almost surely.

The empirical measure defined in (7.26) can be deterministic or random depending

on whether {s1, · · · , sn} are deterministic or random. For example, if the locations

are sampled through an inhomogeneous Poisson point process with intensity measure

µ (not necessarily Lebesgue), then the convergence defined in Assumption 7.3.1 will

hold almost surely with limiting measure µ. As a second example, Lahiri (1996)

assumes the following deterministic sampling scheme. Since the region D ⊂ Rd is

compact, it is contained within a hyperrectangle R = [a1, b1] × ... × [ad, bd] with

smallest possible volume. For every n, we may subdivide each [aj, bj], 1 ≤ j ≤ d

into Njn equally spaced intervals with length
bj − aj
Njn

. This will partition R into

smaller hypercubes ∆n, each with equal volume |∆n| =
n∏

j=1

Å
bj − aj
Njn

ã
converging

uniformly to 0. Within each cube we pick a point that falls inside in D. This
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also satisfies the convergence assumption since this is how the Lebesgue measure is

typically constructed.

Under the second sampling scheme described above, Lahiri (1996) shows with

deterministic covariates that the OLS estimator is inconsistent by showing that the

sums in (7.25) converge to integrals of random fields with respect to the Lebesgue

measure. We take a similar approach using the sampling scheme described in As-

sumption 7.3.1 and random covariates. Before we state the inconsistency result, we

first give a definition of the integral of a random field.

Definition 7.3.2. Let {z(s), s ∈ D} be a random field on D. Assume that the

sampling locations {s1, · · · , sn} satisfy Assumption 7.3.1. If z(s) has continuous

sample paths a.s. on D, then the integral of z(s) is defined as the a.s. limit,

∫
D

z(s)dµ(s) := lim
n→∞

1

n

∑
si

z(si)

We can apply this to the OLS estimator in (7.25). If we normalize the sums in the

numerator and denominator by n, we obtain,

β̃1,n − β1,0 =

1

n

∑
si

x(si)e(si)

1

n

∑
si

x2(si)
(7.27)

By Definition 7.3.2, the numerator and denominator on the right hand side of (7.27)

each converge to integrals almost surely. The following proposition is a variant

Theorem 1 of Lahiri (1996), who considered the specific sampling scheme described
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above with the limiting measure to be the Lebesgue measure.

Proposition 7.3.3. Assume that the sampling locations {s1, · · · , sn} satisfy As-

sumption 7.3.1. Suppose that x(s) and e(s) have Matérn covariances. Then,

β̃1,n − β1,0
a.s.−−→

∫
D

x(s)e(s)dµ(s)∫
D

x2(s)dµ(s)
(7.28)

which is a non-degenerate random variable.

Proof. If x(s), e(s) have Matérn covariances, then the sample paths of x(s), e(s) are

bounded almost surely by Proposition 2.5.1. Thus, the integrals on the right-hand

side of (7.28) are separately and jointly non-degenerate random variables.

Thus, the OLS estimator β̃1,n cannot be consistent, regardless of whether or not

x(s) ∈ W ℓ
2(D) a.s.

7.3.3 Consistency of MLE of the slope

Now we investigate the maximum likelihood estimator β̂1,n. Once again, we

set the intercept β0 to zero without loss of generality. With a known error covariance

matrix Σ, the negative log-likelihood of y|x is, up to a constant,

L(β) =
1

2
(y − β1x)

TΣ−1(y − β1x) (7.29)
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From this expression, the MLE (also the GLS estimator) of β1 is calculated as

β̂1,n =
xTΣ−1y

xTΣ−1x
. Conditional on x, the MLE β̂1,n has distribution,

β̂1,n ∼ N

Å
β1,0,

1

xTΣ−1x

ã
Note that the quantity xTΣ−1x is the conditional Fisher information for β1. If

this quantity remains finite as n → ∞, then the asymptotic distribution of β̂1,n is

a non-degenerate Gaussian random variable and so β̂1,n cannot be consistent. On

the other hand, if this quantity diverges, the variance of β̂1,n goes to 0 and thus

it is consistent. In general, since Σ−1 does not have an analytical form (except in

cases like the OU process on the real line), it is difficult to determine if this quantity

diverges analytically. However, we can use similar arguments as in the constant

mean case, in particular with the entropy distance in Lemma 2.5.3. Let Pβ1 and Pβ∗
1

be the conditional probability measures induced by β1 and β∗
1 respectively. Then

from the form of the likelihood in (7.29), we can calculate the log-likelihood ratio of

Pβ1 to Pβ∗
1
to be,

log pn = (β1 − β∗
1)x

TΣ−1y +
1

2
((β∗

1)
2 − β2

1)x
TΣ−1x

Then, it is straightforward to calculate the conditional entropy distance as,

Jn = Eβ1 [log pn|x]− Eβ∗
1
[log pn|x] = (β1 − β∗

1)
2xTΣ−1x
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which is proportional to the conditional Fisher information. By Lemma 2.5.3,

Pβ1 ⊥ Pβ∗
1
if and only if the conditional entropy distance diverges. The above

remarks, combined with Theorem 7.1.9, give necessary and sufficient conditions for

the consistency of β̂1,n.

Proposition 7.3.4. Let y(s) = β1x(s)+ e(s), where x(s) and e(s) are independent

Gaussian random fields and β1 unknown. Suppose that e(s) has a known Matérn

covariance structure with smoothness ν. Finally, suppose that x(s), y(s) are observed

at an increasingly dense, nested set of locations {s1, · · · , sn} with corresponding data

vectors x,y. Then, the following statements are equivalent:

1. The conditional Fisher information xTΣ−1x for β1 diverges almost surely.

2. x(s) /∈ W ℓ
2(D) a.s. where ℓ = ν +

d

2
.

3. The slope parameter is microergodic, that is, Pβ1 ⊥ Pβ∗
1
⇐⇒ β1 ̸= β∗

1 .

Under any of these conditions, the MLE β̂1,n =
xTΣ−1y

xTΣ−1x
is consistent for β1.

7.4 Joint estimation of the slope and covariance parameters

The previous sections assumed that the Matérn covariance parameters of the

error were known. In this section, we assume only that the Matérn smoothness pa-

rameter is known. The case of unknown ν is not addressed in this thesis. We should

note however, that it has been recently proved that ν can be consistently estimated

under infill asymptotics (Loh et al. (2021)). If joint estimation of β1 and the Matérn

covariance parameters (σ2, θ)T is of interest, then one would have to establish the
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equivalence or singularity of the conditional measures P1,P2 induced by (β1, σ
2
1, θ1)

T

and (β∗
1 , σ

2
2, θ2)

T respectively. Fortunately, as the following result from Stein (1999)

states, we can determine the equivalence or singularity of P1 and P2 by separately

considering β1 and (σ2, θ)T . First, let Pβ1 ,Pβ∗
1
be the conditional Gaussian measures

induced by β1 and β∗
1 respectively under known (σ2, θ)T . Next, let Qσ2

1 ,θ1
,Qσ2

2 ,θ2
by

the zero-mean Gaussian measures induced by (σ2
1, θ1)

T and (σ2
2, θ2)

T respectively.

The following result is a version of Corollary 5 (p. 117) in Stein (1999).

Lemma 7.4.1. P1 ≡ P2 if and only if Pβ1 ≡ Pβ∗
1
and Qσ2

1 ,θ1
≡ Qσ2

2 ,θ2
.

Our version is slightly different than that Corollary 5 of Stein (1999), who considers

deterministic mean functions. But since we are conditioning on the sample paths of

x(s), we can use Stein’s result here due to Proposition 7.1.1.

