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Lyapunov-Based Economic Model
Predictive Control for Detecting and
Handling Actuator and Simultaneous
Sensor/Actuator Cyberattacks on
Process Control Systems
Henrique Oyama, Dominic Messina, Keshav Kasturi Rangan and Helen Durand*

Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, United States

The controllers for a cyber-physical system may be impacted by sensor measurement

cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our

group has developed a theory for handling cyberattacks on process sensors. However,

sensor and actuator cyberattacks have a different character from one another. Specifically,

sensor measurement attacks prevent proper inputs from being applied to the process by

manipulating the measurements that the controller receives, so that the control law plays a

role in the impact of a given sensor measurement cyberattack on a process. In contrast,

actuator signal attacks prevent proper inputs from being applied to a process by

bypassing the control law to cause the actuators to apply undesirable control actions.

Despite these differences, this manuscript shows that we can extend and combine

strategies for handling sensor cyberattacks from our prior work to handle attacks on

actuators and to handle cases where sensor and actuator attacks occur at the same time.

These strategies for cyberattack-handling and detection are based on the Lyapunov-

based economic model predictive control (LEMPC) and nonlinear systems theory. We first

review our prior work on sensor measurement cyberattacks, providing several new

insights regarding the methods. We then discuss how those methods can be

extended to handle attacks on actuator signals and then how the strategies for

handling sensor and actuator attacks individually can be combined to produce a

strategy that is able to guarantee safety when attacks are not detected, even if both

types of attacks are occurring at once.We also demonstrate that the other combinations of

the sensor and actuator attack-handling strategies cannot achieve this same effect.

Subsequently, we provide a mathematical characterization of the “discoverability” of

cyberattacks that enables us to consider the various strategies for cyberattack

detection presented in a more general context. We conclude by presenting a reactor

example that showcases the aspects of designing LEMPC.

Keywords: cyber-physical system, economic model predictive control, nonlinear systems, cyberattack detection,

sensor attack, actuator attack
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1 INTRODUCTION

Cyber-physical systems (CPSs) integrate various physical
processes with computer and communication infrastructures,
which allows enhanced process monitoring and control.
Although CPSs open new avenues for advanced manufacturing
(Davis et al., 2015) in terms of increased production efficiency,
the quality of the production, and cost reduction, this integration
also opens these systems to malicious cyberattacks that can
exploit vulnerable communication channels between the
different layers of the system. In addition to process and
network cybersecurity concerns, data collection devices such as
sensors and final control elements such as actuators (and signals
to or from them) are also potential candidates that can be subject
to cyberattacks (Tuptuk and Hailes, 2018). Sophisticated and
malicious cyberattacks may affect industrial profits and even pose
a threat to the safety of individuals working on site, which
motivates attack-handling strategies that are geared toward
providing safety assurances for autonomous systems.

There exist multiple points of susceptibility in a CPS
framework ranging from communication networks and
protocols to sensor measurement and control signal
transmission, requiring the development of appropriate control
and detection techniques to tackle such cybersecurity challenges
(Pasqualetti et al., 2013). To better understand these concerns,
vulnerability identification (Ani et al., 2017) has been studied by
combining people, process, and technology perspectives. A
process engineering-oriented overview of different attack
events has been discussed in Setola et al. (2019) to illustrate
the impacts on industrial control system platforms. In order to
address concerns related to control components, resilient control
designs based on state estimates have been proposed for detecting
and preventing attacks in works such as Ding et al. (2020) and
Cárdenas et al. (2011), wherein the latter cyberattack-resilient
control frameworks compare state estimates based on models of
the physical process and state measurements to detect
cyberattacks. Ye and Luo (2019) address a scenario where
actuator faults and cyberattacks on sensors or actuators occur
simultaneously by using a control policy based on the Lyapunov
theory and adaptation and Nussbaum-type functions.

Cybersecurity-related studies have also been carried out in the
context of model-predictive control (MPC; Qin and Badgwell,
2003), an optimization-based control methodology that
computes optimal control actions to a process. Specifically, for
nonlinear systems, Durand (2018) investigated various MPC
techniques with economics-based objective functions [known
as economic model predictive controllers (EMPCs) (Ellis et al.,
2014a; Rawlings et al., 2012)] when only false sensor
measurements are considered. Chen et al. (2020) integrated a
neural network-based attack detection approach initially
proposed in Wu et al. (2018) with a two-fold control
structure, in which the upper layer is a Lyapunov-based MPC
designed to ensure closed-loop stability after attacks are flagged.
A methodology that may be incorporated as a criterion for EMPC
design has been proposed in Narasimhan et al. (2021), in which a
control parameter screening based on a residual-based attack
detection scheme classifies multiplicative sensor-controller

attacks on a process as “detectable,” “undetectable,” and
“potentially detectable” under certain conditions. In addition, a
general description of “cyberattack discoverability” (i.e., a certain
system’s capability to detect attacks) without a rigorous
mathematical formalism has been addressed in Oyama et al.
(2021).

Prior work in our group has explored the interaction between
cyberattack detection strategies, MPC/EMPC design, and stability
guarantees. In particular, our prior works have primarily focused
on studying and developing control/detection mechanisms for
scenarios in which either actuators or sensors are attacked
(Oyama and Durand, 2020; Rangan et al., 2021; Oyama et al.,
2021; Durand and Wegener, 2020). For example, Oyama and
Durand (2020) proposed three cyberattack detection concepts
that are integrated with the control framework Lyapunov-based
EMPC (Heidarinejad et al., 2012a). Advancing this work, Rangan
et al. (2021) and Oyama et al. (2021) proposed ways to consider
cyberattack detection strategies and the challenges in cyberattack-
handling for nonlinear processes whose dynamics change with
time. In the present manuscript, we extend our prior work (which
covered sensor measurement cyberattack-handling with control-
theoretic guarantees and actuator cyberattack-handling without
guarantees) to develop strategies for maintaining safety when
actuator attacks are not detected (assuming that no attack occurs
on the sensors). These strategies are inspired by the first detection
concept in Oyama and Durand (2020) but with a modified
implementation strategy to guarantee that even when an
undetected actuator attack occurs, the state measurement and
actual closed-loop state are maintained inside a safe region of
operation throughout the next sampling period.

The primary challenge addressed by this work is the question
of how to develop an LEMPC-based strategy for handling sensor
and actuator cyberattacks occurring at once. The reason that this
is a challenge is that some of the concepts discussed for handling
sensor and actuator cyberattacks only work if the other (sensors
or actuators) is not under an attack. A major contribution of the
present manuscript, therefore, is elucidating which sensor and
actuator attack-handling methods can be combined to provide
safety in the presence of undetected attacks, even if both
undetected sensor and actuator attacks are occurring at the
same time. To cast this discussion in a broader framework, we
also present a nonlinear systems definition of cyberattack
“discoverability,” which provides fundamental insights into
how attacks can fly under the radar of detection policies.
Finally, we elucidate the properties of cyberattack-handling
using LEMPC through simulation studies.

The manuscript is organized as follows: following some
preliminaries that clarify the class of systems under
consideration and the control design (LEMPC) from which
the cyberattack detection and handling concepts presented in
this work are derived, we review the sensor measurement
cyberattack detection and handling policies from Oyama and
Durand (2020), which form the basis for the development of the
actuator signal cyberattack-handling and combined sensor/
actuator cyberattack-handling policies subsequently developed.
Subsequently, we propose strategies for detecting and handling
cyberattacks on process actuators when the sensor measurements
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remain intact that are able to maintain safety even when actuator
cyberattacks are undetected. We then utilize the insights and
developments of the prior sections to clarify which sensor and
actuator attack-handling policies can be combined to achieve
safety in the presence of combined sensor and actuator
cyberattacks. We demonstrate that there are combinations of
methods that can guarantee safety in the presence of undetected
attacks, even if these attacks occur on both sensors and actuators
at the same time (though the other combinations of the discussed
methods cannot achieve this). Further insights on the interactions
between the detection strategies and control policies for nonlinear
systems are presented via a fundamental nonlinear systems
definition of discoverability. The work is concluded with a
reactor study that probes the question of the practicality of the
design of control systems that meet the theoretical guarantees for
achieving cyberattack-resilience.

2 PRELIMINARIES

2.1 Notation
The Euclidean norm of a vector is indicated by |·|, and the
transpose of a vector x is denoted by xT. A continuous
function α: [0, a) → [0, ∞) is said to be of class K if it is
strictly increasing and α(0) = 0. Set subtraction is designated by
x ∈ A/B ≔ {x ∈ Rn : x ∈ A, x∉B}. Finally, a level set of a positive
definite function V is denoted by Ωρ ≔ {x ∈ Rn : V(x) ≤ ρ}.

2.2 Class of Systems
This work considers the following class of nonlinear systems:

_x t( ) ! f x t( ), u t( ), w t( )( ) (1)

where x ∈ X ⊂ Rn and w ∈W ⊂ Rz (W≔{w ∈ Rz | |w| ≤ θw, θw > 0})
are the state and disturbance vectors, respectively. The input
vector function u ∈ U ⊂ Rm, where U≔{u ∈ Rm| |u| ≤ umax}. f is
locally Lipschitz on X × U × W, and we consider that the
“nominal” system of Eq. 1 (w ≡ 0) is stabilizable such that
there exist an asymptotically stabilizing feedback control law
h(x), a sufficiently smooth Lyapunov function V, and class K

functions αi(·), i = 1, 2, 3, 4, where

α1 |x|( )≤V x( )≤ α2 |x|( ) (2a)
zV x( )
zx

f x, h x( ), 0( )≤ − α3 |x|( ) (2b)

zV x( )
zx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣≤ α4 |x|( ) (2c)

h x( ) ∈ U (2d)
∀ x ∈D ⊂ Rn (D is an open neighborhood of the origin). We define
Ωρ ⊂ D to be the stability region of the nominal closed-loop
system under the controller h(x) and require that it be chosen
such that x ∈ X, ∀x ∈ Ωρ. Furthermore, we consider that h(x)
satisfies the following equation:

|ĥi x( ) − ĥi x̂( )|≤ Lh|x − x̂| (3)

for all x, x̂ ∈ Ωρ, with Lh > 0, where ĥi is the i-th component of h.

Since f is locally Lipschitz and V(x) is a sufficiently smooth
function, the following holds:

|f x1, u, w( ) − f x2, u, 0( )|≤ Lx|x1 − x2| + Lw|w| (4a)
zV x1( )
zx

f x1, u, w( ) −
zV x2( )
zx

f x2, u, 0( )
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣≤ Lx′ |x1 − x2|

+ Lw′ |w| (4b)
|f x1, u1, w( ) − f x1, u2, w( )|≤ Lu|u1 − u2| (4c)

|f x, u, w( )|≤Mf (5)

∀x1, x2 ∈ Ωρ, u, u1, u2 ∈ U and w ∈ W, where Lx, Lx′ , Lw, Lw′ , Lu,
and Mf are positive constants.

We also assume that there are M sets of measurements
yi ∈ Rqi , i = 1, . . . , M, available at tk as follows:

yi t( ) ! ki x t( )( ) + vi t( ) (6)

where ki is a vector-valued function, and vi represents the
measurement noise associated with the measurements yi. We
assume that the measurement noise is bounded
(i.e., vi ∈ Vi ≔ vi ∈ Rqi | |vi|≤ θv,i, θv,i > 0{ ) and that
measurements of each yi are continuously available. For each
of the M sets of measurements, we assume that there exists a
deterministic observer [e.g., a high-gain observer Ahrens and
Khalil (2009)] described by the following dynamic equation:

_zi ! Fi ϵi, zi, yi( ) (7)

where zi is the estimate of the process state from the i-th observer,
i = 1, . . . , M, Fi is a vector-valued function, and ϵi > 0. When a
controller h(zi) with Eq. 7 is used to control the closed-loop
system of Eq. 1, we consider that Assumption 1 and Assumption
2 below hold.

Assumption 1. Ellis et al. (2014b), Lao et al. (2015) There exist
positive constants θpw, θ

p

v,i, such that for each pair {θw, θv,i} with
θw ≤ θpw, θv,i ≤ θ

p

v,i, there exist 0 < ρ1,i < ρ, em0i > 0 and ϵ
p

Li > 0,
ϵ
p

Ui > 0 such that if x(0) ∈ Ωρ1,i, |zi(0)−x(0)| ≤ em0i, and
ϵi ∈ (ϵpLi, ϵ

p

Ui), the trajectories of the closed-loop system are
bounded in Ωρ, ∀ t ≥ 0.

Assumption 2. Ellis et al. (2014b), Lao et al. (2015) There exists
epmi > 0 such that for each emi ≥ epmi, there exists tbi(ϵi) such that
|zi(t) − x(t)|≤ emi, ∀ t≥ tbi(ϵi).

3 ECONOMIC MODEL PREDICTIVE
CONTROL

EMPC Ellis et al. (2014a) is an optimization-based control design
for which the control actions are computed via the following
optimization problem:

min
u t( )∈S Δ( )

∫tk+N

tk

Le ~x τ( ), u τ( )( ) dτ (8a)

s.t. _~x t( ) ! f ~x t( ), u t( ), 0( ) (8b)
~x tk( ) ! x tk( ) (8c)
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~x t( ) ∈ X, ∀ t ∈ tk, tk+N[ ) (8d)
u t( ) ∈ U, ∀ t ∈ tk, tk+N[ ) (8e)

where N is called the prediction horizon, and u(t) is a piecewise-
constant input trajectory with N pieces, where each piece is held
constant for a sampling period with time length Δ. The
economics-based stage cost Le of Eq. 8a is evaluated
throughout the prediction horizon using the future predictions
of the process state ~x from the model of Eq. 8b (the nominal
model of Eq. 1) initialized from the state measurement at tk (Eq.
8c). The process constraints of Eq. 8d, Eq. 8e are state and input
constraints, respectively. A receding or moving horizon
implementation strategy is employed, i.e., the optimization
problem is solved every Δ time units (at each sampling time
tk) such that the first of the N pieces of the input vector trajectory
that is the optimal solution is applied to the process. The optimal
solution at tk is denoted by up(ti|tk), where i = k, . . . , k + N−1.

