
ABSTRACT

Title of Dissertation: Time-Situated Metacognitive Agency and
Other Aspects of Commonsense Reasoning

Matthew David Goldberg
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Donald Perlis
Department of Computer Science

Much research in commonsense reasoning (CSR) involves use of external rep-

resentations of an agent’s reasoning, based on compelling features of classical logic.

However, these advantages come with severe costs, including: omniscience, con-

sistency, static semantics, frozen deadlines, lack of self-knowledge, and lack of ex-

pressive power to represent the reasoning of others. Active logic was developed to

address many of these, but work to date still leaves serious gaps. The present work

focuses on major extensions of active logic to deal with self-knowledge, and their

implementation into a newly-developed automated reasoner for commonsense active

logic. Dealing with self-knowledge has been designed and implemented in the rea-

soner via a new treatment of quotation as a form of nesting. More sophisticated

varieties of nesting, particularly quasi-quotation mechanisms, have also been devel-

oped to extend the basic form of quotation. Active logic and the reasoner are applied

to classical issues in CSR, including a treatment of one agent having the knowledge

and inferential mechanisms to reason about another’s time-situated reasoning.

Time-Situated Metacognitive Agency and Other Aspects of
Commonsense Reasoning

by

Matthew David Goldberg

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Donald Perlis, Chair/Advisor
Professor Michelle Mazurek
Professor James Reggia
Professor Darsana Josyula
Professor Ted Jacobson (Dean’s Representative)

© Copyright by
Matthew David Goldberg

2022

Acknowledgments

I’m tremendously thankful for all of the support, encouragement, guidance,

and love that I’ve received throughout my years as a grad student.

I’m grateful for the insight, wisdom, and patience of my advisor, Dr. Don

Perlis, as well as Dr. Darsana Josyula. Throughout countless meetings and dis-

cussions over these years, they taught me so much about the process of research,

writing, and expressing ideas, and could always help guide a way forward when I

was stuck.

I’m grateful for the support of my friends, especially Joe, Alan, Kevin, Alex,

and Grayson — for numerous reasons, including bouncing around research ideas, as

well as for keeping me sane outside of work.

I’m grateful for the love and encouragement of my family: Mom and Dad, and

Dan — as well as Carl, Dionne, Sarah, Mecca, Mikey, Luke, and Hunter.

And above all, I’m forever grateful for the unwavering love, support, and faith

of my fiancée, Imani. At all times, especially through long days of dissertation

writing, you have been a source of inspiration, reassurance, and motivation — and

always held fast in the belief of my ability to succeed. I couldn’t have done this

without you!

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

Chapter 1: Introduction 1
1.1 Contributions . 7
1.2 Publications . 10
1.3 Outline . 12

Chapter 2: Related work 13
2.1 Logicism and commonsense reasoning 13

2.1.1 Introduction . 13
2.1.2 Situation calculus . 13
2.1.3 Nonmonotonic reasoning . 15
2.1.4 Other relevant logicist approaches 16

2.2 Active logic . 18
2.2.1 An active and temporal nature 19
2.2.2 Paraconsistency . 21
2.2.3 Nonmonotonicity . 23
2.2.4 Older approaches . 24

2.2.4.1 Step-logic development 25
2.2.4.2 Reasoned change in belief 26
2.2.4.3 Deadline planning 27

2.2.5 ALMA 1.0 . 28
2.2.6 The metacognitive loop . 29
2.2.7 ALFRED . 30
2.2.8 Need for a sense of agency . 30
2.2.9 Other active logic work . 32
2.2.10 An active logic grammar . 33

2.3 Agency and internal reasoning with nested formulas 34
2.3.1 Autoepistemic desiderata for agency 35

2.3.1.1 Constraints on representation 38
2.3.2 Syntactic theories of belief . 39

2.3.2.1 Konolige . 40
2.3.2.2 Perlis . 42
2.3.2.3 Haas . 45

iii

2.3.2.4 Morgenstern . 46
2.3.2.5 Quantifying-in . 48
2.3.2.6 Evaluation for agency 50
2.3.2.7 The role for active logic 52

2.3.3 Motivating examples of quotation 52
2.3.3.1 Referring to and updating an agent’s beliefs 53
2.3.3.2 Reasoning about the presence or absence of beliefs . 54
2.3.3.3 Distinguishing experience and quoted expressions . . 56

Chapter 3: Quotation in active logic 57
3.1 Introduction . 57
3.2 Need for quotation in active logic . 57
3.3 Quotation terms . 61

3.3.1 Formalism . 62
3.3.2 Quotation term reasoning . 64

3.3.2.1 A point about quoted formula meaning 65
3.3.2.2 A ground quotation term 67
3.3.2.3 A variable both inside and outside quotation 68
3.3.2.4 Unifying a quotation term containing a variable . . . 70
3.3.2.5 Inferring a quotation term as true 73

3.4 Quasi-quotation . 75
3.4.1 A need for quantifying-in . 75
3.4.2 Formalism . 79
3.4.3 Quasi-quotation reasoning . 84

3.4.3.1 Binding a non-escaping quasi-quoted variable 85
3.4.3.2 Binding a fully-escaping quasi-quoted variable 88

3.4.3.2.1 Binding to a ground term 89
3.4.3.2.2 Binding to a variable 89
3.4.3.2.3 Binding to a non-ground term 91
3.4.3.2.4 Binding to fully-escaping variables 94

3.4.3.3 Exhaustiveness of bindings 95
3.4.3.4 Substitution with quotation and quasi-quotation . . 97

3.4.3.4.1 Substituting for a non-escaping variable . . 98
3.4.3.4.2 Substituting for a fully-escaping variable . . 99
3.4.3.4.3 Substituting into the same quotation level . 101
3.4.3.4.4 Substituting into a different quotation level 102

3.4.3.5 Recursive quasi-quotation unification 111
3.4.4 A quotation unification algorithm 114

Chapter 4: The ALMA 2.0 reasoner 120
4.1 Introduction . 120
4.2 Grammar and parsing . 121
4.3 Control by commands . 130
4.4 High-level control and prospect management 134

4.4.1 Inheritance . 137

iv

4.5 Methods of inference . 138
4.5.1 Forward-chaining resolution 138
4.5.2 Forward-if . 140

4.5.2.1 Procedural premise predicates 142
4.5.2.1.1 Family of procedural premise predicates . . 145

4.5.2.2 Introspection . 149
4.5.3 Backward-chaining resolution 155
4.5.4 Procedural atomic predicates 157

4.6 Specialized inference rules . 160
4.6.1 Clock rule . 160
4.6.2 Contradiction handling . 161
4.6.3 Inferring as true . 164

4.7 Agent belief modeling . 164
4.7.1 Agent belief model partitions 168
4.7.2 Belief inference and synchronization 171
4.7.3 Effects on ALMA procedures 174

4.8 Comparison with the prior reasoner 175
4.8.1 Deficiencies in ALMA 1.0 . 175
4.8.2 Behavioral overlap . 176

Chapter 5: Applications to commonsense reasoning 177
5.1 Introduction . 177
5.2 Default reasoning with nested beliefs 178

5.2.1 Nested defaults case study . 183
5.2.1.1 Initial mollusk ontology 185
5.2.1.2 First example: cephalopod as a counterexample . . . 187
5.2.1.3 Second example: counterexample from observation . 192

5.2.2 Interacting defaults case study 195
5.2.2.1 Initial car ontology 196
5.2.2.2 First example: resolving conflicting categories 197
5.2.2.3 Second example: repetition after an update 201

5.2.3 Counterpart axioms . 202
5.2.4 Example corpus and testing 207

5.3 Question-answering . 215
5.3.1 Axioms . 217
5.3.2 Examples . 222
5.3.3 Toward explainability . 225

5.4 Modeling agent beliefs: the surprise birthday present 226
5.4.1 Attributing common knowledge 228
5.4.2 Birthday surprise ontology . 231
5.4.3 Solutions and discussion . 236

5.4.3.1 Alma’s perspective 237
5.4.3.2 Carol’s perspective 238
5.4.3.3 Bob’s perspective of Carol 241
5.4.3.4 Other scenarios . 242

v

5.4.3.5 Discussion . 243

Chapter 6: Conclusions and future directions 247
6.1 Summary of results . 247

6.1.1 Quotation and quasi-quotation 247
6.1.2 ALMA 2.0 . 248
6.1.3 Commonsense reasoning applications 249

6.2 Future work . 250
6.2.1 Quotation and quasi-quotation 250
6.2.2 Commonsense reasoning applications 251

6.2.2.1 Default reasoning . 251
6.2.2.2 Agent-modeling . 252

6.2.3 ALMA-based agency . 254

Bibliography 255

vi

Chapter 1: Introduction

Much of AI has focused on the abilities of a system to execute particular tasks

or objectives with a narrow focus. Less work has gone into developing systems

which might be described as having a proper sense of agency. In referring to sense

of agency specifically, in part we refer to an existing but limited sense used both in

AI and in human psychology, namely the process of tracking and controlling actions

being undertaken by the actor [8]. We intend to go beyond this meaning of the term,

in considering a larger sense of agency that facilitates development of a system that

potentially could support a variety of abilities such as: general kinds of reasoning

and processing, persistence beyond a particular task, and most crucially, reasoning

about itself (especially its own specific beliefs, expectations, and reasoning history)

and about representing the beliefs and reasoning of other agents.

Of that list of desiderata, a key item that we most emphasize is the need

for an agent to support wide-ranging metacognitive behavior and autoepistemic

meta-reasoning. We contend that, as part of a further-developed sense of self-

agency as we have defined it, perhaps the most critical process for a system to be

aware of is maintaining awareness of its reasoning processes and internal operations.

These processes are depend on the capacity for metareasoning. Metareasoning is of

1

tremendous importance for AI, due to playing a key role in many abilities that seem

to be crucial for characterizing an agent as intelligent in a wide sense. A broadly

capable system ought to be able to have abilities such as being able to recognize when

it has made errors, to explain its actions and reasoning, to have rich information

on what it is doing (in a variety of senses including inferring and acting) — among

many other abilities that all require such an agent’s reasoning about its reasoning.

Thus, a primary focus of this dissertation is on issues related to metareasoning.

The form of reasoning we focus our attention on for an artificial agent, and

thus also the form of metareasoning investigated, is symbolic logic-based reasoning.

Logic has formed a useful basis for numerous AI systems. Yet, an issue with symbolic

reasoning is that, by and large, logical approaches have a notable weakness: if they

model processing which might be attributed to an agent, this is typically viewed

from the perspective of looking in on a hypothetical agent’s reasoning, as an outside

observer – an external view by the logic. An external viewpoint for a logic that is

supposed to be the core of a reasoning agent is not properly agentive. Reiter [79]

contrasts two viewpoints as the “external design stance” versus the “self-reflective

design stance” and this terminology alone is illuminating. Perlis et al. [67] use the

terms external logic and internal logic, which we adopt here as well. The former

stance characterizes knowledge and beliefs as seen by an external observer/designer

that is separate from the agent being observed.

To better illustrate this idea, we consider an agent with a knowledge base, in

which referring to the agent’s knowledge base containing the belief P is done via the

formula InKB(P). There are three languages used in the preceding sentence: 1) the

2

formal (internal agent) language which contains P as a well-formed formula (wff),

2) the designer language which contains InKB(P) as a wff that provides a designer’s

representation of the internal agent language formula P, and finally 3) English as

a natural language that is used to discuss the languages and beliefs. The formula

InKB(P) in the designer language is distinct from whether the agent can itself reflect

on P in its knowledge base (KB); this latter reflection is instead represented in the

agent’s language using Bel(P) (i.e., the agent believes that it holds the belief P).

These languages and examples help to clarify the two design stances and the

external-internal logic distinction. InKB(P) exemplifies the external design stance,

and represents the fact that the agent being studied holds the belief P, and this

belief might belong to an observer or designer of the agent. On the other hand,

P exemplifies the internal and self-reflective design stance, indicating that P itself

stands on its own as a belief of the agent. As described above, Bel(P) is also a belief

of the agent language, expressing agent reflecting on the fact that it believes P, and

so this further demonstrates the self-reflective case. The table below summarizes

how the paired examples compare between the three languages:

Agent language Designer language English

P InKB(P) agent has P in its KB

Bel(P) InKB(Bel(P)) agent believes that it has P in its KB

The bulk of the work in commonsense reasoning has involved external logic

using designer languages. However, in both the current form of active logic and in

this dissertation, we dispense with using a designer language and focus on an internal

language of an agent, which we also discuss in natural language with English. In

3

this way, once we concern ourselves with the internal language, English corresponds

to the role that had formerly been played by formal external designer language, by

serving as an outside way of observing the internal language.

As another motivating factor for internal languages, Perlis et al. [67] point to

accounting for the process of inference itself taking time, and evolving over time,

as a key characteristic that distinguishes internal logics; a sharp contrast is made

between internal logics and external logics, the latter of which have a tendency

to specify agent beliefs via consequential closure. A realistic agent situated in a

world, whether real or simulated, inherently consumes time during the process of

its reasoning. If the system abstracts away this temporal process, to focus on the

idealized (possibly-infinite) closure of its belief set, it ignores a critical piece of its

own reasoning. For example, we wish to consider agents that have the potential to

reason in ways such as: to interrupt an ongoing thread of their reasoning, to notice

that enough or too little time remains to achieve a planning goal, and to contrast

a belief of the present moment with a belief that was revised or discarded some

time ago. Further, it is desirable to be able to characterize formulas in a particular

agent’s knowledge base as being that agent’s own beliefs and knowledge, which an

external logic by its nature would not be able to do.

Additionally, external approaches to logical AI tend to have a number of com-

mon issues, which further affect the ability of a logic or its reasoner to support

certain kinds of commonsense reasoning:

Omniscience — a common problem affecting logics is that of omniscience,

where the beliefs held are based on the closure of inference rules applied to the

4

set of axioms. Yet a practical system performing commonsense reasoning must

take time to derive conclusions and apply inference, and otherwise assuming that

all (infinitely many) logical consequences of the set of beliefs are known is highly

unrealistic.

Consistency and paradox — a logical reasoner ought to be able to continue to

reason in the presence of contradictions, as these are common occurrences in com-

monsense reasoning when interacting with the world. However, when the knowledge

base becomes inconsistent, many logics will entail all formulas (i.e., ex contradic-

tione quodlibet). Paraconsistent logics do not suffer from this, but often ignore

inconsistent parts of knowledge. A reasoner ought to have the ability to manipulate

inconsistent formulas and reason toward some form of solution.

Static semantics — a commonsense logical agent should have the ability to

reason about the meaning of an expression, but also be able to mention expressions,

to be able to reason about the syntactic form. This is an often-overlooked ability.

As an example, an agent may mention a formula that contributes to inconsistency,

as part of reasoning about this. Or, it may express in the syntax of its language

that “John” is the name of the person John and refers to him. Symbols used as

references in this way can also be free to change their use over time, avoiding the

issue of references that are static, unchanging through inference. In this sense we

do not mean formal semantics, but an intuitive semantics based on the meaning of

words or names.

Frozen deadlines — reasoning takes time, and during inference toward solving

an urgent goal the deadline continues to approach. The fact that reasoning itself

5

happens over time and affects that resource should be accounted for in the logic,

yet that accounting is rarely done. When this is not dealt with, the distance to a

deadline seems frozen, during reasoning.

In light of these issues, external logics thus impose a significant barrier to

internal reasoning and a variety of abilities identified as agency-related. Internal

logics, conversely, offer an opportunity to act as a framework to meaningfully pull

together both the wider sense of agency and the more narrow ability of metacognitive

self-reference. Active logic is one form of internal logic, particularly because it

centers around inference evolving in time, and was developed to address many of

the limitations of external approaches that we have identified. Active logic has

been developed in a rich body of work (discussed in detail in section 2.2), for which

metareasoning has been an area of interest since active logic work began. The

history of this work has investigated metacognitive aspects such as artificial efference

copy in speech, planning within real-time deadlines, and object reference revision.

But active logic as it has been developed until now is not ideal for supporting a

sense of agency, primarily due to its inability to properly reason about active logic

formulas themselves as objects of its beliefs. In the present work, a primary area of

focus is extending the logic, and its formalism and inference rules, to incorporate a

syntactic theory of quotation, for nesting formulas within other active logic formulas.

This enhances some key qualities desired for a logical agent, to enable it to have a

better basis for agency through the improved ability for self-reference, which we have

indicated to be a component added into a richer conception of a sense of agency.

We provide the following sample formula which provides an example of a for-

6

mula as an object of belief for internal reasoning, rather than using the design

language approach. Additionally, this formula touches upon many of the aspects

which are developed in the present research:

now(t) ∧ t > t0 ∧ bel(P, t) ∧ bel(¬P, t0)

This formula is one which might appear in an agent’s internal knowledge base, and

it expresses an agent reflecting on the current point in time as t, that the agent

previously had the belief ¬P at an earlier time, and that the agent had changed its

mind so that P is a current belief at t. Hence, the example incorporates aspects of

inference in time and evolving over time, reflection on internal beliefs and reasoning

about nested formulas as objects, and the agent’s change in belief. We thus illustrate

skipping using a designer language, by elucidating the meaning of this internal belief

without relying on an external reference to the agent, such as in an InKB formula

would use.

1.1 Contributions

As an overarching goal, the present research pulls together the wide swath of

active logic research, develops the logic toward making aspects of it more agent-

centric, implements these developments to active logic in an automated reasoner,

and applies this reasoner to a series applications of commonsense reasoning. More

specifically, the contributions of the present work are thus:

1. The development of a more agent-centric active logic, through the expansion

of the logic to express and draw inferences about its own reasoning and ac-

7

tions. This is achieved through active logic being extended to support nested

formulas via a novel type of term, the quotation term. Quotation is developed

first with a simple form, which is then extended to more sophisticated varieties

of nesting via a quasi-quotation mechanism that provides the means to quan-

tify into quotation terms. We ultimately present a full unification algorithm

for quotation and quasi-quotation inference, which is exhaustive in accounting

for how to unify terms in the extended active logic system. Quotation and

quasi-quotation are described in chapter 3.

2. The implementation of active logic reasoning, both existing basic aspects of the

logic as well as new developments for quotation, in a reasoning engine, ALMA

2.0, newly developed as part of the present work. In specifying the language

of wffs for ALMA, we also provide a grammar for agency-based reasoning

with active logic. ALMA itself reflects a range of reasoning capabilities for

the existing active logic formalism. These include: basic inference abilities of

forward-chaining and backward-chaining resolution as well as extended modus

ponens reasoning; the option of implication premises that execute a body

of procedures providing useful functions such as introspective lookups and

searches through formula derivations; specialized inference rules such as the

detection and distrusting of direct contradictions; and finally, the ability to

model the beliefs of other agents in specialized partitions, which supports a

category of commonsense reasoning development identified below. ALMA is

described in chapter 4.

8

3. The application of the implemented ALMA reasoner to commonsense reason-

ing problems. ALMA has been designed to be a platform that is capable

of supporting relatively general commonsense reasoning through active logic,

and its application to a series of commonsense problems demonstrates this.

The first of these applications consists of two groups of scenarios for com-

monsense reasoning with default formulas, in which variations of traditional

problems involving interacting defaults, both nesting and otherwise overlap-

ping, are solved in a novel and much more powerful and time-sensitive way —

namely, by updating and revising their conclusions in unfolding time due to

active logic and the fine-grained metareasoning of quotation. In doing so, we

also develop a form of abnormality for default formulas that generalizes that

of McCarthy [51, 52]. The second application is the development of axioms

for question-answering regarding an agent’s beliefs, on the basis of the self-

reflective abilities that the ALMA reasoner has been endowed with by use of

quotation terms. Finally, an example scenario demonstrates an ALMA-based

agent reasoning about both self and other agents, through a case study re-

garding modeling the beliefs and inferences of fellow agents — which pushes

the use of formula nesting and quotation beyond a focus mostly on self and

the agent’s own beliefs. All of these applications are described in chapter 5.

It is important to note that, beginning from the mention above of an agent

holding internal beliefs, in the current work there is almost everywhere the idea

of an implicit agent in our treatment of active-logic reasoning. Hence, any active

9

logic formula is meant to represent a belief of some active-logic agent, in its own

internal representation. However, none of the present work focuses on multi-agent

reasoning; our focus is on a singular active-logic agent that may represent what

beliefs this agent attributes to others. We refer to this singular agent of focus as

Alma (which also appears in lowercase as a logical constant present in a formula,

due to the grammar we define), and note the contrast between this name for the

agent and ALMA, which signifies the reasoner itself.

We intend the contributions of the present work to make steps in areas which

in the long term we hope will provide advantages in terms of futurecapabilities for

artificially intelligent agents. That is, agents which would be able to know what

they are doing, and why, and thus have a capacity to find and correct errors, and

to explain this to themselves and others — and, more generally, to be much closer

to human-level artificial intelligence.

1.2 Publications

Several earlier papers formed a progression toward arguing for agents having

representational mechanisms which included beliefs about beliefs, such as by Gold-

berg et al. [24] (presented at a conference by the author) and Perlis et al. [66].

The actual quotation work of this dissertation itself is an attempt to grapple with

this, to have nested representations of formulas and have this implemented in active

logic systems; the quotation work was motivated and a roadmap for its develop-

ment sketched out in the publication by Goldberg et al. [25] (also a conference

10

presentation by the author).

Much of the work in this dissertation is also related to — and was supported by

— a recent DARPA project, on the foundations of knowledge of cooperative agency.

Key to that project were issues about an agent’s evolving knowledge of its own beliefs

and actions as well as those of a cooperating agent. While agent-cooperation is not

a topic of the dissertation, the underlying knowledge-representation issues crucially

involve much of the dissertation research. For example, knowledge that making an

utterance is expected to alter a listener’s beliefs — while seemingly so obvious as

to need no special treatment — is far from trivial to represent for an automated

system in a general (non-task-specific) manner; and similarly for an agent’s evolving

knowledge of its own activity. Both of these in turn require the methods developed

here.

Thus, research reported in this dissertation (which was begun before the

DARPA project was conceived) served as both a stimulus for that project, and

also an outgrowth of it, as new issues arose during the course of the project. In

particular, quotation and quasi-quotation in various ways figured substantially into

the project work, as did time-sensitive nonmonotonicity. A variety of papers have

been undertaken as a result of the dissertation work, as well as of the project. Three

have appeared in workshops or conferences [12, 14, 37], and several others are in

various stages of completion.

11

1.3 Outline

The outline of this dissertation is as follows: Chapter 2 surveys relevant back-

ground literature for logicism and commonsense reasoning that gives context to

the logic-based approach, and pulls together past research on active logic, which

informs and motivates the present state of the logic to be developed. It also intro-

duces nesting of logical formulas, reviews literature on nesting methods — particu-

larly syntactic theories utilizing formula quotation, and describes the suitability for

pairing active logic with quotation. Chapter 3 describes the need for quotation in

active logic, details the quotation term mechanism for active logic quotation, and

provides examples; this includes the development of quantifying into active logic

quotation. Chapter 4 describes the structure, logic, and uses of ALMA 2.0, the

commonsense active-logic reasoning engine implementation; ALMA provides a basis

for wide-ranging automated reasoning with active logic. Chapter 5 describes the

applications to commonsense reasoning that utilize ALMA and the extended form

of active logic with quotation. Chapter 6 describes the conclusions of the present

work and some limitations which might be addressed in future research.

12

Chapter 2: Related work

2.1 Logicism and commonsense reasoning

2.1.1 Introduction

Since the beginning of the field of AI, the logicist tradition has championed

the use of logic-based methods as a basic tool and foundation for reasoning, where

formulas in a formalized language correspond to beliefs within a knowledge base.

Broadly speaking, logic-based systems would meet the following criteria: 1) use of

syntactic rules for combining symbols, and semantic rules for interpreting them, 2)

symbols such as predicates defined with respect to a model, 3) context-independence

of the meaning of symbols, and 4) reasoning patterns generally matching description

by logical inference [16].

2.1.2 Situation calculus

A foundational form of logical reasoning for commonsense is the situation cal-

culus, developed first by John McCarthy [53]. The situation calculus is a system

using a first-order language keeping with the principles of logicism, yet unlike stan-

dard first-order logic, is designed to allow dynamic reasoning and incorporate a kind

13

of time through use of situations and their successors. A situation is an entity in-

tended to describe an entire world state at a given point, and situations are objects

in the language which can bind to situation variables and be used as terms. Fluents

express time-varying relations about the world, and can either map to a truth value

as fluent predicates (propositional fluents), or map to a novel situation (situational

fluents). For example, at(John, home(John)) uses the propositional fluent at, with

the truth value of this expression determined by whether John is at home. The ex-

pression result(p, opens(safe, key), s) uses the situational fluent result, a special

situational fluent that maps to the situation that results from performing an action

in the previous situation. In this case, from being in situation s, the opens action

performed by agent p leads to the situation indicated by the entire result fluent,

describing the state of the world with the safe opened by the key.

Even from the situation calculus’ first introduction, it was acknowledged that

it must address the frame problem. For expressing what information will not change

from one situation transition to another, a large number of additional frame axioms

are required. As an alternative, all formulas ought to be retained except for those

altered by an action causing situation change. The notion that a property that is

true will typically remain true, unless something changes it, is called the common-

sense law of inertia. An exception to the law is in effect represented as atypical or

abnormal. Formalizing abnormality and concerns such as which formulas it would

be applied to, were refined in the literature introducing circumscription, described

in the following section.

14

2.1.3 Nonmonotonic reasoning

In the usual first-order predicate logic, reasoning is monotonic: from a set

of formulas B, if B ` S, then adding another belief b does not prevent any of

the formulas in S from being proven, and so B ∪ {b} ` S. Likewise, entailment

is monotonic. For reasoning in commonsense domains, in contrast, monotonicity

does not hold. Adding new information to the set of beliefs may prevent the proof

of certain formulas that were consequences of a smaller belief set — for example,

learning that a particular bird Tweety is a penguin should preclude concluding

that he can fly, which would have been a reasonable conclusion to draw when the

only belief about Tweety was that he is a bird. Hence, conclusions which might

nonmonotonically be withdrawn on the basis of additional premises are known as

defeasible. Three prominent systems for handling nonmonotonic evolution of logical

consequence are circumscription, default logic, and autoepistemic logic.

Circumscription was first developed by McCarthy [51, 52], and attempts to

minimize concepts of abnormality, as is defined with a set of abnormality predicates

for different aspects of formulas. For instance, consider birds which can fly. A bird

might be deemed “abnormal” in any number of different ways, including with respect

to flying, size, weight, color, or other attributes. Supposing the particular abnormal-

ity with respect to flying is termed aspect2, the fact that birds which are not ab-

normal in this way can fly is formalized as bird(X)∧¬ab(aspect2(X))→ flies(X).

McCarthy presented a schema that gave a syntactic approach to transforming the

set of formulas circumscribed. This second-order schema is provided an argument

15

of a predicate specified to be minimized alongside ab, and produces a set of stronger

formulas that minimize the predicate’s extension to abnormal cases. McCarthy also

provided a semantic point of view on circumscription, that entailment should be

restricted to models that are minimal with respect to the circumscribed predicates

— i.e., that the most-preferred models have a minimal set of abnormal objects. Lif-

schitz later further developed this [46, 47], and also proved that this semantic char-

acterization exactly matches the syntactic transformation described by McCarthy.

2.1.4 Other relevant logicist approaches

The event calculus, first introduced by [42] (and further extended and devel-

oped by [40] and [41]; also developed significantly by [60]), allows reasoning That

directly represents events, their effects, and the periods of time or time points during

which such effects might hold. Hence, addresses some shortcomings of the situation

calculus in relation to temporal issues, and enables a better handling of events,

time, and narratives. This includes the persistence of properties in the future until

an event might terminate them, and into the past until initiated by an event. Im-

portantly however, this does not guarantee a reasoning process about time to itself

be situated in time and evolve. Further, event calculus logics tend to be external,

and thus are usually not designed for an agent itself to use in reasoning.

NARS (Non-Axiomatic Reasoning System) is a term-logic based reasoning

system that focuses on agents with finite abilities, real-time reasoning, and openness

to data and problems [93]. In the system, all beliefs of an agent are revisable, and

16

the logic is nonmonotonic, allows for certain types of self-reference, and designed

for concepts to be situated rather than disembodied, and grounded in experience as

part of an agent [95]. However, the system lacks a notion of time which explicitly

evolves or is seen as an object of reasoning, although there is recognition of issues

regarding an assumption in which “the reasoning system itself is outside the flow

of time” [94]. Additionally, it does not have specific mechanisms for monitoring

ongoing reasoning processes.

SNePS (Semantic Network Processing System) is a logic-based knowledge rep-

resentation system designed for an underlying motivational purpose of developing

intelligent agents which use natural language [83]. The system has in particular

been applied to model a cognitive agent, Cassie [84, 85], and is also used as the

basis for the GLAIR cognitive architecture [86]. In several ways SNePS shares key

similarities with active logic, but also has notable limitations relevant to these areas.

First, SNePS is a monotonic logic. Also, although SNePS can represent beliefs about

beliefs, Cassie cannot formally retract beliefs, and temporal beliefs must instead be

allowed to expire [87]. While SNePS is paraconsistent, contradictions obtained can-

not be reasoned about in a way that allows an agent to make use of them. The

system uses a meta-logical variable Now, which is notably not a logical term, and

changes over time — although this is contingent as a result of explicit actions of the

agent making a change in the world.

There is a rich history of epistemic logics, from classical logics [22, 33, 54], to

more modern developments [80, 89, 92, 96]. Epistemic logics are primarily modal

logics, and hence the problem of logical omniscience as identified in chapter 1 is

17

generally relevant to these approaches. While there have been some attempts to

circumvent this, frequently a narrower form of omniscience remains as a problem,

in that knowledge of the consequences of an agent’s axioms that are known to the

agent are treated as available immediately — and thus the agent does not represent

the reasoning process of deriving this knowledge. Furthermore, there remains an

issue of these approaches as external, for which reasoning is done within the logic

but not within the agent in an internal manner. We further discuss some attributes

of epistemic logic as bear on desiderata for agency in section 2.3.1.

2.2 Active logic

We now turn to discussing active logic, and tracing the key developments of

this body of work. The present work’s contributions in later chapters come in the

form of enhancements and extensions to active logic. As such, at this point we note

that with our focus specializing toward active logic, we put aside other types of rea-

soning such as induction, abduction, and probabilistic reasoning — which although

of great importance for AI and a hypothetical fully-featured intelligent agent, would

overly broaden the scope of the present work if dealt with here. Active logic can be

characterized as deductive in some respects (including usage of introspection and

contexts where formulas are not disinherited, both features of which are described

below), and in other ways frequently uses default reasoning and nonmonotonic rea-

soning.

18

2.2.1 An active and temporal nature

Active logic is most essentially a logic situated in time, with an evolving rea-

soning process. The set of beliefs attributed to an agent in active logic is not a

long-lasting entity that persists over a duration of time; there are many belief sets

that are fundamentally parameterized by time. At each discrete point in time, a dif-

ferent set of formulas is believed, and the evolution of one set of beliefs into another

is key. The discrete points in time are termed timesteps, and active logic timesteps

are numbered with increasing natural numbers that abstract away any particular

unit of time. In an implementation, timesteps may be grounded so that a specific

interval of real time passes for each step, but this grounding is not required.

Inferences occur across the boundary of timesteps. Therefore, inferences in

active logic are associated with a transition from a timestep to its successor; when

a formula’s premises are satisfied at timestep t, the conclusion is newly obtained at

t + 1 and belongs to the belief set for that timestep. This may be viewed as part

of a transition process from the current state of beliefs. For example, the following

table shows some inferences across timesteps, from an initial KB of two implications

at the first timestep, and a formula p being added in at time t:

19

Timestep Inserted formulas Inferred formulas

0 p→ q, q→ r

1 p→ r

2

...

t p

t+1 q, r

Inheritance of formulas is a notable property of active logic, by which formulas

are typically present at the successor to a given timestep in which they were previ-

ously present.1 Some information may conflict with inheritance, and cause formulas

to be retracted. Along with providing the new formulas, inference rules may cause

beliefs to be retracted as disinherited, which happens during the next timestep tran-

sition. In this sense, the logic is active as the inference rules are applied to the belief

set to derive new inferences or remove old ones, from one discrete timestep to the

succeeding one, rather than using an omniscient view of closure under consequence.

It is a great strength of active logic that omniscience is dealt with rather simply,

given the problem it poses for practical applications of many other kinds of logic.

Reasoning in active logic is situated in time by the evolution of its present

timestep. An agent that reasons with active logic, moreover, can have knowledge of

time passing due to the tracking of timestep number occurring within active logic

formulas as well. A dedicated inference rule, the clock rule, maintains a special

1 Inheritance also helps active logic address some aspects of the frame problem, in that the
standard behavior of the logic is for formulas which are held as beliefs at a given timestep persist
to subsequent timesteps.

20

atomic formula, which uses the predicate symbol now to express the timestep value.

Each old now formula is retracted, and a new one with the incremented timestep

value asserted, over each transition in timestep. When the present now is used in

inference, active logic is accounting for the actual process of reasoning in time and

taking time; more details on the rule are given in section 4.6.1.

Temporal logic is a term used to cover a range of logics involving time, which

arguably encompasses active logic. However vast majority of temporal logics, from

the tense logic used by Pnueli for analysis of program behavior [73] to the formalism

for qualitative interval relations by Allen [2], are frozen in time in that they have

no evolving now or accounting for agent reasoning in time.

The time-varying nature of active logic belief also makes the logic well-suited

to handling two important aspects of commonsense reasoning: the presence of con-

tradictions, and the nonmonotonic nature of commonsense inference.

2.2.2 Paraconsistency

Active logic is a paraconsistent logic that is able to continue to reason when

inconsistencies and contradictions arise. Anderson et al. [4] note this as tolerance

of local inconsistency (or direct inconsistency) between A and ¬A, in contrast to

global inconsistency where the negation of all formulas hold; they further discuss

active logic as situated in literature of paraconsistent logic. By virtue of the rea-

soning evolving in time, if the closure of the knowledge base under consequence is

inconsistent, but a direct contradiction between a formula and its negation has not

21

been derived, active logic is not yet affected by inconsistency. When reasoning con-

tinues onward over timesteps, and eventually reaches a point where an inconsistency

manifests as a direct contradiction, then the inconsistency must be dealt with. Here

again, active logic’s progression across timesteps allows a convenient way to disarm

the contradiction, and avoid erroneous derivations that would follow from an unre-

solved direct inconsistency — what has been referred to as the swamping problem.

A specialized inference rule for contradictions exists:

t : P ¬P
t+ 1 : contra(P,¬P, t)

This rule also applies the effect of disinheriting the two contradictands P and ¬P .

All formulas derived from the contradictands also can no longer be trusted, as the

result of being based on information found to be inconsistent. These contradictand

descendants are thus likewise disinherited, and new formulas indicating that they

became distrusted are derived.

The syntax in the above rule does not respect the active logic formalism, due

to the use of entire formulas P and ¬P as arguments to contra. The ALMA

1.0 implementation, described further in section 2.2.5, used a practical means to

express contradictions within a first-order grammar through indirection in the first

two arguments of contra. This approach replaced contradictands P and ¬P by the

integer index metadata attached to their respective ALMA formula records (x and

y, respectively):
t : P ¬P

t+ 1 : contra(x, y, t)

An approach extending active logic in a way enabling nested formulas is developed

22

in chapter 3, which supports a formalism where arguments to the contradiction

rule can represented similarly to the above notation with nested wffs. For now, we

sidestep this issue of the syntax and leave contra presented as it has traditionally

been in active logic literature.

Active logic thus enables a prompt recovery from direct inconsistency with this

rule. The acquisition of a contra formula in the contradiction-detection inference

rule also provides a means to reason directly about the contradiction, which is

advantageous for enabling the reinstatement of some formulas that were distrusted

as a result of it. Formulas which have been distrusted are not accessible in regular

reasoning, and another method of accessing them is needed. Active logic provides

for this retrieval with introspection; the special introspective predicates pos int

and neg int have their truth value determined by whether their argument is a

formula in the present belief set.

Active logic’s reasoning about the nature of a contradiction in the belief set is

also a kind of metareasoning. Further details of metacognition and metareasoning

that can potentially be directed by active-logic reasoning are addressed in section

2.3, following introduction of metacognitive and autoepistemic desiderata for agents.

2.2.3 Nonmonotonicity

Active logic naturally supports nonmonotonic reasoning. This is in large part

due to how any formula may be disinherited at a future timestep; retraction of a

previous formula is inherently a nonmonotonic change to the knowledge base. Of the

23

different ways formulas may be removed, naturally there is the previously-mentioned

contradiction-handling mechanism, that disinherits formulas participating in or de-

scending from a contradiction. The tracking of a present now point in time via the

clock rule, once again as indicated above, involves retraction due to the ephemeral

nature of each now formula that has a one-timestep duration and is not be inherited

to later timesteps. Other instances of retraction may be built into reasoning, and

be further motivated by novel information overturning what was known before, in

the classic nonmonotonic sense; active logic gives broad latitude to support such

nonmonotonic reasoning.

In a more minor sense, active logic can also represent formulas in the style

of theories of default reasoning, in which the lack of a formula in the knowledge

base can be checked as a premise to be satisfied for the conclusion. This slightly

resembles the style of default nonmonotonic rules developed by Reiter [78] especially

if the target of negative introspection is itself a negated formula. However, active

logic’s timestep-stratified reasoning differs quite significantly from default logics,

and moreover if the argument of a negative introspection later is derived in the

knowledge base, it does not necessarily threaten formulas derived already.

2.2.4 Older approaches

Research into active logic grew out of older work on kinds of logic called step-

logic. Features of certain step-logics were quite close to active logic, sharing the

core features. The terminology gradually blended from step-logic to active logic

24

over time; indeed, in some cases Nirkhe developed step-logic, but then referred back

in later publications to that same work as using active logic.

2.2.4.1 Step-logic development

Elgot-Drapkin and Perlis began pioneering work toward active logic in devel-

oping the family of step-logics [18, 19, 20, 21]. The need for the passage of time

during belief derivation, deduction with negative introspection, management of the

swamping problem, and the need to track a “now” were all identified as motivating

issues in step-logic. Step-logic characteristics were progressively developed through

a series of seven numbered logics with increasing sophistication, where the last, SL7,

came closest to the abilities of active logic.

SL7 was used to solve several interesting commonsense reasoning problems

that also involved metacognitive issues. Most notably among these was the Three

Wise Men problem, which includes as a central part that the reasoning of agents

modeled in the problem takes time to unfold. Hence, the step-logic/active logic

temporal approach was a natural fit to realistically tackling the problem. However,

the method of representing the beliefs of other agents (the two other Wise Men who

the third must model) that is used here we consider inadequate, and discuss further

the weaknesses of this in section 3.2.

25

2.2.4.2 Reasoned change in belief

Miller studied step-logic in contexts related to reasoned change in belief [55,

56], particularly for problems of mistaken beliefs on issues of reference. In these

cases, the part of greatest relevance was the nonmonotonic nature of the logic, which

was suitable for withdrawing prior meanings attached to language or references,

to obtain new and revised meanings. Hence, reasoned change in belief leveraged

inheritance/disinheritance.

Miller handled specific issues such as 1) conflating two distinct objects (e.g.

having it pointed out that a car thought to be the agent’s is another), 2) mistakenly

using a reference (e.g. a person the agent had called John has another name), or 3)

realizing two objects are referents of the same name (e.g. using the name “John”

without realizing two different Johns are being discussed). Miller’s work also pro-

vided a proof that active logic mechanisms for recovering from inconsistency even-

tually produce a consistent knowledge base state. The capacity for reinstatement

(represented in reasoning with the predicate reinstate) of a distrusted formula,

that formerly belonging to a contradiction, is also due to Miller. Reinstatement via

its special predicate became a key part of broader contradiction responses in active

logic; this is discussed further in chapter 4.

Finally, Miller expressed interest in indexicality, in relation to solving a logic

puzzle dependent on the identity of an agent making utterances. Part of the solu-

tion depends on formulas with a significant external interpretation, such as a “true

utterance” predicate. Yet, this is still of note as a very early approach to self-agency,

26

anticipating some of the later goals for active logic.

2.2.4.3 Deadline planning

Nirkhe applied active logic to time-situated planning situations with deadlines

[61, 62, 63, 64, 65]. Active logic being situated in time was critical for the approach to

appropriately plan while maintaining an awareness that the reasoning consumes time

resources, as the deadline draws closer. Nirkhe used somewhat different formalism,

more adapted to planning domains: each formula was parameterized by the start

and end of its time interval, and action primitives with a condition, action formula,

and result were introduced. New inferences were held in a hypothetical plan context,

as the logic reasoned about expected consequences and expected state of the world

to result from actions in the plan. Rather than general beliefs expanding each

timestep, each timestep would bring new operations done by the planner to expand

the context set and the partial plan. Temporal projection was used to tentatively

project predicates to hold over gaps in their intervals, where these projections could

be revised following contradiction-detection if a temporal inconsistency arises.

Metacognition was invoked as a component of this planning, in the way that

Nirkhe’s system checked the time remaining while continuing to plan; this working

estimate of time was an estimate used to determine if the plan still remains feasible.

However, in practice the use of metareasoning to calculate the time estimate was

quite limited, and was mostly restricted to calculating an estimated value using

the worst-case times that were provided as annotations to actions the agent had

27

available. This is a meta-level issue, but the reasoning only superficially concerns

other reasoning.

2.2.5 ALMA 1.0

Purang developed active logic into a more standardized form that has been

used consistently since, and implemented the first general active-logic reasoner:

ALMA 1.0 [74, 75]. ALMA 1.0 is an automated reasoner built using the Prolog

language to leverage its existing first-order reasoning abilities. It is run via top-

level control in which active logic timestep transitions are enacted using a “step”

command, inference is done exhaustively, and key active logic components such as

contradiction-handling are performed. Although this version of ALMA has signif-

icant limitations to be described later in sections 3.2 and 4.8.1, this was a major

advance and provided context for subsequent active logic research. Previously, sepa-

rate pieces of software that were not well-documented or maintained were developed

for each large effort in researching active logic; ALMA 1.0 gave a common platform

with some documentation that obviated the need for ad-hoc active logic programs,

and was used in every active logic research effort up to the present. ALMA 1.0’s

influence of course also includes providing many aspects of the behavior specifica-

tion, as well as inspiration, for the new reasoner developed in this work. Work on

active logic following Purang’s developments relied upon ALMA 1.0, and with the

key features of active logic being relatively stable, focus turned toward investigating

hypotheses about active logic systems.

28

2.2.6 The metacognitive loop

The metacognitive loop, or MCL [3, 81], was developed to aid artificially intel-

ligent systems by reducing brittleness in the face of anomalies. The metacognitive

loop is based on the idea of a common cycle of noting an anomaly, assessing the

issue that has arisen (possibly with some standard or well-defined set of anomaly

responses), and then guiding a response to handle the problem. The application of

the concept of MCL itself is not restricted to active logic, and was applied in some

other disparate contexts, such as guiding the relearning process of a reinforcement-

learning game player [5]. Active logic was also a notable test domain of the loop. For

detecting anomalies in the system an MCL is built into, active logic and ALMA 1.0

give a very clear indication of anomalies, in the detection of a direct contradiction.

An MCL component could then interact with active logic and assist with guidance

for resolving the contradiction, toward reinstatement of a particular contradictand.

Later work with MCL explored development of general ontologies for abstract

kinds of anomalies and responses [82]. For instance, an indication of an anomaly

that might be domain-independent across learners is the lack of an expected reward,

or a sensor failure independent across a wide class of robot systems; ontologies

could offer refinement from abstract categories to system-specific details. There was

also work exploring a version of the loop as a general process that could exchange

communications with different kinds of systems, trading overhead of communication

with the benefit of a more general metacognitive module [31]. The benefits of the

two approaches were contrasted with respect to integration into ALMA and the

29

ALFRED system, which is described below.

2.2.7 ALFRED

Josyula developed the metacognitive architecture DIRECTOR [38] for the

purpose of control for general-purpose interfacing agents — the layer of an abstract

system to translate from a user to task-oriented components. A specific instance of

an interfacing agent, ALFRED [35, 36], was also developed as an instantiation of

such an interfacing agent based on DIRECTOR.

ALFRED is a dialogic agent-system that translates natural language instruc-

tions from users, and mapping to commands and instructions. The approach exhibits

meta-linguistic skills as well, which are enabled by ALFRED’s integration of an MCL

component, and foundation of active logic with ALMA. Violations of expectations

in user interaction, such as a user repeating a previous command verbatim in short

succession, or introduction of words outside ALFRED’s present vocabulary, trigger

informed responses based on MCL guidance.

2.2.8 Need for a sense of agency

Active logic, as developed to date with the capabilities described above, has

been recognized as lacking a strong sense of its own agency and actions. Recent

active logic literature in the last few years has included position work advocating

for extensions related to a sense of agency, and even the possibility of a concept of

“self.”