For a zero mean Gaussian random field with Matérn covariance, there are

known results concerning estimation of the covariance parameters under infill asymp-

totics. Generalizing the result from Ying (1991) to higher spatial dimensions and

known smoothness ν, Zhang (2004) proved that the Matérn covariance parameters

(σ2, θ)T are not individually microergodic on a bounded domain D ⊂ Rd, d = 1, 2, 3,

and thus cannot be consistently estimated. However, it is shown by Zhang that

under known smoothness ν, the quantity σ2θ2ν is microergodic using results on the

equivalence of Gaussian measures from Yadrenko (1983) and Stein (1999). The

following result is a combination of Theorem 3 (consistency) of Zhang (2004) and

Theorem 3 (asymptotic normality) of Wang and Loh (2011).

Theorem 7.4.2. Let d ≤ 3 and (σ2, θ)T be the Matérn covariance parameters of

139



a zero mean Gaussian random field on D ⊂ Rd. Let Ln(σ
2, θ) be the likelihood

function based on a nested sequence of observations Dn in D. For a fixed θ, let

σ̂2
n = argmax

σ2

Ln(σ
2, θ) be the maximum likelihood estimator of σ2. If (σ2

0, θ0)
T are

the true parameters, then under the true probability measure Pσ2
0 ,θ0

,

σ̂2
nθ

2ν a.s.−−→ σ2
0θ

2ν
0

√
n(σ̂2

nθ
2ν − σ2

0θ
2ν
0 )

D−→ N(0, 2(σ2
0θ

2ν
0 )2)

Du et al. (2009) also proved the above asymptotic normality result but in the case

d = 1 on a bounded interval. The above results prove that the scale parameter can

be fixed to any value θ and we would still get consistency and asymptotic normality.

Kaufman and Shaby (2013) extended these results by establishing consistency and

asymptotic normality of σ̂2
nθ̂

2ν
n , where θ̂n is the maximum likelihood estimator of θ.

The following result can be found in Theorem 2 of their paper.

Theorem 7.4.3. Let d ≤ 3 and (σ2, θ)T be the Matérn covariance parameters of

a zero mean Gaussian random field on D ⊂ Rd. Let Ln(σ
2, θ) be the likelihood

function based on a nested sequence of observations Dn in D. Let (σ̂2
n, θ̂n)

T =

argmax
σ2,θ

Ln(σ
2, θ) be the MLE of (σ2, θ)T . If (σ2

0, θ0)
T are the true parameters, then

under the true probability measure Pσ2
0 ,θ0

,

σ̂2
nθ̂

2ν
n

a.s.−−→ σ2
0θ

2ν
0

√
n(σ̂2

nθ̂
2ν
n − σ2

0θ
2ν
0 )

D−→ N(0, 2(σ2
0θ

2ν
0 )2)
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We should note that both theorems above hold when d ≤ 3. It has been shown

that when d ≥ 5, the parameters θ and σ2 are individually microergodic and can be

consistently estimated (Anderes (2009)). The case d = 4 remains an open problem.

If we combine the previous results on the regression slope and the results of

Zhang (2004) on the Matérn covariance parameters, Lemma 7.4.1 suggests that

if x(s) /∈ W ℓ
2(D), then the microergodic parameters are (β1, σ

2θ2ν)T . The next

step is to determine whether or not the joint MLE of (β1, σ
2θ2ν)T is consistent and

asymptotically normal. The conditional negative log-likelihood of y|x is up to a

constant,

Ln(β1, σ
2, θ) =

1

2
log
(
det
(
σ2Σ(θ)

))
+

1

2σ2
(y − β1x)

TΣ−1(θ)(y − β1x)

Consider a re-parametrization of the likelihood in terms of the microergodic param-

eter ϕ = σ2θ2ν ,

Ln(β1, ϕ, θ) =
1

2
log

Å
det

Å
ϕ

θ2ν
Σ(θ)

ãã
+

θ2ν

2ϕ
(y − β1x)

TΣ−1(θ)(y − β1x) (7.30)

7.4.1 Fixed scale parameter θ

We first consider the situation where the non-microergodic scale parameter θ is

fixed, similar to Theorem 7.4.2. Stein (1999), p. 175, gives a discussion on estimation

in the presence of non-microergodic parameters, citing results by Crowder (1976).

Let τ = (τ T
1 , τ

T
2 )

T denote the parameters of interest, with τ1 being microergodic,

and τ1 being non-microergodic. Stein (1999) conjectures that if τ2 is set to some
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fixed value and not estimated, the asymptotic behavior of the MLE of τ1 will be

the same as if τ2 were known. We verify this statement in our setting where τ =

(β1, σ
2, θ)T and θ is the non-microergodic parameter. Let Lθ(β1, ϕ) = Ln(β1, ϕ, θ)

denote the likelihood in (7.30) for any θ > 0. Then the 2 × 2 Hessian matrix (or

observed Fisher information) of Lθ(β1, ϕ) is readily calculated as,

HHHθ(β1, ϕ) =

Ü
θ2ν

ϕ
xTΣ−1(θ)x

θ2ν

ϕ2
(y − β1x)

TΣ−1(θ)x

θ2ν

ϕ2
(y − β1x)

TΣ−1(θ)x − n

2ϕ2
+

θ2ν

ϕ3
Q

ê
(7.31)

where Q = (y − β1x)
TΣ−1(θ)(y − β1x). After taking the expectation conditional

on x, the conditional Fisher information is,

III θ(β1, ϕ) = E [Hθ(β1, ϕ)] =

Ü
θ2ν

ϕ
xTΣ−1(θ)x 0

0
n

2ϕ2

ê
(7.32)

For the MLE (β̂1,n(θ), ϕ̂n(θ))
T = argmin

β1,ϕ
Lθ(β1, ϕ), there are known sufficient reg-

ularity conditions that ensure consistency and asymptotic normality (Mardia and

Marshall (1984), Sweeting (1980)). In particular, by quoting Mardia and Marshall

(1984), p. 138, we require continuity, growth and convergence of the Hessian matrix.

The following general theorem from Sweeting (1980) gives conditions that ensure

consistency and asymptotic normality of MLE estimators.

Theorem 7.4.4. Let L(τ ) be the negative log-likelihood function depending on a

parameter τ ∈ Rp. Assume that the true parameter τ0 is known to lie in the interior

of a compact subset of Rp. Let P0 denote true probability measure parametrized by
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τ0. Suppose the following conditions hold.

1. (Continuity) The Hessian H(τ ) matrix of second order derivatives is contin-

uous in a neighbourhood around τ0.

2. (Growth) Under the true probability measure P0, the smallest eigenvalue of the

Fisher information III (τ ) = E[H(τ )] diverges in probability to ∞.

3. (Convergence) Under the true probability measure P0,

III −1/2HIII −1/2 P−→ Ip

where Ip is the p× p identity matrix.

Then the MLE τ̂ = argmin
τ

L(τ ) is consistent under the true probability measure P0

and,

III 1/2
0 (τ̂ − τ0)

D−→ N(0, Ip)

where III 0 = III (τ0) is the Fisher information evaluated at true parameters.

For our problem, the first condition is verifiable from (7.31), recalling that the non-

microergodic parameter θ is being treated as a constant. The second condition is

also verifiable from (7.32) since by Proposition 7.3.4, the first diagonal element of

(7.32) diverges almost surely under the true probability measure and it is clear that

the second diagonal diverges as well. For the final condition, we can easily calculate

the matrix productIII −1/2
θ HθIII

−1/2
θ since these are 2×2 matrices andIII θ is diagonal.
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After some minor simplifications, the matrix product equals,á
1

√
2θν

ϕ
√
n

xTΣ−1(θ)(y − β1x)√
xTΣ−1(θ)x√

2θν

ϕ
√
n

xTΣ−1(θ)(y − β1x)√
xTΣ−1(θ)x

2θ2ν

ϕn
Q− 1

ë
(7.33)

We require that the bottom right diagonal
2θ2ν

nϕ
Q − 1 converge in probability to 1

and the off-diagonal

√
2θν

ϕ
√
n

xTΣ−1(θ)(y − β1x)√
xTΣ−1(θ)x

converge in probability to 0 under

the true measure P0. In the proof of the following result, we show these conditions

hold.