Additional constraints that can be added to the formulation in
Eq. 8 to produce a formulation of EMPC that takes advantage of
the Lyapunov-based controller h(·), called Lyapunov-based
EMPC [LEMPC Heidarinejad et al. (2012a)], are as follows:

V ~x t( )( )≤ ρe′, ∀ t ∈ tk, tk+N[ ), if x tk( ) ∈ Ωρe′
(9a)

zV ~x tk( )( )
zx

f ~x tk( ), u tk( ), 0( )

≤
zV ~x tk( )( )

zx
f ~x tk( ), h ~x tk( )( ), 0( ), if ~x tk( ) ∈ Ωρ/Ωρe′

(9b)

where Ωρe′
⊂ Ωρ is a subset of the stability region that makes Ωρ

forward invariant under the controller of Eqs 8–9.

4 CYBERATTACK DETECTION AND
CONTROL STRATEGIES USING LEMPC
UNDER SINGLE ATTACK-TYPE
SCENARIOS: SENSOR ATTACKS

The major goal of this work is to extend the strategies for LEMPC-
based sensor measurement cyberattack detection and handling
from Oyama and Durand (2020) to handle actuator attacks and
simultaneous sensor measurement and actuator attacks. For the
clarity of this discussion, we first review the three cyberattack
detection mechanisms from Oyama and Durand (2020).

This section therefore considers a single attack-type scenario
(i.e., only the sensor readings are impacted by attacks). The first
control/detection strategy proposed in Oyama and Durand (2020)
switches between a full-state feedback LEMPC and variations on
that control design that are randomly generated over time to probe
for cyberattacks by evaluating state trajectories for which it is
theoretically known that a Lyapunov function must decrease
between subsequent sampling times. The second control/
detection strategy also uses full-state feedback LEMPC, but the
detection is achieved by evaluating the state predictions based on
the current and prior state measurements to flag an attack while
maintaining the closed-loop state within a predefined safe region
over one sampling period after an undetected attack is applied. The

third control/detection strategy was developed using output
feedback LEMPC, and the detection is attained by checking
among multiple redundant state estimates to flag that an attack
is happening when the state estimates do not agree while still
ensuring closed-loop stability under sufficient conditions (which
include the assumption that at least one of the estimators cannot be
affected by the attack). In addition to reviewing the key features of
this design, this section will provide several clarifications that were
not provided in Oyama and Durand (2020) to enable us to build
upon these methods in future sections.

4.1 Control/Detection Strategy 1-S Using
LEMPC in the Presence of Sensor Attacks
The control/detection strategy 1-S, which corresponds to the first
detection concept proposed in Oyama and Durand (2020), uses
full-state feedback LEMPC as the baseline controller and randomly
develops other LEMPC formulations with Eq. 9b always activated
that are used in place of the baseline controller for short periods of
time to potentially detect if an attack is occurring. We define
specific times at which the switching between the baseline 1-
LEMPC and the j-th LEMPC, j > 1, happens. Particularly, ts,j is
defined as the switching time at which the j-LEMPC is used to drive
the closed-loop state to the randomly generated j-th steady-state,
and te,j is the time at which the j-LEMPC switches back to
operation under the 1-LEMPC.

The baseline 1-LEMPC is formulated as follows, which is used
if te,j−1 ≤ t < ts,j, j = 2, . . . , where te,1 = 0:

min
u1 t( )∈S Δ( )

∫tk+N

tk

Le ~x1 τ( ), u1 τ( )( ) dτ (10a)

s.t. _~x1 t( ) ! f1 ~x1 t( ), u1 t( ), 0( ) (10b)
~x1 tk( ) ! x1 tk( ) (10c)

~x1 t( ) ∈ X1, ∀ t ∈ tk, tk+N[ ) (10d)
u1 t( ) ∈ U1, ∀ t ∈ tk, tk+N[ ) (10e)

V1 ~x1 t( )( )≤ ρe,1′ , ∀ t ∈ tk, tk+N[ ), if ~x1 tk( ) ∈ Ωρe,1′
(10f )

zV1 ~x1 tk( )( )
zx

f1 ~x1 tk( ), u1 tk( ), 0( )

≤
zV1 ~x1 tk( )( )

zx
f1 ~x1 tk( ), h1 ~x1 tk( )( ), 0( ), if ~x1 tk( ) ∈ Ωρ1/Ωρe,1′

(10g)

where x1(tk) is used, with a slight abuse of the notation, to reflect
the state measurement in a deviation variable form from the
operating steady state. In addition, in the remainder of this work,
fi (i ≥ 1) represents the right-hand side of Eq. 1 when it is written
in a deviation variable form from the i-th steady state. ui
represents the input vector in a deviation variable form from
the steady-state input associated with the i-th steady state. Xi and
Ui correspond to the state and input constraint sets in a deviation
variable form from the i-th steady state. In addition, ρi and ρe,i′ are
associated with the i-th steady state. The addition of a subscript i
to the functions in Eq. 2 (to form hi,Vi, and αj,i, j = 1, 2, 3, 4) orMf

also signifies association with the i-th steady state.
The j-th LEMPC, j > 1, which is used for t ∈ [ts,j, te,j), is

formulated as follows:
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min
uj t( )∈S Δ( )

∫tk+N

tk

Le ~xj τ( ), uj τ( )( ) dτ (11a)

s.t. _~xj t( ) ! fj ~xj t( ), uj t( ), 0( ) (11b)

~xj tk( ) ! xj tk( ) (11c)
~xj t( ) ∈ Xj, ∀ t ∈ tk, tk+N[ ) (11d)
uj t( ) ∈ Uj, ∀ t ∈ tk, tk+N[ ) (11e)

zVj ~xj tk( )( )
zx

fj ~xj tk( ), uj tk( ), 0( )
≤
zVj ~xj tk( )( )

zx
fj ~xj tk( ), hj ~xj tk( )( ), 0( ) (11f )

where xj(tk) represents the state measurement in a deviation
variable form from the j-th steady state.

The implementation strategy for this detection method is as
follows (the stability region subsets are thoroughly detailed in
Oyama and Durand (2020) but reviewed in Remark 1):

1) At a sampling time tk, the baseline 1-LEMPC receives the state
measurement ~x1(tk). Go to Step 2.

2) At tk, a random number ζ is generated. If this number falls
within a range that has been selected to start probing for
cyberattacks, randomly generate a j-th steady state, j > 1, with
a stability region Ωρj ⊂ Ωρsamp2,1

that has a steady-state input
within the input bounds, contains the state measurement
~xj(tk), and where ~xj(tk) ∈ Ωρh,j/Ωρs,j. Set ts,j = tk, choose
te,j = tk+1, and go to Step 4. Otherwise, if ζ falls in a range
that has not been chosen to start probing for cyberattacks or
the j-th steady state cannot be generated to meet the
conditions above (which include the consideration of the
different levels of stability regions), go to Step 3.

3) If ~x1(tk) ∈ Ωρe,1′
, go to Step 3a. Else, go to Step 3b.

a) Compute control signals for the subsequent sampling
period with Eq. 10f of the 1-LEMPC activated. Go to
Step 6.

b) Compute control signals for the subsequent sampling
period with Eq. 10g of the 1-LEMPC activated. Go to
Step 6.

4) The j-LEMPC receives the state measurement ~xj(tk) and
controls the process according to Eq. 11. Evaluate the
Lyapunov function profile throughout the sampling period.
If Vj does not decrease by the end of the sampling period
following ts,j, or if ~xj(t) ∉ Ωρ1 at any time for t ∈ [tk, tk+1),
detect that the process is potentially under a cyberattack and
mitigating actions may be applied. Otherwise, go to Step 5.

5) At te,j, switch back to operation under the baseline 1-LEMPC.
Go to Step 6.

6) Go to Step 1 (k ← k + 1).

The first theorem presented in Oyama and Durand (2020) and
replicated below guarantees the closed-loop stability of the
process of Eq. 1 under the LEMPCs of Eqs 10–11 under the
implementation strategy described above in the absence of sensor
cyberattacks. To follow this and the other theorems that will be
presented in this work, the impacts of bounded measurement
noise and disturbances on the process state trajectory are

characterized in Proposition 1 below, and the bound on the
value of the Lyapunov function at different points in the stability
region is defined in Proposition 2.

Proposition 1. Ellis et al. (2014b), Lao et al. (2015) Consider the
systems below:

_xi ! fi xi t( ), ui t( ), w t( )( ) (12a)
_~xi ! fi ~xi t( ), ui t( ), 0( ) (12b)

where |xi(t0) − ~xi(t0)|≤ δ with t0 = 0. If xi(t), ~xi(t) ∈ Ωρi for t ∈
[0, T], then there exists a function fW,i(·, ·) such that

|xi t( ) − ~xi t( )|≤fW,i δ, t − t0( ) (13)

for all xi(t), ~xi(t) ∈ Ωρi, ui ∈ Ui, and w ∈ W, with

fW,i s, τ( ) ≔ s +
Lw,iθw
Lx,i

( )eLx,iτ − Lw,iθw
Lx,i

(14)

Proposition 2. Ellis et al. (2014b) Let Vi(·) represent the
Lyapunov function of the nominal system of Eq. 1, in a
deviation form from the i-th steady state, under the controller
hi(·) that satisfies Eqs 2, 3 for the system of Eq. 1 when it is in a
deviation variable form from the i-th steady state. Then, there
exists a function fVi such that

Vi !x( )≤Vi !x′( ) + fVi |!x − !x′|( ) (15)

∀!x, !x′ ∈ Ωρi where fVi(·) is given by

fVi s( ) ≔ α4,i α
−1
1,i ρi( )( )s +MVis

2 (16)

where MVi is a positive constant.

Theorem 1. Oyama and Durand (2020) Consider the closed-loop
system of Eq. 1 under the implementation strategy described above
and in the absence of a false sensor measurement cyberattack
where each controller hj(·), j ≥ 1, used in each j-LEMPCmeets the
inequalities in Eqs 2, 3 with respect to the j-th dynamic model.
Let ϵWj > 0, Δ > 0, N≥ 1, Ωρj ⊂ Ωρsamp2,1 ⊂ Ωρ1 ⊂ X1 for j > 1,
ρj > ρh,j > ρmin ,j > ρs,j > ρs,j′ > 0, where Ωρh,j is defined as the
smallest level set of Ωρj that guarantees that if Vj(~xj(tk))≤ ρh,j,
Vj(xj(tk))≤ ρj, and ρ1 > ρsamp2,1 > ρsamp,1 > ρe,1′ > ρmin ,1 >

ρs,1 > ρs,1′ > 0 (where Ωρsamp,1
is defined as a level set of Ωρ1 that

guarantees that if x1(tk) ∈ Ωρ1/Ωρsamp,1, then ~x1(tk) ∈ Ωρ1/Ωρe,1′
)

satisfy

−α3,j α−1
2,j ρs,j′( )( ) + Lx,j′ Mf,jΔ≤ − ϵw,j/Δ, j ! 1, 2, . . . (17)

ρe,1′ + fV,1 fW,1 δ,Δ( )( )≤ ρsamp2,1 (18)

−α3,1 α−1
2,1 ρe,1′( )( ) + Lx,1′ Mf,1Δ + Lx,1′ δ + Lw,1′ θw ≤ − ϵw,1′ /Δ (19)

−α3,j α−1
2,j ρs,j( )( ) + Lx,j′ Mf,jΔ + Lx,j′ δ + Lw,j′ θw ≤ − ϵw,j′ /Δ,

j ! 1, 2, 3, . . . (20)

ρmin ,j ! max Vj xj t( )( ) : xj tk( ) ∈ Ωρs,j′
, t ∈ tk, tk+1[ ), uj ∈ Uj{ },

j ! 1, 2, . . . (21)
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ρsamp2,1 ≥max V1 x1 t( )( ) : x1 tk( ) ∈ Ωρsamp,1
/Ωρe,1′

,{
t ∈ tk, tk+1[ ), u1 ∈ U1} (22)

ρ1 ≥max V1 ~x1 tk( )( ): x1 tk( ) ∈ Ωρsamp2,1
{ } (23)

ρj ! max Vj xj tk( )( ): ~xj tk( ) ∈ Ωρh,j{ }, j ! 2, 3, . . . (24)

ρs,j′ <min Vj xj tk( )( ): ~xj tk( ) ∈ Ωρj/Ωρs,j{ }, j ! 1, 2, . . . (25)

If ~x1(t0) ∈ Ωρsamp2,1
, x1(t0) ∈ Ωρsamp2,1

, and |~xj(tk) − xj(tk)|≤ δ, k
= 0, 1, . . . , then the closed-loop state is maintained inΩρsamp2,1

and
the state measurement is inΩρ1 when the 1-LEMPC is activated at
t0 and for te,j−1 ≤ t< ts,j or when the j-LEMPC is activated for
ts,j ≤ t< te,j under the implementation strategy described above,
and the closed-loop state and the state measurement are
maintained within Ωρ1 for t≥ 0. Furthermore, in the sampling
period after ts,j, if ~xj(tk) ∈ Ωρj/Ωρs,j,Vj decreases and xj(t) ∈ Ωρj
for t ∈ [tk, tk+1).

An important clarification regarding the strategy described
above that provides more detail compared to (Oyama and
Durand, 2020) and aids in understanding the extensions of
this method developed later in this work for handling actuator
attacks is that the decrease in Vj in Theorem 1 is a decrease in Vj

along the closed-loop state trajectory of the actual state (not the
measurement). Specifically, that statement in the theorem comes
from the following equation in the proof of Theorem 1 in
Oyama and Durand (2020), which provides an upper bound
on _Vj along the actual closed-loop state trajectory from tk to
tk+1 under an input computed by the j-LEMPC when following
the implementation strategy described above (i.e., ~xj(tk) ∈ Ωρh,j/Ωρs,j)
when Eq. 20 is satisfied:

zVj xj τ( )( )
zx

fj xj τ( ), uj tk( ), w τ( )( )≤ − α3,j α−12,j ρs,j( )( )
+ Lx,j′ Mf,jΔ + Lx,j′ δ + Lw,j′ θw ≤ − ϵw,j′ /Δ (26)

This expression indicates that Vj(xj(t))≤Vj(xj(t0))
−ϵw,j′ (t−t0)

Δ , giving a minimum decrease in Vj of ϵw,j′ over the
sampling period. If this decrease is enough to overcome any
measurement noise, such as if

ϵw,j′ > max
~xj tk( )∈Ωρh,j/Ωρs,j

min Vj ~xj tk( )( ): ~xj tk( ) ∈ Ωρh,j/Ωρs,j{ }
∣∣∣∣∣∣∣∣

−max Vj ~xj tk+1( )( ): ~xj tk( ) ∈ Ωρh,j/Ωρs,j,{
uj ∈ Uj, |xj tp( ) − ~xj tp( )|≤ θv,j, p ! k, k + 1}| (27)

when the input is computed by the j-LEMPC (where θv,1
represents the measurement noise when the full-state feedback
is available), then the state measurement must also be decreased
by the end of the sampling period. However, at any given
time instant, it is not guaranteed to be decreasing due to the
noise. An unusual amount of increase could help to flag the
attack before a sampling period is over, although this would come
from recognizing atypical behavior (essentially pattern
recognition).

