
ABSTRACT

Title of Dissertation: A VERIFIED SOFTWARE TOOLCHAIN
FOR QUANTUM PROGRAMMING

Kesha Hietala
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Michael Hicks
Department of Computer Science

Quantum computing is steadily moving from theory into practice, with small-scale

quantum computers available for public use. Now quantum programmers are faced

with a classical problem: How can they be sure that their code does what they in-

tend it to do? I aim to show that techniques for classical program verification can

be adapted to the quantum setting, allowing for the development of high-assurance

quantum software, without sacrificing performance or programmability. In support of

this thesis, I present several results in the application of formal methods to the domain

of quantum programming, aiming to provide a high-assurance software toolchain for

quantum programming. I begin by presenting sqir, a small quantum intermediate

representation deeply embedded in the Coq proof assistant, which has been used to

implement and prove correct quantum algorithms such as Grover’s search and Shor’s

factorization algorithm. Next, I present voqc, a verified optimizer for quantum cir-

cuits that contains state-of-the-art sqir program optimizations with performance on

par with unverified tools. I additionally discuss vqo, a framework for specifying and

verifying oracle programs, which can then be optimized with voqc. Finally, I present

exploratory work on providing high assurance for a high-level industry quantum pro-

gramming language, Q#, in the F⋆ proof assistant.
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Chapter 1

Introduction

Quantum computers may soon deliver revolutionary improvements in algorithmic

performance, but this is only useful if the answers computed by quantum programs

are correct. While hardware-level decoherence errors have garnered significant at-

tention, a less recognized obstacle to quantum program correctness is that of human

programming errors—bugs. This dissertation aims to provide a solution for how

quantum programmers can be assured that their code is bug-free.

Standard approaches from the classical domain for assuring correctness, such as

unit testing and runtime debugging, are of limited use in the quantum setting. For

example, consider runtime debugging via print statements: In a quantum program,

printing the value of a quantum bit requires measuring it (an effectful operation)

and printing the returned value. This is akin to randomly and irreversibly coercing

a floating point number to a nearby integer—it will give a weakly informative an-

swer and corrupt the rest of the program. Unit tests are of similarly limited value

when a program is probabilistic: Many quantum algorithms generate outputs over

an exponentially large domain, so characterizing the output distribution may require

exponentially many runs of the program. Matters are further complicated by the fact

that near-term quantum machines suffer from high error rates, which makes it diffi-
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cult to distinguish between an unexpected output due to machine error from one due

to programmer error. Simulating quantum programs on a classical computer holds

some promise (and simulators are bundled with most quantum software packages)

but it requires resources up to exponential in the number of qubits being simulated.

An attractive solution to these challenges is to use techniques from the field of pro-

gramming languages, such as induction, algebraic reasoning and equational rewriting,

to mathematically prove that a quantum program is correct. This approach is called

formal verification. Unlike simulation, in formal verification the state of the quantum

system is represented symbolically, meaning that proofs are often independent of the

number of qubits used in the program.

This dissertation aims to demonstrate that:

Techniques for classical program verification can be adapted to the quan-

tum setting, allowing for the development of high-assurance quantum soft-

ware, without sacrificing performance or programmability.

1.1 sqir: A Small Quantum Language Supporting

Verification

This dissertation begins by presenting sqir (pronounced “squire”), a small quantum

intermediate representation deeply embedded in the Coq proof assistant [Coq19]. The

sqir language is not too different from quantum assembly languages like OpenQASM

2.0 [Cro+17] or Quil [SCZ16], but has a carefully defined formal semantics in terms

of linear algebra that allows us to prove properties about sqir programs.

sqir’s design has several key features. First, it uses natural numbers in place

of variables so that we can naturally index into a program’s vector or matrix state.

Using variables directly (e.g., with higher-order abstract syntax [PE88], as in the

Qwire [PRZ17] and Quipper [Gre+13] languages) necessitates a map from variables
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to indices, which we find confounds proof automation. Second, sqir provides two

semantics for quantum programs. We express the semantics of a general program

as a function between density matrices, as is standard (e.g., in QPL [Sel04a] and

Qwire), since density matrices can represent the mixed states that arise when a

program applies a measurement operator. However, measurement typically occurs

at the end of a computation, rather than within it, so we also provide a simpler

unitary semantics for (sub-)programs that do not measure their inputs. In this case,

a program’s semantics corresponds to a restricted class of matrices that are much

easier to work with, especially when employing automation. Other features of sqir’s

design, like assigning an ill-typed program the denotation of the zero-matrix, are

similarly intended to ease proof.

We have used sqir to implement verified versions of several textbook quantum

algorithms including quantum teleportation, superdense coding, GHZ state prepa-

ration [GHZ89], the Deutsch-Jozsa algorithm [DJ92], Simon’s algorithm [Sim94],

Grover’s algorithm [Gro96], quantum phase estimation (QPE), and, most recently,

Shor’s factorization algorithm [Sho97]. These are the most sophisticated quantum al-

gorithms that have been formally verified in any tool to date, providing encouraging

evidence that our design is productive.

Related Work Several prior works have had the goal of formally verifying quantum

programs. In 2010, Green [Gre10] developed an Agda implementation of the Quantum

IO Monad, and in 2015 Boender et al. [BKN15] produced a small Coq quantum

library for reasoning about quantum “programs” directly via their matrix semantics.

These were both proofs of concept, and were only capable of verifying basic protocols.

Rand, Paykin, and Zdancewic [RPZ18] embedded the Qwire programming language

in the Coq proof assistant, and used it to verify a variety of simple programs and

assertions regarding ancilla qubits [Ran+19]. sqir reuses parts of Qwire’s Coq
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development, and takes inspiration and lessons from its design. Concurrently with

our work, Chareton et al. [Cha+21] introduced Qbricks, a tool implemented in

Why3 [FP13] whose aim is to support mostly-automated verification of quantum

algorithms. Their design in many ways mirrors sqir’s: both tools provide special

support for reasoning about unitary programs and the languages are simplified so that

programs have a straightforward translation to their semantics. sqir and Qbricks

have been used to verify similar algorithms (in particular, Grover’s search and QPE),

but Qbricks does not support measurement and has not been applied to verify

hybrid classical/quantum algorithms like Shor’s factorization algorithm.

1.2 voqc: A Verified Optimizer for Quantum Cir-

cuits

As the name suggests, the initial intended use of sqir was not as a source language,

but as an intermediate representation in a compiler. Compilers play a key role in

the near-term quantum software toolchain because current machines are resource-

limited. They have few qubits, restrictions on how qubits can be used together in

quantum operations, limitations on the types of operations allowed, and high error

rates, requiring that programs be short to prevent decoherence. It is the job of

the compiler to perform the optimizations and transformations necessary to run a

program on a quantum machine.

Such sophisticated optimizations are hard to get right: Kissinger and van de

Wetering [Kv19a] discovered mistakes in the optimized outputs produced by the cir-

cuit optimizer of Nam et al. [Nam+18], and Nam et al. themselves found that the

optimization library they compared against (Amy, Maslov, and Mosca [AMM13])

sometimes produced incorrect results. These bugs were found via translation valida-

tion (i.e., comparing the semantics of the compiler’s target to its source) after the
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original publication, suggesting that testing for semantics-preservation is hard. This

is true in the classical setting too [Yan+11], but it is especially challenging in the

quantum setting, where determining the semantics of a quantum program by running

it on a quantum machine may require exponentially many runs, and simulating it on

a classical machine may require storing an exponential-sized state.

As in the previous section, an appealing solution is to apply rigorous formal

methods to prove that an optimization always preserves the source program’s se-

mantics. For example, CompCert [Ler09] is a compiler for C programs that is writ-

ten and proved correct using the Coq proof assistant. CompCert includes sophis-

ticated optimizations whose proofs of correctness are verified to be valid by Coq’s

type checker, and has been empirically demonstrated to be more robust than similar

unverified tools: Using sophisticated testing techniques, researchers found hundreds

of bugs in the popular C compilers gcc and clang, but none in CompCert’s verified

core [Yan+11].

We have extended CompCert’s approach to the quantum setting with voqc (pro-

nounced “vox”), the first verified optimizer for quantum circuits. voqc takes as input

a sqir program and applies a series of optimizations, ultimately producing a result

that is compatible with the specified quantum architecture. Importantly, all op-

timizations in voqc are guaranteed to be semantics-preserving, meaning that any

properties proved about a sqir program will still hold after voqc’s optimizations

have been applied. Many of voqc’s optimization are based on those in an optimizer

developed by Nam et al. [Nam+18], but we also take inspiration from the Qiskit com-

piler [Qis17]. Along with optimizations, we also provide verified utilities for circuit

mapping, which transform a sqir program to satisfy constraints on how qubits may

interact on a target architecture. We also look at the problem of compiling programs

from a high-level language into sqir: vqo is the first high-assurance compiler for

quantum oracles, which are classical components leveraged by many quantum algo-
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Figure 1.1: Overview of voqc toolchain. Checks mark verified components and gears
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rithms. vqo efficiently compiles programs written in a high-level classical language

into sqir, guaranteeing that the semantics of the compiled code matches the source.

The voqc toolchain in summarized in Figure 1.1. voqc optimizations, the vqo

compiler, and quantum source programs are specified and formally verified in Coq.

Source programs are written in a combination of sqir, which allows applying quan-

tum operations, and Coq, which supports classical circuit parameters and arbitrary

classical computation. Using Coq’s standard code extraction mechanism, we extract

voqc and vqo into standalone OCaml libraries and source programs into OCaml code

that generates sqir circuits, which we then convert to OpenQASM 2.0 [Cro+17], a

standard representation for quantum circuits. We provide a Python wrapper around

the OCaml voqc library, which takes as input an OpenQASM circuit and produces

an optimized circuit as output. Our support for Python and OpenQASM allows

us to integrate with other Python-based quantum programming frameworks that use

OpenQASM, including Qiskit [Qis17], t|ket⟩ [Siv+20], Quil [Rig19b], and Cirq [Cir18].

Using our Python and OCaml libraries, we evaluate the quality of voqc’s verified

optimizations by measuring how well they optimize a large set of benchmark pro-
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grams. We find that voqc has competitive performance with comparable unverified

tools like Qiskit and t|ket⟩. We also find that the oracles produced by vqo have

performance on par with those generated by Quipper [Gre+13], a popular unverified

quantum programming framework.

Related Work voqc is the first fully verified optimizer for general quantum pro-

grams. Amy, Roetteler, and Svore [ARS17] developed a verified optimizing com-

piler from source Boolean expressions to (classical) reversible circuits and Fagan and

Duncan [FD18] verified an optimizer for ZX-diagrams representing Clifford circuits;

however, neither of these tools handle general quantum programs. In concurrent

work, Tao et al. [Tao+22] developed Giallar, which uses symbolic execution and SMT

solving to verify circuit transformations in the Qiskit compiler. Giallar is limited

to verifying correct application of local equivalences and does not provide a way to

describe general quantum states (a key feature of sqir), which limits the types of

optimizations that it can reason about and means that it cannot be used as a general

tool for verifying quantum programs.

1.3 Q⋆: Formal Verification for a High-level Quan-

tum Language

sqir and voqc comprise the core of a high-assurance toolchain for quantum pro-

gramming, supporting verification and optimization of quantum circuits. However,
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sqir is a low-level language that does not directly encode the high-level constructs

used in many quantum algorithms. Meta-programming algorithms in Coq recovers

some structure, but Coq was not designed to be a source programming tool (it em-

phasizes proof) and has no features to support quantum programming, like libraries

for common quantum algorithm components or a simulator for quantum programs.

Q# [Svo+18; Hei20] is a recent quantum programming language from Microsoft that

includes extensive libraries for quantum computing and comes equipped with state-of-

the-art simulators, but has no support for formal verification. In an effort to extend

our work on quantum formal verification to this higher-level setting, we developed

Q⋆, a language with a formal semantics for representing Q# programs.

As shown in Figure 1.2, developers write programs in Q#, taking advantage of

the many features available in Microsoft’s Quantum Development Kit (QDK). The

Q# programs are then translated into Q⋆, our novel high-level quantum programming

language embedded in the F⋆ proof assistant [Dev22]. We develop a semantics for

Q⋆ programs, allowing us to prove functional correctness, as well as simpler well-

formedness properties not currently enforced by the Q# compiler. Q⋆ is the first

attempt to support formal verification of programs written in an industry quantum

programming language. Prior work on verifying quantum source programs, like sqir,

Qwire, and Qbricks, focuses on research languages that have no clear path for

integration into an industry setting.

1.4 Summary

This dissertation aims to show that techniques for classical program verification can

be adapted to the quantum setting, allowing for the development of high-assurance

quantum software, without sacrificing performance or programmability. Towards this

goal, we make the following contributions:
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1. We present sqir, a small quantum language designed for proof. We discuss

verified sqir implementations of sophisticated quantum algorithms including

quantum phase estimation, Grover’s search, and Shor’s factorization algorithm.

(Chapter 3.)

2. We present voqc, a verified optimizer for quantum circuits that contains im-

plementations of state-of-the-art circuit transformations, and vqo, a framework

for developing correct and efficient oracle programs. Evaluating on a large set

of benchmark programs, we find that voqc and vqo achieve performance com-

parable with popular unverified tools. (Chapter 4.)

3. We present Q⋆, the first effort to add the benefits of source-level formal veri-

fication to a widely-used industry quantum programming framework, allowing

users to take advantage of convenient high-level programming language features,

while still providing correctness guarantees. (Chapter 5.)
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Chapter 2

Background

2.1 Formal Verification

Formal methods are techniques to mathematically prove that software does what it

should, for all inputs. The proved-correct artifact is referred to as certified. The

development of formal methods began in the 1960s when classical computers were

in a state similar to quantum computers today: Computers were rare, expensive to

use, and had relatively few resources, e.g., memory and processing power. Then,

programmers would be expected to do proofs of their programs’ correctness by hand.

Automating and confirming such proofs has, for more than 50 years now, been a

grand challenge for computing research [Hoa03].

While early developments of formal methods led to disappointment [DLP79], the

last two decades have seen remarkable progress, especially in the development of

proof assistants [Rin+19], which are general-purpose tools for defining mathematical

structures and mechanizing proofs about those structures. This dissertation primar-

ily uses the Coq proof assistant [Coq19], which is an established tool that has been

used both to verify complex programs and to prove hard mathematical theorems.

A prime example of a certified program is the CompCert compiler [Ler09], imple-
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mented and verified in Coq. CompCert compiles code written in the widely used C

programming language to instruction sets for ARM, x86, and other computer archi-

tectures. CompCert’s design precisely reflects the intended program behavior—the

semantics—given in the C99 specification, and all of its optimizations are guaranteed

to preserve that behavior. For this project, the benefits of formal methods have been

demonstrated empirically: Using sophisticated testing techniques, researchers found

hundreds of bugs in the popular mainstream C compilers gcc and clang, but none

in CompCert’s verified core [Yan+11]. Coq has also been used to verify proofs of the

notoriously hard-to-check Four Color Theorem [Gon08], as well as the Feit–Thompson

(or odd order) theorem [Gon+13]. Coq’s dual uses for both programming and math-

ematics make it an ideal tool for verifying quantum algorithms.

Many other proof assistants have similar success stories. The F⋆ language (dis-

cussed in Chapter 5) is being used to certify a number of key internet security pro-

tocols, including Transport Layer Security (TLS) [Bha+17], and the High Assurance

Cryptographic Library, HACL∗ [Zin+17], which has been integrated into the Firefox

web browser. Isabelle/HOL was used to verify the seL4 operating system kernel. The

Lean proof assistant has been used to verify large portions of the undergraduate and

graduate mathematics curricula [Com20]. Indeed, Lean has reached the point where

it can verify cutting-edge proofs: It was recently used to prove a core theorem in Peter

Scholze’s theory of condensed mathematics, first proven in 2019 [Cas21; Har21]. The

approach taken in this dissertation to verify quantum software could be implemented

using these other tools as well.
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Figure 2.1: Matrix representation of common quantum gates

2.2 Quantum Computing

2.2.1 Preliminaries

Quantum programs operate over quantum states, which consist of one or more quan-

tum bits (aka, qubits). A single qubit is represented as a vector of complex numbers

⟨α, β⟩ such that |α|2+ |β|2 = 1. The vector ⟨1, 0⟩ represents the state |0⟩ while vector

⟨0, 1⟩ represents the state |1⟩. A state written |ψ⟩ is called a ket, following Dirac’s

notation. We say a qubit is in a superposition of |0⟩ and |1⟩ when both α and β are

non-zero. Just as Schrodinger’s cat is both dead and alive until the box is opened, a

qubit is in superposition until it is measured, at which point the outcome will be 0

with probability |α|2 and 1 with probability |β|2. Measurement is not passive: it has

the effect of collapsing the state to match the measured outcome, i.e., either |0⟩ or

|1⟩. As a result, all subsequent measurements return the same answer.

Operators on quantum states are linear mappings. These mappings can be ex-

pressed as matrices, and their application to a state expressed as matrix multiplica-

tion. For example, the matrix representation of the Hadamard (H) operator is shown

in Figure 2.1(a) and the matrix representation of a z-axis rotation by θ (Rz(θ)) is

shown in Figure 2.1(b). Applying H to state |0⟩ yields state ⟨ 1√
2
, 1√

2
⟩, also written

as |+⟩, while applying H to |1⟩ yields ⟨ 1√
2
,− 1√

2
⟩, also written |−⟩. Many quantum

operators are not only linear, they are also unitary—their conjugate transpose (or

adjoint) is its own inverse. This ensures that multiplying a qubit by the operator pre-

serves the qubit’s sum of norms squared. All of the matrices in Figure 2.1 are unitary.
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Since a Hadamard is its own adjoint, it is also its own inverse: hence H |+⟩ = |0⟩ and

H |−⟩ = |1⟩.

A quantum state with n qubits is represented as vector of length 2n. For example,

a 2-qubit state is represented as a vector ⟨α, β, γ, δ⟩ where each component squared

corresponds to the probability of measuring |00⟩, |01⟩, |10⟩, and |11⟩, respectively.

Because of the exponential size of the complex quantum state space, it is not possible

to simulate a 100-qubit quantum computer using even the most powerful classical

computer!

n-qubit operators are represented as 2n × 2n matrices. For example, the CNOT

operator over two qubits is represented by the matrix shown in Figure 2.1(c). It

expresses a controlled not operation—if the first qubit (called the control) is |0⟩ then

both qubits are mapped to themselves, but if the first qubit is |1⟩ then the second

qubit (called the target) is negated, e.g., CNOT |00⟩ = |00⟩ while CNOT |10⟩ = |11⟩.

n-qubit operators can be used to create entanglement, which is a situation where

two qubits cannot be described independently. For example, while the vector ⟨1, 0, 0, 0⟩

can be written as ⟨1, 0⟩⊗ ⟨1, 0⟩ where ⊗ is the tensor product, the state ⟨ 1√
2
, 0, 0, 1√

2
⟩

cannot be similarly decomposed. We say that ⟨ 1√
2
, 0, 0, 1√

2
⟩ is an entangled state.

An important non-unitary quantum operator is projection onto a subspace. For

example, |0⟩⟨0| (in matrix notation ( 1 0
0 0 )) projects a qubit onto the subspace where

that qubit is in the |0⟩ state. Projections are useful for describing quantum states

after measurement has been performed. We sometimes use |i⟩q⟨i| as shorthand for

applying the projector |i⟩ ⟨i| to qubit q and an identity operation to every other qubit

in the state.

2.2.2 Quantum Programs

Quantum programs are typically expressed as circuits, as shown in Figure 2.2(a). In

these circuits, each horizontal wire represents a qubit and boxes on these wires indicate
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quantum operators, or gates. The circuit in Figure 2.2(a) uses three qubits and

applies three gates: the Hadamard (H) gate and two controlled-not (CNOT) gates.

Gates can either be unitary (e.g., H and CNOT) or non-unitary (e.g., measurement).

In software, quantum programs are often represented using lists of instructions that

describe the different gate applications. For example, Figure 2.2(b) is the Quil [SCZ16]

representation of the circuit in Figure 2.2(a).

Most quantum programming languages in popular use today are expressed at a

low-level of abstraction, essentially as a thin layer over circuits. Examples include

Quil and IBM’s quantum assembly language OpenQASM 2.0 [Cro+17]. In these

languages, users are restricted to programming directly with gate applications and

measurement, which often obscures the high-level goal of the program. Higher-level

languages are now beginning to emerge to fill this gap. Some of these languages (e.g.

Quipper [Gre+13], PyQuil [Rig19a]) focus on providing methods to easily manipulate

circuits while others (e.g. Scaffold [Jav+12], Q# [Svo+18], and Silq [Bic+20]) focus

on providing a programming environment familiar from classical programming.

Figure 2.2(c) shows a program in PyQuil, a quantum programming framework

from Rigetti embedded in Python. The ghz_state function takes an array qubits and

constructs a circuit that prepares the Greenberger-Horne-Zeilinger state [GHZ89],

which is an n-qubit entangled quantum state of the form

|GHZn⟩ = 1√
2
(|0⟩⊗n + |1⟩⊗n).

Calling ghz_state([0,1,2]) returns the Quil program in Figure 2.2(b), which could

subsequently be compiled and run on a quantum machine.

Figure 2.2(d) shows the same program in Q#, a standalone quantum programming

language from Microsoft. Unlike the PyQuil program, which explicitly constructs a

circuit (called program), the Q# program applies H using the syntax of a function

14



|0⟩ H •
|0⟩ •
|0⟩

(a) Circuit

H 0
CNOT 0 1
CNOT 1 2

(b) Quil

def ghz_state(qubits):
program = Program()
program += H(qubits[0])
for q1,q2 in zip(qubits, qubits[1:]):

program += CNOT(q1, q2)
return program

(c) PyQuil

operation PrepareGHZ (qs : Qubit[])
: Unit is Adj + Ctl {

H(qs[0]);
ApplyCNOTChain(qs);

}
(d) Q#

Figure 2.2: Example quantum program: GHZ state preparation

call, with no reference to a circuit object. It also provides a variety of high-level

primitives, like ApplyCNOTChain, which applies a sequence of CNOT gates. The char-

acteristics on the return type on the Q# program (Adj + Ctl) say that the compiler

can automatically generate controlled or adjoint variants of the operation. We say

more about Q# in Chapter 5.

2.2.3 Compiling Quantum Programs

Before a quantum program can be run on a machine, it must be compiled to hardware-

specific code that accounts for details like the number of available qubits, native gate

set, or connectivity between physical qubits. It is also often desirable to optimize the

resulting circuit to reduce gate count, circuit depth, qubit usage, etc.

PyQuil provides access to the quilc compiler [Rig19b], which targets Rigetti’s

quantum machines. Rigetti’s hardware natively supports controlled-Z, Rx(±π/2),

and Rz(λ) gates. So before the program in Figure 2.2(b) can be executed on a

quantum machine, its gates must be translated to this native set. quilc uses the

following translation rules.
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Figure 2.3: Rigetti’s 8-qubit Agave machine [Com18] (deployed June 4, 2017). The
processor consists of 8 superconducting transmon qubits, which can interact accord-
ing to the graph on the left. The right shows an optical image of an 8-qubit chip
representative of the Agave machine.

H −→ Rx(
π
2 ) Rz(

π
2 ) Rx(

π
2 )

• −→
Z Rz(π)

Rx(
π
2 ) Rz(

π
2 ) Rx(−π

2 ) • Rx(
π
2 ) Rz(−π

2 ) Rx(−π
2 )

Along with performing gate set translation, quilc may also need to account for

connectivity constraints, which restrict which qubits can be used together (“interact”)

in a two-qubit gate. For example, consider the diagram of Rigetti’s Agave machine

shown in Figure 2.3; On this machine, qubits are arranged in a ring, and only qubits

adjacent on the ring can interact. In the program in Figure 2.2, qubits 0 and 1 interact

and qubits 1 and 2 interact, which is allowed by the Agave machine, so no additional

instructions need be inserted. Finally, quilc will perform optimizations that rewrite

multiple Rx or Rz instructions acting on the same qubit into fewer instructions,

producing the following program1, which is sent to the hardware for execution.

|0⟩ Rz(
π
2 ) Rx(

π
2 ) Z Rz(−π

2 )

|0⟩ Rz(−π
2 ) Rx(

π
2 ) • Rx(−π

2 ) Z Rz(−π
2 )

|0⟩ Rz(−π
2 ) Rx(

π
2 ) • Rx(−π

2 ) Rz(
π
2 )

Current high-level languages like Q# [Svo+18] and Silq [Bic+20] are intended to

run on simulators rather than quantum hardware, so there has been limited work on
1https://pyquil-docs.rigetti.com/en/v3.1.0/compiler.html
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compiling these languages to circuits. One notable exception is the compiler for the

Scaffold programming language, ScaffCC [Jav+15].
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Chapter 3

A Quantum Intermediate

Representation for Verification

sqir is a small quantum intermediate representation for describing and verifying

quantum programs, embedded in the Coq proof assistant [Coq19]. We initially de-

veloped sqir to be a compiler intermediate representation for our formally verified

optimizer for quantum programs voqc (Chapter 4). However, we quickly realized

that it was not so different from languages used to write source quantum programs,

and that the design choices that eased proving optimizations correct could ease prov-

ing source programs correct, too.

To date, we have proved the correctness of implementations of a number of

quantum algorithms, including quantum teleportation, Greenberger–Horne–Zeilinger

(GHZ) state preparation [GHZ89], the Deutsch-Jozsa algorithm [DJ92], Simon’s al-

gorithm [Sim94], the quantum Fourier transform (QFT), quantum phase estimation

(QPE), Grover’s algorithm [Gro96], and, most recently, Shor’s factorization algo-

rithm [Sho97]. Our implementations can be extracted to code that can be executed

on quantum hardware or simulated classically, depending on the problem size and

hardware limitations.
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This chapter presents a detailed discussion of how sqir’s design supports proofs

of correctness. Section 3.1 presents sqir’s syntax and semantics. Section 3.2 dis-

cusses key elements of sqir’s design and compares and contrasts them to design

decisions made in the related tools Qwire [PRZ17], Qbricks [Cha+21], and the Is-

abelle implementation of quantum Hoare logic [Liu+19a]. sqir’s overall benefit over

these tools is its flexibility, supporting multiple semantics and approaches to proof.

Section 3.3 presents the code, formal specification, and proof sketch of Grover’s algo-

rithm, QPE, and Shor’s algorithm, which are the most sophisticated algorithms that

we have verified so far.

sqir is freely available at https://github.com/inQWIRE/SQIR.
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3.1 Syntax and Semantics

sqir is a simple quantum language deeply embedded in the Coq proof assistant. This

section presents sqir’s syntax and semantics. We defer a detailed discussion of sqir’s

design rationale to the next section.

3.1.1 Unitary sqir: Syntax

sqir’s unitary fragment is a sub-language of full sqir for expressing programs con-

sisting of unitary gates. (The full sqir language extends unitary sqir with measure-

ment.) A program in the unitary fragment has type ucom (for “unitary command”),

which we define in Coq as follows:

Inductive ucom (U: N → Set) (d : N) : Set :=

| useq : ucom U d → ucom U d → ucom U d

| uapp1 : U 1 → N → ucom U d

| uapp2 : U 2 → N → N → ucom U d

The useq constructor sequences two commands; we use notational shorthand p1 ;

p2 for useq p1 p2. The two uappn constructors indicate the application of a quantum

gate to n qubits, where n is 1 or 2. Qubits are identified as numbered indices into a

global qubit register of size d, which stores the quantum state. Gates are drawn from

parameter U, which is indexed by a gate’s size. For writing and verifying programs,

we use the following base set for U, inspired by IBM’s OpenQASM 2.0 [Cro+17]:1

Inductive base : N → Set :=

| U_R (θ ϕ λ : R) : base 1

| U_CNOT : base 2.

1It is helpful for proofs to keep U small because the number of cases in the proof about a value
of type ucom U d will depend on the number of gates in U. In our work on voqc (Chapter 4), we
define optimizations over a larger gate set that includes common gates like Hadamard, but convert
these gates to our base set for proof.
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|0⟩ H •
|0⟩ •
|0⟩

(a) Quantum circuit

H 0;
CNOT 0 1;
CNOT 1 2

(b) sqir assembly

Fixpoint ghz (n : N) : ucom base n :=
match n with
| 0 ⇒ I 0
| 1 ⇒ H 0
| S n' ⇒ ghz n'; CNOT (n'−1) n'

end.

(c) sqir meta-program

Figure 3.1: GHZ state preparation in sqir

That is, we have a one-qubit gate U_R (which we write UR when using math nota-

tion), which takes three real-valued arguments, and the standard two-qubit controlled-

not gate, U_CNOT (written CNOT in math notation), which negates the second qubit

wherever the first qubit is |1⟩, making it the quantum equivalent of a xor gate. The

U_R gate can be used to express any single-qubit gate (see Section 3.1.2). Together,

U_R and U_CNOT form a universal gate set, meaning that they can be composed to

describe any unitary operation [Bar+95].

Example: SWAP The following Coq function produces a unitary sqir program

that applies three controlled-not gates in a row, with the effect of exchanging two

qubits in the register. We define CNOT as shorthand for uapp2 U_CNOT.

Definition SWAP d a b : ucom base d := CNOT a b; CNOT b a; CNOT a b.