30

Perlis et al. [66] argued that contemporary AI research has focused on tasks to

the detriment of developing systems with a broad sense of agency that may not be

capable at tasks. Emphasis was placed on the benefits of developing a simpler agent

that can learn by dialogue and observation over a lifetime of its own, maintaining

awareness of what it attempts, and reasoning about actions before and after doing —

even if it succeeds in few tasks attempted. Relevant advances which might contribute

toward this sort of agent were commented on, such as anomaly-handling, robot self-

knowledge, and other-knowledge. Along similar lines, Chong [13] emphasized the

importance of reflective abilities for an agent, developed a formal reflective model of

agency, and created a proof of concept prototype for an agent based on this model,

yet had not synthesized the stages into an integrated system.

Work on artificial efference copy [11] compared an internally captured wave-

form to a robot’s microphone recording of its speech, enabling recognition of its own

speech suggestive of how humans seem to gain a sense of ownership of their actions.

The promising initial application of efference copy indicates it might be a fruitful

approach toward realizing further aspects of the processual self, warranting studies

of applying it widely. Brody et al. also discussed the concept of an immediate

processual self [9, 10], in which an artificial process observes itself and responds to

its ongoing processing in a tight loop, perhaps even the same “time slice” (wording

that comes quite close to the active logic timestep). This concept is raised as one

that may unite some varied ideas of what might be described as “self,” particularly

if acting and observing unify in time. Active logic was discussed in this context, as

seeming well-suited to the further pursuit of a processual self, particularly if it might

31

be able to support a “thick moment” of time, corresponding to a kind of interval,

and if it can self-refer during thick moments. The ability to self-refer has also been

suggested to be essential in aspiring toward a greater sense of “self” in a holistic

sense, or even in contributing toward consciousness. Brody et al. [9] term self to

be a “cognitive unifier” based in part on self-reference in a tight loop of ongoing

processing, that might “perhaps sow the seeds of consciousness.” Perlis similarly

connects the notion of self via “strong self-reference” [72] to the development of

consciousness.

2.2.9 Other active logic work

Asker and Malec explored the use of active logic modified for resource-bounded

agents, such as in embedded systems [6]. Malec took steps toward a reasoner for

resource-bounded active logic [49], with inspiration from work on a possible limited

memory model to use with active logic [17]. Heins employed an active logic theorem-

prover for a nontrivial case of a robot navigating a daily delivery schedule [32].

Vinkov and Fominykh presented a more granular system of time for active

logic than integer timesteps, based on an external clock entity associated per agent

[90]. Their approach also developed a version of active logic with semantics for

an argumentation framework, and a variant with two kinds of negation, including a

notion of subjective negation based on inability to derive before the current timestep

[91], much like negative introspection.

32

2.2.10 An active logic grammar

Research contributions in subsequent chapters extend active logic beyond the

language that has characterized the work surveyed in this section. As a point of

contrast with those developments, a context-free grammar applicable for previous

work in active logic is provided here. The grammar is first-order, and includes the

usual operators of first-order predicate logic, with inspiration from the syntax used

by Prolog. Notably, and also similar to Prolog, quantifiers do not appear explicitly,

and all variables are considered to be implicitly universally quantified, with the scope

of the quantifier over the entire formula. Existential quantifiers are not a part of

the grammar, and must be accommodated by means such as Skolemization over the

formulas specified, to translate existentially-quantified formulas into the language.

This restriction was motivated by design decisions for the reasoner developed to

implement active-logic reasoning, described further in chapter 4.

All of the usual first-order logic term categories — functions, term variables,

and constants — are represented in the typical representation, with functions written

using prefix notation. Logical operators connecting terms — negation, conjunction,

disjunction, and implication — are also represented using prefix notation, much

like functions, to be specified unambiguously and avoid defining the precedence

of operators in user-defined formulas. For the purposes of simpler unification and

reasoning, variable names are assumed to be unique across distinct formulas.

〈Formula〉 → and(〈Formula〉 , 〈Formula〉)

| or(〈Formula〉 , 〈Formula〉)

33

| if(〈Formula〉 , 〈Formula〉)

| not(〈Formula〉)

| 〈Literal〉

〈Literal〉 → 〈Predname〉 (〈Listofterms〉)

| 〈Predname〉

〈Listofterms〉 → 〈Term〉 (, 〈Term〉)*

〈Term〉 → 〈Funcname〉 (〈Listofterms〉)

| 〈Variable〉

| 〈Constant〉

〈Predname〉 → 〈Const〉

〈Constant〉 → 〈Const〉

〈Funcname〉 → 〈Const〉

〈Variable〉 → [A-Z][a-zA-Z0-9]*

〈Const〉 → [a-z0-9][a-zA-Z0-9]*

2.3 Agency and internal reasoning with nested formulas

In this section, we discuss a logic’s ability to represent another formula in the

logic, that nests within the outer formula. The most common use of this nesting

is to represent propositional attitudes, matters such as knowledge and belief, for

agents. As an example, to represent that the agent John has the belief that snow

is white, one method to nest this formula using a syntactic theory of belief is as

34

follows:

Bel(John, “white(snow)”)

Recall that this entire wff is in the KB of the underlying active logic agent Alma,

and does not represent a belief of the agent John — and thus, our main interest is

this formula being used in the agent Alma’s own internal language, as its way of

considering that John has the belief about snow. Naturally, beyond nesting a belief,

we see that an agent can have reason to have more arbitrary kinds of predicates

nested in formulas.

It is useful to be able to use an abstract notion of formula nesting, particularly

for the discussion of autoepistemic desiderata for agents, where an arbitrary agent

can be considered in a way that is agnostic to specific mechanisms, for detailing what

it ought to be able to reason about. Major methods of nesting are reviewed, and

ultimately we advocate a specific form in the context of merging it with active logic.

However, the terminology for nesting is convenient to continue using, for clarity of

the language concept.

2.3.1 Autoepistemic desiderata for agency

To enable wide-ranging metacognitive behavior, formulas from an agent’s own

knowledge base must be accessible to its reasoning through nesting. A knowledge-

based agent which cannot refer to formulas of its own beliefs via nesting would

certainly have severe restrictions on its ability to do meta-reasoning; this seems

necessary for attaining generality in reasoning about reasoning. The accessibility

35

of beliefs to reasoning through a nesting approach must then be foundational. The

hypothetical agent under consideration should be able not only to use beliefs (e.g.,

to infer new beliefs), but also to mention (and make assertions about) those beliefs

(e.g., that one belief contradicts another, or that a belief was held until a given

time). Thus it should be able to nest formulas within beliefs and to perform internal

reasoning actions revising these beliefs. This in turn includes as a key part the ability

to perform introspection on general formula patterns, determining their presence

or absence among its beliefs over time. For the reasoning to be explored here,

introspection is an indispensable operation in metacognitive chains of reasoning.

A general-purpose agent should also be able to continue reasoning in the pres-

ence of direct contradictions, without the “usual” ex contradictione quodlibet — from

a contradiction everything follows (also called the swamping problem). Contradic-

tions commonly arise in a changing world, as fluents are updated, and information

is inevitably found out to have been hasty, mistaken, or otherwise different than

it had been viewed before. The appearance of a contradiction is therefore a nat-

ural development in the course of inference which may be a frequent occurrence,

and not a disaster indicative of a badly designed formalism. Indeed, when a direct

contradiction arises a computational reasoner should represent the presence of the

contradiction, and enact an appropriate response (e.g., removing the inconsistency,

and then to possibly reinstate one of the two contradictands). The precise determi-

nation of what form of response is suitable is context-dependent; it is more essential

that the agent have some kind of response. It should be able to handle contradic-

tory information through abilities such as: to know where the contradiction lies,

36

to identify each formula that contributes to inconsistency, and to consider which

assumption(s) involved should no longer be believed.

Moreover, an agent that resolves a contradiction should be able to recount that

process. There is utility in an agent being able to note how it came about the new

beliefs of its knowledge base in the current moment: that at a previous point in time

it was grappling with a contradiction, and that it held different beliefs, some of which

were revised into current ones. In addition to involving reference to expressions of

the agent’s beliefs, this reasoning is also inherently time-based. That is, it is about

the change in beliefs over time as the knowledge base evolves: reasoning that there

was once a contradiction, but this belief is no longer presently held, and instead is

recalled as one that was believed in the past. Deadline reasoning also reflects both

of these aspects. An agent with a deadline must focus on producing and enacting a

plan while also taking into account that all reasoning requires time, and that both

its planning and metacognition consume that resource.

There is more required beyond contradiction-oriented processing as well. An

agent must act, but cannot neglect maintaining beliefs that keep it aware of its

actions. A system performing actions without recollection of the nature of these

actions, their timing, duration, or general properties would be operating almost

totally in the dark. Yet to support reasoning involving actions in this way again

requires nesting: if actions undertaken are represented at the reasoning level with

predicates, then their properties cannot be expressed without being able to nest

beliefs about action formulas. For example, an agent that uses the presence in its

knowledge base of the atomic formula move(left) as a command for leftward motion

37

might also express a fact about this action using nesting (e.g. that it is an action

which can readily be performed in the world: canDo(“move(left)”)).

Many of these kinds of reasoning deal with evolving time, as well as some

mechanism for expressing properties of beliefs via nesting within other formulas,

such as the canDo formula above. There are two standard approaches to the latter:

syntactic and modal. Modal treatments to nesting use possible-world semantics

and modal operators of knowledge, belief, or related notions [43, 45, 79]. However,

modal approaches tend to assume logical omniscience (although some approaches

address this, e.g., [97]). Perlis also described how modal logics suffer from the same

potential paradoxes as first-order logic for self-reference [70]. More serious still for

our interests is the fact that modal logics are generally external logics in the sense

we have defined in chapter 1; or, if an attempt is made to adjust a modal language

to be an internal logic, this requires constraints on the semantics of modalities such

as belief and truth. With these problems, it seems more effective to work with a

syntactic theory of quotation instead, and remain working with first-order logic.

Following discussion of some practical constraints on representation for an agent’s

beliefs, we discuss syntactic theories of belief.

2.3.1.1 Constraints on representation

Before introducing methods of nesting formulas, it is useful to discuss some

constraints which should affect the representation to be used by a flexible common-

sense reasoner. Nesting methods must deal with constraints such as omniscience,

38

consistency, and semantics — several of the important issues for classic methods

identified in chapter 1 as common problems for logicist methods. A suitable nesting

approach should not be subject to the problem of omniscience, whether nesting is

done in a logic prone to omniscience that has been adjusted to mitigate or address

the problem, or if a more limited logic is used. Maintaining direct consistency is

discussed above as a valued ability for metacognition, but it also has a place in the

nesting method, which should be free of inconsistency and paradox troubles that

have held back certain ways of nesting, as are described in the following section. A

set of capabilities for handling expression semantics is also desired, in the need to

support dual use and mention for formulas or formula fragments.

Metacognition about beliefs will frequently be coupled with reasoning unfold-

ing in time. Incorporating temporal aspects and accommodating temporal evolution

for a theory of nested belief is also an important constraint.

2.3.2 Syntactic theories of belief

Syntactic theories of belief tend to use a first-order syntax, but with the added

ability to nest formulas via quotation. Given that the language remains first-order

overall, a first-order formula is not truly nested, but there is a close relation in

each syntactic theory between the quotation that is to represent a formula and that

particular formula itself. All approaches to quotation surveyed below take the stance

that formulas nested with quotation are instances of a kind of string which refer to

the formulas spelled out — essentially a kind of new constant in theory’s language.

39

In this sense, using quotation is similar to gödelization representing nested first-order

formulas using integers, although the correspondence in syntax between a quotation

and formula makes this far more human-readable than Gödel numbers. Again, we

provide the simple motivating example of a nested formula for a belief of John, which

utilizes quotation: Bel(John, “white(snow)”). The formalisms described below also

support other operations for constructing or manipulating quotation expressions.

2.3.2.1 Konolige

Konolige constructed a syntactic theory in which at least two languages are

considered together for an agent: an object language reflecting the agent’s beliefs

about the world, and a metalanguage that uses quotation to describe beliefs in the

object language [39]. This work was in response to prior work using a possible-worlds

approach to propositional attitude reasoning and acting, and intended to address

the same attitudes better through a syntactic approach. Rather than using a single

modal language for expressing what an agent might believe or know, in Konolige’s

system belief and knowledge are expressed in a metalanguage with nested formu-

las exclusively from a “lower” object language. Syntactically, expressions denoting

object-language expressions are constructed in the metalanguage with terms denot-

ing syntactic elements in that language (e.g. the metalanguage term and(P, Q) de-

noting P ∧Q). But acknowledging that a representation of object language abstract

syntax is cumbersome, especially as formulas grow in size, Konolige used quotation

marks as an abbreviation around formulas written with the usual first-order opera-

40

tors. Konolige also referred to this syntax as sense quotes or Frege quotes, indicating

the sense of a quoted expression is wanted and not its truth value. The specification

of a sense quote expression is straightforward in Konolige’s theory due to the defin-

ing of separate metalanguage terms that denote object language proposition letters,

operators, and other constructs.

In this way, for an agent under consideration, metalanguage formulas can ex-

press what inference procedures are available that the agent might apply to formulas

in its object language. Predicates existing exclusively in the metalanguage capture

aspects of object language reasoning: True has the Tarskian definition of truth for

its quoted object-language argument, Fact indicating an object-language axiom, Pr

indicating provability in the object language based on axioms and inference rules,

Bel for belief of formulas, and Know for formulas believed that also are true in the

sense of the metalanguage predicate. These predicates are also used to overcome

the lack of an inherent connection between the symbols of the metalanguage and

object language. Predicates in the object language (e.g. a binary predicate P) are

connected in the metalanguage indicating the equivalence of formulas using P with

True applied to matching metalanguage quoted terms for P, e.g.:

∀αβ[True(“P(α, β)”) ≡ P(∆(α), ∆(β))]

Where ∆(α) gives the individual denoted by α.

For building a computational agent, although the object language is the one

first identified with beliefs about the world, Konolige made the interesting suggestion

that an agent be endowed with the pair both of metalanguage and object language

(called ML and OL, respectively, in the agent context). In this case, the use of

41

a predicate such as Bel indicates introspective access to what the agent reasoning

with the object language knows; If the agent’s knowledge base has an OL formula

such as white(snow), the next level can “introspect” to have an ML formula such

as Bel(“white(snow)”).

Because Konolige’s sense quotes cannot quote a formula in the same language,

for an agent to represent more complex levels of belief, such as the beliefs of other

agents or beliefs about its beliefs, additional logics must be added in (for example

an OL′, for which OL becomes its metalanguage). Every additional level of nesting

agent beliefs in a formula requires dealing with an additional embedded language,

with accompanying machinery to be added into the metalanguages above it as new

kinds of terms are required. This can impose a significant burden on reasoning with

the extra terms to account for, and lead to very long proofs.

Konolige’s resulting hierarchical system of first-order languages was used in

conjunction with the situation calculus for planning actions and reasoning about

knowledge gained by acting. The agent considering a plan to act or infer identifies

with the object language hypothetical future world states after the current situation;

the metalanguage represents what beliefs the agent would hold in a given situation.

2.3.2.2 Perlis

Unlike Konolige, Perlis [68, 69, 71] studied a single language representing its

own formulas using quotation, where all syntactic elements of the language could be

accessible within quotation. Rather than Konolige’s motivation from planning and

42

acting, Perlis’ approach was motivated from a desire to further an understanding of

an internal language in relation to external reality.2 Perlis then developed a single

highly-expressive first-order language with the ability to refer arbitrarily to its own

sentences, rather than hierarchies of different meta- and object languages. This aims

to capture some of the power of natural language, without using it directly. The

single-language approach also allows self-referential formulas. Self-reference does

lead to issues of consistency and paradox; a significant focus of Perlis’ developments

was addressing these problems.

Strings that refer to nested formulas are indicated in the theory as follows:

for a formula spelled out as the string of n characters a1...an, quoting this produces

the string n : a1...an (called by Perlis a Hollerith quotation, or a name for the

formula to which it refers). The prefix with string length n in some base, such as

base-10, and a colon avoids ambiguity from nesting quotation marks, and allows

arbitrary strings to be constructed (although, subsequently we use quotation marks

for convenience once again, such as “a1...an” for the above expression). For example,

a Hollerith quotation of the formula X = Y is 3 : X = Y, and a Hollerith quotation

of that string in turn is 5 : 3 : X = Y. Both examples above are considered constant

terms. Concatenation of these strings is supported by the binary concat function,

which denotes the appropriate Hollerith quotation of its arguments (e.g. concat(n :

a1...an, m : b1...bm) = n + m : a1...anb1...bm). Note that the numeral value of n+m in

the relevant base is the prefix beginning the string.

2 A language itself can be part of the reality it describes. For example, ““Snow is white” is an
English sentence” and ““Snow is white” has three words” are cases where the English language
refers to sentences, which are part of the reality it describes. Bits of the language can refer to the
world, to some extent language parts of the world, and to some extent to non-language parts of it.

43

An agent with such a highly expressive first-order language can make state-

ments about the truth, falsity, or other properties of formulas in the language, much

like is commonly done in natural language. This also serves as a mechanism for

unquoting, in that the truth (once again expressed with a True predicate in the

language, like used by Konolige) of a Hollerith quotation is related to the truth

value of the formula it contains. For relating formulas in such a way, using the

following axiom schema appears attractive: True(“A”)↔ A. However, this leads to

inconsistency. A liar sentence that asserts its own falsity, such as L↔ ¬True(“L”) is

grammatical in a first-order syntactic theory. Substituting L for the first occurrence

of A in the schema and ¬True(“L”) for the second occurrence gives the inconsistent

True(“L”)↔ ¬True(“L”).

The solution to this problem that Perlis provided was a revision to the truth

schema that restored consistency:

True(“A”)↔ (A)∗

The ∗ is a rewriting operator that replaces the arguments of ¬True(“...”) with

True(“¬...”), pushing negation inside the quotation marks for truth. The distinction

between the cases of negation outside or inside True that Perlis identified is that

¬True(“...”) denies that its argument can be codified using True, while True(“¬...”)

codifies the denial of its argument. These express two slightly different forms of

negation; the former indicating lack of a decision on being able to represent the

argument formula as true. Perlis claims it is justifiable to make the substitution

in this case; regardless of whether this is true, proof is provided that modified rule

utilizing the ∗ operator leads back to a consistent theory. The expressiveness of

44

the language syntax remains extremely general, and able to support self-referential

statements.

2.3.2.3 Haas

Haas followed Konolige in pursuing syntactic theories toward purposes of plan-

ning and acting [27, 28, 29, 30], although his developments are closer in spirit to the

work by Perlis. Haas used a single logic for his syntactic theory, which is capable of

self-reference and incorporates Perlis’ solution to maintain consistency in use of the

True predicate.3 Instead of supporting string operators that assemble terms with

concatenation, the syntax of Haas’ language allows any syntactic object (operator,

predicate symbol, functor, or term) to be marked as quoted with an apostrophe

prefix.

A quoted syntactic object is a constant with the semantics that it denotes the

object spelled out after the apostrophe; for example, ′′Superman denotes the constant

′Superman, which denotes Superman, which is a constant without quotes that denotes

the man from Krypton. The special function quote provides a way to translate

from a term to another term with an additional level of quotation for each object

in it; e.g. quote(white(snow)) denotes ′white(′snow), and quote(′white(′snow))

denotes ′′white(′′snow). True similarly connects quote terms to their unquoted

versions using predicate expressions, rather than what is denoted by a function; an

example instance of the truth schema for the same term in the quote example is

3Although in a later publication, Haas suggested an artificial agent need not necessarily be
able to solve the Liar paradox, as humans do not demonstrate the capacity to do so formally in
commonsense reasoning.

45

true(′white(′snow))↔ white(snow).

Haas put this logic to use for an artificial agent that represented every formula

corresponding to beliefs it held with quotation, regardless of a formula’s origin from

perception, introspection, planning, or other means. As a result, inference rules for

such an agent could be encoded with quotation as well, giving the agent knowledge

of its applicable inference rules, and enabling planning about which inference rules

will be selected and applied. The downside to this rich control is a cumbersome

means of representing even very basic beliefs of an agent, and that all inference

steps require managing multiply-nested formulas. By using a believe predicate

with one argument for another agent’s name and another of a quoted formula, as

well as a further set of beliefs indicating that agent’s inference rules, Haas’ system

supports an agent simulating the inference of others, although likewise with the

same downsides to inference and representation as affect individual reasoning.

2.3.2.4 Morgenstern

Morgenstern, similarly to Haas, motivated a syntactic theory much from the

perspective of an agent needing to plan actions relating to its beliefs or lack thereof

[57, 58]. For instance, an agent might plan to address its ignorance with knowledge

acquisition; this requires an expressive language for reflecting knowledge and belief.

With regard to resolving inconsistency due to the liar paradox and other paradoxes

of truth, Morgenstern took a very different approach from Perlis, whose approach

Morgenstern considered to unrealistically redefine the truth predicate. Morgenstern

46

defined the truth values for the True predicate to be recursive based on hierarchically

building up a language. The first level consists of the first-order language with True

added undefined. Subsequent levels of the hierarchy apply True to the formulas of

the previous level, and assign truth values. The fixed point at which no additional

truth values can be assigned gives the final set of grounded formulas: those that have

obtained a truth value at any point in the process. Paradoxical formulas such as the

liar sentence remain ungrounded with respect to all models after this process. The

Know and Believe predicates are similarly recursively defined. This approach comes

with the notable problem that determining if an arbitrary formula is grounded is an

undecidable problem, however.

Nested formulas are considered to be strings in a style similar to Perlis, al-

though again written with quotation marks for convenience. Due to lacking the focus

on expressiveness in language, formulas are also not written in a manner like Hol-

lerith quotation that maximizes generality. Concat provides a concatenation func-

tion for joining its arguments together, for example concat(“At(X, Y”, “S)”) denoting

“At(X, Y, S)”. Another function interacting with quotation is name-of, which maps

from a term to a string acting as its name. For constants, this is always a quoted ver-

sion of the constant, but in other cases the appropriate choice of the mapped string

depends on information about the world (e.g. name-of(president(US, 1988)) should

denote “Ronald-Reagan”). Although a useful function in the logic, the reliance by

name-of on semantic information from the world makes it difficult to properly ac-

commodate in a reasoner doing inference as syntactic proof. Functions, called by

Morgenstern g and h, are used to add or remove an extra level of quotation from an

47

existing string, respectively, for the common cases of assembling or disassembling

quotation strings. Morgenstern also provided several shorthand abbreviations de-

fined in terms of the above functions; these abbreviations are relevant for expressing

formulas with quantifying-in, and are described in the following section.

2.3.2.5 Quantifying-in

In all of the syntactic theories as discussed above, the languages are not as

expressive as is desired. To solve general reasoning problems, there must be a way

to allow (in certain cases) that a quantifier outside of a nested formula may reach

into the formula (succinctly referred to as quantifying-in, and introduced by Quine

[76]). Consider the following example, characteristic of the need for quantifying-

in. Suppose in trying to formalize “There is someone whom John believes to be

president,” the following is attempted:

(∃X)[Bel(John, “President(X)”)]

The goal is for the quantifier ∃X outside the scope of quotation marks to apply to the

variable X inside the quoted expression. However, in the kinds of nested formulas for

the four formalisms as they have been described thus far, this does not work. The

issue is that the entire nested President(X) is a constant inside of quotation. Some

other additional mechanism must allow the quantifier to reach into the quotation to

quantify over X. This problem also occurs with cases beyond quantifiers, where more

broadly it is intended that the same variable(s) appear in a formula both outside

quotation (e.g. bel(John, Y)) and inside quotation (e.g. bel(John, p(“Y”))).

48

Konolige achieved this through modification to the sense-quote translation

rules, in which metalanguage variables may quantify into quoted object language

formulas and be translated into the standard name (denoting the same individual in

every object language model) of the variable. Perlis’ method of constructing a Hol-

lerith quotation using concat supports quantifying-in when variables are provided

as arguments to the function instead of strings. Concat accepts these variable argu-

ments, and uses the value the variable is bound to in concatenation, so long as the

binding is for a string, and thus suitable to be concatenated. Haas had the simplest

method of the four theories: since a nested formula is formed by quoting every part

of its syntax with an apostrophe tag, quantifying-in is rather trivially achieved by

not prepending the character before variables to be quantified into quotation.

Finally, Morgenstern’s system supports quantifying-in similarly to Perlis’, in

that arbitrary arguments to concat may quantify into quotation when appearing

as concat’s arguments and wrapped in name-of (which produces a string that can

be concatenated). Morgenstern acknowledged the complications of this syntax for

larger formulas, and gave three shorthand abbreviations for different patterns of

quantifying-in: 1) ˆpˆ is an antiquote that substitutes into a string the (string)

expression the variable p represents; 2) !p! substitutes into a string the expression

that p represents after applying the g function to this expression to add a layer of

quotes; 3) @p@ substitutes into a string the standard name of its argument (i.e.,

name-of(p)).

Any other general syntactic theory developed must likewise provide some

mechanism(s) for quantifying-in, or else expressiveness will be severely restricted.

49

2.3.2.6 Evaluation for agency

We now consider the reviewed logics with respect to our goals for agency,

particularly their approaches to metareasoning, constraints of interest, and their

relation to the notion of an internal logic. As a result of our focus on agency

and aspects related to “self,” it is not enough for formulas to simply nest, and

it is not enough for formulas to represent the beliefs of an arbitrary agent. Our

goal is to develop computational agents that reason logically with what can be

characterized as their “own” internal beliefs. Hence, the difference between the

structure of the overall language of reasoning and the structure of formulas that

it can nest is important. To make this more precise, the issue is whether, for a

language L, the formulas that may nest inside a formula of L are also (arbitrary)

sentences coming from the same language L, or if they are limited to some narrower

or different language L′.

The focus on introspection, such as identified in section 2.3.1, makes this

clearer. For an agent that is not described externally by a logic, but employs a

logic internally for its reasoning, any formula in this language, L, could potentially

represent a belief. If this agent can introspect on any of its beliefs, it can then

reason both with and about formulas in L. Introspection requires nested formulas,

and so the nesting in the logic must be able to work on any formula from L as well.

Higher-order logics do not have this characteristic: these logics nest lower-order

formulas and predicates via quantifying over them, and formulas in the full higher-

order language are not nested. Of the syntactic theories, Konolige’s metalanguage

50

and object language pair also does not meet this criterion, due to introspection

proceeding on the object language only, while metalanguage formulas are still part

of an agent’s processing.

We now evaluate the theories by Perlis, Morgenstern, and Haas. Each uses

a single first-order language, with nested quotation of formulas from the same lan-

guage. Likewise, each of these approaches is designed to preserve consistency and

not lead to paradox from the liar problem or others like it. The trouble with these

is their inability to handle more general sources of inconsistency, such as if com-

monsense world knowledge includes a pair of formulas that contradict each other.

As we have indicated, this is a common occurrence in a changing world. Perlis,

Morgenstern, and Haas take pains to address paradoxes that arise from specific

predicates such as truth, but do not present a means to recover from more mundane

contradictions; their systems do not have a more general ability to handle arbitrary

contradictions. We thus turn to using active logic as the first-order language, to

avoid this problem. Like the theories incorporating quotation that have been sur-

veyed, active logic is resistant to inconsistency and paradox coming from problems

like the liar problem. But further, active logic is capable of continuing reasoning

unhindered in the presence of other direct inconsistencies as well, due to its means

of detecting and neutralizing direct contradictions, and the potential for responses

that reinstate formulas.

51

2.3.2.7 The role for active logic

Active logic, as has been discussed in chapter 1 and section 2.2, is considered

an internal logic and gives a useful basis for some aspects of developing agency.

However, previously active logic has been deficient in that it has not incorporated a

quotation mechanism, and presently cannot refer to formulas within the language.

Active logic in combination with quotation would have the capacity to jointly de-

velop the goals of sense of agency, self-reference, and improved metacognition. This

leads to the need for enhancing any reasoner implementing active-logic reasoning

as well, to incorporate an implementation of quotation, address the issues arising

in adapting unification, introspection, and the practicalities of variable handling for

quotation, and handle other algorithmic details which in previous work regarding

quotation were adequately not advanced. Chapter 3 develops nesting via quotation

specific to active logic. As an intermediate step, the remainder of this section in-

troduces motivational examples of quotation that are independent of a particular

formalism.

2.3.3 Motivating examples of quotation

In this section, we start with developing some more detailed motivational ex-

amples using first-order syntax extended with quotation. A time-sensitive reasoning

capability of some form is assumed, where beliefs might be altered or revised as time

passes, such as active logic provides. Without having yet introduced a particular

approach to quotation for use with active logic, the generalized syntax is intended to

52

motivate an extended form of quotation and to showcase reasoning it can support.

We also purposefully avoid requiring syntax or structures specific to an implemen-

tation here; hence this chapter has independence of the material in chapter 4. The

primary inference rule assumed of the reasoner is a generalized modus ponens, in-

ferring from a conjunction of literals as the antecedent.

2.3.3.1 Referring to and updating an agent’s beliefs

An agent reasoner may be integrated as one of several components within

a physical system (for example, situated as the means of controlling a robot and

issuing executable action commands). One way to enact actions from reasoning is

by designating atomic “impetus” formulas (or “iwffs”) corresponding to primitive

actions. Once an iwff is detected by other system components, the system attempts

its corresponding action. Iwffs are not persistent beliefs, but should remain only until

prompting the rest of the system; accordingly, other components should update iwff

beliefs when the desired action is attempted.

Consider a reasoner that has concluded it ought to move left. This can be

represented via the iwff, where move is a function:

do(move(left))

This sentence, when found in the reasoning component’s KB, may be invoked by

the overall system as a command to the wheels to move a certain amount to its

left. Once the action is initiated the reasoner should be instructed to update the

transient iwff formula, so that the agent knows the action is now being done. A

53

command to update a formula into another would nest two quoted formulas inside:

update(“do(move(left))”, “doing(move(left))”)

Similarly, an update from doing to done should occur when the action completes.

2.3.3.2 Reasoning about the presence or absence of beliefs

Quotation can enable more expressive formulas, which specify patterns of in-

ference that would have otherwise required different instances of schemata.

Positive introspection — consider the following formula:

goal(G) ∧ fulfills(C, G) ∧ pos int(C)→ completed(G)

If the agent adopts a goal G, and a condition C fulfills the goal, the agent notes its

goal as met when that condition is believed. In this case, the fulfills predicate’s

first argument is a condition that must become true. To keep the theory first-order

and not present a variable where a predicate would occur, C is used in positive in-

trospection instead of directly as a premise. The truth value of pos int is based on

searching the knowledge base for a unifying formula, once its argument variable has

been bound to a constrained quoted formula. As an example, consider a case where

the agent is outside, it is windy, and the agent doesn’t want a box to blow away;

it further knows that things filled with sand are heavy and so will not blow away.

Then, when based on this scenario, if our C above is “sand filled(box 256)” and

G is “heavy(box 256)”, during inference if the formula that the box is filled with

sand is in the knowledge base, the completion of the goal to make it heavy would fol-

low. In the absence of quotation devices, a schema instantiating a separate formula

54

for each predicate to appear in place of C would be required.

More general positive introspection — introspection should not be restricted

to checking only ground formulas; the truth value of pos int should be determined

by whether any formula is known that can unify with its argument. Consider if the

agent in addition to the goal satisfaction formula above above has the following:

goal(“heavy(Obj)”)

fulfills(“sand filled(Obj)”, “heavy(Obj)”)

In this example, if the object is filled with sand, this is a success condition for

making that object heavy. The introspective lookup will proceed with the expression

“sand filled(Obj)”, and a ground term such as sand filled(box 256) may be

retrieved as a known matching fact.

Negative introspection — in a logic without a closed world assumption infer-

ence rule, reasoning about the absence of certain formulas may still be desired. For

instance, an agent reasonably ought to have complete knowledge of its actions, but

should not assert numerous formulas about the actions it is not performing at each

point in time. Or, returning to the scenario of protecting a box from blowing away,

an agent might defeasibly expect that boxes aren’t filled, without an explicit nega-

tive formula indicating so. Negative introspection applied to formulas that should

not appear in the knowledge base gives a flexible means of inferring about their

absence:

box(X) ∧ neg int(“sand filled(X)”)→ can blow away(X)

55

2.3.3.3 Distinguishing experience and quoted expressions

Information may come into the knowledge base from many ways, including

inference but also from observation, such as by robotic sensors, other agents, the

internet, etc. Not all such information may be true (in fact, formulas could be

contradictory). A system that has acquired information must be able to evaluate its

acceptability. Treating these statements to be evaluated as quoted expression terms

achieves this; the formulas can be tracked and reasoned about without committing

to assignment of a truth value.

So, an agent whose microphone records the sound of a fire alarm might well

believe the formula went off(alarm). But if the agent instead does not directly

experience the sound of the alarm, but rather hears about it via a message from an

unfamiliar source, the agent can instead record heard(“went off(alarm)”). What

is heard here certainly will not lead to the same inferences as went off(alarm).

After reasoning such as running an evaluation procedure, the contents may then be

withdrawn from quotation and asserted as true (or false). An agent believing the

following formula might then decide to evacuate the building in the case of directly

sensing an alarm:

went off(alarm)→ do(initiate evacuation procedure)

Behavior when the quoted version was heard will depend on the results of any

evaluation procedures triggered.

56

Chapter 3: Quotation in active logic

3.1 Introduction

The need for nesting of propositions and formulas in a logical reasoning system

was established in chapter 2.3. That chapter also discussed constraints that affect

all of the main forms of nesting, particularly the need for internal reasoning and an

internal logic to support agency. Theories of quotation have promise in being able to

support goals for agency, but this has been hindered by their development in external

rather than internal logics. Now, we introduce how approaches to nesting formulas

might be realized in active logic and ultimately incorporated into a reasoner. Active

logic has the capacity to address the biggest shortcoming of syntactic theories, as

an internal logic system which also is capable of handling direct inconsistencies as

they arise.

3.2 Need for quotation in active logic

A mechanism of quotation also offers the means to address shortcomings in

active logic’s reasoning. As has previously been described, active logic has the ability

to introspect on the presence or absence of formulas in the current belief set using

57

the special predicates pos int and neg int for this purpose. This usage grew

out of prior development in Purang’s active logic work [74, 75] and older ALMA

1.0 reasoner implementation. Introspection was also previously represented in older

step-logic work by Elgot-Drapkin and Perlis as Know, or alternatively formalized in

shorthand via the K predicate symbol, for knowledge present in the belief set of the

active-logic agent [19, 21]. For example, the binary predicate K would be used in

a schema like K(t, X): the agent has knowledge of a formula, X, which is believed

at the timestep t. Both the means of introspection present in ALMA 1.0, due to

Purang, and the older formalism of Elgot-Drapkin with Know describe a means of

reference to formulas in the active logic language, where the referred formula itself

ought to nest within another formula — in this case, within one of the predicates

indicating introspection. Elgot-Drapkin and Perlis identified that quotation marks

ought to be used around the formulas that are introspection arguments to Know. Yet,

their work did not go any further in characterizing quotation, and the convention

of quotation marks around formulas was not consistently followed within the step-

logic papers and examples. The work of Purang did not account for quotation

explicitly at all, making no mention in it. As a result, no mechanism accounted

for quotation in ALMA 1.0 code for implementing pos int and neg int, and this

deficit persisted in later active logic work which built upon ALMA 1.0. The present

work seeks to corrects this deficit, first in the active logic theory and subsequently

in the implemented reasoner.

In the absence of quotation, any argument to positive or negative introspection

is not directly a nested formula, but a composition of first-order functions, which

58

together stand for a nested formula in that specific context. Consider an example

from Purang’s system, supposing the reasoner has flies as a predicate symbol.

Ordinary negation can express that a bird doesn’t fly, e.g. ¬flies(tweety). If an

agent must reflect on its beliefs as to whether a particular bird is considered to fly

or not, a symbol flies is also used inside of one of the introspection predicates,

such as neg int:

bird(X) ∧ neg int(not(flies(X)))→ flies(X) (3.1)

But according to the first-order grammar of active logic, and echoing the usual

interpretation of first-order languages, not and flies in the above formula are in-

terpreted as functors, rather than the negation operator or flies predicate symbol,

respectively (and likewise would be parsed as functors by a reasoner). A designer of

active logic axioms would likewise need to imitate any other logical operators with

unary or binary functions in such situations, and need to imitate predicate symbols

with functors. Then, to make a connection from this combination of functions to

an active logic well-formed formula it is to represent, there is a particular interpre-

tation applied: that the outermost functors with operator names are interpreted as

stand-ins for the operators, and that functors directly inside these “operators” are

stand-ins for predicate symbols.

At the time, this approach in past work for referring to formulas may have been

sufficient. ALMA 1.0 was able to successfully handle many commonsense problems

across domains, and the simple reference mechanism using functions was adequate

to implement some degree of working introspection. ALMA 1.0’s commitments

from being built on top of Prolog may have reduced the number of issues related

59

to interpreting functions as operators, since all operators occurring in ALMA 1.0

formulas would have required such an approach, not just nested operators.

Regardless of prior treatments, the present focus on agency and explicit repre-

sentation of an agent’s internal processing motivates a need for nesting and reference

beyond introspection contexts of pos int and neg int (e.g. in formulas such as

bel(john, phone number(mary, number))). If nested formulas are to be able to ap-

pear anywhere in the language where other terms can, then this old method of

interpreting certain function arguments as standing for quoted formulas is quite

problematic.

This old approach fails to make a clear distinction between when an embedded

function is to be interpreted as standing for an object in the domain or for a formula

which could be true or false. For example, consider the formula p(j, q(m, n)). There

are two different ways q(m, n) could be interpreted. The first is that it is a boolean-

valued formula, where q is a functor that stands for a predicate symbol (e.g. q might

be greater than, and q(m, n) expresses the truth of m > n). The second is that it

is a function that stands for an object in the domain (e.g. q might be sum, and and

q(m, n) expresses the value of m+ n).

Other information would be necessary to make the determination of whether

a function in an active logic formula represents a nested formula (we call this the

formula interpretation), or represents an arbitrary function instance (the function

interpretation). Some new form of context must aid the process, regardless of

whether the information for disambiguation comes from additional formulas and

beliefs, which would express the contexts or predicates that interpret functions as

60

nested formulas, or if this is achieved by a requirement for every function to track

its status with metadata or extra arguments.

The suggestion to in some way associate with a function an indicator for

being under the formula interpretation versus the function interpretation seems a

promising direction. Yet several likely approaches tracking this distinction, without

a new syntactic device, also seem cumbersome: appending a final argument to

function(s) to indicate their interpretation would add bloat and impair readability;

storing metadata attached to a function might be practical for coding into a reasoner,

but would complicate the active logic theory. A better approach is clearly needed.

3.3 Quotation terms

Our solution to the nesting problem is to introduce a quotation primitive,

the quotation term, into active logic as a fourth kind of term in the language. A

quotation term is thus distinct from variables, functions, or constants. Active logic

extended to include this kind of novel term results in a language in which a quoted

formula (e.g. “q(m, n)”) have the formula interpretation simply by its nature as

a different sort of term. Quotation terms are distinguished from a function (e.g.

q(m, n))), which would exclusively have the function interpretation. This choice

brings complications as well, particularly in adjustments that will be required to data

structure representations in a reasoner, and the unification algorithm to properly

accommodate another variety of term. It also contrasts with prior syntactic theories

of quotation (see section 2.3.2), which have considered each instance of a nested

61

formula to be a unique form of constant, instead of another sort of term,. The

distinction between an atomic formula within a quotation term such as “q(m, n)” and

a constant name for q(m, n) is a minor one if the formula contains no variables —

however, in other cases there is a clear distinction between constants and quotation

terms, such as in cases with variables or additional structure to the formula.

3.3.1 Formalism

Active logic has formerly used the following rule for a term, as reproduced

from the grammar in section 2.2.10:

〈Term〉 → 〈Funcname〉 (〈Listofterms〉)

| 〈Variable〉

| 〈Constant〉

The new syntax to incorporate quotation terms will instead change this to:

〈Term〉 → quote(〈Formula〉)

| 〈Funcname〉 (〈Listofterms〉)

| 〈Variable〉

| 〈Constant〉

Thus, the above production formalizes that a quotation term is a novel type of term

in the logic. The nonterminal Formula in the above rule is the symbol associated

with the production of an active logic well-formed formula, as defined by the new

language of the term production rule modified as above, and the remainder of the

grammar of section 2.2.10. An entire quotation term therefore consists of: 1) quote,

62

2) the set of parentheses, and 3) the formula that is contained within these paren-

theses, which is considered to be quoted due to its context as a part of a quotation

term.

Several primary use cases for quotation are for purposes of metacognition

and self-reference, as well as representing beliefs about the beliefs of other agents.

Hence, this initial restriction to well-formed formulas seems sensible: all of these use

cases deal with nested wffs, rather than nesting strings of characters that are not

full formulas. If a need to accommodate more arbitrary character sequences arises

later, an appropriate extension for this may be considered and devised. Active logic

following the extended grammar can include quotation terms in syntax trees for its

formulas; this also naturally allows arbitrary nesting of these quotation terms, since

any well-formed formula nested within a quotation term may itself contain further

quotation terms of its own.

Syntactically, quote is not a functor. This follows by virtue of its appearance

as a string only in a kind of term that is distinct from a function. Indeed, it

must be enforced that the string quote cannot appear as a functor symbol, to avoid

ambiguity in parsing terms. Further, for the unification behavior of quotation,

quotation terms and functions are not unifiable given their status as different sorts

of terms. However, the notation here still strongly resembles that of a function.

Quote is better understood as shorthand for quotation marks wrapping the wff, but

the use of parentheses is convenient for specifying quotation terms unambiguously

for the reasoner. The quotation term production rule syntax, as well as the fact

that its argument is a formula, might potentially suggest to readers a modality.

63

Although there is a resemblance in form, a quotation term can be distinguished from

modality by the fact that it remains a term, not a formula itself, and intuitively can

be thought of as denoting an object in the domain of interpretation rather than a

truth value. For example, “p(c)” is a quotation term that denotes the expression

p(c). In this respect, where nesting is viewed as formulas directly present within

other formulas (i.e., not as constants that spell out a formula), active logic steps

interestingly outside the boundary of purely first-order systems. It also departs from

other syntactic theories, in that it requires the nested formulas in quotation terms

to be wffs that are interpreted in a quoted context, where they do not bear a truth

value. This change has been made with considerations for the implementation and

efficiency of use, and will be justified in the following section.

Subsequently to defining the production rule, when there is no ambiguity in

notation, quotation marks will be used to wrap the nested wff instead of notion with

quote.

3.3.2 Quotation term reasoning

From having defined the syntax of quotation terms, we next describe what

reasoning ought to be enabled by representing quotation terms. Progressively more

sophisticated examples are presented, as motivation for the development of informal

semantics for quotation terms.

64

3.3.2.1 A point about quoted formula meaning

As we begin developing quotation reasoning by key examples, we first clarify

a point about the meanings of quoted formulas. We turn to a scenario of the sort

introduced in the previous chapter, in which an agent uses quotation to mention

information that has been heard secondhand from a (fallible) fellow agent.1

The following is a very simple formula using a quotation term to characterize

one such scenario:

heard(“on fire(site1)”) ∧ smoke(site1)→ on fire(site1) (3.2)

Here, we focus just on the first literal, heard(“on fire(site1)”), and its possible

meanings.

There are two fairly natural interpretations of having heard something, as

expressed by the predicate heard with a quotation term argument. The first of

these is that the quoted formula was heard verbatim, in a way that the syntax

within quotation precisely matches the syntax of what was uttered by the other

agent. We can make this more apparent by also considering a heard literal variation

which has a variable inside of quotation. Under the first interpretation considered

here, heard(“on fire(X)”) means that the other agent used precisely the variable

X in their utterance. This would then not be interpreted as meaning the same as

heard(“on fire(Y)”), which is a formula employing different syntax (i.e., Y instead

of X) to express things being on fire.

The second of the meanings for heard does not look so closely at the syntax

1 We mention fallibility here so that there is no assumption made that the item heard is
necessarily true.

65

of tokens inside of the quotation term argument. This could instead be termed

heard-that — so if an agent has heard that locations are on fire, the quotation term

indicating this fact can use any (implicitly) quantified variable name to do so. Here

with the heard-that interpretation, heard(“on fire(X)”) has the same meaning as

heard(“on fire(Y)”).

In this way, an aspect of the present work edges up against natural language.

An English version of the two senses of having heard can be demonstrated by point-

ing out how in one sense having heard “Locations are on fire” is not the same as

having heard “Places are on fire,” due to the two using a slightly different series of

words. Yet, either one of these sentences expresses a message about sites that are

on fire, that is the same as what the other sentence expresses. We acknowledge this

overlap of the commonsense reasoning issues at hand with natural language, but

put aside the case of being concerned with exactly what an agent has said verbatim

(including the particular variables used in an utterance).