Proposition 7.4.1. Suppose that the sample paths of x(s) do not belong to W ℓ
2(D)

almost surely, where ℓ = ν+
d

2
, d ≤ 3 and ν is the Matérn smoothness of e(s). Then

the conditions of Theorem 7.4.4 are satisfied. Thus, for any θ > 0, the MLE of

(β1(θ), ϕ(θ))
T is consistent under the true probability measure P0 and,Ü
v1/2(β̂1,n(θ)− β1,0)

√
n(ϕ̂n(θ)− ϕ0)

ê
D−→ N

ÜÜ
0

0

ê
,

Ü
1 0

0 2ϕ2
0

êê
(7.34)

where v =
θ2ν0
ϕ0

xTΣ−1(θ0)x, ϕ̂n(θ) = σ̂2θ2ν and ϕ0 = σ2
0θ

2ν
0 .

Proof. From the preceding discussion, we need to show that (7.33) converges to the

2× 2 identity matrix under the true measure P0. Under P0, note that,

Q = (y − β1,0x)
TΣ−1(θ0)(y − β1,0x) = eTΣ−1(θ0)e
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After re-parametrizing back in terms of σ2, we have
2θ2ν0
nϕ0

Q =
2

nσ2
0

eTΣ−1(θ0)e. From

properties of the multivariate normal distribution, we know that this quadratic form

equals
2

n

n∑
i=1

ϵ2i where ϵi, i = 1, · · · , n are i.i.d N(0, 1). By the LLN, this converges

in probability to 2 and so the diagonal term
2θ2ν

nϕ
Q− 1 converges in probability to

1 as desired. Next, under P0 the off-diagonal term of (7.33) is proportional to,

1√
n

xTΣ−1(θ0)(y − β1,0x)√
xTΣ−1(θ0)x

=
1√
n

xTΣ−1(θ0)e√
xTΣ−1(θ0)x

∼ N

Å
0,

1

n

ã
conditionally given x. Thus the off-diagonal term converges to 0 in probability and

III −1/2
θ HθIII

−1/2
θ

P−→ I verifying the convergence conditions of Theorem 7.4.4.

Note that as a simple corollary, we get automatically get consistency and asymptotic

normality of σ̂2
n =

ϕ̂n

θ2ν
by fixing θ, even though this parameter is non-microergodic

otherwise. In particular, under P0,

σ̂2
n

P−→ σ2
0θ

2ν
0

θ2ν

√
n

Å
σ̂2
n −

σ2
0θ

2ν
0

θ2ν

ã
D−→ N

Ç
0, 2

Å
σ2
0θ

2ν
0

θ2ν

ã2
å

We perform a simulation study in Chapter 8 to illustrate these results.

7.4.2 Estimated scale parameter θ

Now we consider the effect of estimating θ. A Fisher information analysis as in

Theorem 7.4.4 for the full parameter set (β1, ϕ, θ)
T would be difficult in this situation

for a few reasons. First, we would need to compute second order derivatives of the

145



likelihood with respect to θ. However, derivatives of Matérn covariance functions

with respect to θ are generally (unless the smoothness is a half integer) intractable.

Moreover, even if closed form derivatives exist, we would need to ensure that the

extra information added in estimating θ does not disrupt the regularity of the Fisher

information for (β1, ϕ)
T alone. Fortunately, we can still prove without using Fisher

information that consistency and asymptotic normality of σ2θ2ν holds in the case of

estimated θ. This method is inspired by Kaufman and Shaby (2013) (see Theorem

7.4.3). First, note that for any θ > 0, the MLE of (β1, ϕ)
T has a closed form by

setting derivatives of Lθ(β1, ϕ) in (7.30) to zero,

β̂1,n = (xTΣ−1(θ)x)−1xTΣ−1(θ)y (7.35)

ϕ̂n =
θ2ν

n
(y − β̂1,nx)

TΣ−1(θ)(y − β̂1,nx) (7.36)

Inserting the equation (7.35) into (7.36) we can show that the MLE of ϕ has an

expression in terms of θ alone,

ϕ̂n(θ) =
θ2ν

n
yT
[
Σ−1(θ)−Σ−1(θ)x(xTΣ−1(θ)x)−1xTΣ−1(θ)

]
y (7.37)

In the zero mean case (corresponding to x = 0), Kaufman and Shaby (2013) showed

that the function ϕ̂n(θ) is monotonic with respect to θ. With some extra work, we

show that the quadratic form in y given in (7.37) is also monotonic in θ. First we

state some preliminary lemmas.

Lemma 7.4.5. Let A,B be real symmetric positive definite n × n matrices. If
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A−B is positive semidefinite, then B−1 −A−1 is positive semidefinite.

Lemma 7.4.6. Consider the real symmetric (m+ n)× (m+ n) block matrix,

M =

Ü
M11 M12

MT
12 M22

ê
where M22 a positive definite n×n matrix. Then M is positive definite if and only

if M11 and the Schur complement M11 −M12M
−1
22 M

T
12 are positive definite.

Lemmas 7.4.5 and 7.4.6 can be found in Corollary 7.7.4 and Theorem 7.7.7 of Horn

and Johnson (2013) respectively. These results together imply the following.

Proposition 7.4.2. Let A,B be real symmetric positive definite n×n matrices and

suppose that A−B is positive semidefinite. Then for any real n×m matrix C of

full rank, the difference

[
A−AC(CTAC)−1CTA

]
−
[
B −BC(CTBC)−1CTB

]

is also positive semidefinite.

The proof can be found in Section 7.5. Finally, we state the main result of Kaufman

and Shaby (2013). It can be found in Lemma 1 of their paper.

Lemma 7.4.7. Let 0 < θ1 < θ2 and suppose Σ(θ2),Σ(θ1) are the corresponding

symmetric positive definite Matérn n× n correlation matrices. Then the difference

θ−2ν
1 Σ(θ1) − θ−2ν

2 Σ(θ2) is positive semidefinite and by Lemma 7.4.5, the difference

θ2ν2 Σ−1(θ2)− θ2ν1 Σ−1(θ1) is also positive semidefinite.
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With these technical lemmas on hand, we are now ready to prove that ϕ̂n(θ) defined

in (7.37) is monotone in θ.

Proposition 7.4.3. Let ϕ̂n(θ) be defined as in (7.37). Then ϕ̂n(θ) is a nondecreasing

function of θ > 0.

Proof. Let 0 < θ1 < θ2 and consider the difference ϕ̂n(θ2)− ϕ̂n(θ1). This difference

is nonnegative if and only if the matrix,

[
θ2ν2 Σ−1(θ2)− θ2ν2 Σ−1(θ2)x(x

T (θ2ν2 Σ−1(θ2))x)
−1xT θ2ν2 Σ−1(θ2)

]
−

[
θ2ν1 Σ−1(θ1)− θ2ν1 Σ−1(θ1)x(x

T (θ2ν1 Σ−1(θ1))x)
−1xT θ2ν1 Σ−1(θ1)

]

is positive semidefinite. By Lemma 7.4.7, the difference θ2ν2 Σ−1(θ2)− θ2ν1 Σ−1(θ1) is

positive semidefinite. Then, Proposition 7.4.2 applied to the above quantity with

A = θ2ν2 Σ−1(θ2),B = θ2ν1 Σ−1(θ1) and C = x yields the result.

Since ϕ̂n(θ) is a monotone function of θ, we can now prove the consistency and

asymptotic normality of ϕ̂n(θ̂n) = σ̂2θ̂2νn where θ̂n is any sequence of bounded esti-

mators of θ.