Example: GHZ Figure 3.1(b) is the sqir representation of the circuit in Fig-

ure 3.1(a), which prepares the three-qubit GHZ state [GHZ89]. We describe families

of sqir circuits by meta-programming in the Coq host language. The Coq function

in Figure 3.1(c) produces a sqir program that prepares the n-qubit GHZ state, pro-

ducing the program in Figure 3.1(b) when given input 3. In Figure 3.1(b–c), H and I

apply the U_R encodings of the Hadamard and identity gates.
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3.1.2 Unitary sqir: Semantics

Each k-qubit quantum gate corresponds to a 2k × 2k unitary matrix. The matrices

for our base set are:

JUR(θ, ϕ, λ)K =

 cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(ϕ+λ) cos(θ/2)

 , JCNOTK =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


.

Conveniently, the UR gate can encode any single-qubit gate [NC10, Chapter 4]. For

instance, two commonly-used single-qubit gates are X (“not”) and H (“Hadamard”).

The former has the matrix ( 0 1
1 0 ) and serves to flip a qubit’s α and β amplitudes; it

can be encoded as UR(π, 0, π). The H gate has the matrix 1√
2
( 1 1
1 −1 ), and is often used

to put a qubit into superposition (it takes |0⟩ to 1√
2
(|0⟩+ |1⟩)); it can be encoded as

UR(π/2, 0, π). Multi-qubit gates are easily produced by combinations of CNOT and

UR; we show the definition of the three-qubit “Toffoli” gate in Section 3.2.6. Keeping

our gate set small simplifies the language and enables easy case analysis—and does

not complicate proofs. We rarely unfold the definition of gates like X or the three-

qubit Toffoli, instead providing automation to directly translate these gates to their

intended denotations. Hence, X is translated directly to ( 0 1
1 0 ). Users can thereby

easily extend sqir with new gates and denotations.

A unitary sqir program operating on a size-d register corresponds to a 2d × 2d

unitary matrix. Function uc_eval denotes the matrix corresponding to program c.

Fixpoint uc_eval (d : N) (c : ucom base d) : Matrix (2^d) (2^d) := ...

We write JcKd for uc_eval d c. The denotation of composition is simple matrix mul-

tiplication: JU1; U2Kd = JU2Kd × JU1Kd. The denotation of uapp1 is the denotation of

its argument gate, but padded with the identity matrix so it has size 2d × 2d. To be
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precise, we have:

Juapp1 U qKd =


I2q ⊗ JUK⊗ I2d−q−1 q < d

02d otherwise

where In is the n× n identity matrix. In the case of our base gate set, JUK is the UR

matrix shown above. The denotation of any gate applied to an out-of-bounds qubit

is the zero matrix, ensuring that a circuit corresponds to a zero matrix if and only

if it is ill-formed. We likewise prove that every well-formed circuit corresponds to a

unitary matrix.

As our only two-qubit gate in the base set is U_CNOT, we specialize our semantics for

uapp2 to this gate. To compute JCNOT q1 q2Kd, we first decompose the CNOT matrix

into ( 1 0
0 0 )⊗ I2 + ( 0 0

0 1 )⊗X. We then pad the expression appropriately, obtaining the

following when q1 < q2 < d:

I2q1 ⊗ ( 1 0
0 0 )⊗ I2q2−q1−1 ⊗ I2 ⊗ I2d−q2−1 + I2q1 ⊗ ( 0 0

0 1 )⊗ I2q2−q1−1 ⊗X ⊗ I2d−q2−1 .

When q2 < q1 < d, we obtain a symmetric expression, and when either qubit is out of

bounds, we get the zero matrix. Additionally, since the two inputs to CNOT cannot

be the same, if q1 = q2 we also obtain the zero matrix.

Example: Verifying SWAP We can prove in Coq that SWAP 2 0 1, which swaps

the first and second qubits in a two-qubit register, behaves as expected on two unen-

tangled qubits:

Lemma swap2: ∀ (ϕ ψ : Vector 2), WF_Matrix ϕ → WF_Matrix ψ →

JSWAP 2 0 1K2 × (ϕ ⊗ ψ) = ψ ⊗ ϕ.

WF_Matrix says that ϕ and ψ are well-formed matrices [Ran18, Section 2] (Vector

is notation for a matrix with one column). This proof can be completed by simple
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matrix multiplication. In the full development we prove the correctness of SWAP d a b

for arbitrary dimension d and qubits a and b.

Example: Verifying GHZ The GHZ state is an n-qubit entangled quantum state

of the form 1√
2
(|0⟩⊗n+ |1⟩⊗n). In order to verify the ghz program, our goal is to show

that for any n > 0 the circuit generated by ghz n produces the corresponding GHZ(n)

vector when applied to |0⟩⊗n:

Lemma ghz_correct : ∀ n : N, n > 0 → Jghz nKn × |0⟩⊗n = GHZ(n).

The proof proceeds by induction on n. The n = 0 case is trivial as it contradicts

the hypothesis. For n = 1 we show that H applied to |0⟩ produces the |+⟩ state,

which is GHZ(1). In the inductive step, the induction hypothesis says that the result

of applying ghz n’ to the input state nket n’ |0⟩ is the state ( 1√
2

∗ |0⟩⊗n
′
+ 1√

2
∗

|1⟩⊗n
′
) ⊗ |0⟩. By applying CNOT (n' − 1) n' to this state, we show that ghz (n' + 1) =

GHZ(n′ + 1).

3.1.3 Full sqir: Adding Measurement

The full sqir language adds a branching measurement construct inspired by Selinger’s

QPL [Sel04a]. This construct permits measuring a qubit, taking one of two branches

based on the measurement outcome. Full sqir defines “commands” com as either a

unitary sub-program, a no-op skip, branching measurement, or a sequence of these.

Inductive com (U: N → Set) (d : N) : Set :=

| uc : ucom U d → com U d

| skip : com U d

| meas : N → com U d → com U d → com U d

| seq : com U d → com U d → com U d.

The command meas q P1 P2 measures qubit q and performs P1 if the outcome is 1 and

P2 if it is 0. We define non-branching measurement and resetting to a zero state in
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terms of branching measurement:

Definition measure q := meas q skip skip.

Definition reset q := meas q (X q) skip.

As before, we use our base set of unitary gates for full sqir.

Example: Flipping a Coin It is simple to generate a random coin flip with a

quantum computer: Use the Hadamard gate to put a qubit into equal superposition

1√
2
(|0⟩+ |1⟩) and then measure it.

Definition coin : com base 1 := H 0; measure 0.

Density Matrix Semantics As discussed in Section 2.2.1, measurement induces

a probabilistic transition, so the semantics of a program with measurement is a prob-

ability distribution over states, called a mixed state. As is standard [Sel04b; PRZ17;

Yin12], we represent such a state using a density matrix. The density matrix of a

pure state |ψ⟩ is |ψ⟩⟨ψ| where ⟨ψ| = |ψ⟩† is the conjugate transpose of |ψ⟩. The

density matrix of a mixed state is a sum over its constituent pure states. For exam-

ple, the density matrix corresponding to the uniform distribution over |0⟩ and |1⟩ is

1
2
|0⟩⟨0|+ 1

2
|1⟩⟨1|.

The semantics {|P|}d of a full sqir program P is a function from density matrices

to density matrices. Naturally, {|skip|}d ρ = ρ and {|P1 ; P2|}d = {|P2|}d ◦ {|P1|}d. For

unitary subroutines, we have {|uc U|}d ρ = JUKdρJUKd†: Applying a unitary matrix to a

state vector is equivalent to applying it to both sides of its density matrix. Finally,

using |i⟩q⟨j| for I2q ⊗ |i⟩⟨j| ⊗ I2d−q−1 , the semantics for {|meas q P1 P2|}d ρ is

{|P1|}d(|1⟩q⟨1| ρ |1⟩q⟨1|) + {|P2|}d(|0⟩q⟨0| ρ |0⟩q⟨0|)

which corresponds to probabilistically applying P1 to ρ with the specified qubit pro-

jected to |1⟩⟨1| or applying P2 to a similarly altered ρ.
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Example: A Provably Random Coin We can now prove that our coin circuit

above produces the |1⟩⟨1| or |0⟩⟨0| density matrix (corresponding to the |1⟩ or |0⟩

pure state), each with probability 1
2
.

Lemma coin_dist : {|coin|}1 |0⟩⟨0| = 1
2 |1⟩⟨1| +

1
2 |0⟩⟨0|.

The proof proceeds by simple matrix arithmetic. {|H|} |0⟩⟨0| is H |0⟩⟨0|H† = 1
2
( 1 1
1 1 ).

Calling this ρ12, applying measure yields |1⟩⟨1| ρ12 |1⟩⟨1|+|0⟩⟨0| ρ12 |0⟩⟨0|, which can be

further simplified using the fact that ⟨1| ρ12 |1⟩ = ⟨0| ρ12 |0⟩ = ( 1
2 ), yielding 1

2
|1⟩⟨1|+

1
2
|0⟩⟨0|, as desired.

Nondeterministic Semantics In addition to the density matrix-based semantics,

sqir also supports a nondeterministic semantics in which evaluation is expressed as

a relation. Given a state |ψ⟩, a unitary program u will (deterministically) evaluate to

JuKd × |ψ⟩. However, meas q p1 p2 may evaluate to either p1 applied to |1⟩⟨1| × |ψ⟩ or

p2 applied to |0⟩⟨0|×|ψ⟩ (we ignore scaling for simplicity). We use notation p / ψ ⇓ ψ′

to say that on input ψ program p nondeterministically evaluates to ψ′.

The advantage of the nondeterministic semantics is that state is represented using

a vector |ψ⟩ rather than a density matrix ρ, which makes proofs easier (see Sec-

tion 3.2.3). However, because the nondeterministic semantics only describes one

possible measurement outcome, it is only useful for proving certain types of proper-

ties. For example, it can be used to prove the existence of a possible output state

or to show that all execution paths result in the same outcome. The following two

examples share the latter property.

Example: Resetting a Qubit Consider the following sqir program, which resets

qubit q to the |0⟩ state.

Definition reset q = meas q (X q) skip.
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Using the density matrix-based semantics, we can prove the following, which says that

for any valid density matrix ρ, applying reset to ρ will produce the density matrix

corresponding to the |0⟩ state.

Lemma reset_to_zero: ∀ (ρ : Density 2), Mixed_State ρ → {|reset|}1 ρ = |0⟩⟨0|.

The proof is straightforward:

JresetK ρ = X(|1⟩⟨1| ρ |1⟩⟨1|)X + I2(|0⟩⟨0| ρ |0⟩⟨0|)I2

= |0⟩⟨1| ρ |1⟩⟨0|+ |0⟩⟨0| ρ |0⟩⟨0|

= |0⟩ (⟨1| ρ |1⟩+ ⟨0| ρ |0⟩) ⟨0| = |0⟩ (I1) ⟨0| = |0⟩⟨0|

The last line uses the fact that ρ is a valid density matrix (Mixed_State), which implies

that the entries along its diagonal sum to 1.

Although the proof above is straightforward, it does not give a clear intuition for

why the program is correct. The simple explanation for why this program is correct

is as follows: There are two cases, depending on the result of meas. In the case where

measurement outputs 0, the remainder of the program is the no-op skip, so the output

state is |0⟩. In the case where measurement outputs 1, the program applies an X

gate, which flips the qubit’s value, leaving it in final state |0⟩.

The proof using the nondeterministic semantics closely follows this argument: It

considers both possible measurement transitions and inspects the output state. The

correctness property for the nondeterministic semantics is stated as follows.

Lemma reset_to_zero: ∀ (ψ ψ′ : Vector 2), WF_Matrix ψ → reset / ψ ⇓ ψ′ → ψ′ ∝ |0⟩.

This says that any output state ψ′ is proportional (∝) to |0⟩.

Example: Quantum Teleportation The goal of quantum teleportation is to

transmit a state |ψ⟩ from one party (Alice) to another (Bob) using a shared entan-

gled state. The circuit for quantum teleportation is shown in Figure 3.2 and the
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1:10 K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

{�skip�}d(�) = �{�P1; P2�}d(�) = ({�P2�}d ○ {�P1�}d)(�)
{�U �}d(�) = nU od × � × nU o†

d{�meas q P1 P2�}d(�) = {�P2�}d(�0�q�0� × � × �0�q�0�)+ {�P1�}d(�1�q�1� × � × �1�q�1�)
Fig. 4. s��� density matrix semantics, assuming a global register of size d .

�� � ● H ● ����� �0�
�0� H ● ● ����� �0�
�0� X Z �� �

Fig. 5. Circuit for quantum teleportation. [ Mike: Label the parts of the figure that are Alice, and Bob,
so it’s clear how map the program in the text to this figure ]

The command meas q P1 P2 (inspired by a similar construct in QPL [44]) measures the qubit q and
either performs program P1 or P2 depending on the result. We de�ne non-branching measurement
and resetting a qubit to �0� in terms of branching measurement:

measure q = meas q skip skip

reset q = meas q (X q) skip
Figure 4 de�nes the semantics of non-unitary programs in terms of density matrices, following

the approach of several previous e�orts [35, 55]. The density matrix semantics encodes di�erent
measurement outcomes as a probability distribution. [ Mike: You need to explain this; what
is � for example (i.e., a density matrix)? What is a density matrix and how does it encode
the distribution? We want to accommodate readers who have no knowledge of quantum
computing; keep this in mind. Otherwise they take nothing from this and dismiss it. ]
(We also de�ne a non-deterministic semantics in Appendix B, which is sometimes more convenient
to use than density matrices.)

Example: Quantum Teleportation. The goal of quantum teleportation is to transmit a state �� �
from one party (Alice) to another (Bob) using a shared entangled state. The circuit for quantum
teleportation is shown in Figure 5 and the corresponding s��� program is given below. [ Mike: CX
operation is missing? ]
Definition bell : ucom base 3 := H 1; CNOT 1 2.

Definition alice : com base 3 := CNOT 0 1 ; H 0; measure 0; measure 1.

Definition bob : com base 3 := CNOT 1 2; CZ 0 2; reset 0; reset 1.

Definition teleport : com base 3 := bell; alice; bob.

The bell circuit prepares a Bell pair on qubits 1 and 2, which are respectively sent to Alice and Bob.
Alice applies CNOT from qubit 0 to qubit 1 and then measures both qubits and (implicitly) sends
them to Bob. Finally, Bob performs operations controlled by the (now classical) values on qubits 0
and 1 and then resets them to the zero state.

The correctness property for this program says that for any (well-formed) density matrix �,
teleport takes the state � ⊗ �0��0�⊗ �0��0� to the state �0��0�⊗ �0��0�⊗ �.
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bell

alice bob

Figure 3.2: Circuit for quantum teleportation. In the standard presentation Bob only
acts on the last qubit, given two classical bits as input. In our presentation, Bob
(equivalently) performs operations controlled by the first two qubits, which are in
a post-measurement classical state. We include the reset operations to simplify our
statement of correctness.

corresponding sqir program is given below.

Definition bell : ucom base 3 := H 1; CNOT 1 2.

Definition alice : com base 3 := CNOT 0 1 ; H 0; measure 0; measure 1.

Definition bob : com base 3 := CNOT 1 2; CZ 0 2; reset 0; reset 1.

Definition teleport : com base 3 := bell; alice; bob.

The bell circuit prepares a Bell pair on qubits 1 and 2, which are respectively sent

to Alice and Bob. Alice applies CNOT from qubit 0 to qubit 1 and then measures

both qubits and (implicitly) sends them to Bob. Finally, Bob performs operations

controlled by the (now classical) values on qubits 0 and 1 and then resets them to

the zero state.

Using the density matrix-based semantics, the correctness property for this pro-

gram says that for any (well-formed) density matrix ρ, teleport takes the state

ρ⊗ |0⟩⟨0| ⊗ |0⟩⟨0| to the state |0⟩⟨0| ⊗ |0⟩⟨0| ⊗ ρ.

Lemma teleport_correct : ∀ (ρ : Density 2),

WF_Matrix ρ → {|teleport|}3 (ρ ⊗ |0⟩⟨0| ⊗ |0⟩⟨0|) = |0⟩⟨0| ⊗ |0⟩⟨0| ⊗ ρ

The proof is simple: We perform (automated) arithmetic to show that the output

matrix has the desired form.

Under the nondeterministic semantics, we aim to prove that on input |ψ⟩ ⊗ |00⟩,

teleport will produce a state that is proportional to |00⟩ ⊗ |ψ⟩.
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let rec ghz n =
if n=0 then coq_SKIP else
if n=1 then coq_H 0 else
Coq_useq (ghz (n−1), coq_CNOT (n−2) (n−1))

(a) Extracted OCaml code (prettified)

OPENQASM 2.0;
include "qelib1.inc";
qreg q[3];
h q[0];
cx q[0], q[1];
cx q[1], q[2];

(b) Generated OpenQASM circuit

Figure 3.3: Result of extracting the example from Figure 3.1

Lemma teleport_correct : ∀ (ψ : Vector (2^1)) (ψ' : Vector (2^3)),

WF_Matrix ψ → teleport / (ψ ⊗ |00⟩) ⇓ ψ' → ψ' ∝ |00⟩ ⊗ ψ.

The first half of the circuit is unitary, so the proof simply computes the effect of

applying a H gate, two CNOT gates and another H gate to the input vector state.

The two measurement steps then leave four different cases to consider. In each of the

four cases, we can use the outcomes of measurement to correct the final qubit, putting

it into the state |ψ⟩. Finally, resetting the already-measured qubits is deterministic

and leaves us with the desired state.

3.1.4 Running sqir Programs

Coq is a language designed for formal proof, not program execution. In order to

produce efficient, executable verified code, a common workflow is to define a function

and prove properties about it in Coq, and then extract the function to OCaml (or

Haskell), where it can be compiled with a standard optimizing compiler and run on

a machine. We follow a similar approach: we extract Coq programs that generate

sqir into OCaml using Coq’s standard extraction mechanism [Inr21b] and we provide

a simple translation function to write a sqir program to a file in the OpenQASM

2.0 format [Cro+17]. The generated OpenQASM can then be sent to a quantum

computer (or a classical simulation of a quantum computer) to be executed.

As an example, the ghz program from Figure 3.1(c) will be extracted to the OCaml
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program shown in Figure 3.3(a), which, given input 3, produces a sqir program that

translates to the OpenQASM program in Figure 3.3(b). In Figure 3.3(a), coq_SKIP,

coq_H, and coq_CNOT are the extracted forms of SKIP, H, and CNOT used in Figure 3.1

and Coq_useq is the extracted form of the useq constructor. Our proof of correctness

for the ghz function in Coq guarantees that the output OpenQASM program produces

the mathematical GHZ state.2

Choice of Gate Set In Section 3.1.1 we presented the base gate set consisting of U_R

and U_CNOT. This set is conveniently simple for proof, but inconvenient for extraction

because quantum hardware (and simulators) usually support a different set of gates,

and naïvely forcing output to be in this gate set will significantly increase the size of

the output circuits, making them prohibitively expensive to run.

The culprit is the control function shown in Figure 3.4, which is used in all

the algorithm examples discussed in Section 3.3. This function applies the textbook

decompositions of controlled applications of U_R (CU) and U_CNOT (CCX) [NC10, Chapter

4]. We have verified that this function is correct; it will always produce a controlled

application of its input (assuming some well-typedness constraints). However, it

can also generate highly inefficient code. In our evaluation of vqo (Appendix B)

we found that decomposing the CCU1 gate as control _ (control _ (U1 _ _)) could

lead to a 4.4× increase in the number of output gates, even after applying voqc

optimizations.

To avoid this unnecessary blowup, when extracting to OpenQASM we define pro-

grams over the gate set X, H, U1, U2, U3, CX, CH, CU1, SWAP, CCX, CCU1,

CSWAP, C3X, and C4X. X,H are the Pauli X and Hadamard gates. U1, U2, U3 are

the single-qubit rotation gates from the OpenQASM standard library [Cro+17]. CU1

2This assumes that extraction produces OCaml code consistent with our Coq definitions and
that we do not introduce errors in our conversion from sqir to OpenQASM. One potential issue is
that we extract Coq’s axiomatized Reals to OCaml floats—see Section 4.1.4 for details. We have
tested our extraction process by generating order-finding circuits (Section 3.3.3) for varying sizes
and confirming that they produce the expected results in a simulator.
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Definition CCX {dim} a b c : ucom base dim :=
H c ; CNOT b c ; TDAG c ; CNOT a c ;
T c ; CNOT b c ; TDAG c ; CNOT a c ;
CNOT a b ; TDAG b ; CNOT a b ;
T a ; T b ; T c ; H c.

Definition CU {dim} θ φ λ c t : ucom base dim :=
Rz ((λ + φ)/2) c ; Rz ((λ − φ)/2) t ;
CNOT c t ; uapp1 (U_R (−θ/2) 0 (−(φ + λ)/2)) t ;
CNOT c t ; uapp1 (U_R (θ/2) φ 0) t.

Fixpoint control {dim} q (c : ucom base dim) : ucom base dim :=
match c with
| c1; c2 ⇒ control q c1; control q c2
| uapp1 (U_R θ φ λ) n ⇒ CU θ φ λ q n
| uapp2 U_CNOT m n ⇒ CCX q m n
| _ ⇒ SKIP
end.

Lemma control_correct : ∀ d q (c : ucom base d),
is_fresh q c → uc_well_typed c →
Jcontrol q cKd = |0⟩q ⟨0| + |1⟩q ⟨1| × JcKd.

Proof.
...
Qed.

Figure 3.4: control function for sqir programs using the base gate set. Braces mark
an argument as implicit, meaning that it will be inferred by the compiler. Rz λ is
shorthand for uapp1 (U_R 0 0 λ), and T and TDAG are Rz (PI/4) and Rz (−PI/4).

is the controlled version of the U1 gate and CCU1 is the controlled version of CU1.

SWAP and CSWAP are the swap gate and its controlled version. CX,CCX,C3X,

and C4X are controlled versions of the X gate, with different numbers of control

qubits. In particular, CX is the CNOT gate. We chose these gates because they were

the ones we observed in our applications that required extraction, namely Shor’s al-

gorithm (Section 3.3.3) and vqo (Section 4.5). The (verified) decompositions of these

gates are shown in Figure 3.5.

In order to take a property proved about a program in the base gate set and

apply it to a program in the new gate set, we simply prove that the new definition
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Definition P8 {dim} n : ucom base dim := Rz (PI / 8) n.

Definition P8DAG {dim} n : ucom base dim := Rz (− (PI / 8)) n.

Definition CH {dim} (a b : N) : ucom base dim :=
U3 (PI/4) 0 0 b ; CNOT a b ; U3 (− (PI/4)) 0 0 b.

Definition CU1 {dim} r1 (a b : N) : ucom base dim :=
U1 (r1/2) a ; U1 (r1/2) b ; CNOT a b ; U1 (− (r1/2)) b ; CNOT a b.

Definition CCU1 {dim} r1 (a b c : N) : ucom base dim :=
CU1 (r1/2) a b ; CNOT b c ; CU1 (−r1/2) a c ; CNOT b c ; CU1 (r1/2) a c.

Definition CSWAP {dim} (a b c : N) : ucom base dim := CNOT c b ; CCX a b c ; CNOT c b.

Definition C3X {dim} (a b c d : N) : ucom base dim :=
H d ; P8 a ; P8 b ; P8 c ; P8 d ; CNOT a b ; P8DAG b ; CNOT a b ; CNOT b c ;
P8DAG c ; CNOT a c ; P8 c ; CNOT b c ; P8DAG c ; CNOT a c ; CNOT c d ;
P8DAG d ; CNOT b d ; P8 d ; CNOT c d ; P8DAG d ; CNOT a d ; P8 d ; CNOT c d ;
P8DAG d ; CNOT b d ; P8 d ; CNOT c d ; P8DAG d ; CNOT a d ; H d.

Definition RC3X {dim} (a b c d : N) : ucom base dim :=
H d ; T d ; CNOT c d ; TDAG d ; H d ; CNOT a d ; T d ; CNOT b d ; TDAG d ;
CNOT a d ; T d ; CNOT b d ; TDAG d ; H d ; T d ; CNOT c d ; TDAG d ; H d.

Definition RTX {dim} r q : ucom base dim := H q ; U1 r q ; H q.

Definition CRTX {dim} (r : R) (a b : N) : ucom base dim := H b ; CU1 r a b ; H b.

Definition C3SQRTX {dim} (a b c d : N) : ucom base dim :=
CRTX (PI/8) a d ; CNOT a b ; CRTX (−PI/8) b d ; CNOT a b ; CRTX (PI/8) b d ;
CNOT b c ; CRTX (−PI/8) c d ; CNOT a c ; CRTX (PI/8) c d ;
CNOT b c ; CRTX (−PI/8) c d ; CNOT a c ; CRTX (PI/8) c d.

Definition C4X {dim} (a b c d e : N) : ucom base dim :=
CRTX (PI/2) d e ; RC3X a b c d ; CRTX (−PI/2) d e ;
invert (RC3X a b c d) ; C3SQRTX a b c e.

Figure 3.5: Decompositions for CH, CU1, CCU1, CSWAP, C3X, and C4X based on
those available in Qiskit [Qis21].
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box (x,y,z) ⇒
gate x ← H x;
gate (x,y) ← CNOT (x,y);
gate (y,z) ← CNOT (y,z);
output (x,y,z).

(a) Qwire

SEQ(SEQ(PAR(H, PAR(I, I)),
PAR(CNOT, I)),

PAR(I, CNOT))

(b) Qbricks-DSL

q1 := H q1;
q1,q2 := CNOT q1,q2;
q2,q3 := CNOT q2,q3

(c) QWhile

(I ⊗ CNOT )× (CNOT ⊗ I)× (H ⊗ I ⊗ I)
(d) Matrix expression

Figure 3.6: Alternate descriptions of the GHZ program in Figure 3.1(a–b)

is equivalent to the old. Thus, this larger gate set does not complicate proof; it

is not used in involved correctness proofs, but only in simpler (largely automated)

equivalence proofs.

3.2 Design Considerations

This section describes key elements in the design of sqir and its infrastructure for

verifying quantum programs. To place those decisions in context, we first introduce

several related verification frameworks and contrast sqir’s design with theirs. In sum-

mary, sqir benefits from the use of concrete indices into a global register (a common

feature in the tools we looked at), support for reasoning about unitary programs in

isolation (supported by one other tool), and the flexibility to allow different semantics

and approaches to proof (best supported in sqir).

3.2.1 Related Approaches

Several prior works have had the goal of formally verifying quantum programs. In

2010, Green [Gre10] developed an Agda implementation of the Quantum IO Monad,

and in 2015 Boender et al. [BKN15] produced a small Coq quantum library for

reasoning about quantum “programs” directly via their matrix semantics (e.g. Fig-
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ure 3.6(d)). These were both proofs of concept, and were only capable of verifying

basic protocols. More recently, Bordg et al. [BLH20] took a step further in verifying

quantum programs expressed as matrix products (Figure 3.6(d)), providing a library

for reasoning about quantum computation in Isabelle/HOL and verifying more inter-

esting protocols like the n-qubit Deutsch-Jozsa algorithm.

In this section, we compare sqir’s design against three other tools for verified

quantum programming that have been used to verify interesting, parameterized quan-

tum programs: Qwire [Ran18] (implemented in Coq [Coq19]); quantum Hoare logic

[Liu+19b] (in Isabelle/HOL [NWP02]); and Qbricks [Cha+21] (in Why3 [FP13]).

We do not include Bordg et al. [BLH20], despite its recency, because it operates one

level below the surface programming language, so many issues considered here do not

apply. Bordg et al.’s library is similar to the quantum libraries developed for Qwire

and the quantum Hoare logic. All matrix formalisms provided by Bordg et al. are

available in the QuantumLib library [The22], which we developed for sqir based on

content in the Qwire project.

QWIRE The Qwire language [PRZ17; RPZ18] originated as an embedded cir-

cuit description language in the style of Quipper [Gre+13] but with a more powerful

type system. Figure 3.6(a) shows the Qwire equivalent of the sqir program in Fig-

ure 3.1(b). Qwire uses variables from the host language Coq to reference qubits, an

instantiation of higher-order abstract syntax [PE88]. To describe the GHZ circuit,

the Qwire program uses variables x, y, and z, while the sqir program uses indices 0,

1, and 2 to refer to the first, second, and third qubits in the global register. Qwire

does not distinguish between unitary and non-unitary programs, and thus uses den-

sity matrices for its semantics. Qwire has been used to verify simple randomness

generation circuits and a few textbook examples [Ran18].
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QBRICKS Qbricks [Cha+21] is a quantum proof framework implemented in

Why3 [FP13], developed concurrently with sqir. Qbricks provides a domain-specific

language (DSL) for constructing quantum circuits using combinators for parallel and

sequential composition (among others). Figure 3.6(b) presents the GHZ example

written in Qbricks’ DSL. The semantics of Qbricks are based on the path-sums

formalism by Amy [Amy19a; Amy19a], which can express the semantics of unitary

programs in a form amenable to proof automation. Qbricks extends path-sums

to support parameterized circuits. Qbricks has been used to verify a variety of

quantum algorithms, including Grover’s algorithm and QPE.

QHL Quantum Hoare logic (QHL) [Yin12] has been formalized in the Isabelle/HOL

proof assistant [Liu+19a]. QHL is built on top of the quantum while language

(QWhile), which is the quantum analog of the classical while language, allowing loop-

ing and branching on measurement results. Figure 3.6(c) presents the GHZ example

written in QHL. QWhile does not use a fixed gate set; gates are instead described

directly by their unitary matrices. As such, the program in Figure 3.6(c) could in-

stead be written as the application of a single gate that prepares the 3-qubit GHZ

state. Given that measurement is a core part of the language, QWhile’s semantics

are given in terms of (partial) density matrices. A density matrix is partial when it

may represent a sub-distribution—that is, a subset of the outcomes of measurement.