For the purposes of this work, when the predicate heard is used, it is always

to be interpreted as heard-that, and hence, variable names may be freely replaced

with other names inside the quotation term without any change in meaning (as long

as variable clashes are avoided). More generally, we will not consider any predicate

which inspects the precise syntax of any argument quotation term. For instance, we

exclude predicates for which the intended meaning is defined based on a quotation

term argument containing a particular variable, or based on the precise length of the

quoted formula string. Putting aside such predicates has implications in the context

of quoted formulas for variable bindings and substitution. Most of all, it enables

66

variables occurring within quotation to be bound to other variables in quotation,

and eventually substituted for other variables when a binding has been successfully

made.

3.3.2.2 A ground quotation term

With the intended meaning of the heard predicate clarified, we now return

again to the simple formula 3.2. Here we focus on the entirely of the formula, not

just the heard literal.

heard(“on fire(site1)”) ∧ smoke(site1)→ on fire(site1) (3.2 revisited)

In this case, what was uttered by the fellow agent has been captured inside the

quotation term, which is the argument to the heard predicate held by the first

agent. The heard predicate symbol represents an agent-centric sense of the agent

representing it having heard that the site is on fire, while the predicate symbol

smoke can indicate finding physical evidence of smoke in the environment. If what

was heard was the report of a particular site (site1) on fire in the building, and

that has been verified from detecting smoke, it is concluded that there really is a

fire at this site (on fire(site1)).

Making this inference requires the ability to do unification between formulas

containing a quotation term, such as between the implication’s first premise and the

atomic formula heard(“on fire(site1)”). Intuitively, for ground formulas inside

quotation terms, the quotation terms must unify only if the formulas contained have

identical structure of predicates, functions, and constants — as is the case in this

67

example. No new bindings will be added to the unifier from such unification.

Formula 3.2 is not especially insightful. It is highly-specialized, dealing only

with the case of a fire at the specific location given, makes little use of the quotation

term, and the unification behavior described for quotation terms is quite obvious.

3.3.2.3 A variable both inside and outside quotation

Consider an attempt to rewrite formula 3.2 to be more general, by replacing

site1 with a variable X:

heard(“on fire(X)”) ∧ smoke(X)→ on fire(X) (3.3)

By making a replacement of the specific site constant with X, this formula is intended

to express that an agent hearing about any site reported as on fire, and seeing smoke

visible, should conclude that particular site is on fire. However, the variable name X

is inside a quotation term and also is used elsewhere outside of the quotation term.

We consider whether formula 3.3 would express the intended meaning, given

this usage of X both inside and outside of quotation. The consideration that all

active logic variables are implicitly universally quantified is essential in addressing

this.2 As was discussed in section 2.3.2.5, universal quantifiers do not reach into

quotation without the use of a mechanism for quantifying-in, which we have not yet

provided. It is necessary to extend the quotation terms of active logic to include

such a mechanism as well; this mechanism is introduced in section 3.4.

The occurrence of X within the quotation term therefore cannot indicate the

2 As indicated in section 2.2.10, existential quantifiers are neither currently a part of the gram-
mar, nor considered to be implicit in formulas, as universal quantifiers are.

68

same variable that is the argument to both smoke and the conclusion on fire,

despite these variables being spelled out identically. Hence, formula 3.3 fails to give

the intended meaning in which all occurrences of X are in fact the same variable.

As written, the meaning of that formula is more clearly expressed as the following

interchangeable formula, which contains distinct names for what are actually distinct

variables, to not confuse the quoted variable with the variable outside of quotation:

heard(“on fire(X)”) ∧ smoke(Y)→ on fire(Y) (3.4)

This reveals some notable limitations arising from a lack of quantifying-in. The abil-

ity to express a formula with the original intended meaning of formula 3.3 becomes

available after we introduce quantifying-in mechanisms in section 3.4. However, de-

spite having a meaning identical to formula 3.4, formula 3.3 remains a well-formed

formula in the system of active logic with quotation, and is distinct from the formula

that results from quantifying into heard on X.

We now make explicit the implicit universal quantifiers for variables X and Y.

Y only appears outside of quotation marks, and it is clear the scope of the quantifier

applies over the entire formula (which we also will refer to as formula-level scope), as

occurs for quantifiers with other variables that do not involve quotation. Without a

means of quantifying-in, by definition a variable that is quantified to have a scope

over an entire outer formula cannot also occur inside of a quotation term. This

leaves the only possible location for X’s quantifier as within the quotation term. For

a formula nested in a quotation term as simple as on fire(X), there is only one

possible scope for the quantifier. In the more general case of arbitrarily complex

formulas embedded in quotation terms, it is reasonable to require that all universal

69

quantifiers that occur within quotation marks have a scope over their entire quoted

formula — the largest possible scope permissible by the intuitive semantics. In

subsequent examples, this interpretation is followed for all quoted variables where

quantifiers are not explicit. Formula 3.4 is then rendered more traditionally with its

quantifiers as:

∀y[heard(“∀x[on fire(x)]”) ∧ smoke(y)→ on fire(y)] (3.5)

On the basis of this quantifier placement, the first premise in English would indicate

having heard a statement that all locations are on fire. This principle of quantifier

placement also holds in the case of several nested quotation term formulas; for

example, consider the following formula in which having heard that all locations are

on fire is a belief attributed to the agent Alice:

bel(alice, “heard(“on fire(X)”)”) (3.6)

This formula with its quantifiers made explicit is the following:

bel(alice, “heard(“∀x[on fire(x)]”)”) (3.7)

3.3.2.4 Unifying a quotation term containing a variable

Consider a formula that expresses the knowledge that, if the active-logic agent

heard an utterance that all locations in the building are on fire (and thus the fire

is widespread), and this has been confirmed (perhaps consulting cameras instead of

touring the burning building), then an emergency evacuation action should result:

heard(“on fire(X)”) ∧ confirmed(widespread fire)→ do(evacuate) (3.8)

70

Here the argument to on fire is a variable instead of a constant and so it is

somewhat less trivial to determine which formulas ought to unify with the first

premise. We now consider the desired behavior for this formula’s intended meaning,

and which formulas should be unifiable with the heard premise.

Intuitively, an atomic formula such as heard(“on fire(site1)”) must not

unify with heard(“on fire(X)”). Knowledge of the former quotation term, with a

constant that indicates one site’s status, would not be sufficient to meet the condition

of finding all locations on fire, as expressed by an implicitly quantified quotation

term formula (heard(“on fire(X)”)). On the other hand, heard(“on fire(Y)”),

similarly to heard(“on fire(X)”), is a broad statement about all sites. Although

the two are not syntactically identical, with unique variable names across distinct

formulas, it is reasonable to give the same meaning to two instances of heard that

differ only in a variable name. On this basis, the quotation term including Y must

clearly be unifiable with the implication premise of formula 3.8. Expressing that “all

locations in the building are on fire” does not depend on the variable name used.

From here, we consider more generally what terms ought to unify with a

variable inside of quotation. In doing so, it helps to again consider quantifiers

made explicit in the formulas, which we recall means that universal quantifiers for

quoted variables appear just within the nearest enclosing quotation marks. For two

quoted formulas that are identical in structure except for a variable appearing in

one formula and a ground term appearing in the second formula in the same places

where this variable occurs, the second formula has at least one fewer quantifier

within the quotation marks. If binding the variable in question to the ground term

71

were allowed to occur, substituting occurrences of the variable for its binding would

result in changing the formula structure by removing a quantifier, and hence yielding

a more specific quoted formula. Since quoted formulas are in many ways treated as

mentioned formulas that capture a greater degree of specificity, it is sensible that

a quoted variable cannot unify with a ground term, preventing specialization when

substituting. This is essentially a generalized version of the argument above, where a

ground quoted formula about a single fire cannot possibly imply that all locations are

on fire. Similarly, a quoted variable should not unify with a non-ground function

term containing other quoted variables, because these non-ground terms are also

more specific quoted content than the universally quantified variable, regardless of

whether the formulas they are embedded in may contain more universal quantifiers

in total. Thus, a quoted variable may only unify with another quoted variable, and

not another type of term.

The idea that quotation terms, as presented thus far, should not unify with

more specific quotation terms also carries through to considering the unification

behavior of terms with multiple variables. For example, consider two quotation

terms with differing numbers of variables, that express beliefs about what Alice

believes other agents may see:

bel(alice, “sees(Agent, Agent)”) (3.9)

bel(alice, “sees(Agent a, Agent b)”) (3.10)

We can also make quantifiers explicit in these formulas for clarity:

bel(alice, “∀agent[sees(agent, agent)]”) (3.11)

bel(alice, “∀agenta, agentb[sees(agenta, agentb)]”) (3.12)

72

Formula 3.11 thus indicates that Alice believes that any agent sees itself, while

formula 3.12 indicates that Alice believes that any agent sees all other agents, which

is more general. Hence, these should not unify with each other. Formula 3.9 should

be unifiable only with a quoted sees literal with a single variable used for both

arguments, formula 3.10 should be unifiable only with a quoted literal containing

two distinct variable arguments. This example generalizes to a broader statement,

as the second of two principles characterizing quotation term unification. For two

quotation terms to unify: 1. Their quoted formulas must have identical structures

of operators, functions, literals, constants, and further-nested quotation terms (with

the exception of quoted variables); and 2. For each quoted variable in one formula,

all occurrences of this particular variable must correspond to exactly one variable

in each corresponding location in the other formula.

Here an interesting distinction from other sorts of terms is evident: a variable

within the formula of a quotation term may unify only with another variable, but

neither a constant nor a more specialized pattern of variables. In contrast, a non-

quoted variable, as in heard(S), does not behave as selectively for unification, and

for example S can unify with arbitrary constants, such as site1 and site2, or other

terms that it subsumes.

3.3.2.5 Inferring a quotation term as true

The previous examples have dealt with specific predicates quoted inside a quo-

tation term, such as on fire. There must be a means of extracting the information

73

mentioned in a quotation term, so that a reasoning agent can have the potential to

trust or believe this information. We now consider expressing a formula that is more

generalized in its ability to address reasoning based on any kind of utterance heard

from another agent. Consider the following formula, for expressing that anything

heard and successfully investigated (confirmed) becomes a belief:

heard(X) ∧ confirmed(X)→ true(X) (3.13)

For more generality, variables are now used in place of quotation term arguments

to the predicates that were used in earlier examples. Intuitively, a regular vari-

able should be able to bind to a quote during unification, which would permit

heard(“on fire(site1)”) to satisfy the first premise of the rule above. The pred-

icate in the consequent, true, should achieve the effect that its argument will be

trusted as true by an active-logic agent in the following timestep. We introduce an

additional specialized inference rule for this purpose:

t : true(“X”)

t+ 1 : X

This process is a method of unquoting. Concluding the example, the im-

plication’s conclusion would be true(“on fire(site1)”), and then the formula

on fire(site1) is subsequently inferred, so that the agent believes to be true what

it had previously heard to be true. As with any other active logic belief, this can

ultimately be overturned or distrusted, in cases such as when a contradiction arises

as a result of a reason to also believe ¬X.

74

3.4 Quasi-quotation

We have previously described the nesting mechanism of quotation terms added

into active logic, and provided both a series of examples for quotation terms, as well

as the principles of unification drawn from them. We now discuss examples that

require quantifying into quotation, introduce the use of quasi-quotation as a means

to do so, develop the desired unification behavior for quasi-quotation, and ultimately

generalize this behavior to a full unification algorithm for quotation terms and quasi-

quotation. This will be essential for representing an active-logic agent’s reasoning

about beliefs — both the agent’s own as well as those of others.

3.4.1 A need for quantifying-in

Quotation terms as introduced thus far have a significant limitation, exempli-

fied by formula 3.3: the same variable that appears within a quotation term cannot

also appear outside of that quotation with the same meaning. Hence, quoted vari-

ables in their present form are locked inside of quotation, where these variables are

mentioned only. This inaccessibility of variables inside quotation terms prevents

their binding and substitution for anything other than other quoted variables, by

the definition of unification for quotation terms presented in section 3.3.2. This is

useful in certain kinds of formulas, particularly formulas that express universal quan-

tification inside of quotes (e.g. formula 3.6). Yet in other cases, it is desirable for

particular variables within quotation terms to have their corresponding quantifiers

appear beyond the quotation marks. This is once again the problem of quantifying

75

into quotation, as was introduced in section 2.3.2.5. What is desired is a pattern

of how certain variables, if indicated for this purpose, may quantify into quotation

terms and interpolate within the quotation marks. Such a pattern would allow: 1)

the same variable to appear both inside and outside of quotation, 2) these variables

to make bindings with other sorts of terms, and 3) substitution into the context of

quotation. These abilities clearly exceed what can be done with quotation terms

that have no ability to quantify-in. Next, we illustrate this need more vividly with

examples using introspection.3

Introspective reasoning without binding or substituting quoted variables is

sufficient for certain categories of formulas, which includes many formulas that ex-

press general knowledge, definitions, or properties. For example, an active-logic

agent might check whether all cephalopods are mollusks with a literal such as

pos int(“cephalopod(X) → mollusk(X)”). The existing form of quotation terms

suffices for this sort of formula; beliefs about a particular instance of a cephalopod

being a mollusk are not unifiable with the quotation, while the general form of the

belief about cephalopods as mollusks will unify and satisfy introspection.

However, other kinds of formulas given as arguments for introspective rea-

soning should succeed without making exact matches, and introspection should also

function in an intuitive way for these more particular instances. For example, ideally

3 Introspection as implemented in ALMA 1.0 with the formula interpretation of functions
discussed in section 3.2 has the ability to perform these sorts of bindings and substitution. However,
the theoretical and practical limitations identified in that section remain. This approach also has
other limits on the expressiveness of formulas. A formula such as 3.8 cannot be represented in the
same way without quotation; a formula interpretation of heard(on fire(X)) is unifiable with both
heard(on fire(site1)) as well as heard(on fire(Y)), while quotation enables unifying with only
the latter (as formula 3.8 does), or the former (as allowed by quantifying-in).

76

an active-logic agent could check the current time via a formula in its knowledge

base much like pos int(“now(T)”), and be able to connect the variable T to the

present integer time value. Yet, presently this succeeds only if exactly now(T) is

a standalone formula appearing in the knowledge base — a formula that indicates

now(T) is believed for all values of T, which is very unlikely to be a useful formula

believed by a reasonable agent.4 Thus, for positive introspection, an argument will

not always be intended as an almost-verbatim match for a knowledge base formula

(that is, a verbatim match to a formula except for a change of variables). There-

fore instead of matching as in the cephalopod example, two common non-verbatim

patterns of introspection use quotation terms differently:

1) Introspection on an argument containing a variable, which is intended to

acquire a binding as part of unification with another belief. Hence in this pattern, the

introspection argument is a formula expected to unify with a more specific knowledge

base formula that it subsumes. For example, consider a knowledge base with the

formulas tired(tweety), afternoon(50), and the following formula (expressing that

a tired bird can nap only when the current point in time is during the afternoon):

tired(tweety) ∧ pos int(“now(T)”) ∧ afternoon(T)→ can nap(tweety) (3.14)

In this example, the desired result when positive introspection searches for a formula

unifiable with now(T) is that introspection succeed by binding T, by unifying with

now(50). The intended most general unifier with the knowledge base described then

consists of T bound to the constant 50, which can be substituted into the final

4 Or more precisely, the present semantics for quoted variables would have introspection on
“now(T)” only be unifiable with a now literal containing a variable argument. This might be
another variable than T itself; but regardless this does not change the fact that now with a variable
argument would not be reasonably attributed to an agent.

77

premise afternoon(T), which matches the atomic afternoon formula in the KB.

Obtaining the desired conclusion therefore hinges on finding a binding for T in the

quotation term during introspection.

2) Introspection with an argument containing a variable which has previously

acquired a binding, so that the substitution of this variable for its binding must be

made before introspection is performed. For example, consider a knowledge base

containing both the premise bird(tweety), and the following formula:

bird(X) ∧ neg int(“¬flies(X)”)→ flies(X) (3.15)

This is the same example from Purang that was introduced in section 3.2, only

rewritten with the syntax of quotation terms. In evaluating the formula from left to

right, the atomic formula bird(tweety) first unifies with bird(X), resulting in the

binding of X to tweety. When the first premise has been satisfied, it’s appropriate

that tweety can be substituted into X in flies(X) in the quotation term. Then, the

truth of the introspection predicate would be based not on a formula about flying

that contains a variable, but on the present belief of flies(tweety). To obtain a

conclusion specific to tweety, it is necessary to have some means to substitute into

the quotation term a more specific bird than an unknown flier X, before checking

the knowledge base.

While quotation terms as developed so far are presently insufficient for these

cases, such patterns of reasoning will be enabled by extending quotation terms to

allow the option of quantifying-in, as we now develop.

78

3.4.2 Formalism

Quantifying-in provides a theoretical mechanism for variables to bind and

substitute into the context of quotation terms. We use the term quasi-quotation

for referring to a syntactic device allowing quantifying-in, whereby variables may

be selectively indicated to “escape” the quotation terms that they are contained in.

Quasi-quotation was originally introduced by Quine [77], although Quine used the

term quasi-quotation slightly differently, unlike our usage for a mark that essentially

unquotes particular variables.

We emphasize that this feature may be selectively applied to only some vari-

ables. Not all variables should escape from inside of a quotation term; instead it is

often useful for universal quantification to remain inside of quotation marks, as is

the case in formula 3.8:

heard(“on fire(X)”) ∧ confirmed(widespread fire)→ do(evacuate)

(3.8 revisited)

But frequently, quantifying-in via quasi-quotation should enable targeted variables

in a formula to escape their containing quotation term during inference and unifi-

cation, so that these variables might be substituted for or bound. Consider again

the example of formula 3.3, which in the absence of quantifying-in was incapable

of expressing its originally intended meaning of having the same X throughout the

formula:

heard(“on fire(X)”) ∧ smoke(X)→ on fire(X) (3.3 revisited)

Quasi-quoting the first use of X, within the quotation term, now gives a way to

79

achieve the desired meaning: that all appearances of X are occurrences of the same

variable. We now introduce a formalism for quasi-quotation, as built by extending

the existing quotation terms.

Then, quantifying-in is delineated with a special quasi-quotation character

(the quasi-quotation mark) appearing before a variable to modify it. The backtick

(`) is used for this mark, inspired by Lisp.5 A variable specifically has been men-

tioned as the target of a quasi-quotation mark; it is unclear what other varieties

of terms, such as functional expressions, would mean if quasi-quoted when inside

of quotation terms, and presently we put these other cases aside.6 Extending the

grammar to include a variable preceded by a quasi-quotation mark can be achieved

by adding another nonterminal symbol to the production rule that derives a vari-

able, as introduced in section 2.2.10. With the additional nonterminal, that rule

becomes:

〈Variable〉 → `〈Variable〉

| [A-Z][a-zA-Z0-9]*

Hence, the presence of a quasi-quotation mark only before a variable is enforced.

5 Quasi-quotation in Lisp (and related dialects such as Scheme) is an alternative form of quo-
tation in the language, which serves as a template whereby parameters may be inserted into the
template by selectively unquoting expressions via another operator [1, 88]. Some other languages,
such as Haskell, also support the feature due to inspiration from the Lisp family [48]. In the pro-
gramming language domain, this feature is used for program-generating programs, to more easily
embed domain-specific languages by specifying syntax and constructing fragments of programs [7].

6 Further afield from terms, the notion of quasi-quoting other grammatical active logic con-
structs such as predicates, operators, or whole well-formed formulas presently does not seem jus-
tifiable. There do not appear to be reasonable intuitive semantics to describe these and how they
would behave in inference, nor an example use case, in contrast to the many examples readily found
for variables. One could imagine a case where it may be useful to quantify variable names over
quoted predicates (e.g. looking for binding a variable to a predicate name in representing whether
John believes a predicate P where P(tweety) is true). But this would suggest a second-order logic,
that is beyond the scope of first-order active logic in this work.

80

As a first example of quasi-quotation, we finally express formula 3.3 to properly

reflect the meaning that had been originally intended:

heard(“on fire(`X)”) ∧ smoke(X)→ on fire(X) (3.16)

This formula now successfully captures the meaning that, for any site reported as on

fire, and where smoke is seen there, then it is concluded that this particular site is

on fire. If the quantifier for X is made explicit, this example, in contrast to formula

3.5, is rendered as:

∀x[heard(“on fire(`x)”) ∧ smoke(x)→ on fire(x)] (3.17)

The production for a variable now has two alternatives, where application of

the first alternative yields a quasi-quotation mark and the V ariable nonterminal

once again. If this first alternative is selected repeatedly, then arbitrarily many

quasi-quotation marks may appear in succession. The purpose of allowing multiple

quasi-quotation marks is to quantify into nested quotation terms in different ways.

For an instance of a variable located within N nested pairs of quotation marks, we

refer to this variable instance as appearing in N levels of quotation. With multi-

ple quasi-quotation marks, the means of quantifying-in is generalized so that each

additional level of quotation added before a particular variable allows the variable

to escape one further pair of quotation marks, from the innermost out. We also

define the effective level of quotation: for a variable in N levels of quotation and M

quasi-quotation marks prepended, effective level of quotation is N−M . An instance

of a variable in N levels of quotation with N quasi-quotation marks is referred to

as fully-escaping ; any fully-escaping variable has a quantifier with scope over its en-

tire formula. A variable that has no quasi-quotation marks and appears outside of

81

any quotation terms also trivially fits this definition.7 This scope is intuitive given

that the effective level of quotation for a fully-escaping variable is zero. Hence,

such a variable behaves quite similarly to a variable outside of any quotation. If

instead of being able to repeatedly quasi-quote as described above, a single quasi-

quotation mark were to immediately allow a variable to fully escape from all nested

levels of quotation, this would not have sufficient expressiveness for desired uses of

quasi-quotation. It is often convenient for a variable within several nested quota-

tion terms to be only partially quasi-quoted (i.e., not fully-escaping, and having

an effective level of quotation greater than zero). A variable in a partially quasi-

quoted case, with effective level of quotation greater than zero, is also referred to as

a non-escaping variable; non-escaping variables may be partly quasi-quoted, or not

quasi-quoted at all.

For a variable in several levels of quotation, we return to example 3.6 to demon-

strate how multiple quasi-quotation marks affect the quantifiers of a formula:

bel(alice, “heard(“on fire(X)”)”) (3.6 revisited)

We note again that here Alice is another agent, for which the entire quoted wff is a

belief of the active-logic agent, regarding a belief that this agent attributes to Alice.

The variable X appears within two levels of quotation, and thus two new formulas

result from quasi-quoting it up to two times:

bel(alice, “heard(“on fire(`X)”)”) (3.18)

bel(alice, “heard(“on fire(``X)”)”) (3.19)

7 In some cases when we wish to discuss only fully-escaping variables with a nonzero number
of quasi-quotation marks, these variables are referred to as fully-escaping quasi-quoted variables.

82

By default for a quoted variable, the universal quantifier when made explicit occurs

just within the nearest quotation marks, as in formula 3.7:

bel(alice, “heard(“∀x[on fire(x)]”)”) (3.7 revisited)

Formula 3.6 expresses that the belief is attributed to Alice that she heard one

utterance express that all locations are on fire. Using one quasi-quotation mark

(where X is at an effective quotation level of one), the outer quotation term formula

is able to quantify into the inner quotation term formula, and the universal quantifier

when made explicit is within the outermost quotation marks:

bel(alice, “∀x[heard(“on fire(`x)”])”) (3.20)

Formula 3.18 expresses that one belief is attributed to Alice, which is a universally

quantified formula expressing that all locations have been heard as on fire. Using

two quasi-quotation marks (where X is fully-escaping, with effective quotation level

of zero), X is a fully-escaping variable, the outermost formula quantifies into both

quotation terms’ usage of X, and hence its universal quantifier has scope over the

entire formula:

∀x[bel(alice, “heard(“on fire(``x)”)”]) (3.21)

Formula 3.19 expresses that, for each possible value of x, a belief is attributed to

Alice, which is that she heard an utterance indicating that particular value of x is on

fire. In contrast to one belief of Alice’s being modeled in example 3.18, in the case

of this formula, Alice is modeled as holding an infinite set of such beliefs. This latest

example moves beyond matters exclusively about the formalism of the new quasi-

quotation structure; Alice is modeled as having heard a set of formulas, of which

each ought to contain a particular value appearing in place of the quasi-quoted vari-

83

able. Considering the contents of such formulas involves issues of binding variables

and making substitutions. These issues must be resolved, and most crucially the

questions of which bindings would be permissible for quasi-quoted variables, and

how substitution should occur in these contexts, must be answered to make use of

quasi-quotation.

One final important point about formalism is that, for active logic with quo-

tation and quasi-quotation, the number of quasi-quotation marks that can apply

to a variable is up to and including the number of quotation marks enclosing that

variable (i.e., a variable may be quasi-quoted only up to being fully-escaping). A

formula with excessive quasi-quotation marks before any variable on this basis is

not a well-formed formula. Thus the variable X in formula 3.6 within two levels of

quotation may be quasi-quoted up to two times. This limit based on the number

of enclosing quotes provides one source of context-sensitivity for the new language.

Since context-sensitivity is not pervasive in the language with quotation and quasi-

quotation, presentation of grammars will continue to use context-free rules, although

the quasi-quotation limit still applies.

3.4.3 Quasi-quotation reasoning

When previously defining the formalism of quasi-quotation, we distinguished

two main categories of variables: fully-escaping variables that are not affected by

any enclosing quotation marks (which also trivially includes variables outside of

quotation altogether), and non-escaping variables which remain partly affected by

84

quotation.

We now move beyond the formalism of quasi-quotation, and proceed to de-

velop reasoning for the language with quasi-quotation, by extending the behavior of

unification. Due to the richer structure of a quotation term with embedded quasi-

quotation marks inside, there are more possibilities for how this might behave than in

the more straightforward case of unifying a quotation term without quasi-quotation.

Distinctions between types of variables lead to significantly different outcomes for

how they might bind and unify. We will next guide the development of intuitive

semantics for quasi-quotation using the same example-driven approach as detailed

in section 3.3.2 for the basic kind of quotation terms. Within context of a proof

step, we consider all the different cases of unifying two terms, in which a variable

within a term can be non-escaping or fully-escaping. Our approach is achieved by

illustrating each case, and extracting principles of how to handle them. We then

ultimately develop a full unification algorithm, and show it behaves according to

our developed principles.

3.4.3.1 Binding a non-escaping quasi-quoted variable

Quasi-quoted variables that are not fully-escaping from quotation in many re-

spects still resemble quoted variables that have no quasi-quotation. Their respective

implicit universal quantifiers remain within at least one pair of quotation marks, as

exemplified by formula 3.20:

bel(alice, “∀x[heard(“on fire(`x)”])”) (3.20 revisited)

85

Intuitions much the same as those determining bindings for quoted variables (de-

scribed in section 3.3.2.4) thus apply here as well. That is, these non-escaping

variables are treated much like mentioned variables, and so should not bind to any

term that is more specific. Rejecting bindings in these cases once again excludes

such a variable binding to a constant, function, or quotation term. Just as a quoted

variable without quasi-quotes may bind to another quoted variable without quasi-

quotes as described in section 3.3.2, a quasi-quoted variable that isn’t fully-escaping

should unify with another variable at the same effective level of quotation. One

consequence of this is that these variables cannot unify with any fully-escaping

variable, which necessarily have an effective level, zero, different from that of any

non-escaping variable. Contrasting formulas 3.6 and 3.18 provides an example as to

why quoted variables with different effective quotation levels should not unify:

bel(alice, “heard(“on fire(X)”)”) (3.6 revisited)

bel(alice, “heard(“on fire(`X)”)”) (3.18 revisited)

As was made clear in rendering their quantifiers explicitly with formulas 3.7 and

3.20, respectively, formula 3.6 indicates an agent modeling that Alice believes she

heard (the same agent-centric heard as before) a single utterance that indicated

all locations as on fire, while formula 3.18 indicates an agent modeling that Alice

believes she heard all possible utterances that each indicated a location as on fire:

bel(alice, “heard(“∀x[on fire(x)]”)”) (3.7 revisited)

bel(alice, “∀x[heard(“on fire(`x)”])”) (3.20 revisited)

The two quotation terms, which an active-logic agent attributes to Alice, are clearly

not equivalent. We also can describe this fact in syntactic terms, by noting that there

86

is a difference in the structure of the two quoted heard formulas: they have their

implicit universal quantifiers in different positions, due to their different effective

quotation levels. Hence, we generalize this point into the principle that: when

attempting to make an initial binding, two variables with a difference in effective

quotation level cannot bind.8

A key restriction placed on unifying quoted variables in the earlier section

was that each occurrence of a quoted variable in one quotation terms must corre-

spond to exactly one variable in the other term. For quasi-quoted variables that

are still non-escaping, the same motivation for this requirement exists. The result-

ing behavior for non-escaping quasi-quoted variables is that a binding is permitted

between variables at the same effective level of quotation, as long as this condition

on variable matching consistency is followed. This directly generalizes the unifica-

tion behavior of non-escaping variables without quasi-quotes. However, that result

should not be surprising, since the intuitions come from the fact that these variables

are non-escaping, whether or not there are quasi-quotation marks involved.

We subsequently develop the unification behavior of fully-escaping variables,

first from more trivial examples. In doing so, we also address in much greater detail

other reasons why a non-escaping variable should not unify with a fully-escaping

variable.

8 We later will return to differences of effective quotation level when going beyond basic cases
of bindings and discussing the recursive unification of bound variables, where there is reason for
slightly different behavior.

87

3.4.3.2 Binding a fully-escaping quasi-quoted variable

We next consider situations when a fully-escaping quasi-quoted variable should

create a binding with other expressions. We return to a running motivational ex-

ample for quasi-quotation to do so:

heard(“on fire(`X)”) ∧ smoke(X)→ on fire(X) (3.16 revisited)

Once again, this formula now successfully expresses that hearing about any partic-

ular site reported as on fire, and seeing smoke visible, warrants the conclusion that

the particular site is on fire. Intuitively, for purposes of unification the fully-escaping

X should be treated as a blank space in the quoted formula containing it, which can

be filled with a wider range of substitutions than a non-escaping variable might.9

Prior to discussing how to make bindings, we make a point of how we conceive

of bindings. We emphasize that each successful binding is structured as a binding

specifically of X to a term; and is not a binding of `X to a term. The purpose of

a quasi-quotation mark is to single out this variable for protection from quotation,

and thus to change what kinds of terms it can unify with and what kinds of bindings

it can make; the associated binding itself exists between simply the variable X and

another term. In fact, this principle about a binding’s structure holds not just

for fully-escaping variables, but for all bindings made in cases of quasi-quotation,

including whether or not the bound variable in question is fully-escaping. Examples

below will illustrate this.

Now, we describe examples that drive the kinds of bindings that formula 3.16

9 And, of course, other occurrences of the variable X throughout the formula will also be filled
with the same substitution as made within the quotation term.

88

should support for X.

3.4.3.2.1 Binding to a ground term

Bindings for X in formula 3.16 should be permissible with a variety of terms

that could indicate locations heard as on fire, so that bound variables can ulti-

mately enable conclusions about the locations to which they were bound. For ex-

ample, terms that could indicate locations, such as site1, hallway(interior),

stairs(level2, level3), and sign(“high voltage”) are all options which should

be valid choices for what could become bound to X. More generally, it is clear that

fully-escaping X may be bound to any ground term comprised of constants, function,

and ground quotation terms.

An additional pair of examples further illustrates the importance of noting

a binding as between merely a variable and a term, rather than between a quasi-

quoted variable and a term. We first consider an active-logic agent’s knowledge base

containing the formula electrical hazard(fence) and the following:

electrical hazard(X)→ sign(“high voltage(`X)”) (3.22)

Now, compare this with a separate KB containing sign(“high voltage(fence)”)

and the converse implication:

sign(“high voltage(`X)”)→ electrical hazard(X) (3.23)

In both cases, the desired binding is X / fence. It is an intuitive result that the

same binding be obtained, regardless of if it originated first from a fully-escaping

quasi-quoted variable, or from a variable that had no quasi-quotation marks.

89

3.4.3.2.2 Binding to a variable

Returning to accounting for the kinds of terms that might satisfy the first

premise of formula 3.16 (heard(“on fire(`X)”)), the remaining terms to consider

are variables, both quasi-quoted and non-quasi-quoted. However, at this point we

have distinguished partly-escaping quasi-quoted variables from fully-escaping vari-

ables, and further described the reasons according to which fully-escaping variables

unify in the same manner as regular variables inside quotation. In the running ex-

ample, a formula with another fully-escaping variable in the same position in the for-

mula as X, such as heard(“on fire(`Y)”), should be unifiable with the first premise

of formula 3.16, yielding the binding X / Y. These two formulas have identical syntax

(except for variable names), when including their respective quasi-quotation marks,

which also means their implicit quantifiers each have a scope over the whole formula.

As with the typical form of unification without quotation, any variable with a scope

over the entire formula ought to be able to freely bind with and substitute for an-

other variable of the same scope. Furthermore, in terms of formula meaning, the

standalone literal above expresses that, for any location-value of Y, the agent cur-

rently reasoning has separately heard the formula that this location is on fire. Since

every location was separately heard as being on fire, this gives license to believe

that any location that is smoking is sufficient for it being on fire (i.e., concluding

that smoke(Y)→ on fire(Y)). Both of these reasons thus support making bindings

between two fully-escaping quasi-quoted variables.

In contrast, if there is a quoted formula with a non-escaping variable in the

90

same position as X, such as heard(“on fire(Z)”), there are reasons to reject this for-

mula unifying with the premise heard(“on fire(`X)”) of formula 3.16. The clearest

argument against this binding is based on the syntax of the two heard literals. X

escapes from quotation due to quasi-quotation, while Z is a non-escaping variable

and so its quantifier lies within the nearest quotation marks. To allow a binding

such as X / Z would lead to a substitution of Z in place of X in formula 3.16, and

in doing so would place a new quantifier inside of the quotation term when X is re-

placed by non-escaping Z. As was established in section 3.3.2.4, a binding should not

change a formula’s structure by removing quantifiers, and a natural corollary from

this example is that quantifiers should not be introduced within a quotation term

outside of positions where a substitution is made. Rather, a substitution in place

of a quasi-quoted variable should only introduce new structures and quantifiers into

the formula at positions where the variable had appeared. Another problem is that

permitting a fully-escaping variable binding to a non-escaping variable would also

suggest a form of equivalence between variables with and without quasi-quotation,

which is directly counter to the initial goal of quasi-quotation. Thus, a fully-escaping

variable should not be bound to a non-escaping variable.

The motivations behind accepting bindings of a fully-escaping variable to an-

other fully-escaping variable, and also rejecting bindings of a fully-escaping variable

to a non-escaping variable, each additionally help guide further cases.

3.4.3.2.3 Binding to a non-ground term

We next consider whether to unify fully-escaping quasi-quoted variables with

91

non-ground terms. A simpler question to resolve is whether a fully-escaping vari-

able ought to unify with a term containing exclusively other fully-escaping variables.

Similarly to the motivation for creating a binding directly between two fully-escaping

variables, fully-escaping quasi-quoted variables should also further resemble regular

variables outside of quotation by possessing the ability to bind with expressions that

contain other variables of formula-level scope — just as variables outside of quotes

are able to do. For variables appearing within quotation marks, we recall that only

fully-escaping variables have such a scope. In these cases, fully-escaping variables

may occur at the same level of quotation as the variable it would bind to; or may

occur at a deeper level of quotation, if the term contains additional nested quotation

terms. For our running example focusing on the premise heard(“on fire(`X)”) of

formula 3.16, a sample formula containing a variable at the same quotation level

as X is heard(“on fire(hallway(`H))”) (each hallway was separately heard as on

fire), which yields a binding of X / hallway(`H). An example with a variable at a

deeper level is heard(“on fire(sign(“high voltage(``V)”))”) (each sign indicat-

ing a location having high voltage was separately heard as on fire), which yields a

binding of X / sign(“high voltage(``V)”).

Whether a fully-escaping variable ought to unify with a term that contains

non-escaping variables is more complicated. The most basic syntax that could

be considered consists of a formula with a function of variable arguments, as in

heard(“on fire(stairs(Lower, Upper))”). Here, the problem persists that new

quantifiers would be introduced (for Lower and Upper) inside of the quotation term

if the fully-escaping X is bound to stairs(Lower, Upper). Consequently, this binding

92

must be rejected. However, implicit quantifiers are positioned differently in terms

containing variables in a deeper level of quotation without quasi-quotation. Consider

heard(“on fire(sign(“high voltage(V)”))”), for which V’s implicit quantifier lies

within the innermost quotation term. Since V is quantified within the quotation term

argument of sign, this overall formula has a different meaning: that the sign itself,

that happens to indicate all locations as high voltage, was heard to be ablaze. A

binding such as X / sign(“high voltage(V)”) does not introduce a problematic new

quantifier, since the sole quantifier for a variable in the high voltage quotation

term is contained in that term. Hence, this binding for X is permissible. We sum-

marize this point as follows: a fully-escaping variable binds to a term T containing

non-escaping variables if all implicit quantifiers of these variables remain within T .

Two further examples illustrate how this principle applies to terms contain-

ing partly-escaping variables, in addition to the scenarios involving non-escaping

variables without quasi-quotes that were discussed above. The first of these is the

literal heard(“on fire(sign(“high voltage(`V)”))”). Here, the implicit quan-

tifier for V appears just prior to the on fire predicate symbol, so a prospective

binding of X / sign(“high voltage(`V)”) would violate the requirement that non-

fully-escaping quantifiers remain in the bound term. Hence, this cannot unify with

heard(“on fire(`X)”).

Conversely, consider this example containing a non-escaping variable Agent:

heard(“on fire(sign(“bel(manager, “review(`Agent, excellent)”)”))”) (3.24)

Since Agent is quasi-quoted once, its implicit quantifier positioned just before the

bel predicate symbol, inside the second quotation term. The example thus expresses

93

that what was heard as on fire was a sign indicating that, for each agent, the manager

believes that particular agent has received an excellent review. With three nested

quotation terms, the formula expresses an uncommon thought, especially for its

specificity of describing a burning sign. Despite this, the implicit quantifier for

Agent crucially does not appear beyond the argument to on fire. This allows

a binding of X / sign(“bel(manager, “review(`Agent, excellent)”)”). Although

this superficially resembles the rejected binding of X / sign(“high voltage(`V)”)

due to containing a variable with one quasi-quotation mark, the presence of an

additional enclosing pair of quotation marks makes this an allowable binding.

3.4.3.2.4 Binding to fully-escaping variables

Finally, we point out how a pair of fully-escaping quasi-quoted variables handle

quite differently a pair of formulas which could not have unified with only non-

escaping variables, due to the patterns of variables in each formula. Consider the

following:

bel(alice, “sees(`Agent, `Agent)”) (3.25)

bel(alice, “sees(`Agent a, `Agent b)”) (3.26)

This pair has almost identical syntax to formulas 3.9 and 3.10, respectively, although

a quasi-quotation mark is added before each variable, resulting in significantly dif-

ferent meanings due to the implicit quantifiers escaping beyond the quotation terms.

In formulas 3.9 and 3.10, each of the formulas expresses that Alma models Alice as

holding one belief that holds quantifiers about what others see. But, in formulas

3.25 and 3.26, since the quantifiers for variables are fully-escaping, each formula indi-

94

cates that Alma models Alice as having all possible sees beliefs, each with particular

agents as arguments. By the quasi-quotation unification principles developed so far,

this pair can successfully unify and produce bindings. One possible set of bindings

that could result is Agent / Agent a and Agent b / Agent a. In contrast to the

reason for rejecting an analogous binding between non-escaping variables, bindings

that replace fully-escaping variables with more specialized patterns are permissible,

as long as the constraints outlined above are followed. When unpacking the process

of unification, the above pair is also a trivial recursive case: once the binding of

Agent / Agent a has been made, when comparing Agent to Agent b, the term to

which Agent is bound, Agent a, must be recursively unified with Agent b. Al-

though the recursive case in this example is simple, more complicated examples of

recursive unification with quotation terms require additional changes; we describe

these in section 3.4.3.5.

3.4.3.3 Exhaustiveness of bindings

Section 3.4.3.1 addressed when a non-escaping variable might create a binding:

this is permissible exclusively when matching with select cases of other non-escaping

variables (i.e., with the same effective quotation level, and as long as there is consis-

tency in variable matching), and a binding is rejected when the term it is compared

to is of any other type — a function, a constant, a quotation term, a fully-escaping

variable (explained in more detail in section 3.4.3.2.2), or a non-escaping variable

violating the conditions above.

95

Likewise, section 3.4.3.2 addressed when a fully-escaping variable might cre-

ate a binding: when matching with another fully-escaping variable, a constant, a

function or a quotation term (as long as either of these types does not contain a

variable with improperly placed implicit quantifiers). Conversely, a binding is re-

jected when comparing to a non-escaping variable, for a function or quotation term

with improper quantifier placement (according to the principle identified above).

Taken together, these cases give an exhaustive accounting for the behavior

during unification involving a variable compared against any kind of term, whether

success or failure results. We can also provide an exhaustive accounting for unifica-

tion behavior when comparing a pair of terms that are both non-variables: functions,

constants, and quotation terms. With variables removed from consideration, uni-

fication is straightforward in that these terms simply successfully unify when their

structures match, and otherwise fail to unify when there isn’t a structural match.

Hence without regard to variables, a constant unifies exclusively with an equal con-

stant, a function unifies exclusively with another function of matching functor where

each term recursively unifies, and a quotation term unifies exclusively with another

quotation term containing matching predicates and where each predicate argument

recursively unifies. This behavior is made most explicit in the full algorithm pre-

sented in section 3.4.4. Yet, in concluding the section that developed principles

for binding, we here emphasize the importance of how the above principles achieve

exhaustive coverage for terms, and so help make our ultimate unification algorithm

precise.

Continuing on, we return to the trivial case of recursive unification that was

96

invoked at the end of section 3.4.3.2.4. As a requisite to developing recursive unifica-

tion, which is presented in section 3.4.3.5, we first develop the means of substitution

based on bindings, which also require some extensions specific to quotation terms.

3.4.3.4 Substitution with quotation and quasi-quotation

Several of the bindings indicated above in section 3.4.3.2.3 stand out, by virtue

of containing a term that has more quasi-quotation marks than enclosing quotes. For

example, X / hallway(`H) has singly-quasi-quoted H without quotation marks ap-

pearing in the bound term itself, and X / sign(“high voltage(``V)”) has a twice-

quasi-quoted V with just one pair of enclosing quotes presented in the binding itself.

These bindings are justified on the basis that H and W are fully-escaping variables

in their particular formulas — yet, presently the bindings that contain these two

variables do not reflect that fact. We therefore extend the information recorded

in a binding accordingly, so that a binding on its own makes clear which variables

are fully-escaping. A way of providing this context is to indicate as a third piece

of information the level of quotation (which we recall is counted from the highest

formula level down) at which a binding was made. Since multiple occurrences of a

variable might lead to recursive unification of a bound variable, for additional clarity

we attach to a binding the level of quotation in which the bound variable occurs.

For active logic with quotation, we define a binding as a tuple {V, L, T}, which

consists of a bound variable V , which is within L levels of quotation, bound to a

term T . This will also be presented as V (L) / T . Thus, the two bindings above are

97

clarified by the new notation to be the expanded bindings of X (1) / hallway(`H)

and X (1) / sign(“high voltage(``V)”). H in fact is within one level of quota-

tion, confirming that one quasi-quotation mark makes it a fully-escaping variable.

Likewise, the quotation term containing W is in fact within another, second, level,

confirming that two quasi-quotation marks signify it as fully-escaping while remain-

ing well-formed.

We use this new definition of a binding to develop the method of making sub-

stitutions for variables when quotation terms are involved. Methods of substitution

as presented here extend the typical means of substituting variables for terms in

a first-order system without quotation. As a result of the behavior being a direct

extension, if a variable V became bound to a term T0 outside of quotation terms

(in the new notation, V (0) / T0), any occurrence of V outside of quotation can

trivially be replaced by T0 in the usual way.

3.4.3.4.1 Substituting for a non-escaping variable

Substituting for variables within quotation marks that have no quasi-quotes,

or are quasi-quoted but only still non-escaping, is also straightforward. In the first of

these cases, if a variable within a quotation term N0 is bound, then by the principles

developed above, the term to which N0 is bound is necessarily another non-escaping

quoted variable N1. It is thus a trivial substitution of N0 for N1, and moreover since

neither variable escapes quotation all substitutions are made within the quotation

term where they appear.