Proposition 7.4.4. Let [θ1, θ2] ⊂ (0,∞) be some compact interval containing the

true parameter θ0. Suppose that θ̂n is any sequence of estimators that lie in [θ1, θ2]

for all n. Then, under P0,

ϕ̂n(θ̂n)
P−→ ϕ0

√
n
Ä
ϕ̂n(θ̂n)− ϕ0

ä
D−→ N

(
0, 2ϕ2

0

)
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Proof. For consistency, by Proposition 7.4.1, we have pointwise convergence ϕ̂n(θ)
P−→

ϕ0 for any θ ∈ [θ1, θ2]. But then by Proposition 7.4.3, since ϕ̂n(θ) is monotone in θ,

this implies that the convergence is uniform on [θ1, θ2]. Thus, for any sequence of

estimators θ̂n ∈ [θ1, θ2],

|ϕ̂n(θ̂n)− ϕ0| ≤ sup
θ∈[θ1,θ2]

|ϕ̂n(θ)− ϕ0|
P−→ 0

For asymptotic normality, first denote Φ(t) as the CDF of a standard Gaussian

random variable. Then by Proposition 7.4.1, we have pointwise convergence,

P(
√
n(ϕ̂n(θ)− ϕ0) ≤ t)

P−→ Φ

Ç
t√
2ϕ2

0

å
(7.38)

for any θ ∈ [θ1, θ2] and t ∈ R. By Proposition 7.4.3, since ϕ̂n(θ) is monotone in

θ, the sequence of distribution functions P(
√
n(ϕ̂n(θ) − ϕ0) ≤ t) is also monotone

in θ and so the convergence in (7.38) is uniform on [θ1, θ2]. So for any sequence

θ̂n ∈ [θ1, θ2] and t ∈ R,

∣∣∣∣∣P(√n(ϕ̂n(θ̂n)− ϕ0) ≤ t)− Φ

Ç
t√
2ϕ2

0

å∣∣∣∣∣
≤ sup

θ∈[θ1,θ2]

∣∣∣∣∣P(√n(ϕ̂n(θ)− ϕ0) ≤ t)− Φ

Ç
t√
2ϕ2

0

å∣∣∣∣∣ P−→ 0

Our simulation studies in Chapter 8 show that estimating θ results in less bias

in the MLE of ϕ = σ2θ2ν as opposed to fixing θ to some arbitrary value. This is
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similar to what Kaufman and Shaby (2013) concluded in the zero mean case. Thus,

it might be preferable to use an estimator θ̂n in small samples even if it cannot be

a consistent estimator. For the MLE of the slope parameter β1, we do not have a

similar proof in the case of estimated θ. For any θ > 0, the MLE of β1 has the form,

β̂1,n(θ) = argmin
β1

(y − β1x)
TΣ−1(θ)(y − β1x) =

xTΣ−1(θ)y

xTΣ−1(θ)x

Unlike the parameter ϕ̂n(θ), this is not a monotone function in θ and thus a uniform

convergence result like above cannot be readily established. However, based on

our simulation study in Chapter 8, we conjecture that consistency and asymptotic

normality still hold with any sequence θ̂n serving as a plug-in estimator.

In our simulations, we also consider the case of multiple covariates in the

regression model (7.2). In light of the previous discussion involving one covariate,

we expect that similar results as Propositions 7.4.1 and 7.4.4 to hold when there

are other covariates in the model. Without loss of generality, we can partition

the covariates in terms of their smoothness. Specifically, let xk(s), k = 1, ...,m be

covariates with rough sample paths not in W ℓ
2(D) and let xk(s), k = m + 1, .., p be

the covariates with smooth sample paths in W ℓ
2(D). Then, we expect the regression

coefficients (β1, ..., βm)
T to be microergodic. Denoting β̂n as the MLE of (β1, ..., βm)

T

and X =
[
x1 · · · xm

]
n×m

as the design matrix, we expect (β̂T , σ̂2θ̂2νn )T to be

consistent and,
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Ü
V 1/2(β̂n − β0)

√
n(σ̂2

nθ̂
2ν
n − σ2

0θ
2ν
0 )

ê
D−→ N

ÜÜ
0

0

ê
,

Ü
Im 0

0 2(σ2
0θ

2ν
0 )2

êê
(7.39)

where V =
1

σ2
0

XTΣ−1(θ0)X. The above proofs can be adapted by replacing the

vector x with the design matrix X.

For regression models, results in spatial statistics literature concerning estima-

tion of the regression coefficients are scarce. There is such a result in the previously

mentioned paper by Ying (1991). In addition to the analysis of the zero mean

Ornstein-Uhlenbeck process on [0, 1], Ying considers the spatial regression model

y(t) = x(t)Tβ + e(t), t ∈ [0, 1]

where x(t) = (x1(t), ..., xp(t)) is a deterministic multivariate function and e(t) is a

OU process on [0, 1]. Ying showed that the MLE σ̂2θ̂n is consistent and asymptot-

ically normal just as in Theorem 7.0.1 without a regression term. Under certain

smoothness conditions on x(t), akin to each component xi(t) being in the Sobolev

space W 1
2 ([0, 1]), Ying showed that the MLE β̂n is asymptotically normal. However,

a consistency result is not given since the smoothness conditions on x(t) prevent

β from being microergodic. The proof technique by Ying exploited the Markov

property of the OU process on [0, 1], giving a more useable form of the likelihood

function for (βT , σ2θ)T . Evidently, this technique does not work for higher spatial

dimensions or covariance functions other than the exponential. Results on regression
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models in these settings are not available to our knowledge.

7.5 Proofs of results

Proof of Lemma 7.2.3

Proof. First consider the case k = 1. By Lemma 7.2.2, the first term of m(ω) in

(7.21) has its Fourier transform calculated as,

∫
Rd

eiω
T s1||s||≤1(s)ds =

c

||ω|| d−2
2

∫ 1

0

J d−2
2
(r||ω||)r

d
2dr =

c

||ω|| d2
J d

2
(||ω||) (7.40)

The second equality comes from the relation

∫ 1

0

zα+1Jα(τz)dz =
1

τ
Jα+1(x) (see

Yadrenko (1983), p. 13). Now, we continue the calculation for second term in (7.21)

using Lemma 7.2.2,

∫
1<||s||<∞

g(||s||)eiωT sds =
c

||ω|| d2−1

∫ ∞

1

g(r)J d−2
2
(r||ω||)r

d
2dr

Using the identity
d

dz
(zαJα(z)) = zαJα−1(z) (Watson (1995), p. 45), we integrate

by parts,

∫
1<||s||<∞

g(||s||)eiωT sds =
c

||ω|| d2

ï
g(r)J d

2
(r||ω||)r

d
2

∣∣∣∣∞
1

−
∫ ∞

1

g′(r)J d
2
(r||ω||)r

d
2dr

ò
Since g(1) = 1 and lim

r→∞
g(r)r

d
2 = 0, the first term above equals − c

||ω|| d2
J d

2
(||ω||),

thereby cancelling with the first term of the Fourier transform calculation in (7.40).
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Thus, we are left with the integral,

m̂(ω) = − c

||ω|| d2

∫ ∞

1

g′(r)J d
2
(r||ω||)r

d
2dr = − c

||ω|| d2

∫ ∞

1

g′(r)

r
J d

2
(r||ω||)r

d
2
+1dr

proving that (7.22) holds for k = 1. Now suppose it holds for some k ∈ {1, .., N−1},

m̂(ω) = (−1)k
c

||ω|| d2+k−1

∫ ∞

1

k∑
j=1

ajg
(j)(r)rj−1

r2k−1
J d

2
+k−1(r||ω||)r

d
2
+kdr

Performing an integration by parts,

m̂(ω) = (−1)k
c

||ω|| d2+k


k∑

j=1

ajg
(j)(r)rj−1

r2k−1
J d

2
+k(r||ω||)r

d
2
+k

∣∣∣∣∞
1

−
∫ ∞

1

k+1∑
j=1

bjg
(j)(r)rj−1

r2k+1
J d

2
+k(r||ω||)r

d
2
+k+1dr


where bj ∈ Z. Specifically,

b1 = (1− 2k)a1

bj = (j − 2k)aj + aj−1, j = 2, · · · , k

bk+1 = ak = 1

Recalling the chosen form of g(r) = e−(r−1)N+1
, we can see that the first set of terms

vanishes since lim
r→1

g(j)(r) = 0 and lim
r→∞

g(j)(r)rm = 0 for any power m > 0 and all
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j = 1, ..., N − 1. Thus, we are left with the integral,

m̂(ω) = (−1)k+1 c

||ω|| d2+k


∫ ∞

1

k+1∑
j=1

bjg
(j)(r)rj−1

r2k+1
J d

2
+k(r||ω||)r

d
2
+k+1dr


Thus, the result holds for k + 1 and so by induction on the set {1, .., N}, the result

follows.