The reasoning behind the selection of the presented bound on
ϵw,j′ is as follows: the lack of a decrease in the Lyapunov function
value between tk and tk+1 is meant to flag an attack. However, with
sensor noise, it is possible that Eq. 26 can hold (which reflects a
decrease in the value of Vj evaluated along the trajectory of the
actual closed-loop state) but that the decrease in Vj caused by Eq.
26 is not enough to ensure that Vj evaluated at the measured
values of the closed-loop state (instead of the actual values)
decreases between tk and tk+1. For example, consider the case
in which the value of Vj barely decreases over a sampling period,
so that Vj can be treated as approximately constant. If the noise in
the measurements is large, it may then be possible that
Vj(~xj(tk))<Vj(~xj(tk+1)), even though Vj slightly decreased
along the actual closed-loop state trajectory (if, for example,
the noise originally takes Vj(~xj(tk)) to the minimum possible
value, it could be for a given Vj(xj(tk)), but then at the next
sampling time, the Lyapunov function evaluated at the
measurement is the maximum possible value that it could
take). Equation 27 ensures that even if this occurs, the
decrease in Vj along the actual closed-loop state trajectory is
enough to ensure that the maximum value of Vj(~xj(tk+1)) is less
than the minimum value of Vj(~xj(tk)).

Remark 1. The following relation between the different stability
regions has been characterized for Detection Strategy 1-S:
ρ1 > ρsamp2,1 > ρsamp,1 > ρe,1′ > ρmin ,1 > ρs,1 > ρs,1′ > 0 (which must
hold when the baseline 1-LEMPC is used) and
ρj > ρh,j > ρmin ,j > ρs,j > ρs,j′ > 0 for j > 1 (which must hold
when the j-LEMPC is used). The regions Ωρsamp,1

, Ωρs,j, and
Ωρh,j are important to define due to the presence of
measurement noise (Oyama and Durand, 2020). Specifically,
Ωρj, j = 1, 2, . . . has been defined as an invariant set in which
the closed-loop state is maintained, andΩρe,1′

is a region utilized in
distinguishing between whether Eq. 10f or Eq. 10g is activated in
Eq. 10. Ωρs,j′

, j = 1, 2, . . . , is defined as a region such that if the
actual state is within Ωρs,j′

at a sampling time, the maximum
distance that the closed-loop state would be able to go within a
sampling period is into Ωρmin ,j

. Furthermore, we define the region
Ωρs,j such that if the state measurement is within Ωρh,j/Ωρs,j at tk,
the actual state is outside of Ωρs,j′

. Ωρsamp,1
is characterized as a

region where, if the actual state is inside this region at a sampling
time, the maximum distance that the closed-loop state would be
able to travel within a sampling period is into Ωρsamp2,1

. Ωρsamp2,1
is

then defined to be a subset of Ωρ1 so that the maximum distance
that the closed-loop state could go when the state measurement is
within Ωρe,1′

but the actual state is outside of this region is still
inside Ωρ1. To ensure that the actual state at tk is inside Ωρj, we
define the region Ωρh,j ⊂ Ωρj such that if the state measurement is
within Ωρh,j at tk, the actual state is inside Ωρj.

4.2 Control/Detection Strategy 2-S Using
LEMPC in the Presence of Sensor Attacks
The control/detection strategy 2-S, which corresponds to the
second detection concept in Oyama and Durand (2020), has been
developed using only the 1-LEMPC of Eq. 10, and it flags false
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sensor measurements based on state predictions from the process
model from the last state measurement. If the norm of the
difference between the state predictions and the current
measurements is above a threshold, the measurement is
identified as a potential sensor attack. Otherwise, if the norm
is below this threshold, even if the measurement was falsified, the
closed-loop state can be maintained inside Ωρ1, under sufficient
conditions Oyama and Durand (2020), for a sampling period
after the attack is applied for the process operated under an
LEMPC that follows the implementation strategy below, where
~x1(tk|tk−1) denotes the prediction of the state ~x1 at tk evaluated by
integrating the process model of Eq. 10b from a measurement at
tk−1 until tk:

1) At sampling time tk, if |~x1(tk|tk−1) − ~x1(tk|tk)|> ], flag that a
cyberattack is happening and go to Step 1a. Else, go to Step 1b.
a) Mitigating actions may be applied (e.g., a backup policy

such as the use of redundant controller or an emergency
shut-down mode).

b) Operate the process under the 1-LEMPC of Eq. 10 while
implementing an auxiliary detection mechanism to
attempt to flag any undetected attack at tk. tk ← tk+1.
Go to Step 1.

The second theorem presented in Oyama and Durand (2020),
which is replicated below, guarantees the closed-loop stability of
the process of Eq. 1 under the 1-LEMPC of Eq. 10 under the
implementation strategy described above before a sensor attack
occurs and for at least one sampling period after the attack.

Theorem 2. Oyama and Durand (2020) Consider the system of
Eq. 1 in closed loop under the implementation strategy described
in Section 4.2 based on a controller h1(·) that satisfies the
assumptions of Eqs 2, 3. Let the conditions of Theorem 1
hold with ts,j ! ∞, j = 2, 3, . . . , and δ ≥fW,1(θv,1,Δ) + ]. If
~x1(t0) ∈ Ωρsamp2,1

⊂ Ωρ1 and x1(t0) ∈ Ωρsamp2,1
, then x1(t) ∈ Ωρsamp2,1

and the state measurement at each sampling time is in Ωρ1 for all
times before a sampling time tA that a cyberattack falsifies a state
measurement, and x1(t) ∈ Ωρsamp2,1

for t ∈ [tA, tA + Δ), if the
attack is not detected at tA.

In Theorem 2, δ represents the deviation between the state
measurement and the actual state that can be tolerated with the
provided closed-loop stability guarantees. If there is no attack, δ
corresponds to measurement noise. If there is an attack, then δ
reflects the largest possible deviation of the falsified state
measurement from the actual state that can be tolerated while
the guarantees in the theorem are obtained.

We now provide some additional insights into this strategy
compared to Oyama and Durand (2020) in preparation for a
discussion about cyberattack “discoverability” later in this work.
Specifically, the reason that closed-loop stability can only be
guaranteed for a sampling period after an attack in Theorem 2
is due to the use of a state prediction in detecting the attack.
Specifically, Theorem 2 ensures that ~x1(t) ∈ Ωρ1 and
x1(t) ∈ Ωρsamp2,1

for t < tA. According to Oyama and Durand
(2020), to demonstrate that x1(t) ∈ Ωρsamp2,1

for t ∈ [tA, tA + Δ), we
consider the measurements ~x1(tk−1|tk−1) and ~x1(tk|tk), and the

predicted state ~x1(t|tk−1) from the nominal model of Eq. 10b for
t ∈ [tk−1, tk]. Then, as the measurement noise is bounded,
|~x1(tk−1|tk−1) − x1(tk−1)|≤ θv,1 and Proposition 1 gives

|x1 tk( ) − ~x1 tk|tk−1( )|≤fW,1 θv,1,Δ( ) (28)

If an attack is not flagged at tk,

|x1 tk( )− ~x1 tk|tk( )|≤ |x1 tk( )− ~x1 tk|tk−1( )+ ~x1 tk|tk−1( )− ~x1 tk|tk( )|
≤fW,1 θv,1,Δ( )+ |~x1 tk|tk−1( )− ~x1 tk|tk( )|≤fW,1 θv,1,Δ( )+] (29)

We note that Eqs 28, 29 assume that there is no attack or an
undetected attack at tk−1, respectively, so that
|~x1(tk−1|tk−1) − x1(tk−1)|≤ θv,1, which is used in deriving the
subsequent requirements on δ that are used to select the
parameters of the LEMPC of Eq. 10 to satisfy Theorem 2. If
there is an attack on the sensor measurements at tk−1, it is no
longer necessarily true that |~x1(tk−1|tk−1) − x1(tk−1)|≤ θv,1, so
that the remainder of the proof would no longer follow. One
can see this more explicitly by propagating the bounds in Eqs 28,
29. Specifically, Eq. 29 allows for the potential that though
|x1(tk) − ~x1(tk|tk)|≤fW,1(θv,1) + ], ~x1(tk|tk) could be falsified.
To see the bound on the difference between the state
measurement and the actual state that could potentially occur
at the next sampling time, we use the fact that |x1(tk) −
~x1(tk|tk)|≤ δ from Eq. 29 to derive the following bound like
Eq. 28:

|x1 tk+1( ) − ~x1 tk+1|tk( )|≤fW,1 δ,Δ( ) (30)

Then, if an attack is not flagged at tk+1, following a procedure
similar to that in Eq. 29 gives

|x1 tk+1( ) − ~x1 tk+1|tk+1( )|≤fW,1 δ,Δ( ) + ] (31)

It is reasonable to expect that ] would be set greater than θv,1
since it is reasonable to expect that |~x1(tp|tp−1) − ~x1(tp|tp)|, p =
0, 1, . . . , could reach values around θv,1 given the bound on the
noise; however, whether or not this is the case, the definition of
fW,1 indicates that the maximum potential difference between the
actual state and the (falsified) state measurement is growing with
time [i.e., θv,1 < fW,1(θv,1, Δ) + ] < fW,1(δ, Δ) + ]]. One could also
consider developing δ by performing the analysis of Eqs 28, 29, as
is begun in Eqs 30, 31, to obtain a δ that is larger (resulting in
greater conservatism in the selection of the LEMPC parameters in
Theorem 2 when it is still possible to satisfy the conditions of that
theorem with larger values of δ) but that allows multiple sampling
periods of the closed-loop state remaining inΩρ1 after an attack if
desired. Though this is only a maximum bound (i.e., the
difference does not necessarily grow in the manner described),
this analysis highlights a fundamental difference between
measurement noise and disturbances and cyberattacks.
Specifically, whereas the conditions of Theorem 2 guarantee
recursive feasibility and closed-loop stability in the presence of
sufficiently small bounded measurement noise and sufficiently
small bounded plant/model mismatch, they cannot make long-
term stability guarantees in the presence of false sensor
measurements because effectively, those destroy feedback over
an extended period of time and leave the process operating in a
condition where the inputs being applied are not necessarily tied
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to the actual or even approximate value of the state (whereas
the approximate value of the state may be known from sensor
readings in the presence of disturbances and measurement
noise). We also highlight that the above discussion can be
thought of more generally. For example, one could see how it
might become challenging to guarantee resilience against
attacks that only slightly offset the measured value of the
process state from a predicted value by considering the
concept that with noise and disturbances, one would expect
that there would be a set of potential initial states that might
all be consistent with the noise and disturbance distribution,
process model, and measurements. From these initial states,
there are potential state trajectories that could all be
consistent with the noise and disturbance distribution,
process model, and measurements. When feedback is
available, it re-restricts the possible range of allowable
states from which potentially reasonable final states could
be computed once again. In the absence of feedback,
the possible final states from the first prediction are then
reasonable initial conditions for a second prediction, which,
in the presence of noise and disturbances, could potentially
significantly expand the number of states that could be
consistent with the state. This indicates the mechanism by
which an attack could be deceptive.

4.3 Control/Detection Strategy 3-S Using
LEMPC in the Presence of Sensor Attacks
The Detection Strategy 3-S, which corresponds to the third
detection concept proposed in Oyama and Durand (2020),
utilizes multiple redundant state estimators (where we
assume that not all of them are impacted by the false
sensor measurements) integrated with an output feedback
LEMPC and ensures that the closed-loop state is maintained
in a safe region of operation for all the times that no attacks
are detected. The output feedback LEMPC designed for this
detection strategy receives a state estimate z1 from one of the
redundant state estimators (the estimator used to provide
state estimates to the LEMPC will be denoted as the i = 1
estimator) at tk, where the notation follows that of Eq. 10
with Eq. 10c replaced by ~x1(tk) ! z1(tk) (we will
subsequently refer to this LEMPC as the output feedback
LEMPC of Eq. 10).

This implementation strategy assumes that the process has
already been run successfully in the absence of attacks under the
output feedback LEMPC of Eq. 8 for some time such that |zi(t) −
x(t)|≤ ϵpmi for all i = 1, . . . , M before an attack:

1) At sampling time tk, if |zi(tk)−zj(tk)| > ϵmax, i = 1, . . . ,M, j = 1,
. . . ,M, or z1(tk) ∉Ωρ (where z1 is the state estimate used in the
LEMPC design), flag that a cyberattack is occurring and go to
Step 1a. Else, go to Step 1b.
a) Mitigating actions may be applied (e.g., a backup policy

such as the use of redundant controller or an emergency
shut-down mode).

b) Operate using the output feedback LEMPC of Eq. 10. tk←
tk+1. Go to Step 1.

Detection Strategy 3-S guarantees that any cyberattacks that
would drive the closed-loop state out of Ωρ1 will be detected
before this occurs. It flags cyberattacks by evaluating the norm of
the difference between state estimates. If this norm is above a
threshold, which represents “normal” process behavior, the
control system is recognized as under a potential sensor
attack. To determine a threshold, Oyama and Durand (2020)
designed the following bound:

|zi t( ) − zj t( )| ! |zi t( ) − x t( ) + x t( ) − zj t( )|≤ |zi t( ) − x t( )|
+|zj t( ) − x t( )| ≤ ϵij ≔ epmi + epmj( )≤ ϵmax ≔ max ϵij{ } (32)

for all i ≠ j, i = 1, . . . ,M, j = 1, . . . ,M, as long as t ≥ tq = max{tb1,
. . . , tbM}. Therefore, abnormal behavior can be detected if
|zi(tk) − zj(tk)|> ϵmax if tk > tq (this avoids false detections).

The worst-case difference between the state estimate used by
the output feedback LEMPC of Eq. 10 and the actual value of the
process state under the implementation strategy above when an
attack is not flagged is described in Proposition 3.