Likewise, if a non-escaping variable P0 is bound, the bound term P1 is nec-

98

essarily a variable at the same effective quotation level.10 The substitution of P0

for P1 remains trivial regardless of the number of quasi-quotation marks affecting

each variable of this pair; the number of quasi-quotation marks prepended to P0

will not change. After making a substitution, then P1 will have the same number of

quasi-quotation marks prepended. Once again, no substitution is made outside of

the quotation terms containing the implicit quantifiers of P0 and P1, but rather all

substitutions are localized within these quotation terms.

Bindings made for fully-escaping variables present some more challenging cases

that require different treatment, in contrast to non-escaping variables. Some of the

complications follow from the fact that fully-escaping variables might be substituted

into contexts without any quotation. We now develop the desired substitution be-

havior in these cases, from initially basic examples.

3.4.3.4.2 Substituting for a fully-escaping variable

Prior to analyzing cases for the behavior of fully-escaping variables and their

bindings, we first clarify a notational matter for quasi-quotation in a binding. As

was previously described in section 3.4.3.2 and subsequent sub-sections, notationally

when a variable V has already been bound, any quasi-quotation marks attached to

V are not represented in the binding itself, even if V is fully-escaping and quasi-

quoted. The primary reason, which we will elaborate on and provide examples for

shortly, is that appearances of V with different amounts of quasi-quotation (or even

none at all) should all be substituted appropriately with the given binding. Yet

10 Per the principles in section 3.4.3.1, that a non-escaping variable may bind exclusively with
another non-escaping variable, and only when the pair has equal effective level.

99

information about the original context where V was bound is not lost either, and

can be retrieved from the values in the binding. For a binding V (L) / T , if L is

greater than zero, the amount of quasi-quotation for V can always be determined. If

T is a function, quotation term, or constant, then V must be fully-escaping to have

bound it to this term, and so the variable is quasi-quoted L times. If T is another

variable, then the number of quasi-quotes prepended to T is the same number as

for V , since only variables of equal numbers of quasi-quotation marks are unifiable

(whether fully-escaping or not).

Although there is justification for our binding notation omitting the bound

variable’s quasi-quotes, we also recognize that substituting a fully-escaping vari-

able for its binding should replace any quasi-quotation marks the variable has.

Consider two literals already established as unifiable: heard(“on fire(`X)”) and

heard(“on fire(site1)”). According to the binding constraints developed, the

binding X (1) / site1 is obtained. Substitution should be able to transform the

first literal into the second. Yet this is only possible if, instead of replacing (all

occurrences of) X with site1, all occurrences of X and any number of preceding

quasi-quotation marks are replaced.

From this insight, we develop the general pattern of appropriately substituting

a fully-escaping variable for an arbitrary term. A fully-escaping variable X may

appear throughout an arbitrary formula in varying levels of quotation, where each

appearance has an amount of quasi-quotation marks corresponding to the quotation

level (to keep it at an effective level of zero). We first address substitutions into the

same quotation level — where all occurrences of X would have the same quotation

100

level — before addressing substitution across quotation levels.

3.4.3.4.3 Substituting into the same quotation level

We consider the problem of how to substitute based on an arbitrary binding

V (L) / T , in which V is a fully-escaping quasi-quoted variable and all occurrences

of V appear within L levels of quotation. The easiest case occurs when T is a

ground term. Here, as described above, to make the formula containing V fully

match the formula containing occurrences of T , both V and its preceding quasi-

quotation marks must be replaced by T . After substituting out both the variable

and quasi-quotation marks, what had formerly been the “blank spaces” in the form

of fully-escaping variable instances will have disappeared — which is sensible, since

a suitable replacement has been made for the content of the term T . For example,

consider substitution with the following formula based on a binding Agent (1) / bob:

bel(alice, “sees(`Agent, `Agent)”) (3.25 revisited)

The result of substituting Agent for bob is bel(alice, “sees(bob, bob)”), based on

the binding, which leaves a formula containing no quasi-quotation marks. Replace-

ment of a fully-escaping variable with any ground term also follows the same pattern

of substitution.

A different category of examples consists of bindings that are between two

fully-escaping variables instead of ground terms. We can formalize these as being

of the form V0 (L) / T : a fully-escaping V0 is at L levels of quotation, bound to a

term T that contains a fully-escaping variable V1. Hence, V1 necessarily must have L

quasi-quotation marks prepended, to match the quotation level. With a binding be-

101

tween two fully-escaping variables, when substituting one for the other, we again ap-

ply the method of replacing all quasi-quotation marks prepended to a fully-escaping

variable. After substituting, there will then remain L quasi-quotation marks: the

number preceding V1, as part of T . More concretely, when heard(“on fire(`X)”)

has unified with heard(“on fire(`Y)”), the associated binding is X (1) / `Y. Then,

`X is substituted for `Y, maintaining the same number of quasi-quotation marks.11

The number of quasi-quotes ultimately remains constant after substituting, which

is the desired result.

We finally consider a more generalized binding of V (L) / T in which V is

fully-escaping and T is an arbitrary term. However, we first add the constraint

that additionally, all occurrences of V in the overall formula are within L levels of

quotation. This section has so far not addressed cases in which T is a function or

a quotation term and contains variables which are further inside (whether these are

fully-escaping or non-escaping). In these cases where T is either a quotation term or

a function term, any fully-escaping variables that are interior to the structure of T

clearly have all of their quasi-quotation marks interior to its structure as well, since

these immediately precede their respective variables. Likewise, by the constraint

detailed in 3.4.3.2.3, any implicit quantifiers for non-escaping variables must be

contained inside of T for a binding to succeed. Taken together, these facts lead to a

simple process of substituting V and its quasi-quotation marks for T , with uniform

behavior no matter which forms of variables are within T .

11 Or, alternatively there is a binding Y (1) / `X, for which a similar substitution is easily made.

102

3.4.3.4.4 Substituting into a different quotation level

We now broaden the forms of substitution under consideration, to also address

substituting variables into a different level of enclosing quotation than the level in

which a binding was originally created. This is only possible for fully-escaping vari-

ables, as these are the only kind of variables for which different instances of the same

variable can appear throughout a formula across different levels of quotation. We

formalize this kind of substitution as follows: there must exist a binding V (L0) / T ,

and in the formula where substitutions are being made there must also exist at least

one other occurrence of V at another quotation level L1, where L1 is not equal to

L0. Thus, the problem to address is how to make an appropriate substitution of V

at level L1.

A simple situation in which this problem arises is when the binding in question

has been created by first unifying an occurrence of V which is outside of quotation

(L0 = 0), and where V additionally reappears elsewhere in the same formula inside

at least one quotation term (i.e., L1 > 0). The following formula demonstrates this

by reversing the running examples of smoke and fire: here, Alma tells an agent near

a smoking location about the location being on fire:

smoke(X) ∧ nearby(Agent, X)→ tell(Agent, “on fire(`X)”) (3.27)

We suppose that other formulas in Alma’s knowledge base have unified to satisfy

the premises, in which smoke(X) unified with smoke(sign(“high voltage(W)”) (i.e.,

that the sign indicating high voltage in all applicable locations is itself smoking), and

the agent nearby was satisfied by nearby(alice, sign(“high voltage(W)”) (i.e., Al-

103

ice is near this sign). A binding of X (0) / sign(“high voltage(W)”) will thus have

been created (and hence, X fills the role of V , and sign(“high voltage(W)”) the role

of T , in this example). In this case, this binding was made outside of quotation, but

is used to substitute for `X within quotation. Applying the substitution rules devel-

oped above, the conclusion is tell(Agent, “on fire(sign(“high voltage(W)”))”).

This conclusion now contains two quotation terms, inside which W is at a deeper level

of quotation than the level that this variable first appeared at in the smoke literal.

We see that once again, any non-escaping variables in the term T will not be a

problem when substituting, for the reason that their quantifiers are further inside

of T .

However, in contrast with the previous paragraph, the case of a fully-escaping

variable appearing inside of T , when substituting across different quotation levels,

acts differently from the examples (discussed in section 3.4.3.4.3) that substitute

into the same level. Consider when formula 3.27 has its smoke premise satisfied by

unification with the literal smoke(hallway(H)) (i.e., expressing that smoke is found

in all hallways), creating a binding of X (0) / sign(hallway(H)). If the smoke literal

and formula 3.27 were used as arguments to resolution, a conclusion that naively

substitutes the term in the binding in place of both X and the quasi-quoted X would

yield the following formula:

nearby(Agent, hallway(H))→ tell(Agent, “on fire(hallway(H))”) (3.28)

In the smoke literal, H began as a variable with an implicit quantifier of formula-level

scope, due to its appearance outside of any quotation. Its first occurrence in formula

3.28 retains such a scope, with the implicit quantifier placed before nearby. Yet

104

the second occurrence of H in formula 3.28 is a non-escaping variable due to how

substitution occurred and its placement inside one level of quotation, which means

it has a distinct meaning from the first occurrence. That is, the second H has an

implicit quantifier with a scope over the on fire formula. Alma is then unable to

use formula 3.28 to make an appropriate conclusion about what to tell an agent near

a particular hallway, due to a lack of quasi-quotation of H in the conclusion. This

problem reveals that hallway(H) cannot be substituted into both locations exactly

as it is. Rather, when the binding term T contains a variable E with formula-level

scope (i.e., E being fully-escaping, which includes E appearing outside of quotes),

when substituting into one level of quotation the substituted term T must have any

fully-escaping variable such as E be altered. In the specific case of formula 3.28, the

second occurrence of H that ends up within one level of quotation should be altered

to have a single quasi-quotation mark prepended. Thus, the substitution should be

done as if the binding were the following: X (1) / sign(hallway(`H)) — and thus,

instead of formula 3.28, the following corrected formula is concluded:

nearby(Agent, hallway(H))→ tell(Agent, “on fire(hallway(`H))”) (3.29)

This preserves the intended meaning of the formula: that the agent will be told

about the fire for any particular instance of a hallway nearby.

Beyond this example of inserting one quasi-quotation mark to keep the vari-

able H fully-escaping when the term where it appears inside substitutes into one

level of quotation, the broader scenario occurs when making a substitution based

on a binding V (L0) / T , in which T contains other fully-escaping variables. In this

general case, the context of T must be changed, by modifying the number of quasi-

105

quotation marks preceding its variables that are fully-escaping from at least L0 levels

of quotation. We refer to this change, which alters fully-escaping variables within a

term, as adjusting the term’s context. Whenever an occurrence of V that is instead

at L1 levels of quotation is replaced by T , if L0 6= L1, each fully-escaping variable in

the substituted copy of T must have its number of quasi-quotation marks changed

to remain fully-escaping in T ’s new context (after substitution) of L1 levels of quo-

tation. The procedure Adjust-Context, utilized as a helper by the complete algo-

rithm Full-Quasi-Quotation-Unification detailed below in section 3.4.4, modifies

a copy of term T in this manner:12

Algorithm 1 Adjust-Context

1: function Adjust-Context(T, L0, L1)
2: if variable?(T) and T.quasiquotes = L0 then
3: T.quasiquotes = L1

4: return T
5: else if function?(T) then
6: for ti in T.terms do
7: ti = Adjust-Context(ti, L0, L1)
8: end for
9: return T

10: else if quote?(T) then
11: return Adjust-Clause-Context(T , L0 + 1, L1 + 1)
12: end if
13: end function
14:

15: function Adjust-Clause-Context(C,L0, L1)
16: for lit in C.pos literals do
17: for t in lit.terms do
18: t = Adjust-Context(t, L0, L1)
19: end for
20: end for
21: for lit in C.neg literals do

12 Note that this algorithm, along with the algorithms that follow in the remainder of this chap-
ter, does not distinguish a separate case for terms that are constants; for purposes of simplifying
the algorithms, a constant is considered to be a function with an empty list of terms and a functor
comprised of the constant string. This leads to correct treatment of constants in all cases.

106

22: for t in lit.terms do
23: t = Adjust-Context(t, L0, L1)
24: end for
25: end for
26: return C
27: end function

Thus, if a fully-escaping variable V appears at L0 levels of quotation within

a particular copy of T , Adjust-Context(T, L0, L1) will modify V to have L1 pre-

ceding quasi-quotation marks, represented as the value of the field quasiquotes. If

V appears at the deeper level of quotation L0 + x within T , then it will be given

L1 +x quasi-quotation marks instead, since the procedure recursively descends into

further levels of quotation before altering the amount of quasi-quotation marks. No-

tably, the changes from the procedure also include cases where L1 is zero, in which

case quasi-quotation marks are dropped entirely from a given instance of a variable.

We illustrate this principle in action with further examples, both for adjusting the

context to increase and decrease quasi-quotation.

As the first example, we show how a fully-escaping variable within a binding

term T might also be adjusted to have additional quasi-quotation marks when T is

substituted into further levels of quotation. We consider once again formula 3.27:

smoke(X) ∧ nearby(Agent, X)→ tell(Agent, “on fire(`X)”) (3.27 revisited)

Consider a case in which the first premise of the formula is satisfied by the literal

smoke(sign(“high voltage(`W)”)) (i.e., that every sign expressing a high-voltage

location is smoking). This produces the binding X (0) / sign(“high voltage(`W)”),

which is to be substituted in place of the occurrence of `X in one level of quotation

(using the variables defined above, L0 = 0 and Li = 1, respectively). Thus, the con-

107

text is adjusted so that W, which is fully-escaping from its enclosing L0 + 1 levels of

quotation in the binding term, is ultimately preceded by Li + 1 = 2 quasi-quotation

marks after substitution in the implication conclusion. This yields the following as

the conclusion following from resolution (in which the smoke premise has resolved

out):

nearby(Agent, sign(“high voltage(`W)”))→

tell(Agent, “on fire(sign(“high voltage(``W)”))”) (3.30)

In this formula, W now correctly is fully-escaping from the quotation terms of the

conclusion literal, as intended.

Roughly inverting the example and corresponding context change, consider

inference making use of formula 3.16:

heard(“on fire(`X)”) ∧ smoke(X)→ on fire(X) (3.16 revisited)

Let its first premise be satisfied by heard(“on fire(sign(“high voltage(``W)”))”)

(i.e., that there has separately been heard, for each sign indicating high-voltage, that

this sign is on fire). This produces the binding X (1) / sign(“high voltage(``W)”)

(i.e., L0 = 1), to be substituted in place of occurrences of X outside of quotation

(i.e., L1 = 0). Ultimately, the intended level for W is within just the one quotation

term argument of sign (hence, L0 + 1), and so the context is adjusted so that W is

preceded by only L1 + 1 = 1 quasi-quotation mark. Then, the following is inferred

after the heard literal resolves out of formula 3.16:

smoke(sign(“high voltage(`W)”))→ on fire(sign(“high voltage(`W)”))

(3.31)

108

This formula expresses the desired result, in which a particular location W for a sign

indicating high-voltage is fully-escaping in each occurrence. If its context had not

been modified when substituting, there would have been one too many quasi-quotes

before W, and the result would not have been a wff due to this excess.

As a final example, again for inferences using formula 3.16, we also consider a

new literal heard(“on fire(stairs(`Lower, `Upper))”) (i.e., there has separately

been heard that, for each particular set of stairs, from a lower floor to an upper floor,

these stairs are on fire). This leads to a binding of X (1) / stairs(`Lower, `Upper),

once again substituted in place of the second and third occurrences of X in formula

3.16, which are outside of quotation terms. Yet in this case, there is no quotation

term in the binding either. Thus, Lower and Upper are adjusted to have their

quasi-quotation marks removed, and the overall formula inferred after resolution is

as follows:

smoke(stairs(Lower, Upper))→ on fire(stairs(Lower, Upper)) (3.32)

Just as quasi-quotation marks were introduced earlier into the conclusion of formula

3.29 to preserve the intended meaning, here the meaning is preserved by dropping

quasi-quotation marks.

Hence, Adjust-Context for fully-escaping variables during certain substitu-

tions enables the correct handling of these variables when substituting into differ-

ent levels of quotation. The context would be altered regardless of whether the

variables in question begin inside or outside of quotation, and whether amount of

quasi-quotation is increased or decreased. This ability also establishes the treatment

of the remaining category of cases for substitutions that involve quotation terms.

109

Given a term T at quotation level L, and binding list θ, the following substitution

procedure results in the appropriate replacement of any bound variable within T for

its bindings, including adjusting context when different levels of quotation require

doing so:

Algorithm 2 Quasi-Quotation-Substitute

1: function Subst-Term(θ, T, L)
2: if variable?(T) and {T (Lt) / Term} ∈ θ then
3: if T.quasiquotes = L and Lt 6= L then
4: T = Adjust-Context(Term,Lt, L)
5: else
6: T = Term
7: end if
8: else if function?(T) then
9: Subst-Func(θ, T, L)

10: else if quote?(T) then
11: Subst-Clause(θ, T, L+ 1)
12: end if
13: end function
14:

15: function Subst-Func(θ, F, L)
16: for t in F.terms do
17: Subst-Term(θ, t, L)
18: end for
19: end function
20:

21: function Subst-Clause(θ, C, L)
22: for lit in C.pos literals do
23: Subst-Func(θ, lit, L)
24: end for
25: for lit in C.neg literals do
26: Subst-Func(θ, lit, L)
27: end for
28: end function

Next, we define the means of recursive unification with quotation terms, which

also utilizes the feature of adjusting a variable’s quasi-quotation context. This re-

cursive unification in turn leads to the general unification algorithm.

110

3.4.3.5 Recursive quasi-quotation unification

As occurs during the process of standard unification of first-order terms with-

out quotation, when a variable V is to be compared with a term T0 for unification,

the growing list of associated bindings must first be checked to determine if there

already exists a binding V (L1) / T1. When this is the case, instead of unifica-

tion proceeding with the bound variable V , then T1 should instead be (recursively)

unified with T0. However, there is now the added dimension of quotation level to

consider: the level of quotation, L0, in which T0 appears can impact the recursive

case. If L0 6= L1, proper recursive comparison of T0 to T1 requires altering one of

the terms via Adjust-Context. We illustrate this need developing the following

example.

Consider the following formula, expressing (in Alma’s KB) that if information

has been heard, and yet another agent is considered to lack beliefs of having heard

that information, then that knowledge can be told to the agent (allowing Alma to

be helpful in providing knowledge):

heard(X) ∧ ¬bel(Agent, “heard(`X)”)→ tell(Agent, X) (3.33)

Additionally, suppose that there are two further beliefs in the knowledge base:

heard(“instructions(`Number, `Content)”) (i.e., that each numbered instruction

step was separately heard) and ¬bel(bob, “heard(“instructions(``N, ``Step)”)”)

(i.e., that Alma models Bob as not believing having heard these steps). The variables

Number, Content, N, and Step are all quasi-quoted to be fully-escaping, indicating

that each instruction has been communicated separately, and thus justifying the

111

representation with these fully-escaping quasi-quoted variables. Suppose Alma is

making inferences with these three wffs, using the inference rule of extended modus

ponens, in which the two premises of formula 3.33 are unified in left-to-right order.

Then, the first two bindings made are X (0) / “instructions(`Number, `Content)”

and Agent (0) / bob.

Subsequently, inference with extended modus ponens must unify the occur-

rence of `X in the second premise of formula 3.33 with the inner quotation term

“instructions(``N, ``Step)” (for convenience, referred to as T0) within the negated

bel literal ¬bel(bob, “heard(“instructions(``N, ``Step)”)”). Naive recursive uni-

fication would attempt to unify T0 with the term to which X is already bound:

“instructions(`Number, `Content)” (or for convenience, T1). The intended result

is the formation of additional bindings (such as binding Number to N, and Content to

Step) due to all four variables in these quotation terms being fully-escaping. How-

ever, the pursuit of adding these additional bindings leads to a problem: T0 and T1

appear in different levels of quotation, as T0 appears within one level, and T1 does

not appear within any quotation term. The general problem of recursive unification

of an arbitrary term T0 with an arbitrary T1 raises issues involving terms with two

different quotation contexts, much like the problem that was previously handled for

substitution in section 3.4.3.4.4. Indeed, in the same manner as the substitution is-

sue was solved, we can once again utilize the procedure Adjust-Context to address

the problem with recursive unification.

Unification should not be directly attempted between T0 and T1, due to the dif-

ferent levels of quotation that each term originally appeared within. Instead, one of

112

the two terms must be selected to be modified by Adjust-Context, before proceed-

ing to attempt to unify. When in the process of executing the unification algorithm,

since T1 is the term to which X is bound, there exists a copy of T1 which has been

instantiated in the binding list, and that can easily be replaced by the new term that

the procedure returns. This is in contrast to terms like T0 that appear as a term that

is a fragment of a knowledge base formula rather than a copy that can be modified

more freely. Hence, T1 is selected as the term that will be modified; the existing bind-

ing X (0) / “instructions(`Number, `Content)” must be altered so that the bind-

ing term, T1, ultimately has a context of one level of quotation (just like T0). Com-

puting Adjust-Context(T1, 0, 1) (i.e., Adjust-Context(T1, L1, L0)) yields this de-

sired term: “instructions(``Number, ``Content)”. Then, the existing binding in

the list is replaced by X (1) / “instructions(``Number, ``Content)”. X is now

bound to a term within one level of quotation, and this term if unified with T0

(“instructions(``N, ``Step)”) makes the desired new bindings of Number (1) / `N

and Content (1) / `Step (or, N (1) / `Number and Step (1) / `Content) when uni-

fying these two quotation terms. This concludes the extended example utilizing

formula 3.33.

We generalize from this example to a principle for changing bindings to enable

recursive quasi-quotation unification in arbitrary cases. Consider a formula where

the fully-escaping variable V and the term T0 appear in corresponding positions

within quotation level L0. Additionally, consider where V is already bound as

V (L1) / T1, and L0 6= L1. This binding must be replaced in the binding list by

V (L0) / Adjust-Context(T1, L1, L0), which is followed by recursive unification of

113

V and Adjust-Context(T1, L1, L0). Recursive unification then proceeds without

encountering issues of different contexts, due to the constraint that adjusting the

binding’s context precedes unification for different quotation levels.

3.4.4 A quotation unification algorithm

We now pull together the principles and results of our example-driven ap-

proach for bindings and substitution into a general unification algorithm, Full-

Quasi-Quotation-Unification. This algorithm takes as arguments terms X and

Y , each at quotation level L, returns a binding list θ when successful.

Algorithm 3 Full-Quasi-Quotation-Unification

1: function Unify(X, Y, L, θ)
2: if variable?(X) and variable?(Y) and X = Y then
3: return θ
4: else if variable?(X) then
5: return Unify-Var(X, Y, L, θ)
6: else if variable?(Y) then
7: return Unify-Var(Y,X, L, θ)
8: else if function?(X) and function?(Y) then
9: return Unify-Function(X, Y, L, θ)

10: else if quote?(X) and quote?(Y) then
11: return Unify-Clause(X.clause, Y .clause, L+ 1, θ)
12: else
13: return failure

14: end if
15: end function
16:

17: function Unify-Var(V ar,X, L, θ)
18: if variable?(X) then
19: if V ar.quasiquotes 6= X.quasiquotes or (V ar.quasiquotes < L

and ¬Vars-Match?(θ.matches, L− V ar.quasiquotes, V ar,X))
then

20: return failure

21: end if
22: else if V ar.quasiquotes 6= L or Vars-Insuff-Quoted?(X,L) then
23: return failure

114

24: end if
25:

26: if {V ar (Lvar) / Term} ∈ θ then
27: if V ar.quasiquotes = L and Lvar 6= L then
28: Term = Adjust-Context(Term,Lvar, L)
29: Lvar = L
30: end if
31: return Unify(Term,X,Lvar, θ)
32: else if variable?(X) and {X (Lvar) / Term} ∈ θ then
33: if X.quasiquotes = L and Lvar 6= L then
34: Term = Adjust-Context(Term,Lvar, L)
35: Lvar = L
36: end if
37: return Unify(V ar, Term,Lvar, θ)
38: else if Occurs-Check?(θ, V ar,X) then
39: return failure

40: else
41: return θ ∪ {V ar (L) /X}
42: end if
43: end function
44:

45: function Unify-Function(X, Y, L, θ)
46: if X.term count 6= Y .term count or X.functor 6= Y .functor then
47: return failure

48: end if
49: for xt, yt in X.terms, Y .terms do
50: θ = Unify(xt, yt, L, θ)
51: if θ = failure then
52: return failure

53: end if
54: end for
55: return θ
56: end function
57:

58: function Unify-Clause(V ar,X, L, θ)
59: if X.pos count 6= Y .pos count or X.neg count 6= Y .neg count then
60: return failure

61: end if
62: for xl, yl in X.pos literals, Y .pos literals do
63: θ = Unify-Function(xl, yl, L, θ)
64: if θ = failure then
65: return failure

66: end if
67: end for
68: for xl, yl in X.neg literals, Y .neg literals do

115

69: θ = Unify-Function(xl, yl, L, θ)
70: if θ = failure then
71: return failure

72: end if
73: end for
74: return θ
75: end function

Full-Quasi-Quotation-Unification begins by the top-level procedure Unify

comparing the types of the argument terms to invoke the corresponding procedures;

this is much like the typical form of unification except for the additional inclusion

of a quotation level argument, and an added case for X and Y as quotation terms.

Unify-Var, in which the variable V ar is compared against an arbitrary term X,

filters out several cases which should not unify based on the principles developed in

earlier sections.

The first set of these failure conditions are checked when X is another variable.

If V ar has a number of quasi-quotation marks different from X, then the two vari-

ables are at different quotation levels and there is reason for failure: as described in

both section 3.4.3.1 where one variable is non-escaping and section 3.4.3.2.2 where

one variable is fully-escaping, the same level of quotation is required for a successful

binding. If V ar and X have the same number of quasi-quotation marks, which is

less than their mutual quotation level L, then these non-escaping variables must the

condition for matches between non-escaping variables specified in the end of section

3.3.2.4: each variable in one formula must correspond to exactly one variable in

each corresponding location in the other formula. This is verified by the procedure

Vars-Match?, which computes whether a matching of V ar with X (at their effec-

116

tive quotation level) is consistent with the matching of non-escaping variable pairs

encountered so far when unifying. That is, V ar must have matched with X, or

there must not exist a prior matching of either V ar or X with any other variable.

When X is not a variable, unification will fail if V ar is not a fully-escaping

variable, as indicated in section 3.4.3.1. Moreover, if V ar is fully-escaping, there

is also a failure case for when the term X contains a non-escaping variable with

an implicit quantifier that appears beyond the confines of the term X, per the

discussion of section 3.4.3.2.3. The procedure call Vars-Insuff-Quoted?(X,L)

computes whether this is the case by recursively descending into X, returning true

when there exists a variable inside at effective quotation level E, such that 0 < E ≤

L. Hence, non-escaping variables within X that do not violate the above condition

have either effective level of 0, or of a value greater than L.

Following checking the above set of conditions, which may lead to the variable

V ar failing to unify with X, the remainder of Unify-Var resembles the standard

unification algorithm. If V ar is bound, or if X is actually a variable and is bound,

then the binding is retrieved, and recursive unification will use the binding term

instead of the bound variable (after the new addition of modifying the term via

Adjust-Context, as described in section 3.4.3.4.4). The Occurs-Check? pro-

cedure, with arguments of variable V ar and term X, causes a unification failure

when V ar appears inside of X, which would otherwise have the potential to cause

an infinite regress during substitution. As Occurs-Check? recursively checks the

entire structure of X, in addition to functions this also includes descending into quo-

tation terms and their formulas, and comparing against V ar both non-escaping and

117

fully-escaping variables that are found. Due to standardization of formula objects

in ALMA, the occurs-check problem remains the same as for the regular first-order

case, and does not become more complicated with quotation. An additional detail

to note is that, both in the algorithm’s occurs-check and in the first line of Unify,

a comparison of two variables such as X = Y is not made exclusively on the basis

of the variable name string. Rather, variables are assumed to be standardized apart

across different formulas and also across different levels of quotation within one for-

mula, making use of some form of metadata annotation when necessary.13 Hence,

the notion of equality between two algorithm variables also reflects the idea that

X = Y if and only if X and Y are at the same effective level of quotation.

If there has not been a failure due to the occurs-check, a new binding of V ar

to X, at their L levels of quotation, is added into the binding list. As a convenience

which simplifies the eventual substitution process, upon adding a new binding, the

binding list is processed so that each bound variable occurring in the term of a

binding will be substituted for their own respective binding terms.

In the remaining functions, Unify-Function and Unify-Clause continue

comparing the structures of their argument pair, processing each term for a func-

tion, and each function for the positive and negative literals of a quoted clause.

Ultimately, the binding list is returned following successful unification.

As we have seen, in each case where the algorithm goes beyond the standard

unification algorithm, the rationale for doing so is traced back to a principle previ-

13 In the reasoner implementation presented in chapter 4, this is achieved in the form of unique
IDs attached to each distinct variable, across formulas and quotation levels.

118

ously developed. Hence, the algorithm’s behavior is governed by these principles.

119

Chapter 4: The ALMA 2.0 reasoner

4.1 Introduction

The ALMA 2.0 reasoner has been developed as part of the contributions of

the present work to implement automated inference for active logic. This reasoner

constitutes a research contribution in providing an extensible platform for the ex-

tensions of the logic developed here. It additionally provides a basis for being able

to be incorporated into agents which may base their reasoning upon active logic.

ALMA 2.0 is the successor to the prior active logic reasoner developed by Pu-

rang [74], ALMA 1.0. Deficiencies in ALMA 1.0 are detailed in section 4.8.1; as a

result of these issues, the decision was made to use a more practical programming

language than Prolog in the new reasoner. ALMA 2.0 (hereinafter, referred to as

ALMA when it is unambiguous which version is referenced) is entirely implemented

in C, and relies upon the external libraries of Micro Parser Combinators [34] for sup-

port of parsing the ALMA language, and the TommyDS [50] for high-performance

hash tables and linked data structures in C. Aside from these libraries, the entirety

of the present reasoner’s code was developed for the current work.

The discussion of the reasoner in the remainder of this chapter focuses on

mostly high-level implementation details of the reasoner. However, the full source

120

code for ALMA, including instructions for compilation and execution, and a large

body of runnable examples — including the formula files for all of the examples de-

veloped in chapter 5 — are all publicly available on GitHub: https://github.com/

mclumd/alma-2.0. In particular, we note that the implementation of the algorithm

Full-Quasi-Quotation-Unification and its helper procedures Adjust-Context

and Quasi-Quotation-Substitute are available at https://github.com/mclumd/

alma-2.0/blob/master/alma_unify.c.

We begin by introducing the basic properties of the reasoner, described below.

4.2 Grammar and parsing

The grammar of the ALMA language was designed to be expressive and not

restrict the kinds of active logic formulas that could be accepted and parsed, whether

these formulas are provided by users in axiom files or asserted via the add or observa-

tion commands (further described in section 4.3). The system internally takes steps

to rewrite formulas after parsing, and transform them into a restructured normal

form, as we subsequently describe. But, these steps do not restrict the grammar

that an axiom writer may use to specify formulas; at this point the user is free

to describe much more general formulas, rather than being restricted to narrower

categories such as Horn Clauses or any other kind of other common logic program

specification.

This grammar for ALMA formulas is based on the active logic grammar de-

fined in section 2.2.10, and continues to follow conventions of the base active logic

121

https://github.com/mclumd/alma-2.0
https://github.com/mclumd/alma-2.0
https://github.com/mclumd/alma-2.0/blob/master/alma_unify.c
https://github.com/mclumd/alma-2.0/blob/master/alma_unify.c

grammar’s syntax. However, it has also been extended with the grammar rules

for quotation terms as introduced in section 3.3.1, and for quasi-quotation as in-

troduced in section 3.4.2. As such, it also features the usual first-order operators

connecting atomic predicates that can contain arbitrary nesting of terms, and also

does not feature explicit quantifiers but rather implicit universal quantifiers for each

variable. The standard types of terms of active logic are included in the grammar

(i.e., functional expressions, term variables, and constants), as well as terms we have

introduced: quotation terms and the variable type which was expanded by the op-

tion to be preceded by a series of quasi-quotation marks. ALMA formulas are thus

characterized by the following set of production rules:

〈Alma〉 → (〈Almaformula〉

| 〈Almacomment〉)*

〈Almacomment〉 → %[ˆ\n]* \n

〈Almaformula〉 → 〈Sentence〉 .

〈Sentence〉 → 〈Fformula〉

| 〈Bformula〉

| 〈Formula〉

〈Formula〉 → and(〈Formula〉 , 〈Formula〉)

| or(〈Formula〉 , 〈Formula〉)

| if(〈Formula〉 , 〈Formula〉)

| not(〈Formula〉)

| 〈Literal〉

122

〈Fformula〉 → fif(〈Conjform〉 , conclusion(〈Fformconc〉))

〈Fformconc〉 → and(〈Fformconc〉 , 〈Fformconc〉)

| 〈Fformula〉

| not(〈Literal〉)

| 〈Literal〉

〈Bformula〉 → bif(〈Formula〉 , 〈Formula〉)

〈Conjform〉 → and(〈Conjform〉 , 〈Conjform〉)

| not(〈Literal〉)

| 〈Literal〉

〈Literal〉 → 〈Predname〉 (〈Listofterms〉)

| 〈Predname〉

〈Listofterms〉 → 〈Term〉 (, 〈Term〉)*

〈Term〉 → quote(〈Formula〉)

| 〈Funcname〉 (〈Listofterms〉)

| 〈Variable〉

| 〈Constant〉

〈Predname〉 → 〈Prologconst〉

〈Constant〉 → 〈Prologconst〉

〈Funcname〉 → 〈Prologconst〉

〈Variable〉 → `〈Variable〉

| [A-Z][a-zA-Z0-9]*

〈Prologconst〉 → [a-z0-9][a-zA-Z0-9]*

123

Beyond the familiar operators, additional grammar rules of Fformula, Fform-

conc, and Bformula distinguish rules containing forward-if (fif) and backward-if (bif)

kinds of implication. The use of forward-if and backward-if designates formulas that

are used as part of reasoning with the forward-if inference rule based on extended

modus ponens (described in section 4.5.2), and backward chaining inference based

on resolution (described in section 4.5.3), respectively. Forward-if and backward-if

operators are recognized and lead to a formula being given a metadata tag of fif

or bif, which designates their different usage in inference. Except for maintaining

the tag, these operators are treated the same as the usual form of implication for

rewriting purposes. For the Variable production rule, the first alternative may be

repeated enough to yield a number of quasi-quotation marks that is greater than

the number of enclosing quotation marks. In this case, the parsed formula will

be rejected by the system, since every quasi-quoted variable is verified to have an

appropriate number of marks.

As was the case for the grammar given in section 2.2.10, all variables are

assumed to be implicitly universally quantified. The scope of implicit quantifiers

remains as defined for variables in section 3.4.2, in which the scope of a quantifier

for a variable is based on its effective quotation level. Presently, a user of ALMA

must accommodate the lack of an existential quantifier (e.g., by Skolemization);

extending ALMA for genuine existential quantification may be developed as future

work beyond the scope of the present research. However, there is a behavior in

ALMA that functions very much like a negated existential quantifier in particular

cases of interest: see discussion on negative introspection in section 4.5.2.2. The

124

ALMA variable notation itself is also inspired by Prolog, in which variables are

distinguished from constants by a leading uppercase character. Each formula is

terminated with a period.

A certain set of predicate symbols, such as now, contra, distrusted, and

others discussed in sections 4.5.2.1 and 4.5.4, may be considered to be reserved

symbols. In particular contexts (described in their respective later sections), these

are either interpreted by ALMA to be the result of a specific inference rule or process,

or they may have procedural effects, and hence these predicate symbols should not

be reused for semantically unrelated purposes. Situations in which these predicates

trigger procedures include when an instance of such a predicate is concluded as an

atomic formula or is evaluated as a premise during inference.

From grammatical ALMA input, the reasoner’s parser constructs an abstract

syntax tree. The highest-level nonterminal symbol, Alma, is used to define an entire

knowledge base instantiation, consisting of a collection of individual formulas or

comments (which are naturally discarded when parsing formulas). For example,

consider the following active logic formula:

p(m(n(X, Y))) ∧ q(X) (4.1)

This is specified in the ALMA grammar as:

and(p(m(n(X, Y))), q(X)). (4.2)

The parse tree below reflects the grammar’s parse of this formula.

125

Alma

Almaformula

Sentence

Formula

and(Formula

Literal

Predname

Prologconst

p

(Listofterms

Term

Funcname

Prologconst

m

(Listofterms

Term

Funcname

Prologconst

n

(Listofterms

Term

Variable

X

, Term

Variable

Y

)

)

)

, Formula

Literal

Predname

Prologconst

q

(Listofterms

Term

Variable

X

)

)

.

ALMA internally provides data structures for each operator and type of term.

Thus, due to the existence of structures to which nonterminal symbols can be

mapped, it is straightforward to translate from the abstract syntax tree to a tree

composed of these objects. Additionally, any series of Variable productions that in-

clude one or more quasi-quotation marks will be consolidated into an integer count

of the number of quasi-quotation marks that is attached to the variable they modify.

126

For formula 4.2, the following tree is obtained from this process:

And

Predicate

p Terms

Function

m Terms

Function

n Terms

Variable

X

Variable

Y

Predicate

q Terms

Variable

X

Following translation into a tree that captures the recursive first-order formula

structure, ALMA rewrites and standardizes each formula into an equivalent formula

in conjunctive normal form (with additional metadata also generated in the process

for tagging a forward-if or backward-if formula). This restructuring allows efficient

representation in the knowledge base, which can be abstracted as a list of the clauses,

where each clause contains two lists for the positive and negative literals, respectively

(among other data), thereby avoiding the need to store explicit operators. Storage in

clause form also has implications for the process of inference and the inference rules

that ALMA supports (described in section 4.5), which rely on clauses. If a backward-

if formula is split into several normal form clauses, each retains the bif tag. One

exception to standardization into clause form is made for the conclusion of a forward-

127

if formula, which may be a conjunction of arbitrary formulas due to applications

of the Fformconc production rule; each conclusion conjunct is standardized into a

clause, each of which is then stored in a list of conclusions.

Formulas are further rewritten to order literals lexicographically by predicate

symbol, facilitating comparisons between formulas (such as for determining dupli-

cate derivations). Forward-if formulas when participating in inference require their

premises to be satisfied in left-right order. The structure for this category of formula

tracks its premise ordering in metadata, in addition to its lexicographically sorted

literals.

More must be said about the motivation for formula rewriting as applied to

quotation terms, and their quoted wffs. As defined in the production rule Term, a

quotation term within quote contains a formula as derived using the nonterminal

Formula:

〈Term〉 → quote(〈Formula〉)

| 〈Funcname〉 (〈Listofterms〉)

| 〈Variable〉

| 〈Constant〉

Detailed discussion in section 3.3.1 established the generality of the nested formula in

a quotation term. Given that ALMA standardizes formulas into conjunctive normal

form, a natural question arising is what degree of rewriting might be warranted on

any formula held inside a quotation term.

One possible sense of a predicate containing quotation term(s) might be that

the formula inside the quotation term is being referred to in a verbatim manner (see

128

related discussion in 3.3.2.1). For instance, in a case expressing that the agent Alice

believes the formula a → ¬b, the objection may be raised that transcribing this

into believes(alice, “¬a ∨ ¬b”) is a misrepresentation.1 That is, Alice may hold

a belief of precisely the implication, and not the disjunction — and hence, it could

be misleading to indicate that the disjunctive version is Alice’s belief. This type of

interpretation would appear to preclude some kinds of standardization of formulas

within quotation terms. However, if the ALMA reasoner is not utilizing predicates

that are dependent on nested formulas as verbatim utterances, and indeed if the

primary usage of quotation terms would be to refer instead to formulas directly in

the knowledge base, then rewriting is on firmer ground. For employing quotation

terms for internal reasoning about and with particular formulas that are the ALMA

agent’s knowledge base beliefs, rewriting a nested formula through use of the same

procedures that have been thus far applied to a non-quoted formula poses no risk.

The rewritten formula will have a structure matching against formulas in the KB

(up to variable names) that have been rewritten in the same way.

Additionally, to further address this concern about rewriting, it is important

to recall our emphasis on predicates that do not have their semantics based on

exact syntax of quotation term formulas, as was described in section 3.3.2.1. In

the later section 4.7, we do deal with applications in which beliefs of another agent

are represented. However, all formulas used in applications of ALMA that express

beliefs of other agents are not truly beliefs belonging literally to another distinct

1 Again, note that the underlying internal reasoning idea is that an active logic agent Alma
has this entire formula in its knowledge base.

129

agent such as Alice, but rather ALMA’s modeling of beliefs that it attributes to these

agents. Therefore, the ALMA system can rewrite attributed beliefs into standard

form. Although, this means that certain equivalences are implicitly attributed to

the modeled agents; e.g., Alice is modeled as if implicitly knowing the equivalence

between an implication a→ ¬b and its disjunctive form ¬a ∨ ¬b.

Hence, rewriting of nested formulas is chosen on the basis that it is advanta-

geous computationally to standardize quoted terms in ALMA. This enables record-

ing, comparing, and unifying formulas much more easily due to obtaining a com-

mon structure between quotation terms, even if they originally had distinct parses.

ALMA takes the approach of using its existing rewriting procedure with nested for-

mulas that can be converted into a single conjunctive normal form clause, which is

recursively applied to the furthest depth of quotation nesting. Presently, reasoning

does not support the cases when a nested formula cannot be rewritten into a single

clause, due to the complications it would bring to unifying and reasoning; this would

be an area for future expansion of ALMA’s functionality.

4.3 Control by commands

ALMA is initialized with an axiom set of initial formulas specified in a file,

loaded into the reasoner through the steps for parsing and formula construction

that are described above. The reasoner then can execute in one of two modes. In

the first mode, it is controlled by a series of commands that drive its processing,

consisting of: step, print, add, delete, observe, update, halt, and backward search.

130

Commands allow the running system to be manually controlled via the above set

supplied by a human user, or it can be incorporated into a larger program in which

another process inputs commands to the ALMA process at desired intervals. In the

second mode, ALMA runs automatically in a loop of a step command followed by

a print command, as long as it does not reach an idling state. The commands are

as follows:

Step — Transitions from the current active logic timestep t to its subsequent

successor timestep t + 1. As a result, in keeping with the principles of active logic,

ALMA makes inferences across the timestep transition. The system’s reasoning

applies all available inference rules to the set of formulas in the KB at time t and

makes the assertions and retractions to update the knowledge base upon the tran-

sition from t to t + 1. Further description of the mechanisms of high-level control

when stepping, the inference algorithms applied, and additional details such as for

formula inheritance, are all detailed in sections 4.4 and 4.5.

Print — Dependent on the command-line options, prints verbose output of

either the entirety of the knowledge base at the current timestep, or otherwise prints

output of the new or modified formulas in the knowledge base since the last print

command. When printing, ALMA uses a more human-readable notation than is

used internally to store formulas, and even to the prefix style of operators that the

grammar requires to specify axioms and formulas. If possible, each clause is printed

in sequent form: an implication with an antecedent of a conjunction of positive

literals (using infix operator notation without parentheses), and a consequent of a

disjunction of positive literals (also in infix notation). In practice, it has been ob-

131

served that formulas provided by a user of the system very commonly are already in

sequent notation or very close to it; hence many formulas which were altered in con-

version to conjunctive normal form will be printed in their sequent form identically

to, or very close to, their original definition by a user. Metadata such as a formula’s

integer index, lists by index of parents and children of the formula, formulas con-

nected by equivalence links (described in section 4.7), and the pause status are also

printed. Partitions of the knowledge base, such as are created for backward search

(section 4.5.3) and agent belief models, are indicated separately from the rest of the

knowledge base. Aspects of this design are discussed in the respective sections for

these abilities.

Add — Attempts to assert new ALMA formulas. If the argument string is

successfully parsed according to the grammar, a set of formulas is obtained. Each

formula is added into the knowledge base and will appear in the current belief set

after the next step command.

Del — Attempts to delete formulas from the knowledge base. If the argument

string is successfully parsed according to the grammar, each resulting formula is

compared to formulas in the belief set. Any match (up to variables) of a deletion

argument formula against a knowledge base formula leads to the deletion of the

latter. Deleting a formula also removes it from the parent set of all of its parents,

the children set of all children, the equivalence links of formulas to which it is linked,

and deletes any other metadata bookkeeping tracking the formula.

Obs — Attempts to assert its argument as an observation: an atomic formula

to be recorded which will be modified to parameterize it with an extra argument

132

appended to the predicate. This argument is a constant that reflects the integer time

when the observation will appear in the knowledge base. Due to the timestep delay

in a novel formula appearing in the belief set, this means that an observe command

given at timestep t will have the temporal argument of t+ 1. Hence, this temporal

argument for a new observation always matches the present now when it first appears

in the knowledge base. This command can model observation functionality, in which

the ALMA system has information arriving from the world outside at particular

points in time.

Update — Attempts to replace the formula referred to by its first argument

with the second. Successfully updating results in the replacement retaining all

parents, children, and other metadata of its predecessor. This is a powerful change

that has the potential to be abused and render the derivation graph of ALMA to

be nonsensical since an arbitrary formula may be the replacement; therefore it must

be used carefully. Use cases for updating a formula are primarily when the new

formula put in place is a modification of the original that has been replaced.