Proof of Proposition 7.4.2

Proof. Consider the 2n× 2n symmetric block matrix,

M =

Ü
A−B (A−B)C

CT (A−B) CT (A−B)C

ê
Since A −B is positive semidefinite, there exists a matrix R such that A −B =

RTR. Then M must be positive semidefinite because it has a decomposition,

M =

Ü
RT

CTRT

êÅ
R RC

ã
But since M can also be written as a difference of two real symmetric matrices,

M =

Ü
A AC

CTA CTAC

ê
︸ ︷︷ ︸

MA

−

Ü
B BC

CTB CTBC

ê
︸ ︷︷ ︸

MB
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the difference MA−MB must also be positive semidefinite. Note that we cannot use

Lemma 7.4.5 yet since MA and MB are only positive semidefinite and their inverses

do not exist. To circumvent this issue, for any ϵ > 0, consider a perturbation

MA(ϵ) = MA + ϵI2n where I2n is the 2n× 2n identity matrix (and similarly define

MB(ϵ)). Now MA(ϵ) and MB(ϵ) are both positive definite and their difference

MA(ϵ)−MB(ϵ) is positive semidefinite. By Lemma 7.4.5, this implies thatM−1
B (ϵ)−

M−1
A (ϵ) is positive semidefinite. Since positive semidefiniteness is preserved for

all principal submatrices of M−1
B (ϵ) − M−1

A (ϵ), it follows after using block matrix

inversion formulas (Horn and Johnson (2013), p. 18) that the principal submatrix,

[
B + ϵIn −BC(CTBC + ϵIn)

−1CTB
]−1

−
[
A+ ϵIn −AC(CTAC + ϵIn)

−1CTA
]−1

is also positive semidefinite. By Lemma 7.4.6, both inverse matrices are well defined

since the matrices being inverted are positive definite. Finally applying Lemma 7.4.5

again, we get that,

[
A−AC(CTAC + ϵIn)

−1CTA
]
−
[
B −BC(CTBC + ϵIn)

−1CTB
]

is positive semidefinite. Since this is true for any ϵ > 0, the result holds.
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Appendix: Calculations for the Ornstein-Uhlenbeck process

Suppose y(t) is a stationary Gaussian process on [0, 1] with exponential covari-

ance function C(h) = σ2e−θh. Let t1 < .... < tn be arbitrary sampling locations in

[0, 1] such that the empirical measure of {t1, · · · , tn} converges to the Lebesgue mea-

sure on [0, 1] as n → ∞. Then, the random vector y = (y(t1), ..., y(tn))
T is multivari-

ate normal with covariance matrix, {Σ}i,j = σ2e−θ(tj−ti), 1 ≤ i ≤ j ≤ n. By exploit-

ing the Markov property of this process, z1 = y1 and zk = yk − e−θ(tk−tk−1)yk−1, k =

2, ..., n are independent normal random variables. In matrix notation, this transfor-

mation can be written as,



z1

z2

z3

...

zn


︸ ︷︷ ︸

z

=



1 0 0 0 · · · 0

−e−θ(t2−t1) 1 0 0 · · · 0

0 −e−θ(t3−t2) 1 0 · · · 0

...
...

...
. . .

. . .
...

0 0 0 0 −e−θ(tn−tn−1) 1


︸ ︷︷ ︸

L



y1

y2

y3

...

yn


︸ ︷︷ ︸

y

where L is a lower bi-diagonal matrix with 1’s on the diagonal and e−tk−tk−1 , k =

2, ..., n on the off-diagonal. Since Ly is an affine transformation of a Gaussian

vector, the matrix L defined above satisfies the property, LΣLT = σ2D, where

D = diag(1, 1 − e−θ(t2−t1), ..., 1 − e−θ(tn−tn−1)) is the covariance matrix of z. Then,

the formula for the inverse of Σ can be found by Σ−1 =
1

σ2
LTD−1L. The ma-

trix product LTD−1L ends up being tri-diagonal. Letting ∆k,k−1 = tk − tk−1, the
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diagonal elements of this tri-diagonal matrix are,

(LTD−1L)−1
k,k =



1

1−e−2θ∆2,1
k = 1

1

1−e−2θ∆n,n−1
k = n

1

1−e
−2θ∆k−1,k−2

+ e
−2θ∆k,k−1

1−e
−2θ∆k,k−1

k = 3, ..., n

The off-diagonal entries are (LTD−1L)−1
k,k−1 = (LTD−1L)−1

k−1,k = − e
−θ∆k,k−1

1−e
−2θ∆k,k−1

, k =

2, ..., n. Summing the entries of Σ−1 together and simplifying yields,

1TΣ−11 =
1

σ2

[
1 +

n∑
k=2

1− e−θ(tk−tk−1)

1 + e−θ(tk−tk−1)

]

By a Taylor expansion argument, we have the bounds
x

2
− x3

24
≤ 1− e−x

1 + e−x
≤ x

2
for

all x ≥ 0. Then, an upper bound for the partial sum above is,

n∑
k=2

1− e−θ(tk−tk−1)

1 + e−θ(tk−tk−1)
≤ θ

2

n∑
k=2

(tk − tk−1) =
θ

2
(tn − t1)

Similarly, a lower bound for the above partial sum is,

n∑
k=2

1− e−θ(tk−tk−1)

1 + e−θ(tk−tk−1)
≥ θ

2
(tn − t1)−

θ3

24

n∑
k=2

(tk − tk−1)
3

By the assumptions on {t1, .., tn}, there exists an Mn such that tk − tk−1 ≤ Mn

uniformly in k and Mn → 0. Applying this to the lower bound, we obtain,
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θ

2
(tn − t1)−

θ3M2
n

24
(tn − t1) ≤

n∑
k=2

1− e−θ(tk−tk−1)

1 + e−θ(tk−tk−1)
≤ θ

2
(tn − t1)

Since tn − t1 → 1, the limit equals lim
n→∞

n∑
k=2

1− e−θ(tk−tk−1)

1 + e−θ(tk−tk−1)
=

θ

2
. Thus, we see that

the sum of the inverse matrix elements equals,

lim
n→∞

1TΣ−11 =
1

σ2

[
1 + lim

n→∞

n∑
k=2

1− e−θ(tk−tk−1)

1 + e−θ(tk−tk−1)

]
=

1

σ2

ï
1 +

θ

2

ò
=

2 + θ

2σ2
< ∞
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Chapter 8 Numerical study on infill asymptotics

In Chapter 7, we gave results and conjectures pertaining to the microergod-

icity and estimation of regression coefficients and variance parameters under infill

asymptotics. In this chapter, we perform numerical simulations to illustrate the as-

sertions and support the conjectures. We take as our sampling domain the unit disk

in R2 (see Figure 8.1). To simulate an infill asymptotics framework, we generate a
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Figure 8.1: Infill asymptotics asymptotics framework

nested sequence of locations uniform in the unit disk and consider sample sizes of
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n = 100, 200, 400, 800, 1600, 3200.

8.1 The behavior of OLS estimates

In this section, we investigate the behavior of OLS estimates under infill

asymptotics. Consider the simple linear regression model,

y(s) = β0 + β1x(s) + e(s), s ∈ D (8.1)

where D ⊂ Rd is compact. We assume that x(s) and e(s) are independent Gaussian

random fields, each with their own Matérn covariances parametrized by (σ2
x, θx, νx)

T

and (σ2, θ, ν)T respectively. In Chapter 7, we showed that the OLS estimator of

β = (β0, β1)
T remains inconsistent regardless of the smoothness of the covariate.