Proposition 3. Oyama and Durand (2020) Consider the system
of Eq. 1 under the implementation strategy of Section 4.3 where
M> 1 state estimators provide the independent estimates of the
process state and at least one of these estimators is not impacted
by false state measurements (and the attacks do not begin until
after tq). If a sensor measurement cyberattack is not flagged at tk
according to the implementation strategy, then the worst-case
difference between zi, i ≥ 1, and the actual state x(tk) is given by

|zi tk( ) − x tk( )|≤ ϵpM ≔ ϵmax +max epmj{ }, j ! 1, . . . ,M (33)

The third theorem presented in Oyama andDurand (2020), which
is replicated below, guarantees the closed-loop stability of the process
of Eq. 1 under the LEMPC of Eq. 10 under the implementation
strategy described above when a sensor cyberattack is not flagged.

Theorem 3. Consider the system of Eq. 1 in a closed loop under
the output feedback LEMPC of Eq. 10 based on an observer and
controller pair satisfying Assumption 1 and Assumption 2 and
formulated with respect to the i = 1 measurement vector, and
formulated with respect to a controller h(·) that meets Eqs 2, 3.
Let the conditions of Proposition 3 hold, and θw ≤ θpw, θv,i ≤ θ

p

v,i,
ϵi ∈ (ϵpLi, ϵ

p

Ui), and |zi(t0) − x(t0)|≤ em0i, for i = 1, . . . ,M. Also, let
ϵW,1 > 0, Δ > 0, Ωρ1 ⊂ X, and ρ1 > ρmax > ρ1,1 > ρe,1′ >

ρmin ,1 > ρs,1 > 0, satisfy

ρe,1′ ≤ ρmax

−max fV fW ϵ
p

M,Δ( )( ),Mf max tz1,Δ{ }α4 α−11 ρmax( )( ){ } (34)

ρe,1′ ≤ ρ1 − fV fW ϵ
p

M,Δ( )( ) − fV ϵ
p

M( ) (35)

−α3 α−1
2 ρs,1( )( ) + Lx′ MfΔ + ϵ

p

M( ) + Lw′ θw ≤ − ϵW,1/Δ (36)

ρmin ,1 !max V x t( )( )|V x tk( )( )≤ρs,1, t ∈ tk, tk+1[ ), u ∈ U{ } (37)

ρmin ,1 + fV fW ϵ
p

M,Δ( )( )≤ ρ1 (38)

ρmax + fV ϵ
p

M( )≤ ρ1 (39)

where tz1 is the first sampling time after tb1, and fv and fw are
defined as in Proposition 1 and Proposition 2 for i = 1 but with the
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subscripts dropped. Then, if x(t0) ∈ Ωρe,1′
, x(t) ∈ Ωρmax

for all t≥ 0
and z1(th) ∈ Ωρ1 for th ≥max {Δ, tz1} until a cyberattack is
detected according to the implementation strategy in Section
4.3, if the attack occurs after tq.

Detection Strategy 3-S does not require the knowledge of
which state estimate is false or whether or not it is used by the
LEMPC; nevertheless, the proposed approach requires at least
one estimator to provide accurate estimates of the actual state so
that one of them can check the others (to ensure that there is not a
case where all could be consistent but incorrect). As for the other
strategies, we conclude with some discussions of this method that
provide insights beyond those discussed in Oyama and Durand
(2020), here in the form of remarks.

Remark 2. The role ofΩρ1,1 is to ensure, according to Assumption
1 and Assumption 2, that there exists some time before the
closed-loop state, initialized within Ωρ1,1, leaves Ωρ1. Here,
x(t0) ∈ Ωρe,1′

, which is taken to be a subset of Ωρ1,1 for this
reason. Specifically, Assumption 1 states that the state of the
closed-loop system of Eq. 1 under inputs computed from the state
feedback (with the state feedback not yet meeting the bound in
Assumption 2) remains within Ωρ1 at all times by starting within
the interior of Ωρ1 so that in the time before tb1, the fact that |
z1−x(t)| > em1 does not cause the closed-loop state of the system of
Eq. 1 to reach the boundary of Ωρ1 before |z1−x(t)| ≤ em1, after
which point it is assumed that the feedback control law that is
stabilizing when it is provided the full-state feedback is receiving
state estimates close enough to x to maintain the closed-loop state
within Ωρ1 after tb1. This is true in Theorem 3, where the set in
which the closed-loop state is initialized must be sufficiently small
such that before tb1, the closed-loop state under the control
actions computed by the LEMPC cannot leave Ωρ1 (even if the
state estimates used as the initial condition in the controller are
bad). This means, however, that the convergence time tb1 for the
observer must be sufficiently small to prevent ρe,1′ from needing to
be prohibitively small to ensure that the closed-loop state would
stay within Ωρ1 before tb1 if it is initialized within Ωρe,1′

.

Remark 3. Assumption 1 and Assumption 2 are essentially used
in Detection Strategy 3-S to imply the existence of observers with
convergence time periods that are independent of the control
actions applied (i.e., they converge, and stay converged, regardless
of the actual control actions applied). High-gain observers are an
example of an observer that can meet this assumption (Ahrens
and Khalil 2009) for bounded x, u, and w. This is critical to the
ability of the multiple observers to remain converged when the
process is being controlled by an LEMPC receiving inputs based
on the state feedback of only one of them, so that the others are
evolving independently of the inputs to the closed-loop system.

Remark 4. We only guarantee in Theorem 3 that z1(t) ∈ Ωρ1,
rather than that zj(t) ∈ Ωρ1, for all t ≥ 0 until a cyberattack is
detected. This is because z1(t) ∈ Ωρ1 is required for feasibility of
the LEMPC, and the other estimates are not used by the LEMPC
and thus they do not impact feasibility. If it was desired to utilize
an estimate not impacted by cyberattacks in place of z1 if an attack
on z1 is discovered, one could develop the parameters of the M

possible LEMPCs to meet the requirements of Theorem 3 and
then select the operating conditions for the i = 1 estimator to be
contained in the intersection of the stability regions of all of the
others such that any of the other estimators could begin to be used
at a sampling time if the i = 1 estimator is detected to be
compromised at that time. This would require being able to
know which of the estimators is not attacked to switch to the
correct one when the i = 1 estimator is discovered to be attacked.

Remark 5. Larger values of epmi (i.e., less accurate state estimates)
lead to a larger upper bound ϵpM in Proposition 3, then resulting in
a more conservative ρe,1′ according to Theorem 3. This indicates
that there is a trade-off between the accuracy of the available state
estimators to probe for cyberattacks and the design value of ρe,1′ to
ensure closed-loop stability under the proposed output feedback
LEMPC cyberattack detection strategy.

Remark 6. The methods for attack detection (Strategies 1-S, 2-S,
and 3-S) do not distinguish between sensor faults and
cyberattacks. Therefore, they could flag faults as attacks (and
therefore, it may be more appropriate to use them as anomaly
detection with a subsequent diagnosis step). The benefit, however,
is that they provide resilience against attacks if the issue is an
attack (which can be designed to be malicious) and not a fault
(which may be less likely to occur in a state that an attacker might
find particularly attractive). They also flag issues that do not
satisfy theoretical safety guarantees, which may make it beneficial
to flag the issues regardless of the cause.

5 CYBERATTACK DETECTION AND
CONTROL STRATEGIES USING LEMPC
UNDER SINGLE ATTACK-TYPE
SCENARIOS: ACTUATOR ATTACKS

The methods described above from Oyama and Durand (2020)
were developed for handling cyberattacks on process sensor
measurements. In such a case, the actuators receive the signals
that the controller calculated, but the signal that the controller
calculated is not appropriate for the actual process state. This
requires the methods to, in a sense, rely on the control actions to
show that the sensor measurements are not correct. In contrast,
when an attack occurs on the actuator signal, the controller no
longer plays a role in which signal the actuators receive. This
means that the sensor measurements must be used to show that
the control actions are not correct. This difference raises the
question of whether the three detection strategies of the prior
section can handle actuator attacks or not. This section therefore
seeks to address the question of whether it is trivial to utilize the
sensor attack-handling techniques from Oyama and Durand
(2020) for handling actuator attacks, or if there are further
considerations.

We begin by considering the direct extension of all three
methods, in which Detection Strategies 1-S, 2-S, and 3-S are
utilized in a case where the sensor measurements are intact but
the actuators are attacked. In this work, actuator output attacks
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will be considered to happen when 1) the code in the controller
has been attacked and reformulated so that it no longer computes
the control action according to an established control law; 2) the
control action computed by a controller is replaced by a rogue
control signal; or 3) a control action is received by the actuator
but subsequently modified at the actuator itself.

When Detection Strategy 1-S is utilized but the actuators are
attacked, then at random times, it is intended to utilize the j-
LEMPC (however, because of the attack, the control actions from
the j-LEMPC are not applied). For an actuator attacker to fly
under the radar of the detection strategy, the attacker would need
to force a net decrease in Vj along the measured state trajectory
between the beginning and end of a sampling period and would
need to ensure that the closed-loop state measurement does not
leave Ωρ1 at any point in the sampling period (according to the
implementation strategy in Section 4.1). This restricts the set of
inputs that an attacker can provide in place of those coming from
the controller without being detected during a probing maneuver
to those that ensure that the closed-loop state does not exit Ωρ1
throughout the sampling period (ultimately maintaining the
closed-loop state within a safe operating region if that region
is a superset ofΩρ1). Thus, during a probing maneuver, Detection
Strategy 1-S, with the flagging of attacks both when Vj along the
measurement trajectory does not decrease by the end of a
sampling period and when the state measurement leaves Ωρ1
at any point during a sampling period, provides greater
protection from the impacts of attacks on safety when the
actuators are attacked than when the sensors are attacked.
Specifically, whereas there is no guarantee that an undetected
sensor attack would not cause a safety issue when using Detection
Strategy 1-S, when an actuator attack occurs instead, then over
the sampling period during which a probing maneuver is
undertaken, an actuator attacker is unable to cause a safety
issue for the closed-loop system without being detected
(because the sensor measurements are correct and would flag
this problematic behavior before the attacker could cause the
closed-loop state to leave a safe operating region). However,
because the value of the Lyapunov function at the state
measurements is only being checked at the beginning and end
of the sampling period, it is possible that the actual closed-loop
state could move out of Ωρ1 over a sampling period when a rogue
actuator output is applied, and furthermore that at such a point,
the measurement may not show this due to the noise. Therefore,
to handle the actuator attacks, it is necessary to add conservatism
to the design of the safe operating region compared toΩρ1, so that
instead of maintaining the state measurements and closed-loop
state within Ωρ1 only, they are maintained in the supersets of it
that prevent the closed-loop state from leaving a safe operating
region in the presence of noise and problematic inputs before a
sampling period is over. A method for devising such regions is
shown in a later section in the context of a combined sensor and
actuator attack-handling strategy that makes use of this
methodology. If this conservatism is added, then if an actuator
attack occurs in a sampling period during which a probing
maneuver occurs but it is undetected, the closed-loop state is
maintained within the safe operating region. When no probing
maneuver is occurring, then if the Lyapunov function evaluated at

the state measurement is increasing over a sampling period when
the closed-loop state is outside of Ωρe,1′

, it may be possible that an
attack is occurring and that this could be flagged to attempt to
catch the attack before the closed-loop state leaves Ωρ1; however,
as discussed in Section 4.3, in the presence of bounded
measurement noise, it is possible that Vj may not
monotonically decrease when evaluated using the state
measurements so that care must be taken in flagging a
temporary increase in Vj as a cyberattack to avoid
characterizing measurement noise as an attack.

An improved version of Detection Strategy 1-S when there are
actuator cyberattacks would only probe constantly for attacks
(i.e., the implementation strategy would be the same as that in
Section 4.1, except that the probing occurs at every sampling
time, instead of at random sampling times; this implementation
strategy assumes that the regions meeting the requirements in
Step 2 in Section 4.1 can be found at every sampling time,
although reviewing when this is possible in detail can be a subject
of future work). In this case, since at every sampling time, the
attacker would be constrained to choose inputs that cannot cause
the state measurement to leave Ωρ1, the attacker can never
perform an undetected attack that drives the closed-loop state
out of a safe operating region before it is detected. This indicates
that this modified version of Detection Strategy 1-S (referred to
subsequently as Detection Strategy 1-A) is resilient to
cyberattacks on actuators in the sense that it is able to prevent
an undetected attack from causing safety issues. In light of the
question of whether it is trivial to extend Detection Strategy 1-S to
handle actuator attacks, we note that Detection Strategy 1-A,
which performs continuous probing, is performed in a different
manner than Detection Strategy 1-S. Specifically, random
probing is used in Detection Strategy 1-S to attempt to
surprise an attacker, because the element of surprise is a part
of what that algorithm has to counter the fact that the sensor
measurements are incorrect. In contrast, Detection Strategy 1-A
does not need to have randomized or unpredictable probing; it
inherits its closed-loop stability properties from the fact that its
design forces the cyberattacker into a corner in terms of what
inputs they can apply, even if they fully knew how Detection
Strategy 1-A worked, without being detected. This indicates that
there is not a 1-to-1 correspondence between how a sensor
cyberattack should be handled and how an actuator
cyberattack should be handled, with approximately the same
strategy. Furthermore, for this strategy, we see a flip in its
power between the sensor and actuator attack-handling cases
in that Detection Strategy 1-S cannot guarantee safety when a
falsified state measurement is provided to the j-LEMPC but can
guarantee safety in the presence of an actuator attack during the
sampling period after a probing maneuver is initiated if the state
measurements are correct.

To further explore how the sensor attack-handling strategies
from Oyama and Durand (2020) extend to actuator cyberattack
handling, we next consider the use of Detection Strategy 2-S for
actuator attacks. This detection strategy is based on state
predictions. These predictions must be computed under some
inputs, so it is first necessary to consider which inputs these are
for the actuator attack extension. Several options for inputs that
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could be used in making the state predictions include an input
computed by a redundant control system, an approximation of
the expected control output (potentially obtained via fitting the
data between state measurements and (non-attacked) controller
outputs to a data-driven model), or a signal from the actuator if it
is reflective of what was actually implemented. If an actuator
signal reflective of the control action that was actually
implemented is received and a redundant control system is
available, these can be used to cross-check whether the
actuator output is correct. This would rapidly catch an attack
if the signals are not the same. However, if there is no fully
redundant controller (e.g., if actuator signals are available but
only an approximation of the expected control output is also
available) or if there is a concern that the actuator signals may be
spoofed (and there is either a redundant control system or an
approximation of the expected control output also available),
then state measurements can be used (in the spirit of Detection
Strategy 2-S as described in Section 4.2) to attempt to handle
attacks.