Bs — Initiates a backward search to answer the query of whether the argument

is entailed by the set of knowledge base beliefs. A new partition of the knowledge

base is created for the query-answering backward search, further described in section

4.5.3.

Halt — Terminates the reasoner process.

133

4.4 High-level control and prospect management

The core of processing in ALMA is from the high-level control of reasoning

that initiates from a step command. In implementing automated reasoning following

the active logic theory, ALMA exhaustively infers all new formulas that can be

derived applying its inference rules from its present belief set as it makes one step

from time t to t + 1. This expands the set of inferences in a breadth-first manner

over timesteps. For efficiency, all progress toward new formula derivations must

involve newly acquired formulas. The invariant that all possible inferences from

older formulas were already inferred at prior timesteps inductively holds as reasoning

advances.

ALMA achieves this through recording and managing prospects. A prospect is

defined as an abstract structure for storing formulas and other information that is

identified as potentially satisfying an inference rule. These are internal data struc-

tures for the reasoner tracking progress for inferences, and are not to be considered

formulas or aspects of active logic itself. Prospects are further identified and cat-

egorized by the method of inference they involve, namely: resolution prospects,

forward-if prospects, and backward search prospects. ALMA generates prospects

at the end of a step based on the newly-inferred formulas that have just been de-

rived, and these prospects will be evaluated during the beginning of the next step

command.

A resolution prospect is defined as a tuple of a newly derived clause, an older

formula that contains a complementary literal of the same predicate, and the posi-

134

tive and negative complementary literals from these two formulas. These are queued

when generated, when evaluated this begins with attempting to unify the comple-

mentary literal pair. A backward search prospect is defined similarly: a tuple of a

new formula in a backward search partition, a formula with a complementary literal

of the same predicate from the main region of the knowledge base, and the positive

and negative complementary literals from these two formulas. These are queued

in the backward search partition, which the former formula is drawn from. The

search for resolution and backward search prospects is currently implemented as an

exhaustive search over the pairs of clauses with overlapping predicates. Each ALMA

formula is indexed by the name and arity of each predicate that it contains, making

this search for prospects an efficient one.

In comparison to resolution and backward search prospects, a forward-if prospect

has a more complex structure. Such a prospect structure consists of: a tuple of a

forward-if formula, a set of (partial) bindings of variables to terms, a set of clauses

that have been unified with the premises, and a slot for the next candidate clause

to check against a premise. Formulas satisfying a forward-if’s premises may be ac-

quired over a period of different timesteps, and so a forward-if prospect may be in

different states of partial satisfaction at across timesteps. When a new literal for-

mula is found to match the next unsatisfied premise of a partially-satisfied forward-if

prospect, this formula is stored in the prospect’s slot; hence the prospect is readied

to be progressed further during the next step.

Thus, at the beginning of processing for a step command, ALMA progresses

the queued prospects. Afterward, resolution and backward search prospects are re-

135

moved, and any instances of partial forward-if prospects that have advanced their

progress to completion are removed. Formulas that result from successful infer-

ence are stored in a buffer for new clauses. After the existing prospects have been

exhausted, the new clauses are processed from this buffer and inserted into the

knowledge base if they are not duplicates of an existing formula. If a formula is

found to be a duplicate, the parents that derived it are attached to the version of

the formula already in the knowledge base as a novel derivation. The initial batch

of new clauses may include meta-knowledge clauses such as are described in sec-

tion 4.6, which depending on the predicate may derive as children a secondary set

of new (non-meta-knowledge) clauses that should enter the knowledge base at the

same timestep. Hence, a second pass through the new clause queue is required.

Meta-knowledge clauses may additionally derive as children clauses that will enter

the KB at a subsequent timestep, which are placed in the queue after a delay of one

timestep. After new formulas have been added into the KB, they are used to gener-

ate all possible new prospect instances. Collecting of the full set of new clauses in a

buffer, and only later inserting them into the KB once the prospects have been ex-

hausted, ensures that the relative input ordering of formulas within a single timestep

will not affect which clauses are obtained. That is, the largest possible set of possi-

ble new inferences is collected into the buffer, and any new metacognitive formulas

(described in subsequent sections) which might prevent or modify new inferences

are applied after the point of collecting them.

Following a step command, ALMA determines its state as idling when no new

clauses have been derived during the last step and timestep-delayed clauses remain.

136

Since resolution prospects, backward search prospects, and possible progressions for

partial forward-if prospects are exhaustively handled prior to producing new clauses,

checking for the idling state does not need to check whether prospects remain.

4.4.1 Inheritance

ALMA formulas by default have temporal persistence and are inherited into

future timesteps, unless otherwise modified. This behavior matches with the active

logic theory, in which formulas that are not distrusted or otherwise retracted persist

— which also gives a practical answer to some frame problem issues. In ALMA,

for formulas that are disinherited, the underlying data structure for a formula is

not deleted, due to the existence of connections to other formula objects (e.g., its

parents and children). Instead, a formula is indicated to be disinherited through

metadata flags indicating the reason for not inheriting it: either the formula became

distrusted, retired, or handled.

A formula may become distrusted as a result of inconsistency and contradiction

detection as described in section 4.6.2, or due to the distrust procedure described

in section 4.5.4. A formula may become retired as a result of a fluent formula that

once held no longer applying as the world changes. ALMA presently has a weaker

sense of fluents and makes little use of this flag. A formula may become handled

if it is a literal expressing an inconsistent state which has been resolved, as also

described in section 4.6.2. Additionally, a fourth flag exists for a paused status,

which goes into effect for a formula when it has an upward equivalence link that has

137

become distrusted (described in significantly more detail in section 4.7). Deletion of

a formula using the command also targets a formula and prevents its inheritance in

the strongest sense, when the formula is removed from the knowledge base entirely.

However, deletion also removes the record that a formula was present in earlier

timesteps, unlike the disinheriting flags.

If a disinheriting flag marks a formula, this formula will neither be used to

generate inference prospects nor be accessible to procedures which check the current

contents of the knowledge base. Hence, such a formula will participate in any further

inference except in the limited cases of procedures that can consult formulas that

are not current beliefs (for instance, the ancestor procedure can do so). Further

information about the interactions of procedures with inheritance is discussed in

section 4.5.2.1.

4.5 Methods of inference

ALMA employs several inference algorithms, described below. For each of

them, as the inference graph expands from applying them, each formula records its

parents and children as metadata attached to the clause data structure. This keeps

the overall knowledge base structured as an adjacency-list.

4.5.1 Forward-chaining resolution

ALMA formulas that do not contain a forward-if-tagged or backward-if-tagged

implication are used in forward-chaining resolution. Given the constraints on for-

138

mula structure following the standardization into conjunctive normal form, any for-

mula outside of those two categories is necessarily in clause form. As previously

described in section 4.4, resolution prospects are generated in an exhaustive manner

so that each complementary literal pair across clauses is identified. The following

rule describes resolution in active logic:

t : P1 ∨ ... ∨ Pn ∨ A Q1 ∨ ... ∨Qm ∨ ¬A
t+ 1 : P1 ∨ ... ∨ Pn ∨Q1 ∨ ... ∨Qm

The first step in resolution is attempting the syntactic unification of the comple-

mentary pair, A and ¬A. Note that this is not to suggest the positive and negative

literals A and ¬A must be identical; rather this is an idealization for literals Ti and

¬Tj where Ti and Tj are unifiable terms.

Unification utilizes the algorithm Full-Quasi-Quotation-Unification, with

the arguments of Ti, Tj, 0 (the level of quotation in which Ti and Tj are found),

and an initially empty binding list. ALMA internally attaches distinct metadata

values to each variable per formula, which ensures that variables in separate clauses

given the same name in the grammar are still considered to be unique across clauses.

Likewise, even if two variables with the same name appear in different effective levels

of quotation within the same literal, these are standardized apart with different

metadata identifiers. This is leveraged during unification — direct comparisons of

variables make comparisons with the metadata, so that variables in different contexts

as we have identified will not be considered to be identical.

When unification succeeds, the result falls into one of two cases. For resolution

in which the two premise clauses are each a single literal (i.e., Ti and ¬Tj directly),

139

the conclusion resolvent is an empty clause. The two literal premises to resolution are

thus unifiable formulas in direct contradiction, and it is this empty resolution that is

used to detect contradictions. From here, ALMA applies its contradiction-handling

faculties, which are described in section 4.6.2 as a specialized rule of inference.

When the two resolution premises are not literals, their resolvent is nonempty. A

new clause is constructed per the inference rule: as the disjunction of the remaining

literals from the premises, for which the set of variables bound in the most general

unifier are substituted for their bindings using the quotation substitution algorithm

Quasi-Quotation-Substitute.

A new formula derived from one step of resolution records in its metadata that

its parents are the two premises of resolution, and those parent clauses record the

resolvent as a child in their metadata.

4.5.2 Forward-if

ALMA forward-if formulas allow inference of a literal conclusion from a con-

junction of literals — a form of generalized modus ponens adapted to active logic.

Hence, the following rule describes forward-if inference. As with the inference rule

presented for resolution, a literal Pi appearing here as a standalone literal and also

as a premise for the forward-if implication does not imply both of these must be

precisely the same formula, but rather that a literal Pi must be unifiable with the

respective implication premise.

140

t : P1 ... Pn P1 ∧ ... ∧ Pn
f→ C

t+ 1 : C

For example, the forward-if formula a∧ b f→ q reasons in a forward manner to infer

q when a and b are simultaneously present. One aspect not captured in the above

notation is that of ordering in the antecedent: a particular premise of the forward-if

is only checked for whether it is satisfied when its preceding premises have been

determined to be satisfied. This is important due to the existence of a class of

specialized ALMA predicates which execute procedures, which may take arguments

that are dependent upon the satisfaction of earlier premises. These predicates are

described further in section 4.5.2.1.

Unlike the incremental progress of resolution, which may derive many descen-

dant formulas in a chain of reasoning toward a particular query, forward-if formulas

do not derive intermediate result formulas before the conclusions. To illustrate this,

consider again a ∧ b
f→ q compared to the formula a ∧ b → q, which contains the

typical implication instead of a forward-if. If a and b are known formulas, after one

timestep resolution with a ∧ b → q would derive resolvents b → q and a → q as

intermediate results, and after two timesteps derive q. In contrast, as shown in the

inference rule, a forward-if implication does not derive any descendant in the knowl-

edge base until one timestep after all premises have been simultaneously satisfied.

For the example of a∧ b f→ q, the only inference that would result is for q. If a and

b enter the knowledge base at the same timestep, the forward-if implication will also

be able to derive q after a single timestep, unlike the chain of resolution inferences

141

which takes two timesteps.

Because intermediate conclusion formulas do not result, forward-if inference

has more possible options as to when and how the space of satisfying premises is

searched, as long as the final conclusions are appropriately derived and the order

of premises is respected. ALMA progressively builds up prospects that track par-

tially satisfied premises and bindings, and expands these prospects with the cases

of successful unification at each new timestep. In this approach, many prospects

are partially progressed and may never be satisfied to produce their conclusion,

but consume space due to being stored in a state ready for further progression.

When the search space branches from having multiple possibilities for unifying the

next premise, the relevant partially-progressed forward-if prospects split into new

copies, including copying their record of what has been unified. This trades extra

space for gain in time, by avoiding repeating the unification calls of the first few

shared premises, that have already been examined at earlier timesteps. ALMA thus

uses a more space-intensive method, rather than an alternative that uses less space

but might repeat for multiple formulas checking the prefixes of a set of satisfying

premises.

4.5.2.1 Procedural premise predicates

ALMA reserves a set of predicates that we refer to as procedural premise pred-

icates. These procedural predicates are distinguished from other predicates that,

when present as premises of a forward-if formula, are satisfied only from unification

142

with other beliefs. In contrast, the predicates described in this section in a forward-

if formula associate their satisfaction with the result of executing a procedure, and

execute for each instance present as a forward-if premise. These predicates are con-

sidered to have particular internal semantics enforced (as viewed by the system):

their instances are considered to be true only in the circumstances defined by the

success of their procedure, and false otherwise.

For example, less than is one such procedural predicate. Consider the fol-

lowing formula:

job(J) ∧ now(T) ∧ deadline(D) ∧ less than(T, D)
f→ canWorkOn(J) (4.3)

That is, if there is a job to be done, and the current time (indicated with now) is

prior to the deadline, the agent can work on the job.2 To infer the conclusion, there

is no need for any atomic formula with less than to be directly believed. Rather,

whenever a positive deadline literal has unified with the premise deadline(D), the

procedure for less than is subsequently executed, returning true or false, which

becomes the truth value of the less than premise. A procedural premise predicate

is given the restriction that it may not begin a forward-if formula, as the first premise

of the formula’s antecedent.

Each procedure is executed at most once per procedural forward-if premise

instance, given that: 1) a new combination of formulas (that is distinct from com-

binations used on this formula before) satisfies the premises preceding it, and 2) all

binding constraints (described below) that are specified for the predicate instance

2Note the superficial resemblance of this rule to the deadline-planning active logic work done
by Nirkhe, described in section 2.2.4.3.

143

are met. Execution occurs immediately after the last premise preceding in the or-

dering has been determined to be satisfied. Hence, the system does not devote an

excessive amount of time to procedure execution by not repeating execution when

the earlier premises are the same. In select cases, where a particular formula or

ALMA application may require the repeated execution of the same procedure, there

exists a workaround of the behavior that it executes once per premise set. Namely,

an extra premise now(T) may be added prior to the procedural predicate. Due to

the fact that a derivation of a novel now formula is obtained every timestep from the

clock rule, every timestep will yield a different set of premises before the procedure,

and it will continue to execute each timestep.

For each procedural premise predicate, an optional last argument may be used

to specify any binding constraints. A function can be given in this last place, in

which case each variable argument of that function must already have a binding

(i.e., made when unifying the forward-if premises appearing before the procedural

predicate), or else the procedure trivially returns false. If no binding constraints are

necessary, the formula can be supplied only the necessary arguments. Binding con-

straints can be used to allow flexible instances of the procedural premise predicates

that use many variable arguments. At the same time, the constraints ensure that

the procedures are not underspecified when they are executed.

For example, returning to the less than procedure in formula 4.3, it can

be mandated that bindings have been made for the variables T and D in the first

three premises before the procedure executes, by modifying the procedure into the

following: less than(T, D, bound(T, D)). The functor bound provides the function

144

symbol of the final argument. If bindings were acquired in unifying the premises

with now and deadline, the procedural predicate’s truth value becomes the result

of evaluating the inequality, for whether the expression to which T is bound is less

than the expression to which D is bound. “Type errors” in which a non-numeric

constant is bound to either argument variable will result in this evaluating to false.

Now, we turn to enumerating each procedure of this category. Implemented

ALMA procedures generally fall into two categories: metacognitive procedures that

check relations between formulas in the knowledge base (such as whether particular

beliefs have a certain form, whether a formula was derived by a particular parent),

and impure logic procedures (such as those that evaluate mathematical expressions

which are inconvenient in pure logic). Each procedure is described below. When the

arguments of a procedure are indicated to require a particular structure, such as a

quotation term or a function, it also suffices for the argument to be a variable that

has become bound to such a type of term, due to the fact that when copies of the

arguments are retrieved, any variables will first be substituted for their bindings.

We now present the full set of procedural premise predicates.

4.5.2.1.1 Family of procedural premise predicates

Pos int, pos int spec, pos int gen, pos int past, neg int,

neg int spec, neg int gen, and neg int past — The family of introspection

predicates, described fully in section 4.5.2.2.

Acquired — Takes as its first argument a quotation term representing a for-

mula, much like introspection, and as its second argument a variable that cannot

145

have yet been bound. If the match in the knowledge base is found, the variable

that is the predicate’s second argument is bound to the timestep number when the

matching formula was first asserted into the knowledge base.

Ancestor — Takes three arguments: the first two represent formulas via quo-

tation terms, and the third represents an integer time value. The second argument

must be unifiable with a formula in the knowledge base, where this formula was ei-

ther acquired at a timestep less than or equal to the time argument, or the formula

was disinherited at the time argument. The first argument must then be unifiable

with an ancestor of the second, based on any of the derivations in the different

parent sets of that second argument. Only when these conditions are met does the

procedure return true, retaining any bindings made. Otherwise, the result if the

procedure is false, and no new bindings are made. The search through the space of

ancestors is breadth-first based on distance from the root descendant.

Non-ancestor — The negation of ancestor, as a separate predicate due to

procedural predicates not supporting the negation operator, as an implementation

convenience. Hence, it takes the same three arguments as ancestor.

Parent — A procedure equivalent to ancestor, except that it only attempts

to unify the first argument quotation term with the immediate parent of the second

argument. Hence, this can determine if a formula is a direct parent rather than a

more arbitrary or distance ancestor.

Parents defaults — Takes as its argument a quotation term representing

a formula. If a formula in the knowledge base is unifiable with this argument, this

procedure inspects the parent sets of the formula to check whether it is considered to

146

be a default conclusion. A formula is considered to be a default conclusion if every

parent set that is currently a trusted derivation includes at least one default formula

as a parent, where a default is as we introduce in section 5.2. Although more detail

is provided in that section, in brief, the parents are checked to see whether they are

a forward-if implication which also includes a neg int premise that takes a positive

literal of the abnormal predicate. The procedure returns true when this condition

for the formula being a default conclusion is met, and false otherwise.

Parent non default — The negation of parents defaults, as a separate

predicate due to procedural predicates not supporting the negation operator. Hence,

it takes the same argument as parents defaults, and returns true when its ar-

gument is not a default conclusion, due to the existence of a trusted non-default

parent set.

Less than — Takes two arguments representing ground integer constants. If

the arguments meet these criteria on their form, returns the result of evaluating the

inequality on its two arguments, and false otherwise.

Quote cons — Takes two arguments, the first of which must be to a bound

variable, and the second of which must be to an unbound variable. When the first

argument is bound to a function, the second argument will be bound to a newly

constructed quotation term consisting of with a singleton clause inside of quotation

marks, in which the predicate symbol is the same as the function symbol of the first

argument, and each term is copied from the first argument.

Not equal — Takes two arguments representing formulas via quotation terms.

Given these two arguments, returns the result of comparing the two formulas for

147

equality. Note that these two formulas are not unified, which tests a more general

relation between the formulas. Rather, the two formulas must have exactly the same

structure and differ only by a renaming of respective variables.

Much like in Prolog, if all arguments to a procedural predicate are ground

(once substituting any bindings), execution of the procedure amounts to checking

the truth of this ground relation. If one or more variable appears as an argument

to a procedural predicate, this amounts to a query as to whether there exists a

solution, which will be bound to give an answer to the query. Certain predicates,

such as less than, do not support execution with unbound variable arguments.

For an example of a non-ground case, consider the following example:

answer(problem(X), Y) ∧ acquired(“answer(problem(`X)”, Y), T)

f→ solved at(problem(X), T) (4.4)

That is, if a particular problem has been found to have an answer, and it’s desired

to know at what time the problem was solved, the unbound variable T that is the

second argument of acquired will be bound to the answer to the query. In the

above case, the formula to check, answer(problem(X), Y), has the same structure

as the first premise, and so is guaranteed to unify with the same literal that has

already satisfied the first premise. This ensures any conclusion made will have T

replaced with a constant denoting a particular time value.

148

4.5.2.2 Introspection

Introspection has previously been introduced in section 2.3 as an important

ability for an agent’s internal processing, and chapter 3 illustrated how quotation

is important for enabling a general ability for introspection in active logic. Now,

we discuss specifics of how this is realized in ALMA through a series of procedural

predicates.

We return to ALMA’s set of procedures which implement both positive and

negative introspection, consisting of: pos int, pos int spec, pos int gen,

pos int past, neg int, neg int spec, neg int gen, and neg int past. Ad-

ditionally, the predicate acquired operates very similarly to pos int. Each of these

predicates has special internal semantics based on a procedural lookup for a formula

in the knowledge base. The group of pos int predicates (as well as acquired) each

evaluates to true when finding a matching unifiable formula in the knowledge base

that is presently believed, although with some minor variations in which formulas

satisfy each procedure. Similarly, the group of neg int predicates each evaluates

to true when failing to find such a formula, respectively.

As an example utilizing introspection, consider the following formula using the

basic neg int predicate:

bird(X) ∧ neg int(“¬flies(`X)”)
f→ flies(X) (4.5)

When the first premise has been unified and given X a binding such as the constant

tweety, negative introspection evaluates to true if ¬flies(tweety) is not in the

KB. If X had no binding when evaluating negative introspection, this would have

149

acted very much like a negated existential quantifier, with scope directly around

the predicate. That is, neg int would have evaluated to true only if there did not

exist any possible binding of X that would have caused the introspection argument

to match a KB formula. For instance, since active logic tracks the present moment

with the special predicate now, negative introspection on an atomic now formula via

neg int(“now(`T)”) always evaluates to false. Conversely, positive introspection

on this formula, via pos int(“now(`T)”), evaluates to true as long as T is either

not bound when it executes or is already bound to a constant integer matching

the current timestep value. If a successful unification makes new bindings when

executing pos int, these bindings are added to the partial bindings of the forward-

if prospect.

Any introspection procedure’s first argument, referred to as Q, must be a

quoted formula (or a variable bound to one). However, the semantics of introspec-

tion involve comparison of Q against currently believed formulas in the knowledge

base, which are clauses outside of quotation and not quotation terms. Introspec-

tion predicates use two distinct methods of constructing a quotation term out of a

knowledge base formula. The first of these is used in cases for which it is desired

that the query unify with a more specialized formula; the latter is used in cases that

allow unifying with a formula that might be more generalized.

The first quotation term construction method is more trivial, and can be ac-

complished simply by placing the formula in an outer set of quotation marks, without

any other modification. This is what is done by pos int spec and neg int spec.

As a consequence of this method of outer quotation placement, a quotation term

150

thus constructed from a KB formula (referred to as X) will have no fully-escaping

variables. Given this, if Q successfully unifies with X, by the principles of quotation

unification, any function, constant, or quote in Q must have unified with a matching

term type in X. Additionally, any fully-escaping variable in Q must have unified

with a function, constant, or quote in X.

From this, we can see that when the query Q contains fully-escaping variables,

a successful unification is only possible when X is a formula that has a more con-

strained kind of term in positions where Q has fully-escaping variables. On the other

hand, when Q contains no fully-escaping variables, then X has precisely the same

level of generality. This method of introspection does not in any case permit Q to

unify with a more generalized formula, since that would necessarily require a fully-

escaping variable in the other formula. Hence, pos int spec and neg int spec

implement a form of introspection in which the query formula Q is desired to unify

with more specialized content from the knowledge base.

For the second way that a knowledge base formula can be converted into a

quotation term to use with introspection, it is helpful to first consider a motivational

example. Suppose that Alma believes (has in its KB) that if something has been

heard, and what was heard it also currently believes, then it is in agreement with

what was heard. Verifying the current belief of a formula would require using positive

introspection, which we can see serves essentially as an instance of bel(alma, . . .),

in looking up the agent’s own beliefs:

heard(X) ∧ pos int(X)
f→ agreement(X) (4.6)

Further, suppose that once again heard(“on fire(site1)”) is present in the knowl-

151

edge base, as well as on fire(E). After unifying the heard literals and binding X,

Alma will attempt to determine whether the knowledge base currently includes

on fire(site1), via the procedure pos int(“on fire(site1)”). While precisely

on fire(site1) is not a current belief, the generalized formula on fire(E) indi-

cates that everything is on fire, and trivially implies that site1 must be as well.

However, universal instantiation is not an inference rule that the ALMA system

is presently equipped with, for the reason that such a rule would rapidly swamp

the knowledge base with an excess of ground formulas implied by its universally

quantified beliefs. This means that on fire(site1) cannot be derived as a conse-

quence of on fire(E). Yet a lack of universal instantiation is no trouble outside of

introspective inference and quotation; on fire(site1) and on fire(E) are easily

unified between two basic formulas. Introspection should also be able to succeed at

unification in the case under consideration here. What is needed is another form

of introspection that allows the query to unify with a more generalized formula,

in addition to allowing the query to unify with a more specialized KB formula as

can be done by pos int spec and neg int spec. The procedures pos int and

neg int implement this behavior, allowing both specialized and also generalized

formulas to answer introspective queries.

As stated above in contrast to pos int spec and neg int spec, an intro-

spective query Q unifies with a quotation term Y that is more generalized when Y

contains a fully-escaping variable in a position where Q contains a function, con-

stant, or quote. In the running example, what is necessary is constructing a quo-

tation term of “on fire(`E)” out of the KB formula, which thus is unifiable with

152

“on fire(site1)” as desired. We next consider how to characterize the method of

construction this sort of quotation term more generally. An important part of the

functionality is taking a variable that was fully-escaping in the KB formula (e.g.,

the variable E in the example) and adding a quasi-quotation mark so that it remains

fully-escaping once a quotation term has been created. This sort of change sounds

similar to what is done by the Adjust-Context algorithm for adjusting the level of

quotation from 0 to 1, and it is initially tempting to consider using this algorithm

to prepare a KB formula for unification. However, this doesn’t work in all cases;

consider the behavior when executing pos int(“on fire(X)”). Modifying the KB

formula on fire(E) into “on fire(`E)” would prevent unification in this case, thus

here the desired method of creating a quotation is to simply add enclosing quotes

to create “on fire(E)”. Together these two cases suggest that converting into a

quotation term Y ought to add quasi-quotation marks differently depending upon

the introspection argument Q that will be unified with Y .

The general principle is as follows: consider an introspection case where the

query, Q, ought to unify with a KB formula that is more generalized. Let there

be a generalized KB formula F , that is to be converted into a quotation term Y .

Each fully-escaping variable from F will be given an additional quasi-quotation

mark in Y only if the variable’s corresponding position in Q is not a non-escaping

variable. This approach achieves the intended outcome for both of the example

queries above, through making comparisons to the query to determine when addi-

tional quasi-quotation marks ought to be added to variables. Both the pair pos int

and neg int and the pair pos int gen and neg int gen selectively add quasi-

153

quotation marks prior to unification in this way. As suggested by their names,

pos int gen and neg int gen will fail to unify when the formula Y is a spe-

cialization of the query Q, as determined by a traversal of the two quotation terms

finding a fully-escaping variable in Q at the same position as a non-variable term in

Y .

We note that the second method of creating a quotation term out of a KB

formula, which allows for unifying with a formula more generalized than the query,

is used exclusively by pos int, neg int, pos int gen, and neg int gen out of

the entire set of procedural predicates. Other procedures which include a lookup of

a KB formula for varied purposes (such as a lookup done by ancestor, acquired,

update, and others) are viewed as requiring a user to specify the matching argument

relatively precisely, for which finding a formula of greater generality is not necessary

or especially useful.

Thus, in writing ALMA axioms for introspection, the three forms of specific,

regular, and generalized introspection allow fine-grained control over what sorts of

formulas will satisfy introspection procedures. The older ALMA 1.0 system could

not offer this kind of control without quotation. Consequently, it would always

allow an introspection query p(X) to unify with the ground formula p(a) even if the

intention of the query was determining if a universally-quantified formula was in

the KB. In the current system, pos int gen can allow a restricted search for p

with a variable argument. Further, ALMA 1.0 could prevent the query p(a, X) from

unifying with the generalized p(Y, X) or p(Y, b), while at the same time allowing the

query to unify with p(a, b). The current system can achieve such behavior by using

154

pos int spec for the query. Introspection in ALMA 2.0 thus allows more expressive

queries than could be performed in the previous reasoner.

Lastly, the six introspection procedures detailed thus far each may also be

supplied a second argument corresponding to an integer time s. If this argument is

given, introspection will only attempt to unify the query with formulas that were

first acquired at timestep s. The final two introspection procedures, pos int past

and neg int past, go further in the direction of checking time values for a for-

mula, by taking second and third arguments corresponding to integer times s and

e. These procedures unify exclusively with disinherited formulas that were believed

over an interval of time contained in the interval [s, e], and provide a means for the

reasoner to look back on past beliefs. Therefore, there is not a single procedure for

introspection that can check both past and present beliefs; both pos int past as

well as one of the positive introspection predicates for present beliefs must be used

to query both past and present beliefs. The functionality of inspecting past beliefs

is used in applications that are discussed in section 5.3.

4.5.3 Backward-chaining resolution

ALMA can answer queries via backward-chaining refutation resolution, as ini-

tiated by the bs command with a formula argument, when the reasoner is not run

automatically. This query-answering is done in a separately instantiated partition

of the knowledge base, due to the need to hold hypothetical beliefs of the query and

derived formulas. The first of these hypothetical beliefs added into the partitioned

155

region when a backward search is initialized is the negation of the query formula.

After initializing, resolution broadly works as it does in the forward direction. For

example, if a backward search is initiated to determine whether the knowledge base

can answer a query for the formula q, the backward-chaining segment is initialized,

first containing exclusively ¬q. Consider the following formula, which contains an

implication marked as a backward-if instance:

p
f→ q (4.7)

If this formula is present in the knowledge base, it will resolve with an ongoing

backward search query for ¬q, to infer a hypothetical ¬p and add it to the partition.

If p additionally is in the knowledge base, it will resolve with its negation and yield

an empty resolvent.

In backward-chaining, an empty resolvent does not indicate a contradiction

but rather it provides an affirmative answer to the query. The above example would

thus have a positive answer to the query for q. After an empty resolvent is obtained,

the answer with proper variable bindings must be extracted. The backward search

associates with every clause in the partition a set of bindings for the variables

appearing in the original query. These are updated after each resolution that makes a

binding to one of the variables, or to another variable in a current binding of a query

variable. As a result, after a query answer has been verified to exist, the tracked

bindings allow easy substitution into the query answer. When the initial query has

obtained an answer, this then inserted into the main region of the knowledge base.

156

4.5.4 Procedural atomic predicates

ALMA also features a second category of predicates that execute procedures.

In contrast to procedures that execute when appearing as a forward-if premise to

determine truth, predicates in this other category execute their respective procedures

following the derivation or assertion of a formula containing them. Hence, we refer to

these as procedural atomic predicates. The procedures associated with each predicate

in this category have side effects on the knowledge base. The set of procedural atomic

predicates consists of:

Distrust — If the unary argument to this predicate unifies with a formula in

the knowledge base, its status changes to distrusted. Additionally, all descendants

of this formula will also be searched; if any descendant does not have any derivation

where all parents are trusted, then this descendant formula will also be distrusted.

Any formula X that has become distrusted is not inherited by ALMA into future

timesteps, and a meta-formula of the form distrusted(“X”, T) will also be added

to the knowledge base at timestep T , as a child of the original distrust literal. Al-

though the distrust procedure derives instances of distrusted as children, unlike

almost all other ALMA child formulas these appear immediately, without a timestep

delay. This is due to the distrust and disinheritance of targeted formulas happening

immediately — since a formula that is distrusted should not have an opportunity

of one more timestep to be used in inferences before it is withdrawn.

Recall that a formula with distrusted status is not deleted from the knowledge

base, as it is important the clause object can be reached in the reasoner’s logic,

157

in cases such as of possible reinstatement or use in handling a contradiction. Any

distrusted formula will not participate in inference or most procedures due to the

disinheriting flag indicating that it is distrusted, thus preserving the abstraction of

being disinherited. If multiple formulas are unifiable with the distrust argument,

each will become distrusted accordingly.

Reinstate — If the first argument to this predicate is a quotation term unifi-

able with a distrusted formula that is part of a currently ongoing state of contradic-

tion, and the second argument is an integer matching the timestep when this formula

was distrusted, the formula is reinstated into full, non-distrusted belief. The idea

of an ongoing state of contradiction is based on the contradiction-handling ability

discussed in section 4.6.2, in which a present state of contradiction is indicated by

a contradicting literal. Hence, the reinstatement argument must also unify with

one of the two quoted contradictands of a contradicting formula that has not yet

been disinherited as handled (as introduced in section 4.4.1).

A copy of the prior distrusted formula is constructed for this purpose, which

includes metadata such as ancestors and descendants copied from the original, and is

added as a new belief at the following timestep (and, due to the use of a copy and its

appearance as a new belief after another timestep, there is no difference in behavior

with regard to when a reinstatement occurs relative to other inferences in the same

timestep). In a sense, the reinstated formula is derived from the reinstate literal,

but it is more intuitive to simply restore the formula with the parents and children

of the original without modification — especially since checking the ancestors of this

formula should yield formulas from its original derivation(s). A reinstatement also

158

necessarily resolves at least one ongoing contradiction, as described above. For each

ongoing contradicting literal X that has become handled at timestep t, a meta-

formula handled(“X”, t) will also be inferred as a child of the reinstate formula.

Like distrusted formulas, these children also appear at the same timestep as their

parent, since this is when the KB side effect of handling occurs. If multiple formulas

are unifiable with the reinstatement argument, a series of formulas may become

successfully reinstated at once.

True — Implements the specialized inference rule for truth of a quoted formula,

as introduced in section 3.3.2.5. If an atomic formula of the form true(“X”) is a

belief at a given timestep, where its unary argument is a quotation term, the formula

X that is nested in the quotation term will be derived a new belief of the agent

one timestep later. When X is withdrawn from quotation, its context is adjusted

appropriately with the algorithm for doing so that is detailed in section 3.4.3.4.4.

The unquoted formula X is obtained as the child of true(“X”).

Update — Implements a variation of the top-level reasoner update command,

which is gentler by not having destructive effects on KB derivation history. If

the first argument is a quotation term expressing the target, and the second is

a quotation term expressing its replacement, if the former successfully unifies with a

KB formula, this formula will be distrusted as described above, and its replacement

will be asserted as new knowledge (with the update literal recorded as the parent

that caused this effect). When successful, the newly-added updated formula will

appear in the knowledge base after one timestep delay, as occurs for typical ALMA

inferences.

159

Due to the updated formula appearing in the KB after this delay, which inter-

nally relies upon the buffer for new clauses that also stores other inferences made at

the current timestep, the result is the same regardless of the ordering of an update

relative to other inferences at the same timestep.

4.6 Specialized inference rules

In addition to the above more general-purpose inference mechanisms, ALMA

also realizes other specialized inference rules which are specific to active logic, in-

cluding the clock rule and contradiction-handling inference rules.

4.6.1 Clock rule

ALMA records the value of the current timestep, as the evolving moment

counting up over each transition, via a special atomic formula of the now predicate.

From the starting state of the reasoner, with any initial axioms first loaded in, the

formula now(0) also appears among them. As each timestep transitions to the next,

the preceding now is disinherited, and from the clock inference rule a now with an

incremented integer argument is derived:

t : now(t)

t+ 1 : now(t + 1)

160

4.6.2 Contradiction handling

ALMA implements the contradiction-handling aspect of active logic. As dis-

cussed previously, inferring an empty resolvent when applying forward-chaining reso-

lution between a pair of formulas, P and ¬P , signifies a direct contradiction between

the two. In such a case, two atomic formulas are derived instead of a conclusion

formula being obtained from the resolution inference rule.

t : P ¬P
t+ 1 : contra event(“P”, “¬P”, t) ∧ contradicting(“P”, “¬P”, t)

The first conclusion of contra event indicates that an event of a contradiction

occurred at the timestep t. The second conclusion indicates that the ongoing state

of P and ¬P being in direct contradiction began at time t. This expresses an

open interval that remains ongoing at any present timestep greater than t, until

the contradictory state is resolved by a reinstate procedure (as described above)

that targets either contradictand and disinherits this contradicting instance with

handled status.

The two contradictands will be marked as distrusted with a corresponding

inference, in the same manner as the distrust literal operates. Hence, the recursive

traversal of contradictand descendants is also performed, to also distrust descendants

without a remaining trusted derivation.

There also is a slight variation of the contradiction inference rule that we

introduce. This is intended to identify when a pair of reinstate literals targets

both contradictands (P and ¬P) out of an ongoing contradiction. Reinstatement

161

exists exclusively to allow correction of unresolved contradictions. If an ALMA

knowledge base contains a set of contradiction-response formulas such that a pair of

reinstatements for both contradictands would be inferred without being caught, this

would result in an infinite loop: formulas P and ¬P are caught as contradictory,

then both reinstated, then once more caught as contradictory, etc. The following

inference rule helps to address this problem, by detecting a contradiction in the two

quoted formulas that a pair of reinstatements are targetting (rather than a direct

contradiction between the full formulas, as in the basic contradiction-detection rule):

t : reinstate(“P”, x) reinstate(“¬P”, x)

t+ 1 : contra event(“reinstate(“P”, x)”, “reinstate(“¬P”, x)”, t)

Additionally, a corresponding instance of contradicting with the same three argu-

ments is inferred: contradicting(“reinstate(“P”, x)”, “reinstate(“¬P”, x)”, t).

As a matter of reasoning about a contradiction between pieces of reinstate-

ment meta-knowledge, this is higher-level metareasoning (which also is hinted at

through the inference rule conclusion using two levels of quotation). However, since

the contradiction between reinstate formulas uses exactly the same predicates as

any other contradiction, ALMA can respond to this contradiction in a similar way,

and guide a response using contradiction-handling formulas appropriate for inconsis-

tency in reinstating. The machinery of ALMA’s contradiction-response mechanisms

(which crucially are employing quotation terms) are able to solve this kind of con-

tradiction like they can solve a lower-level contradiction.

However, it is also important to emphasize that this inference rule can only

162

stop contradictory reinstatements which are added into the knowledge base at the

same timestep (i.e., t in the inference rule above). If P were to be reinstated at

timestep t1 and then ¬P were instead reinstated at a later timestep t2, then it be-

comes more difficult to contain this type of contradictory response. For one reason,

P will have already been added back into the knowledge base at a timestep after t1.

Furthermore, when there is a differece of timesteps between contradictory reinstate-

ments, it is not obvious how an axiom or inference rule might be devised to distrust

only the contradictory reinstatements, while leaving other forms of reinstatements

as legitimate.

More generally, we can consider whether a set of ALMA axioms might be

expected to converge to a fixed point belief set over time, or would fail to converge

to due a pattern such as an infinite loop of contradiction and reinstatement. The

case that we have just identified, in which both contradictands might be reinstated

are different points in time, demonstrates that in the most general case, beliefs may

fail to converge due to recurring contradictions. In particular, an ALMA-based

agent with a large collection of different contradiction-handling beliefs may become

more prone to such difficulties, as in this case it may become more likely that

several principles for reinstatement would produce conflicting results. Thus, when

developing examples in ALMA which require reinstatement, as has been done in

the present work and is detailed in chapter 5, reinstatement rules must be carefully

devised, and tested to ensure that a fixed point is reached in each example. We

further identify future work on this limitation in section 6.2.2.

163

4.6.3 Inferring as true

This inference rule is further described in previous sections 3.3.2.5 and 4.5.4.

4.7 Agent belief modeling

With the ability of nesting formulas by means of quotation terms, we have seen

that active logic can also represent formulas attributed as beliefs of other agents,

most commonly utilizing a binary predicate bel with the first argument for an agent

name and the second for a quotation term of the formula considered to be believed

by that agent. Once again, any such formula bel(. . . , . . .) is an internal belief of

the Alma agent, which attributes a belief to (a model of) another agent, rather

than necessarily representing a formula such an agent truly believes. A number of

such bel formulas were used in developing of the motivating examples for quotation,

namely formulas 3.6, 3.9, 3.24, and 3.33).

The formalism of quotation is essential to ALMA attributing beliefs to other

agents. Any atomic bel literal can be used in inference within ALMA itself, by

unifying with existing forward-if premises and resolving with other KB wffs. But,

we additionally have an interest in the ability of ALMA to model the inferences that

other agents might be able to make (that is, model the inferences that are made

by other agents, not seeking to model their inference mechanisms). We consider

whether we can achieve this.

There are different levels of generality at which this modeling may occur. As an

initial example, suppose that Alma represents the agent Alice having the inference

164

rule of modus ponens (for which we later describe the issues of representing this),

and also represents Alice believing the following formula:

tell(Speaker, Utterance, Confidant)→ heard(Speaker, Utterance, Speaker)

(4.8)

Formula 4.8 indicates that a speaker who communicates an utterance to a confidant

will hear their own utterance. ALMA would express Alice’s belief in 4.8 as follows,

using a quotation term:

bel(alice, “tell(Speaker, Utterance, Confidant)→

heard(Speaker, Utterance, Speaker)”) (4.9)

It is also possible to express the result of Alice applying modus ponens with respect

to the particular implication inside the quotation term of formula 4.9. In this case,

when Alma considers Alice to hold the belief indicated in the implication 4.9, as well

as a belief of a particular tell instance, then Alice will also believe an appropriate

heard instance (ignoring time here):

(bel(alice, “tell(Speaker, Utterance, Confidant)→

heard(Speaker, Utterance, Speaker)”)∧

bel(alice, “tell(`S, `U, `C)”))

f→ bel(alice, “heard(`S, `U, `S)”) (4.10)

This longer formula uses quasi-quotation marks on each of the arguments to Alice’s

modeled belief of tell (and hence, they are fully-escaping), which leads to the

correct arguments in Alice’s modeled conclusion that repeats the same fully-escaping

quasi-quoted variables. However, this example is quite specialized to the particular

165

example and its use of the two predicates tell and heard. It would be useful for

Alma to be able to represent more generalized schemata of another agent applying

a form of modus ponens.

An idealized version of modus ponens represented using quotation would be

the following:

bel(Agent, “A→ B”) ∧ bel(Agent, “A”)→ bel(Agent, “B”) (4.11)

However, there are some difficulties that arise when attempting to more generally

model formulas along the lines of formula 4.11. First, this is not a grammatical wff

(with respect to our running grammar for active logic with quotation, as defined in

section 4.2). Throughout the example formula, variables A and B occur inside of quo-

tation marks and are meant to stand for entire wffs (e.g., as an arbitrary antecedent

and arbitrary conclusion of the implication in the first premise’s second argument).

Yet this is not consistent with the rules and grammar for quotation terms that have

been developed, since a quotation term contains exclusively a formula nested inside

quotation marks, which must be derived by applying the production rules to some

form of predicate (or combination of predicates connected with operators). We are

thus not able to support a variable appearing in lieu of a predicate to represent an

arbitrary wff.

Crucially the system of active logic with quotation remains first-order, and

does not have a sort of variable that can range over wffs. All variables remain a

kind of term, and cannot unify with constructions that are not also terms. Even a

formula as simple as bel(Agent, “A”) in formula 4.11 makes this mistake. Likewise,

there is not a way in which a set of first-order predicates of different arities may

166

all be quantified over within ALMA, which is a simpler problem.3 We are able

to quantify over quotation terms by a formula such as bel(Agent, A) that follows

the grammar we have defined and keeps A as a quotation term variable. Although

bel(Agent, A) can quantify over any quotation term that may appear as the second

argument, this is distinct from quantifying over general wffs. A term variable has

limitations compared to a hypothetical variable over wffs, such as also remaining

unifiable with other kinds of terms alongside quotation terms, and a variable cannot

add constraints on the structure of unifiable quotation terms (i.e., any quotation

term that satisfies the constraints of the unification algorithm might bind to A).

Therefore, the above attempt at modus ponens for another agent will not work

even in the simple case where the implication premise A is a single (arbitrary) literal.

Similar limitations prevent constructing general axioms for modeling another agent

using resolution, once again even limiting expressing simple cases. In sum, the goal

of generalized modeling of an agent’s expected reasoning must be worked toward by

other means.

Although modus ponens cannot be represented in a general form as in 4.11,

ALMA is able to use modus ponens for formulas outside of quotation, as is im-

plemented as a core part of the reasoner and which forms the basis for forward-if

reasoning. Likewise the generalized form of resolution is also directly built into the

system as a core inference rule. Hence, we exploit the existing forms of reasoning

that are already a core part of the ALMA reasoner, for purposes of modeling agents.

3 Although, we use a technique in section 5.2 of an interpretation that shifts a predicate symbol
into an argument of the predicate, allowing quantifying over a limited category of predicates of a
particular specified arity.

167

That is, we have further designed ALMA to achieve a form of agent inference model-

ing, subject to certain constraints, by a novel feature: the use of partitioned regions

of the knowledge base for modeling other agents. When a formula in the ALMA KB

is of the form bel(Agent, “A”), the formula A is placed into a KB partition specific

to the particular Agent, which directly uses the same existing inference mechanisms

of modus ponens and resolution as the core KB. Although this approach uses a

specialized treatment for the belief predicate in particular, it thus still uses quota-

tion overall rather than a modality for belief; hence the system is kept first-order

while the benefits of using quotation terms still apply. We describe this functional-

ity in detail in the following sections. Applications using this feature of ALMA are

explored in section 5.4, while limitations of this approach are discussed in section

6.2.2.2.