Here we give a simulation study to demonstrate this. For e(s), we arbitrarily choose

Matérn covariance parameters (σ2, θ, ν)T = (1, 1, 1)T . For the x(s) Matérn covari-

ance parameters, we choose (σ2
x, θx, νx)

T = (1, 1, 1
2
)T and generate one zero mean

Gaussian random vector x according to these values. We note that νx = 1
2
was

chosen to be less than the “critical” smoothness ℓ = 2. To make the observations

nested, we generate x for the largest set of locations (n = 3200) and consider subsets

(x(s1), ..., x(sn))
T for n = 100, 200, 400, 800, 1600, 3200. Consider the OLS estima-

tor β̂OLS = (XTX)−1XTy, where X =
[
1 x

]
n×2

. Conditional on x, the variance

is,

Var(β̂OLS|x) = (XTX)−1XTΣ(θ)X(XTX)−1 (8.2)
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where Σ(θ) is the covariance matrix of e(s). For each sample size, we calculate the

variances in (8.2). The results are given in Table 8.1.

n β0 β1

100 0.546877 0.110918
200 0.553042 0.098621
400 0.553196 0.104220
800 0.551528 0.103709
1600 0.556859 0.107505
3200 0.559162 0.106006

Table 8.1: Variances for the OLS estimator of β. For each n, values were computed
using (8.2) and taking nested subsets of values from the single simulated Gaussian
vector x = (x(s1), · · · , x(s3200))T .

As expected, the variances of the OLS estimate for β0 show no decay because we

proved that this parameter is non-microergodic (Proposition 7.3.1). The variances

of the OLS estimate for β1 also show little to no decay despite choosing x(s) to have

rough sample paths compared to e(s). This is consistent with Proposition 7.3.3.

8.2 The effect of smoothness on Fisher information

In this section, we investigate the effect of the smoothness of the covariate

on the behavior of the Fisher information for the slope β1. We consider the same

linear regression model in (8.1). For e(s), we arbitrarily choose Matérn covariance

parameters (σ2, θ, ν)T = (1, 1, 1)T . For the x(s) Matérn covariance parameters, we

arbitrarily choose (σ2
x, θx)

T = (1, 1)T . For the smoothness parameter, we consider

different values of νx ∈
{
1, 3

2
, 2, 5

2
, 3
}
. We generate five Gaussian random vectors

xi, i = 1, 2, 3, 4, 5 according to these smoothness parameters and calculate the in-
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verse Fisher information,

1

xT
i Σ(θ)−1xi

, i = 1, 2, 3, 4, 5 (8.3)

in each case.

Smoothness νx

n 1 3
2

2 5
2

3

100 0.008846 0.034859 0.040558 0.286650 0.179624
200 0.004848 0.026896 0.038488 0.253762 0.171720
400 0.002657 0.020257 0.036712 0.243199 0.167509
800 0.001324 0.015646 0.035217 0.236432 0.165679
1600 0.000666 0.011749 0.034057 0.232442 0.164278
3200 0.000318 0.008797 0.032975 0.229535 0.163516

Table 8.2: Inverse Fisher information for β1 in the case d = 2 for different νx
values. For each n, values were computed using (8.3) and taking nested subsets
of values from the single simulated Gaussian vector xi = (xi(s1), · · · , xi(s3200))

T .
Each xi, i = 1, 2, 3, 4, 5 corresponds to a different νx.

In Proposition 7.3.2, we showed that the term ℓ = 2 acts as a “critical” smoothness

parameter. Any value νx greater than this quantity implies that the slope β1 is

non-microergodic. As shown in Table 8.2, when νx = 1, we get expected decay

of the inverse Fisher information as the number of observations doubles. In the

case νx = 3
2
, there is also decay albeit at a slower rate. Once we reach the critical

smoothness value of νx = 2 and above, the decay seems to slow down. This is

especially true in the case νx = 3, as there does not seem to be any noticeable decay

at all, corroborating statements made in Chapter 7.

We repeat this simulation in the case d = 3 by generating points uniformly in

the unit cube [0, 1]3 ⊂ R3 (Figure 8.2).
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Figure 8.2: Infill asymptotics asymptotics in the unit cube in R3

We use the same Matérn covariance parameters for e(s), specifically (σ2, θ, ν)T =

(1, 1, 1)T . We consider covariate smoothness parameters νx ∈
{

1
2
, 3
2
, 5
2
, 7
2
, 9
2

}
. We

generate five Gaussian random vectors xi, i = 1, 2, 3, 4, 5 according to these smooth-

ness parameters and calculate the inverse Fisher information in (8.3) in each case.

Smoothness νx

n 1
2

3
2

5
2

7
2

9
2

100 0.002068 0.026120 0.058248 0.074221 0.052362
200 0.000830 0.017631 0.049612 0.067673 0.048607
400 0.000331 0.011576 0.042790 0.064927 0.047015
800 0.000121 0.007412 0.038407 0.061629 0.043801
1600 0.000049 0.004737 0.034617 0.059126 0.042189
3200 0.000019 0.003112 0.032106 0.057852 0.041526

Table 8.3: Inverse Fisher information for β1 in the case d = 3 for different νx
values. For each n, values were computed using (8.3) and taking nested subsets
of values from the single simulated Gaussian vector xi = (xi(s1), · · · , xi(s3200))

T .
Each xi, i = 1, 2, 3, 4, 5 corresponds to a different νx.

In this case, the critical smoothness is ℓ = 5
2
. We can see from Table 8.3 that the

inverse Fisher information values follow the same pattern as in the previous case
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where d = 2. When νx is far less than ℓ, there is variance decay. When νx is close

to or greater than ℓ, there is no noticeable decay. Note that the critical smoothness

here ℓ = 5
2
is not an integer. Recall from Chapter 7, Proposition 7.3.2 that Scheuerer

(2010) only gave a sufficient condition in the fractional ℓ case for x(s) ∈ W ℓ
2(D) a.s.,

namely νx > ℓ. This simulation might suggest it is also a necessary condition.

8.3 Behavior of maximum likelihood estimates

In this section, we perform a Monte Carlo simulation study of maximum likeli-

hood estimation. In R2, we consider locations in the unit circle with sample sizes of

n = 50, 100, 200 and 400 as in Figure 8.1. We arbitrarily choose as our true Matérn

e(s) covariance parameters (σ2, θ, ν)T = (1, 1, 3
2
)T . Thus, the critical smoothness in

this case is ℓ = 5
2
.

8.3.1 One covariate

We consider the same linear regression model in (8.1). For the regression

parameters in (8.1), we arbitrarily choose (β0, β1)
T = (6, 3)T . For the covariate,

we choose as the true parameters (σ2
x, θx)

T = (1, 1)T . We compare MLE estimation

when the Matérn scale parameter θ is both fixed and estimated. We choose a Matérn

smoothness parameter of νx = 1 for the covariate and generate one Gaussian vector

x. Then, we generate 1000 realizations of y|x according to the regression model

(8.1).
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8.3.1.1 Fixed θ

First, we fix θ = 3
2
and compute MLE estimates of (β0, β1, σ

2, σ2θ2ν)T . The

empirical distributions of the MLE estimates are given in Figure 8.3.
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Figure 8.3: Histograms of MLE estimates of (β0, β1, σ
2, σ2θ2ν)T when θ is fixed to

an incorrect value θ = 3
2
(true value is θ0 = 1). In red are the theoretical asymptotic

densities predicted by Proposition 7.4.1. Estimates were computed from 1000 MC
simulations of y|x based on the regression model (8.1).