QHL has been used to verify Grover’s algorithm [Liu+19a]. An earlier effort by Liu

et al. [Liu+16] to formalize QHL claimed to prove correctness of QPE, too. However,

the approach used a combination of Isabelle/HOL and Python, calling out to Numpy

to solve matrix (in)equalities; as such, we consider this only a partial verification

effort. We cannot find a proof of QPE in the associated Github repository3 and

believe that this approach was abandoned in favor of Liu et al. [Liu+19a].
3https://github.com/ijcar2016/propitious-barnacle
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3.2.2 Concrete Indices into a Global Register

The first key element of sqir’s design is its use of concrete indices into a fixed-

sized global register to refer to qubits. For example, in our SWAP program (end of

Section 3.1.1), a and b are natural numbers indexing into a global register of size d.

Expressing the semantics of a program that uses concrete indices is simple because

concrete indices map directly to the appropriate rows and columns in the denoted

matrix. Moreover, it is easy to check relationships between operations—X a and X b

act on the same qubit if and only if a = b. Keeping the register size fixed means that

the denoted matrix’s size is known, too.

On the other hand, concrete indices hamper programmability. The ghz example in

Figure 3.1(c) only produces circuits that occupy global qubits 0...n; we could imagine

further generalizing it to add a lower bound m (so the circuit uses qubits m ... n), but

it is not clear how it could be generalized to use non-contiguous wires. A natural

solution, employed by Qwire, is to use host-level variables to refer to abstract qubits

that can be freely introduced and discarded, simplifying circuit construction and sub-

program composition. Unfortunately, abstract qubits significantly complicate formal

verification. To translate circuits to operations on density matrices, variables must be

mapped to concrete matrix indices. Each time a qubit is discarded, indices undergo

a de Bruijn-style shifting.

Similar to sqir’s use of concrete indices, Qbricks-DSL’s compositional structure

makes it easy to map programs to their denotation: The “index” of a gate applica-

tion can be computed by its nested position in the program. However, this syntax

is even less convenient than sqir’s for programming: Although Qbricks provides a

utility function for defining CNOT gates between non-adjacent qubits, their underlying

syntax does not support this, meaning that expressions like CNOT 7 2 are translated

into large sequences of CNOT gates. QHL is presented as having variables (e.g. q1

in Figure 3.6(c)), but these variables are fixed before a program executes and per-
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sist throughout the program. In the Isabelle formalization, they are represented by

natural numbers, making them comparable to sqir concrete indices.

3.2.3 Extensible Language around a Unitary Core

Another key aspect of sqir’s design is its decomposition into a unitary sub-language

and the non-unitary full language. While the full language (with measurement) is

more powerful, its density matrix-based semantics adds unneeded complication to

the proof of unitary programs. For example, given the program U1;U2;U3, its unitary

semantics is a matrix U3×U2×U1 while its density matrix semantics is a function ρ 7→

U3×U2×U1×ρ×U †1×U
†
2×U

†
3 . The latter is a larger term, with a type that is harder

to work with. This added complexity, borne by Qwire and QHL, lacks a compelling

justification given that many algorithms can be viewed as unitary programs with

measurement occurring implicitly at their conclusion (see Section 3.2.7).

On the other hand, Qbricks’ semantics is based on (higher-order) path-sums,

which cannot describe mixed states, and thus cannot give a semantics to measurement.

sqir’s design allows for the “best of both worlds,” utilizing a unitary semantics when

possible, but supporting non-unitary semantics when needed. Furthermore, as we

show in section 3.2.6, abstractions like path-sums can be easily defined on top of

sqir’s unitary semantics.

3.2.4 Semantics of Ill-typed Programs

We say that a sqir program is well-typed if every gate is applied to indices within

range of the global register and indices used in each multi-qubit gate are distinct. This

second condition enforces quantum mechanics’ no-cloning theorem, which disallows

copying an arbitrary quantum state, as would be required to evaluate an expression

like CNOT q q. For example, SWAP d a b is well-typed if a < d, b < d, and a ̸= b.

Qwire addresses this issue through its linear type system, which also guaran-
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tees that qubits are never reused. However, well-typedness is a (nontrivial) extrinsic

proposition in Qwire, meaning that many proofs require an assumption that the

input program is well-typed and must manipulate this typing judgment within the

proof. Qbricks avoids the issue of well-typedness through its language design: It is

not possible to construct an ill-typed circuit using sequential and parallel composi-

tion. The Isabelle implementation of QHL uses a well-typedness predicate to enforce

some program restrictions (e.g. the gate in a unitary application is indeed a unitary

matrix), but the issue of gate argument validity is enforced by Isabelle’s type system:

Gate arguments are represented as a set (disallowing duplicates) where all elements

are valid variables.

In sqir, ill-typed programs are denoted by the zero matrix. This often means that

we do not need to explicitly assume or prove that a program is well-typed in order

to state a property about its semantics, thereby removing clutter from theorems and

proofs. For example, we can prove symmetry of SWAP, i.e. SWAP d a b ≡ SWAP d b a,

without any well-typedness constraint because either both sides of the equation are

well-typed or both are ill-typed. However, we cannot always avoid well-typedness

preconditions. Say we want to prove transitivity of SWAP, i.e. SWAP d a c ≡ SWAP d a

b ; SWAP d b c ; SWAP d a b. In this case the left-hand side may be well-typed while

the right-hand side is ill-typed. To verify this equivalence, we (minimally) need the

precondition b < d ∧ b ̸= a ∧ b ̸= c. We capture these in our uc_well_typed predicate,

which resembles the WF_Matrix predicate (used in the SWAP example in Section 3.1.2)

that guarantees that a matrix’s non-zero entries are all within its bounds. Both

conditions are easily checked via automation.

3.2.5 Automation for Matrix Expressions

The sqir development provides a variety of automation techniques for dealing with

matrix expressions. Most of this automation is focused on simplifying matrix terms
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to be easier to work with. The best example of this is our gridify tactic, which

rewrites matrix terms into grid normal form where matrix addition is on the outside,

followed by tensor product, with matrix multiplication on the inside, i.e., ((..× ..)⊗

(..× ..)) + ((..× ..)⊗ (..× ..)). Most of the circuit equivalences available in sqir (e.g.

∀ a b c, CNOT a c ; CNOT b c ≡ CNOT b c ; CNOT a c) are proved using gridify. This style

of automation is available in other verification tools too; gridify is similar to Liu et

al.’s Isabelle tactic for matrix normalization [Liu+19a, Section 5.1]. Qbricks avoids

the issue by using path-sums; they provide a matrix semantics for comparison’s sake,

but do not discuss automation for it.

Some of our automation is aimed at alleviating difficulties caused by our use of

phantom types [Ran18] to store the dimensions of a matrix, following the approach

taken in Qwire [PRZ17]. In our development, matrices have the type Matrix m n,

where m is the number of rows and n is the number of columns. One challenge with

this definition is that the dimensions stored in the type may be “out of sync” with

the structure of the expression itself. For example, due to simplification, rewriting,

or declaration, the expression |0⟩ ⊗ |0⟩ may be annotated with the type Vector 4,

although rewrite rules expect it to be of the form Vector (2 ∗ 2). We provide a tactic

restore_dims that analyzes the structure of a term and rewrites its type to the desired

form, allowing for more effective automated simplification.

3.2.6 Vector State Abstractions

To verify that the SWAP program has the intended semantics, we can unfold its def-

inition (CNOT a b; CNOT b a; CNOT a b) and compute the associated matrix expression.

However, while this proof is made simpler by automation like gridify, it is still fairly

complicated considering that SWAP has a simple classical (non-quantum) specification.

In fact, this operation is much more naturally analyzed using its action on basis states.

A (computational) basis state is any state of the form |i1 . . . id⟩ for i1, . . . , id ∈ {0, 1}
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(so |00⟩ and |11⟩ are basis states, while 1√
2
(|00⟩+ |11⟩) is not). The set of all d-qubit

basis states form a basis for the underlying d-dimensional vector space, meaning that

any 2d × 2d unitary operation can be uniquely described by its action on those basis

states.

Using basis states, the reasoning for our SWAP example proceeds as follows, where

we use |. . . x . . . y . . .⟩ as informal notation to describe the state where the qubit at

index a is in state x and the qubit at index b is in state y.

1. Begin with the state |. . . x . . . y . . .⟩.

2. CNOT a b produces |. . . x . . . (x⊕ y) . . .⟩.

3. CNOT b a produces |. . . (x⊕ (x⊕ y)) . . . (x⊕ y) . . .⟩ = |. . . y . . . (x⊕ y) . . .⟩.

4. CNOT a b produces |. . . y . . . (y ⊕ (x⊕ y)) . . .⟩ = |. . . y . . . x . . .⟩.

In our development, we describe basis states using f_to_vec d f where d : N and f :

N → B. This describes a d-qubit quantum state where qubit i is in the basis state

f(i), and false corresponds to 0 and true to 1. We also sometimes describe basis

states using basis_vector d i where i < 2d is the index of the only 1 in the vector.

We provide methods to translate between the two representations (simply converting

between binary and decimal encodings). For the remainder of the chapter, we will

write |f⟩ for f_to_vec n f and |i⟩ for basis_vector n i, omitting the n parameter when

it is clear from the context.

We prove a variety of facts about the actions of gates on basis states. For example,

the following lemmas succinctly describe the behavior of the CNOT and Rz(θ) gates,

where Rz(θ) = UR(0, 0, θ):

Lemma f_to_vec_CNOT : ∀ (d i j : N) (f : N → B),

i < d → j < d → i ̸= j →

let f' := update f j (f j ⊕ f i) in
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JCNOT i jKd × |f⟩ = |f'⟩.

Lemma f_to_vec_Rz: ∀ (d j : N) (θ : R) (f : N → B),

j < d →

JRz θ jKd × |f⟩ = eiθ(f j) ∗ |f⟩.

Above, update f i v updates the value of f at index i to be v (i.e., the resulting

function f ′ satisfies f ′(i) = v and f ′(j) = f(j) for all j ̸= i). So CNOT i j has the

effect of updating the jth entry of the input state to the exclusive-or of its ith and jth

entries. Rz θ j updates the phase associated with the input state.

There are several advantages to applying these rewrite rules instead of unfolding

the definitions of JCNOT i jKd and JRz θ jKd. For example, these rewrite rules assume

well-typedness and do not depend on the ordering of qubit arguments, avoiding the

case analysis needed in tactics like gridify. In addition, the rule for CNOT above is

simpler to work with than the general unitary semantics (CNOT 7→ _⊗ ( 1 0
0 0 )⊗_⊗

I2 ⊗_ + _⊗ ( 0 0
0 1 )⊗_⊗ σx ⊗_).

As a concrete example of where vector-based reasoning was critical, consider the

three-qubit Toffoli gate, which implements a controlled-controlled-not, and can be

thought of as the quantum equivalent of an and gate. It is frequently used in algo-

rithms, but (like all n-qubit gates with n > 2) rarely supported in hardware, meaning

that it must be decomposed into more basic gates before execution. In practice, we

found gridify too inefficient to verify the standard decomposition of the gate [NC10,

Chapter 4], shown below.

Definition TOFF {d} a b c : ucom base d :=

H c ; CNOT b c ; T† c ; CNOT a c ; T c ; CNOT b c ; T† c ;

CNOT a c ; CNOT a b ; T† b ; CNOT a b ; T a ; T b ; T c ; H c.

However, like SWAP, the semantics of the Toffoli gate is naturally expressed through

its action on basis states:
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Lemma f_to_vec_TOFF : ∀ (d a b c : N) (f : N → B),

a < d → b < d → c < d →

a ̸= b → a ̸= c → b ̸= c →

let f' := update f c (f c ⊕ (f a && f b)) in

JTOFF a b cKd × |f⟩ = |f'⟩.

The proof of f_to_vec_TOFF is almost entirely automated using a tactic that rewrites

using the f_to_vec lemmas shown above, since T and T† are Rz (PI / 4) and Rz (−PI

/ 4), respectively.

The f_to_vec abstraction is simple and easy to use, but not universally applicable:

Not all quantum algorithms produce basis states, or even sums over a small number

of basis states, and reasoning about 2d terms of the form |i1 . . . id⟩ is no easier than

reasoning directly about matrices. To support more general types of quantum states

we define indexed sums and tensor (Kronecker) products of vectors.

Fixpoint vsum {d} n (f: N → Vector d) : Vector d := ...

Fixpoint vkron n (f: N → Vector 2) : Vector 2n := ...

As an example of a state that uses these constructs, consider the output of n parallel

Hadamard gates applied to the state |f⟩, which can be written as

vkron n (fun i ⇒ 1√
2
(|0⟩ + (−1)f(i) |1⟩)) or

1√
2n

∗ (vsum 2n (fun i ⇒ (−1)to_int(f)•i ∗ |i⟩)),

both commonly-used facts in quantum algorithms. For the remainder of the chapter,

we will write
∑n−1

i=0 f(i) for vsum n (fun i ⇒ f i) and
⊗n−1

i=0 f(i) for vkron n (fun i ⇒

f i).

Relationship with Path-sums Our vsum and vkron definitions share similarities

with the path-sums [Amy19a; Amy19a] semantics used byQbricks. In the path-sums
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formalism, every unitary transformation is represented as a function of the form

|x⟩ → 1√
2m

2m−1∑
y=0

e2πiP (x,y)/2m |f(x, y)⟩

wherem ∈ N, P is an arithmetic function over x and y, and f is of the form |f1(x, y)⟩⊗

· · · ⊗ |fm(x, y)⟩ where each fi is a Boolean function over x and y. For instance, the

Hadamard gate H has the form |x⟩ → 1√
2

∑1
y=0 e

2πixy/2 |y⟩. Path-sums provide a

compact way to describe the behavior of unitary matrices and are closed under matrix

and tensor products, making them well-suited for automation. They can be naturally

described in terms of our vkron and vsum vector-state abstractions:

Definition path_sum (m : N) P f x :=

vsum 2m (fun y ⇒ e2πiP (x,y)/2m ∗ (vkron m (fun i ⇒ f i x y))).

As above, P is an arithmetic function over x and y and f i is a Boolean function over

x and y for any i.

3.2.7 Measurement Predicates

The proofs in Section 3.3 do not use the non-unitary semantics directly, but in-

stead describe the probability of different measurement outcomes using predicates

probability_of_outcome and prob_partial_meas.

(* Probability of measuring φ given input ψ. *)

Definition probability_of_outcome {n} (φ ψ : Vector n) : R := |φ · ψ|2.

(* Prob. of measuring φ on the first n qubits given (n+m) qubit input ψ. *)

Definition prob_partial_meas {n m} (φ : Vector 2n) (ψ : Vector 2n+m) :=

∥ (φ† ⊗ I2m) × ψ ∥2.

Above, φ · ψ is the dot product of φ and ψ, ∥v∥ is the 2-norm of vector v, and |c|

is the complex norm of c. In formal terms, the “probability of measuring φ” is the
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probability of outcome φ when measuring a state in the basis {φ×φ†, I2n −φ×φ†}.

The principle of deferred measurement [NC10, Chapter 4] says that measurement

can always be deferred until the end of a quantum computation without changing the

result. However, we included measurement in sqir because it is an important feature

of quantum programming languages that is used in a variety of constructs like repeat-

until-success loops [PS14] and error-correcting codes [Got10]. Qbricks also uses

measurement predicates, but unlike sqir does not support a general measurement

construct.

3.3 Proofs of Quantum Algorithms

In this section we discuss the formal verification of three influential quantum algo-

rithms: Grover’s algorithm [NC10, Chapter 6], quantum phase estimation [NC10,

Chapter 5], and Shor’s factorization algorithm [Sho97]. The proofs and specifications

follow the standard textbook arguments.

3.3.1 Grover’s Algorithm

Overview Given a circuit implementing Boolean oracle f : {0, 1}n → {0, 1}, the

goal of Grover’s algorithm is to find an input x satisfying f(x) = 1. Suppose that

n ≥ 2. In the classical (worst-)case where f(x) = 1 has a unique solution, finding

this solution requires O(2n) queries to the oracle. However, the quantum algorithm

finds the solution with high probability using only O(
√
2n) queries.

The algorithm alternates between applying the oracle and a “diffusion operator.”

Individually, these operations each perform a reflection in the two-dimensional space

spanned by the input vector (a uniform superposition) and a uniform superposition

over the solutions to f . Together, they perform a rotation in the same space. By

choosing an appropriate number of iterations i, the algorithm will rotate the input
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(* Controlled-X with target (n-1) and controls 0, 1, ..., n-2. *)
Fixpoint generalized_Toffoli' n0 : ucom base n :=
match n0 with
| O | S O ⇒ X (n − 1)
| S n0' ⇒ control (n − n0) (generalized_Toffoli' n0')
end.

Definition generalized_Toffoli := generalized_Toffoli' n.

(* Diffusion operator. *)
Definition diff : ucom base n :=
npar n H; npar n X ;
H (n − 1) ; generalized_Toffoli ; H (n − 1) ;
npar n X; npar n H.

(* Main program (iterates applying Uf and diff). *)
Definition body := Uf ; cast diff (S n).
Definition grover i := X n ; npar (S n) H ; niter i body.

Figure 3.7: Grover’s algorithm in sqir. control performs a unitary program condi-
tioned on an input qubit, npar performs copies of a unitary program in parallel, cast
is a no-op that changes the dimension in a ucom’s type, and niter iterates a unitary
program.

state to be suitably close to the solution vector. The sqir definition of Grover’s

algorithm is shown in Figure 3.7.

The sqir version of Grover’s algorithm is 15 lines, excluding utility definitions

like control and npar. The specification and proof are around 770 lines. The proof

took approximately one person-week.

Proof Sketch The statement of correctness says that after i iterations, the proba-

bility of measuring a solution is sin2((2i+1)θ) where θ = arcsin(
√
k/2n) and k is the

number of satisfying solutions to f . Note that this implies that the optimal number

of iterations is π
4

√
2n

k
.

We begin the proof by showing that the uniform superposition can be rewritten

as a sum of “good” states (ψg) that satisfy f and “bad” states (ψb) that do not.

Definition ψ := 1√
2n

∑2n−1
k=0 |k⟩.

Definition θ := asin (
√
k/2n).
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Lemma decompose_ψ : ψ = (sin θ) ψg + (cos θ) ψb.

We then prove that Uf and diff perform the expected reflections (e.g. JdiffKn =

−2 |ψ⟩ ⟨ψ| + I2n) and the following key lemma, which shows the output state after i

iterations of body.

Lemma loop_body_action_on_unif_superpos : ∀ i,

JbodyKin+1 (ψ ⊗ |−⟩) =

(−1)i (sin ((2 ∗ i + 1) ∗ θ) ψg + cos ((2 ∗ i + 1) ∗ θ) ψb) ⊗ |−⟩.

This property is straightforward to prove by induction on i, and implies the desired

result, which specifies the probability of measuring a solution to f .

Lemma grover_correct : ∀ i,∑2n

z=0 (if f z then prob_partial_meas |z⟩ (Jgrover iKn+1 × |0⟩n+1) else 0) =

(sin ((2 ∗ i + 1) ∗ θ))2.

That is, the sum over the probabilities of outcomes z such that f(z) is true is sin2((2i+

1)θ).

3.3.2 Quantum Phase Estimation

Overview Given a unitary matrix U and eigenvector |ψ⟩ such that U |ψ⟩ = e2πiθ |ψ⟩,

the goal of quantum phase estimation (QPE) is to find a k-bit representation of θ. In

the case where θ can be exactly represented using k bits (i.e. θ = z/2k for some z ∈ Z),

QPE recovers θ exactly. Otherwise, the algorithm finds a good k-bit approximation

with high probability. QPE is often used as a subroutine in quantum algorithms,

most famously Shor’s factoring algorithm [Sho97].

The sqir program for QPE is shown in Figure 3.8. For comparison, the standard

circuit diagrams for QPE and the quantum Fourier transform (QFT), which is used

as a subroutine in QPE, are shown in Figure 3.9. The sqir version of QPE is around

40 lines and the specification and proof in the simple case (θ = z/2k) is around 800
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(* Controlled rotation cascade on n qubits. *)
Fixpoint controlled_rotations n : ucom base n :=
match n with
| 0 | 1 ⇒ SKIP
| S n' ⇒ controlled_rotations n' ; control n' (Rz (2π / 2n) 0)
end.

(* Quantum Fourier transform on n qubits. *)
Fixpoint QFT n : ucom base n :=
match n with
| 0 ⇒ SKIP
| S n' ⇒ H 0 ; controlled_rotations n ; map_qubits (fun q ⇒ q + 1) (QFT n')
end.

(* The output of QFT needs to be reversed before further processing. *)
Fixpoint reverse_qubits' dim n : ucom base dim :=
match n with
| 0 ⇒ SKIP
| S n' ⇒ reverse_qubits' dim n' ; SWAP n' (dim − n' − 1)
end.

Definition reverse_qubits n := reverse_qubits' n (n/2).
Definition QFT_w_reverse n := QFT n ; reverse_qubits n.

(* Controlled powers of u. *)
Fixpoint controlled_pow' n (u : ucom base n) k kmax : ucom base (kmax+n) :=
match k with
| 0 ⇒ SKIP
| S k' ⇒ controlled_pow' n u k' kmax ; niter 2k

′ (control (kmax − k' − 1) u)
end.

Definition controlled_powers n (u : ucom base n) k := controlled_pow' n u k k.

(* QPE circuit for program u.
k = number of bits in resulting estimate
n = number of qubits in input state *)

Definition QPE k n (u : ucom base n) : ucom base (k + n) :=
npar k H ;
controlled_powers n (map_qubits (fun q ⇒ k + q) u) k;
invert (QFT_w_reverse k).

Figure 3.8: sqir definition of QPE. Some type annotations and calls to cast have been
removed for clarity. control, map_qubits, niter, npar, and invert are Coq functions
that transform sqir programs; we have proved that they have the expected behavior
(e.g. ∀ u. Jinvert uKn = JuK†n).
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QPEk,n =

|0⟩ H . . . •

QFT−1k

...
...

|0⟩ H • . . .

|0⟩ H • . . .

|ψ⟩ /n U20 U21 . . . U2k−1

QFTk =

H R2 . . . Rk−1 Rk

• . . . H . . . Rk−2 Rk−1... • • . . . H R2

• • . . . • H

Figure 3.9: Circuit for quantum phase estimation (QPE) with k bits of precision
and an n-qubit input state (top) and quantum Fourier transform (QFT) on k qubits
(bottom). |ψ⟩ and U are inputs to QPE. Rm is a z-axis rotation by 2π/2m.

lines. The fully general case (θ ̸= z/2k) adds about 250 lines. The proof of the

simple case was completed in about two person-weeks. When working out the proof

of the general case, we found that we needed some nontrivial bounds on trigonometric

functions (for x ∈ R, |sin(x)| ≤ |x| and if |x| ≤ 1
2

then |2 ∗ x| ≤ |sin(πx)|). Laurent

Théry kindly provided proofs of these facts using the Coq Interval package [Mel20].

Proof Sketch The correctness property for QPE in the case where θ can be de-

scribed exactly using k bits (θ = z/2k) says that the QPE program will exactly recover

z. It can be stated as follows.

Lemma QPE_correct_simplified: ∀ k n (u : ucom base n) z (ψ : Vector 2n),

n > 0 → k > 1 → uc_well_typed u → WF_Matrix ψ →

let θ := z / 2k in

JuKn × ψ = e2πiθ ∗ ψ →

JQPE k n uKk+n × (|0⟩k ⊗ ψ) = |z⟩ ⊗ ψ.

The first four conditions ensure well-formedness of the inputs. The fifth condition

enforces that input ψ is an eigenvector of c. The conclusion says that running the

QPE program computes the value z, as desired.
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In the general case where θ cannot be exactly described using k bits, we instead

prove that QPE recovers the best k-bit approximation with high probability (in par-

ticular, with probability ≥ 4/π2).

Lemma QPE_semantics_full : ∀ k n (u: ucom base n) z (ψ : Vector 2n) (δ : R),

n > 0 → k > 1 → uc_well_typed u → Pure_State_Vector ψ →

−1 / 2k+1 ≤ δ < 1 / 2k+1 → δ ̸= 0 →

let θ := z / 2k + δ in

JuKn × ψ = e2πiθ ∗ ψ →

prob_partial_meas |z⟩ (JQPE k n uKk+n × (|0⟩k ⊗ ψ)) ≥ 4 / π2.

Pure_State_Vector is a restricted form of WF_Matrix that requires a vector to have

norm 1.

As an example of the reasoning that goes into proving these properties, consider

the QFT subroutine of QPE. The correctness property for controlled_rotations says

that evaluating the program on input |x⟩ will produce the state e2πi(x0 · x1x2...xn−1)/2n |x⟩

where x0 is the highest-order bit of x represented as a binary string and x1x2...xn−1

are the lower-order n− 1 bits.

Lemma controlled_rotations_correct : ∀ n x,

n > 1 → Jcontrolled_rotations nKn × |x⟩ = e2πi(x0 · x1x2...xn−1)/2n |x⟩.

We can prove this property via induction on n. In the base case (n = 2) we have that

x is a 2-bit string x0x1. In this case, the output of the program is e2πi(x0·x1)/22 |x0x1⟩,

as desired. In the inductive step, we assume that:

Jcontrolled_rotations nKn × |x1x2...xn−1⟩ = e2πi(x0 · x1x2...xn−1)/2n |x1x2...xn−1⟩.

We then perform the simplifications shown in Figure 3.10, which complete the proof.
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Jcontrolled_rotations (n+1)Kn+1 × |x⟩
= Jcontrol xn (Rz (2π/2n+1) 0Kn+1 × Jcontrolled_rotations nKn+1 × |x⟩
= Jcontrol xn (Rz (2π/2n+1) 0Kn+1 × e2πi(x0 · x1x2...xn−1)/2n |x1x2...xn−1xn⟩
= e2πi(x0 · xn)/2n+1

e2πi(x0 · x1x2...xn−1)/2n |x1x2...xn−1xn⟩
= e2πi(x0 · x1x2...xn)/2n+1 |x1x2...xn−1xn⟩

Figure 3.10: Reasoning used in the proof of controlled_rotations. The first step
unfolds the definition of controlled_rotations; the second step applies the inductive
hypothesis; the third step evaluates the semantics of control; and the fourth step
combines the exponential terms.

3.3.3 Shor’s Prime Factorization Algorithm

Overview Shor’s prime factorization algorithm [Sho97] has been a fundamental

motivation for the development of quantum computers as it provides a method to

break widely-used cryptographic systems, including RSA. A recent study [GE21] sug-

gests that with 20 million noisy qubits, it would take a few hours for Shor’s algorithm

to factor a 2048-bit key instead of trillions of years as would be required by modern

classical computers using the best-known methods. We have produced the first fully-

certified implementation of Shor’s prime factorization algorithm, which is the most

sophisticated quantum algorithm verified to date.

Shor’s quantum-classical hybrid algorithm for factoring a numberN is summarized

in Figure 3.11: the key quantum part (order finding) is preceded and followed by

classical computation (primality testing before, and conversion of found orders to

prime factors after). Our definition of Shor’s algorithm in Coq is shown in Figure 3.12.

It uses the QPE function presented in the previous section, applied to an oracle IMM that

performs in-place modular multiplication. Modular multiplication is fundamentally

a classical operation—it transforms a classical state into a classical state. When

attempting to implement and verify IMM directly in sqir, we found that sqir’s general

semantics of matrices of complex numbers unecessarily complicated proof. This led

us to develop a new language in Coq for expressing classical circuits—called reversible
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Figure 3.11: Overview of Shor’s factoring algorithm from Peng et al. [Pen+22]. The
goal is to find a nontrivial factor of integer N . The algorithm begins by performing
classical preprocessing to identify cases where N is prime, even, or a prime power, in
which case no nontrivial factor exists or factoring can be done efficiently classically.
Next, it chooses a uniformly at random from the numbers 1 through N . If a is not
coprime to N , then gcd(a,N) is a nontrivial factor of N , so the algorithm terminates.
Otherwise, it invokes the hybrid quantum-classical order finding procedure bounded
by the dark box. The quantum part of the order finding subroutine applies quantum
phase estimation (QPE) to an oracle implementing in-place modular multiplication
(IMM). Roughly speaking, the output of QPE over IMM is a close approximation of
k/r for a k uniformly sampled from {0, 1, · · · , r − 1}. The classical part then uses
the continued fraction expansion (CFE) [a1, a2, · · · , a2m] to recover the order r of a
modulo N (i.e., the smallest positive integer r such that ar ≡ 1 mod N). Further
classical postprocessing rules out cases where r is odd before outputting the nontrivial
factor. We have verified implementations of all routines inside the green outline.
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circuit intermediate representation (rcir)—that has a verified compiler to sqir. We

implement IMM using rcir.4

In Figure 3.12, shor_body performs the algorithm enclosed in the green outline in

Figure 3.11. shor_circuit generates the QPE circuit applied to IMM, OF_post applies

continued fraction expansion, and factor performs classical postprocessing given an

order candidate r. end_to_end_shors iterates shor_body, returning a factor if any

iteration succeeds.

The implementation and proof comprise approximately 14k lines of code and took

us roughly a year to complete.

Proof Sketch We prove three key properties of our implementation:

1. For any N > 1, if end_to_end_shors (or shor_body) returns Some x then x is a

nontrivial factor of N .

2. For any N that is not prime, not even, and not a prime power, the probability

that shor_body returns Some x is at least κ
⌊log2(N)⌋4 where κ = 2e−2

π2 . Therefore, the

probability that end_to_end_shors returns None (meaning that it failed to find

a factor) is no greater than (1− κ
⌊log2(N)⌋4 )

t where t is the number of iterations.