4.7.1 Agent belief model partitions

As we introduce partitioned regions of the ALMA knowledge base to model

the beliefs of other agents, we also use terminology to refer to these areas. The

modeling of an agent belief occurs in a new region of ALMA’s knowledge base we

call an agent KB (with the proviso that these remain wffs internal to ALMA), and

the rest of the knowledge base we call the core KB (which has been the focus of

essentially all KB discussion up to this point). When the first belief attributed to

another specific agent is added into the core KB as a new formula, an agent KB will

be instantiated for the agent in question.

168

Consider an example scenario in which the following formula begins in the

ALMA core KB at timestep 0:

bel(bob, “p(X)”) (4.12)

At that same timestep, when this is the first positive belief of Bob to appear, the

KB for modeling positive beliefs of Bob will be initialized. Then, the corresponding

belief p(X) will be added into this agent’s KB by directly withdrawing the nested

formula from the quotation term that is the formula’s second argument. If necessary,

Adjust-Context is applied to bring the formula from one to zero levels of quotation.

ALMA performs this initialization as a result of detecting a formula that is solely a

bel literal with two arguments, for which the first is a constant and the second is

a quotation term. Hence, a negated belief literal will also satisfy those conditions;

ALMA would construct a second agent KB for the negative belief formulas of Bob

if ¬bel(bob, “p(X)”) were to also appear in its core KB. This is used to also enable

modeling of what Alma expects other agents to lack beliefs or knowledge regarding.

Alma having a belief that ¬bel(bob, “p(X)”) (i.e., Bob lacks a belief that p(X) is

true) is naturally distinct from a positive bel literal with a negated nested formula

such as bel(bob, “¬p(X)”) (i.e., Bob does believe that ¬P(X) is true).

An agent KB likewise has the ability to recursively initialize its own, further

nested, agent KBs. Suppose that ALMA has the following formula:

bel(bob, “bel(carol, “p(X)”)”) (4.13)

Then, first “bel(carol, “p(X)” will be inserted into the positive agent KB for Bob.

But this formula also models Bob’s belief that Carol holds a certain belief. If this

is the first belief modeling Carol within the agent KB for Bob, a new agent KB for

169

Bob modeling Carol will be recursively constructed inside of the positive agent KB

for Bob. Then, p(X) will be inserted into this innermost agent KB for Carol. At

this point, ALMA’s entire KB will be partitioned into ALMA’s core KB and the

Bob agent KB, which is itself partitioned into the core KB for the model of Bob’s

beliefs, and the agent KB for the model of Bob’s modeling of Carol’s beliefs. ALMA

has been designed to recursively instantiate nested agent KBs to arbitrary depth.

This level of generality does ultimately raise some issues in practical examples, and

problems that arise are discussed further in section 5.4.

These pairs of example formulas seen so far — bel(bob, “p(X)”) and its related

p(X); bel(bob, “bel(carol, “p(X)”)”) and “bel(carol, “p(X)”; “bel(carol, “p(X)”

and p(X) — are all intuitively strongly related. In fact, there appears to be some form

of equivalence between them. For instance, if Alma were to distrust bel(bob, “p(X)”),

then as a result, additional inferences based upon the formula p(X) in the agent KB

for Bob should not be possible. We introduce the notion of an equivalence link

to conceptually be an edge connecting a pair of formulas bel(Agent, “A”) and A.

In the implementation, the equivalence links are achieved by storing pointers as

metadata for these clauses.

An instance of a formula F belonging to the simulation of an agent Agenta

may have at most two equivalence links connecting it to other formulas: it may have

a link that connects it to a formula E (a belief of the agent, Agentb, that models

Agenta) of the form bel(Agenta, “F”), and it might be that F is a bel literal

containing a quoted formula G as the belief of an Agentc, in which case F would

have a link connecting it to G. We call the first of these an upward equivalence link

170

(or upward link) and the second a downward equivalence link (or downward link).

Hence in this current example, formula F has an upward link to E, and also F has

a downward link to G. Meanwhile E has a downward link connecting to F , and no

upward link if there only exists the three formulas E, F , and G; while G has an

upward link connecting to F and no downward link.

Thus, we have characterized the basic mechanisms of agent belief partitions,

when they are created, and the means by which connected formulas are joined across

partitions using equivalence links. Next, we describe how these partitions are used

to make new inferences, and how beliefs synchronize between the KB regions as this

occurs.

4.7.2 Belief inference and synchronization

With agent belief modeling, the process of high-level control of ALMA as

described in section 4.4 is slightly expanded. At the same point when prospects are

generated based on formulas present in the core ALMA KB, as previously described,

if there exist any instantiated agent KBs (i.e., in the partitions of the ALMA KB),

then the same procedures for resolution and forward-if prospect generation will

recursively generate prospects for each agent KB region. Any KB region thus tracks

its own queue of prospects, which are tuples of formulas that are all contained within

that same partitioned region.

Then, at the beginning of processing a step command, ALMA first progresses

the queued prospects for the core KB, but now additionally also progresses the

171

queued prospects for any agent KB recursively and stores any resulting formulas

into each agent KB’s respective buffer. We emphasize that progressing agent KB

prospects executes exactly the same code for making new inferences as the core

KB uses to progress its own prospects during inference, with both resolution and

forward-if formulas.4 Therefore, this has the effect of the Alma agent modeling other

agents as having the abilities of inference via resolution and a form of extended

modus ponens. This includes inference rules regarding formula equivalences (e.g.,

that an implication is equivalent to its disjunctive form, that conjunctions with either

order of arguments are equivalent) as part of the specific forms of these inference

rules that ALMA uses beginning by formula standardization. We further discuss in

section 6.2.2.2 some limitations relating to this commitment that other agents are

modeled as reasoning exactly as Alma does. ALMA additionally models agents as

having the ability to further recursively model other agent reasoning, in the same

way as the core KB can model others.

Once the prospects have been exhausted and any resulting formulas added

into the buffers of new inferences for the core KB and all agent KBs, there is a

new step for synchronization of new formulas between KB partitions. Just as when

the formulas for timestep 0 were first loaded into ALMA the appearance of a for-

mula bel(Agent, “F”) led to the initialization of F in an agent KB, there is also a

process of synchronization necessary during any step command. First, new beliefs

are synchronized downward into nested agent KBs. Beginning from the core KB,

4 However, we note that some minor changes were necessitated to selected procedural premise
predicates, to allow the correct behavior when interacting with equivalence links; we describe these
in the following section.

172

any new positive or negative bel literals from the new clause buffer will insert into

their appropriate agent KB clause buffer the formula F within quotes, and construct

equivalence links. This continues in a depth-first fashion with preorder traversal of

the KB tree, so that any formula with multiple nested quotation terms of bel will

sync down as far as possible. Subsequently, a postorder traversal of the KB tree

will recursively synchronize belief formulas from the leaf agent KBs upward, so that

for any new inference F made in an arbitrary agent KB, bel(Agent, “F”) will be

instantiated in the larger KB that is modeling Agent. One traversal down to the

leaves followed by a traversal back up to the root is sufficient to sync all agent beliefs

across KB regions. After synchronization, the contents of each new clause buffer are

inserted into their respective KB.

In addition to the synchronization which occurs across timesteps as new in-

ferences are made, there is also a secondary form of synchronization that arises

when a formula with a downward link become distrusted. Returning to the exam-

ple discussed above, if bel(bob, “p(X)”) has become distrusted, then its downward

link formula of p(X) should not be used to infer new formulas in Bob’s agent KB.

However, p(X) is not considered distrusted itself. In the example, it is the agent

modeling Bob (either Alma, or another agent, itself modeled by either Alma itself,

or another agent model) that distrusts their belief that Bob believes p(X), which is

distinct from this agent believing that Bob himself distrusts p(X). Hence, we use

the status of paused as introduced in section 4.4.1, which stops the creation of new

inferences from p(X). Marking a formula with the paused status also recursively

pauses its children and the formula connected by a downward link. The paused

173

status is revoked by a reinstatement of one of the distrusted formulas that had

prompted recursive pausing (in this case, by a reinstatement of bel(bob, “p(X)”)),

which recursively unpauses the affected formulas.

4.7.3 Effects on ALMA procedures

A subset of the ALMA procedural premise predicates detailed in section 4.5.2.1

have behavior which accounts for the presence of equivalence links. If a formula X

is joined to a formula Y by a downward link, the parents of Y also should be treated

as alternative parents for X (albeit, parents which used a distinct derivation method

involving the agent KB containing Y). The closure of this property also applies, so

that if Y has a downward link to a formula Z, the parents of Z also should serve

as alternative parents for both Y and X. However, this property does not apply

for traversals that begin by following upward links. A procedure executing in the

context of an agent KB means that it is the model of the agent performing this

procedure, and hence the inner model of an agent should not have any access to the

formulas of whoever is modeling it.

Usage of downward links for alternative derivations has an impact on the proce-

dures that check a formula’s derivation. This consists of the pair parents default

and parent non default, and also the trio of ancestor, non ancestor, and

parent. With regard to procedures parents default and parent non default,

a formula is determined to have a non-default derivation if it has a downward link

to a formula with unpaused parents. For the three procedures checking parents or

174

ancestors, an arbitrary X with a downward link to Y will be treated as having the

upward-linked formulas for Y ’s parents as its own parents (and the closure of this

property, recursively).

Finally, distrust and reinstate have effects as described above for pausing or

unpausing formulas connected by downward links. Further, the distrust procedure

used on an arbitrary X with a downward link to Y will also distrust the upward-

linked formulas for Y ’s children, which are to be treated as children of X (as well

as the closure of this property, recursively).

4.8 Comparison with the prior reasoner

Lastly, we compare ALMA 2.0 to the prior reasoner, ALMA 1.0. Notable

deficiencies in ALMA 1.0 rendered it unsuitable for further research development.

However, it nevertheless gave useful insights and behavior specification to learn

from.

4.8.1 Deficiencies in ALMA 1.0

ALMA 1.0 represents active logic formulas by mapping into the predicates and

functions of Prolog, and uses Prolog’s built-in unification algorithm. Because ALMA

1.0 has this reliance on Prolog’s logical primitives and unification, deeper changes to

the terms, structure, and inference in active logic are prevented, since none of these

are managed in data structures or code of the reasoner itself. The present work

crucially required introducing new terms into the language and altering unification

175

that inference can make use of these new terms, among other substantial differences

in the reasoner. ALMA 1.0 was therefore fundamentally unable to support this

development because of its Prolog foundation.

Significant limitations were also found in the methods of introspection of

ALMA 1.0, which are restricted in their use due to requiring ground arguments

rather than more arbitrary arguments, and that the system further did not track

formulas from prior timesteps of the belief history.

4.8.2 Behavioral overlap

ALMA 2.0 was first created with the goal of obtaining a new active logic rea-

soner that was to be more maintainable than ALMA 1.0, and to use a language

other than Prolog. Despite the flaws of ALMA 1.0, there remains ample litera-

ture describing its behavior (or desired behavior), which was used as a blueprint

for developing its successor. The formal active logic grammar was based on the

grammar used by ALMA 1.0, although parsing infrastructure and formula rewrit-

ing was entirely new by virtue of implementing outside of Prolog. Similarly, the

intended high-level behavior of control via commands and the specification of in-

ference methods (particularly the partitioned approach to backward search) also

were derived from the approach of ALMA 1.0. However, the opacity of the ALMA

1.0 code left determining how to realize these behaviors as problems to be solved

throughout the development of ALMA 2.0.

176

Chapter 5: Applications to commonsense reasoning

5.1 Introduction

ALMA is a platform that is aimed toward supporting general commonsense

reasoning. From the description of ALMA’s architecture, structures, and mecha-

nisms of inference, as detailed in chapter 4, we now move to application of the rea-

soner to some commonsense problems, which also can incorporate quotation terms.

In particular, ALMA is applied to a series of existing commonsense reasoning prob-

lems from the literature. Importantly, the novel combination of active logic with

quotation terms, as implemented in ALMA, allows for solving these problems in

novel settings and versions. The development will get complicated, but this seems

a necessary aspect of practical commonsense reasoning.1

1 While a source of some of the complexity is due to time-based reasoning, to ignore using a time-
based approach would lose a huge amount of essential reasoning capabilities, as we had discussed
in chapter 1. We argue that solving commonsense problems such as this chapter addresses, without
active logic, via an alternative formal mechanism that is nevertheless time-sensitive, would bring
up similar issues — particularly if the alternative has similar purposes to active logic such as
avoiding omniscience and other issues of external logic.

177

5.2 Default reasoning with nested beliefs

Reasoning on the basis of default assumptions is widely regarded as essential

for an agent with wide-ranging reasoning abilities. In some sense, nearly any formula

in ALMA may be considered a default belief, since the formula is not an ironclad

belief, but rather might become distrusted or otherwise be overturned at a later

timestep.2 However, there is also a form of default reasoning in which the conclusions

of certain implications are specifically represented as default conclusions. That is,

a particular formula might be known to be a default conclusion, by virtue of having

been inferred from an implication that is represented as a default rule. The ability

to determine whether a formula might be considered a default belief can be quite

useful. Depending on the belief set, it may be the case that a default formula is

more likely to be overturned, or it might alternatively be the case that when an

inconsistency arises between a default and a non-default formula, a reinstatement

of the latter is preferred due to it not allowing exceptions as the default does.

Traditional approaches commonly either center the entire theory around de-

fault rules, or, if this is not the case, introduce a new default operator which is

distinct from the standard implication operator, to indicate making a default con-

clusion [52, 78]. However, while ALMA largely follows a default-based approach, it

does so in an evolving time setting. As the means of representing default implication

formulas in ALMA, we use quotation terms within additional premises, which take

2 However, some counterexamples are formulas such as now, or examples of introspection. Al-
though it is possible that an agent may be mistaken regarding these in the most general case —
such as by not knowing the correct time, or having a faulty clock — we don’t deal with these cases
in the present work, and assume these formulas to be correct.

178

the role of ensuring that any justification for a default conclusion is met.

To introduce this, we return to an earlier motivating scenario: that of birds

flying. The following is a non-default formula expressing that all birds fly:

bird(B)→ flies(B) (5.1)

Yet not all birds fly — although typically an arbitrary bird does, unless it happens

to belong to a category that is an exception to the rule. However, this intuition

about the flight of typical birds is not reflected in formula 5.1. What is desired is

inferring, on the basis of a lack of contrary information, that a bird flies. This is a

classic example of a default rule.

There exists a span of approaches of how formula 5.1 might be repaired and

fleshed out into such a default, thereby fixing its mistake of expressing that all

birds fly. Reiter’s approach to default logic relies on an added condition that it

is consistent to assume the conclusion (i.e., that birds fly) [78]. Levesque uses a

logic of “only-knowing” based upon modal operators for both belief and indicating

that only particular formulas are believed [44]. McCarthy’s circumscription is in

between the above two, and doesn’t prove consistency but captures something close,

in attempting to minimize abnormality with respect to flying [52]. Finally, the

last of methods we consider is basing a bird flying on a lack of present knowledge

that it doesn’t fly. This was employed in ALMA 1.0 examples from Purang, using

negative introspection. Specific to the present incarnation of ALMA, the following

is a formulation of how the system might conclude that a bird flies, which was

presented in chapter 3 in developing the syntax of quotation:

bird(X) ∧ neg int(“¬flies(`X)”)
f→ flies(X) (5.2)

179

Here, negative introspection checks that the ALMA KB does not include the belief

that a particular bird doesn’t fly, rather than checking a condition reflecting an

exception. Due to our focus on internal methods for an agent, the consultation

by an agent of its belief set for negative introspection is attractive, in contrast to

more external approaches based on provability or consistency. However, formula

5.2 ideally should better capture our intuitions that a bird can fly when it isn’t

abnormal in a capacity that affects the ability to fly.

Thus, we argue for a representation that still devises default rules as deter-

mined on the basis of present knowledge, yet bases its extra premise upon abnor-

mality. Although we do not argue for using circumscription itself, the following is

an example of a formalism is inspired by McCarthy’s representation of abnormality:

bird(X) ∧ ¬abnormal(aspect2(X))→ flies(X) (5.3)

Here the abnormal predicate of the second premise indicates that the bird in ques-

tion is abnormal with respect to a particular aspect denoted by a unique function,

aspect2. A problem with this kind of approach is that the relation of aspect2

to birds and to flying is not made clear outside of the context of this implication

that connects all three. Additionally, it would become unwieldy if introducing a

specialized function symbol were necessary for each aspect that might be abnormal

for some object with respect to a property.

Active logic with quotation allows us to express such a relation more effi-

ciently, without a large class of functions for abnormality, and also computationally

efficiently by simply scanning its KB rather than executing some larger procedure.

Let us consider for this example that Tweety is a specific bird, and cannot fly due

180

to being a penguin. What is desired is expressing a formula much like the following:

abnormal(tweety, bird, “¬flies(tweety)”) (5.4)

That is, this ternary predicate for abnormality expresses that, for a particular ob-

ject in question (e.g., tweety), this object is abnormal with respect to a property

(e.g., being a bird), due to a specific failure given in a quotation term (e.g., the

nested formula expressing that tweety does not fly, by virtue of being a penguin).

This concept of using quotation to represent a schema for abnormality of the form

abnormal(Object, Property, Failure) is quite powerful, and allows moving past

the usage of aspects as employed by McCarthy, to instead make use of fairly gen-

eral predicate expressions for abnormality that additionally are in line with time-

sensitive commonsense reasoning. We use negative introspection with an argument

of a quoted abnormal literal, which does not require a litany of explicit literals. In

these cases, the final argument to Failure will be a quoted formula that typically

expresses the negation of the property concluded as the consequent of the default

formula.

There is one additional detail to be addressed as part of the means of abnormal-

ity representation with quotation. The second argument for an abnormality literal

indicates that the object (e.g., tweety) is abnormal with regard to a property (e.g.,

bird), due to a failure (e.g., ¬flies(tweety)). For each constant used to name such

a property, there also must exist a corresponding predicate expression, denoting the

fact of an object having this property (e.g., bird(X) in the running example). As we

utilize abnormality formulas, it is desired that the symbols for relating an object to

a property be made available to quantify over — yet the system of active logic with

181

quotation cannot quantify over predicate symbols. In several of the commonsense

example domains ahead, we therefore rewrite a group of relations via changing the

predicate symbol to the newly introduced symbol rel, and shifting the original sym-

bol for a property to now occur as the first constant argument to rel. We formalize

this as follows: to rewrite a N-ary predicate expression prop(A, A, . . . , An−), we

change this to the (N+1)-ary predicate expression rel(Prop,A, A, . . . , An−).

Applying this to a specific example, we consider a formula that rewrites a

non-default version of the rule for birds flying:

rel(bird, B)
f→ rel(flies, B) (5.5)

The intended formulation of this as a default rule (5.8 below) thus adds the addi-

tional neg int premise with a quotation term containing a nested abnormal literal,

in the way described above, in which the reason for abnormality is the bird not flying.

For generality of negative introspection, inside the quotation term, quasi-quotation

marks precede the variables representing birds, so that they are fully-escaping.

rel(bird, B) ∧ neg int(“abnormal(`B, bird, “¬rel(flies, ``B)”)”)

f→ rel(flies, B) (5.6)

Here, 5.4 would be one such example of how a bird might be abnormal.

Thus, the following formula attributes a property to an object if it is of a

particular kind — a far more generalizated formulation of the kind of formula 5.5.

This implication is not a default rule.

rel(Kind, Obj)
f→ rel(Prop, Obj) (5.7)

And finally, the corresponding default formulation is created by adding in a gener-

182

alized negative introspection argument, yielding the following:

rel(Kind, Obj) ∧ neg int(“abnormal(`Obj, `Kind, “¬rel(``Prop, ``Obj)”)”)

f→ rel(Prop, Obj) (5.8)

This generalized formula makes clearer that, as we use the abnormal predicate in

the present work, it can be determined whether an object that is abnormal with

respect to a property has or lacks the property, based on whether the last argument

to abnormal contains a positive or negative formula quoted formula. And likewise,

any object which is normal with respect to the property necessarily must then have

the negation apply.

Having developed this form of representing default reasoning in ALMA, which

was aided by the use of quotation terms, we next turn to a series of particular case

studies where we apply such active logic default formulas.

5.2.1 Nested defaults case study

Fahlman [23] identified the need for a knowledge-based system to handle a

series of nested default rules, where each more-specialized case contradicts more

general knowledge. Fahlman gave the specific example:

1. A mollusk typically is a shell-bearer.

2. A cephalopod is a mollusk, but typically is not a shell-bearer.

3. A nautilus is a cephalopod, but typically is a shell-bearer.

4. A naked nautilus is a nautilus but typically is not a shell-bearer.

183

Traditional nonmonotonic reasoning does not deal with actually undoing conclusions

over an episode of reasoning. For example, if a particular animal is simply known

to be a nautilus, then a traditional approach would conclude that it is a shell-

bearer. But if the reasoning occurs over time, if a creature is first learned to be

a cephalopod, and later the belief is acquired that this creature is a nautilus as

well, then the above rules lead to a contradiction regarding whether the creature is

a shell-bearer or not. Ideally, this should be repaired by giving up the belief the

creature is not a shell-bearer. Active logic’s handling of direct contradictions allows

reasoning to proceed even if direct inconsistencies arise. Then, by using nesting to

refer to the contradictory beliefs, reinstatements can be made to serve as intended

contradiction repairs.

We present solutions to a series of problems centered around reasoning with for-

mulas for interacting defaults, here and in later actions, based initially on Fahlman’s

problem of reasoning with mollusk categories in an ontology. Our solutions extend

the scope of this problem in several ways. First, we consider how ontology for-

mulas that originally are not defaults might be revised to be updated into default

formulas in real time. For instance, the KB will begin with a non-default formula

expressing that “a mollusk is a shell-bearer,” without allowing for any exception.

In this section, through a pair of examples, we develop axioms that can make these

revisions into defaults. Second, we devise axioms to appropriately reinstate con-

tradictand formulas, when contradictions have arisen due to the lack of defaults.

Third, additional axioms for a separate more complex ontology are also developed

in section 5.2.2, which remain compatible with examples utilizing the mollusk ontol-

184

ogy. Fourth, in section 5.2.4, we apply the combined set of default reasoning axioms

to develop a range of examples of varying complexity, involving a variety of the

temporal orderings for acquiring knowledge about individuals in both ontologies.

Our set of axioms also pervasively uses quotation terms and quasi-quotation terms,

further demonstrating the usefulness of these features.

5.2.1.1 Initial mollusk ontology

We begin with the following ALMA axiom set, which encodes the non-default

form of knowledge about the categories of mollusks:

rel(is a, cephalopod, mollusk) (5.9)

rel(is a, nautilus, cephalopod) (5.10)

rel(is a, naked nautilus, nautilus) (5.11)

rel(mollusk, X)
f→ rel(shell bearer, X) (5.12)

rel(cephalopod, X)
f→ ¬rel(shell bearer, X) (5.13)

rel(nautilus, X)
f→ rel(shell bearer, X) (5.14)

rel(naked nautilus, X)
f→ ¬rel(shell bearer, X) (5.15)

These formulas express that there exists an ontology of a series of progressively

narrower categories of mollusks: a cephalopod as a specialized kind of mollusk, a

nautilus as a specialized kind of cephalopod, and a naked nautilus as a specialized

kind of nautilus. Additionally, formulas 5.12–5.15 express the status of these groups

as being a shell-bearer or not, as in the numbered items above from Fahlman.

We also include the following four formulas. The first pair are necessary to

185

make use of the ontology, while the latter are more general information for the

ALMA agent to use.

rel(is a, X, Y) ∧ rel(is a, Y, Z)
f→ rel(is a, X, Z) (5.16)

rel(is a, A, B) ∧ rel(A, X)
f→ rel(B, X) (5.17)

obs(X)
f→ true(X) (5.18)

abnormal(Obj, Kind, Failure)
f→ true(Failure) (5.19)

Formula 5.16 establishes the transitivity of the is a relation, and formula 5.17

establishes that relations applying to a smaller ontology category will transfer to a

larger one that contains it. Finally, formulas 5.18 and 5.19 express that any formula

indicated as an observation is believed to be true, and a formula provided in a

quotation term to abnormal, as a reason for why the object fails to be normal,

should be believed to be true as well.

From this starting belief set, we developed additional axioms as became nec-

essary for the correct handling varying sets of mollusks as inputs, to obtain the

intended final beliefs. Next, we describe a series of examples as motivating exam-

ples for the axiom expansions. The discussion of examples in the subsequent section

is at a high level, without exhaustively providing each detail of ALMA inferences per

example. However, we also provide full traces for ALMA executing these examples,

which can be found in the GitHub repository for the mollusk, vehicle, and combined

domains, respectively.

186

https://github.com/mclumd/alma-2.0/tree/master/demo/default/mollusk/sample-log
https://github.com/mclumd/alma-2.0/tree/master/demo/default/car/sample-log
https://github.com/mclumd/alma-2.0/tree/master/demo/default/car-mollusk/sample-log

5.2.1.2 First example: cephalopod as a counterexample

The very first example we consider begins with information about a cephalopod

arriving, in a form such as the following:

rel(cephalopod, steve) (5.20)

For simplicity, we assume that this information arrived as an observation that the

agent has made, and so the belief in Steve being a cephalopod is considered beyond

reproach. After one timestep, ¬rel(shell bearer, steve) is inferred together with

formula 5.13. Additionally, the belief that rel(mollusk, steve) is also inferred from

formulas 5.9 (that a cephalopod is a mollusk), 5.17 (is-a relations transferring),

and 5.20. After one more timestep, Steve also being a mollusk in combination

with formula 5.12 produces that rel(shell bearer, steve). Thus the knowledge

base now attributes both having and not having a shell to Steve, which is a direct

inconsistency.

At this point, it is evident that one problem that led to the contradiction is that

formula 5.12 is an absolute formula, rather than a default formula, and observing

Steve has provided a counterexample. Thus, formula 5.12 should also be updated

to amend it into a default formula. We achieve this effect through the following new

axiom, which is lengthy due to being designed for generality:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

rel(Kind, Obj) ∧ rel(is a, Kind spec, Kind)∧

parent(“rel(`Kind, O)
f→ rel(`Pred, O)”, “rel(`Pred, `Obj)”, T)∧

187

parent(“rel(`Kind spec, `Obj)”, “¬rel(`Pred, `Obj)”, T)

f→

update(“rel(`Kind, Ob)
f→ rel(`Pred, Ob)”,

“rel(`Kind, Ob) ∧ neg int(“abnormal(`Ob, ``Kind, “¬rel(```Pred, ``Ob)”)”)

f→ rel(`Pred, Ob)”)

∧

rel(Kind, Ab Obj) ∧ ¬rel(Pred, Ab Obj)

f→ abnormal(Ab Obj, Kind, “¬rel(`Pred, `Ab Obj)”) (5.21)

The first premise of formula 5.21 requires two formulas presently contradicting,

where the pair of contradictands has the structure of unary predicates (as expressed

by the rel predicate, i.e., rel(Pred, Obj)). To ensure that these unary relations are

specific to ontology-related reasoning, the formula has additional premises requiring

that the Obj arguments of the contradicting formulas be inferred from parent formu-

las rel(Kind, Obj) and rel(Kind spec, Obj), for which rel(is a, Kind spec, Kind)

expresses the hierarchical relationship of Kind spec as a more specialized category

of Kind. In the running example, these premises are satisfied as Obj is bound to

steve, Kind to mollusk, and Kind spec to cephalopod (as hierarchically related

by formula 5.9).

Furthermore, formula 5.21 requires that the positive contradictand has a non-

default implication as a parent, of the form rel(`Kind, Obj)
f→ rel(`Pred, Obj)

(e.g., 5.12 in the example). Thus, an English summation of the premises is that the

negative contradictand provides evidence that the narrower ontology category is a

188

counterexample to this non-default parent formula, which states that for an object

Obj in the wider category Kind, a positive Pred relation follows.

Two conclusion formulas follow as a result of meeting the premises of formula

5.21. The first conclusion is an update literal (identified as a procedural atomic

predicate in section 4.5.4), which updates the non-default implication into a default

formula. In this default formula, negative introspection must indicate the lack of

Ob being abnormal for type Kind with the reason that ¬rel(Pred, Ob) holds for

particular Pred and Ob in question. Thus in the case of Steve, formula 5.12 is

updated into the following:

rel(mollusk, Ob)∧

neg int(“abnormal(`Ob, mollusk, “¬rel(shell bearer, ``Ob)”)”)

f→ rel(shell bearer, Ob) (5.22)

Note that instances of Ob in formula 5.21 are not fully-escaping variables, but at one

effective level of quotation, thereby ensuring that 5.22 quantifies over any possible

constant that binds to Ob that represent be a mollusk. The second conclusion from

formula 5.21 is an implication that gives the means by which other objects can be

inferred to be abnormal, with respect to the predicates that have been used. For

instance, in the example of Steve, this second conclusion is the following:

rel(mollusk, Ab Obj) ∧ ¬rel(shell bearer, Ab Obj)

f→ abnormal(Ab Obj, mollusk, “¬rel(shell bearer, `Ab Obj)”) (5.23)

An object that is known to be a mollusk and which does not have a shell is thus

concluded to be abnormal as a mollusk, with respect to being a shell-bearer, for

189

this very reason of lacking one. As is the case with formula 5.22, this formula

is specialized to particular predicates (i.e., mollusk and shell bearer) in places

where formula 5.21 had fully-escaping variables. Thus, formula 5.21 enables the

desired revision of a piece of ALMA ontology knowledge into a default rule (e.g.,

formula 5.22), and additionally instantiates another belief that allows the conclusion

of objects being abnormal (e.g., formula 5.23).

However, in the example, the newly inferred formulas 5.22 and 5.23 are not

sufficient to obtain the desired KB of beliefs about Steve. The existing contradiction

between the rel(shell bearer, steve) and ¬rel(shell bearer, steve) remains,

and hence it cannot yet be inferred from formula 5.23 that Steve is an abnormal

mollusk. Furthermore, in the absence of the abnormality formula, the negative in-

trospection premise of formula 5.22 will evaluate to true, and after another timestep

the system will once again infer that rel(shell bearer, steve). There is thus a

need for an axiom that produces a reinstatement, when a direct contradiction occurs

due to conflicting ontology categories. We introduce the following axiom for this

purpose:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

neg int(“obs(“rel(``Pred, ``Obj)”)”)∧

rel(Kind, Obj) ∧ rel(is a, Kind, Kind gen)∧

parent(“rel(`Kind, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

parent(“rel(`Kind gen, `Obj)”, “rel(`Pred, `Obj)”, T)∧

non ancestor(“rel(is a, `Kind spec, `Kind)”, “rel(`Kind, `Obj)”, T)

190

f→ reinstate(“¬rel(`Pred, `Obj)”, T) (5.24)

This formula reinstates the negative contradictand under the following conditions:

the contradictand must have a parent formula that the object is of type Kind, where

the positive contradictand has a parent of more general type Kind gen (related to

Kind by an is a relation), and where there does not exist a more specialized on-

tology category as a parent for the belief that the object is of type Kind. Therefore,

this formula can be summarized as reinstating the negative contradictand when it

has been inferred from the narrowest ontology category out of the two contradic-

tands. This encodes one of the major intuitions behind why Steve lacking a shell is

given credence: a narrower ontology category might provide an exception to a rule

that applies differently to a broader category in the hierarchy.

Formula 5.24 allows for restoring the negated formula which had been a con-

tradictand. However, due to the timing of ALMA’s inferences across timesteps,

there are some additional steps in the restoration. As we have described, in the

running example, the default formula will infer rel(shell bearer, steve) from

5.22. That inference occurs at the same timestep as either reinstatement formula

places ¬rel(shell bearer, steve) back into the KB, immediately creating a sec-

ond direct contradiction that must be handled. Yet derivation from the narrowest

ontology category, the condition upon which formula 5.24 makes a reinstatement,

still applies to the negative contradictand, and thus reinstates it once more after an

additional timestep.3 After handling the second contradiction, one timestep later a

3 The positive contradictand will not be inferred once again from 5.22, due to ALMA’s behavior
for new inferences, for which the same formulas that have already expanded a forward-if prospect
will not duplicate an inference with reuse at any later timestep.

191

reinstated ¬rel(shell bearer, steve) will be used as a premise for formula 5.23,

to infer abnormal(steve, mollusk, “¬rel(shell bearer, steve)”). Hence, the cor-

rect conclusions have been made about Steve lacking a shell, and that he is an

abnormal mollusk, in addition to the formula 5.23 and the default formula 5.22.

At this point, the system idles without further contradictions appearing regarding

Steve.

5.2.1.3 Second example: counterexample from observation

We next consider a variation of the first example, in which information about

the shell-bearer status of a mollusk arrives directly as observations, as indicated by

the obs predicate:

obs(“¬rel(shell bearer, bob)”) (5.25)

obs(“rel(mollusk, bob)”) (5.26)

By formula 5.18, the quoted formulas in this pair will inferred as true by Alma, and

then inferred to be direct beliefs by the inference rule for true. Subsequently, a con-

tradiction arises between rel(shell bearer, bob) (derived from formula 5.12) and

¬rel(shell bearer, bob), much like the contradiction arises in the first example.

It was observed that Bob lacks a shell, once again providing a counterexample

to the belief expressed in formula 5.12 that all mollusks have shells. However, the

negative contradictand is here obtained not from an ontology, but rather from an

observation, and in fact there is not a belief in the KB to indicate whether Bob is

a subtype of mollusk or not. Formula 5.21 hence will not apply, and an additional

192

axiom is necessary to weaken formula 5.12 when the evidence against the non-default

implication has come from observation. We introduce the following axiom to do so:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

obs(“¬rel(`Pred, `Obj)”) ∧ rel(Kind, Obj)∧

parent(“rel(`Kind, O)
f→ rel(`Pred, O)”, “rel(`Pred, `Obj)”, T)

f→

update(“rel(`Kind, Ob)
f→ rel(`Pred, Ob)”,

“rel(`Kind, Ob) ∧ neg int(“abnormal(`Ob, ``Kind, “¬rel(```Pred, ``Ob)”)”)

f→ rel(`Pred, Ob)”)

∧

rel(Kind, Ab Obj) ∧ ¬rel(Pred, Ab Obj)

f→ abnormal(Ab Obj, Kind, “¬rel(`Pred, `Ab Obj)”) (5.27)

This axiom is quite similar to formula 5.21. In fact, it has an identical pair of

conclusions: the first which updates a non-default implication with a conclusion

matching the positive contradictand into a default, and the second which gives the

means to conclude that certain objects (such as the negative contradictand’s object)

are abnormal. Summarized in English, its premises also check that the positive

contradictand has such an implication parent in the same manner that formula 5.21

does, although in the case of this formula, the condition which is checked regarding

the negative contradictand is that it was an argument to an obs formula. Thus,

formula 5.27 will produce exactly the same conclusions of formulas 5.22 and 5.23 as

the earlier formula 5.21, albeit after checking different conditions.

193

Additionally, if the negative contradictand was directly observed by the sys-

tem, then formula 5.24 will not apply, since Bob lacking a shell was not inferred from

Bob belonging to a specialized category of mollusk. A new reinstatement method

is needed to restore the belief that obs(“rel(mollusk, bob)”). The following more

concise formula can reinstate this contradictand, on the basis of the Alma agent

placing a high degree of trust in its observation system:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

obs(“¬rel(`Pred, `Obj)”)

f→ reinstate(“¬rel(`Pred, `Obj)”, T) (5.28)

Formula 5.28 allows for restoring the negated formula which had been a con-

tradictand. Then in this running example, it restores the inference that Bob is not

a shell bearer, and subsequently ALMA will further infer that Bob is abnormal as

a mollusk, with respect to not having a shell.

In this section, and the preceding section 5.2.1.2, we introduced four new ax-

ioms (i.e., formulas 5.21, 5.24, 5.27, and 5.28) for default reasoning, which can revise

beliefs into defaults, enable implications for abnormality, and reinstate contradic-

tions. Next, in section 5.2.2 we turn to a second category of examples, for which we

introduce additional default reasoning axioms. These axioms are also compatible

with those developed above; we ultimately combine both sets, as well as their match-

ing counterparts presented in the section 5.2.3, for a larger corpus of examples, as

presented in section 5.2.4.

194

5.2.2 Interacting defaults case study

We next consider another category of commonsense reasoning with default

formulas, which is distinct from the use of nested ontology categories in the mollusk

case study based on Fahlman’s example. Here, a natural-language summarization

of the case study’s high-level knowledge is the following:

1. A car typically is powered.

2. A gas tank car that is fueled is typically powered.

3. A gas tank car that is not fueled is typically not powered.

4. An electric car that is charged is typically powered.

Yet once again, as with the mollusk KB, we consider a starting KB that does not

use default knowledge (and rather, expresses non-default formulas knowledge such

as “a car is powered”). Although gas tank cars and electric are both subcategories

of the broader ontology category of car, there is not a subset relationship between

the two subtypes, as occurred in the mollusk case study. Hence, novel axioms will be

introduced for handling default reasoning in which ontology subcategories are not

fully ordered by is-a relations. Following the first few motivating examples below, in

section 5.2.4, the axioms are tested on a larger set of examples of varying complexity

and temporal ordering.

195

5.2.2.1 Initial car ontology

We begin with the following ALMA axiom set, which encodes the non-default

form of knowledge about the categories of cars, and when they are powered:

rel(is a, gas tank car, car) (5.29)

rel(is a, electric car, car) (5.30)

rel(car, X)
f→ rel(powered, X) (5.31)

rel(gas tank car, X) ∧ rel(fueled, X)
f→ rel(powered, X) (5.32)

rel(gas tank car, X) ∧ ¬rel(fueled, X)
f→ ¬rel(powered, X) (5.33)

rel(electric car, X) ∧ rel(charged, X)
f→ rel(powered, X) (5.34)

These formulas express that gas tank cars and electric cars are narrower categories

of the broader class of car, as well as when they are powered. Formula 5.31 appears

a bit naive in indicating that all cars are powered; yet this might be a belief formed

by an agent that has not yet seen any example of a car that is not powered — and,

in the examples developed, the belief will be revised to become more realistic in

allowing for exceptions. We also repeat the following four formulas, as introduced

in section 5.2.1.1:

rel(is a, X, Y) ∧ rel(is a, Y, Z)
f→ rel(is a, X, Z) (5.16 revisited)

rel(is a, A, B) ∧ rel(A, X)
f→ rel(B, X) (5.17 revisited)

obs(X)
f→ true(X) (5.18 revisited)

abnormal(Obj, Kind, Failure)
f→ true(Failure) (5.19 revisited)

196

5.2.2.2 First example: resolving conflicting categories

The first example in the vehicle domain involves information about a car that

is both an electric car and also has a gas tank, as represented with the following:

rel(electric car, prius) (5.35)

rel(gas tank car, prius) (5.36)

rel(charged, prius) (5.37)

¬rel(fueled, prius) (5.38)

After one timestep, ALMA will have inferred rel(car, prius) (from formu-

las 5.29, 5.36, and 5.17, as well as a second derivation from 5.30, 5.35, and 5.17),

¬rel(powered, prius) (from formulas 5.36, 5.38, and 5.33), and rel(powered, prius)

(from 5.35, 5.37, and 5.34). At the next timestep, the direct contradiction between

beliefs about a Prius being powered or not is detected.

Intuitively, we can see that the desired belief is that of a Prius actually being

powered, due to its electric charge. Therefore, the positive contradictand should

be reinstated, formula 5.33 should be weakened into a default rule, and the Prius

should be able to be concluded as abnormal as a gas tank car. We can see that

in this example, the axioms developed so far for updating a non-default formula

into a default are insufficient. The Prius was not a subject of direct observation in

this example, and so formula 5.27 does not apply; furthermore, usage of a narrowest

ontology category cannot justify the desired changes. In fact, 5.24 instead drives the

reinstatement of the negative contradictand, which must also be addressed. Formula

5.21 also does not apply in this case, since it is dependent upon non-default formulas

197

having a single premise, unlike the formulas seen in this category of example.

We consider further the motivation behind why formula 5.33 should be weak-

ened into a default rule. This formula expresses that a car with a gas tank and a

lack of fuel leads to the conclusion that this car is not powered, and in combination

with 5.32, expresses that a car is powered precisely when it is fueled. However,

beyond the related pair of formulas 5.32 and 5.33, there is also the formula 5.34

that presents an additional way that a car might be powered. In this way, formula

5.34 gives an exception to 5.33, since a car that has an empty gas tank but has an

electric charge will remain powered. This intuition points the way toward how an

update to a non-default fromula may be recognized in problems such as this.

We develop the following general axiom, which also serves the purpose of

modifying domain-specific formulas like 5.33 into a default:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

rel(Kind a, Obj) ∧ ¬rel(Prop a, Obj) ∧ rel(Kind b, Obj) ∧ rel(Prop b, Obj)∧

parent(“rel(`Kind a, O) ∧ ¬rel(`Prop a, O)
f→ ¬rel(`Pred, O)”,

“¬rel(`Pred, `Obj)”, T)∧

pos int(“rel(`Kind a, O) ∧ rel(`Prop a, O)
f→ rel(`Pred, O)”)∧

parent(“rel(`Kind b, O) ∧ rel(`Prop b, O)
f→ rel(`Pred, O)”,

“rel(`Pred, `Obj)”, T)∧

not equal(“rel(`Kind a, O) ∧ rel(`Prop a, O)
f→ rel(`Pred, O)”,

“rel(`Kind b, O) ∧ rel(`Prop b, O)
f→ rel(`Pred, O)”)

198

f→

update(“rel(`Kind a, Ob) ∧ ¬rel(`Prop a, Ob)
f→ ¬rel(`Pred, Ob)”,

“rel(`Kind a, Ob) ∧ ¬rel(`Prop a, Ob)∧

neg int(“abnormal(`Ob, ``Kind a, “rel(```Pred, ``Ob)”)”)

f→ ¬rel(`Pred, Ob)”)

∧ reinstate(“rel(`Pred, `Obj)”, T)∧

rel(Kind a, Ab Obj) ∧ ¬rel(Prop a, Ab Obj) ∧ rel(Pred, Ab Obj)

f→ abnormal(Ab Obj, Kind a, “rel(`Pred, `Ab Obj)”) (5.39)

First, the axiom must verify the typical beginning of an ongoing contradiction,

and after this premise, must check that the object Obj is of types Kind a and

Kind b. From here, the axiom checks the existence of the pair of formulas which

appear in quotes as “rel(`Kind a, O) ∧ ¬rel(`Prop a, O)
f→ ¬rel(`Pred, O)” and

“rel(`Kind a, O) ∧ rel(`Prop a, O)
f→ rel(`Pred, O)”, for which the former is

a parent of the negative contradictand. In the running example, the bindings are

made of Kind a to gas tank car, Prop a to fueled, and Pred to powered. Next,

another premise checks whether there exists a parent formula of the positive contra-

dictand of the form “rel(`Kind b, O) ∧ rel(`Prop b, O)
f→ rel(`Pred, O)”, which

provides an alternative way for the positive rel(`Pred, O) to be obtained for the

object (for which in the example Kind b is bound to electric car, and Prop b

is bound to charged — a car that is electric can also be powered if it is charged).

The final premise verifies that the pair of formulas with Kind a and Prop a versus

Kind b and Prop b are distinct.

199

On this basis, the negative contradictand’s parent is updated into a default,

the positive contradictand is reinstated, and a new implication is inferred so that

negative literals may be obtained as abnormal with respect to the relation Pred

in question. For the Prius, the domain-specific formula 5.33 is updated into the

following:

rel(gas tank car, Ob) ∧ ¬rel(fueled, Ob)∧

neg int(“abnormal(`Ob, gas tank car, “¬rel(powered, ``Ob)”)”)

f→ ¬rel(powered, Ob) (5.40)

This example also makes the reinstatement of the following:

rel(powered, prius) (5.41)

Lastly, the third conclusion is the following:

rel(gas tank car, Ab Obj) ∧ ¬rel(fueled, Ab Obj) ∧ rel(powered, Ab Obj)

f→ abnormal(Ab Obj, gas tank car, “¬rel(powered, `Ab Obj)”) (5.42)

This gives the means by which other objects can be inferred to be abnormal as a

gas tank car, with respect to being powered despite a lack of fuel.