Since we chose νx < ℓ, the parameter β1 is microergodic. This is reflected

in the histograms of β̂1,n, where empirical distributions become more peaked as

the number of observations doubles. The empirical distributions of MLE estimates

for (σ2, σ2θ2ν)T also display this behavior. The empirical variances of the MLE

estimates for all parameters are given in Table 8.4. We note that variances of the
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estimates for β0 show no decay, consistent with the theory that this parameter is

non-microergodic.

n β0 β1 σ2 σ2θ2ν

50 0.423230 0.008741 0.006673 0.076014
100 0.399379 0.002474 0.002814 0.032054
200 0.392289 0.000674 0.001135 0.012924
400 0.386582 0.000246 0.000499 0.005682

Table 8.4: Empirical variances of MC estimates from Figure 8.3.

When comparing the histograms with their theoretical densities, it appears

that the estimates for (σ2, σ2θ2ν)T are heavily biased in smaller sample sizes unlike

the estimates for β1. This bias becomes less pronounced when n = 200. Table 8.5

displays the empirical absolute biases of these estimates.

n σ2 σ2θ2ν

50 0.078094 0.263567
100 0.050493 0.170413
200 0.029595 0.099883
400 0.016403 0.055361

Table 8.5: Empirical absolute biases of MC estimates for (σ2, σ2θ2ν)T from Figure
8.3. These values were computed by calculating the mean absolute difference be-
tween the MC estimates and the true parameter values of σ2

0 = 1 and σ2
0θ

2ν
0 = 1

We attempted this simulation again with different fixed values of θ. Figure 8.4

shows boxplots of the empirical distributions of the MLE of σ2θ2ν for fixed values of

θ ∈
{

1
2
, 3
4
, 1, 5

4
, 3
2

}
. The results indicate that for fixed values of θ further away from

the true parameter θ = 1, larger sample sizes are required to estimate σ2θ2ν with

less bias. This is consistent with the simulations performed by Kaufman and Shaby

(2013), who showed that in the zero mean model, small sample bias occurs in the

MLE of σ2θ2ν by fixing θ.
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Figure 8.4: Boxplots of empirical distributions for σ̂2θ2ν when θ is fixed at dif-
ferent values. The four boxplots in each group correspond to sample sizes of
n = 50, 100, 200, 400 going from left to right. The dashed line indicates the true
value of σ2θ2ν = 1.

8.3.1.2 Estimated θ

We now consider the effect of estimating θ on the MLE of σ2θ2ν . Using the

same generated data x and y|x as in the fixed θ case, we compute MLE estimates

of all parameters (β0, β1, σ
2, θ, σ2θ2ν)T . Note that we use the term MLE very loosely

here for the microergodic parameters (σ2, θ)T . We are taking them to be computed

minimizers, not necessarily unique, of the likelihood function over a bounded in-

terval. Histograms of the MC estimates are given in Figure 8.5. In Figure 8.5, we

can see that the empirical distributions for the MLEs of (β1, σ
2θ2ν)T become more

peaked with increasing number of observations.
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Figure 8.5: Histograms of MLE estimates of (β0, β1, σ
2, σ2θ2ν)T when θ is estimated

by its (pseudo) MLE. In red are the theoretical asymptotic densities predicted by
Proposition 7.4.1. Estimates were computed from 1000 MC simulations of y|x based
on the regression model (8.1).

The same cannot be said for the MLEs of the non-microergodic parameters

(β0, σ
2, θ)T . This is consistent with the theory that (β1, σ

2θ2ν)T are the only two

microergodic parameters when νx < ℓ. Unlike in the fixed θ case, the empirical dis-

tributions of σ2θ2ν do not show bias in comparison with their theoretical asymptotic

densities, even in the n = 50 case. Once again, this is consistent with the simu-

lations shown in Kaufman and Shaby (2013), who considered the problem with no

regression parameters. Table 8.6 presents the variances of the above MLE empirical

distributions for each sample size.
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n β0 β1 σ2 θ σ2θ2ν

50 0.404041 0.008461 0.369989 0.132107 0.076724
100 0.381767 0.002398 0.389967 0.092195 0.030815
200 0.377246 0.000667 0.343704 0.071875 0.012140
400 0.371659 0.000245 0.302005 0.064599 0.005585

Table 8.6: Empirical variances of MC estimates from Figure 8.5.

The variances of (β̂1,n, σ̂
2
nθ̂

2ν
n )T both decay rapidly when the number of observations

are doubled, whereas the remaining variances do not show such rapid decay. Com-

paring Tables 8.4 and 8.6, the empirical variances of the MLEs of (β1, σ
2θ2ν)T are

remarkably similar whether or not θ is fixed.

8.3.2 Multiple covariates

Finally, we consider adding a couple covariates to the model,

y(s) = β1x1(s) + β2x2(s) + β3x(s) + e(s), s ∈ D (8.4)

where e(s) is independent of xk(s), k = 1, 2, 3 and D is the same unit circle in R2.

We exclude the intercept since we know it cannot be consistently estimated. We take

e(s) to have the same Matérn covariance parameters (σ2, θ, ν)T = (1, 1, 3
2
)T as before.

Thus, the critical smoothness parameter remains at ℓ = 5
2
. We give the covariates

Matérn covariances with the same sill and scale parameters (σ2
x, θx)

T = (1, 1)T . To

illustrate the effect of smoothness on estimation, we choose smoothness parameters

νx1 = 1
2
, νx2 = 1 and νx3 = 3 for x1(s), x2(s) and x3(s) respectively. For the

true regression parameters, we arbitrarily choose (β1, β2, β3)
T = (1, 2, 3)T . Then, we
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generate 1000 realizations of y|x1,x2,x3 based on (8.4) and compute MLE estimates

for each realization. The histograms of these estimates are displayed in Figure 8.6.
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Figure 8.6: Histograms of MLE estimates for (β1, β2, β3, σ
2θ2ν)T . In red, are the

theoretical asymptotic densities of the microergodic parameters as predicted by
equation (7.39). Estimates were computed from 1000 MC simulations of y|x1,x2,x3

based on the model (8.4).

For illustrative purposes, we omit the histograms for the non-microergodic param-

eters (σ2, θ)T and only focus on (β1, β2, β3, σ
2θ2ν)T . As expected, the empirical

distributions of the MLEs of the microergodic parameters (β1, β2, σ
2θ2ν)T become

more peaked with increasing number of observations. The empirical distribution

of the MLE for β3 does not show this behavior. The variances of the empirical

distributions are given in Table 8.7.
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n β1 β2 β3 σ2θ2ν

50 0.001085 0.004994 0.047734 0.059185
100 0.000183 0.002146 0.043962 0.024694
200 0.000051 0.000891 0.039362 0.012086
400 0.000012 0.000332 0.037022 0.005820

Table 8.7: Empirical variances of MC estimates from Figure 8.6

Note that the rate of decay in the variance of the MLE of β2 is slower than that

of β1, even though both parameters are microergodic. This is likely because the

Matérn smoothness for x2(s) is νx2 = 1, which is closer to the critical smoothness

ℓ = 5
2
than that of x1(s), which was chosen to be νx = 1

2
. This suggests that the

rate of convergence may depend on the smoothness parameter and is not in general

√
n. Apart from this, the table generally agrees with the theoretical expectation

that the variances of (β1, β2, σ
2θ2ν)T decay whereas the variance of β3 does not. All

histograms seem to be approximated well by their theoretical asymptotic densities.
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Chapter 9 Conclusions and perspectives

In this dissertation, we addressed parametric estimation in linear and nonlinear

spatial regression models under different asymptotic frameworks. Under increasing

domain asymptotics, we considered regression models with and without confound-

ing. In the case where there is no confounding, we brought attention to and bridged

a gap in the spatial statistics and econometrics literature. Using asymptotic theory

for spatial random fields developed by econometricians, we were able to adequately

prove the consistency and asymptotic normality of estimators in commonly used in

spatial statistics. In the presence of confounding, we expanded on existing literature

by considering models with a nonlinear trend and unknown covariance parameters.