3. For any N , shor_circuit uses at most (212n2+975n+1031)m+4m+m2 gates,

where n is to the number of bits representing N and m is the number of bits

in QPE’s output. m and n are O(logN), which leads to an overall O(log3N)

asymptotic complexity that matches the original paper [Sho97].

Property (1) requires a proof that gcd(x,N) is a nontrivial factor of N when 1 <

gcd(x,N) < N and x < N . Property (3) is proved by analyzing the structure of

shor_circuit. The only complexity is that IMM is constructed using rcir and then

compiled to sqir, so we need to prove how gate counts in rcir translate to gate

counts in sqir. Property (2) requires the most work.
4Work on IMM and rcir was primarily completed by Yuxiang Peng.
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Definition shor_circuit (a N : N) :=
let m := log2 (2∗N^2) in (* number of qubits storing QPE output *)
let n := log2 (2∗N) in (* number of data qubits used in IMM *)
let f i := IMM (modexp a (2^i) N) N n in
X (m + n − 1); QPE m f.

Definition factor (a N r : N) : option N :=
let cand1 := gcd (a ^ (r / 2) − 1) N in
let cand2 := gcd (a ^ (r / 2) + 1) N in
if (1 <? cand1) && (cand1 <? N) then Some cand1
else if (1 <? cand2) && (cand2 <? N) then Some cand2
else None.

Definition shor_body (N : N) (rnd : R) : option N :=
let m := log2 (2∗N^2) in (* number of qubits storing QPE output *)
let k := 4∗log2 (2∗N)+11 in (* total number of qubits used in IMM *)
let adist := uniform 1 N in (* create a uniform distribution *)
let a := sample adist rnd in (* choose an a *)
if gcd a N =? 1 (* do a and N share a factor? *)
then
let c := shor_circuit a N in (* use a to construct a circuit *)
let rnd' := get_new_rnd rnd in
let x := run c rnd' in (* sample from the circuit's output *)
factor a N (OF_post a N (fst k x) m) (* postprocessing *)

else Some (gcd a N).

Definition end_to_end_shor (N : N) (rnds : list R) : option N :=
iterate rnds (shor_body N).

Figure 3.12: sqir definition of Shor’s algorithm (simplified for presentation). uniform
creates a uniform distribution, sample samples from a distribution using a real number
as a source of randomness, run samples from the distribution created by running a
circuit, and iterate repeats a function until it runs out of randomness (i.e., rnds is
empty) or some iteration succeeds (i.e., shor_body returns Some).

First, we prove that the hybrid order finding procedure (which takes inputs a and

N) returns ord(a,N) with probability at least 2κ
⌊log2(N)⌋4 . This requires the general

correctness property for QPE (presented in the last section), a proof of correctness

for IMM (proved using rcir’s semantics), and a proof that continued fraction expansion

produces the expected result. Second, we prove that for half of the possible choices of

a, ord(a,N) can be used to find a nontrivial factor of N in postprocessing. Together,
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this means that the probability of successfully finding the order r of a modulo N , and

using r to find a factor, is at least 2κ
⌊log2(N)⌋4 ∗

1
2
. For more details about the proof see

Peng et al. [Pen+22].

Running Certified Code Having completed our certified-in-Coq implementation

of Shor’s algorithm, we extract the program—both classical and quantum parts—to

executable code. For the quantum part of Shor’s (the order finding circuit), we use

the extraction process described in Section 3.1.4. We extract the classical pre- and

postprocessing directly to OCaml.

In principle, the generated order finding circuits could be executed on any quan-

tum machine. However, even for small instances (e.g., factoring N = 15), the gen-

erated quantum circuits require 35 qubits and over 20k gates, which is well out of

reach of current hardware. As an alternative, we ran the circuits using the DDSIM

simulator [Cha21] on a laptop with an Intel Core i7-8705G CPU.5

Figure 3.13 shows the success probability and gate counts for order finding and

factorization instances with input size (n = log(N)) from 2 to 10 bits (i.e., N ≤ 1024).

Red circles mark instances (i.e., values of N) that can be simulated by DDSIM in

under an hour. Blue intervals mark the empirical success probability, computed

according to Shor’s original analysis [Sho97] for particular values of N . Red curves

mark our certified bounds, which are a function of n (the size of N). We observed that

(1) the certified bounds hold for all instances (2) the empirical bounds are considerably

better than certified ones for the studied instances. The latter is likely due to the

non-optimality of our proofs in Coq and the fact that we only investigated small

instances.

We note that experimental demonstrations of Shor’s algorithm already exist for

small instances like N = 15 [Van+01; Lu+07; Lan+07; Luc+12; Mon+16], which

use around 5 qubits and 20 gates. These experimental demonstrations are possible
5Experiments performed by Yuxiang Peng.
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Figure 3.13: Success probability and gate counts for order finding (OF) and factoriza-
tion (FAC) for every input N of size n = 2 to 10 bits. We draw the bounds certified
in Coq as red curves. Whenever simulation is possible with DDSIM, we draw the
observed results as red circles. Otherwise, we compute the corresponding bounds
using analytical formulas; these are drawn as blue intervals.

because they leverage quantum circuits that are specially designed for fixed inputs,

but cannot extend to work in the general case.
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Chapter 4

A Verified Optimizer for Quantum

Circuits

Compilers are a key component of the quantum software toolchain because near-term

quantum machines are resource limited: qubits are scarce and have restrictions on

how they can interact, and gate pipelines must be short to prevent decoherence. A

verified compiler guarantees that executable code output by the compiler, despite

the optimizations and transformations applied, behaves as specified by the input

source program (we say that such a compiler is “semantics preserving”). Similar to

the case of determining correctness of quantum programs, semantics-preservation is

a difficult property to test for [Yan+11], making formal verification an appealing

alternative. The most notable example of a verified compiler (for classical programs)

is CompCert [Ler09], an optimizing compiler for C proved correct using the Coq proof

assistant.

In this chapter, we apply CompCert’s approach to the quantum setting. We

present voqc (pronounced “vox”), a verified optimizer for quantum circuits, which

applies a series of optimizations to sqir programs, ultimately producing a result

that is compatible with a specified quantum architecture. We additionally present
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vqo, a verified quantum oracle framework that compiles oracle programs written in

a high-level classical language into sqir, allowing them to be optimized using voqc.

At the core of voqc is a framework for writing transformations of sqir programs

and verifying their correctness (Section 4.1). To ensure that the framework is suitably

expressive, we have used it to develop verified versions of a variety of optimizations

(Section 4.2). Many are based on those used in an optimizer developed by Nam et al.

[Nam+18], a recent, state-of-the-art circuit optimizer. We abstract these optimiza-

tions into a couple of different classes, and provide library functions, lemmas, and

automation to simplify their construction and proof. We have also verified circuit

mapping routines that transform sqir programs to satisfy constraints on how qubits

may interact on a specified target architecture (Section 4.3).

We evaluated the quality of the optimizations we verified in voqc by measuring

how well it optimizes a set of benchmark programs, compared to several other op-

timizing compilers (Section 4.4). The results are encouraging. On a benchmark of

35 circuit programs developed by Amy and Gheorghiu [AG20] we find that voqc

reduces total gate count on average by 28.5% compared to 14.4% for IBM’s Qiskit

compiler [Qis17], and 18.5% for CQC’s t|ket⟩ [Siv+20]. On the same benchmarks,

voqc reduces T -gate count (an important measure when considering fault tolerance)

on average by 43.1% compared to 45.4% by Amy and Gheorghiu [AG20] and 47.1%

by the PyZX optimizer [Kv19a], although voqc outperforms both in terms of total

gate count reduction. In sum, voqc is expressive enough to verify a range of useful

optimizations, yielding performance competitive with leading unverified compilers.

In addition to voqc, this chapter presents vqo, our framework to ease the con-

struction of efficient, correct oracle functions, which are the classical subroutines used

by many quantum algorithms (Section 4.5). The core of vqo is Oqasm, the oracle

quantum assembly language. Oqasm operations move qubits between two different

bases via the quantum Fourier transform, thus admitting important optimizations,
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but without inducing entanglement and the exponential blowup that comes with it.

Oqasm’s design enabled us to prove correct vqo’s compilers—from a simple impera-

tive language called Oqimp to Oqasm, and from Oqasm to sqir—and allowed us to

efficiently test properties of Oqasm programs using the QuickChick property-based

testing framework [Par+15]. We have used vqo to implement a variety of arithmetic

and geometric operators that are building blocks for important oracles, including

those used in Shor’s and Grover’s algorithms. We found that vqo’s QFT-based

arithmetic oracles require fewer qubits than those constructed using “classical” gates;

vqo’s versions of the latter were nevertheless on par with or better than (in terms of

both qubit and gate counts) oracles produced by Quipper [Gre+13], a state-of-the-art

unverified quantum programming platform.

voqc is the first fully verified optimizer for general quantum programs and vqo

is the first verified compiler for a high-level oracle language (Section 4.6). Amy,

Roetteler, and Svore [ARS17] developed a verified optimizing compiler from classi-

cal Boolean expressions to reversible circuits and Fagan and Duncan [FD18] veri-

fied an optimizer for ZX-diagrams representing Clifford circuits; however, neither of

these tools support general quantum programs. Tao et al. [Tao+22] developed Gial-

lar, which uses symbolic execution and SMT solving to automatically verify circuit

transformations in the Qiskit compiler; however, Giallar is limited to verifying correct

application of local equivalences and does not provide a way to describe general quan-

tum states (a key feature of sqir), which limits the types of optimizations that it can

reason about. This also means that it cannot be used as a tool for verifying general

quantum programs. Burgholzer, Raymond, and Wille [BRW20], Kissinger and van

de Wetering [Kv19a], and Smith and Thornton [ST19] use equivalence checking to

compare the semantics of a compiled circuit against its source. However, like any

other translation validation technique, these approaches add compile-time overhead

and may fail to identify latent bugs in the optimizer.
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All code is freely available online:

• voqc Coq definitions and proofs: https://github.com/inQWIRE/SQIR

• voqc OCaml library: https://github.com/inQWIRE/mlvoqc

• voqc Python bindings and tutorials: https://github.com/inQWIRE/pyvoqc

• voqc benchmarking scripts: https://github.com/inQWIRE/VOQC-benchmarks

• vqo development: https://github.com/inQWIRE/VQO

Acknowledgements This chapter is primarily based on joint work with Robert

Rand, Liyi Li, Shih-Han Hung, Xiaodi Wu, and Michael Hicks [Hie+21a]. Xiaodi

originally proposed the idea of implementing a verified version of the circuit opti-

mizations in Nam et al. [Nam+18]. My and Robert’s attempts to implement his

vision led to the development of sqir, and eventually voqc. I implemented and

verified all optimizations in voqc and handled extraction to OCaml/Python and

benchmarking. Liyi contributed to the proof of Euler rotations used in single-qubit

gate merging (Section 4.2.2). Section 4.5 describes joint work with Liyi Li, Finn

Voichick, Yuxiang Peng, Xiaodi Wu, and Michael Hicks on vqo [Li+21]; for this

project, I assisted with overall design and presentation and implemented extraction

to OCaml for benchmarking.

4.1 A Verified Framework for Optimizing Quantum

Programs

This section introduces general features of voqc’s design. We discuss specific opti-

mizations in Section 4.2 and circuit mapping routines in Section 4.3.
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Table 4.1: Gate sets used in voqc. r is a real parameter and q is a rational parameter.

Full Single-qubit gates: I, X, Y, Z ,H, S, T, S†, T †,
Rx(r), Ry(r), Rz(r), RzQ(q),
U1(r), U2(r, r), U3(r, r, r)

Two-qubit gates: CNOT, CZ, SWAP
Three-qubit gates: CCNOT, CCZ

RzQ Single-qubit gates: X, H, RzQ(q)
Two-qubit gates: CNOT

IBM Single-qubit gates: U1(r), U2(r, r), U3(r, r, r)
Two-qubit gates: CNOT

Mapping Single-qubit gates: ∞
Two-qubit gates: CNOT, SWAP

4.1.1 voqc Program Representation

To ease the implementation of and proofs about sqir program transformations, we

developed a framework of supporting library functions that operate on sqir programs

as lists of gate applications, rather than on the native sqir representation. The

conversion code takes a sequence of gate applications in the original sqir program

and flattens it so that a program like (G1 p;G2 q);G3 r is represented as the Coq list

[G1 p; G2 q; G3 r]. The denotation of the list representation is the denotation of its

corresponding sqir program. Examples of the list operations voqc provides include:

• Finding the next gate acting on a qubit that satisfies some predicate f .

• Propagating a gate using a set of cancellation and commutation rules (see Sec-

tion 4.2.1).

• Replacing a sub-program with an equivalent program (see Section 4.2.2).

• Computing the maximal matching prefix of two programs.

We verify that these functions have the intended behavior (e.g., in the last example,

that the returned sub-program is indeed a prefix of both input programs).

60



4.1.2 Program Equivalence

The voqc optimizer takes as input a sqir program and attempts to reduce its total

gate count by applying a series of optimizations. For each optimization, we verify that

it is semantics preserving (or sound), meaning that the output program is guaranteed

to be equivalent to the input program. We say that two unitary programs of dimension

d are equivalent, written U1 ≡ U2, if their denotation is the same, i.e., JU1Kd = JU2Kd.

We can then write our soundness condition for optimization function optimize as

follows.

Definition sound {G} (optimize : ∀ {d : N}, ucom G d → ucom G d) :=

∀ (d : N) (u : ucom G d), Joptimize uKd ≡ JuKd.

This property is quantified over G, d, and u, meaning that the property holds for

any program that uses any set of gates and any number of qubits. The optimizations

in our development are defined over particular gate sets, described below, but still

apply to programs that use any number of qubits. Our statements of soundness also

occasionally have an additional precondition that requires program u to be well typed.

We also support two more general versions of equivalence: We say that two circuits

are equivalent up to a global phase, written U1
∼= U2, when there exists a θ such that

JU1Kd = eiθJU2Kd; We say that two circuits are equivalent up to permutation if there

exist permutation matrices P1, P2 such that JU1Kd = P1 × JU2Kd × P2.1 Equivalence

up to a global phase is useful in the quantum setting because |ψ⟩ and eiθ |ψ⟩ (for

θ ∈ R) represent the same physical state. Equivalence up to permutation is useful in

the context of circuit mapping (Section 4.3) where inserted SWAP gates may change

the positions of qubits in the system.
1A permutation matrix is a square binary matrix with a single 1 entry in each row and column

and 0s elsewhere. Left-multiplying a matrix A by a permutation matrix P (i.e., PA) permutes A’s
rows, and right-multiplying (AP ) permutes A’s columns.
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Figure 4.1: Summary of features available in voqc

4.1.3 Supported Gate Sets

The voqc framework supports arbitrary gate sets; the utility functions and properties

described above are all parameterized by choice of gate set. However, the program

transformations in Sections 4.2 and 4.3 are defined over the particular gate sets listed

in Table 4.1. Using a custom gate set for a transformation makes writing the transfor-

mation cleaner and simplifies the proof of soundness (typically, each gate corresponds

to one case in the proof). We summarize which transformations are defined over

which gate sets in Figure 4.1.

The full gate set is used for parsing and consists of a variety of standard quantum

gates. It aims for completeness: Instead of having to translate a T gate in the

source OpenQASM program to the semantically equivalent U1(π/4), we can translate

it directly to T . Likewise, we can translate the three-qubit CCNOT gate directly

to CCNOT, rather than decomposing it into a series of one- and two-qubit gates

(potentially incorrectly). As shown in Figure 4.1, although optimizations are defined

over different gate sets internally, in the interface we expose, all functions are defined

over the full gate set. We convert between the different gate sets using the rules in

Tables 4.2 and 4.3.

62



Table 4.2: Decompositions of multi-qubit gates in the full gate set into simpler gates
in the full gate set. Decomposition to the RzQ or IBM gate sets can be performed by
further applying the rules in Table 4.3. Note that CNOT is primitive in every gate
set we support.

Input Gate Decomposition
CNOT a b CNOT a b
CZ a b H b; CNOT a b; H b
SWAP a b CNOT a b; CNOT b a; CNOT a b
CCZ a b c CNOT b c; T † c; CNOT a c ; T c ; CNOT b c ; T † c;

CNOT a c; CNOT a b ; T † b; CNOT a b ; T a; T b; T c
CCNOT a b c H c; CCZ a b c; H c

Table 4.3: Decompositions of single-qubit gates in the full gate set into gates in
the RzQ and IBM gate sets. When needed, we perform implict coercion from real
expressions (e.g., r

π
) to rational numbers.

Input RzQ Decomp. IBM Decomp.
I RzQ(0) U1(0)

X X U3(π, 0, π)

Y RzQ(32); X; RzQ(12) U3(π,
π
2 ,

π
2 )

Z RzQ(1) U1(π)

H H U2(0, π)

S RzQ(12) U1(
π
2 )

T RzQ(14) U1(
π
4 )

S† RzQ(32) U1(−π
2 )

T † RzQ(74) U1(−π
4 )

Rx(r) H; RzQ( rπ ); H U3(r,−π
2 ,

π
2 )

Ry(r) RzQ(32); H; RzQ( rπ ); H; RzQ(12) U3(r, 0, 0)

Rz(r) RzQ( rπ ) U1(r)

RzQ(q) RzQ(q) U1(qπ)

U1(r) RzQ( rπ ) U1(r)

U2(r1, r2) RzQ( r2π − 1); H; RzQ( r1π ) U2(r1, r2)

U3(r1, r2, r3) RzQ( r3π − 1/2); H; RzQ( r1π ); H; RzQ( r2π + 1/2) U3(r1, r2, r3)
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The RzQ gate set, inspired by the one used by Nam et al. [Nam+18], consists of

{H, X, RzQ, CNOT} where RzQ(q) describes rotation about the z-axis by qπ for

q ∈ Q. We use a rational parameter for the RzQ gate instead of a real parameter

in an effort to avoid unsound extraction to OCaml. Our Coq formalization relies

on an axiomatized definition of real numbers [Inr22], so there is no way to extract

Coq definitions using reals to OCaml without providing an implementation of real

arithmetic. One option (used for the IBM gate set below) is to extract Coq reals

to OCaml floats, although this leads to the possibility of floating-point error not

accounted for in our proofs.

The IBM gate set is the default basis for the Qiskit compiler, and is supported

in many quantum compilers. It includes the two-qubit CNOT gate, along with three

parameterized single-qubit gates:

U1(λ) =

1 0

0 eiλ

 , U2(ϕ, λ) =
1√
2

 1 −eiλ

eiϕ ei(ϕ+λ)

 ,

U3(θ, ϕ, λ) =

 cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(ϕ+λ) cos(θ/2)

 .

U3 gates are the most general2, and require two quantum “pulses” to implement

on hardware. U2 and U1 gates are more specialized, but require one and zero pulses,

respectively. One interesting property of this gate set (which is not true of the RzQ

gate set) is that any sequence of single-qubit gates can be combined into a single gate

(see Section 4.2.2). However, during combination, it is not possible to stay in the

domain of rational numbers, which forces us to change the parameter type to be real,

leading to potential unsoundness in extraction (discussed below).

The mapping gate set is used for circuit mapping (Section 4.3). It is parameterized
2U1 and U2 gates can both be written in terms of U3: U1(λ) = U3(0, 0, λ) and U2(ϕ, λ) =

U3(
π
2 , ϕ, λ).
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by a set of single-qubit gates and includes multi-qubit gates CNOT and SWAP. In

our implementation, we instantiate the mapping gate set using the single-qubit gates

from the full gate set.

To compute a program’s denotation, voqc’s gates must be translated into the

CNOT and Rθ,ϕ,λ gates in sqir’s base set. In the RzQ set, H, X, and RzQ(q) are

translated into Rπ/2,0,π, Rπ,0,π, and R0,0,qπ respectively. In the IBM set, U3(θ, ϕ, λ) is

translated into Rθ,ϕ,λ. We compute the denotation of a program in the full gate set

using the rules in Tables 4.2 and 4.3.

4.1.4 Extraction to Executable Code

We use Coq’s standard code extraction mechanism [Inr21b] to extract voqc into

a standalone OCaml library. For performance, our library uses OCaml primitives

for describing multi-precision rational numbers, maps and sets, rather than the code

generated from Coq. We thus implicitly trust that the OCaml implementation of

these data types is consistent with Coq’s; we believe that this is a reasonable as-

sumption. A more problematic assumption is that the behavior of OCaml’s 64-bit

float type matches the behavior of Coq’s mathematical reals. As mentioned above,

we extract the real parameters of the IBM and full gate sets to floats, which may

allow for floating-point error not accounted for in our soundness proofs. We would

prefer to use a full-precision datatype, like rationals, but the trigonometric functions

used to optimize U2 and U3 gates are not defined over rationals. We note that ex-

isting quantum compilers also use float parameters, so they are equally susceptible

to floating-point errors. They may even enforce precision limitations internally: For

example, Qiskit’s CommutativeCancellation optimization pass [Qis21] uses a cutoff

precision of 10−5, below which rotations are treated as identities.

In order to make voqc compatible with existing Python-based frameworks for

compiling quantum programs (e.g., Qiskit [Qis17], Sivarajah2020 [Siv+20], Quilc [Rig19b],
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Cirq [Cir18]), we provide a Python wrapper around the voqc OCaml library. To

interface between Python and OCaml, we wrap the OCaml code in a C library

(following standard conventions [Inr21a]) and call to this C library using Python’s

ctypes [Pyt21]. For convenience, we have written Python code that makes voqc

look like an optimization pass in IBM’s Qiskit, allowing us to take advantage of this

framework’s utilities for quantum programming (e.g., constructing and printing cir-

cuits, unverified optimizations and mapping routines). We use the voqc Qiskit pass

in our evaluation in Section 4.4.2.

4.2 Optimizations

voqc primarily implements optimizations inspired by the state-of-the-art circuit op-

timizer by Nam et al. [Nam+18]. As such, we do not claim credit for the optimizations

themselves. Rather, our contribution is a framework that is sufficiently flexible that

it can be used to prove such state-of-the-art optimizations correct. voqc implements

two basic kinds of optimizations: replacement and propagate-cancel. The former sim-

ply identifies a pattern of gates and replaces it with an equivalent pattern. The latter

works by commuting sets of gates when doing so produces an equivalent quantum

program—often with the effect of “propagating” a particular gate rightward in the

program—until two adjacent gates can be removed because they cancel out.

4.2.1 Optimization by Propagation and Cancellation

Our propagate-cancel optimizations have two steps. First we localize a set of gates

by repeatedly applying commutation rules. Then we apply a circuit equivalence to

replace that set of gates. In voqc, most optimizations of this form use a library of

code patterns, but one—not propagation—is slightly different, so we discuss it first.
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X q; H q ≡ H q; Z q
X q; RzQ(k) q ∼= RzQ(2− k) q; X q

X q1; CNOT q1 q2 ≡ CNOT q1 q2; X q1; X q2
X q2; CNOT q1 q2 ≡ CNOT q1 q2; X q2

Figure 4.2: Equivalences used in not propagation

X • H

X
→

• X H

X X
→ • H Z

Figure 4.3: An example of not propagation. In the first step the leftmost X gate
propagates through the CNOT gate to become two X gates. In the second step the
upper X gate propagates through the H gate and the lower X gates cancel.

Not Propagation

The goal of not propagation is to remove cancelling X (“not”) gates. Two X gates

cancel when they are adjacent or they are separated by a circuit that commutes

with X. We find X gates separated by commuting circuits by repeatedly applying

the propagation rules in Figure 4.2. An example application of the not propagation

algorithm is shown in Figure 4.3. This implementation may introduce extra X

gates at the end of a circuit or extra Z gates in the interior of the circuit. Extra Z

gates are likely to be cancelled by the gate cancellation and rotation merging passes

that follow, and moving X gates to the end of a circuit makes the rotation merging

optimization more likely to succeed. We note that our version of this optimization

is a simplification of Nam et al.’s, which supports the three-qubit CCNOT gate;

this gate can be decomposed into a {H,RzQ,CNOT} program per Table 4.2. In

our experiments, we did not observe any difference in performance between voqc

and Nam et al. due to this simplification.

Gate Cancellation

The single- and two-qubit gate cancellation optimizations rely on the same propagate-

cancel pattern used in not propagation, except that gates are returned to their original
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location if they fail to cancel. To support this pattern, we provide a general propagate

function in voqc. This function takes as inputs (i) an instruction list, (ii) a gate to

propagate, and (iii) a set of rules for commuting and cancelling that gate. At each

iteration, propagate performs the following actions:

1. Check if a cancellation rule applies. If so, apply that rule and return the modi-

fied list.

2. Check if a commutation rule applies. If so, commute the gate and recursively

call propagate on the remainder of the list.

3. Otherwise, return the gate to its original position.

We have proved that our propagate function is sound when provided with valid com-

mutation and cancellation rules. Each commutation or cancellation rule is imple-

mented as a partial Coq function from an input circuit to an output circuit. A

common pattern in these rules is to identify one gate (e.g., an X gate), and then

to look for an adjacent gate it might commute with (e.g., CNOT ) or cancel with

(e.g., X). For commutation rules, we use the rewrite rules shown Figure 4.4. For

cancellation rules, we use the fact that H, X, and CNOT are all self-cancelling and

RzQ(k) and RzQ(k
′) combine to become RzQ(k + k′).

4.2.2 Circuit Replacement

We have implemented three optimizations that work by replacing one pattern of gates

with an equivalent one; no preliminary propagation is necessary. These aim either to

reduce the gate count directly, or to set the stage for additional optimizations.

Hadamard Reduction

The Hadamard reduction routine employs the equivalences shown in Figure 4.5 to

reduce the number of H gates in the program. Removing H gates is useful because
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•
RzQ(k) H H ≡

•
H H RzQ(k)

•
• ≡

•
•

• •
RzQ(k) RzQ(k′) ≡

• •
RzQ(k′) RzQ(k)

• •
≡

• •

RzQ(k) • ≡ • RzQ(k)

•
H • H ≡

•
H • H

Figure 4.4: Commutation equivalences for single- and two-qubit gates adapted from
Nam et al. [Nam+18, Figure 5]. We use the second and third rules for propagating
both single- and two-qubit gates.

H S H ∼= S† H S† H S† H ∼= S H S

•
H S† S H

∼=
•

S S†
•

H S S† H
∼=

•
S† S

Figure 4.5: Equivalences for removing Hadamard gates adapted from Nam et al.
[Nam+18, Figure 4]. S is the phase gate RzQ(

1
2
) and S† is its inverse RzQ(

3
2
).

H gates limit the size of the {RzQ,CNOT} subcircuits used in the rotation merging

optimization.

Rotation Merging

The rotation merging optimization allows for combining RzQ gates that are not physi-

cally adjacent in the circuit. This optimization is more sophisticated than the previous

optimizations because it does not rely on small structural patterns (e.g., that adja-

cent X gates cancel), but rather on more general (and non-local) circuit behavior.

The basic idea behind rotation merging is to (i) identify subcircuits consisting of only
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CNOT and RzQ gates and (ii) merge RzQ gates within those subcircuits that are

applied to qubits in the same logical state. The argument for the correctness of this

optimization relies on the phase polynomial representation of a circuit. Let C be a

circuit consisting of CNOT gates and rotations about the z-axis. Then on basis state

|x1, ..., xn⟩ for xi ∈ {0, 1}, C will produce the state

eip(x1,...,xn) |h(x1, ..., xn)⟩

where h : {0, 1}n → {0, 1}n is an affine reversible function and

p(x1, ..., xn) =
l∑

i=1

(θi mod 2π)˙fi(x1, ..., xn)

is a linear combination of affine boolean functions. p(x1, ..., xn) is called the phase

polynomial of circuit C. Each rotation gate in the circuit is associated with one term of

the sum and if two terms of the phase polynomial satisfy fi(x1, ..., xn) = fj(x1, ..., xn)

for some i ̸= j, then the corresponding i and j rotations can be merged. As an

example, consider the two circuits shown below.

• Rz(k′)

Rz(k) •
≡ • Rz(k + k′)

•

To prove that these circuits are equivalent, we can consider their behavior on basis

state |x1, x2⟩. Applying RzQ(k) to the basis state |x⟩ produces the state eikπx |x⟩

and CNOT |x, y⟩ produces the state |x, x⊕ y⟩ where ⊕ is the xor operation. Thus

evaluation of the left-hand circuit proceeds as follows:

|x1, x2⟩ → eikπx2 |x1, x2⟩

→ eikπx2 |x1, x1 ⊕ x2⟩

→ eikπx2 |x2, x1 ⊕ x2⟩

→ eikπx2eik
′πx2 |x2, x1 ⊕ x2⟩ .
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Whereas evaluation of the right-hand circuit produces

|x1, x2⟩ → |x1, x1 ⊕ x2⟩ → |x2, x1 ⊕ x2⟩ → ei(k+k′)πx2 |x2, x1 ⊕ x2⟩ .

The two resulting states are equal because eikπx2eik
′πx2 = ei(k+k′)πx2 . This implies that

the unitary matrices corresponding to the two circuits are the same. We can therefore

replace the circuit on the left with the one on the right, removing one gate from the

circuit.