Yet, as we noted above, simultaneously formula 5.24 drives the reinstatement

of the negative contradictand. The pair of conflicting reinstatements will arrive at

the same timestep. As a general principle, we do not consider it to be an issue that

conflicting reinstatements might arise. We expect that a broadly capable system

will have many approaches to handling different contradictions that might appear

in its KB, and then realistically a subset of these contradiction-handling formulas

will inevitably occasionally conflict. An agent would then be best-served by choosing

200

among a set of inconsistent reinstatement formulas when this happens. As noted

in section 4.5.4, ALMA also has an inference rule for detecting a contradiction

between reinstate formulas. From this, the system is able to catch the conflicting

reinstatements in this example for whether the Prius is powered. To handle this

higher-level contradiction between the reinstate beliefs, we introduce the following

formula:

contradicting(“reinstate(`X, `Time)”, “reinstate(`Y, `Time)”, T)∧

parent(“rel(is a, `Kind, `Kind gen)”, “reinstate(`Y, `Time)”, T)

f→ reinstate(“reinstate(`X, `Time)”, T) (5.43)

This formula expresses the principle that a reinstate derived from ontology knowl-

edge, such as a reinstate from formula 5.24, can be secondary to another form of

reinstatement, such as from formula 5.39. As a result, the contradiction between

conflicting reinstatements for whether the Prius is powered or not will be resolved

by inferring the following:

reinstate(“reinstate(“rel(powered, prius)”, 2)”, 3) (5.44)

If the contradictory reinstatements were inferred at timestep 2, this formula re-

instates the desired reinstatement, which itself reinstates the appropriate formula

about the Prius.

5.2.2.3 Second example: repetition after an update

The previous example, using formula 5.39, made a reinstatement of the literal

for a Prius being powered as a conclusion alongside the update to a non-default

201

formula. In a situation where a second example of an electric car arrives after

the earlier example, the premises of formula 5.39 will no longer be satisfied, due to

being dependent on a non-default formula. We therefore also introduce the following

axiom, which serves to enable the appropriate reinstatement in many cases such as

this where a new default formula such as formula 5.40 has already been instantiated:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

parents defaults(“¬rel(`Pred, `Obj)”, T)

parent non default(“rel(`Pred, `Obj)”, T)

f→ reinstate(“rel(`Pred, `Obj)”, T) (5.45)

That is, if a contradiction occurs for which all derivations of one contradictands in-

clude a default parent formula, and the other contradictand has a derivation without

a default formula, than the latter is reinstated, due to having been inferred from at

least one source that is presently considered an absolute formula.

5.2.3 Counterpart axioms

Above, we developed some lengthy axioms for commonsense default reasoning,

each of which deals with either updating a non-default formula into a default, or with

reinstating a contradictand, or both. Each axiom from this group was specialized to

target either a positive or a negative case, due to how we can specify formulas within

quotation terms. Thus, each such axiom also has a corresponding counterpart.

For completeness, we provide these counterpart axioms below, along with some

discussion of each such as an example in which they become relevant.

202

To motivate in more detail the first counterpart axiom that we present, we

note that formula 5.21 is based on the negative contradictand providing evidence

for revising a non-default formula into a default. Any pairs of conclusions derived

from it also use a negated formula for determining abnormality (as we also see in

the specific example conclusions 5.22 and 5.23). The set of axioms developed for

default reasoning thus also includes a corresponding axiom that is a counterpart to

5.21, and is instead based around evidence from the positive contradictand:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

rel(Kind, Obj) ∧ rel(is a, Kind spec, Kind)∧

parent(“rel(`Kind, O)
f→ ¬rel(`Pred, O)”, “¬rel(`Pred, `Obj)”, T)∧

parent(“rel(`Kind spec, `Obj)”, “rel(`Pred, `Obj)”, T)

f→

update(“rel(`Kind, Ob)
f→ ¬rel(`Pred, Ob)”,

“rel(`Kind, Ob) ∧ neg int(“abnormal(`Ob, ``Kind, “¬rel(```Pred, ``Ob)”)”)

f→ ¬rel(`Pred, Ob)”)

∧

rel(Kind, Ab Obj) ∧ rel(Pred, Ab Obj)

f→ abnormal(Ab Obj, Kind, “rel(`Pred, `Ab Obj)”) (5.46)

An example utilizing formula 5.46 is when the following information is added

alongside the original cephalopod axiom set of section 5.2.1.2:

rel(nautilus, nate) (5.47)

203

A contradiction will be obtained for whether Nate has a shell or not, due to formula

5.14 indicating that nautiluses have shells, while Nate is also a cephalopod which

formula 5.13 indicates are not shell-bearers. Formula 5.46 will thus allow weakening

5.13 into a default, and concluding an implication determining when a cephalopod is

abnormal as a shell-bearer (that is, an abnormal cephalopod such as Nate actually

has a shell). Similarly, the following is a counterpart to 5.24, which is also employed

in the example with Nate:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

neg int(“obs(“¬rel(``Pred, ``Obj)”)”)∧

rel(Kind, Obj) ∧ rel(is a, Kind, Kind gen)∧

parent(“rel(`Kind, `Obj)”, “rel(`Pred, `Obj)”, T)∧

parent(“rel(`Kind gen, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

non ancestor(“rel(is a, `Kind spec, `Kind)”, “rel(`Kind, `Obj)”, T)

f→ reinstate(“rel(`Pred, `Obj)”, T) (5.48)

In the example, this axiom reinstates the belief that rel(shell bearer, nate).

The following axiom is the counterpart to 5.27, for the alternative case in

which the positive contradictand was a direct observation:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

obs(“rel(`Pred, `Obj)”) ∧ rel(Kind, Obj)∧

parent(“rel(`Kind, O)
f→ ¬rel(`Pred, O)”, “¬rel(`Pred, `Obj)”, T)

f→

204

update(“rel(`Kind, Ob)
f→ ¬rel(`Pred, Ob)”,

“rel(`Kind, Ob) ∧ neg int(“abnormal(`Ob, ``Kind, “rel(```Pred, ``Ob)”)”)

f→ ¬rel(`Pred, Ob)”)

∧

rel(Kind, Ab Obj) ∧ rel(Pred, Ab Obj)

f→ abnormal(Ab Obj, Kind, “rel(`Pred, `Ab Obj)”) (5.49)

And similarly, the following is an alternative to 5.28, which reinstates a positive

contradictand that originated as a direct observation:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

obs(“rel(`Pred, `Obj)”)

f→ reinstate(“rel(`Pred, `Obj)”, T) (5.50)

The following is the counterpart to formula 5.39:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

rel(Kind a, Obj) ∧ rel(Prop a, Obj) ∧ rel(Kind b, Obj) ∧ ¬rel(Prop b, Obj)∧

parent(“rel(`Kind a, O) ∧ rel(`Prop a, O)
f→ rel(`Pred, O)”,

“rel(`Pred, `Obj)”, T)∧

pos int(“rel(`Kind a, O) ∧ ¬rel(`Prop a, O)
f→ ¬rel(`Pred, O)”)∧

parent(“rel(`Kind b, O) ∧ ¬rel(`Prop b, O)
f→ ¬rel(`Pred, O)”,

“¬rel(`Pred, `Obj)”, T)∧

not equal(“rel(`Kind a, O) ∧ ¬rel(`Prop a, O)
f→ ¬rel(`Pred, O)”,

“rel(`Kind b, O) ∧ ¬rel(`Prop b, O)
f→ ¬rel(`Pred, O)”)

205

f→

update(“rel(`Kind a, Ob) ∧ rel(`Prop a, Ob)
f→ rel(`Pred, Ob)”,

“rel(`Kind a, Ob) ∧ rel(`Prop a, Ob)∧

neg int(“abnormal(`Ob, ``Kind a, “¬rel(```Pred, ``Ob)”)”)

f→ rel(`Pred, Ob)”)

∧ reinstate(“¬rel(`Pred, `Obj)”, T)∧

rel(Kind a, Ab Obj) ∧ rel(Prop a, Ab Obj) ∧ ¬rel(Pred, Ab Obj)

f→ abnormal(Ab Obj, Kind a, “¬rel(`Pred, `Ab Obj)”) (5.51)

To see an example which makes use of this axiom, we introduce another axiom for

electric cars:

rel(electric car, X) ∧ ¬rel(charged, X)
f→ ¬rel(powered, X) (5.52)

This new formula, formula 5.34, and formula 5.32 will unify with key premises of

axiom 5.51, and will ultimately update formula 5.34 into a default on the basis that

there is an alternative to an electric gar being powered solely by charge, since it

might also be able to be powered if a gas tank car with fuel. Likewise, this scenario

will produce a contradiction between reinstatements, and this axiom will allow a

resolution in favor of the latter contradictand, as a counterpart to formula 5.43:

contradicting(“reinstate(`X, `Time)”, “reinstate(`Y, `Time)”, T)∧

parent(“rel(is a, `Kind, `Kind gen)”, “reinstate(`X, `Time)”, T)

f→ reinstate(“reinstate(`Y, `Time)”, T) (5.53)

206

Finally, the last counterpart axiom provides a counterpart to formula 5.45:

contradicting(“rel(`Pred, `Obj)”, “¬rel(`Pred, `Obj)”, T)∧

parents defaults(“rel(`Pred, `Obj)”, T)

parent non default(“¬rel(`Pred, `Obj)”, T)

f→ reinstate(“¬rel(`Pred, `Obj)”, T) (5.54)

An example utilizing formula 5.54 is when the following information is added along-

side the original vehicle axiom set of section 5.2.2:

rel(gas tank car, ford) (5.55)

¬rel(fueled, ford) (5.56)

In this example, once formula 5.31 has been updated into a default, the contra-

dictand ¬rel(powered, ford) will be successfully reinstated as the contradictand

obtained from a non-default set of parents.

5.2.4 Example corpus and testing

We now combine the axioms developed in prior sections 5.2.1, 5.2.2, and 5.2.3

for a larger range of examples, which test a representative combination of tem-

poral orderings, both for problems with different mollusks, for problems with dif-

ferent vehicles, and for some problems which combine both mollusk and vehicle

reasoning. The resulting difficulty of a problem varies depending upon these order-

ings. However, the set of axioms that we have developed in the above sections for

meta-reasoning, and most crucially for updating and reinstatement, are able to suc-

cessfully handle all characteristic examples of this category, regardless of temporal

207

ordering.

The additional examples for the mollusk domain fall into the following cate-

gories:

1. Additional basic examples — tests for some simpler cases of examples,

which incrementally expand the first few examples presented above. For instance,

cephalopod-repeat is the same as the example in 5.2.1.2, yet with information of

a second cephalopod entering into the KB a few timesteps later, to demonstrate

that this can be properly handled even when an update is not performed, since an

update was part of the solution in the earlier case. The example nautilus-repeat

likewise makes this check for two examples of a nautilus over time, where the first

nautilus instigates updating, and the second simply uses the updated formulas.

Next, single-specific begins with presentation of a naked nautilus, and then at

successively later timesteps adds in additional knowledge that this same creature is

in the wider ontology categories, in order from nautilus to cephalopod to mollusk.

Yet, each formula for a wider category was updated into a default when obtaining

the creature was naked nautilus, so this example remains effectively quite similar to

the cephalopod case in terms of contradiction-handling and updating. The example

single-specific-obs is very similar to the preceding case, but uses observation

formulas and makes use of the alternative for contradiction-handling and updating

based upon this. The example double specific consists of learning of a naked

nautilus, then later that a separate creature is a cephalopod, and again does its

updating behavior for each mollusk category when the former arrives, and hence

the cephalopod is more easily dealt with here.

208

2. Examples of obtaining by observation — testing the axioms for responding

to contradictions and updating based upon one of the formulas being learned by

observation. In these cases, the contradiction-handling formulas make reinstate-

ments relatively straightforward. The example scenario files for this group are

learn-by-obs, which observes a shell-less mollusk Bob as was described in sec-

tion 5.2.1.3; learn-by-obs2, which observes and handles a shell-less cephalopod;

and learn-by-obs3, which observes and handles a shell-less naked nautilus. We

note that for these examples, two contradictions appear in the course of each exam-

ple. First, there is a contradiction between what is observed and what the ontology

categories say (which for these three examples is that the creatures are all mollusks

expected to have shells). After the first reinstatement of each creature lacking a

shell, a secondary contradiction occurs based on the newly-created default formulas,

due to timing where the abnormality of the creature in question cannot be inferred

before the default rule incorrectly determines it to have a shell (as was also detailed

above, as described in discussion following formula 5.23).

3. Simultaneous updating — Examples in which a group of different kinds of

mollusks are encountered at once, to demonstrate inference chains of updating and

reinstating successfully occurring in parallel, without adverse effects from other on-

tology categories being altered at the same time. The example narrower-together

acquires three creatures that are a cephalopod, a nautilus, and a naked nautilus

examples at same timestep. In tandem, ALMA obtains contradictions for each, up-

dates the respective formulas about shells or their lack for mollusks, cephalopods,

and nautiluses into defaults, reinstates, then again obtains contradictions due to

209

timing of inferring abnormality, and after this, using formulas 5.21 and 5.46, rein-

states the correct formulas, infers the creatures as abnormal, and stops.

In the same way, narrower-together2 has an equivalent process for a group

of mollusk, cephalopod, and nautilus, which makes the cephalopod and mollusk

implications into defaults. We note that a belief in the example mollusk having a

shell is distrusted when its parent implication is updated, but this is re-derived from

the default version shortly thereafter. Similarly, narrower-together3 has a group

of a mollusk, a nautilus, and a naked nautilus, and makes mollusk, cephalopod,

and nautilus implications into defaults — demonstrating that even if a mollusk isn’t

the immediate parent category (as it is not for a nautilus), the formulas still entail

weakening it into a default, due to its original status as a non-default rule specifying

that all in its category have a shell. Lastly, narrower-together4 has a group of a

mollusk, a cephalopod, and a naked nautilus, and succeeds in updating the formulas

for mollusks, cephalopods, and nautiluses, in the same pattern of the other examples

of this group.

4. Narrower categories over time — In contrast to single-specific, learning

extra knowledge that creatures are in narrower ontology categories at successively

later timesteps is a more interesting category of example due to needing to repeatedly

update axioms as new information arrives. In narrower-single, the example begins

with a belief that Steve is a mollusk, and at later timesteps progressively adds that he

is also a cephalopod, nautilus, and naked nautilus, in turn. The sequence of updating

and reinstating, and then producing another contradiction for a narrower category

the timestep after reinstatement, which is resolved in return — which is one of the

210

most common patterns for these examples, thus continues until all categories have

been appropriately updated. The example narrower-later introduces three distinct

animals over time, in the order of cephalopod, then naked nautilus, then nautilus;

narrower-later2 introduces a naked nautilus, then a cephalopod, then a nautilus;

narrower-later3 introduces a cephalopod then a naked nautilus — in each of these,

the steady-state beliefs obtained are what is desired, and the temporal ordering does

not pose an issue for the axioms, even as new animal information arrives while the

earlier inference processes continue.

The additional examples for the vehicle domain fall into the following cate-

gories:

1. Additional basic examples — tests for examples which incrementally ex-

pand the first few examples presented above. The example ford contains a gas

tank car without fuel, and updates formula 5.31 into a default, on the basis of the

non-powered Ford. In non-powered, the input is a gas tank car with an empty

tank, a hybrid with no gas or charge, and an uncharged electric vehicle — which

leads to the expected effect of a lone update to formula 5.31, since the other novel

updating case for the overlapping defaults of cars occurs when there are reasons to

believe a car is driveable. In crossed, the vehicles are two hybrids in which one

has gas but no charge, and the other has a charge but no gas, which ultimately

repairs contradictions by updating the belief that a car is powered and that a gas

tank car without gas isn’t powered. As occurs in the typical case for these exam-

ples, secondary contradictions due to abnormality timing occur and are reinstated

appropriately.

211

2. Electric car examples — testing expansions of the scenario such as in section

5.2.2.2 (as is also encoded in example prius). The variant prius2 tests the same

example but with information originating from observations; prius-double verifies

that a second appearance of an electric car after initial updating also succeeds despite

a different pattern of being corrected. Lastly, prius-later involves one electric car

in which there is a temporal delay between obtaining that there is a car and that it is

an electric car with charge and no gas; which functions as desired despite temporal

delay.

3. Examples with an electric and gas tank car — tests varying combinations

from each of the overlapping ontology groups appearing together. In ford-prius,

the belief set is much like crossed, although the car with fuel is purely gas-powered,

it achieves similar updates and results. A related version is ford-fueled-prius,

identical to the previous example except that the Prius also is fueled; this leads

to an easier solution as a result because this car does not produce a contradiction.

In ford-before-prius, the belief in the electric Prius occurs later in time, while

ford-prius-later works similarly and also doubles up the appearance of these ex-

amples as an additional test, and prius-before-ford intuitively flips the temporal

order of the vehicle pair. In all of these examples, the system reasons to the correct

final belief set, without additional conflict or failure of the update or reinstatement

algorithms to behave as intended in designing them.

And lastly, outside of the two domains tested separately, several additional

examples were used to test that the combined mollusk and vehicle domain can

produce appropriate results without interference between the beliefs used by either

212

group.

Scripting has also been developed to automate the testing of the example

corpus. The formulas specific to each commonsense example are stored in a separate

file, and for each example ALMA executes with input of 1) the base axiom set,

consisting of formulas 5.16–5.19 and the update and reinstatement axioms developed

in previous sections; 2) initial scenario axioms such as formulas 5.9–5.15, or 5.29–

5.34, or both; and 3) a set of formulas for the specific example. When ALMA runs

using these files, it writes a text log of the print output for each timestep, which

provides the history of the knowledge base over time. The test script reconstructs

the evolution of the KB’s derivation forest from each log file, and compares against

a text file of the expected beliefs of ALMA for the respective example. For instance,

in the example from section 5.2.1.2, the expected beliefs are:

¬rel(shell bearer, steve) (5.57)

abnormal(steve, mollusk, “¬rel(shell bearer, steve)”) (5.58)

rel(mollusk, steve) (5.59)

rel(cephalopod, steve) (5.60)

The script verifies that, for each of these formulas, they are inferred by ALMA in the

course of execution at some timestep (perhaps repeatedly if they become distrusted

and then reinstated), and there does not exist a distrust formula after the latest

timestep where the formula is obtained.

In effect, the script for the example corpus provides a unit testing framework

of sorts for the process of designing ALMA axioms, in which the expected belief files

form test cases. This system proved quite useful in developing the set of update and

213

reinstatement axioms, especially verifying during development that the formulas

were suitable for all examples of the corpus. Even with a modest number of axioms,

as in the examples of this dissertation, the process of axiom design in effect is quite

similar to creation of a logic program — so it is intuitive that an analog to unit

testing is a helpful feature to support development with the reasoner.

For a summary of some of the properties of example corpus for the mollusk and

vehicle default reasoning domains, we first note that the combined default reasoning

axiom set (which includes the updating and reinstatement axioms described above),

contains 18 axioms. There are additionally 7 topic-specific axioms for the mollusk

domain (i.e., formulas 5.9–5.15), and 6 topic-specific axioms for the vehicle domain

(i.e., 5.29–5.34). The lines of output for examples of the mollusk domain ranged

from 86 to 191, with an average length of 135 lines. For the vehicle domain, lines of

output ranged from 81 to 215, with an average length of 121 lines.

Importantly, each of the corpus examples executed with a brief runtime of

at most approximately a tenth of a second of clock time on a Macbook with a 2.7

GHz dual-core processor. Although ALMA was not explicitly optimized to minimize

execution speed, nevertheless favorable execution times such as these are obtained

for all examples that do not involve extremely large KBs (i.e., the large output of

the surprise birthday present examples, which is discussed in section 5.4.3.5).

214

5.3 Question-answering

Prior work on active logic has invoked a claimed ability of the logic to support

inferences making use of past beliefs no longer held, from earlier timesteps before

the present moment of reasoning. Similarly, past discussion of Purang’s ALMA 1.0

has characterized the prior reasoner as able to reflect on a history of any beliefs

that have been retracted or disinherited. In fact, neither of these is strictly true.

Any belief that has become disinherited is no longer considered to be trusted or

believed from that timestep onward, and must be represented using quotation (i.e.,

mentioned) to avoid assigning it a truth value.4 With this limitation, it is less clear

what behavior regarding past beliefs ALMA was surmised to have implemented; the

documentation of ALMA 1.0 suggests that simply logging formula history may have

been misinterpreted as this reasoning capacity.

The importance of a metacognitive agent being able to make use of past beliefs,

however, was indicated in section 2.3.1. Formalizing the use of past beliefs requires a

means of using nested formulas such as quotation provides. Thus only now can this

be adequately supported by the extensions to active logic in the present research,

as the expressiveness of active logic is now sufficient for nesting the syntax of past

beliefs. Reasoning about past beliefs thus provides further applications of quotation

terms and quasi-quotation mechanisms, and also demonstrates how the system has

been augmented in a self-referential way.

4 It may be tempting to assume these formulas are false, but since active logic does not apply
the closed world assumption, it is generally not reasonable to assume the negation of retracted
beliefs. In particular, formulas distrusted due to inconsistency give a counterexample, where there
is a particular reason not to assume that their negation holds.

215

As described in section 4.5.2.2, ALMA specifically implements the procedures

pos int past and neg int past that query the system’s past beliefs via quota-

tion term arguments. We have developed a set of axioms that endow ALMA with

abilities for basic question-answering regarding whether a query formula X is be-

lieved by the Alma agent (expressed with query belief), or considered to be true

by the Alma agent (expressed with query truth) — which are subtly different in

certain cases where the formula is not a present belief of the KB (for example, a

formula X that is presently in a state of contradiction is not a current belief, yet

the agent has uncertainty as to whether it might be true). Question-answering may

be best thought of not as answering a question posed by another agent (human or

otherwise), but as self-questioning in which the Alma agent is (agentively) assessing

what it does or doesn’t know — although precisely when and why an agent asks

itself about particular beliefs is beyond the scope of this work. ALMA thus uses the

pos int past and neg int past procedures as part of question-answering if past

beliefs are relevant to the query — alongside other procedures including acquired,

pos int, and neg int. We note that some of the question-answering axioms rely

on the convention of rel as a predicate symbol, with its first argument as a constant

meant to stand for a more particular predicate symbol.

The two query predicates, query belief and query truth, are binary pred-

icates in which the first argument is the query formula, Q, and the second is the

timestep for which the query is asked (which the query will only execute during, so

that a query is tied to a particular time). Each query is ultimately answered with a

formula of the schema answer(“Q”, A, reason(“R”)), in which A will be one of the

216

constants yes, no, or unsure, and R provides a formula that justifies the answer.

Whenever possible, a current belief is provided for this reason R. We now present

the full set of question-answering axioms.

5.3.1 Axioms

The first group of axioms concerns when the query argument X is presently

part of an ongoing state of contradiction. When this is the case, the agent necessarily

does not believe X at this point in time, because it is distrusted. This is captured by

the following formula, which ensures that an unhandled contradicting state applies

to X, and provides the answer with a reason mentioning this fact:

query belief(X, Asktime) ∧ now(Asktime) ∧ contradicting(X, Y, T)

f→ answer(“query belief(`X, `Asktime)”, no,

reason(“contradicting(`X, `Y, `T)”)) (5.61)

Similarly, a matching formula checks whether X was the second argument to an

unhandled state of contradicting. Likewise, the agent would be unsure whether

X is true at such a moment when the formula is part of a contradiction. The

following formula for a query of query truth is quite similar to how query belief

is handled, except for this difference in answer:

query truth(X, Asktime) ∧ now(Asktime) ∧ contradicting(X, Y, T)

f→ answer(“query truth(`X, `Asktime)”, unsure,

reason(“contradicting(`X, `Y, `T)”)) (5.62)

217

Once again, a paired formula checks whether X was the second argument to an

ongoing contradicting state.

The next axiom group concerns when the query argument is a current belief,

and the group’s conclusions provide a positive answer for both whether the agent

believes this formula and whether it considers it to be true, respectively. Each

conclusion expresses in a quoted literal that the queried formula was acquired at a

timestep T.

query belief(X, Asktime) ∧ now(Asktime) ∧ pos int(X) ∧ acquired(X, T)

f→ answer(“query belief(`X, `Asktime)”, yes, reason(“acquired(`X, `T)”))

(5.63)

In this case, the formulas for query belief and query truth are identical except

for the latter using query truth in place of the other query name:

query truth(X, Asktime) ∧ now(Asktime) ∧ pos int(X) ∧ acquired(X, T)

f→ answer(“query truth(`X, `Asktime)”, yes, reason(“acquired(`X, `T)”))

(5.64)

Next, if a query argument is not a current belief, but rather its negation is,

then queries can also be answered, although with a negative answer. Because active

logic variables do not quantify over wffs, there is not a fully general way that a

variable X can be used to express the pair of both X and ¬X. Hence, the examples

of this kind specify the structure of the query formula nested in quotation, and

also do the same for its negation. Intuitively, this check for the KB containing the

negation of a query would make the most sense to be done when the query is a

literal, and not a more generalized formula (and in fact the negation of a clause may

218

not even remain a clause itself if it has a form other than just a literal, due to the

formula standardization in ALMA). Accordingly, the question-answering examples

of this group focus on query formulas which consist of a single literal. Specifying the

formula structure also means that a separate question-answering rule is necessary

to represent each particular arity for a literal. The axiom set has been developed to

represent unary, binary, and ternary examples.5 Below, we provide the unary case

for query belief:

query belief(“rel(`Pred, `Arg)”, Asktime) ∧ now(Asktime)∧

¬rel(Pred, Arg) ∧ acquired(“¬rel(`Pred, `Arg)”, T)

f→ answer(“query belief(“rel(``Pred, ``Arg)”, `Asktime)”, no,

reason(“acquired(“¬rel(``Pred, ``Arg)”, `T)”)) (5.65)

The binary and ternary cases provide instead the literals rel(Pred, Arg1, Arg2) and

rel(Pred, Arg1, Arg2, Arg3), respectively, in each place where formula 5.65 provides

its unary rel literal. In each occurrence of the binary or ternary literals, their

arguments are once again quasi-quoted to be fully-escaping.

Due to formula 5.65 specifying only a positive query literal in its first premise,

we also have three distinct axioms used to answer a query regarding a negated literal.

The first of these three is the following, which provides a counterpart for formula

5.65:

query belief(“¬rel(`Pred, `Arg)”, Asktime) ∧ now(Asktime)∧

5 We note that these arities refer in the examples to the number of arguments to instances of
rel which are not the predicate symbol, and hence rel itself will have an arity that is one greater.
Additionally, our choice to provide axioms of this category only up to queries of ternary arity is
based on convenience and not a particular principle; as needed for an application the number of
axioms may be expanded for higher arities.

219

rel(Pred, Arg) ∧ acquired(“rel(`Pred, `Arg)”, T)

f→ answer(“query belief(“¬rel(``Pred, ``Arg)”, `Asktime)”, no,

reason(“acquired(“rel(``Pred, ``Arg)”, `T)”)) (5.66)

The binary and ternary versions have a very similar form. Also, there once again

exist corresponding axioms for the query truth predicate. Here, these six formulas

(for unary, binary, and ternary positive query arguments, and unary, binary, and

ternary negative arguments) are once more identical to the six for query belief

beyond the predicate symbol.

Yet another category for question-answering consists of when the query argu-

ment X is not a current belief, but was a belief in the past. In such a case, ALMA

records evidence of this through a metareasoning literal expressing both whether X

was distrusted, retired, or handled disinherited and when it was disinherited. The

following formula addresses the query with a negative answer, when X was distrusted:

query belief(X, Asktime) ∧ now(Asktime) ∧ neg int(X)∧

pos int past(X, S, E) ∧ distrusted(X, E)

f→ answer(“query belief(`X, `Asktime)”, no, reason(“distrusted(`X, `E)”))

(5.67)

Here, once negative introspection determines the lack of X, pos int past attempts

to retrieve the start and end times for its belief interval, so that the ending time

will be used in looking up a distrusted formula for X. Similarly, the variations

for when the reason to disinherit X was retiring or handling the formula instead use

retired(X, E) and handled(X, E) as the final premise, respectively. When answering

220

with query truth whether the system considers to be true a belief that is not a

current belief but a past belief, each answer instead contains the unsure constant

— but otherwise is the same as the corresponding query belief formula:

query truth(X, Asktime) ∧ now(Asktime) ∧ neg int(X)∧

pos int past(X, S, E) ∧ distrusted(X, E)

f→ answer(“query truth(`X, `Asktime)”, unsure, reason(“distrusted(`X, `E)”))

(5.68)

Lastly, the query X may fail to be found as both a current belief and a belief

in the past (i.e., both neg int and neg int past succeed). This category cannot

use a quotation term nesting an existing KB formula to the absence of X. Hence,

the novel literal never believed expresses this information. For query belief,

the answer is negative:

query belief(X, Asktime) ∧ now(Asktime) ∧ neg int(X) ∧ neg int past(X, S, E)

f→ answer(“query belief(`X, `Asktime)”, no, reason(“never believed(`X)”))

(5.69)

For query truth, this information is insufficient for a clear answer, and hence the

answer is uncertain:

query truth(X, Asktime) ∧ now(Asktime) ∧ neg int(X) ∧ neg int past(X, S, E)

f→

answer(“query truth(`X, `Asktime)”, unsure, reason(“never believed(`X)”))

(5.70)

We can see that in practice, several of different answers for the above ax-

ioms may be true at once. For example, if a query F has never been believed,

221

query truth will return unsure due to formula 5.70. Yet it is also possible that

¬F is a present belief, which will return no due to the query truth counterpart

to formula 5.65. When an answer of unsure exists in combination with an answer

of no, the latter negative answer should take precedence. Hence, there is one final

axiom which updates the answer containing unsure in a case such as this:

answer(Query, no, Reason a) ∧ acquired(“answer(`Query, no, `Reason a)”, T)∧

acquired(“answer(`Query, unsure, `Reason b)”, T)
f→

update(“answer(`Query, unsure, `Reason b)”, “answer(`Query, no, `Reason b)”)

(5.71)

5.3.2 Examples

As a basic example, we first consider a KB containing the following pair of

formulas at timestep 0, which therefore has no prior formulas with foo or its nega-

tion:

¬foo, x) (5.72)

query truth(“rel(foo, x)”, 0) (5.73)

After one timestep, the following formulas are inferred:

answer(“query truth(“rel(foo, x)”, 0)”, no,

reason(“acquired(“¬rel(foo, x)”, 0)”)) (5.74)

answer(“query truth(“rel(foo, x)”, 0)”, unsure,

reason(“never believed(“rel(foo, x)”)”)) (5.75)

222

One timestep later, formula 5.71 is applied, since the system has just simultaneously

inferred an answer of no and unsure for the same query. The following inferences

result:

update(“answer(“query truth(”rel(foo, x)”, 0)”, unsure,

reason(“never believed(“rel(foo, x)”)”))”,

“answer(“query truth(“rel(foo, x)”, 0)”, no,

reason(“never believed(“rel(foo, x)”)”))”) (5.76)

answer(“query truth(“rel(foo, x)”, 0)”, no,

reason(“never believed(“rel(foo, x)”)”)) (5.77)

distrusted(“answer(“query truth(“rel(foo, x)”, 0)”, unsure,

reason(“never believed(“rel(foo, x)”)”))”, 2) (5.78)

In this group, formula 5.76 updates formula 5.75 into a slight variation, via the

answer no, which appears as formula 5.77. Per the behavior of the procedural

atomic update predicate, the original formulation is then distrusted, as expressed

by formula 5.78.

A second and more involved example is based on adding question-answering

queries to the default reasoning example of section 5.2.1.2, in which only a cephalo-

pod is considered, but this still causes a series of changes to the formulas believed.

In this example, a query is raised each timestep, where only the timestep argument

changs; for example:

query belief(“rel(shell bearer, steve)”, 3) (5.79)

As the beliefs regarding the cephalopod Steve change over time, we see the query

223

answers change as well.

The first query in effect occurs at timestep 3, when the first contradiction

between rel(shell bearer, steve) and ¬rel(shell bearer, steve) has occurred.

In this case, due to the contradiction, the query is answered as follows, on the basis

of formulas 5.61 and 5.67, respectively:

answer(“query belief(“rel(shell bearer, steve)”, 3)”, no,

reason(“contradicting(“rel(shell bearer, steve)”,

“¬rel(shell bearer, steve)”, 3)”)) (5.80)

answer(“query belief(“rel(shell bearer, steve)”, 3)”, no,

reason(“distrusted(“rel(shell bearer, steve)”, 3)”)) (5.81)

The answers to the query remain the above pair until timestep 6, at which

point both rel(shell bearer, steve) and ¬rel(shell bearer, steve) have been

freshly re-derived at the same timestep. As a result, the queries are answered in a

contradictory manner, where each cites the positive and negative formula, respec-

tively, due to formulas 5.63 and 5.65, respectively:

answer(“query belief(“rel(shell bearer, steve)”, 5)”, yes,

reason(“acquired(“rel(shell bearer, steve)”, 5)”)) (5.82)

answer(“query belief(“rel(shell bearer, steve)”, 5)”, no,

reason(“acquired(“¬rel(shell bearer, steve)”, 5)”)) (5.83)

However, when the contradiction between the shell bearer pair is also detected

at timestep 6, the above pair of query answers are also distrusted.

At timestep 8, the negative contradictand has been reinstated, and thus at

224

timestep 9 the query answer reflects this fact, that the positive contradictand re-

mains distrusted as a belief, while its negation is now believed (and these can again

be attributed to 5.65 and 5.67, respectively):

answer(“query belief(“rel(shell bearer, steve)”, 8)”, no,

reason(“acquired(“¬rel(shell bearer, steve)”, 8)”)) (5.84)

answer(“query belief(“rel(shell bearer, steve)”, 8)”, no,

reason(“distrusted(“rel(shell bearer, steve)”, 6)”)) (5.85)

At this point, the cephalopod knowledge has reached a steady state, and ALMA

idles.

5.3.3 Toward explainability

We also note that the basic question-answering ability for ALMA that has

been presented above also appears to be applicable to pursuing explainable rea-

soning. Explainable artificial intelligence is an area of much focus and work, and

introspection and question-answering are well-suited to supporting this. Between

the capacity for answering self-queries regarding the reason for a specific belief, an

ALMA-based agent could also combine the usage of query belief or query true

with ancestry procedural predicates such as ancestor or parent to recursively in-

vestigate the origin of older beliefs. Although it is not pursued in the present work,

it would be a natural extension of this work to combine these features into a more

detailed self-explanatory ability which can account for a thread of reasoning.

225

5.4 Modeling agent beliefs: the surprise birthday present

We now turn to an example scenario in which ALMA is applied to reason

about both self and other agents, using the agent belief modeling partitions of the

system as were developed in section 4.7.1. Thus, the case study requires modeling the

beliefs and inferences of fellow agents — which pushes the use of formula nesting and

quotation beyond a focus that until now was mostly turned inward in representing

the agent’s own internal beliefs. This study demonstrates an additional larger use

of quotation, which is pervasive in attributing the modeled beliefs to other agents.

We consider a form of a commonsense reasoning problem originally described

by Davis [15], which in its original formulation regarded the axiomatization of two

agents, Alice and Bob, attempting to plan giving a surprise gift to a third agent,

Carol, on her birthday two weeks in the future.

Morgenstern [59] developed a first-order monotonic axiomatization for a ver-

sion of the problem, yet a primary objective of that work was on developing a

formalized theory of surprise, and the multi-agent planning aspects of the problem.

The way that Morgenstern’s work represents agent knowledge is through an external

method, with a god’s eye view of what an agent will know in time. The work also

does not include any of the agents modeling the beliefs of the other two. A recent

book surveying commonsense psychology also cited the surprise birthday present

problem [26], showing it is still recognized as notable, despite comparatively little

attention.

For our purposes, the present work instead deals with how the active-logic-

226

based agent Alma (which replaces the role of Alice in the example, for convenience

in naming) might model the beliefs of Bob and Carol, which is a novel angle of the

problem. Hence, we put aside both formalizing surprise and developing multi-agent

planning, the latter of which ALMA 2.0 is presently not designed to support.

The narrower focus of the group of scenarios that we develop based around this

problem concerns what follows when Alma tells Bob of having made the decision to

give Carol a cake:

tell(alma, “decision(alma, give(cake, carol))”, bob) (5.86)

We consider that Alma and Bob want to surprise Carol, and the issue is how Alma

can represent and reason about what Alma believes are Bob’s and Carol’s evolving

beliefs, as Alma and Bob have made this decision. For the part of Alma modeling

Carol, if Alma believes Carol is nearby to be able to overhear what is told to Bob,

then intuitively Carol ought to be able to determine that the gift is coming — and by

expecting the gift, Carol fails to be surprised. Conversely, if Alma does not believe

Carol to have had an opportunity to overhear, then Carol will not be modeled as

ultimately unsurprised. Additionally, if Alma considers Bob to have much the same

knowledge of the situation, then Alma ought to also model Bob reaching the same

conclusion about whether Carol fails to be surprised.

We are thus considering a need for Alma to be in possession of certain knowl-

edge relevant to this commonsense situation — such as when an agent might hear

information, when an agent is not surprised due to an expectation of a gift, and so

on. But additionally, Alma should also be able to attribute to Bob and Carol the

same knowledge of the situation. In fact, beyond that, there is a case of further nest-

227

ing reflected in the English summary: if Alma models Bob’s concluding that Carol

is unsurprised, then Alma should also be able model Bob has attributing knowledge

of the situation to Carol too.

5.4.1 Attributing common knowledge

We would like Alma to treat a set of formulas for the problem scenario as

common knowledge (at least among Alma, Bob, and Carol) and to also model other

agents as recursively treating axioms as common knowledge themselves (which will

allow a model of Bob to successfully further model Carol’s beliefs for the scenario).

We next detail a series of axioms which enable this process for common knowledge,

in which we represent a belief that is common knowledge as a quoted formula within

the common knowledge predicate. First, as a base case, Alma itself naturally must

be able to believe formulas of common knowledge:

common knowledge(X)
f→ true(X) (5.87)

From this formula, after another timestep the value of X will be withdrawn. Then,

for another agent (whose existence Alma indicates through the unary agent literal,

and whose name is distinct from the Alma agent’s own name, which is expressed

using agentname) must also be modeled so that what Alma considers to be common

knowledge is believed to be this other agent’s own respective common knowledge.

This implication itself is also a piece of common knowledge:

common knowledge(“

agent(Agent) ∧ neg int(“agentname(`Agent)”) ∧ common knowledge(X)

228

f→ bel(Agent, “common knowledge(`X)”)

”) (5.88)

The preceding formula allows Alma to pass what it believes to be common knowl-

edge into each agent KB that Alma holds, due to the conclusion of the form

bel(Agent, “common knowledge(`X)”), which per the design for agent KBs will in-

stantiate a belief into the KB for Agent. To enable the transfer of common knowledge

down into more-deeply nested agent KBs, the following axiom is also needed:

common knowledge(“

agent(Agent) ∧ neg int(“agentname(`Agent)”)

f→ bel(Agent, “common knowledge(X)
f→ true(X)”)

”) (5.89)

This axiom takes a role for nested agent KBs similar to what 5.87 does for the top-

level Alma belief set, by allowing modeled agents to hold their own beliefs of the

truth of common knowledge.

The above set of three axioms related to common knowledge thus avoids in the

axiom set for Alma a need for repetition of distinct formulas formulas attributing

knowledge of the situation to Bob or Carol. Alma simply must be aware of the exis-

tence of its fellow agents, and believe that scenario axioms are common knowledge,

and the beliefs will be appropriately passed to the models of Bob and Carol.

Similarly, we also model cases in which an agent such as Alma considers knowl-

edge to be common among a group of agents, but not universally believed as common

knowledge by all. In this case, the group that is modeled as sharing a set of beliefs

229

can be built up as a collection of pairwise shared beliefs, using the pair knowledge

predicate. If agents A and B are believed to have a belief shared between the two of

them, then this means that other agents have meta-knowledge indicating that A and

B to each believe that formula (and, this fact about paired knowledge is common

knowledge):

common knowledge(“

pair knowledge(Agent a, Agent b, Bel) ∧ agentname(Self)

not equal(“agent(`Agent b)”, “agent(`Self)”)

f→ bel(Agent b, “pair knowledge(`Agent a, `Agent b, `Bel)”)

”) (5.90)

common knowledge(“

pair knowledge(Agent a, Agent b, Bel) ∧ agentname(Self)

not equal(“agent(`Agent a)”, “agent(`Self)”)

f→ bel(Agent a, “pair knowledge(`Agent a, `Agent b, `Bel)”)

”) (5.91)

The above pair checks that the pair knowledge is not involving the current agent

before inferring the conclusion, so that an agent does not attempt to model its own

beliefs within bel. To fill this gap, the following formulas deal with the case where

the current agent is part of the pair:

common knowledge(“

agentname(Self) ∧ pair knowledge(Self, Other, Bel)
f→ true(Bel)

230

”) (5.92)

common knowledge(“

agentname(Self) ∧ pair knowledge(Other, Self, Bel)
f→ true(Bel)

”) (5.93)

5.4.2 Birthday surprise ontology

The following axioms constitute the initial beliefs of an agent for the specific

problem of giving a surprise birthday present. The first few axioms model how the

other agents are considered by Alma to have heard the utterance that begins each

example (formula 5.86). First, as an assumption for another agent than the current

agent, if this agent in question isn’t near the speaker of an utterance (and isn’t the

speaker), by default the conclusion to be made is that this other agent didn’t hear

the utterance:

tell(Speaker, Utterance, Confidant) ∧ agent(Agent)∧

neg int(“agentname(`Agent)”) ∧ neg int(“near(`Agent, `Speaker)”)

f→ ¬heard(Agent, Utterance, Speaker) (5.94)

Second, any agent near the speaker will have heard the utterance. This includes

the confidant, although typically not the speaker unless they are considered near to

themself:

tell(Speaker, Utterance, Confidant) ∧ agent(Agent) ∧ near(Agent, Speaker)

f→ heard(Agent, Utterance, Speaker) (5.95)

231

Third, the speaker always hears their own utterance:

tell(Speaker, Utterance, Confidant) ∧ agent(Speaker)

f→ heard(Speaker, Utterance, Speaker) (5.96)

The next axioms model how agents that heard an utterance may additionally

attribute hearing (or not hearing) to other agents. Additionally, remaining axioms

from from this point onward all are expressed as common knowledge as well. First,

an agent that has heard an utterance from a speaker considers that other agents

near the speaker have also heard the utterance:

common knowledge(“

agentname(Self) ∧ heard(Self, Utterance, Speaker) ∧ near(Agent, Speaker)

f→ heard(Agent, Utterance, Speaker

”) (5.97)

Second, an agent that has heard an utterance from a speaker considers the speaker

to have also heard the utterance:

common knowledge(“

agentname(Self) ∧ heard(Self, Utterance, Speaker)

f→ heard(Speaker, Utterance, Speaker)

”) (5.98)

Third, an agent that has heard an utterance from a speaker considers by default

that other agents not known to be near the speaker have not heard the utterance:

common knowledge(“

agentname(Self) ∧ heard(Self, Utterance, Speaker) ∧ agent(Agent)

232

not equal(“agent(`Agent), “agent(`Speaker)”)∧

neg int(“near(`Agent, `Speaker)”)

f→ ¬heard(Agent, Utterance, Speaker)

”) (5.99)

Alongside the formulas for attribution of hearing (or not hearing), there are

formulas expressing the consequences of this, whether positively hearing or its ab-

sence. We assume that agents are credulous and believe what they hear in our

scenarios, without considering reasoning related to falsehood (and thus, the giving

of a surprise birthday gift does not depend on deceiving Carol). Then, the following

expresses how an agent believes what is heard:

common knowledge(“

agentname(Self) ∧ heard(Self, Utterance, Speaker)
f→ true(Utterance)

”) (5.100)

An agent might believe another heard an utterance for several reasons, such as in

formulas described above (e.g., 5.95). When this is the case, the conclusion is that

other agents would believe in what the present agent expects them to have heard:

common knowledge(“

agentname(Self) ∧ heard(Agent, Utterance, Speaker)

not equal(“agent(`Agent)”, “agent(`Self)”)

f→ bel(Agent, “heard(`Agent, `Utterance, `Speaker)”)

”) (5.101)

233

Similarly, if another agent is considered by the present agent to not have heard an

utterance, this other agent is modeled as lacking a belief in the utterance:

common knowledge(“

agentname(Self) ∧ ¬heard(Agent, Utterance, Speaker)

not equal(“agent(`Agent)”, “agent(`Self)”)
f→ ¬bel(Agent, Utterance)

”) (5.102)

Lastly, given the usage in the axioms of assumptions that an agent has not heard,

based on negative introspection and a lack of present knowledge, naturally a contra-

diction may arise on over the issue of hearing an utterance. Since in the present work

we do not focus on an agent being mistaken about what it has directly heard, it is

straightforward to give a preference to the positive contradictand as a contradiction

response:

common knowledge(“

contradicting(“heard(`Agent, `Bel, `Speaker)”,

“¬heard(`Agent, `Bel, `Speaker)”, T)

f→ reinstate(“heard(`Agent, `Bel, `Speaker)”, T)

”) (5.103)

Next are the critical two axioms for determining when there will be a failure to

surprise Carol with the gift. First, there is the common knowledge that a decision

for a gift to be given to an agent will lead to this agent expecting to receive the gift:

common knowledge(“

decision(Giver, give(Gift, Agent))
f→ expectation(receive(Agent, Gift))

234

”) (5.104)

The expectation that a certain agent will receive a gift might be believed by any

agent. Yet, when the expectation is held by the ultimate recipient of the gift, who

moreover has heard about the decision to give it to them, this recipient will not be

surprised when they receive their gift:

common knowledge(“

expectation(receive(Recipient, Gift))∧

heard(Recipient, “decision(`Giver, give(`Gift, `Agent))”, Speaker)

f→ ¬future surprise(Recipient, gift(Gift))

”) (5.105)

Inference of the conclusion of axiom 5.105 by an agent model of Carol thus naturally

represents a failure of the desired result by Alice and Bob.