The motivation for considering this latter case in which state
measurements and predictions are used to check whether an
actuator attack is occurring is as follows: the difference between
the redundant control system output or approximation of the
control system output and the control output of the LEMPC that
is expected to be used to control the process can be checked a
priori, before the controller is put online. This will result in a
known upper bound ϵu between control actions that might be
computed by the LEMPC and those of the redundant or
approximate controller (for the redundant controller, ϵu = 0)
for a given state measurement. If the state measurements are
intact, then the state measurements and predictions under the
redundant or approximate controller can be compared to assess
the accuracy of the input that was actually applied. The redundant
or approximate controller can be used to estimate the input that
should be applied to the process, and state predictions can be
made using the nominal model of Eq. 1 to check whether the
input that was actually applied to the system seems to be
sufficiently similar to the input that was expected (in the sense
that it causes the control action that was actually applied to
maintain the state measurement in an expected operating region),
as it would have under the control action in the absence of an
actuator attack, and keeps the norm of the difference between the
state prediction and measurement below a bound. Even if ϵu = 0,
process disturbances and measurement noise could cause the
state prediction at the end of a sampling period over which a
control action is applied to not fully match the measurement;
however, if the error between the prediction and measurement is
larger than a bound ]u that should hold under normal operation
considering the noise, value of ϵu, and plant/model mismatch, this
signifies that there is another source of error in the state
predictions beyond what was anticipated, which can be
expected to come from the input applied to the process
deviating more significantly from what it should have been
than was expected (i.e., an actuator attack is flagged). Because
the state measurements are correct, the state predictions are
always initiated from a reasonably accurate approximation of
the closed-loop state; therefore, with sufficient conservatism in

the design of Ωρ1 and a constant monitoring of whether the state
measurement leaves that region, the closed-loop state can be
prevented from leaving a safe operating region within a sampling
period before an attack is detected. We will call the resulting
strategy Detection Strategy 2-A. A method for designing a
sufficiently conservative control strategy is shown in a later
section in the context of a combined sensor and actuator
attack-handling strategy that makes use of this methodology.
In contrast to Detection Strategy 2-S that can only ensure safe
operation for at least one sampling period after a sensor attack is
implemented, Detection Strategy 2-A, like Detection Strategy 1-
A, can be made fully resilient to actuator cyberattacks in the sense
that an undetected attack could not cause safety issues. As long as
the actual and predicted inputs are sufficiently close in a norm
sense (within ϵu of one another), and the disturbances and
measurement noise are bounded, then the deviations between
the actual and predicted input act as bounded plant/model
mismatch (if no attack is detected) that an LEMPC can be
designed to handle such that the actual state and predicted
state trajectories can still be kept inside a safe region of
operation under actuator attacks with the monitoring of
whether the state measurement leaves Ωρ1. Once again, we see
that the modifications to Detection Strategy 2-S, and casting it in
a form applicable to actuator attacks rather than sensor attacks,
significantly enhances the power of the strategy compared to what
can be guaranteed with sensor attacks only.

So far, the extended versions of Detection Strategy 1-S and of
2-S to the actuator-handling case have been more powerful
against actuator attacks than Detection Strategies 1-S and 2-S
have been against sensor attacks. In contrast, attempting to utilize
Detection Strategy 3-S, which enabled safety to be maintained for
all times if a sensor measurement attack was undetected (and at
least one redundant estimator was not), may result in a strategy
that appears to be weaker in the face of actuator attacks. One of
the assumptions of Detection Strategy 3-S in Section 4.3 is that an
observer exists that satisfies the conditions in Assumption 1 and
Assumption 2. High-gain observers can meet this assumption,
and under sufficient conditions, they meet this assumption
regardless of the actual value of the input (which was
important for achieving the results in Theorem 3 as noted in
Remark 3). However, this means that in the case that only the
inputs are awry, the state estimates would still be intact because of
the convergence assumption, such that they will not deviate from
one another in the desired way and Detection Strategy 3-S could
not be used as an effective detection strategy for actuator attacks
with such estimators. Although a further investigation of whether
other types of observer designs or assumptions could be more
effective in designing an actuator attack-handling strategy based
on Detection Strategy 3-S (to be referred to as Detection Strategy
3-A) could be pursued, these insights again indicate that there are
fundamental differences between utilizing the detection strategies
for actuator attack-handling compared to sensor attack-handling.
The discussion throughout this section therefore seems to suggest
that the integrated control and detection frameworks presented
above have structures that make them more or less relevant to
certain types of attacks and that also affect the extent to which
they move toward flexible and lean frameworks with minimal
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redundancy for cyberattack detection, compared to relying on
redundant systems. For example, Detection Strategy 3-S relies on
redundant state estimators for detecting sensor attacks, but
Detection Strategy 2-A relies on having a redundant controller
for detecting actuator attacks. It is interesting in light of this that
Detection Strategies 1-A and 1-S do not require redundant
control laws but do require many different steady-states to be
selected over time.We can also note that the strength of Detection
Strategies 1-A and 2-A against actuator attacks above comes
partially from the ability of the combined detection and control
policies in those cases to set expectations for what the sensor
signals should look like that, if not violated, indicate safe
operation, and if violated, can flag an attack before safe
operation is compromised. As will be discussed later, this has
relevance to the notions of cyberattack discoverability in that to
cause attacks to be discoverable, integrated detection and control
need to be performed such that the control theory can set the
expectations for detection to be different if there is an attack or
impending safety issue from an attack compared to if not, to force
attacks to show themselves. A part of the power of a theory-based
control law like Detection Strategy 1-A or 2-A against actuator
attacks is the ability to perform that expectation setting.

6 MOTIVATION FOR DETECTION
STRATEGIES FOR ACTUATOR AND
SENSOR ATTACKS

The above sections addressed how LEMPC might be used for
handling sensor attacks or actuator attacks individually. In this
section, we utilize a process example to motivate further work on
exploring how LEMPC might be used to handle both sensor and
actuator attacks. Specifically, consider the nonlinear process
model below, which consists of a continuous stirred tank
reactor (CSTR) with a second-order, exothermic, irreversible
reaction of the form A→B with the following dynamics:

_CA !
F

V
CA0 − CA( ) − k0e

− E
RgTC2

A (40)

_T !
F

V
T0 − T( ) −

ΔHk0
ρLCp

e
− E
RgTC2

A +
Q

ρLCpV
(41)

where the states are the reactant concentration of species A (CA)
and temperature in the reactor (T). The manipulated input is CA0

(the reactant feed concentration of species A). The values of the
parameters of the CSTRmodel (F, V, k0, E, Rg, T0, ρL, ΔH, and Cp)
are taken from (Heidarinejad et al., 2012b). The vectors of
deviation variables for the states and input from their
operating steady-state values,
x1s ! [CAs Ts]T ! [2.00 kmol/m3 350.20 K]T, CA0s = 4.0 kmol/
m3, respectively, are x1 ! [x1,1 x1,2]T ! [CA − CAs T − Ts]T and
u1 = CA0−CA0s. The process model represented by Eqs 40, 41 is
numerically integrated using the explicit Euler method with the
integration step of 10–4 h. The stage cost, for which the time
integral is desired to be maximized, is selected to be
Le ! k0e−E/(RgT)C2

A. The sampling period was set to Δ = 0.01
h, with the prediction horizon set to N = 10. The initial condition
for the closed-loop state was 0.7 kmol/m3 below the steady-state

value for CA and 30 K below the steady-state value for T. The
LEMPC simulations were performed using fmincon on a Lenovo
model 80XN x64-based ideapad 320 with an Intel(R) Core(TM)
i7-7500U CPU at 2.70 GHz, 2,904 Mhz, running Windows 10
Enterprise, in MATLAB R2016b. To ensure that the fmincon
solver status was that it stated it had found a local minimum, a
variety of initial guesses for the solver were made at a sampling
time if it did not find a local minimum using the first guess.

The Lyapunov-based stability constraints in Eqs 9a, 9b were
designed using a quadratic Lyapunov function V1 = xTPx, where
P = [110.11 0; 0 0.12]. The Lyapunov-based controller utilized
was a proportional controller of the form h1(x1) ! −1.6x1,1 −
0.01x1,2 (Heidarinejad et al., 2012b) subject to input constraints (|
u1| ≤ 3.5 kmol/m3). The stability region was set to ρ1 = 440
(i.e., Ωρ1 ! {x ∈ R2: V1(x)≤ ρ1}) and ρe,1′ ! 330. The LEMPC
receives full-state feedback, which is sent to the LEMPC at
synchronous time instants tk. The controller receives a state
measurement subject to bounded measurement noise, and the
process is subject to bounded disturbances. Specifically, the noise
is represented by a standard normal distribution with mean zero,
standard deviations of 0.0001 kmol/m3 and 0.001 K, and bounds
of 0.00001 kmol/m3 and 0.0005 K for the concentration of the
reactant and reactor temperatures, respectively. In addition,
disturbances were added to the right-hand side of the
differential equations describing the rates of change of CA and
T with zero mean and standard deviations of 0.05 kmol/m3 h and
2 K/h, and bounds of 0.005 kmol/m3 h and 1 K/h, respectively.
Normally distributed random numbers were implemented using
the randn function in MATLAB, with a seed of 10 to the random
number generator rng.

We first seek to gain insight into the differences between single
attack-type cases and simultaneous sensor and actuator attacks.
To gain these insights, we will use the strategies inspired by the
detection strategies discussed above, but not meeting the
theoretical conditions, so that these are not guaranteed to have
resilience against any types of attacks (some discussion of moving
toward getting theoretical parameters for LEMPC, which
elucidates that obtaining the parameters that guarantee
cyberattack-resilience for LEMPC formulations in practice
should be a subject of future work, will be provided later in
this work). Despite the fact that there are no guarantees that any
of the strategies used in this example that attempt to detect attacks
will do so with the parameters selected, this example still provides
a number of fundamental insights into the different
characteristics of single attack types compared to simultaneous
sensor and actuator attacks, providing motivation for the next
results in this work. We also consider that the attack detection
mechanisms are put online at the same time as the cyberattack
occurs (0.4 h) so that we do not consider that they would have
flagged, for example, the changes in the sensor measurements
under a sensor measurement attack between the times prior to 0.4
and 0.4 h.

The case studies to be undertaken in moving toward
understanding the differences between single and multiple
attack-type scenarios involve an LEMPC where the constraint
of Eq. 9b is enforced at the sampling time, followed by the
constraints of the form of Eq. 9a enforced at the end of all
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sampling periods. The first study involves an attack monitoring
strategy that involves checking whether the closed-loop state is
overall driven toward the origin over a sampling period (if it is
not, a possibility of an attack will be flagged). We implement
attacks at 0.4 h; sensor attacks are implemented such that the
measurement received by the sensor at 0.4 h would be faulty, and
an actuator attack would be implemented by replacing the input
computed for the time period between 0.4 and 0.41 h with an
alternative input. When no attack occurs in the sampling period
following 0.4 h of operation, the Lyapunov function evaluated at
the actual state and at the state measurement decreases over the
subsequent sampling period, as shown in Figures 1, 2.

If instead we consider the case where only a rogue actuator
output with the form u = 0.5 kmol/m3 is provided to the process
for a sampling period after 0.4 h of operation, Figures 1, 2 show
that the Lyapunov function profile increases over one sampling
period after the attack policy is applied, when the Lyapunov
function is evaluated for both the actual state and the measured
state, and thus, this single attack event would be flagged by the
selected monitoring methodology. Consider now the case where
only a false state measurement for reactant concentration, with
the form x1 + 0.5 kmol/m3, is continuously provided to the
controller after 0.4 h of operation. This false sensor
measurement causes the Lyapunov function value to decrease
along the measurement trajectory, as can be seen in Figure 2,
showing that this attack would not be detected by the strategy.
However, it also decreases along the actual closed-loop state
trajectory in this case (Figure 1) so that no safety issues
would occur in this sampling period. This is thus a case when
individual attacks would either be flagged over the subsequent
sampling period or would not drive the closed-loop state toward

the boundary of the safe operating region over that sampling
period. Due to the large (order-of-magnitude) difference in the
value of V1 evaluated along the measured state trajectory between
the case that the sensor attack is applied and that no attack occurs,
as shown in Figure 1, it could be argued that this type of attack
could be flagged by the steep jump in V1 between the times prior
to the sensor attack that occurs at 0.4 and 0.4 h. However, because
we assumed that the method for checking V1 was not put online
until 0.4 h, we assume that it does not have a record of the prior
value of V1 so that we can focus on the trends in this single
sampling period after the attacks.

We now consider two scenarios involving the combinations of
sensor and actuator attacks. First, we combine the two attacks just
described (i.e., false measurements are continuously provided to
the controller and detection policies, which have the form x1 +
0.5 kmol/m3, and rogue actuator outputs with the form u =
0.5 kmol/m3 are provided directly to the actuators to replace
any inputs computed by the controller). This attack is applied to
the process after 0.4 h of operation and subsequently referred to
as the “baseline” combined actuator and sensor attack because it
is a straightforward extension of the two separate attack policies.
In this case, the value of V1 increases along the measurement
trajectory and also increases for the actual closed-loop state so
that this attack would be flagged by the proposed policy. In some
sense, the addition of the actuator attack made the fact that the
systemwas under some type of attack “more visible” to this detection
policy than in the sensor attack-only case (although the individual
sensor attack was not causing the closed-loop state to move toward
the boundary of the safe operating region so that the lack of detection
of an attack in that case would not be considered problematic).

FIGURE 1 | Actual V1 profiles over one sampling period after 0.4 h of

operation for the process example described above in the presence of no

attacks (“None”), only actuator cyberattacks (“Actuator”), only sensor attacks

(“Sensor”), the baseline combined actuator and sensor attacks

(“Combined”), and the stealthy combined sensor and actuator attack

(“Stealthy”). The plots for the actuator attack, baseline combined actuator and

sensor attack, and stealthy sensor and actuator attack are overlaid due to all

having the same input (the false actuator signal) over the sampling period.