Our rotation merging optimization follows the reasoning above for arbitrary {RzQ,

CNOT} circuits. For every gate in the program, it tracks the Boolean function

associated with every qubit (the Boolean functions above are x1, x2, x1 ⊕ x2), and

merges RzQ rotations when they are applied to qubits associated with the same

Boolean function. To prove equivalence over {RzQ,CNOT} circuits, we show that

the original and optimized circuits produce the same output on every basis state. We

have found evaluating behavior on basis states to be useful for proving equivalences

that are not as direct as those listed in Figures 4.4 and 4.5. Although our merge

operation is identical to Nam et al.’s, our approach to constructing {RzQ, CNOT}

subcircuits differs. We construct a {RzQ,CNOT} subcircuit beginning from a RzQ

gate whereas Nam et al. begin from a CNOT gate. The result of this simplification

is that our subcircuits may be smaller than Nam et al.’s, causing us to miss some

opportunities for merging. However, in our experiments we found that this choice

impacted only one benchmark.

Single-qubit Gate Merging

In the IBM gate set, any two single-qubit gates can be combined into one gate. This

allows us to implement an optimization over programs in the IBM gate set (which

Qiskit calls Optimize1qGates [Qis21]) that merges all adjacent single-qubit gates by

applying the rules in Figure 4.6, along with a more complex rule for combining a
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U1(λ1) ; U1(λ2) = U1(λ1 + λ2)
U1(λ1) ; U2(ϕ2, λ2) = U2(ϕ2, λ1 + λ2)

U1(λ1) ; U3(θ2, ϕ2, λ2) = U3(θ2, ϕ2, λ1 + λ2)
U2(ϕ1, λ1) ; U1(λ2) = U2(ϕ1 + λ2, λ1)

U2(ϕ1, λ1) ; U2(ϕ2, λ2) = U3(π − ϕ1 − λ2, ϕ2 +
π
2
, λ1 +

π
2
)

U3(θ1, ϕ1, λ1) ; U1(λ2) = U3(θ1, ϕ1 + λ2, λ1)

Figure 4.6: Rules for single-qubit gate merging

U2 and U3 gate or two U3 gates. In the more complex rule, the two gates are first

converted into a sequence of Euler rotations about the y- and z-axes: U3(θ, ϕ, λ) −→

Rz(ϕ) · Ry(θ) · Rz(λ). Call this a ZYZ rotation. Next, local identities are applied to

combine the two ZYZ rotations into a single ZYZYZ rotation. Then the interior YZY

rotation is converted to a new ZYZ rotation, yielding a ZZYZZ rotation. Finally, this

is simplified to a ZYZ rotation, which can be represented as a U3 gate. For example,

here is the process for combining two U3 gates:

U3(θ1, ϕ1, λ1) ; U3(θ2, ϕ2, λ2) = Rz(ϕ2) ·Ry(θ2) ·Rz(λ2) ·Rz(ϕ1) ·Ry(θ1) ·Rz(λ1)

= Rz(ϕ2) · [Ry(θ2) ·Rz(λ2 + ϕ1) ·Ry(θ1)] ·Rz(λ1)

= Rz(ϕ2) · [Rz(γ) ·Ry(β) ·Rz(α)] ·Rz(λ1)

= Rz(ϕ2 + γ) ·Ry(β) ·Rz(α+ λ1)

= U3(β, ϕ2 + γ, α+ λ1)

where α, β, γ satisfy Ry(θ2) · Rz(λ2 + ϕ1) · Ry(θ1) = Rz(γ) · Ry(β) · Rz(α). The

angles α, β, γ can be generated using arithmetic over trignometric functions sin, cos,

arccos, and arctan [Ebe99], as shown in Figure 4.7. Proving the generation of α, β,

γ correct was the most difficult part of verifying soundness for this optimization; to

our knowledge, we are the first to formally verify this method in a proof assistant.
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Definition rm02 (x y z : R) : R := sin x ∗ cos z + cos x ∗ cos y ∗ sin z.
Definition rm12 (x y z : R) : R := sin y ∗ sin z.
Definition rm22 (x y z : R) : R := cos x ∗ cos z − sin x ∗ cos y ∗ sin z.
Definition rm10 (x y z : R) : R := sin y ∗ cos z.
Definition rm11 (x y z: R) : R := cos y.
Definition rm20_minus (x y z : R) : R := cos x ∗ sin z + sin x ∗ cos y ∗ cos z.
Definition rm21 (x y z : R) : R := sin x ∗ sin y.

Definition atan2 (y x : R) : R :=
if 0 <? x then atan (y/x)
else if x <? 0 then if negb (y <? 0) then atan (y/x) + PI else atan (y/x) − PI

else if 0 <? y then PI/2 else if y <? 0 then −PI/2 else 0.

Definition yzy_to_zyz (x y z : R) : R ∗ R ∗ R :=
if rm22 x y z <? 1
then if −1 <? rm22 x y z

then (atan2 (rm12 x y z) (rm02 x y z),
acos (rm22 x y z),
atan2 (rm21 x y z) (rm20_minus x y z))

else (− atan2 (rm10 x y z) (rm11 x y z), PI, 0)
else (atan2 (rm10 x y z) (rm11 x y z), 0, 0).

(* Correctness property: *)
Lemma yzy_to_zyz_correct : ∀ θ1 ξ θ2 ξ1 θ ξ2,

yzy_to_zyz θ1 ξ θ2 = (ξ1, θ, ξ2) →
y_rotation θ2 × phase_shift ξ × y_rotation θ1
∝ phase_shift ξ2 × y_rotation θ × phase_shift ξ1.

Figure 4.7: Code for converting a YZY rotation to a ZYZ rotation

4.2.3 Unitary Optimization Scheduling

The voqc optimize function applies each of the optimizations we have discussed one

after the other, in the following order (due to Nam et al.):

0, 1, 3, 2, 3, 1, 2, 4, 3, 2

where 0 is not propagation, 1 is Hadamard reduction, 2 is single-qubit gate cancella-

tion, 3 is two-qubit gate cancellation, and 4 is rotation merging. Nam et al. justify

this ordering at length, though they do not prove that it is optimal. In brief, removing
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X and H gates (0,1) allows for more effective application of the gate cancellation (2,3)

and rotation merging (4) optimizations. In our experiments (Section 4.4), we observed

that single-qubit gate cancellation and rotation merging were the most effective at

reducing gate count.

We (optionally) conclude by converting gates to the IBM gate set and performing

single-qubit gate merging in order to produce output in the {U1, U2, U3, CNOT} gate

set for fair comparison with other tools.

4.2.4 Optimizing Non-Unitary Programs

We have implemented and verified two optimizations for non-unitary programs in

voqc, inspired by optimizations in IBM’s Qiskit compiler [Qis17]: removing pre-

measurement z-rotations, and classical state propagation. For these optimizations,

we represent a non-unitary program P as a list of blocks. A block is a binary tree whose

leaves are unitary programs (in list form) and nodes are measurements meas q P1 P2

whose children P1 and P2 are lists of blocks. Since the density matrix semantics

denotes programs as functions over matrices, we say that programs P1 and P2 of

dimension d are equivalent if for every input ρ, {|P1|}d(ρ) = {|P2|}d(ρ).

z-rotations Before Measurement

z-axis rotations (or, more generally, diagonal unitary operations) before a measure-

ment have no effect on the measurement outcome, so they can safely be removed from

the program. This optimization locates and removes Rz gates before measurement

operations. It was inspired by Qiskit’s RemoveDiagonalGatesBeforeMeasure [Qis21]

pass.
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Classical State Propagation

Once a qubit has been measured, the subsequent branch taken provides information

about the qubit’s (now classical) state, which may allow pre-computation of some

values. For example, in the branch where qubit q has been measured to be in the

|0⟩ state, any CNOT with q as the control will be a no-op and any subsequent

measurements of q will still produce zero.

In detail, given a qubit q in classical state |i⟩, our optimization applies the following

propagation rules:

• Rz(k) q preserves the classical state of q.

• X q flips the classical state of q.

• If i = 0 then CNOT q q′ is removed and if i = 1 then CNOT q q′ becomes X q′.

• meas q P1 P0 becomes Pi.

• H q and CNOT q′ q, where q′ is not known to be classical, make q non-classical

and terminate analysis.

Our statement of correctness for one round of propagation says that if qubit q

is in a classical state in the input, then the optimized program will have the same

denotation as the unoptimized original. We express the requirement that qubit q be

in classical state i ∈ {0, 1} with the condition |i⟩q ⟨i| × ρ × |i⟩q ⟨i| = ρ, which says

that projecting state ρ onto the subspace where q is in state |i⟩ results in no loss of

information.

This optimization is not implemented directly in Qiskit, but Qiskit contains passes

that have a similar effect. For example, RemoveResetInZeroState [Qis21] removes

adjacent reset gates, as the second has no effect.
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Figure 4.8: IBM’s 16-qubit Guadalupe machine [IBM22]. The different colors on
nodes and connections reflect different error rates (darker means lower error and
lighter means higher error).

4.3 Circuit Mapping

While optimization aims to reduce qubit and gate usage to make programs more

feasible to run on near-term machines, circuit mapping addresses the connectivity

constraints of near-term machines, transforming a program so that it is able to run

on a machine [SWD11; ZPW17]. Circuit mapping algorithms take as input an ar-

bitrary circuit and output a circuit that respects the connectivity constraints of the

underlying architecture. Consider the connectivity constraints of IBMs’s 16-qubit

Guadalupe machine [IBM22], shown in Figure 4.8. This is a representative exam-

ple of a superconducting qubit system, where qubits are laid out in a 2-dimensional

grid and possible interactions are described by edges between qubits. For instance, a

CNOT gate may be applied between qubits 1 and 4, but not between qubits 1 and 3.

Circuit mapping typically consists of two stages: layout (or placement), which as-

sociates each logical qubit in the program with some physical qubit on the machine;

and routing, which, given an initial layout, transforms a program to satisfy connectiv-

ity constraints. Routing is often performed by inserting SWAP gates to “move” qubits

to compatible locations when they are used together in a two-qubit gate. This ap-

proach is used by the routing routines in Qiskit [Qis17] and t|ket⟩ [Siv+20]. Another

approach is to compute the unitary matrix corresponding to the input (sub)circuit

and then resynthesize the circuit in a way that satisfies connectivity constraints;
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Staq [AG20] implements this approach.

4.3.1 Verified Layout

We provide two layout functions in voqc: trivial layout, which maps logical qubit

i to physical qubit i, and greedy layout, which takes into account the program and

architecture characteristics. Greedy layout scans through the program and allocates

logical qubits to adjacent physical qubits when they are used together in a CNOT

gate, until all logical qubits are allocated. Figure 4.9(a) shows an example quantum

circuit that uses four qubits. Imagine that we would like to map this circuit to an

architecture with four qubits, connected in a ring. Figure 4.9(b) shows the result of

arranging the circuit’s qubits according to a trivial layout, and Figure 4.9(c) shows

the result of arranging the qubits according to our greedy layout routine. The greedy

layout allocates logical qubits 0 and 2 (and 1 and 2) to adjacent physical qubits since

they are used together in a CNOT gate.

We verify that both the trivial and greedy layout functions produce well-formed

layouts, i.e., one-to-one mappings between logical and physical qubits. We also pro-

vide a function to convert a list l to a layout where physical qubit i maps to logial

qubit l[i]; we prove that this function produces a well-formed layout if the input list

has no duplicates and every element in the list is less than the length of the list.

We use this function to generate safe layouts for our translation validation routine in

Section 4.3.3.

4.3.2 Verified Routing

We have implemented a simple SWAP-based routing method for unitary sqir pro-

grams and verified that it is sound (up to a permutation of qubits) and produces

programs that satisfy the relevant hardware constraints. Our routing method is pa-

rameterized by a description of the connectivity of an architecture, which includes a
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• H

• •

P1 = CNOT 0 2; CNOT 2 1; H 0;
CNOT 2 3

(a) Input program

3

0

2

1
×
× • × • ×
× H × •

P2 = SWAP 0 2; CNOT 1 2; SWAP 1 2; CNOT 1 0;
H 2; SWAP 1 2; CNOT 2 3

(b) Trivial layout

3

0

1

2
• H

• ×
× •

P3 = CNOT 0 1; CNOT 1 2; H 0; SWAP 1 2; CNOT 2 3

(c) Greedy layout

Figure 4.9: Circuit mapping example

function to check whether an edge is in the connectivity graph and a function to find a

path between two nodes. Given an initial layout, our implementation iterates through

the gates of the input program and, every time a CNOT occurs between two logical

qubits whose corresponding physical qubits are not adjacent in the underlying archi-

tecture, inserts SWAPs to move the control adjacent to the target. Figure 4.9(b–c)

show the result of applying our routing routine to the circuit in Figure 4.9(a) starting

from the trivial and greedy layouts. In Figure 4.9(b), three SWAP gates are inserted

to ensure that the circuit can execute on the target hardware, while in Figure 4.9(c)

only one SWAP is inserted. In both produced circuits, the wires are ordered: top left

physical qubit, top right, lower right, lower left.

Although our routing algorithm is simple (it is equivalent to Qiskit’s BasicSwap

pass [Qis21]), it allows for some flexibility in design because we do not specify the

method for finding paths in the connectivity graph, which allows, for example, strate-

gies that take into account error characteristics of the machine [TQ19]. We have
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(a) (b) (c)

Figure 4.10: Architectures supported in voqc. From left to right: LNN, LNN ring,
and 2D grid. Each architecture is shown with a fixed number vertices, but in our
implementation the number of vertices is a parameter.

built-in connectivity graphs for the linear nearest neighbor (LNN), LNN ring, and 2D

nearest neighbor architectures pictured in Figure 4.10.

4.3.3 Verified Translation Validation

There are a wide variety of proposed layout and routing techniques, many of which

involve complex search algorithms and heuristic techniques [SWD11; ZPW17; TQ19;

CSU19; LDX19]. Rather than aiming to verify all of these different approaches in Coq,

we provide a verified translation validation [PSS98] function to check the correctness of

circuit mapping on particular inputs. Unlike our verified optimizations and mapping

routines, the translation validator may fail at runtime, indicating a potential bug

in the circuit mapper. However, our proofs guarantee that if translation validation

succeeds, then the input and output programs are mathematically equivalent up to

permutation.

Our translation validator works by removing SWAP gates, performing a logical

relabelling of qubits, and then checking for equality modulo reordering of gates that

respects gate dependencies. This approach to equivalence checking will only work

for routing routines that insert SWAP gates while leaving the rest of the program’s

structure unchanged (e.g., those in Qiskit and t|ket⟩).3 It will not be able to validate
3t|ket⟩ may choose to compile a distance-2 CNOT gate to a distributed CNOT, rather than a

SWAP followed by a CNOT, if the heuristics find that this improves the final result [Siv+20, Section
7.2]. This optimization will cause our translation validator to fail; a simple fix would be to decompose
SWAP gates before validation and then remove the CNOT gates corresponding to swaps from the
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circuits generated using resynthesis (e.g., using Staq’s steiner routing). However, it

is possible to develop polynomial-time translation validation functions for these cases

too since the input and output circuits have a restricted form. For example, Staq

performs routing for {CNOT, X,Rz} sub-circuits, which can be easily analyzed using

phase polynomials per our discussion of rotation merging in Section 4.2.2.

Translation validation is popular for providing assurance for quantum compilers:

Amy [Amy19b] checks for equivalence of optimized and unoptimized programs using

the path-sums semantics; PyZX [Kv19a] performs translation validation by checking if

the result of optimizing a circuit followed by its optimized adjoint produces an identity

program; and Smith and Thornton [ST19] provide a compiler with built-in translation

validation via QMDD equivalence checking [MT06]. Most recently, Burgholzer, Ray-

mond, and Wille [BRW20] present a technique for equivalence checking, specialized

to validating results of the Qiskit compiler, that relies on the fact that the identity

matrix (which should be the result of composing a circuit with its optimized adjoint)

can be efficiently represented using decision diagrams [BW20]; this observation allows

them to perform equivalence checking on circuits that use tens of thousands of opera-

tions. However, none of these other tools has been formally verified, and all aside from

Burgholzer, Raymond, and Wille [BRW20] are significantly more expensive than our

mapping validation, which simply requires a linear scan through the input, because

they aim to detect equivalence between a more general class of programs.

4.3.4 Mapping with Optimization

Circuit mapping increases the size of the program, typically adding many CNOT gates

to perform SWAPs between qubits. It is desirable to reduce this overhead by applying

optimization after mapping, but this is only worthwhile if optimization preserves the

guarantee from mapping that all CNOT gates are allowed by the connectivity graph.

mapped circuits.
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We have verified that all of the optimizations in Section 4.2 preserve connectivity

guarantees, allowing us to apply optimization before and after mapping.

We also apply some light mapping-specific optimizations. For example, after map-

ping we carefully decompose SWAP gates to enable further optimization. SWAP gates

have two natural decompositions in terms of CNOT gates:

SWAP a b = CNOT a b; CNOT b a; CNOT a b

and

SWAP a b = CNOT b a; CNOT a b; CNOT b a.

We choose the decomposition that will allow CNOT gates to be removed during

gate cancellation (Section 4.2.1). For example, the subcircuit in Figure 4.9(b) and

Figure 4.9(c) that consists of a CNOT followed by SWAP will be decomposed as

shown on the left below, rather than the right, since this will save two gates in the

optimized form.

• ×
× =

• • •
• ≡ •

•
• ×
× =

• •
• •

4.4 Experimental Evaluation

The value of voqc (and sqir) is determined by the quality of the verified opti-

mizations we can write with it. We can judge optimization quality empirically. In

particular, we can run voqc on a benchmark of circuit programs and see how well it

optimizes those programs, compared to (non-verified) state-of-the-art compilers.

To this end, in Section 4.4.1, we compare the performance of voqc’s verified opti-

mizations against IBM’s Qiskit compiler [Qis17], CQC’s t|ket⟩ [Siv+20], PyZX [Kv19a],

and Staq [AG20] on a set of benchmarks developed for Staq. We find that voqc has

comparable performance to all of these: it generally beats these tools in terms of total
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gate count reduction, and often matches reduction of T gate count. In Section 4.4.2,

we evaluate voqc’s optimization and mapping routines by running them via a pass in

the Qiskit transpiler on a set of benchmarks used to evaluate prior work on mapping

algorithms [ZPW17; WBZ19]. Compared to Qiskit’s default settings, we find that

voqc’s optimizations provide an advantage, even for mapped circuits, and our veri-

fied translation validation does not add undue overhead. Finally, in Section 4.4.3, we

provide a detailed comparison of the performance of voqc and Nam et al., showing

that our verified implementation is mostly faithful to its inspiration.

Note that the aim of this section is not to claim superiority over existing tools

(after all, we have implemented a subset of the optimizations available in Nam et al.

[Nam+18] and Qiskit), but to demonstrate that the optimizations we have imple-

mented in voqc are on par with existing unverified tools.

4.4.1 Evaluation on Staq Benchmarks

We begin by comparing voqc, Qiskit, t|ket⟩, PyZX, and Staq on a benchmark de-

veloped for Staq [AG20]. This benchmark consists of 35 programs written in the

“Clifford+T” gate set (CNOT, H, S and T , where S and T are z-axis rotations by

π/2 and π/4, respectively). The benchmark programs contain arithmetic circuits, im-

plementations of multiple-control X gates, Galois field multiplier circuits, and some

small quantum algorithm components. We exclude programs with more than 104

gates, following the precedent of prior work [Siv+20, Section 9.1.1].

We measure reduction in total gate count, two-qubit gate count, and T -gate count.

Total gate count and two-qubit gate count are useful metrics for near-term quantum

computing, where the length of the computation must be minimized to reduce error

and two-qubit gates have higher error rates than single-qubit gates. T -gate count is

relevant in the fault-tolerant regime where qubits are encoded using quantum error

correcting codes and operations are performed fault-tolerantly. In this regime, the
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Table 4.4: Summary of optimizations used in Staq evaluation

qiskit-terra 0.19.1
Optimize1qGatesDecomposition ✓
CommutativeCancellation ✓∗

ConsolidateBlocks w/ UnitarySynthesis
pytket 0.19.2
RemoveRedundancies ✓
FullPeepholeOptimise
pystaq 2.1
simplify ✓
rotation_fold ✓∗

cnot_resynth
pyzx 0.7.0
full_optimize ✓∗

full_reduce

standard method for making Clifford+T circuits fault tolerant produces particularly

expensive translations for T gates, so reducing T -count is a common optimization

goal. The Clifford+T set is a subset of voqc’s RzQ gate set where each z-axis

rotation is restricted to be a multiple of π/4.

Baselines We compare voqc’s performance with that of Qiskit Terra version 0.19.1

(release date December 10, 2021), t|ket⟩ version 0.19.2 (February 18, 2022), Staq

version 2.1 (January 17, 2022), and PyZX version 0.7.0 (February 19, 2022). When

comparing against Qiskit and t|ket⟩, we use voqc’s IBM gate set. When comparing

against Staq and PyZX, we use the RzQ gate set.

Table 4.4 lists the optimizations we include in our evaluation. For every tool ex-

cept t|ket⟩, we evaluate all available (unitary) optimizations; we exclude t|ket⟩’s Op-

timisePhaseGadgets and PauliSimp as they hurt improve performance on our bench-

marks. voqc provides the complete and verified functionality of the routines marked

with ✓; we write ✓∗ to indicate that voqc contains a verified optimization with sim-

ilar, although not identical, behavior. voqc’s gate cancellation routines generalize

Qiskit’s Optimize1qGatesDecomposition, t|ket⟩’s RemoveRedundancies, and Staq’s
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Table 4.5: Geometric mean gate count reduction on the Staq benchmarks using the
IBM gate set. The full results are presented in Appendix A.

Qiskit t|ket⟩ voqc
Total gate count 14.4% 18.5% 28.5%
Two-qubit gate count 2.3% 3.8% 9.8%

Table 4.6: Geometric mean gate count reduction on the Staq benchmarks using the
RzQ gate set. The negative values for PyZX indicate that it increases the gate count.
The full results are presented in Appendix A.

Staq PyZX voqc
Total gate count 15.4% -27.8% 23.2%
Two-qubit gate count 0.6% -91.7% 9.8%
T -gate count 45.4% 47.1% 43.1%

simplify; voqc’s gate cancellation is also similar to Qiskit’s CommutativeCancel-

lation, but Qiskit uses matrix multiplication to determine whether gates commute

while we use a rule-based approach. voqc’s rotation merging is similar to Staq’s

rotation_fold and (when combined with gate cancellation) PyZX’s full_optimize.

As far as the optimizations voqc does not support: Qiskit’s UnitarySynthe-

sis and t|ket⟩’s FullPeepholeOptimize resynthesize two-qubit gate sequences (e.g.,

using KAK decomposition [VW04]), Staq’s cnot_synthesis resynthesizes arbitrary

{CNOT,X,Rz} subcircuits (as discussed in Section 4.3), and PyZX’s full_reduce

applies the ZX-calculus rewrite rules described in Kissinger and van de Wetering

[Kv19b].

Results The results are summarized in Tables 4.5 and 4.6; the full results are given

in Appendix A. Overall, voqc is the most effective at reducing total and two-qubit

gate count for both the IBM and RzQ gate sets, while it is slightly less effective than

Staq and PyZX at eliminating T gates.

On all 35/35 programs, voqc is more effective at reducing total gate count than

Qiskit. On 33/35 programs it is more effective at reducing total gate count than t|ket⟩.

This gap in performance is primarily due to voqc’s rotation merging optimization,
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which has no analogue in Qiskit or t|ket⟩. On 9/35 programs, Qiskit, t|ket⟩, and

voqc provide no reduction in two-qubit gate count, suggesting that these tools are

not particularly effective for this type of gate. Of the remaining 23/35 programs,

voqc provides a higher reduction in two-qubit gate count, despite the fact that

Qiskit and t|ket⟩ both support two-qubit circuit resynthesis, which should give them

an advantage. This suggests that small circuit resynthesis optimizations are not

particularly effective for this class of circuits.

voqc is more effective than (or equally effective as) Staq and PyZX at reducing

total gate count on 29/35 programs. On 4/35 programs, Staq is the most effective,

and on the remaining 2/35 PyZX performs best. However, on 26/35 programs PyZX

actually increases the total gate count.4 The reason for this is that PyZX converts

a circuit to a ZX-diagram, performs optimization, and then converts back; this con-

version process can introduce many additional gates. However, PyZX is the best

overall at reducing T -gate count. On 28/35 programs, PyZX is more effective than

(or equally effective as) Staq and voqc at reducing T -gate count. On 7/35 programs,

Staq performs best. Surprisingly, on 13/35 benchmarks, all optimizers produce the

same T -count. This is unexpected since, although all these optimizers rely on some

form of rotation merging, their implementations differ substantially. Kissinger and

van de Wetering [Kv19b] posit that this indicates a local optimum in the ancilla-free

case for some of the benchmarks (in particular the tof benchmarks, whose T -count

is not reduced by applying additional techniques [HT18]). As with the IBM gate

set experiments, voqc is not particularly effective at reducing two-qubit gate count.

However, unlike PyZX and Staq, it never increases the number of two-qubit gates,

which leads to significantly better performance overall.

To compare the running times of the different tools, we ran 11 trials of voqc,
4To account for this, when computing the “geometric mean reduction” for each type of gate,

we actually compute the geometric mean proportion of the final to original gate count, which is a
strictly positive number. We then subtract this number from 1, which produces a negative value in
cases where gate count increased on average.
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Table 4.7: Geometric mean running times

Qiskit t|ket⟩ Staq PyZX voqc
0.60s 1.53s 0.02s 14.58s 0.01s

Qiskit, t|ket⟩, Staq, and PyZX (taking the median time for each benchmark) on a

standard laptop with a 2.9 GHz Intel Core i5 processor and 16 GB of 1867 MHz

DDR3 memory, running macOS Monterey. We show the geometric mean running

times over all 35 benchmarks in Table 4.7. Qiskit, Staq, and voqc all have mean

running times of under one second. t|ket⟩ is slightly slower, but the mean is still

under two seconds. PyZX was consistently the slowest; the full_optimize routine in

particular scaled poorly with increasing qubit and gate counts. We set a time limit

of 10 minutes for each run of PyZX, defaulting to applying full_reduce (but not

full_optimize) in case of a timeout. In the case of a timeout, we consider only the

time required to run full_reduce. In addition, full_optimize is not deterministic, and

may produce different output circuits for different runs. The gate counts we report

are from the trial that produced the lowest T -gate count.

Overall, these results are encouraging evidence that voqc supports useful and

interesting verified optimizations. Furthermore, despite having been written with

verification in mind, voqc’s running times are not significantly worse than (and

often better than) that of current tools.

4.4.2 Evaluation of Mapping Validation

To evaluate voqc’s support for circuit mapping, we used the test suite from the

MQT quantum circuit mapping tool [Cha22], subsets of which have been used in

the evaluations of Zulehner, Paler, and Wille [ZPW17] and Wille, Burgholzer, and

Zulehner [WBZ19]. The benchmark programs all use at most 16 qubits, and, like

before, we include only those circuits with less than 104 gates. The circuits are

primarily taken from the RevLib [Wil+08] suite of classical reversible circuits, but
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the benchmark also includes some truly quantum circuits including quantum Fourier

transforms and circuits for quantum chemistry. In total, we consider 126 circuit

programs.

Baselines We developed a custom pass for the Qiskit compiler that applies the

following sequence of transformations: voqc optimization (using the RzQ gate set),

Qiskit circuit mapping, voqc mapping validation, and voqc optimization (using

the IBM gate set). Our verified translation validation allows us to use the sophisti-

cated mapping routines available in Qiskit without sacrificing soundness. We can run

voqc optimizations both before and after mapping because we have proved that our

optimizations preserve mapping guarantees.

We compare our pass against the default Qiskit pass with optimization level 3,

which applies mapping followed by optimization. For both passes, we use Qiskit’s

default layout and routing routines which are based on Li, Ding, and Xie [LDX19].

This routing algorithm is non-deterministic, so we run multiple (11) trials, storing the

result of the run that produced the circuit with the lowest total gate count. We addi-

tionally compare against an OCaml program that applies voqc optimization (using

the RzQ gate set), greedy layout and swap routing (Section 4.3), and optimization

(using the IBM gate set). We record change in total gate count and two-qubit gate

count. Note that unlike Section 4.4.1, where we expected gate count reduction, for

this experiment we expect gate count to increase since mapping introduces many

additional CX gates, some of which will be removed by optimization. All circuits

are mapped to a 16-qubit ring architecture (Figure 4.10(b)). Like before, we use

Qiskit Terra version 0.19.1 and run on a standard laptop with a 2.9 GHz Intel Core i5

processor and 16 GB of 1867 MHz DDR3 memory, running macOS Monterey. When

recording timing data, we take the median running time over 11 trials.
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Table 4.8: Geometric mean gate count increases and running times for the mapping
experiment over all 126 benchmark circuits.

Qiskit voqc Qiskit+voqc
Total gate count increase 80.9% 73.9% 38.9%
Two-qubit gate count increase 113.5% 204.1% 126.0%
Running time 1.07s <0.01s 1.01s

Results The results are summarized in Table 4.8. The first column shows the

result of the Qiskit default pass, the second column shows the result of the voqc

OCaml program, and the last column shows the result of the voqc pass within

Qiskit. Compared to the Python-based Qiskit passes, the OCaml program is signifi-

cantly faster; however, it also introduces the most two-qubit gates due to its simple

SWAP -insertion strategy. Despite this, the OCaml program results in a lower total

gate count overhead than Qiskit—this can be explained by voqc’s superior optimiza-

tions, as per Section 4.4.1. Overall, Qiskit’s default pass provides the lowest overhead

in two-qubit gate count. This is due to Qiskit’s two-qubit circuit resynthesis opti-

mization, which is especially effective at reducing two-qubit gate count post-mapping.