We showed that it is possible to jointly estimate the unknown parameters in Gaus-

sian spatial regression models under different confounding models. These parameters

were shown to be well resolved under maximum likelihood estimation, even for mod-

erately sized samples. Under infill asymptotics, we looked at estimation in linear

regression models. Existing literature generally does not address estimation of the

mean under infill asymptotics, but we showed that it is possible to consistently es-

timate regression parameters if the covariates have rougher sample paths compared

to the error. We conclude with a summary of possible directions for future research.
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Multiple covariates under confounding

In our investigation of confounding in spatial regression models, we only con-

sidered one covariate. A natural extension of this would be to include more covari-

ates in the model, say for example,

y(s) = f(x1(s), · · · , xp(s);β) + e(s)

where one or more of the covariates are now correlated with e(s). This requires a

valid multivariate cross covariance function (x1(s), · · · , xp(s), e(s))
T with more than

two components. It is not hard to generate valid covariances at specified locations,

but finding reasonably well-motivated multivariate models including confounding

without drastically restricting the parameters does present a challenge. Moreover it

may not be simple or even possible to find closed forms of the resulting likelihood

function of y|x1, · · · ,xp like we did in the one covariate case y|x.

Confounding under infill asymptotics

We did not consider the effect of confounding in linear regression models under

infill asymptotics. This would require some result on the equivalence and mutual

singularity of probability measures induced by multivariate Gaussian random fields.

An an example, suppose (x(s), e(s))T is a bivariate Gaussian random field with cross
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covariance function,

C(h) =

Ü
σ2
xϕ(θx) ρσxσeϕ(θe)

ρσxσeϕ(θe) σ2
eϕ(θe)

ê
To our knowledge, results on the equivalence and singularity of measures in the

spirit of Zhang (2004) are scarce. In another co-authored paper by Zhang (Zhang

and Cai (2015)), sufficient conditions for the equivalence of measures are given in a

special case of the bivariate Matérn model,

C(h) =

Ü
σ2
xM(h; θ, ν) ρσxσeM(h; θ, ν)

ρσxσeM(h; θ, ν) σ2
eM(h; θ, ν)

ê
where M(h; θ, ν) is a Matérn kernel. Note that this is also a separable model. It

is shown that for a fixed smoothness and spatial dimension d ≤ 3, two measures

P1,P2 induced by (σ2
xi, σ

2
ei, θi, ρi)

T , i = 1, 2 are equivalent if ρ1 = ρ2, σ
2
x1θ

2ν = σ2
x2θ

2ν

and σ2
e1θ

2ν = σ2
e2θ

2ν . A similar result for one spatial dimension d = 1 is established

in Velandia et al. (2017). These authors consider a separable model where each

component is an exponential covariance function,

C(t) =

Ü
σ2
xe

−θt ρσxσee
−θt

ρσxσee
−θt σ2

ee
−θt

ê
Here, it is shown that two measures P1,P2 induced by (σ2

xi, σ
2
ei, θi, ρi)

T , i = 1, 2 are

equivalent if and only if ρ1 = ρ2, σ
2
x1θ = σ2

x2θ and σ2
e1θ = σ2

e2θ. The results in
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these specific models suggest it plausible that the confounding parameter ρ can be

consistently estimated under infill asymptotics.

A hybrid asymptotic framework

We also considered a hybrid asymptotic framework that has features of both in-

creasing domain and infill asymptotics. Suppose that we have the regression model,

y(s) =

p∑
k=1

βkxk(s) + e(s), s ∈ D

where the error e(s) is independent of the covariates xk(s), k = 1, ..., p and D is a

compact subset of Rd. As in the infill asymptotics framework, we observe y(s) and

xk(s), k = 1, · · · , p, at an increasing sequence of dense subsets Dn = {s1, · · · , sn}

in D. To mimic aspects of the increasing domain asymptotics framework, we as-

sume that the covariance functions of the covariates rapidly decay as the number

of observations grows. To achieve this, take δn ↗ ∞ to be a sequence of increasing

positive real numbers and assume that for any si, sj ∈ Dn,

E[xk(si, sj)] = Ck(δnsi, δnsj) → 0, k = 1, · · · , p

as n → ∞. Heuristically, the correlation decay allows us to assume mixing conditions

on the covariates as in Chapter 2. Since we are no longer assuming a lattice where

the locations are at a fixed distance apart, the arguments from Jenish and Prucha

(2009) need to be modified slightly. We impose the following condition, which

precludes the scaled sampling locations from becoming too dense.
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Assumption 9.0.1. For any n, define the set, An = {{si, sj} : δn||si − sj|| ≤ 1}.

Then, lim
n→∞

1

n2
|An| = 0 where | · | represents the cardinality of An.

As an example of such a sampling scheme, suppose that for each n ≥ 1, the locations

{s1, .., sn} fall inside the unit interval at equal spacings, si =
i

n
, i = 1, ..., n. Then,

choosing δn = n, we see that An = {{i, j} ∈ {1, .., n} : |i− j| ≤ 1}. The number of

pairs within a distance of 1 of each other is O(n) and so
1

n2
|An| = 0.

We now give a brief explanation as to why these assumptions restore consis-

tency of the OLS estimates of the regression coefficients not allowed under infill

asymptotics. In vector notation, the regression model can be written as,

y = Xβ + e, X =

ï
x1 · · ·xp

ò
n×p

, β = (β1, ..., βp)
T (9.1)

where y is the vector of observations for the response at {s1, ..., sn} and similarly

for xj, j = 1, ..., p and e. Letting β0 denote the true regression parameter vector,

we have,

β̂OLS − β0 =

(
1

n

n∑
i=1

XiX
T
i

)−1
1

n

n∑
i=1

Xiei (9.2)

where Xi = (x1(si), · · · , xp(si))
T is the ith row of X. Consider the vector,

1

n

n∑
i=1

Xiei =



1

n

n∑
i=1

x1(si)e(si)

...

1

n

n∑
i=1

xp(si)e(si)
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As in the proof of Proposition 3.1.1, we examine the asymptotic behavior of both the

matrix
1

n

n∑
i=1

XiX
T
i and vector

1

n

n∑
i=1

Xiei. First, notice that the matrix
1

n

∑
si

XiX
T
i

contains terms of the form,

1

n

∑
si

xj(si),
1

n

∑
si

x2
j(si),

1

n

∑
si

xj(si)xk(si), 1 ≤ j, k ≤ p

Using similar arguments and assumptions from Proposition 3.1.1 and Assumption

9.0.1, it can be shown that lim
n→∞

1

n

∑
si

XiX
T
i = lim

n→∞

1

n

∑
si

E[XiX
T
i ], which we as-

sume to exist and is non-singular. Now, consider the vector
1

n

∑
si

Xiei. These terms

are of the form,

1

n

∑
si

e(si)xk(si), k = 1, .., p

It can be shown by mimicking the proof of Proposition 3.1.1, together with as-

sumption 9.0.1, that each of these terms goes to 0 in probability. Thus, by (9.2),

β̂OLS − β0
P−→ 0.

The next natural direction to consider for this framework would be maximum

likelihood estimation. In Chapter 7, we determined that certain roughness condi-

tions were needed for the consistency and asymptotic normality of the MLE of β to

hold. It is reasonable to believe that in this asymptotic framework, these roughness

conditions are not needed since by allowing correlation decay, we are essentially

imitating mixing conditions. One may also consider how estimators of the variance

parameters of e(s) behave in the Matérn case. Since the error e(s) does not expe-

rience correlation decay, we expect the same parameter σ2θ2ν to be microergodic.
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[31] Gräler, Benedikt, Pebesma, Edzer, and Heuvelink, Gerard. Spatio-temporal
interpolation using gstat. The R Journal, 8:204–218, 2016. URL https://

journal.r-project.org/archive/2016/RJ-2016-014/index.html.

[32] Grenander, Ulf. Stochastic processes and statistical inference. Arkiv f’́or
Matematik, 1(3):195 – 277, 1950.

[33] Guyon, Xavier. Random Fields on a Network. Springer, New York, 1995.
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