FIGURE2 | V1 profiles evaluated using the statemeasurements over one

sampling period after 0.4 h of operation for the process example described

above in the presence of no attacks (“None”), only actuator cyberattacks

(“Actuator”), only sensor attacks (“Sensor”), the baseline combined

actuator and sensor attacks (“Combined”), and the stealthy combined sensor

and actuator attack (“Stealthy”). The plots for no attack and for the stealthy

combined sensor and actuator attack are overlaid because the stealthy attack

provides the no-attack sensor trajectory to the detection device to evade

detection.
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We next consider an alternative combined sensor and actuator
attack policy, which we will refer to as a “stealthy” policy. In this
case, the attacker provides the exact state trajectory to the
detection device that would have been obtained if there was
no attack, while at the same time falsifying the inputs to the
process. In the case that this same false actuator trajectory was
applied to the process and the sensor readings were accurate, we
considered that it could be flagged. With the falsified sensor
readings occurring at the same time, however, the attack is both
undetected and driving the closed-loop state closer to the
boundary of the safe operating region over a sampling period.
From this, it can be seen that a major challenge arising from
combining the attacks is that actuator attack detection policies
based on state measurements may fail when attacks are
combined, so that the state measurements may imply that the
process is operating normally when problematic inputs are being
applied.

This raises the question of whether there are alternative
detection policies that might flag combined attacks, including
those of the stealthy type just described that was “missed” by the
detection policy described above where an overall decrease in the
Lyapunov function value for the measured state across a sampling
period was considered. For example, some of the detection
methods described in the prior sections are able to flag
actuator attacks before safety issues occur, whereas others flag
sensor attacks. This suggests that detection strategies with
different strengths might be combined into two-part detection
strategies that involve multiple detection methods. To explore the
concept of combining multiple methods of attempting to detect
attacks (where again this example does not meet theoretical
conditions required for resilience and is meant instead to
showcase concepts underlying simultaneous attack
mechanisms), we consider designing a state estimator for the
process to use to compare state estimates against full-state
feedback. If the difference between the state estimates and
state measurements is larger than a threshold considered to
represent abnormal behavior, we will flag that an attack might
be occurring. In addition, we will monitor the decrease in the
Lyapunov function evaluated along the trajectory of the state
measurement over time, and flag a potential attack if it is
noticeably increasing across a sampling period.

To implement such a strategy, we must first design a state
estimator. We will use the high-gain observer from (Heidarinejad
et al., 2012b) with respect to a transformed system state obtained
via input–output linearization. This estimator (which is
redundant because full-state feedback is available) will be used
to estimate the reactant concentration of species A from
continuously available temperature measurements. The
observer equation using the set of new coordinates is as follows:

_̂z ! Aẑ + L y − Cẑ( ) (42)
where ẑ is the state estimate vector in the new coordinate z !
[x2 _x2]T Khalil (2002), y is the output measurement, A = [0 1;
0 0], C = [1 0], and L = [100 10,000]T. To obtain the state estimate
of the system z, the inverse transformation T−1(ẑ) is applied.

The next step in designing the detection strategy is to decide
on a threshold for the norm of the difference between the state

estimate and the state feedback. As a rough attempt to design one
that avoids flagging measurement noise and process disturbances
as attacks, the data from attack-free scenarios are gathered by
simulating the process under different initial conditions and
inputs within the input bounds. Particularly, we simulate
attack-free events with an end time of 0.4 h of operation for
initial conditions in the following discretization: x1 ranges from
−1.5 to 3 kmol/m3 in the increments of 0.1 kmol/m3, with x2
ranging from −50 to 50 K in the increments of 5 K. When these
initial conditions are within the stability region, the initial value of
the state estimate is found in the transformed coordinates based
on the assumption that the initial condition holds. Then, inputs
must be generated to apply to the process with noise and
disturbances. To explore what the threshold on the difference
between the state measurement and estimate might be after 0.4 h
to set a threshold to use when the state estimation-based attack
detection strategy comes online at that time, we try several
different input policies. One is to try h1(x) at every integration
step; if this is done, then the maximum value of the norm of the
difference between the state estimate and state measurement at
0.4 h among the scenarios tested is 0.026. If instead a random
input policy is used (i.e., at every integration step, a new value of u
is generated with mean zero and standard deviation of 2, and
bounds on the input of −3.5 and 3.5 kmol/m3), then the
maximum value of the difference between the state estimate
and state measurement at 0.4 h among the scenarios tested is
0.122. If instead the random inputs are applied in sample-and-
hold with a sampling period of length 0.01 h, the maximum value
of the difference between the state estimate and state
measurement at 0.4 h is 0.885. If the norm of the error
between the state estimate and state measurement is checked
at 1 h instead of 0.4 h in the three cases above, the results are
0.003, 0.107, and 0.923, respectively. Though a limited data set
was used in these simulations and the theoretical principles of
high-gain observer convergence were not reviewed in developing
this threshold, 0.923 was selected for the cyberattack detection
strategy based on the simulations that had been performed. One
could also set the threshold by performing simulations for 0.4 h
for a number of different initial states, specifically operated under
the LEMPC, instead of the alternative policies above. Changing
the threshold in the following discussion could have an impact on
attack detection, although there would still be fundamental
differences between single attack-type scenarios and
simultaneous attack-type scenarios as discussed below.

We next consider the application of the same form of the
baseline attacks as described in the prior example occurring at
once, i.e., false measurements are continuously provided to the
controller, which have the form x1 + 0.5 kmol/m3, and rogue
actuator outputs with the form u = 0.5 kmol/m3 are provided to
the process at 0.4 h of operation. In this combined attack scenario,
the norm of the difference between the (falsified) state
measurement and the state estimate at 0.4 h is 0.5016, and at
0.41 h is 0.5233, demonstrating that if the threshold is set to a
larger number such as 0.923, the state estimate-based detection
mechanism does not flag this attack at 0.4 or 0.41 h. Figure 3 plots
the closed-loop state trajectory against the state estimate
trajectory over one sampling period after 0.4 h of operation,
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showing the closeness of the trajectories in that time period
despite the sensor and actuator attacks at 0.4 h. In fact, if this
system is simulated with an actuator attack only, then the
difference in the state estimate and state measurement at
0.41 h (the time at which the effects of the actuator attack
could first be observed in the process data) is 0.05, showing
that with the selected threshold for flagging an attack based on the
difference between the state estimate and measurement, the
actuator attack only would not be flagged at 0.41 h (despite
that there is a net increase in the Lyapunov function value
along the measured state trajectory in this case because that is

not being checked with only the state estimate-based detection
strategy). Considering that the threshold was set based on non-
attacked measurements and many different input policies for the
threshold set, it is reasonable to expect that an attack would not be
flagged if only the input was to change.

For the baseline combined sensor and actuator case, Figure 4
shows that the Lyapunov function increases over the sampling
period after 0.4 h along the measurement trajectory. Therefore,
like the case where only the Lyapunov function was checked to
attempt to flag this baseline combined attack, the baseline
combined sensor and actuator attack can be detected here as
well between 0.4 and 0.41 h. Though the attack occurs and is
flagged, the closed-loop state was still kept inside the stability
regionΩρ1 over the sampling period that the attacks were applied,
as indicated in Figure 5.

If the stealthy combined sensor and actuator attack from the
prior section is applied, the Lyapunov function value along the
closed-loop state trajectory is again increasing, but again, it is
decreasing along the estimated trajectory between 0.4 and 0.41 h.
However, if this simulation is run longer, then the attack is
eventually detected via the deviation of the state estimates
from the state measurements exceeding the 0.923 threshold, at
0.45 h. In the case that only the Lyapunov function value along
the measured state trajectories is checked until 0.45 h, no attack is
yet detected, as the Lyapunov function value continues to
decrease from 0.4 to 0.45 h along the measured state
trajectory. These examples indicate the complexities of having
combined sensor and actuator attacks, and also showcase that
different detection policies may be better suited for detecting the
combined attacks than others. This motivates a further study of
the techniques and theory for handling the combined attacks,
which is the subject of the next section.

Remark 7. The combined methods illustrated in the examples
above do not determine the source of the attacks (e.g., the reason

FIGURE 3 |Comparison between the closed-loop state trajectory under

attack (solid line) and the closed-loop state estimate trajectory (dashed lines)

over one sampling period after 0.4 h of operation under the state feedback

LEMPC.

FIGURE 4 | V1 profile along the measurement trajectory over one

sampling period after 0.4 h of operation for the process example in the

presence of multiple cyberattack policies (baseline case).

FIGURE 5 | Stability region and closed-loop state trajectory for the

process example in the presence of multiple cyberattack policies (baseline

case).
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why the Lyapunov function increases could be either due to false
sensors, incorrect actuator outputs, or both). However, the nature
of a sensor attack differs from a sensor fault. A faulty sensor
creates a state trajectory that is not inherently “dynamics based”
and intelligently designed to harm a process.

7 INTEGRATED CYBERATTACK
DETECTION AND CONTROL STRATEGIES
USING LEMPC UNDER MULTIPLE ATTACK
TYPE SCENARIOS

The detection concepts described in the prior sections (and
summarized in Table 1) have been developed to handle only
single attack-type scenarios (i.e., either false sensor measurements
or rogue actuator signals). However, to make a CPS resilient
against different types of cyberattacks, the closed-loop system
must be capable of detecting and mitigating scenarios where
multiple types of attacks may happen simultaneously. As in the
prior sections, detection approaches that not only enable the
detection of attacks but that also prevent safety breaches when an
attack is undetected are most attractive. This section extends the
discussion of the prior sections to ask whether the detection
strategies from Oyama and Durand (2020) that were developed
for sensor cyberattack-handling and extended to actuator
cyberattack-handling above can be used in handling
simultaneous sensor and actuator attacks on the control systems.

We first note that based on the discussion in Section 5, we do
not expect only a single method previously described (Detection
Strategies 1-S, 2-S, 3-S, 1-A, 2-A, or 3-A) to be capable of
handling both sensor and actuator cyberattacks occurring
simultaneously. Instead, to handle the possibility that both
types of attacks may occur, we expect that we may need to
combine these strategies. However, care must be taken to select
and design integrated control/detection strategies such that
cyberattack detection and handling are guaranteed even when
sensors and/or actuators are under attack. This is because the two
types of attacks can interact with one another to degrade the
performance of some of the attack detection/handling strategies
that work for single attack types as suggested in the example of the
prior section. For example, as noted in Section 5, in general,
sensor measurement cyberattack-handling strategies may make
use of correct actuator outputs in identifying attacks, and actuator
attack-handling strategies may make use of “correct” (except for
the sensor noise) sensor measurements in identifying attacks. If

the actuators are no longer providing a correct output, it is then
not a given that a sensor measurement cyberattack-handling
strategy can continue to be successful, and if the sensors are
attacked, it is not a given that an actuator cyberattack-handling
strategy can continue to be successful. In this section, we analyze
how the various methods in this work perform when these
interactions between the sensor and actuator attacks may serve
to degrade performance of strategies that worked successfully for
only one attack type.

We discuss below the nine possible pairings of actuator and
sensor attack-handling strategies based on the detection strategies
discussed in this work. The goal of this discussion is to elucidate
which of the combined strategies may be successful at preventing
simultaneous sensor and actuator attacks from causing safety
issues and which could not be based on counterexamples:

• Pairing Detection Strategies 1-S and 1-A: These two
strategies essentially have the same construction (where
when both are activated, there must be constant
changing of the steady states around which the j-
LEMPCs are designed for constant probing to satisfy the
requirements of using Detection Strategy 1-A), in which a
decrease in the Lyapunov function value along the measured
state trajectories is looked for to detect both the actuator and
sensor attacks. Consider a scenario in which an attacker
provides sensor measurements that show a decrease in the
Lyapunov function value when that would be expected, thus
preventing the attack from being detected by the sensors. At
the same time, the actuators may be producing inputs
unrelated to what the sensors show, which could cause
safety issues even if the sensors are not indicating any
safety issues, due to attacks occurring on both the
sensors and actuators. This pairing is therefore not
resilient against combined attacks on the actuators and
sensors (i.e., it is not guaranteed to detect attacks that
would cause safety issues).

• Pairing Detection Strategies 1-S and 2-A: Detection Strategy
1-S relies on the value of the Lyapunov function decreasing
between the beginning and end of a sampling period when
the Lyapunov function is evaluated at the state
measurement. Detection Strategy 2-A relies on the
difference between a state prediction (from the last state
measurement and under the expected input corresponding
to that measurement) and a state measurement being less
than a bound. This design faces a challenge for resilience
against simultaneous sensor and actuator attacks in that the

TABLE 1 | Single attack-type cyberattack detection strategies described.

Detection strategy Component attacked Detection/Control policy

Strategy 1−S Sensor Random updates to LEMPC

Strategy 2−S Sensor Based on state predictions from last state measurement received

Strategy 3−S Sensor Based on cross-checks of state estimates between multiple redundant state estimators

Strategy 1−A Actuator Updates to LEMPC at every sampling time

Strategy 2−A Actuator Based on state predictions under expected inputs

Strategy 3−A Actuator Based on cross-checks of state estimates between multiple redundant state estimators
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detection strategies for both types of policies depend on the
state measurements. Since the state measurements here are
falsified, this gives room for any actuator signal to be
utilized, and then the sensors to provide readings that
suggest that the Lyapunov function is decreasing and that
the prediction error is within a bound. Thus, in this strategy,
because there is no way to cross-check whether the sensor
measurements are correct when there is also an actuator
attack, safety is not guaranteed when there are undetected
simultaneous attacks.

• Pairing Detection Strategies 1-S and 3-A: Detection Strategy
1-S relies on the state measurement creating a decrease in
the Lyapunov function, while Detection Strategy 3-A relies
on redundant state estimates being sufficiently close to one
another. If Detection Strategy 1-S is not constantly activated
(i.e., there is no continuous probing), then because
Detection Strategy 3-A may not be guaranteed to detect
actuator attacks and Detection Strategy 1-S may not detect
them between probing times as described in Section 5, this
strategy may not be resilient against actuator attacks (and
thus also may not be against simultaneous actuator and
sensor attacks). However, a slight modification to the
strategy to achieve constant probing under Detection
Strategy 1-S, forming the pairing of Detection Strategies
3-S and 1-A (because Detection Strategies 3-A and 3-S are
equivalent in how they are performed) is resilient against
simultaneous sensor and actuator attacks, as is further
discussed below. If instead of probing, Ωρ1 is designed to
be a sufficiently conservative subset of a safe operating
region, then it could be checked whether at any time, the
state measurement leavesΩρ1 to flag the attacks; this strategy
would also follow similarly to the strategy for detecting
attacks using the combination of Detection Strategies 3-S
and 1-A for which a proof is provided in a subsequent
section.