The Qiskit+voqc pass has the best performance overall: it has running time and

two-qubit gate count overhead comparable with Qiskit, but provides a much lower

total gate count overhead and proven guarantees that the output circuit is semanti-

cally equivalent to the input. During our trials, we found that translation validation

accounted for <1% of the Qiskit+voqc pass running time and we never encountered

a validation failure, which means that Qiskit’s mapping routines assuredly preserved

the semantics of the programs we tested (although this says nothing about semantics-

preservation of Qiskit’s optimizations).

4.4.3 Evaluation on Nam Benchmarks

In this section, we evaluate voqc’s performance on all 99 benchmark programs con-

sidered by Nam et al. [Nam+18], confirming that voqc is a faithful implementation
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Table 4.9: Summary of optimizations available in Nam et al. [Nam+18]

Nam et al.
Not propagation (P) ✓∗

Hadamard gate reduction (L, H) ✓
Single-qubit gate cancellation (L, H) ✓
Two-qubit gate cancellation (L, H) ✓
Rotation merging using phase polynomials (L) ✓∗

Floating Rz gates (H)
Special-purpose optimizations (L, H)

• LCR optimizer ✓
• Toffoli decomposition

of a subset of the optimizations present in Nam et al. (along with being proved cor-

rect!). The benchmarks are divided into three categories, as described below. Our

versions of the benchmarks are available online.5

We summarize the optimizations available in Nam et al. in Table 4.9. P stands for

“preprocessing” and L and H indicate whether the routine is in the “light” or “heavy”

versions of the optimizer. voqc provides the complete and verified functionality of

the routines marked with ✓; we write ✓∗ to indicate that voqc contains a verified

optimization with similar, although not identical, behavior. We have not yet imple-

mented “Toffoli decomposition” and “Floating Rz gates” and compared to Nam et al.’s

rotation merging, voqc performs a slightly less powerful optimization (as discussed

in Section 4.2.2).

In cases where Toffoli decomposition and heavy optimization are not used (the

QFT, QFT-based adder, and product formula circuits), voqc’s results are identical

to Nam et al.’s. In the other cases, voqc is slightly less effective. In the worst case,

voqc’s running time is four orders of magnitude worse than Nam et al.’s. However,

voqc’s running time is often less than a second. We view this performance as accept-

able, given that benchmarks with more than 1000 two-qubit gates (the only programs

for which voqc optimization takes longer than one second) are well out of reach of

current quantum hardware [Pre18]. We are confident that voqc’s performance can
5https://github.com/inQWIRE/VOQC-benchmarks
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be improved through more careful engineering.

Arithmetic and Toffoli These benchmarks overlap with the Staq benchmarks—

both originate from an earlier paper by Amy, Maslov, and Mosca [AMM13]. The

programs range from 45 to 346,533 gates and 5 to 489 qubits. The total gate count

reduction and timing results for all 32 benchmarks are given in Appendix A. In

sum: in 12 out of 32 cases voqc outperforms Nam et al., but voqc has a lower

average reduction. This is primarily due to Nam et al.’s “special-purpose Toffoli

decomposition”, which affects how CCX gates are decomposed. Their decomposition

enables rotation merging and single-qubit gate cancellation to cancel two gates (e.g.

cancel T and T †) where we instead combine two gates into one (e.g. T and T becomes

S). Interestingly, the cases where voqc outperforms Nam et al. can also be attributed

to their Toffoli decomposition heuristic, which sometimes result in fewer cancellations

than the naïve decomposition that we use. We do not expect adding and verifying this

form of Toffoli decomposition to pose a challenge in voqc. Reduction in T -gate count

is not shown, but voqc matches Nam et al. (both L and H) on all benchmarks but

two. The first case (qcla_adder_10) is due to our simplification in rotation merging.

In the second case (qcla_mod_7), Nam et al.’s optimized circuit was later found

to be inequivalent to the original circuit [Kv19b, Section 2], so the lower T -count is

spurious.

QFT and Adders These benchmarks consist of components of Shor’s integer fac-

toring algorithm, in particular the quantum Fourier transform (QFT) and integer

adders. Two types of adders are considered: an in-place modulo 2q adder implemented

in the Quipper library and an in-place adder based on the QFT. These benchmarks

range from 148 to 381,806 gates and 8 to 4096 qubits. Results on all 27 benchmarks

are given in Appendix A. The Quipper adder programs use similar gates to the arith-

metic and Toffoli circuits, so the results are similar—voqc is close to Nam et al., but
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under-performs due to our simplified Toffoli decomposition. The QFT circuits use

rotations parameterized by π/2n for varying n ∈ N (and no Toffoli gates) so voqc’s

results are identical to Nam et al.’s. For consistency with Nam et al., on the QFT

and QFT-based adder circuits we run a simplified version of our optimizer that does

not include rotation merging.

Product Formula These benchmarks implement product formula algorithms for

simulating Hamiltonian dynamics. The benchmarks range from 260 to 127,500 gates

and 10 to 100 qubits; they use rotations parameterized by floating point numbers,

which we convert to OCaml rationals at parse time. The product formula circuits are

intended to be repeated for a fixed number of iterations, and our resource estimates

account for this. voqc applies Nam et al.’s “LCR” optimization routine to optimize

programs across loop iterations. On all 40 product formula benchmarks, our results

are the same as those reported by Nam et al. [Nam+18, Table 3]. H gate reductions

range from 62.5% to 75%. Reductions in Clifford z-axis rotations (i.e. rotations by

multiples of π/2) range from 75% to 87.5% while reductions in non-Clifford z-axis

rotations range from 0% to 28.6%. CNOT gate reductions range from 0% to 33%.

Runtimes range from 0.01s for parsing and optimizing to 610.46s for parsing and

406.93s for optimizing. By comparison, Nam et al.’s running times range from 0.004s

to 0.137s.

4.5 Compiling Oracle Programs

voqc contains verified implementations of state-of-the-art optimizations and circuit

mapping techniques, but it is a transpiler, rather than a compiler, since it converts

sqir to sqir—it does not compile from a high-level source to a low-level target. A

natural next step towards our goal of providing a high-assurance software toolchain

for quantum programming is to develop a compiler from higher-level languages to
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sqir, the output of which could then be optimized using voqc. Our first step in this

direction is vqo: a verified quantum oracle framework that helps programmers write

correct and efficient quantum oracles programs.6

As discussed in Section 3.3, Grover’s search algorithm [Gro96] can query unstruc-

tured data in sub-linear time (compared to linear time on a classical computer), and

Shor’s algorithm [Sho97] can factorize a number in polynomial time (compared to the

sub-exponential time for the best known classical algorithm). An important source of

speedups in these algorithms are the quantum computer’s ability to apply an oracle

function coherently, i.e., to a superposition of classical queries, thus carrying out in

one step a function that would potentially take many steps on a classical computer.

For Grover’s, the oracle is a predicate function that determines when the searched-

for data is found. For Shor’s, it is a classical modular exponentiation function; the

algorithm finds the period of this function where the modulus is the number being

factored.

While the classical oracle function is perhaps the least interesting part of a quan-

tum algorithm, it contributes a significant fraction of the final program’s compiled

quantum circuit. For example, Gidney and Ekerå [GE21] estimated that Shor’s modu-

lar exponentiation function constitutes 90% of the final code. In our own experiments

with Grover’s, our oracle makes up over 99% of the total gate count (the oracle has

3.3 million gates).

To aid programmers in writing correct and efficient quantum oracles, we deveoped

vqo. Figure 4.11 summarizes the vqo toolchain; it marks verified components in

green and tested components in blue.

• Using vqo, an oracle can be specified in a simple, high-level programming lan-

guage we call Oqimp, which has standard imperative features and can express

arbitrary classical programs. It distinguishes quantum variables from classical
6The vqo project was spearheaded by Liyi Li.
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Figure 4.11: Overview of vqo toolchain

parameters, allowing the latter to be partially evaluated [JGS93].

• The resulting Oqimp program is compiled to Oqasm (pronounced “O-chasm”),

the oracle quantum assembly language. Oqasm was designed to be efficiently

simulatable while nevertheless admitting important optimizations. The gener-

ated Oqasm code links against implementations of standard operators (addi-

tion, multiplication, sine, cosine, etc.) also written in Oqasm.

• The Oqasm oracle is then translated to sqir. After linking the oracle with the

quantum program that uses it, the complete sqir program can be optimized

with voqc and extracted to OpenQASM 2.0 [Cro+17] to run on a real quantum

machine. Both vqo’s compilation from Oqimp to Oqasm and translation from

Oqasm to sqir have been proved correct in Coq, ensuring that properties

proved of the Oqimp source hold of the optimized sqir output as well.

In this section, we summarize the design of Oqasm and Oqimp and highlight key

evaluation results. See Li et al. [Li+21] for more details.
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4.5.1 Oqasm: An Assembly Language for Quantum Oracles

Because oracles are classical functions, a reasonable approach would have been to

design Oqasm to be a circuit language comprised of “classical” gates; e.g., prior work

has targeted gates X (“not”), CNOT (“controlled not”), and CCNOT (“controlled

controlled not,” aka Toffoli). Doing so would simplify proofs of correctness and sup-

port efficient testing by simulation because an oracle’s behavior could be completely

characterized by its behavior on computational basis states (essentially, classical bit-

strings). ReverC [ARS17] and ReQwire [Ran+19] take this approach; we used a

similar approach when developing rcir in Section 3.3.3.

However, this approach cannot support optimized oracle implementations that use

fundamentally quantum functionality, e.g., as in quantum Fourier transform (QFT)-

based arithmetic circuits [Bea03; Dra00]. These circuits employ quantum-native op-

erations (e.g., controlled-phase operations) in the QFT basis. Our key insight is that

expressing such optimizations does not require expressing all quantum programs, as

is possible in a language like sqir. Instead, Oqasm’s type system restricts programs

to those that admit important optimizations while keeping simulation tractable.

Oqasm States An Oqasm program state φ of d qubits is a length-d tuple of

qubit values q; the state models the tensor product of those values. This means that

the size of φ is O(d) where d is the number of qubits. A d-qubit state in sqir is

represented as a length 2d vector of complex numbers, which is O(2d) in the number

of qubits. Oqasm’s linear state representation is possible because applying any well-

typed Oqasm program on any well-formed state never causes qubits to be entangled.

A qubit value q has one of two forms, scaled by a global phase α(r). The two

forms depend on the basis τ that the qubit is in—it could be either Nor or Phi. A

Nor qubit has form |b⟩ (where b ∈ {0, 1}), which is a computational basis value. A

Phi qubit has form |Φ(r)⟩ = 1√
2
(|0⟩+ α(r) |1⟩), which is a value of the QFT basis.
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Position p ::= (x, n) Nat. n Variable x
Instruction ι ::= ID p | X p | ι ; ι

| SR[−1] n x | QFT[−1] n x | CU p ι
| Lshift x | Rshift x | Rev x

Figure 4.12: Oqasm syntax

NorPhi n

{ ID, X, CU, Rev,
Lshift, Rshift

}
{QFT n}

{ID, SR[−1]}

{QFT−1 n}

Figure 4.13: State machine

Syntax Figure 4.12 presents Oqasm’s syntax. An Oqasm program consists of a

sequence of instructions ι. Each instruction applies an operator to either a variable

x, which represents a group of qubits, or a position p, which identifies a particular

offset into a variable x.

The instructions in the first row correspond to simple single-qubit quantum gates—

ID p and X p—and instruction sequencing. The instructions in the next row apply to

whole variables: QFT n x applies the approximate QFT (AQFT) to variable x with

n-bit precision and QFT−1 n x applies its inverse. If n is equal to the size of x (|x|),

then the AQFT operation is the standard QFT from Section 3.3.2; otherwise, it drops

the RZ gates applied to the lowest |x| − n qubits. SR[−1] n x applies a series of RZ

gates. Operation CU p ι applies instruction ι controlled on qubit position p. All of the

operations in this row—SR, QFT, and CU—will be translated to multiple sqir gates.

In the last row, instructions Lshift x, Rshift x, and Rev x are position shifting

operations. Assuming that x has d qubits and xk represents the k-th qubit state in x,

Lshift x changes the k-th qubit state to x(k+1)%d, Rshift x changes it to x(k+d−1)%d,

and Rev changes it to xd−1−k. In our implementation, shifting is virtual not physical.

The Oqasm to sqir translator maintains a logical map of variables/positions to

concrete qubits, ensuring that shifting operations introduce no extra gates.

Typing The type system (presented in Li et al. [Li+21, Section 3]) enforces two

key invariants. First, it enforces that instructions are well-formed, meaning that gates

are applied to valid qubit positions and that any control qubit is distinct from the
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target(s). These requirements are similar to sqir’s notion of well-typedness.

Second, the type system enforces that instructions leave affected qubits in a proper

basis (thereby avoiding entanglement). The rules implement the state machine shown

in Figure 4.13. For example, QFT n transforms a variable from Nor to Phi n, while

QFT−1 n transforms it from Phi n back to Nor. Position shifting operations are

disallowed on variables x in the Phi basis because the qubits that make up x are

internally related and cannot be rearranged. Indeed, applying a Lshift and then a

QFT−1 on x in Phi would entangle x’s qubits.

Translation from Oqasm to sqir vqo translates Oqasm to sqir by mapping

Oqasm positions to sqir concrete qubit indices and expanding Oqasm instructions

to sequences of sqir gates. We have proved Oqasm-to-sqir translation correct. To

extract sqir to OpenQASM 2.0, we use the approach described in Section 3.1.4.

Testing Leveraging Oqasm’s efficient simulatability, we implemented a property-

based random testing (PBT) framework forOqasm programs in QuickChick [Par+15],

a variant of Haskell’s QuickCheck [CH00] for Coq programs. This framework provides

two benefits. First, we can test that an Oqasm program is correct according to its

specification. Formal proof in Coq can be labor-intensive, so PBT provides an easy-

to-use confidence boost, especially prior to attempting formal proof. Second, we

can use testing to assess the effect of approximation when developing oracles. For

example, we might like to use approximate QFT, rather than full-precision QFT, in

an arithmetic oracle in order to save gates. PBT can be used to test the effect of

this approximation within the overall oracle by measuring the distance between the

fully-precise result and the approximate one.
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4.5.2 Oqimp: A High-level Oracle Language

It is not uncommon for programmers to write oracles as metaprograms in a quantum

assembly’s host language (like how we wrote quantum algorithms as a combination

of sqir and Coq in Chapter 3), but this process can be tedious and error-prone,

especially when trying to write optimized code. To make writing efficient arithmetic-

based quantum oracles easier, we developed Oqimp, a high-level imperative language

that compiles to Oqasm.

Language Features An Oqimp program is a sequence of function definitions, with

the last acting as the “main” function. Each function definition is a series of state-

ments that concludes by returning a value v. Oqimp statements contain variable dec-

larations, assignments (e.g., xr = x/8), arithmetic computations (n1 = i+ 1), loops,

conditionals, and function calls. Variables x have types τ , which are either primitive

types ωm or arrays thereof, of size n. A primitive type pairs a base type ω with

a quantum mode m. There are three base types: type nat indicates non-negative

(natural) numbers; type fixedp indicates fixed-precision real numbers in the range

(−1, 1); and type bool represents booleans. The programmer specifies the number

of qubits to use to represent nat and fixedp numbers when invoking the Oqimp

compiler. The mode m ∈ {C,Q} on a primitive type indicates when a type’s value is

expected to be known: C indicates that the value is based on a classical parameter

of the oracle, and should be known at compile time; Q indicates that the value is a

quantum input to the oracle, computed at run-time.

Compilation from Oqimp to Oqasm The Oqimp compiler performs partial

evaluation [JGS93] on the input program given classical parameters; the residual

program is compiled to a quantum circuit. In particular, we compile an Oqimp

program by evaluating its C-mode components, storing the results in a store, and
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then using these results while translating its Q-mode components into Oqasm code.

We have verified that compilation from Oqimp to Oqasm is correct in Coq, with a

caveat: Proofs for assignment statements are parameterized by correctness statements

about the involved operators. For example, when compiling x = y+z we require that

the Oqasm implementation of addition matches the Oqimp specification.

4.5.3 Evaluation Highlights

To assess vqo’s effectiveness we have used it to build several efficient oracles and

oracle components, and have tested or proved their correctness. We highlight key

results here; details are provided in Appendix B.

• We have implemented a variety of arithmetic operators in Oqasm, including

QFT-, approximate QFT- and Toffoli-based multiplication, addition, modular

multiplication, and modular division, as summarized in Figure 4.14. Overall,

circuit sizes are competitive with, and oftentimes better than, those produced by

Quipper [Gre+13], a state-of-the-art quantum programming framework. Qubit

counts for the final QFT-based circuits are always lower, sometimes significantly

so (up to 53%), compared to the Toffoli-based circuits. The QFT circuits also

typically use fewer gates.

• Using Oqimp, we implemented sine, cosine, and other geometric functions used

in Hamiltonian simulation [Fey82], leveraging the arithmetic circuits described

above. Compared to a sine function implemented in Quipper, vqo’s uses far

fewer qubits thanks to Oqimp’s partial evaluation.

• We used PBT to analyze the precision difference between QFT and approximate

QFT (AQFT) circuits, and the suitability of AQFT in different algorithms. We

found that the AQFT adder (which uses AQFT in place of QFT) is not an
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type Verified Randomly Tested

Nat / Bool

[x+N ]q [x+ y]q,t
[(x×N)%M ]q,t [x−N ]q
[N − x]q [x− y]q [x = N ]q,t
[x < N ]q,t [x = y]q,t [x < y]q,t

[x×N ]q,t [x× y]q,t
[x−N ]t [N − x]t [x− y]t
[x%N ]a,q,t [x/N ]a,q,t

FixedP
[x×N ]q [x+ y]t [x−N ]q
[N − x]q [x− y]t [x = N ]q,t
[x < N ]q,t [x = y]q,t [x < y]q,t

[x+N ]t [x+ y]q [x−N ]t
[N − x]t [x− y]q [x×N ]q,t
[x× y]q,t [x/N ]q,t

x, y = variables, M,N = constants,

[]a,q,t = AQFT-based (a), QFT-based (q), or Toffoli-based (t)

Figure 4.14: Summary of Oqasm arithmetic operations

accurate implementation of addition, but that it can be used as a subcomponent

of division/modulo with no loss of precision, reducing gate count by 4.5–79.3%.

• Finally, to put all of the pieces together, we implemented the ChaCha20 stream

cipher [Ber08] in Oqimp and used it as an oracle for Grover’s search, previously

implemented and proved correct in sqir (Section 3.3.1). We used PBT to test

the oracle’s correctness. Combining its tested property with Grover’s correct-

ness property, we demonstrate that Grover’s is able to invert the ChaCha20

function and find collisions.

4.6 Related Work

Quantum Compilers Quantum compilation is an active area. In addition to

the circuit transpilers Qiskit, t|ket⟩, Staq, PyZX, and Nam et al. (discussed in Sec-

tion 4.4), other recent efforts include quilc [Rig19b] and Cirq [Cir18]. Due to resource

limits on near-term quantum machines, most of these tools contain some degree of op-

timization, and nearly all place an emphasis on satisfying architectural requirements,

like mapping to a particular gate set or qubit topology. There has been more limited

work on true compilers, which translate from a high-level source language to cir-

cuits. Some examples include ScaffCC [Jav+15], Project Q [SHT18], and Microsoft’s

under-development compiler from Q# to QIR [Gel20].
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Verified Quantum Compilers Previously, formal verification has been applied

to parts of the quantum compiler stack, but has not supported general quantum

programs. Amy, Roetteler, and Svore [ARS17] and Rand, Paykin, and Zdancewic

[RPZ18] developed certified compilers from source Boolean expressions to reversible

circuits. Fagan and Duncan [FD18] verified an optimizer for ZX diagrams representing

Clifford circuits (which use the non-universal gate set {CX,H, S}). Work on trans-

lation validation [ST19; BRW20; Kv19a] (discussed in Section 4.3.3) supports general

quantum programs, but adds compile-time overhead and allows for the possibility of

compile-time failure due to input/output inequivalence.

Concurrently with our work, Tao et al. [Tao+22] developed Giallar, a verifica-

tion toolkit used to verify transformations in the Qiskit compiler. Their approach

has two steps. First, like voqc, they use Coq to prove that a circuit equivalence

is valid. Second, they use symbolic execution to generate verification conditions for

parts of the program that manipulate circuits. These are given to an SMT solver

to verify that pattern equivalences are applied correctly according to programmer-

provided function specifications and invariants. Compared to voqc, Giallar is easier

for non-experts to use to develop verified software, and simpler to integrate into ex-

isting workflows. However, more complex optimizations like rotation merging (which

provides a significant benefit over the optimizations in Qiskit, per Section 4.4) cannot

be implemented by applying small local rewrites. Giallar may also fail to prove an

optimization correct, e.g., because of complicated control code. We have tried to

alleviate proof burden in voqc by providing a library of verified functions and op-

timization “templates” (Section 4.1.1). In particular, the optimizations implemented

in Giallar could be implemented using our propagate-cancel template.

After publication of our initial work, Xu et al. [Xu+22] presented Quartz, a super-

optimizer for quantum circuits with SMT-based verification of circuit equivalences.

Quartz begins by applying (unverified implementations of) Toffoli decomposition and
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rotation merging, as described in Nam et al. [Nam+18]. Similar to our results, they

find that these passes are a significant source of gate count reduction. After that, hav-

ing generated a complete set of small (verified) circuit rewrite rules, they use (unver-

ified) cost-based backtracking search to find the optimal sequence of rewrites.This is

in contrast to voqc, which applies only the fixed set of rules described in Section 4.2.

Excitingly, this leads to higher gate count reduction than voqc (see [Xu+22, Section

7]), but it does so at a higher cost: their experiments are run on a 128-core CPU with

512GB RAM, with a search timeout of 24 hours (compared to voqc, which typically

has a running time of under a second on a standard 2015 laptop). It would be in-

teresting to analyze the results of Quartz’s optimization to see which rewrite rules

are most often triggered and implement and verify these inside of voqc, improving

voqc’s gate count reduction while avoiding the expense of backtracking search.

The problem of verified compilation from a high-level language to quantum circuits

has received less attention. The only examples of verified compilers for quantum

circuits are ReVerC [ARS17] and ReQwire [RPZ18], both of which support verified

translation from a low-level Boolean expression language to circuits consisting of

X, CNOT, and CCNOT gates. Compared to these tools, vqo supports both a

higher-level classical source language (Oqimp) and a more interesting quantum target

language (Oqasm).

Oracles in Quantum Languages Many recent quantum programming languages

(e.g., Quil [Rig19b], OpenQASM 2.0 [Cro+17], sqir) describe low-level circuit pro-

grams and provide no abstractions for describing quantum oracles. Higher-level

languages may provide library functions for performing common oracle operations

(e.g., Q# [Svo+18], Scaffold [Jav+12; Jav+15]) or support compiling from classical

(sub)programs to quantum circuits (e.g., Quipper [Gre+13]), but still leave important

details (like uncomputation of ancilla qubits) to the programmer.
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There has been some work on type systems to enforce that uncomputation happens

correctly (e.g. Silq [Bic+20]), and on automated insertion of uncomputation circuits

(e.g. Quipper, Unqomp [Par+21]), but while these approaches provide useful automa-

tion, they also lead to inefficiencies in compiled circuits. For example, all of these

tools force compilation into the classical gate set X, CNOT, and CCNOT, which

precludes the use of QFT-based arithmetic, which uses fewer qubits than Toffoli-

based approaches. Of course, programmers are not obligated to use automation for

constructing oracles—they can do it by hand for greater efficiency—but this risks

mistakes. vqo allows programmers to produce oracles automatically from Oqimp, or

to manually implement oracle functions in Oqasm, in both cases supporting formal

verification and testing.
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Chapter 5

Applying Formal Verification to Q#

sqir and voqc comprise the core of a high-assurance toolchain for quantum program-

ming, supporting verification and optimization of quantum circuits. However, sqir

is a low-level language that does not directly encode the high-level constructs used in

many quantum algorithms. Meta-programming in Coq can recover some structure,

but Coq was not designed to be a source programming tool (it emphasizes proof) and

has no features to support quantum programming, like libraries for common quantum

algorithm components or a simulator for quantum programs.

Q# [Svo+18; Hei20] is a recent quantum programming language from Microsoft

that includes extensive libraries for quantum computing and comes equipped with

state-of-the-art simulators. But it has no support for formal verification. In this

chapter, we discuss our efforts to adapt our work on formal verification to the Q#

programming framework.

Figure 5.1 presents our vision of a verified software toolchain [App11] for Q#.

Users write their programs in Q#, taking advantage of the many features available in

Microsoft’s Quantum Development Kit (QDK). The Q# program is then translated

into Q⋆, our novel high-level quantum programming language embedded in a proof

assistant. Various properties are proved about the Q⋆ program, and then the orig-
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Q#

QIR SQIR executable 
codeQ*

VOQC

translate 
to

proof succeeds, 
compile source

proof fails, 
refine source

Figure 5.1: Overview of (proposed) toolchain for Q#. The dashed box encloses the
contents of this chapter. Green marks verified components.

inal Q# program is compiled to Microsoft’s quantum intermediate representation,

QIR [Gel20] (or refined, if the proofs do not succeed). Next, the quantum/classi-

cal QIR is compiled to (potentially multiple) sqir circuits, which are optimized with

voqc. Finally, the sqir circuits are compiled to executable code. To provide the ben-

efits of verified compilation, described in previous chapters, we envision that compila-

tion from Q# to QIR to sqir to executable code is verified to be semantics-preserving,

ensuring that properties proved of the Q# source also hold for code executed on the

machine.

To achieve this goal requires developing a semantics for Q#, QIR, and “executable

code”, as well as verified compilers between them and sqir—a substantial task. As

an initial step toward this goal, in this chapter we present Q⋆, a quantum program-

ming language that closely resembles Q#, shallowly embedded in the F⋆ proof as-

sistant [Dev22]. We provide a plugin for the Q# compiler to translate Q# into

Q⋆, allowing us to ascribe a semantics to Q# programs and enforce properties not

currently enforced by the Q# compiler.

Under the hood, Q⋆ is a language for constructing quantum instruction trees, a

simple monadic representation of quantum programs based on SteelCore’s indexed

action trees [Swa+20]. Pre- and postconditions within the instruction trees guaran-
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tee well-formedness, ensuring properties like qubits being allocated before use and

arguments in multi-qubit gates being distinct (which we call linear qubit usage). We

further define a semantics for instruction trees in terms of a nondeterministic relation

between vector states, and use this semantics to prove more fine-grained properties

like discard safety, which guarantees that qubits are unentangled when they are dis-

carded, and functional correctness.

Q⋆ differs from prior work in the space in several respects:

• Program Representation. We represent quantum programs using a shallow em-

bedding in F⋆, with a focus on supporting the features available in Q#. Prior

work has focused on custom research languages (e.g., sqir and Qwire [RPZ18]

in Coq and Qbricks [Cha+21] in Why3) that describe circuits, rather than

high-level programs.

• Semantics. Rather than defining a matrix-based semantics for Q# directly,

we define the semantics of a Q# program to be the interpretation of its in-

struction tree representation. Our interpretation function is defined in terms of

vector states and is nondeterministic rather than probabilistic in its handling of

measurement. While our semantics is less expressive than prior semantics for

quantum programs, this choice simplifies implementation and proof, and is still

powerful enough to verify useful properties.

• Application. We focus on automated proofs of properties that are useful to Q#

developers, like linear qubit usage and discard safety, rather than manual proofs

of full functional correctness.

This chapter provides background on the Q# language and F⋆ proof assistant

(Section 5.1), presents our formalism for quantum instruction trees and the Q⋆ lan-

guage (Section 5.2), and demonstrates applications of our formalism to verify useful

properties of quantum programs (Section 5.3).
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5.1 Background

5.1.1 Q#: A High-Level Quantum Programming Language

Q# [Svo+18; Hei20] is a recent quantum programming language from Microsoft that

encourages thinking about quantum programs as algorithms rather than circuits, al-

lowing quantum operations like gates and measurement to be combined with standard

classical control flow like branches and loops. An example Q# program, implement-

ing the quantum teleportation protocol, is shown in Listing 5.1; we use this program

as a motivating example throughout the chapter.

Q# callables are split into two types: operations can use effectful quantum features

like qubit allocation and gate application, while functions consist of pure classical ex-

pressions with no quantum effect. Listing 5.1 defines four operations. An operation

may have an adjoint or controlled specialization, which can be invoked with the com-

binators Adjoint or Controlled. Specializations can be automatically generated or

manually provided; the characteristics Adj and Ctl indicate which specializations an

operation supports. In Listing 5.1, SendMsg invokes the adjoint of Entangle, which

is automatically generated. Q# follows the QRAM model of computation [Kni96],

which assumes an unbounded supply of logical qubits. The programmer can obtain

a reference to a new qubit by calling use. Qubits are allocated and deallocated in

a stack-like manner; the lifetime of a qubit is the lexical scope of its defining use.
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namespace QStar.Teleport {
open Microsoft.Quantum.Intrinsic;

operation Entangle (qAlice : Qubit, qBob : Qubit) : Unit is Adj {
H(qAlice);
CNOT(qAlice, qBob);

}

operation SendMsg (qAlice : Qubit, qMsg : Qubit) : (Bool, Bool) {
Adjoint Entangle(qMsg, qAlice);
let m1 = M(qMsg);
let m2 = M(qAlice);
return (m1 == One, m2 == One);

}

operation DecodeMsg (qBob : Qubit, (b1 : Bool, b2 : Bool)) : Unit {
if b1 { Z(qBob); }
if b2 { X(qBob); }

}

operation Teleport (qMsg : Qubit, qBob : Qubit) : Unit {
use qAlice = Qubit();
Entangle(qAlice, qBob);
let classicalBits = SendMsg(qAlice, qMsg);
DecodeMsg(qBob, classicalBits);

}
}

Listing 5.1: Teleportation in Q# (adapted from the Quantum Katas [Myk20])

Upon allocation, a qubit is guaranteed to be in the |0⟩ state and, upon deallocation,

it is expected to either be in the |0⟩ state or to have been measured. In Listing 5.1,

qAlice is allocated in Teleport, measured in SendMsg, and then deallocated at the end

of Teleport’s body.