Lastly, there is a small collection of axioms necessary for the scenarios to

function. It is common knowledge that the three agents exist, that being near is a

symmetric relation, and also that each agent believes and is identified by their own

name:

common knowledge(“agent(alma)”) (5.106)

common knowledge(“agent(bob)”) (5.107)

common knowledge(“agent(carol)”) (5.108)

common knowledge(“near(A, B)
f→ near(B, A)”) (5.109)

common knowledge(“

agent(Agent) ∧ neg int(“agentname(`Agent)”)

235

f→ bel(Agent, “agentname(`Agent)”)

”) (5.110)

5.4.3 Solutions and discussion

Now, we return to solutions to the surprise birthday problem, in which the

modeling of agent beliefs enables Alma to infer about failures of surprise if Carol

overhears crucial information. Once again, all scenarios which we discuss begin with

the following formula of Alma telling an utterance to Bob:

tell(alma, “decision(alma, give(cake, carol))”, bob) (5.86 revisited)

In practice when these scenarios are executed by ALMA, for each axiom of the form

common knowledge(“X”), due to the axioms for inferring the truth of common

knowledge such as 5.87 for Alma and 5.89 within a modeled agent’s KB, there is a

several step derivation of true(“X”) following, and then X alone as a belief. For

simplicity, we refer to X as a formula extracted from common knowledge, in relation

to common knowledge(“X”).

As with the earlier examples in section 5.2, the subsequent discussion is at

a high level, without exhaustive detail of inferences per example. Full traces for

ALMA execution can be found in the GitHub repository.

236

https://github.com/mclumd/alma-2.0/tree/master/demo/agent-bel/sample-log

5.4.3.1 Alma’s perspective

The first example scenario we consider for the problem is when all three agents

are near each other:

common knowledge(“near(alma, bob)”) (5.111)

common knowledge(“near(bob, carol)”) (5.112)

common knowledge(“near(alma, carol)”) (5.113)

This intuitively should ultimately produce a failure to surprise Carol, since she will

be able to overhear the utterance and should make inferences based upon what is

heard.

First, we break down how reasoning proceeds for Alma expecting that Carol

should be unsurprised. From formula 5.96 that a speaker hears their utterances,

and formulas 5.86 and 5.106, Alma infers the following:

heard(alma, “decision(alma, give(cake, carol))”, alma) (5.114)

From formula 5.114, the axiom agentname(alma) built into the reasoner so that

it has access to its own name, and Alma’s belief of formula 5.100 extracted from

common knowledge, Alma infers true(“decision(alma, give(cake, carol))”), and

subsequently believes its nested formula:

decision(alma, give(cake, carol)) (5.115)

Formula 5.115 satisfies the premise of 5.104, producing this conclusion indicating

that Alma expects Carol to receive the gift:

expectation(receive(carol, cake)) (5.116)

In a second derivation thread, from formula 5.95 that an agent near a speaker

237

overhears, and additional formulas 5.86, 5.108, and 5.113, Alma infers that Carol

has also heard the utterance:

heard(carol, “decision(alma, give(cake, carol))”, alma) (5.117)

Yet, due to the timing of inference and the need to unpack formula 5.113 from

common knowledge, at the timestep when 5.117 is inferred, one timestep earlier its

negation has been inferred based on the formula 5.94 and a lack of knowledge at that

timestep that Carol was near. A contradiction thus occurs between whether Carol

has heard or not heard, which is subsequently resolved by formula 5.103. Following

this reinstatement, between the reinstated formula 5.117, as well as formulas 5.116

and 5.105 extracted from common knowledge, Alma infers that Carol won’t be

surprised by receiving the gift:

¬future surprise(carol, gift(cake)) (5.118)

5.4.3.2 Carol’s perspective

We next address how the agent KB modeling Carol (which is itself a model

that is part of Alma’s KB) is employed for the first scenario with formulas 5.111–

5.113, and trace how reasoning proceeds in Alma’s KB partition for the modeling

of the positive beliefs of Carol. This process begins with an inference from Alma

rather than the model of Carol — from agentname(alma) and formulas 5.101 and

5.117, leading to Carol modeled as believing that she heard Alma’s utterance:

bel(carol, “heard(carol, “decision(alma, give(cake, carol))”, alma)”) (5.119)

238

This belief is synchronized into the agent KB modeling the positive beliefs of Carol,

as heard(carol, “decision(alma, give(cake, carol))”, alma), per ALMA mecha-

nisms introduced in section 4.7.2. Additionally, Alma models Carol as having access

to her own name, via formulas 5.108 and 5.110, which lead to the following inference:

bel(carol, “agentname(carol)”) (5.120)

This is also synchronized into the partitioned region for the model of Carol, as

agentname(carol). And lastly, for the final Alma inference that affects the model

of Carol for the scenario, from formulas 5.108 and 5.89, Alma infers that Carol will

be able to extract common knowledge:

bel(carol, “common knowledge(X)
f→ true(X)”) (5.121)

Then, the common knowledge(X)
f→ true(X) is instantiated for Carol’s positive KB

— and from here the model of Carol can extract formulas from common knowledge

in the same manner as is used by Alma itself to withdraw the formulas and believe

them.

The inferences themselves from Carol’s perspective continue in the nested KB

for her beliefs. From the combination of her belief in having heard the utterance, her

belief in her name, and a belief in formula 5.100 as extracted from common knowl-

edge, the modeled Carol infers that true(“decision(alma, give(cake, carol))”),

and subsequently the formula that was nested as its argument:

decision(alma, give(cake, carol)) (5.122)

Where we note that, in contrast to 5.115, formula 5.122 is specific to Carol, and hence

Alma would hold the belief of bel(carol, “decision(alma, give(cake, carol))”),

which is instantiated and connected to formula 5.122 by an equivalence edge.

239

Carol’s belief in her copy of the commonsense implication 5.104, alongside

formula 5.122, produces an inference that she expects to receive the gift:

expectation(receive(carol, cake)) (5.123)

Unlike the perspective for Alma, there is not a contradiction reached regarding

heard literals in the model of Carol — and therefore, from formula 5.123, Carol’s

equivalent of 5.119, and Carol’s belief of 5.105 extracted from common knowledge,

Carol also infers that she won’t be surprised by receiving the gift:

¬future surprise(carol, gift(cake)) (5.124)

Hence, in addition to Alma ultimately reasoning that Carol should not be surprised

when she ultimately receives the gift, Alma also successfully models that Carol

herself can reason out this same fact as a consequence of being nearby and able to

overhear Alma’s utterance about the gift. Formula 5.124 will instantiate into the

core KB the following formula, which we contrast with formula 5.118 to highlight

the difference between the result from the model of Carol with the reasoning without

her model:

bel(carol, “¬future surprise(carol, gift(cake))”) (5.125)

In fact, in this contrast we see a difference that resembles the distinction we have

drawn between internal and external accounts of reasoning; formula 5.124 is an

internal representation for the model simulating Carol’s reasoning processes about

a failure of surprise, while formula 5.118 is an external representation outside of the

model of Carol.

240

5.4.3.3 Bob’s perspective of Carol

In the same running scenario, as another agent near Alma when the utterance

is made, Bob is also modeled by Alma as hearing the utterance, and then modeled as

believing the set of common knowledge formulas following their synchronization into

Bob’s agent KB. Thus, the inference process also leads to Bob’s model expecting

Carol to be unsurprised in the future (i.e., Bob’s model producing its own final

inference of the form of formula 5.124), along essentially the same lines. This is

instantiated into the core KB as follows:

bel(bob, “¬future surprise(carol, gift(cake))”) (5.126)

More interesting is the fact that, due to beliefs of Bob’s model including a

copy of formula 5.88, and the common knowledge of the other agents and their

positioning near each other, the model of Bob will also further be able to attribute

these common knowledge beliefs to a more deeply-nested agent KB for Carol. Thus,

the process of inference for Bob’s model having its own inner model of Carol proceeds

with the same inference process as was used by Alma modeling Carol and broken

down in section 5.4.3.2 — which unfolded identically since Alma and Bob have the

same information about agent proximity. After sufficient timesteps, Bob’s model

of Carol infers formula 5.124, Bob’s model obtains the equivalent of 5.125, and the

core KB obtains the following:

bel(bob, “bel(carol, “¬future surprise(carol, gift(cake))”)”) (5.127)

ALMA’s pattern of exhaustive reasoning from the available beliefs and prospects

that can be obtained from them continues even for agent KB reasoning. Therefore,

241

we emphasize that each agent model’s reasoning, as well as the reasoning of more

deeply-nested models, can all progress simultaneously at the same timestep. How-

ever, since there is a longer temporal chain of inference for inner agent models, the

core KB will obtain a formula such as 5.118 at timestep 8, before 5.125 at timestep

12 and formula 5.127 later still at timestep 14. Alma will thus acquire the belief

Carol modeled as failing to be surprised before the model of Bob reasons fully to

this conclusion. This opens an opportunity in future work in which Alma can an-

ticipate Bob’s model shortly making the same conclusions. More broadly, patterns

of reasoning of this kind illustrate how the ALMA reasoner has the capability for

reasoning to be carried out by one agent over time as its own beliefs — as well as

those of other agents — are undergoing inferential changes, and have those changes

be reflected upon.

5.4.3.4 Other scenarios

For a second scenario, we consider the following to be the only knowledge

agents have of positioning relative to each other:

common knowledge(“near(alma, bob)”) (5.128)

Without either Alma or Bob possessing a belief about Carol nearby, both Alma

and its model of Bob derive respective beliefs that they expect Carol to eventually

receieve her gift (i.e., expectation(receive(carol, cake)), obtained in the same

derivation as described above for Alma and Bob). Yet, they do not infer that Carol

will not be surprised, since by formula 5.105 Carol must also be considered to have

242

heard the utterance.

Finally in a third scenario, we consider a case where it is common knowledge

that Alma is nearby Bob, but where only Alma and Carol have shared pair knowl-

edge expressing that Carol is also near Alma and Bob. In a physical space, this may

be for a reason such as Carol having sneaked up behind Bob, while Alma faces both

Bob and Carol. These are the three axioms for the scenario:

common knowledge(“near(alma, bob)”) (5.129)

pair knowledge(alma, carol, (“near(bob, carol)”) (5.130)

pair knowledge(alma, carol, “near(alma, carol)”) (5.131)

Since Alma and Carol know each other to be near, Alma is able to model Carol

such that formula 5.118 is inferred. Similarly, Carol’s model is able to conclude that

formula 5.124 is true. However, once again Bob has no ability to reach such a

conclusion.

5.4.3.5 Discussion

Collectively, the example solutions demonstrate the ability of ALMA to suc-

cessfully model agent reasoning of some complexity, through the use of reasoner

partitions for agent belief modeling. Achieving this relied on the mechanism of rep-

resenting as common knowledge both the axioms for the scenario, as well as general

meta-reasoning axioms about common knowledge. Yet importantly, the active logic

reasoning for variations of the surprise birthday present problem did not require

attributing inference rules to the modeled agents, and quoted beliefs for common

243

knowledge sufficed for the examples. We again note that this can be attributed to

the design of the nested agent KBs described in section 4.7.1.

Our approach to aspects of the surprise birthday present problem is novel for

both the focus on agents modeling each other’s reasoning, and for the manner in

which we achieve this, centered on the agent KB partitions and the synchroniza-

tion of equivalently-linked formulas into the core ALMA KB. The problem thus

provides another example of how evolving-time reasoning and quotation both can

work together to facilitate commonsense reasoning, particularly practical examples

for reasoning about what inferences another agent might draw.

The design of the axioms for common knowledge leads an issue due to the

recursive instantiation of agent common knowledge beliefs. We see that the im-

plication 5.88 yields the conclusion that a piece of common knowledge should be

believed by another agent that is known (which here we refer to as agent A). If

there doesn’t exist an agent KB for A, it will be created, and the KB for A will

be populated with common knowledge such as formula 5.88 itself. Then, whenever

the model of A has a belief that another agent B exists, its own modeled belief in

formula 5.88 will be satisfied, and begin to model B. Here there is a possibility of

infinite recursion for instantiating ever-deeper agent KBs.

This occurs in our examples, since the axioms above have also taken the ex-

istence of the three agents to be common knowledge (as formulas 5.106, 5.107, and

5.108) — which was necessary for the supporting both Alma modeling Carol as well

as the model of Bob going further to model Carol. In fact, with our set of axioms

for this problem, any model of an agent will eventually model the other two agents

244

(e.g., Carol will eventually model Bob and Alma), leading to an exponential increase

in the set of modeled agent beliefs as more timesteps pass and every agent model

continues to expand additional, more deeply-nested models. The surprise birthday

present instances surveyed are able to attain the final conclusions outlined above,

such as formulas 5.118 and 5.125, before the exponential growth is prohibitively

large. However, to allow the ALMA reasoner to terminate, we have implemented

a somewhat blunt fix of a parameter for the system that limits the maximum re-

cursive depth for nesting of an agent KB. As a result, when ALMA is set to infer

automatically, it eventually exhausts all inferences up to its specified limit of N

levels of nesting, and terminates. When this max nesting depth parameter is set

to 3, ALMA still achieves the intended results for modeling Bob, Carol, and Bob’s

model of Carol, as discussed in detail above. A more general solution than this is

discussed as an avenue of future work in section 6.2.2.2.

While in section 6.2.2.2, we separately identify a limitation that is related

to ALMA modeling other agents as quite ALMA-like in terms of their inference

rules and even executable procedures. Yet here, we also point out an upside of

this similarity that ALMA attributes to the agents it models. Suppose the agent

Alma is interacting with another agent, and modeling them as possessing ALMA-like

inference abilities. If some disparities are revealed where this other agent acts in a

manner that diverges from what ALMA’s inference rules suggest for the agent model,

this may provide an opening for the Alma agent to point out a new perspective to

the other agent. Or, if the other agent’s beliefs diverge in a way that doesn’t conform

to valid rules of inference, Alma might be able to identify an apparent mistake in

245

the other agent’s reasoning, as in the motivating vision of Perlis et al. [66].

We now summarize some properties of the surprise birthday present problem

examples, both for the axioms and for execution. The initial axiom set includes 7

axioms of general common knowledge (i.e., formulas 5.87–5.93), 19 axioms specific to

the surprise birthday problem (17 of which are detailed as formulas 5.94–5.110), and

finally additional axioms which present a specific scenario (e.g., such as indicating

which agents are near each other). The lines of output for the surprise birthday

present examples, in which the depth of maximum agent belief nesting was set to

3 as described above, ranged from 5197 to 6139, with an average length of 5640

lines. Despite the size of the knowledge bases, and each producing several thousand

lines of output, each of the agent-modeling examples nevertheless executed with a

runtime still under a second of clock time — with the slowest execution taking 0.96

seconds.

246

Chapter 6: Conclusions and future directions

We conclude by reviewing the main contributions of this dissertation and re-

sults obtained, as well as identifying some limitations that offer future directions in

which the work might be extended.

6.1 Summary of results

6.1.1 Quotation and quasi-quotation

The present work provided meaningful advancement for active logic beyond

the prior state of work in this category of logic outlined in section 2.2, through

the development of formula nesting and quotation. This builds on earlier work

in active-logic treatments where evolving time is central, but where agency and

quotation were not given explicit formalization. In addition, we developed a full

unification algorithm for quotation and quasi-quotation, based upon the general

principles drawn in an example-driven manner from the categories of terms, which

exhaustively accounts for the categories of term pairings.

As a contrast, we note that the literature for syntactic theories of quotation

reviewed in section 2.3.2 primarily presented syntactic details on their respective

247

methods of quantifying into quotation, rather than algorithmic details. This sur-

veyed work also differs significantly in the basics of their approaches to nesting

formulas in comparison to quotation terms, and consequently in the definition of

quantifying-in methods between the approaches. Thus, our approach is novel both

for defining quasi-quotation as specializing the quotation term construct, but also

for a focus on practical example-driven commonsense reasoning, on providing a full

inference algorithm, and on incorporation into a time-sensitive reasoning engine.

6.1.2 ALMA 2.0

This dissertation also presented ALMA 2.0, a reasoning engine for active logic

which also implemented the novel extensions to active logic of quotation and quasi-

quotation. ALMA 2.0 supports wide-ranging automated reasoning with active logic,

as evidenced by the applications discussed in this dissertation, in addition to other

research which employed the reasoner, such as by Clausner et al. [14] and Brody et

al. [12]. Furthermore, it exhibits novel features enabled by the ability of quotation,

such as more fine-grained self-reflection via introspection on the presence or lack

of formulas in the ALMA agent’s beliefs, as well as metacognitive access to other

information within the ALMA agent’s internal reasoning, such as formula derivations

and ancestry, and past beliefs. Additionally, the belief model partition regions of

ALMA provide a novel means of simulating beliefs attributed to other agents, while

utilizing quotation to remain just beyond a first-order language. Particularly in

contrast to the previously-developed active logic reasoner, the new system is more

248

extensible in design for incorporating new features, and better suited to integration

into larger systems (as also is demonstrated by the work of Clausner et al. and

Brody et al.).

6.1.3 Commonsense reasoning applications

Finally, this dissertation presented the application of the new developments

for active logic, as well as ALMA 2.0, to a set of commonsense reasoning problems:

1. Several traditional types of “nested default” problem, but solved with active

logic’s temporally evolving constraints requiring knowledge-retractions beyond

the reach of standard methods — as well as variations on the above where

categories can overlap, resulting in greater need for retractions, as additional

tests of the approach.

2. A self-questioning capacity that allows an agent to answer queries regarding

present and past beliefs.

3. A treatment of a problem on reasoning about modeled beliefs of others, at-

tending to the actual reasoning carried out by one agent over time as its own

beliefs, as well as those of other agents, are undergoing inferential changes.

The work in these areas, particularly for the forms of default reasoning and

agent belief modeling, revealed that a surprisingly great deal of knowledge repre-

sentation, as well as of temporally sensitive bookkeeping devices, are required for

human-level agent-based commonsense reasoning. These appear to be largely inde-

pendent of any scenario-specific details of the reasoning. While this dissertation has

249

by no means captured the full extent of such knowledge representation, it has made

a serious start in several areas. Furthermore, we now provide an outline of further

aspects needing study.

6.2 Future work

We identify and discuss a series of issues recognized as some limitations of the

current work. Extending active logic and ALMA 2.0 to address these is beyond the

scope of this dissertation, yet these remain important problems for future work.

6.2.1 Quotation and quasi-quotation

Regarding ALMA’s representation for quotation terms, we have noted in chap-

ter 4 that presently, ALMA reasoning does not support the cases when a nested

formula cannot be rewritten into a single clause. This limits the expressiveness of

certain forms of formulas within quotation terms. However, if this limitation were

to be lifted, and a quotation term could contain a truly arbitrary nested formula,

it would add complications to unification and reasoning, which presently consider

the only possible exceptions to formulas being in clause form to be a forward-if for-

mula’s set of conclusions. Additionally, the meaning of a predicate of a form such

as pos int(“foo(X) ∧ bar(Y)”) is not immediately clear, if foo(X) ∧ bar(Y) cannot

be a single KB formula when the ALMA belief set is standardized into conjunctive

normal form. Related to the expressiveness of quoted formulas, it would also be a

helpful advance to develop quotation terms in future work for an option to express

250

verbatim content in a quotation term’s nested formula, without being subject to

rewriting rules of the ALMA reasoner.

Throughout the present work, we have by design restricted quotation terms to

exclusively contain a nested complete formula, beginning from the creation of the

newly developed ALMA grammar. Future work might also move such a construction

of a quotation term, in which there could exist a type of nesting construction for

quoting a partial formula, such as just a term of functional expression.

6.2.2 Commonsense reasoning applications

Next, we break down several limitations in the applications for commonsense

reasoning, which may be addressed in future work.

6.2.2.1 Default reasoning

As we saw in the example scenarios developed in section 5.2, in some cases

ALMA may produce contradictory reinstatements when reinstating following the

original contradiction that had occurred. While the system’s ability to detect direct

contradictions has been extended to also distrust pairs of reinstatements that tar-

get both contradictands and thereby avoid some cases of this problem, it remains

possible that an ALMA agent might still enter into infinite loops of reinstatement

in other situations. Ideally, an ALMA-based agent should be able to automatically

avoid these problems in a more thorough manner, and perhaps select its contradic-

tion responses in a more sophisticated manner than the axioms developed in the

251

present work.

Furthermore, while the contradiction-response formulas developed in section

5.2 have aimed to capture a few relatively broad intuitions (such as concerning

trust in observations, or favoring formulas which have a derivation from a non-

default formula), further progress may be made on axiom design. Future work

should further investigate the development of contradiction-response rules that have

minimal interference between pairs of such formulas, while simultaneously having

the ability to handle a large range of contradiction cases.

6.2.2.2 Agent-modeling

Through the development of ALMA’s modeling of the beliefs of other agents,

the assumption was implicitly made that other agents use the same inference rules

as ALMA, due to the application of the system’s own inference rules for the agent

KB partitions. However, this assumption is not reasonable in all cases; even if

there might be a small core of simpler inference rules that an agent could broadly

expect other agents to have (although this would be a defeasible assumption), more

complicated rules such as resolution, or specific procedures such as for introspection,

may fall outside of this category. Progress on attributing inference rules is then an

important problem for ALMA being able to better model other agents and their

reasoning.

In section 5.4, we saw that the system for attributing beliefs as common knowl-

edge to agents being modeled was prone to swamping with ever-deeper nesting, due

252

to the recursive nature of these formulas. Our means of stopping this is presently a

blunt method of specifying a maximum nesting depth for agent modeling, which was

sufficient to permit enough nesting for the birthday problem solutions of interest.

However, there is a need for a more sophisticated fix than is provided by such a

depth limit. Several approaches appear promising avenues for doing so in future

work.

The first approach is to augment ALMA to better pursue goal-directed reason-

ing. In this case, the system would have a particular goal such as regarding Bob or

Carol’s belief about the birthday present. Then, one option for goal-directed reason-

ing would be to stop its reasoning process with the respective agent KBs when the

system obtains the answer; or alternatively to use the goal of solving the birthday

present problem as a premise for unpacking common knowledge into a deeper-nested

agent KB, thereby better controlling how more agents are recursively modeled. Yet

regardless of the approach, the intention would be that just as a reasonable agent

would not indefinitely produce the infinite closure from expanding the axioms for

elementary arithmetic, ALMA would use goals to avoid regress with agent model-

ing. The second approach is to introduce a new means for controlling the number

of inferences that the reasoner makes per timestep. Brody et al. [12] developed a

neural network-based architecture for ALMA to control inferential glut via learning

a neural heuristic for inferences to be considered, which showed promise in prelim-

inary studies. Such an approach could be pursued on a larger scale for additional

scenarios, including modeling agent beliefs, where it would give greater flexibility

than a limit on nesting depth.

253

6.2.3 ALMA-based agency

The present work has made progress on a number of aspects related to pursuing

a more robust notion of agency for an agent’s internal reasoning. However, this

treatment is far from fully general. A number of aspects which suggest themselves

as extensions of this work, as natural further steps to pursue, are the following:

1. Extending the ability of an ALMA-based agent to reason with its past

beliefs in a deeper way, such as by reasoning using Allen’s interval relations [2].

2. Augmenting the logic and system’s awareness of reasoning about change

in the external world, time passing, and fluents, which remains underdeveloped for

active logic despite its strengths at the inference process being situated in time.

3. Improved ability of an active logic system to reason about its performance

of actions in time as they occur, and to have greater self-knowledge about events

the agent is involved in.

254

Bibliography

[1] N I Adams, IV, D H Bartley, G Brooks, R K Dybvig, D P Friedman, R Halstead,
C Hanson, C T Haynes, E Kohlbecker, D Oxley, K M Pitman, G J Rozas,
G L Steele, Jr, G J Sussman, M Wand, and H Abelson. Revised report on
the algorithmic language Scheme. SIGPLAN Notices, 33(9):26–76, September
1998.

[2] James F Allen. Towards a general theory of action and time. Artif. Intell.,
23(2):123–154, July 1984.

[3] Michael Anderson and Donald Perlis. Logic, Self-Awareness and Self-
Improvement: The metacognitive loop and the problem of brittleness. J. Logic
Comput., 15(1):21–40, 2005.

[4] Michael L Anderson, Walid Gomaa, John Grant, and Don Perlis. Active logic
semantics for a single agent in a static world. Artif. Intell., 172(8):1045–1063,
May 2008.

[5] Michael L Anderson, Tim Oates, Waiyian Chong, and Don Perlis. The metacog-
nitive loop I: Enhancing reinforcement learning with metacognitive monitoring
and control for improved perturbation tolerance. J. Exp. Theor. Artif. Intell.,
18(3):387–411, 2006.

[6] Mikael Asker and Jacek Malec. Reasoning with limited resources: Active logics
expressed as labelled deductive systems. Bulletin of the Polish Academy of
Sciences: Technical Sciences, pages 69–78, 2005.

[7] Alan Bawden. Quasiquotation in lisp. In Partial Evaluation and Semantic-
Based Program Manipulation, pages 4–12. Citeseer, 1999.

[8] Niclas Braun, Stefan Debener, Nadine Spychala, Edith Bongartz, Peter Sörös,
Helge H O Müller, and Alexandra Philipsen. The senses of agency and owner-
ship: A review. Front. Psychol., 9:535, 2018.

[9] Justin Brody, Michael T Cox, and Donald Perlis. The processual self as cogni-
tive unifier. In Proceedings of the Annual Meeting of the International Associ-
ation for Computing and Philosophy, 2013.

255

[10] Justin Brody, Michael T Cox, and Donald Perlis. Incorporating elements of a
processual self into active logic. In 2014 AAAI Spring Symposium Series, 2014.

[11] Justin Brody, Don Perlis, and Jared Shamwell. Who’s Talking?–Efference copy
and a robot’s sense of agency. In 2015 AAAI Fall Symposium Series, 2015.

[12] Justin D Brody, Bobby Austin, Omar Khater, Christopher Maxey, Matthew D
Goldberg, Timothy Clausner, Darsana Josyula, and Donald Perlis. Using neural
networks to control glut in the active logic machine. In NeSy’20/21: Workshop
on Neuro-Symbolic Learning and Reasoning, 2021.

[13] Waiyian Chong. Reflective Reasoning. PhD thesis, University of Maryland,
College Park, 2006.

[14] Timothy Clausner, Christopher Maxey, Matthew D Goldberg, Paul Zaidins,
Justin Brody, Darsana Josyula, and Don Perlis. Overgenerality from inference
in Perspective-Taking. In Proceedings of the AAAI Fall Symposium 2021, 2021.

[15] Ernest Davis. The surprise birthday present problem. https://

commonsensereasoning.org/problem_page.html#surprisebirthday, 2001.
Accessed: 2021-8-25.

[16] Ernest Davis. Logical formalizations of commonsense reasoning: a survey. J.
Artif. Intell. Res., 59:651–723, 2017.

[17] Jennifer Drapkin, Michael Miller, and Donald Perlis. A memory model for real-
time common sense reasoning. Technical Report TR-86-21, Systems Research
Center, University of Maryland, 1986.

[18] Jennifer Elgot-Drapkin, Michael Miller, and Donald Perlis. Memory, reason
and time: The Step-Logic approach. In Robert C Cummins, editor, Philosophy
and Ai, pages 79–103. Cambridge: MIT Press, 1991.

[19] Jennifer J Elgot-Drapkin. Step-Logic and the Three-Wise-Men problem. In
Proceedings of the Ninth National Conference on Artificial Intelligence, pages
412–417, 1991.

[20] Jennifer J Elgot-Drapkin and Donald Perlis. Reasoning situated in time i: basic
concepts. J. Exp. Theor. Artif. Intell., 2(1):75–98, January 1990.

[21] Jennifer Jill Elgot-Drapkin. Step-logic: Reasoning Situated in Time. PhD
thesis, University of Maryland at College Park, College Park, MD, USA, 1988.

[22] Ronald Fagin, Yoram Moses, Joseph Y Halpern, and Moshe Y Vardi. Reasoning
About Knowledge. MIT Press, 1995.

[23] Scott E Fahlman, David S Touretzky, and Walter Van Roggen. Cancellation in
a parallel semantic network. In IJCAI, pages 257–263, 1981.

256

https://commonsensereasoning.org/problem_page.html#surprisebirthday
https://commonsensereasoning.org/problem_page.html#surprisebirthday

[24] Matthew D Goldberg, Justin Brody, Timothy C Clausner, and Donald Perlis.
The overlooked role of self-agency in artificial systems. In Workshop on Short-
comings in Vision and Language at European Conference on Computer Vision,
2018.

[25] Matthew D Goldberg, Darsana Josyula, and Don Perlis. Quotation for real-time
metacognition. In Advances in Cognitive Systems, 8, 2020.

[26] Andrew S Gordon and Jerry R Hobbs. A Formal Theory of Commonsense
Psychology: How People Think People Think. Cambridge University Press,
September 2017.

[27] Andrew R Haas. Planning mental actions. PhD thesis, University of Rochester,
1982.

[28] Andrew R Haas. The syntactic theory of belief and knowledge. Technical
Report 5368, Bolt Beranek and Newman Inc., 1983.

[29] Andrew R Haas. A syntactic theory of belief and action. Artif. Intell.,
28(3):245–292, 1986.

[30] Andrew R Haas. Sentential semantics for propositional attitudes. Comput.
Linguist., 16(4):213–233, December 1990.

[31] Emily Hand, Darsana Josyula, Matthew Paisner, Elizabeth McNany, Donald
Perlis, and Michael T Cox. Two approaches to implementing metacognition.
In The Sixth International Conference on Advanced Cognitive Technologies and
Applications, 2014.

[32] Thorben Ole Heins. A case study of active logic. Master’s thesis, Department
of Computer Science, Lund University, 2009.

[33] Kaarlo Jaakko Juhani Hintikka. Knowledge and Belief: An Introduction to the
Logic of the Two Notions. Ithaca, NY, USA: Cornell University Press, 1962.

[34] Daniel Holden. Micro parser combinators. https://github.com/orangeduck/
mpc, 2018.

[35] Darsana Josyula, Michael Anderson, and Donald Perlis. Towards domain-
independent, task-oriented, conversational adequacy. In Proceedings of the
Eighteenth international Joint Conference on Artificial Intelligence (IJCAI-03),
pages 1637–1638, January 2003.

[36] Darsana P Josyula, Scott Fults, Michael L Anderson, Shomir Wilson, and Don
Perlis. Application of MCL in a dialog agent. In Third Language and Technology
Conference, 2007.

257

https://github.com/orangeduck/mpc
https://github.com/orangeduck/mpc

[37] Darsana P Josyula, Matthew D Goldberg, Anthony Herron, Christopher
Maxey, Paul Zaidins, Timothy Clausner, Justin Brody, and Don Perlis. Knowl-
edge of self and other within a broader commonsense setting. In Proceedings of
the AAAI Fall Symposium 2021, 2021.

[38] Darsana Purushothaman Josyula. A unified theory of acting and agency for a
universal interfacing agent. PhD thesis, University of Maryland, College Park,
2005.

[39] Kurt Konolige. A First-Order formalization of knowledge and action for a
multiagent planning system. Technical Report 232, SRI International Menlo
Park CA Artificial Intelligence Center, 1980.

[40] Robert Kowalski. Database updates in the event calculus. j. log. program.,
12(1-2):121–146, January 1992.

[41] Robert Kowalski and Fariba Sadri. The situation calculus and event calcu-
lus compared. In Proceedings of the 1994 International Symposium on Logic
programming, pages 539–553. unknown, January 1994.

[42] Robert Kowalski and Marek Sergot. A logic-based calculus of events. New
Generation Computing, 4(1):67–95, March 1986.

[43] Gerhard Lakemeyer and Hector J Levesque. Only-Knowing meets nonmono-
tonic modal logic. In Thirteenth International Conference on the Principles of
Knowledge Representation and Reasoning, pages 350–357, May 2012.

[44] Hector J Levesque. All I know: A study in autoepistemic logic. Artif. Intell.,
42(2):263–309, March 1990.

[45] Hector J Levesque and Gerhard Lakemeyer. The Logic of Knowledge Bases.
MIT Press, February 2001.

[46] Vladimir Lifschitz. Computing circumscription. In Proceedings of the 9th inter-
national joint conference on Artificial intelligence - Volume 1, IJCAI’85, pages
121–127, San Francisco, CA, USA, August 1985. Morgan Kaufmann Publishers
Inc.

[47] Vladimir Lifschitz. Circumscription. In Handbook of logic in artificial intelli-
gence and logic programming (vol. 3): nonmonotonic reasoning and uncertain
reasoning, pages 297–352. Oxford University Press, Inc., USA, April 1994.

[48] Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for Haskell. In
Proceedings of the ACM SIGPLAN workshop on Haskell workshop, Haskell ’07,
pages 73–82, New York, NY, USA, September 2007. Association for Computing
Machinery.

[49] Jacek Malec. Active logic and practice. In Linköping Electronic Conference
Proceedings, pages 49–53. Linköping University Electronic Press, 2009.

258

[50] Andrea Mazzoleni. TommyDS. https://github.com/amadvance/tommyds/,
2018.

[51] John McCarthy. Circumscription — a form of Non-Monotonic reasoning. Artif.
Intell., 13:27–39, 1980.

[52] John McCarthy. Applications of circumscription to formalizing common-sense
knowledge. Artif. Intell., 28(1):89–116, 1986.

[53] John McCarthy and Patrick J Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In Bonnie Lynn Webber and Nils J Nilsson,
editors, Readings in Artificial Intelligence, pages 431–450. Morgan Kaufmann,
January 1981.

[54] J-J Ch Meyer and W van der Hoek. Epistemic Logic for AI and Computer
Science. Cambridge University Press, 1995.

[55] Michael Miller and Donald Perlis. Presentations and this and that: logic and
action. In Proceedings of the 15th Annual Conference of the Cognitive Science
Society, USA, 1993.

[56] Michael J Miller. A View of One’s Past and Other Aspects of Reasoned Change
in Belief. PhD thesis, University of Maryland at College Park, College Park,
MD, USA, 1993.

[57] Leora Morgenstern. A first order theory of planning, knowledge, and action. In
Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About
Knowledge, pages 99–114, San Francisco, CA, USA, 1986. Morgan Kaufmann
Publishers Inc.

[58] Leora Morgenstern. Foundations of a logic of knowledge, action, and commu-
nication. PhD thesis, New York University, 1988.

[59] Leora Morgenstern. A first-order axiomatization of the surprise birthday
present problem: Preliminary report. In Proceedings of the Seventh Interna-
tional Symposium on Logical Formalizations of Commonsense Reasoning, 2005.

[60] Erik T Mueller. Commonsense Reasoning: An Event Calculus Based Approach.
Morgan Kaufmann, November 2014.

[61] Madhura Nirkhe. Time-situated Reasoning Within Tight Deadlines and Real-
istic Space and Computation Bounds. PhD thesis, University of Maryland at
College Park, College Park, MD, USA, 1995.

[62] Madhura Nirkhe. How to (plan to) meet a deadline between now and then. J.
Logic Comput., 7(1):109–156, February 1997.

[63] Madhura Nirkhe, Sarit Kraus, and Don Perlis. Thinking takes time: A modal
active-logic for reasoning in time. In Proceedings of the Bar Han Symposium
On Foundations of AI, page 11, 1995.

259

https://github.com/amadvance/tommyds/

[64] Madhura Nirkhe, Sarit Kraus, and Donald Perlis. Situated reasoning within
tight deadlines and realistic space and computation bounds. In Proceeedings of
the Second Symposium on Logical Formalizations of Commonsense Reasonin,
1993.

[65] Madhura Nirkhe, Donald Perlis, and Sarit Kraus. Reasoning about change in
a changing world. In Proceedings of FLAIRS’93, 1993.

[66] Don Perlis, Clifford Bakalian, Justin Brody, Timothy Clausner, Matthew D
Goldberg, Adam Hamlin, Vincent Hsiao, Darsana Josyula, Chris Maxey, David
Sekora, Jared Shamwell, and Jesse Silverberg. Live and learn, ask and tell:
Agents over tasks. In International Workshop on Spoken Dialogue Systems,
Special Session on Dialog Systems and Lifelong Learning, Siracusa, Italy, 2019.

[67] Don Perlis, Justin Brody, Sarit Kraus, and Michael Miller. The internal rea-
soning of robots. In Thirteenth International Symposium on Commonsense
Reasoning, 2017.

[68] Donald Perlis. Language, Computation, and Reality. PhD thesis, University of
Rochester, 1981.

[69] Donald Perlis. Languages with self-reference I: Foundations. Artif. Intell.,
25(3):301–322, 1985.

[70] Donald Perlis. Languages with self-reference II: Knowledge, belief, and modal-
ity. Artif. Intell., 34(2):179–212, March 1988.

[71] Donald Perlis. Meta in logic. In Meta-Level Architectures and Reflection, pages
37–49. Elsevier Science Publishers BV, North-Holland, 1988.

[72] Donald Perlis. Consciousness as self-function. Journal of Consciousness Stud-
ies, 4(5-6):509–525, 1997.

[73] A Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57, October 1977.

[74] Khemdut Purang. Alma/Carne: implementation of a time-situated meta-
reasoner. In Proceedings 13th IEEE International Conference on Tools with
Artificial Intelligence. ICTAI 2001, pages 103–110, November 2001.

[75] Khemdut Purang. Systems that detect and repair their own mistakes. PhD
thesis, University of Maryland, College Park, 2001.

[76] W V Quine. Quantifiers and propositional attitudes. J. Philos., 53(5):177–187,
1956.

[77] Willard Quine. Mathematical Logic, Revised Edition. Harvard University Press,
1981.

260

[78] Raymond Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81–132,
1980.

[79] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, July 2001.

[80] Bryan Renne. Dynamic Epistemic Logic with justification. PhD thesis, City
University of New York, Ann Arbor, United States, 2008.

[81] Matthew Schmill, Michael Anderson, Scott Fults, Darsana Josyula, Tim Oates,
Don Perlis, Hamid Shahri, Shomir Wilson, and Dean Wright. The metacogni-
tive loop and reasoning about anomalies. In Michael T Cox and Anita Raja,
editors, Metareasoning: Thinking about Thinking, pages 183–198. MIT Press,
March 2011.

[82] Matthew Schmill, Darsana Josyula, Michael Anderson, Shomir Wilson, Tim
Oates, and Don Perlis. Ontologies for reasoning about failures in AI systems.
In Proceedings from the Workshop on Metareasoning in Agent Based Systems at
the Sixth International Joint Conference on Autonomous Agents and Multiagent
Sytems, 2007.

[83] Stuart C Shapiro. The SNePS semantic network processing sytem. In
Nicholas V Findler, editor, Associative Networks, pages 179–203. Academic
Press, January 1979.

[84] Stuart C Shapiro. The CASSIE projects: An approach to natural language
competence. In EPIA 89, pages 362–380. Springer Berlin Heidelberg, 1989.

[85] Stuart C Shapiro. Embodied cassie. In Cognitive Robotics: Papers from the
1998 AAAI Fall Symposium, Technical Report FS-98, volume 2, pages 136–143.
aaai.org, 1998.

[86] Stuart C Shapiro and Jonathan P Bona. The GLAIR cognitive architecture.
International Journal of Machine Consciousness, 02(02):307–332, 2010.

[87] Stuart C Shapiro, William J Rapaport, Michael Kandefer, Frances L Johnson,
and Albert Goldfain. Metacognition in SNePS. 1, 28(1):17–31, March 2007.

[88] Guy Steele. Common LISP: The Language. Elsevier, June 1990.

[89] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epis-
temic Logic. Springer Netherlands, May 2007.

[90] M M Vinkov and I B Fominykh. Argumentation semantics for active logic
step theories with granulation of time. Scientific and Technical Information
Processing, 43(5):346–350, December 2016.

[91] Mikhail M Vinkov and Igor B Fominykh. Stepping theories of active logic
with two kinds of negation. Advances in Electrical and Electronic Engineering,
15(1):84–92–92, March 2017.

261

[92] Franciscus Petrus Johannes Maria Voorbraak. As far as I know: Epistemic
logic and uncertainty. PhD thesis, Utrecht University, 1993.

[93] Pei Wang. Non-axiomatic Logic: A Model of Intelligent Reasoning. World
Scientific, 2013.

[94] Pei Wang and Patrick Hammer. Issues in temporal and causal inference. In Ar-
tificial General Intelligence, pages 208–217. Springer International Publishing,
2015.

[95] Pei Wang, Xiang Li, and Patrick Hammer. Self in NARS, an AGI system.
Front. Robot. AI, 5, 2018.

[96] Yanjing Wang. Beyond knowing that: A new generation of epistemic logics. In
Hans van Ditmarsch and Gabriel Sandu, editors, Jaakko Hintikka on Knowl-
edge and Game-Theoretical Semantics, pages 499–533. Springer International
Publishing, Cham, 2018.

[97] Mark Whitsey. Logical omniscience: A survey. Technical Report NOTTCS-
WP2003-2, School of Computer Science and IT, University of Nottingham,
2003.

262

	Acknowledgements
	Table of Contents
	Introduction
	Contributions
	Publications
	Outline

	Related work
	Logicism and commonsense reasoning
	Introduction
	Situation calculus
	Nonmonotonic reasoning
	Other relevant logicist approaches

	Active logic
	An active and temporal nature
	Paraconsistency
	Nonmonotonicity
	Older approaches
	Step-logic development
	Reasoned change in belief
	Deadline planning

	ALMA 1.0
	The metacognitive loop
	ALFRED
	Need for a sense of agency
	Other active logic work
	An active logic grammar

	Agency and internal reasoning with nested formulas
	Autoepistemic desiderata for agency
	Constraints on representation

	Syntactic theories of belief
	Konolige
	Perlis
	Haas
	Morgenstern
	Quantifying-in
	Evaluation for agency
	The role for active logic

	Motivating examples of quotation
	Referring to and updating an agent's beliefs
	Reasoning about the presence or absence of beliefs
	Distinguishing experience and quoted expressions

	Quotation in active logic
	Introduction
	Need for quotation in active logic
	Quotation terms
	Formalism
	Quotation term reasoning
	A point about quoted formula meaning
	A ground quotation term
	A variable both inside and outside quotation
	Unifying a quotation term containing a variable
	Inferring a quotation term as true

	Quasi-quotation
	A need for quantifying-in
	Formalism
	Quasi-quotation reasoning
	Binding a non-escaping quasi-quoted variable
	Binding a fully-escaping quasi-quoted variable
	Binding to a ground term
	Binding to a variable
	Binding to a non-ground term
	Binding to fully-escaping variables

	Exhaustiveness of bindings
	Substitution with quotation and quasi-quotation
	Substituting for a non-escaping variable
	Substituting for a fully-escaping variable
	Substituting into the same quotation level
	Substituting into a different quotation level

	Recursive quasi-quotation unification

	A quotation unification algorithm

	The ALMA 2.0 reasoner
	Introduction
	Grammar and parsing
	Control by commands
	High-level control and prospect management
	Inheritance

	Methods of inference
	Forward-chaining resolution
	Forward-if
	Procedural premise predicates
	Family of procedural premise predicates

	Introspection

	Backward-chaining resolution
	Procedural atomic predicates

	Specialized inference rules
	Clock rule
	Contradiction handling
	Inferring as true

	Agent belief modeling
	Agent belief model partitions
	Belief inference and synchronization
	Effects on ALMA procedures

	Comparison with the prior reasoner
	Deficiencies in ALMA 1.0
	Behavioral overlap

	Applications to commonsense reasoning
	Introduction
	Default reasoning with nested beliefs
	Nested defaults case study
	Initial mollusk ontology
	First example: cephalopod as a counterexample
	Second example: counterexample from observation

	Interacting defaults case study
	Initial car ontology
	First example: resolving conflicting categories
	Second example: repetition after an update

	Counterpart axioms
	Example corpus and testing

	Question-answering
	Axioms
	Examples
	Toward explainability

	Modeling agent beliefs: the surprise birthday present
	Attributing common knowledge
	Birthday surprise ontology
	Solutions and discussion
	Alma's perspective
	Carol's perspective
	Bob's perspective of Carol
	Other scenarios
	Discussion

	Conclusions and future directions
	Summary of results
	Quotation and quasi-quotation
	ALMA 2.0
	Commonsense reasoning applications

	Future work
	Quotation and quasi-quotation
	Commonsense reasoning applications
	Default reasoning
	Agent-modeling

	ALMA-based agency

	Bibliography