• Pairing Detection Strategies 2-S and 1-A: This strategy faces
similar issues to the combination of Detection Strategies 1-S
and 2-A above. Specifically, these strategies again utilize
state measurements only to flag attacks, allowing rogue
actuator inputs to be applied at the same time as false
state measurements without allowing the attacks to be
flagged.

• Pairing Detection Strategies 2-S and 2-A: This is a case
where only state measurements are being used to flag
attacks, so like other methods above where this is
insufficient to prevent the masking of rogue actuator
trajectories by false sensor measurements, this strategy is
also not resilient against attacks.

• Pairing Detection Strategies 2-S and 3-A: Detection Strategy
2-S is based on the expected difference between state
predictions and actual states, and Detection Strategy 3-A
is based on checking the difference between multiple
redundant state estimates. If the threshold for Detection
Strategy 2-S is redesigned (forming a pairing that we term as
the combination of Detection Strategies 2-A and 3-S below
since the threshold redesign must account for actuator
attacks as described for Detection Strategy 2-A above to

avoid false alarms), the strategy would be resilient to
simultaneous actuator and sensor attacks. This is further
detailed in the subsequent sections (although it requires that
at least one state estimator is not impacted by the attacks).

• Pairing Detection Strategies 3-S and 1-A: This detection
strategy can be made resilient against simultaneous actuator
and sensor attacks and receives further attention in the
following sections to demonstrate and discuss this (though
at least one state estimator cannot be impacted by the
attacks).

• Pairing Detection Strategies 3-S and 2-A: This strategy can
be made resilient for adequate thresholds on the state
prediction and state estimate-based detection metrics and
will be further detailed below.

• Pairing Detection Strategies 3-S and 3-A: This strategy faces
the challenge that it may not enable actuator attacks to be
detected because both Detection Strategy 3-S and Detection
Strategy 3-A are dependent only on state estimates, which
may not reveal incorrect inputs as discussed in Section 5.
Therefore, it would not be resilient for a case when actuator
and sensor attacks could both occur if the redundant
observer threshold holds regardless of the applied input.

The above discussion highlights that to handle both the sensor
and actuator attacks, a combination strategy cannot be based on
sensor measurements alone. In the following sections, we detail
how the combination strategies using Detection Strategies 3-S
and 1-A, and 3-S and 2-A, can be made resilient against
simultaneous sensor and actuator attacks in the sense that, as
long as at least one state estimate is not impacted by a false sensor
measurement attack, the closed-loop state is always maintained
within a safe operating region if attacks are undetected, even if
both attack types occur at once. We note that the assumptions
that the detectors are intact (e.g., that at least one estimator is not
impacted by false sensor measurements or that a state prediction
error-based metric is evaluated against its threshold) implies that
other information technology (IT)-based defenses at the plant are
successful, indicating that the role of these strategies at this stage
of development is not in replacing IT-based defenses but in
providing extra layers of protection if there are concerns that
the attacks could reach the controller itself (while leaving some
sensor measurements and detectors uncompromised).

7.1 Simultaneous Sensor and Actuator
Attack-Handling via Detection Strategies
3-S and 1-A: Formulation and
Implementation
In the spirit of the individual strategies Detection Strategy 3-S and
Detection Strategy 1-A, a combined policy (to be termed
Detection Strategy 1/3) can be developed that uses redundant
state estimates to check for sensor attacks (assuming that at least
one of the estimates is not impacted by any attack), and also uses
different LEMPCs at every sampling time that are designed
around different steady-states but contained within a subset of
a safe operating region Ωρsafe (the subsets are called Ωρi ⊂ Ωρsafe).
Under sufficient conditions (which will be clarified in the next
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section), both the closed-loop state and state estimate are
maintained in Ωρsafe for all time for the process without
attacks or with undetected attacks. The notation to be used for
the LEMPC for Detection Strategy 1/3 has the form in Eq. 11with
Eq. 11c replaced by ~xi(tk) ! z1,i(tk) (in this subsection, we will
refer to this LEMPC as the i-th output feedback LEMPC of Eq. 11.
The output feedback LEMPC design of Eq. 11 receives a state
estimate z1,i at tk. In the following, i will be used as a subscript for
some of the previously introduced notation to reflect that the
quantity is defined for the system in deviation variable form from
the i-th steady state.

The implementation strategy for Detection Strategy 1/3
assumes that the process has already been run successfully in
the absence of attacks under the i = 1 output feedback LEMPC of
Eq. 11 for some time (tq) such that |zj,i(t) − xi(t)|≤ ϵ

p

mj for all j =
1, . . . , M. In consonance with Oyama and Durand (2020), we
consider bounded measurement noise
(i.e., |xi(tk) − ~xi(tk)|≤ θv,i). For bounded measurement noise,
the subset regions of Ωρi ⊂ Ωρsafe, termed Ωρg,i and Ωρh,i, i ≥ 1,
must be considered in the implementation strategy, and they are
selected such that if the state measurement is in
Ωρg,i ⊂ Ωρh,i ⊂ Ωρ1, then the closed-loop state and the state
measurement are maintained in Ωρsafe under sufficient
conditions. We assume that no attacks occur before tq.

1) Before tq, operate the process under the 1-LEMPC of Eq. 11.
Go to Step 2.

2) At sampling time tk, when the i-th output feedback LEMPC of Eq.
11 was just used over the prior sampling period to control the
process of Eq. 1, if |zj,i(tk)−zp,i(tk)| > ϵmax, j = 1, . . . ,M, p = 1, . . . ,
M, or ~xi(tk) ! z1,i(tk) ∉ Ωρi ⊂ Ωρsafe, detect that a cyberattack
is occurring and go to Step 3. Else, go to Step 4 (i ← i + 1).

3) Mitigating actions may be applied (e.g., a backup policy such
as the use of a redundant controller or an emergency
shutdown mode).

4) Select a new i-th steady-state. This steady-state must be such that
the closed-loop statemeasurement in deviation form from the new
steady-state ~xi(tk) is not in a neighborhoodΩρs,i of the i-th steady-
state. This steady-state must be such that ~xi(tk) ∈ Ωρg,i ⊂

Ωρh,i ⊂ Ωρi ⊂ Ωρ1 ⊂ Ωρsafe and the steady-state input is within
the input bounds (Ωρg,i is selected such that if the state
measurement at tk is in Ωρg,i then the closed-loop state and the
state estimate are maintained in Ωρi ⊂ Ωρsafe over the subsequent
sampling period under sufficient conditions). Go to Step 5.

5) The control actions computed by the i-LEMPC of Eq. 11 for
the sampling period from tk to tk+1 is used to control the
process according to Eq. 11. Go to Step 6.

6) Evaluate the Lyapunov function at the beginning and end of the
sampling period, using the state measurements. If Vi does not
decrease over the sampling period or if ~xi(tk+1) ! z1,i(tk+1) is
not within Ωρi ⊂ Ωρsafe or Ωρ1, detect that the process is
potentially under a cyberattack. Go to Step 3. Else, go to Step 7.

7) (tk ← tk+1). Go to Step 2.

Remark 8. Though the focus of the discussions has been on
preventing safety issues, it is possible that the detection and

control policies described in this work may sometimes detect
other types of malicious attacks that attempt to spoil products or
cause a process to operate inefficiently to attack economics. The
impacts of the probing strategies on process profitability
(compared to routine operation) can be a subject of future work.

7.1.1 Simultaneous Sensor and Actuator
Attack-Handling via Detection Strategies 3-S and 1-A:
Stability and Feasibility Analysis
In this section, we prove recursive feasibility and safety of the
process of Eq. 1 under the LEMPC formulations of the output
feedback LEMPCs of Eq. 11 whenever no sensor or actuator
attacks are detected according to the implementation strategy in
Section 7.1 in the presence of bounded measurement noise. The
theorem below characterizes the safety guarantees (defined as
maintaining the closed-loop state inΩρsafe) of the process of Eq. 1
for all time under the implementation strategy of Section 7.1
when no sensor and actuator cyberattacks are detected.

Theorem 4. Consider the closed-loop system of Eq. 1 under the
implementation strategy of Section 7.1 (which assumes the existence
of a series of steady-states that can satisfy the requirements in Step 4),
where the switching of the controllers at sampling times starts after
tq and no sensor or actuator cyberattack is detected with the i-th
output feedback LEMPC of Eq. 11 based on an observer and
controller pair satisfying Assumption 1 and Assumption 2 (in
which at least one of the state estimators is not affected by false
state measurements) and formulated with respect to the j = 1
measurement vector, and where each controller hi(·), i ≥ 1, used
in each i-LEMPC meets the inequalities in Eqs 2, 3 with respect to
the i-th dynamic model. Let θw,i ≤ θpw,i, θv,i ≤ θpv,i, ϵi ∈ (ϵpLi, ϵ

p

Ui), and
|zj,i(t0) − xi(t0)|≤ em0j,i, for j = 1, . . . , M. Let ϵW,i > 0, Δ> 0,
N≥ 1, ρsafe > ρsamp4 > ρsamp3 > ρ1 > ρh,1 > ρh,1′ , Ωρp ⊂ Ωρ1 ⊂ X1 for
P≥ 2, ρi > ρh,i > ρg,i > ρmin ,i > ρs,i > ρs,i′ > 0, where Ωρg,i is defined as
a level set within Ωρi ⊂ Ωρ1 ⊂ Ωρsafe that guarantees that if
Vi(z1,i(tk))≤ ρg,i, Vi(xi(tk)) ≤ ρh,i. Let the following inequalities
be satisfied:

ρg,i ! max Vi z1,i tk( )( ): Vi xi tk( )( )≤ ρh,i, i ! 2, . . . ,{
|z1,i tk( ) − xi tk( )|≤ ϵpM,i} (43)

ρh,1′ ≤ ρh,1 −Mf,1 max tz1,Δ{ }α4,1 α−11,1 ρ1( )( ) (44)

−α3,i α
−1
2,i ρs,i′( )( ) + Lx,i′ Mf,iΔ + ϵ

p

M,i( ) + Lw,i′ θw,i ≤ − ϵW,i/Δ,
i ! 1, 2, . . . (45)

ρh,i + fV,i ϵ
p

M,i( )< ρi, i ! 1, 2, . . . (46)

ρmin ,i ! max Vi xi t( )( ): xi tk( ) ∈ Ωρs,i′{ }, t ∈ tk, tk+1[ ), ui ∈ Ui,

i ! 1, 2, . . . (47)

ρs,i′ <min Vi xi tk( )( ): z1,i tk( ) ∈Ωρg,i/Ωρs,i , |z1,i tk( )−xi tk( )|≤ϵpM,i{ },
i! 1,2, . . . (48)

ϵW,i > max
z1,i tk( )∈Ωρg,i/Ωρs,i

min Vi z1,i tk( )( ) : z1,i tk( ) ∈ Ωρg,i/Ωρs,i{ }
∣∣∣∣∣∣∣

−max Vi z1,i tk+1( )( ) : z1,i tk( ) ∈ Ωρg,i/Ωρs,i, ui ∈ Ui,{
|xi tp( ) − z1,i tp( )|≤ ϵpM,i, p ! k, k + 1}| (49)
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ρsamp3 ! max Vi xi tk( )( ) : z1,i tk( ) ∈ Ωρ1, i ! 2, . . . ,{
|z1,i tk( ) − xi tk( )|≤ ϵpM,i}

(50)

ρsamp4 ! max Vi xi t( )( ) : Vi xi tk( )( )≤ ρsamp3,{
i ! 2, . . . , ui tk( ) ∈ Ui, t ∈ tk, tk+1[ )} (51)

where tz1 is the first sampling time after tb1, i = 1, . . . ,M. Then, if
x1(t0) ∈ Ωρh,1′ , xi(t) ∈ Ωρsafe for all t≥ 0 and z1,i(t) ∈ Ωρsafe for
t≥max {Δ, tz1} until a cyberattack is detected according to the
implementation strategy in Section 7.1, if the attack occurs after
tq under the i-th LEMPC.

Proof 1. The proof consists of four parts. In Part 1, the
feasibility of the i-th output feedback LEMPC of Eq. 11 is
proven when z1,i(tk) ∈ Ωρi. In Part 2, we show that the closed-
loop state trajectory is contained in Ωρh,1 ⊂ Ωρsafe for t ∈ [t0,
max{Δ, tz1}). In Part 3, we prove that for t > max{Δ, tz1} but
before an attack occurs, xi(t) and z1,i(t) are bounded within
Ωρ1, and that (Vi(tk+1)−Vi(tk)) < 0. In Part 4, we prove that if
there is an attack (either a false sensor measurement attack, actuator
attack, or both) at tk but it is not detected using the proposed control/
detection strategy (i.e., |zj,i(t) − zp,i(t)|≤ ϵmaxi and (Vi(tk+1)−Vi(tk))<
0, for all j = 1, . . . ,M, p = 1, . . . ,M), xi(t) and z1,i(t) are bounded in
Ωρsafe.

Part 1. The Lyapunov-based controller hi implemented in
sample-and-hold is a feasible solution to the i-th output
feedback LEMPC of Eq. 11 when
~xi(tk) ! z1,i(tk) ∈ Ωρi ⊂ Ωρsafe. Specifically, hi(~x(tp)), p = k,
. . . , k + N−1, t ∈ [tp, tp+1), is a feasible solution to the i-th
output feedback LEMPC of Eq. 11 because it meets the input
constraints of Eq. 11e according to Eq. 2, it trivially satisfies
Eq. 11f, and it satisfies Eq. 11d when ~xi(t) ∈ Ωρi ⊂ Xi

according to the implementation strategy in Section 7.1.
hi(~x(tp)), p = k, . . . , k + N − 1, t ∈ [tp, tp+1), ensures that
~xi(t) ∈ Ωρi by the properties of the Lyapunov-based controller
Muñoz de la Peña and Christofides (2008) where, if the
conditions of Eqs 45, 47 are met, then if ~xi(tp) ∈ Ωρi/Ωρs,i′

,
Vi(~xi) decreases throughout the following sampling period
(keeping the closed-loop state in Ωρi), or if ~xi(tp) ∈ Ωρs,i′

,
~xi(t) ∈ Ωρmin ,i

⊂ Ωρi for t ∈ [tp, tp+1).