Although Q#’s type system is able to distinguish between classical functions and

quantum operations and tell whether an operation is adjointable or controllable, it

does not enforce some basic requirements on how qubits are used, instead deferring

to checks made by the simulator. Figure 5.2 show Q# programs that pass Q#’s

type checker, but fail during simulation. In Figure 5.2(a), the same qubit is used

as both inputs to a multi-qubit gate, violating the quantum no cloning theorem.

In Figure 5.2(b), the Qubit value returned from InitQubit is actually discarded, and
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use q1 = Qubit();
let q2 = q1;
CNOT(q1, q2);

(a) Violates no cloning

operation InitQubit () : Qubit {
use q = Qubit();
return q;

}

operation ApplyX() : Unit {
let q = InitQubit ();
X(q);

}

(b) Uses a discarded qubit

operation PrepareBell (q1 : Qubit) : Unit {
use q2 = Qubit();
H(q1);
CNOT(q1, q2);

}

(c) Discards an entangled qubit

Figure 5.2: Buggy Q# programs

unavailable for reuse.

Figure 5.2(c) contains a more subtle bug. In PrepareBell, qubit q2 may be entangled

with qubit q1 when it is discarded, resulting in unexpected runtime behavior. For

example, say that the logical qubit allocated to q2 in PrepareBell is reallocated in

another operation, say, to qubit q3. Now future updates to q3, like measurement,

can impact the seemingly unrelated q1. To avoid this uncertainty, the Q# simulator

checks at runtime that any discarded qubit is in a classical state. We can fix the

bug in Figure 5.2(c) by inserting an explicit measurement of q2 before the end of

PrepareBell, or by taking q2 as an additional input (i.e., not allocating it locally).

5.1.2 F⋆: A Proof Oriented Programming Language

F⋆ is a general-purpose functional programming language with effects and a dependent

type system enabling program verification. Its type-checker proves that programs

meet their specifications (i.e., satisfy their types) using a combination of SMT solving
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and interactive proof. After verification, F⋆ programs can be extracted to efficient

OCaml, F#, or C. The F⋆ language has been used to certify key internet security

protocols, including Transport Layer Security (TLS) [Bha+17], and produce high-

performance cryptographic libraries [Zin+17].

Compared to Coq, F⋆ provides better automation (due to its use of an SMT solver)

and a more natural programming interface. While Coq is primarily a proof assistant,

designed to enable proofs about both programs and mathematical objects, F⋆ is a

language designed for producing verified software. F⋆ is also developed and main-

tained by Microsoft Research, making it more feasible to integrate into Microsoft’s

Q# development environment.

5.2 Quantum Instruction Trees

We describe Q# operations using instruction trees, which are a sequence of Action,

Weaken, and Return nodes, annotated with explicit preconditions, which must be true

before program execution, and postconditions, which will be true after execution.

An instruction tree has type inst_tree a p q where a is the return type, p is the

precondition, and q is the postcondition. This type says that given a state that

satisfies p, the instruction tree will return a value of type a and modify the state so

that it satisfies q. An Action node applies an instruction (defined below), a Return

node returns a value, and a Weaken node updates a tree’s pre- and postconditions to

allow for composition with other nodes. This representation is inspired by SteelCore’s

indexed action trees [Swa+20].

An example instruction tree, encoding the Entangle operation from Listing 5.1, is

shown in Listing 5.2. We leave the pre- and postcondition unspecified for brevity; we

discuss their form in Section 5.3.

Semantics Instruction trees act on a program state consisting of:
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let entangle (qAlice : qbit) (qBob : qbit) : inst_tree unit PRE POST
= Action (had qAlice) (fun _ →

Action (cnot qAlice qBob) (fun _ →
Return POST ()))

Listing 5.2: Example instruction tree. PRE and POST are placeholders for the pre- and
postconditions we present in Figure 5.4.

init : unit→ qbit
disc : qbit→ unit

meas : qbit→ bool
had : qbit→ unit
cnot : qbit→ qbit→ unit

(a) Types

input instruction7−−−−−−−→ output

(Σ,Ψ)
q ← init7−−−−−→ (Σ ∪ q, |0⟩q ⊗Ψ)

(Σ,Ψ)
disc q7−−−−→ (Σ \ q, disc(q,Ψ))

(Σ,Ψ)
b ← meas q7−−−−−−−−→ (Σ, meas(q,Ψ))

(Σ,Ψ)
had q7−−−−→ (Σ, Hq ×Ψ)

(Σ,Ψ)
cnot q1 q27−−−−−−−→ (Σ, CNOTq1,q2 ×Ψ)

(b) Semantics

Figure 5.3: Example quantum instructions

• Σ: A set of defined qubits.

• Ψ: A symbolic 2|Σ|-length vector describing the state of the qubits in Σ.

Figure 5.3 lists example instructions with their input/output types and semantics.

init allocates a qubit and returns a reference to it (type qbit), disc deallocates a

qubit, meas measures a qubit and returns the result, and had and cnot apply a

quantum gate. In the rule for meas, we do not associate output b with a particular

probability. Instead, meas(q,Ψ) chooses a value b (using an external source of ran-

domness) such that
∥∥∥|b⟩q ⟨b| ×Ψ

∥∥∥ ̸= 0 and updates Ψ to be |b⟩q⟨b|×Ψ

∥|b⟩q⟨b|×Ψ∥
. disc(q,Ψ)

chooses b using the same constraint and updates Ψ to be ⟨b|q×Ψ

∥|b⟩q⟨b|×Ψ∥
. Subscripts on

matrix terms (e.g., q in |b⟩q ⟨q| and Hq) indicate that the matrix is only applied to a

portion of the vector state, extending to the full state via padding.

The semantics of an instruction tree is given by an interpretation function that
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let rec eval_inst_tree it s0 : a & state
= match it with
| Return v → (v, s0)
| Action i k → let (v, s1) = i.sem s0 in

eval_inst_tree (k v) s1
| Weaken f → eval_inst_tree f s0

Listing 5.3: Simplified definition of instruction tree evaluation

// state = (Σ, Ψ)
let pre = state → prop
let post a = a → state → state → prop

val eval_inst_tree : (#a:Type) → (#p:pre) → (#q:post) →
inst_tree a p q → (s0:state{p s0}) → (v:a & s1:state{q v s0 s1})

Listing 5.4: Types for instruction tree evaluation

folds over the semantic function of each instruction, as sketched in Listing 5.3. The

type of the interpretation function is shown in Listing 5.4. A precondition pre is some

predicate over the input state, and a postcondition post relates the output value (of

type a) to the input and output states. In the type for eval_inst_tree, a is the return

type, and p and q are pre- and postconditions. All three are annotated with a hash

(#) to mark them as implicit. Given an instruction tree of type inst_tree a p q and

a state satisfying the precondition p, eval_inst_tree returns a pair of a return value

and a state that satisfies the postcondition q.

Instructions In our implementation, instructions are F⋆ records that define a quan-

tum operation’s semantics, useful pre- and postconditions, and optional implementa-

tions of adjoint and controlled variants, which are used to implement equivalents of

Q#’s Adjoint and Controlled combinators. Our instructions are roughly equivalent to

Q# intrinsics, which are predefined primitive operations. The instruction type inst

is shown in Listing 5.5. The semantic function sem transforms a state satisfying the

precondition into one satisfying the postcondition. adj and ctl store optional im-
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type sem_ty (a:Type) (p:pre) (q:post a) =
s0:state{p m0} →
v:a & s1:state{q v s0 s1}

type inst (a:Type) = {
// pre− and postconditions
pre: pre;
post: post a;

// semantic function
sem: sem_ty a pre post;

// optional implementation of adjoint
adj: option (sem_ty a pre post);
adj_pf: ...

// optional implementation of control
ctl: option (qbit → sem_ty a pre post);
ctl_pf: ...

}

Listing 5.5: inst type

plementations of adjoint and controlled variants, and adj_pf and ctl_pf store proofs

that the provided variants match the expected specifications. In particular, we re-

quire that sem followed by adj returns a state to its original value, and that ctl is a

no-op when the input qubit is in the |0⟩ state and applies sem when it is in the |1⟩

state.

Q⋆ Combinator Language To ease translation from Q#, we provide a language

shallowly embedded in F⋆, called Q⋆, that consists of combinators for building in-

struction trees. For example, we provide a using combinator that mimics Q#’s use

command, which allocates a fresh qubit and discards that qubit at the end of its

scope. We also provide combinators for sequential composition, conditionals, and

return statements, reducing the need for extraneous Weaken node. Finally, we provide

combinators for computing the adjoint and controlled versions of an instruction tree,

proving that their semantics match their mathematical definitions.
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Translation from Q# We built a plugin for the Q# compiler that generates a

Q⋆ program during compilation using the input Q# program’s AST. By default, we

choose an initial precondition that says that all qubits parameters for an operation are

live (i.e., defined in Σ) and distinct, and a postcondition that says that the resulting

set of live qubits does not change. We chose these constraints because they are basic

well-formedness conditions expected of Q# programs, but currently not enforced by

the Q# compiler (see Section 5.3.1). We are interested in exploring the possibility

of specifying pre- and postconditions in the Q# source as annotations on operation

definitions.

Listing 5.6 shows the Q⋆ translation of Q# example from Listing 5.1. It uses

combinators cond, bind, adjoint, and using. We reuse features of F⋆’s language

whenever possible to avoid having to redefine basic features common to Q# and F⋆.

For example, we translate Q#’s Boolean type into F⋆’s.

5.3 Correctness Properties

Once we have converted a Q# program into Q⋆, we can prove properties about the

program in F⋆. Proofs may be completely automated, relying only on the instructions’

pre- and postconditions, or manual; we discuss examples of both below.

5.3.1 Linear Qubit Usage

There are several basic requirements on how qubits can be used in order for the

semantics in Figure 5.3 to make sense. In particular,

• Multi-qubit gates must be applied to distinct qubits,

• Every qubit must be live before use,

• Discarded qubits cannot be reused.
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let entangle (qA : qbit) (qB : qbit)
: inst_tree unit (fun s0 → qA ̸= qB ∧ live s0 qA ∧ live s0 qB) eqpost
= Action (had qA) (fun _ →

Action (cnot qA qB) (fun _ →
Return eqpost ())))

let sendMsg (qA : qbit) (qM : qbit)
: inst_tree (B & B) (fun s0 → qA ̸= qM ∧ live s0 qA ∧ live s0 qM) eqpost
= bind (adjoint (entangle qM qA)) (fun _ →

Action (meas qM) (fun m1 →
Action (meas qA) (fun m2 →
Return eqpost (m1, m2))))

let decodeMsg (qB : qbit) (b1 : B) (b2 : B)
: inst_tree unit (fun s0 → live s0 qB) eqpost
= bind (cond b1

(Action (pauli_x qB) (fun _ → Return eqpost ()))
(Return eqpost ())) (fun _ →

cond b2
(Action (pauli_z qB) (fun _ → Return eqpost ()))
(Return eqpost ()))

let teleport (qM : qbit) (qB : qbit)
: inst_tree unit (fun s0 → qM ̸= qB ∧ live s0 qM ∧ live s0 qB) eqpost
= using (fun s0 → qM ̸= qB ∧ live s0 qM ∧ live s0 qB) eqpost (fun qA →

bind (entangle qA qB) (fun _ →
bind (sendMsg qA qM) (fun classicalBits →
bind (decodeMsg qB classicalBits) (fun _ →
Return eqpost ()))))

Listing 5.6: Q⋆ translation of teleport from Listing 5.1. Weaken nodes omitted for
brevity. qA, qB, and qM are shorthand for qAlice, qBob, and qMsg. live s q says that
qubit q is live in the state s. eqpost is the postcondition that says that the set of live
qubits does not change.
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{ ⊤ } q ← init { Σ1 = Σ0 ∪ q }
{ q ∈ Σ0 } disc q { Σ1 = Σ0 \ q }
{ q ∈ Σ0 } b ← meas q { Σ1 = Σ0 }
{ q ∈ Σ0 } had q { Σ1 = Σ0 }

{ q1, q2 ∈ Σ0 ∧ q1 ̸= q2 } cnot q1 q2 { Σ1 = Σ0 }

(a) Linear qubit usage

{ emp } q ← init { q 7→s1 |0⟩ }
{ q 7→s0 |ψ⟩ } disc q { emp }

{ q, q 7→s0 |ψ⟩ } b ← meas q { q 7→s1 |b⟩ ⋆ q 7→s1 disc(q, b, |ψ⟩) }
{ q, q 7→s0 |ψ⟩ } had q { q, q 7→s1 Hq |ψ⟩ }

{ q1, q2, q 7→s0 |ψ⟩ } cnot q1 q2 { q1, q2, q 7→s1 CNOTq1,q2 |ψ⟩ }

(b) Discard safety

Figure 5.4: Pre- and postconditions for enforcing linear qubit usage and discard safety.
Preconditions may refer to the input state s0 = (Σ0,Ψ0) and postconditions may refer
to both the input state and output state s1 = (Σ1,Ψ1).

We call this family of requirements linear qubit usage. Other quantum languages like

Silq [Bic+20] and Qwire [PRZ17] enforce this using linear type systems, which treat

qubits as a resource.

To check linear qubit usage, we use the pre- and postconditions shown in Fig-

ure 5.4(a), which reflect the effect of the semantics in Figure 5.3 on the set of defined

qubits Σ. As discussed above, when translating from Q# to Q⋆, we choose an initial

precondition that says that all input qubits are live and distinct and a postcondition

that says that the resulting set of live qubits does not change. For example, the

precondition of the entangle function in Listing 5.6 says that qAlice and qBob are

distinct and defined in the input state, which ensures that the had and cnot instruc-

tions are quantum-mechanically valid. The postcondition reflects the fact that Q#

programs implicitly discard locally-allocated qubits at the end of their scope. No Q#

operation can return a live Qubit value, and, since Q# does not expose a primitive

for discarding qubits, users cannot discard qubits that are not locally allocated.
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5.3.2 Discard Safety

It is “safe” to discard a qubit when it is not entangled with any other program qubits.

Discarding an entangled qubit may change the rest of the program state in unintended

ways (see Section 5.1.1). To avoid this, the Q# simulator enforces that discarded

qubits are unentangled with the rest of the computation (and, additionally, that they

are in a classical state).

To enforce discard safety, we use the pre- and postconditions shown in Fig-

ure 5.4(b), which are inspired by recent quantum separation logics [Le+22; Zho+21].

In Figure 5.4(b), q refers to a (potentially empty) set of qubits and q 7→s |ψ⟩ says

that in state s = (Σ,Ψ), all qubits in q are live in Σ and the portion of Ψ that corre-

sponds to qubits q is in state |ψ⟩. In the case where q is empty, we write emp. We

adopt the separating conjunction ⋆ from separation logic [Rey02]; P1 ⋆ P2 says that

we can partition the set of defined qubits Σ and corresponding quantum state Ψ to

produce (Σ1,Ψ1) and (Σ2,Ψ2) so that P1 holds of (Σ1,Ψ1), P2 holds of (Σ2,Ψ2), and

(Σ,Ψ) = (Σ1 ∪ Σ2,Ψ1 ⊗Ψ2). ⋆ is commutative and P ⋆ emp = P .

The predicate q 7→s |ψ⟩ implies that qubits in q are not entangled with qubits in the

rest of the program, so the separating conjunction ⋆ actually describes separability of

quantum states, as observed by Le et al. [Le+22] and Zhou et al. [Zho+21]. The rules

in Figure 5.4(b) say that initialization produces a fresh unentangled qubit, discard

requires its input to be unentangled, and measurement unentangles its input from the

rest of the system. Gate applications like had and cnot simply multiply the vector

state by the appropriate matrix, as in the original semantics (Figure 5.3).

To analyze a program for discard safety, we can use the same initial precondition

used to check linear qubit usage (i.e., all input qubits are live and distinct), extended

with the condition that q 7→s |ψ⟩ where q includes (at least) all input qubits and |ψ⟩

is some appropriately-sized vector state. The rules in Figure 5.4(b) will then enforce

that every qubit is unentangled before being discarded. For example, they guarantee
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that qAlice is safely discarded in the teleport example since the last operation applied

to qAlice is a measurement.

Frame Rule

When reasoning with the separating conjunction ⋆, a key inference rule is the frame

rule, which has the form
{ P } c { Q }

{ P ⋆ R } c { Q ⋆ R }

where no variable occurring free in R is modified by c. This rule says that if we have

a proof that program c takes predicate P to Q, we can automatically derive that it

takes P ⋆ R to Q ⋆ R, assuming that R is “unrelated” to c. This allows us to extend

a local specification (like P , Q) to a global one (P ⋆ R, Q ⋆ R).

As an example, say that we have a program applyH that applies a Hadamard gate

to qubit q and we know that q is initially in state |ψ⟩ (i.e., q 7→s |ψ⟩). After applyH

executes, we will have that q 7→s′ H × |ψ⟩. We can extend this specification to a

larger program that also includes qubits q1 and q2: Say that initially q1, q2 7→s |ϕ⟩,

then after applyH executes, we can conclude that q1, q2 7→s′ |ϕ⟩ ⋆ q 7→s′ H × |ψ⟩. In

other words, q1 and q2 are unaffected by applyH.

Entailment Reasoning

Using the rules in Figure 5.4(b), we can only produce a ⋆-expression (which guarantees

a lack of entanglement) by applying the rule for meas. Using the frame rule, we can

show that qubits that were previously unentangled remain unentangled after certain

operations. These two cases are enough to prove discard safety for programs that

measure their qubits before discarding (like our teleport example); however, this is

not sufficient in the general case where values may be uncomputed. It is common

practice in quantum computing to use ancilla qubits to store temporary values (e.g.,
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the carry bit in an addition circuit). These ancilla qubits may be entangled with the

rest of the state to perform some operation, but they will be uncomputed (and not

measured) before the ancilla are discarded.

For example, consider the following program, which computes the logical AND of

qubits q1, q2, q3, storing the result in qubit out:

operation ApplyAnd3 (q1 : Qubit, q2 : Qubit, q3 : Qubit, out : Qubit) : Unit {

use anc = Qubit();

within {

CCNOT(q1, q2, anc);

} apply {

CCNOT(q3, anc, out);

}

}

Q#’s within-apply construct applies the second operation, conjugated by the first,

so the body above unfolds to CCNOT(q1, q2, anc); CCNOT(q3, anc, out); Adjoint CCNOT

(q1, q2, anc);. This construct is designed to facilitate uncomputation. The ancilla

qubit anc is uncomputed by the final CCNOT, leaving it unentangled with the rest of

the state and safe to discard.

In order to reason about uncomputation in a formal proof, we need to (manu-

ally) manipulate the matrix expressions inside predicates and selectively apply the

following entailment rule:

q1, q2 7→s |ψ1⟩q1 ⊗ |ψ2⟩q2 ⇐⇒ (q1 7→s |ψ1⟩) ⋆ (q2 7→s |ψ2⟩).

Applying this rule requires reasoning about a state |ψ⟩ to show that it has the form

|ψ1⟩q1⊗|ψ2⟩q2 for some q1 and q2. For example, say that q1, q2, q3, and out are initially

in some vector state |ψ⟩. This means that after the allocation of anc,

q1, q2, q3, o, a 7→s |ψ⟩ ⊗ |0⟩
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where we use o for out and a for anc. After the within-apply construct, we have that

q1, q2, q3, o, a 7→s CCNOTq1,q2,a × CCNOTq3,a,o × CCNOTq1,q2,a × (|ψ⟩ ⊗ |0⟩).

We can show that this CCNOT matrix-vector produce can be rewritten as |ψ′⟩ ⊗ |0⟩

for some |ψ′⟩, allowing us to derive that q1, q2, q3, o 7→s |ψ′⟩ ⋆ a 7→s |0⟩. This proves

that anc is not entangled with the other qubits, and is thus safe to discard.

5.3.3 Functional Correctness

A program is functionally correct if for every input, it produces an output that sat-

isfies the provided specification. Chapter 3 presented several examples of functional

correctness properties proved about sqir programs; for the most part, these proper-

ties state that a program prepares a particular quantum state. Another example of a

functional correctness property, specific to Q#, is that a custom adjoint specialization

inverts the original operation.

Due to our choice of semantics, which ignores the probability of different mea-

surement outcomes, there are some properties that we will not be able to verify.

For example, we cannot prove that a program returns a result with a particular

probability, only that it may return the result. The algorithms we discussed in Sec-

tion 3.3 (the general case of QPE, Grover’s, and Shor’s) use probabilities in their

statements of correctness, so we would not be able to prove the properties presented

in that section, as written. However, the nondeterministic view is sufficient for prov-

ing properties like discard safety and linear qubit usage, as well as other correctness

properties that do not depend on measurement outcome probabilities. For example,

the quantum teleportation protocol teleports a qubit, and measurement-based un-

computation [Ber+19] generates an operation that behaves like an adjoint, regardless

of intermediate measurement outcomes.
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let lemma_entangle_correct (qA qB:qbit)
(s0:state{live s0 qA ∧ live s0 qB ∧ qA ̸= qB})

: Lemma (requires (in_1q_classical_state s0 qA false s0 ∧
in_1q_classical_state s0 qB false s0))

(ensures (let ( v, s1 ) = eval_inst_tree (entangle qA qB) s0 in
in_2q_state qA qB bell00 s1))

= ...

Listing 5.7: The statement of functional correctness for entangle says that if qubits
qA and qB are both initially in the |0⟩ state, then after execution of entangle, they
will be in state bell00.

We support two approaches to proving functional correctness properties in Q⋆.

The first option is to use the pre- and postconditions from Section 5.3.1 to ensure basic

program well-formedness, and then prove custom lemmas in F⋆ about the program’s

semantics using eval_inst_tree from Listing 5.3. This is exactly what we did in

Chapter 3: we manually stated and proved properties about the result of running

uc_eval on a sqir program. We show an example of this style of reasoning for the

entangle function in Listing 5.7.

Alternatively, we can use the rules from Section 5.3.2 to reason not only about

discard safety, but also about correctness, following the example of existing quantum

separation logics [Le+22; Zho+21]. This is our preferred approach to proof, as it

more closely ties the program with its specification; we are currently working to

implement this approach by building on top of F⋆’s implementation of a concurrent

separation logic, Steel [Fro+21]. Figure 5.5 sketches how we can use the pre- and

postconditions for discard safety to verify correctness of quantum teleportation. We

show all intermediate reasoning steps, aside from application of the frame rule, and

we make use of the properties of ⋆ and 7→ discussed in Section 5.3.2.
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{ qB 7→ |0⟩ ⋆ qM 7→ |ψ⟩ }
use qAlice = Qubit();

{ qB 7→ |0⟩ ⋆ qM 7→ |ψ⟩ ⋆ qA 7→ |0⟩ }
⇔ { qA, qB 7→ |00⟩ ⋆ qM 7→ |ψ⟩ }
Entangle(qAlice, qBob);

{ qA, qB 7→ CNOTqA,qB ×HqA × |00⟩ ⋆ qM 7→ |ψ⟩ }
⇔ { qA, qB 7→ 1√

2
(|00⟩+ |11⟩) ⋆ qM 7→ |ψ⟩ }

⇔ { qM , qA, qB 7→ |ψ⟩ ⊗ 1√
2
(|00⟩+ |11⟩) }

let classicalBits = SendMsg(qAlice, qMsg);

{ qM 7→ |b1⟩ ⋆ qA 7→ |b2⟩ ⋆
qB 7→ disc(qA,disc(qM , HqM × CNOTqM ,qA × (|ψ⟩ ⊗ 1√

2
(|00⟩+ |11⟩)))) }

⇔ { qM 7→ |b1⟩ ⋆ qA 7→ |b2⟩ ⋆ qB 7→ Zb1Xb2 |ψ⟩ }
DecodeMsg(qBob, classicalBits);

{ qM 7→ |b1⟩ ⋆ qA 7→ |b2⟩ ⋆
(b1 ∧ b2 =⇒ qB 7→ X × Z × Zb1Xb2 |ψ⟩) ∧
(b1 ∧ ¬b2 =⇒ qB 7→ Z × Zb1Xb2 |ψ⟩) ∧
(¬b1 ∧ b2 =⇒ qB 7→ X × Zb1Xb2 |ψ⟩) ∧
(¬b1 ∧ ¬b2 =⇒ qB 7→ Zb1Xb2 |ψ⟩) }

⇔ { qM 7→ |b1⟩ ⋆ qA 7→ |b2⟩ ⋆ qB 7→ |ψ⟩ }
// deallocate qAlice (done implicitly)

{ qM 7→ |b1⟩ ⋆ qB 7→ |ψ⟩ }

Figure 5.5: Body of the teleport function from Listing 5.1 annotated with pre- and
postconditions for proving functional correctness. qA, qB, and qM are shorthand for
qAlice, qBob, and qMsg, and b1 and b2 are shorthand for Fst(classicalBits) and Snd(
classicalBits). Expression M b is equal to M if b is true and I (the identity matrix)
if b is false.
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5.4 Related Work

Linear Qubit Usage Several quantum languages including Selinger and Valiron’s

quantum lambda calculus [SV09], Qwire [PRZ17], Proto-Quipper [FKS20], and

Silq [Bic+20] enforce linear qubit usage using linear type systems. So far, indus-

try languages like Q# have not adopted linear typing, but Singhal et al.’s work on

λQ# [Sin+22], an idealized version of Q#, explores extensions to the type system that

give similar guarantees.

Discard Safety Our approach to enforcing discard safety is based on existing quan-

tum separation logics [Le+22; Zho+21]. Several prior works have used different tech-

niques to enforce similar properties. ScaffCC defines a simple entanglement analysis

for circuits consisting of n-controlled X gates (X, CNOT, CCNOT, . . . ) [Jav+15, Sec

7.1], which tracks sets of potentially entangled qubits and automatically recognizes

uncomputation. Silq’s type system [Bic+20] enforces that qubits are uncomputable

(i.e., unentangled) before they go out of scope, restricting to the same (classical)

gate set as ScaffCC. ReVerC [ARS17] and ReQwire [Ran+19] aim to formally verify

classical reversible circuits, which requires ensuring that discarded values are appro-

priately uncomputed. Twist’s type system [YMC22] tracks purity in a program using

a combination of static and dynamic checks; the static checks enforce a property

similar to the one enforced by our rules in Figure 5.4(b) and the dynamic checks

take the place of our manual entailment proofs. Other static approaches to tracking

entanglement include Rand et al. [Ran+21], Honda [Hon15], and Perdrix [Per08].

Functional Correctness Compared to prior work on verifying functional correct-

ness of quantum programs (e.g., sqir, Qbricks [Cha+21], and QHL [Yin12], dis-

cussed in Section 3.2), Q⋆ supports a higher-level source language, and interfaces with

the popular language Q#, making it more realistic for non-expert users to develop
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verified quantum code. Q⋆ also focuses on providing automation for proving general

well-formedness properties, like linear qubit usage and discard safety, rather than

specific proofs of functional correctness.
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Chapter 6

Conclusion and Future Work

The goal of this dissertation was to show that techniques for classical program ver-

ification can be adapted to the quantum setting, allowing for the development of

high-assurance quantum software, without sacrificing performance or programmabil-

ity. To do this, we presented sqir, a small quantum intermediate representation that

can also be used to implement and verify quantum source programs; voqc, a verified

optimizer for quantum circuits that has performance on par with unverified tools;

and Q⋆, an approach to supporting formal verification in the high-level language Q#.

There is plenty left to do; we highlight some interesting directions below.

Verifying Near-term Algorithms So far, work on formally verified quantum

computation has been limited to textbook quantum algorithms like QPE and Grover’s.

Although these algorithms are a useful stress-test for tools, they do not accurately re-

flect the types of quantum programs that are expected to run on near-term machines.

Near-term algorithms are usually approximate. They do not implement the desired

operation exactly, but rather perform an operation “close” to what was intended. For

example, the version of QFT considered in Section 3.3 is the textbook presentation;

in practice, it is more popular to consider an approximate QFT (see Section 4.5).

Another issue is that many near-term algorithms run in a loop where: (i) the
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quantum program executes a circuit, (ii) the classical program observes the output

of execution and performs post-processing (e.g., a classical non-linear optimizer), and

(iii) the classical computer generates a continuation circuit for the quantum computer

to run. As an example, the variational quantum eigensolver (VQE) uses this approach

to approximate the smallest eigenvalue of a Hamiltonian [Per+14]. Verifying these

types of programs requires reasoning properties about (simple) quantum programs,

(non-trivial) classical programs, and their interplay, as we did for Shor’s algorithm in

Section 3.3.3. It also requires considering issues like convergence.

Additionally, near-term algorithms often need to account for hardware errors.

Thus, verifying these algorithms may require considering their behavior in the pres-

ence of errors. So far, most of our work in sqir has revolved around the unitary

semantics and vector-based state abstractions because we find these simpler to work

with. However, it is more natural to describe states subject to error using density

matrices, since noisy states are mixtures of pure states [NC10, Chapter 8].

Higher-Level Abstractions for Verification On another front, there is impor-

tant work to be done on describing quantum algorithms and correctness properties

at a higher level of abstraction. The proofs and definitions in this paper follow the

standard textbook presentation, which is in terms of circuits and are thus lower-level

than similar proofs about classical programs. Rather than working from the circuit

model, used in verification tools like Qwire, sqir, Qbricks, and (to some extent)

QWhile, it would be interesting to verify programs written in higher-level languages

like Silq [Bic+20] or Q# [Svo+18], as we aim to do in our work on Q⋆.

Proving Complexity Bounds On-paper proofs of correctness of quantum algo-

rithms argue not only that the algorithm manipulates the state in the desired way,

but also that it does so using a number of gates (say) polynomial in the input size. In

this age of exploration where we are searching for problems where quantum comput-
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ers can outperform classical computers, arguments about complexity are almost as

important as standard correctness properties. Qbricks includes a size predicate, and

such a predicate can easily be added to sqir (as we did for Shor’s in Section 3.3.3),

but so far such predicates have only been used to estimate the number of gates in a

(parameterized) circuit—they have not been used to prove optimal bounds.

Extending the Verified Software Toolchain Along with verifying quantum pro-

grams, it is equally important to verify the infrastructure used to reason about those

programs and turn them into executable code (along the lines of VST for classical

software [App11]). Our work on sqir and voqc are a key part of this toolchain,

but there is still much to be done. For example, a proper compiler needs a high-

level source language, perhaps along the lines of recent languages like Q# [Svo+18]

or Silq [Bic+20]. Conversely, there is currently no support for verifying programs

below the gate level. The lowest level in the quantum compiler stack is analog pulse

instructions for the classical control hardware [Ale+20]. It may also be fruitful to ver-

ify other components of the quantum software toolchain, such as resource estimators

and simulators.

Teaching Quantum Computing An early version of sqir is the basis for Verified

Quantum Computing (VQC) [Ran19], an online textbook in the style of Software

Foundations [Pie+18] introducing readers to quantum computing through the Coq

proof assistant. VQC has been successfully taught in a formal verification course at

the University of Maryland and a tutorial at the Principles of Programming Languages

conference, but it remains a work in progress. The techniques and algorithms in this

paper (particularly in Chapter 3) should allow us to cover the material in a standard

quantum computing textbook while providing instant feedback to students. This will

further strengthen the connection between quantum computing and formal proof,

which we expect to prove valuable to programmers moving forward.
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Appendix A

Full voqc Evaluation Results

This chapter contains the full results of the evaluation from Section 4.4.

Staq Benchmarks Tables A.1 and A.2 show the results of running Qiskit, t|ket⟩,

and voqc (using the IBM gate set) on the Staq benchmarks [AG20]. Tables A.3

to A.5 show the results of running Staq, PyZX, and voqc (using the RzQ gate set).

Table A.6 shows the running times for each tool. In each row, for each type of gate,

we shade the cell of the best-performing optimizer. The geometric mean reduction

for each gate type is given in the last row. Cases where PyZX hit our timeout (so we

ran full_reduce, but not full_optimize) are marked with stars.

Nam Benchmarks Tables A.7 to A.10 show the results of running voqc on the

“Arithmetic and Toffoli” and “QFT and Adders” benchmarks used by Nam et al.

[Nam+18]. All results were obtained using a laptop with a 2.9 GHz Intel Core i5

processor and 16 GB of 1867 MHz DDR3 memory, running macOS Catalina. For

timings, we take the median of three trials. We do not re-run Nam et al. (which is

proprietary software), but instead report the results from their paper; their results

were collected on a similar machine with 8 GB RAM running OS X El Capitan. Their

implementation is written in Fortran.
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Table A.1: Reduced total gate counts for the IBM gate set on the Staq benchmarks.
Shaded cells mark the best performance.

Name Original Qiskit t|ket⟩ voqc
adder_8 934 820 806 643

barenco_tof_3 60 53 52 46
barenco_tof_4 120 104 100 89
barenco_tof_5 180 155 148 132
barenco_tof_10 480 410 388 347

csla_mux_3 170 154 141 146
csum_mux_9 448 403 366 308
cycle_17_3 9738 8397 7753 5963
gf2^4_mult 243 206 206 190
gf2^5_mult 379 318 319 289
gf2^6_mult 545 454 454 408
gf2^7_mult 741 614 614 547
gf2^8_mult 981 804 806 703
gf2^9_mult 1223 1006 1009 882
gf2^10_mult 1509 1238 1240 1080
gf2^16_mult 3885 3148 3150 2691

grover_5 831 669 605 526
ham15-low 443 406 390 351
ham15-med 1272 1105 1015 820
ham15-high 5308 4589 4371 3532

hwb6 257 236 223 205
mod_adder_1024 4285 3721 3542 2832

mod_mult_55 119 110 100 83
mod_red_21 272 237 226 191

mod5_4 65 56 56 53
qcla_adder_10 539 477 441 408
qcla_com_7 463 407 363 292
qcla_mod_7 920 813 752 666

qft_4 179 97 81 94
rc_adder_6 200 177 159 141

tof_3 45 41 40 36
tof_4 75 68 66 58
tof_5 105 95 92 80
tof_10 255 230 222 190

vbe_adder_3 160 133 121 100
Geo. Mean Red. – 14.4% 18.5% 28.5%
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Table A.2: Reduced two-qubit gate counts for the IBM gate set on the Staq bench-
marks. Shaded cells mark the best performance.

Name Original Qiskit t|ket⟩ voqc
adder_8 409 385 383 337

barenco_tof_3 24 24 24 22
barenco_tof_4 48 48 46 44
barenco_tof_5 72 72 68 66
barenco_tof_10 192 192 178 176

csla_mux_3 80 69 69 72
csum_mux_9 168 168 168 168
cycle_17_3 3915 3903 3723 3001
gf2^4_mult 99 99 99 99
gf2^5_mult 154 154 154 154
gf2^6_mult 221 221 221 221
gf2^7_mult 300 300 300 300
gf2^8_mult 405 405 402 405
gf2^9_mult 494 494 494 494
gf2^10_mult 609 609 609 609
gf2^16_mult 1581 1581 1581 1581

grover_5 288 288 288 248
ham15-low 236 236 226 220
ham15-med 534 533 498 434
ham15-high 2149 2143 2110 1853

hwb6 116 115 111 108
mod_adder_1024 1720 1702 1702 1402

mod_mult_55 48 48 48 40
mod_red_21 105 105 105 93

mod5_4 28 28 28 28
qcla_adder_10 233 213 213 207
qcla_com_7 186 174 174 148
qcla_mod_7 382 366 366 338

qft_4 46 44 38 46
rc_adder_6 93 81 81 73

tof_3 18 18 18 16
tof_4 30 30 30 26
tof_5 42 42 42 36
tof_10 102 102 102 86

vbe_adder_3 70 58 58 54
Geo. Mean Red. – 2.3% 3.8% 9.8%
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Table A.3: Reduced total gate counts for the RzQ gate set on the Staq benchmarks.
Shaded cells mark the best performance. Some PyZX results are marked with a star∗
to indicate that full_optimize exceeded our time limit, so we only used full_reduce.

Name Original Staq PyZX voqc
adder_8 934 756 911 682

barenco_tof_3 60 48 53 50
barenco_tof_4 120 90 88 95
barenco_tof_5 180 132 184 140
barenco_tof_10 480 342 460 365

csla_mux_3 170 174 291 156
csum_mux_9 448 294 508 308
cycle_17_3 9738 7143 11157∗ 6314
gf2^4_mult 243 242 277 192
gf2^5_mult 379 366 650 291
gf2^6_mult 545 540 1309∗ 410
gf2^7_mult 741 714 1843∗ 549
gf2^8_mult 981 968 2610∗ 705
gf2^9_mult 1223 1178 3162∗ 885
gf2^10_mult 1509 1484 4118∗ 1084
gf2^16_mult 3885 3800 11627∗ 2695

grover_5 831 678 696 586
ham15-low 443 417 650 373
ham15-med 1272 989 1205 880
ham15-high 5308 3967 5084∗ 3739

hwb6 257 237 274 221
mod_adder_1024 4285 3401 5572∗ 3039

mod_mult_55 119 107 123 90
mod_red_21 272 235 340 214

mod5_4 65 53 27 56
qcla_adder_10 539 445 894∗ 438
qcla_com_7 463 329 473 314
qcla_mod_7 920 725 1426 723

qft_4 179 170 191 156
rc_adder_6 200 173 256 157

tof_3 45 40 55 40
tof_4 75 65 83 65
tof_5 105 90 121 90
tof_10 255 215 338 215

vbe_adder_3 160 101 155 101
Geo. Mean Red. – 15.4% -27.8% 23.2%
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Table A.4: Reduced two-qubit gate counts for the RzQ gate set on the Staq bench-
marks. Shaded cells mark the best performance. Some PyZX results are marked
with a star∗ to indicate that full_optimize exceeded our time limit, so we only used
full_reduce.

Name Original Staq PyZX voqc
adder_8 409 382 609 337

barenco_tof_3 24 20 28 22
barenco_tof_4 48 38 44 44
barenco_tof_5 72 56 116 66
barenco_tof_10 192 146 299 176

csla_mux_3 80 88 201 72
csum_mux_9 168 126 371 168
cycle_17_3 3915 3351 6229∗ 3001
gf2^4_mult 99 141 211 99
gf2^5_mult 154 209 526 154
gf2^6_mult 221 327 789∗ 221
gf2^7_mult 300 423 1162∗ 300
gf2^8_mult 405 603 1745∗ 405
gf2^9_mult 494 713 2065∗ 494
gf2^10_mult 609 927 2779∗ 609
gf2^16_mult 1581 2427 8368∗ 1581

grover_5 288 263 395 248
ham15-low 236 252 477 220
ham15-med 534 483 821 434
ham15-high 2149 1870 2343∗ 1853

hwb6 116 115 163 108
mod_adder_1024 1720 1584 2813∗ 1402

mod_mult_55 48 42 82 40
mod_red_21 105 94 211 93

mod5_4 28 28 14 28
qcla_adder_10 233 209 382∗ 207
qcla_com_7 186 146 312 148
qcla_mod_7 382 334 1012 338

qft_4 46 56 72 46
rc_adder_6 93 81 162 73

tof_3 18 16 31 16
tof_4 30 26 48 26
tof_5 42 36 68 36
tof_10 102 86 213 86

vbe_adder_3 70 54 105 54
Geo. Mean Red. – 0.6% -91.7% 9.8%
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Table A.5: Reduced T -gate counts for the RzQ gate set on the Staq benchmarks.
Shaded cells mark the best performance. Some PyZX results are marked with a star∗
to indicate that full_optimize exceeded our time limit, so we only used full_reduce.

Name Original Staq PyZX voqc
adder_8 399 179 167 215

barenco_tof_3 28 16 16 16
barenco_tof_4 56 28 28 28
barenco_tof_5 84 40 40 40
barenco_tof_10 224 100 100 100

csla_mux_3 70 62 47 64
csum_mux_9 196 84 76 84
cycle_17_3 4529 1821 1821∗ 1821
gf2^4_mult 112 66 50 68
gf2^5_mult 175 113 92 115
gf2^6_mult 252 148 150∗ 150
gf2^7_mult 343 215 217∗ 217
gf2^8_mult 448 262 264∗ 264
gf2^9_mult 567 348 351∗ 351
gf2^10_mult 700 406 410∗ 410
gf2^16_mult 1792 1032 1040∗ 1040

grover_5 336 166 166 172
ham15-low 161 97 97 97
ham15-med 574 242 211 248
ham15-high 2457 1021 1019∗ 1049

hwb6 105 75 74 75
mod_adder_1024 1995 1011 1011∗ 1011

mod_mult_55 49 37 28 35
mod_red_21 119 73 72 73

mod5_4 28 8 8 16
qcla_adder_10 238 162 162∗ 164
qcla_com_7 203 95 92 95
qcla_mod_7 413 237 226 249

qft_4 91 50 66 67
rc_adder_6 77 47 47 47

tof_3 21 15 15 15
tof_4 35 23 23 23
tof_5 49 31 31 31
tof_10 119 71 71 71

vbe_adder_3 70 24 24 24
Geo. Mean Red. – 45.4% 47.1% 43.1%
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Table A.6: Median running times (in seconds) on Staq benchmarks.

Name # qubits # gates Qiskit t|ket⟩ Staq PyZX voqc
adder_8 24 934 1.43 4.47 0.07 19.16 0.05

barenco_tof_3 5 60 0.09 0.18 <0.01 2.24 <0.01
barenco_tof_4 7 120 0.17 0.38 <0.01 2.54 <0.01
barenco_tof_5 9 180 0.26 0.58 <0.01 0.58 <0.01
barenco_tof_10 19 480 0.63 1.49 0.02 63.04 0.02

csla_mux_3 15 170 0.29 0.75 0.01 72.74 <0.01
csum_mux_9 30 448 0.58 1.52 0.02 45.87 0.01
cycle_17_3 35 9738 13.08 41.56 1.63 498.51∗ 5.74
gf2^4_mult 12 243 0.32 1.04 0.01 57.25 0.01
gf2^5_mult 15 379 0.50 1.65 0.02 0.23 0.01
gf2^6_mult 18 545 0.70 2.22 0.04 0.43∗ 0.02
gf2^7_mult 21 741 1.13 3.03 0.08 0.73∗ 0.04
gf2^8_mult 24 981 1.28 4.16 0.14 1.48∗ 0.07
gf2^9_mult 27 1223 1.62 5.04 0.22 1.94∗ 0.11
gf2^10_mult 30 1509 2.09 6.22 0.35 2.95∗ 0.17
gf2^16_mult 48 3885 5.28 17.37 3.30 25.41∗ 1.24

grover_5 9 831 1.01 2.37 0.03 34.30 0.01
ham15-low 17 443 0.67 2.69 0.02 119.85 0.01
ham15-med 17 1272 1.88 4.53 0.07 261.71 0.05
ham15-high 20 5308 7.53 20.59 0.33 23.31∗ 0.66

hwb6 7 257 0.38 1.04 0.01 58.54 <0.01
mod_adder_1024 28 4285 5.95 15.56 0.37 171.43∗ 1.31

mod_mult_55 9 119 0.18 0.47 <0.01 5.62 <0.01
mod_red_21 11 272 0.37 0.90 0.01 54.76 0.01

mod5_4 5 65 0.10 0.18 <0.01 2.17 <0.01
qcla_adder_10 36 539 0.80 1.97 0.04 1.86∗ 0.02
qcla_com_7 24 463 0.65 1.50 0.02 79.69 0.01
qcla_mod_7 26 920 1.42 3.33 0.08 411.36 0.06

qft_4 5 179 0.19 0.30 <0.01 14.83 <0.01
rc_adder_6 14 200 0.31 0.92 0.01 14.38 <0.01

tof_3 5 45 0.07 0.15 <0.01 8.68 <0.01
tof_4 7 75 0.11 0.24 <0.01 13.22 <0.01
tof_5 9 105 0.15 0.33 <0.01 25.43 <0.01
tof_10 19 255 0.35 0.81 0.01 75.79 0.01

vbe_adder_3 10 160 0.24 0.51 <0.01 19.21 <0.01
Geo. Mean – – 0.60 1.53 0.02 14.58 0.01
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Table A.7: Reduced total gate counts on the “Arithmetic and Toffoli” circuits. The
reported voqc time only includes optimization time. Nam (H) results were not
available for the large benchmarks. Red cells indicate programs found to have been
optimized incorrectly [Kv19b, Section 2].

Orig. Nam (L) Nam (H) voqc
Name Total Total t(s) Total t(s) Total t(s)

adder_8 900 646 0.004 606 0.101 682 0.048
barenco_tof_3 58 42 <0.001 40 0.001 50 0.001
barenco_tof_4 114 78 <0.001 72 0.001 95 0.002
barenco_tof_5 170 114 <0.001 104 0.003 140 0.003
barenco_tof_10 450 294 0.001 264 0.012 365 0.019

csla_mux_3 170 161 <0.001 155 0.009 158 0.003
csum_mux_9 420 294 <0.001 266 0.009 308 0.006
gf2^4_mult 225 187 0.001 187 0.009 192 0.006
gf2^5_mult 347 296 0.001 296 0.020 291 0.012
gf2^6_mult 495 403 0.003 403 0.047 410 0.025
gf2^7_mult 669 555 0.004 555 0.105 549 0.045
gf2^8_mult 883 712 0.006 712 0.192 705 0.070
gf2^9_mult 1095 891 0.010 891 0.347 885 0.119
gf2^10_mult 1347 1070 0.009 1070 0.429 1084 0.183
gf2^16_mult 3435 2707 0.065 2707 5.566 2695 1.347
gf2^32_mult 13593 10601 1.834 10601 275.698 10577 26.808
gf2^64_mult 53691 41563 58.341 – – 41515 546.887
gf2^128_mult 213883 165051 1744.746 – – 164955 9841.797
gf2^131_mult 224265 173370 1953.353 – – 173273 10877.112
gf2^163_mult 346533 267558 4955.927 – – 267437 27612.565

mod5_4 63 51 <0.001 51 0.001 56 <0.001
mod_mult_55 119 91 <0.001 91 0.002 90 0.002
mod_red_21 278 184 <0.001 180 0.008 214 0.005

qcla_adder_10 521 411 0.002 399 0.044 438 0.018
qcla_com_7 443 284 0.001 284 0.016 314 0.013
qcla_mod_7 884 636 0.004 624 0.077 723 0.058
rc_adder_6 200 142 <0.001 140 0.004 157 0.003

tof_3 45 35 <0.001 35 <0.001 40 <0.001
tof_4 75 55 <0.001 55 <0.001 65 0.001
tof_5 105 75 <0.001 75 0.001 90 0.002
tof_10 255 175 <0.001 175 0.004 215 0.006

vbe_adder_3 150 89 <0.001 89 0.001 101 0.002
Geo. Mean Red. – 24.6% 26.4% 19.2%
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Table A.8: Total gate count reduction on Quipper adder circuits. voqc’s H and T
counts are identical to Nam (L) and (H), but the total Rz and CNOT counts are
higher due to Nam et al.’s specialized Toffoli decomposition. The difference between
Nam (L) and Nam (H) is entirely due to CNOT count. Our initial gate counts are
higher than those reported by Nam et al. because we do not have special handling
for +/- control Toffoli gates; we simply consider the standard Toffoli gate conjugated
by additional X gates.

Original Nam (L) Nam (H) voqc
n Total Total t(s) Total t(s) Total Opt. t(s)
8 585 239 0.001 190 0.006 352 0.02
16 1321 527 0.003 414 0.018 784 0.12
32 2793 1103 0.014 862 0.066 1648 0.63
64 5737 2255 0.057 1758 0.598 3376 3.30
128 11625 4559 0.244 3550 4.697 6832 16.37
256 23401 9167 1.099 7134 34.431 13744 79.74
512 46953 18383 5.292 14302 307.141 27568 394.74
1024 94057 36815 25.987 28638 2446.336 55216 1894.41
2048 188265 73679 145.972 57310 23886.841 110512 9307.36

Avg. Red. 63.7% 71.6% 45.7%

Table A.9: Results on QFT circuits. Exact timings and gate counts are not available
for Nam (L) or Nam (H), but our results are consistent with those reported in Nam
et al. [Nam+18, Figure 1].

Original voqc
n CNOT Rz H CNOT Rz H Opt. t(s)
8 56 84 8 56 42 8 <0.01
16 228 342 16 228 144 16 <0.01
32 612 918 32 612 368 32 0.01
64 1380 2070 64 1380 816 64 0.07
128 2916 4374 128 2916 1712 128 0.39
256 5988 8982 256 5988 3504 256 2.34
512 12132 18198 512 12132 7088 512 15.69
1024 24420 36630 1024 24420 14256 1024 106.71
2048 48996 73494 2048 48996 28592 2048 674.11

Avg. Red. 0% 59.3% 0%

135



Table A.10: Results on QFT-based adder circuits. Final gate counts are identical for
voqc and Nam (L).

Original voqc Nam (L)
n CNOT Rz H CNOT Rz H Opt. t(s) t(s)
8 184 276 16 184 122 16 <0.01 <0.001
16 716 1074 32 716 420 32 0.02 0.001
32 1900 2850 64 1900 1076 64 0.13 0.002
64 4268 6402 128 4268 2388 128 0.90 0.004
128 9004 13506 256 9004 5012 256 5.52 0.08
256 18476 27714 512 18476 10260 512 36.80 0.018
512 37420 56130 1024 37420 20756 1024 255.20 0.045
1024 75308 112962 2048 75308 41748 2048 1695.65 0.115
2048 151084 226626 4096 151084 83732 4096 8481.66 0.215

Avg. Red. 0% 61.8% 0%
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Appendix B

Full vqo Evaluation Results

This chapter contains the full results of the evaluation from Section 4.5.

Preliminaries For each arithmetic operator, we present up to three versions: QFT

uses a quantum Fourier transform-based circuit for addition and subtraction [Dra00];

AQFT uses the same circuits, but with an approximate QFT in place of the QFT; and

TOFF uses a ripple-carry adder [MS12], which uses classical controlled-controlled-not

(Toffoli) gates.

To get gate counts for Oqasm operators, we translate to sqir and then to Open-

QASM 2.0 [Qis17]; to get gate counts for Quipper circuits, we convert to OpenQASM

using a tool from Bian [Bia20]. We run all OpenQASM circuits through voqc to

ensure that the outputs account for inefficiencies in automatically-generated circuit

programs (e.g., no-op gates inserted in the base case of a recursive function). voqc

outputs the final result using its IBM gate set {U1, U2, U3, CNOT}. We define all the

arithmetic operations in for arbitrary input sizes; the limited sizes in our experiments

(8 and 16 bits) are to account for inefficiencies in voqc. For the largest circuits we

consider (the modular multipliers), running voqc takes about 10 minutes.
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# qubits # gates Verified
Oqasm TOFF 33 423 ✓
Oqasm QFT 32 1206 ✓
Oqasm QFT (const) 16 756± 42 ✓
Quipper TOFF 47 768
Quipper QFT 33 6868
Quipper TOFF (const) 31 365± 11

(a) Addition circuits (16 bits)
# qubits # gates QC time (16 / 60 bits)

Oqasm TOFF 49 11265 6 / 74
Oqasm TOFF (const) 33 1739± 367 3 / 31
Oqasm QFT 48 4339 4 / 138
Oqasm QFT (const) 32 1372± 26 4 / 158
Quipper TOFF 63 8060
Quipper TOFF (const) 41 2870± 594

(b) Multiplication circuits (16 bits)
# qubits # gates QC time (16 / 60 bits)

Oqasm TOFF (const) 49 28768 16 / 397
Oqasm QFT (const) 34 15288 5 / 412
Oqasm AQFT (const) 34 5948 4 / 323
Quipper TOFF 98 37737

(c) Division/modulo circuits (16 bits)
# qubits # gates Verified

Oqasm TOFF (const) 41 56160 ✓
Oqasm QFT (const) 19 18503 ✓

(d) Modular multiplication circuits (8 bits)

Figure B.1: Comparison of Oqasm and Quipper arithmetic operators. In the “const”
case, one argument is a classically-known constant parameter. For (a–b) we present
the average (± standard deviation) over 20 randomly selected constants c with 0 <
c < 216. For division/modulo, x mod n, we only consider the case when n = 1, which
results in the maximum number of circuit iterations; the Quipper version assumes n is
a variable, but uses the same number of iterations as the constant case when n = 1. In
(d), we use the constant 255 (= 28− 1) for the modulus and set the other constant to
173 (which is invertible mod 255). Quipper supports no QFT-based circuits aside from
an adder, and does not have a built-in operation for modular multiplication (which
is different from multiplication followed by modulo in the presence of overflow). “QC
time” is the time (in seconds) for QuickChick to run 10,000 tests.
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Comparing Oqasm and Quipper Overall, Figure B.1(a–c) shows that operator

implementations in Oqasm consume resources comparable to those available in Quip-

per, often using fewer qubits and gates, both for Toffoli- and QFT-based operations.

In the case of the QFT adder, the difference in results is due to the Quipper-to-

OpenQASM converter: Bian [Bia20] decomposes a controlled-Rz gate into a circuit

that uses 19 single-qubit gates, 12 two-qubit gates, and an ancilla qubit (after voqc

decompositions). In contrast, vqo’s decomposition for controlled-Rz uses 3 single-

qubit gates, 2 two-qubit gates, and no ancilla qubits. In the other cases (all Toffoli-

based circuits), we made choices when implementing the oracles that improved their

resource usage.

Comparing QFT- and Toffoli-based Arithmetic The results show that the

QFT-based implementations always use fewer qubits and often use fewer gates. We

found during evaluation that gate counts are highly sensitive to decompositions used

to convert many-qubit gates to one- and two-qubit gates1: Using a more naïve decom-

position of the controlled-Toffoli gate (which simply computes the controlled version

of every gate in the standard Toffoli decomposition) increased the size of our Toffoli-

based modular multiplication circuit by 1.9x, and a similarly naïve decomposition

of the controlled-controlled-Rz gate increased the size of our QFT-based modular

multiplication circuit by 4.4x. We also found that gate counts (especially for the

Toffoli-based circuits) are sensitive to choice of constant parameter: The QFT-based

constant multiplication circuits had between 1320 and 1412 gates, while the Toffoli-

based circuits had between 988 and 2264.

Comparing QFT- and AQFT-based Arithmetic Figure B.2(a) shows the effect

of replacing QFT with AQFT in the QFT adder from Figure B.1(a). As expected,
1See the decompositions we use in Section 3.1.4. Note that per our definitions, Rz is the same

as U1.
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Precision # gates Error
16 bits (full) 1206 ± 0
15 bits 1063 ± 1
14 bits 929 ± 3

(a) Varying the precision in a 16-bit adder

# iters. TOFF QFT AQFT
1 1798 1794 1717
4 7192 4432 3488
8 14384 8017 4994
12 21576 11637 5684
16 28768 15288 5948

(b) Gate counts for TOFF vs. QFT vs. AQFT
division/modulo circuits

Figure B.2: Effects of approximation

a decrease in precision leads to a decrease in gate count. On the other hand, our

testing framework demonstrates that this also increases error (measured as absolute

difference accounting for overflow, maximized over randomly-generated inputs). Ran-

dom testing over a wider range of inputs suggests that dropping b bits of precision

from the exact QFT adder always induces an error of at most ±2b− 1. This suggests

that the “approximate adder” is not particularly useful on its own, as it is effectively

ignoring the least significant bits in the computation. However, it computes the most

significant bits correctly: if the inputs are both multiples of 2b then an approximate

adder that drops b bits of precision will always produce the correct result.

A useful application of this adder is in the modulo/division circuit from Fig-

ure B.1(c), which relies on an addition subcomponent, but does not need every bit

to be correctly added. Replacing the addition subcomponent with its approximate

version save resources, while, our testing assures, does not introduce incorrect behav-

ior. Figure B.2(b) shows the required resources of the approximate division/modulo

circuit for different divisor/modulo values (which affects the number of iterations used

in the underlying algorithm). With the maximum number of iterations (16 for divi-

sor/modulo 1), the AQFT-based circuit uses 61.1% fewer gates than the QFT-based

implementation and 79.3% fewer gates than the Toffoli-based implementation.

Oqimp Oracles and Partial Evaluation As discussed in Section 4.5.2, one of

the key features of Oqimp is partial evaluation during compilation to Oqasm. The
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simplest optimization similar to partial evaluation happens for a binary operation

x := x ⊙ y, where y is a constant value. Figure B.1 hints at the power of partial

evaluation for this case—all constant operations (marked “const”) generate circuits

with significantly fewer qubits and gates. Languages like Quipper take advantage of

this by producing special circuits for operations that use classically-known constant

parameters.

Partial evaluation takes this one step further, pre-evaluating as much of the circuit

as possible. For example, consider the fixed precision operation x∗y
M

where M is

constant and a natural number, and x and y are two fixed precision numbers that may

be constants. This is a common pattern, appearing in many quantum oracles (recall

the 8n∗x
n!

in the Taylor series decomposition of sine). In Quipper, this is expression

compiled to r1 = x
M
; r2 = r1 ∗ y. The Oqimp compiler produces different outputs

depending on whether x and y are constants. If they both are constant, Oqimp

simply assigns the result of computing x∗y
M

to a quantum variable. If x is a constant,

but y is not, Oqimp evaluates x
M

classically, assigns the value to r1, and evaluates r2

using a constant multiplication circuit. If they are both quantum variables, Oqimp

generates a circuit to evaluate the division first and then the multiplication.

In Figure B.3(a) we show the size of the circuit generated for x∗y
M

where zero, one,

or both variables are classically known. It is clear that more classical variables in a

program lead to a more efficient output circuit. If x and y are both constants, then

only a constant assignment circuit is needed, which is a series of X gates. Even if

only one variable is constant, it may lead to substantial savings: In this example, if x

is constant, the compiler can avoid the division circuit and use a constant multiplier

instead of a general multiplier. These savings quickly add up: Figure B.3(b) shows

the qubit size difference between our implementation of sine and Quippers’. Both the

TOFF and QFT-based circuits use fewer than 7% of the qubits used by Quipper’s

sine implementation.
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# qubits # gates
OQIMP (x, y const) 16 16
OQIMP TOFF (x const) 33 1739± 376
OQIMP QFT (x const) 16 1372± 26
OQIMP TOFF 33 61470
OQIMP QFT 32 25609

(a) Fixed-precision circuits for x∗y
M withM = 5 (16 bits)

# qubits
OQIMP TOFF 418
OQIMP QFT 384
Quipper 6142

(b) Sine circuits (64 bits)

Figure B.3: Effects of partial evaluation
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