Part 2. To demonstrate boundedness of the closed-loop state in
Ωρ1 ⊂ Ωρsafe for t ∈ [t0,max{Δ, tz1}), the Lyapunov function
along the closed-loop state trajectory can be evaluated as
follows:

V1 x1 t( )( )!V1 x1 t0( )( )+∫
t0

t zV1 x1 τ( )( )
zτ

dτ !V1 x1 t0( )( )

+∫
t0

t zV1 x1 τ( )( )
zx

_x1 τ( )dτ ≤ ρh,1′ +Mf,1max Δ, tz1{ }α4,1 α−11,1 ρ1( )( )
(52)

for all t ∈ [t0, max{Δ, tz1}), where the latter inequality follows from
Eqs 2, 5, and x(t0) ∈ Ωρh,1′ ⊂ Ωρ1. If ρh,1′ satisfies Eq. 44, then
V1(x1(t))≤ ρh,1, ∀t ∈ [t0, max{Δ, tz1}), i.e., x1(t) ∈ Ωρh,1 ⊂ Ωρ1 for all
t ∈ [t0, max{Δ, tz1}). The state estimate is also maintained within

Ωρ1 at tz1 if Eq. 46 and Proposition 2 hold and there is no attack,
because then,

V1 z1,1 tz1( )( )≤V1 x1 tz1( )( ) + fV,1 |z1,1 tz1( ) − x1 tz1( )|( )≤ ρh,1
+fV,1 ϵ

p

M,1( )< ρ1 (53)

Part 3. To demonstrate the boundedness of the closed-loop state
and state estimate in Ωρsafe for t ≥ [t0, max{Δ, tz1}), we
first consider that the process is not experiencing a cyberattack
(i.e., |zj,i(tk)−xi(tk)| ≤ max(emj,i), for all j = 1, . . . , M). Since
x1(tz1) ∈ Ωρh,1 ⊂ Ωρ1 and z1,1(tz1) ∈ Ωρ1 from Part 1, the
implementation strategy of Section 7.1 can be executed at tz1,
and according to Step 4, xi(tz1) will be contained inΩρh,i. Similar to
the steps presented in the third theorem in Oyama and Durand
(2020), considering Eqs 11f, Eq. 2, 4b, the bound on wi, and
adding and subtracting the term zVi(~xi(tk))

zx fi(~xi(tk), ui(tk), 0) to/
from _Vi(xi(t)) ! zVi(xi(t))

zx fi(xi(t), ui(tk), wi(t)) and using the
triangle inequality, we obtain

_Vi xi t( )( )≤ − α3,i |~xi tk( )|( ) + Lx,i′ |xi t( ) − ~xi tk( )| + Lw,i′ θw,i (54)

From |xi(t) − ~xi(tk)|≤ |xi(t) − xi(tk)| + |xi(tk) − ~xi(tk)|, and
from Eq. 11c with ~xi(tk) ! z1,i(tk), we obtain that:

|xi t( ) − ~xi tk( )|≤ |xi t( ) − xi tk( )| + ϵ
p

M,i (55)

From Eqs 5, 54, 55, and considering ~xi(tk) ∈ Ωρg,i/Ωρs,i:

_Vi xi t( )( )≤ − α3,i α
−1
2,i ρs,i( )( ) + Lx,i′ Mf,iΔ + ϵ

p

M,i( ) + Lw,i′ θw,i (56)

for all t ∈ [tk, tk+1). According to the implementation strategy in
Section 7.1, when z1,i(tk) ∈ Ωρg,i/Ωρs,i, then xi(tk) ∈ Ωρh,i/Ωρs,i′

by
Eqs 43, 48. If the condition of Eq. 45 is satisfied, Eq. 56 gives:

Vi xi t( )( )≤Vi xi tk( )( ) −
ϵW,i t − tk( )

Δ
, t ∈ tk, tk+1[ ) (57)

Thus, when xi(tk) ∈ Ωρh,i/Ωρs,i′
and z1,i(tk) ∈ Ωρg,i/Ωρs,i,

xi(tk+1) ∈ Ωρh,i ⊂ Ωρ1.
To ensure that the estimate for t ∈ [tk, tk+1) is withinΩρi ⊂ Ωρ1,

Proposition 2 gives the following inequality:

Vi z1,i tk+1( )( )≤Vi xi tk+1( )( )

+ fV,i |xi tk+1( ) − z1,i tk+1( )|( )≤Vi xi tk+1( )( ) + fV,i ϵ
p

M,i( ) (58)

When xi(tk+1) ∈ Ωρh,i as was just demonstrated for the case that
no attacks occur, this gives thatVi(z1,i(tk+1)) ≤ ρi if Eq. 46 holds. If
instead xi(tk) ∈ Ωρs,i′

, Eq. 47 ensures that
Vi(xi(tk+1)) ∈ Ωρmin ,i

⊂ Ωρh,i and therefore we conclude by the
same logic as above that Vi(z1,i(tk+1)) ≤ ρi if Eq. 46 holds.

To see that the implementation strategy with updates of i and
the LEMPC at every sampling time maintains xi(tk) ∈ Ωρ1 and
z1,i(tk) ∈ Ωρ1 for all time, we note that the proof above shows that
if xi(tz1) ∈ Ωρh,1, then z1,i(tk+1) ∈ Ωρ1 and xi(tk+1) ∈ Ωρh,i ⊂ Ωρ1.
At tk+1, under the assumption of the theorem that it is again
possible to find all regions for LEMPC design according to Step 4
of the implementation strategy,Ωρi and its subsets will be selected
so that the same proof as above holds throughout the subsequent
sampling period and z1,i(tk+2) ∈ Ωρ1 and xi(tk+2) ∈ Ωρh,i ⊂ Ωρ1.
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This indicates that z1,i would be within Ωρ1 at all sampling times
before an attack, and that xi(t) ∈ Ωρ1 as well. To ensure
(Vi(z1,i(tk+1))−Vi(z1,i(tk))) < 0 so that flagging an attack in Step
6 of the implementation strategy of Section 7.1 would not cause
attacks to be detected when none are occurring, the requirement
of Eq. 49 with the input computed by the i-LEMPC should be
satisfied, according to the logic of Section 4.1 of this manuscript.

Part 4. Finally, we consider the case that at some tk ≥ tq, the
process is under either an undetected false sensor measurement
cyberattack (Case 1), actuator cyberattack (Case 2) or both
(Case 3).

Part 4—Case 1. If the control system is under only a sensor
attack, but it is not detected, |z1,i(tk) − xi(tk)|≤ ϵpM,i. Thus, from
Part 3 above, the closed-loop state and state estimate are
guaranteed to be inside Ωρi ⊂ Ωρ1 by the implementation
strategy of Section 7.1.

Part 4—Case 2. If the control system is under only an actuator
attack, but it is not detected, then an input that is not that
computed by the i-LEMPC is being applied to the process over a
sampling period. The actuator attack will be detected if several
conditions that are evaluated at the end of a sampling period
(at tk+1) occur [e.g., Vj(z1,i(tk)) < Vj(z1,i(tk+1)), Vj(z1,i(tk+1)) > ρi,
|zj,i(tk+1) − zp,i(tk+1)| > ϵmax, j = 1, . . . , M, p = 1, . . . , M, or
Vj(z1,i(tk+1)) ∉ Ωρ1]. However, if an actuator attack occurs at tk,
this means that its effects will not be observed for flagging an
attack until tk+1, leaving the possibility that the closed-loop state
could exit a desired operating region before the sampling period is
over. To prevent this, we define a worst-case scenario in Eqs 50,
51, where it may be possible that the state estimate is withinΩρ1 at
a sampling time but that the actual state is outside of it (within
Ωρsamp3

) and an attack is not flagged since Vj(z1,i(tk)) ∈ Ωρ1
(i.e., at least one of the detection conditions is not violated,
leaving a possibility of non-detection depending on the state
of the other detection conditions). In such a case, under a rogue
actuator output, the closed-loop state either remains in Ωρsamp3

,
where the estimate may not be outsideΩρ1 for detecting the attack
based on whether z1,i(tk) ∈ Ωρ1 or not, or it is within
Ωρsamp4

⊂ Ωρsafe, but in a part of it where the attack can be
flagged at tk+1. Then, the attack is flagged while the closed-
loop state is still in Ωρsafe. In contrast, if the state estimate was
in Ωρ1, then in the following sampling period, the closed-loop
state either enters Ωρsamp4

/Ωρsamp3
and is flagged, or it remains in

Ωρsamp3
and this process continues into subsequent sampling

periods. The attack would be flagged before the closed-loop
state leaves Ωρsafe because Eqs 50, 51 show that the state
cannot go farther from the origin than Ωρsamp4

in a sampling
period if the attack is not detected at the beginning of the
sampling period, and Ωρsamp4

⊂ Ωρsafe.
Part 4—Case 3. If the control system is under both sensor

and actuator attacks, but they are not detected, the rogue
actuator and sensor outputs must still maintain the state
estimates in Ωρ1. Since the state estimates must be within
Ωρ1 and |z1,i(tk) − xi(tk)|≤ ϵ

p

M,i must be satisfied (as a sensor
attack is not detected) with at least one estimate not being
affected by an attack, the reasoning in Part 4—Case 2 can be
used to conclude that the combined attacks cannot cause the

closed-loop state or state estimate to exit Ωρsafe without the
attack being detected.

Above, it is demonstrated that whether attacks are occurring
or not, the closed-loop state and state estimate cannot leaveΩρsafe
without an attack being detected in any sampling period. This
indicates that the implementation strategy in Section 7.1
maintains the closed-loop state within a safe operating region
at all times before an attack is detected, even if undetected sensor
and actuator attacks occur during that time period.

Remark 9. The proof for Part 4—Case 2 described above gives an
indication of how the proof of closed-loop stability for actuator-
only attacks on an LEMPC of the 1-A form would be carried out,
but (noisy) state measurements then might be used in place of
state estimates.

Remark 10. Several regions have been defined for the proposed
detection strategy.Ωρi ⊂ Ωρsafe, i = 1, 2, . . . , has been defined as an
invariant set in which the closed-loop state is maintained. We
define the regionΩρh,i such that if the state measurement is within
Ωρg,i at tk, the actual state is within Ωρh,i ⊂ Ωρi (Eq. 43). We also
define the regionΩρs,i such that if the state measurement is within
Ωρi/Ωρs,i at tk, the actual state is not within Ωρs,i′

(Eq. 48). In
addition, Ωρmin ,i

is characterized as a region where if xi(tk) ∈ Ωρs,i′
,

the actual state is within Ωρmin ,i
(Eq. 47). The definition of Ωρh,i

ensures that the state estimate at tk+1 is in Ωρi when there is no
attack, if xi(tk) ∈ Ωρh,i.

7.2 Simultaneous Sensor and Actuator
Attack-Handling via Detection Strategies
3-S and 2-A: Formulation and
Implementation
Following the idea of pairing single detection strategies above,
another integrated framework, named Detection Strategy 2/3, can
be developed that uses redundant state estimates to check for
sensor attacks (again assuming that at least one of the estimates is
not impacted by any attack) and relies on the difference between a
state prediction based on the last available state estimate
(obtained using an expected control action computed by either
a fully redundant controller or an approximation of the controller
output for a given state estimate) and a state estimate being less
than a bound. The premise of checking the difference between the
state estimate and the state prediction is that the state prediction
should not be able to deviate too much from a (converged) state
estimate (i.e., it approximates the actual process state to within a
bound as in Assumption 2 after a sufficient period of time has
passed since initialization of the state estimates) if there are no
sensor or actuator attacks, and that therefore, seeing the estimate
and prediction deviate by more than an expected amount is
indicative of an attack.

If the actual state is inside a subset Ωρmax
of the stability region

Ωρ, then under sufficient conditions (which will be clarified in the
next section), both the closed-loop state and state estimate are
maintained in a safe operating region Ωρsafe for all time for the
process without attacks or with undetected attacks. The notation
to be used for the LEMPC for Detection Strategy 2/3 follows that
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of Eq. 10 with Eq. 10c replaced by ~x(tk) ! z1(tk) (we will
subsequently refer to this LEMPC as the output feedback
LEMPC of Eq. 10. In this control formulation, the output
feedback LEMPC design of Eq. 10 receives a state estimate zj
(j = 1, . . . , M) from one of the redundant state estimators (the
estimator used to provide state estimates to the proposed LEMPC
that controls the process will be denoted as the j = 1 estimator) at tk.

To present the implementation strategy and subsequent proof
in the next section that Detection Strategy 2/3 can be made
cyberattack resilient in the sense that it can guarantee safety
whenever no sensor or actuator attacks are flagged by this
combined detection framework, it is necessary to determine
the detection threshold for the difference between the state
estimate and state prediction. Unlike in the case where a
bound on the difference between state predictions and state
measurements was derived for Detection Strategy 2-S for
sensor attacks, we here need to set up mechanisms for
detecting whether an actuator and/or sensor attack occurs.
While state estimates are available to aid in detecting sensor
attacks, a part of the mechanism for detecting whether actuator
attacks occur is the use of a fully redundant controller (for which
the input computed by the output feedback LEMPC of Eq. 10 is
equivalent to the input computed by the redundant controller
used in cross-checking the controller outputs) or the fast
approximation of the control outputs (for which the input
computed by the LEMPC would differ, within a bound, from
the input computed by the algorithm used in cross-checking the
controller outputs) for a given state measurement. The definition
below defines the notation that will be used in this section to
represent the actual state trajectory under the control input
computed by the LEMPC and the state prediction obtained
from the nominal (w ≡ 0) process model of Eq. 1 under the
potentially approximate input used for cross-checking the control
outputs.

Definition 1. Consider the state trajectories for the actual process
and for the predicted state from t ∈ [t0, t1), which are the solutions
of the systems:

_xa ! f xa t( ), !u t( ), w t( )( ) (59a)
_xb ! f xb t( ), û t( ), 0( ) (59b)

where |xa(t0)−z1(t0)| ≤ γ. xa is the state trajectory for the actual
process, where !u is the optimal input for t ∈ [t0, t1) computed
from the output feedback LEMPC of Eq. 10 based on the estimate
z1(t0), where z1(t0) is an estimate of the actual state xa(t0) at t0. û is
a (potentially) different input that is applied to the process that
results in the trajectory xb corresponding to the predicted value of
the closed-loop state when û is computed by the method for
cross-checking the controller inputs. For any method used for
cross-checking the controller inputs computed, the following
bound is assumed to be known to hold:

|!u t( ) − û t( )|≤ ϵu (60)

where ϵu is the maximum deviation in the inputs computed
for a given state estimate between the output feedback
LEMPC of Eq. 10 and the method for cross-checking the

controller inputs (if a fully redundant controller is utilized,
ϵu = 0).

The following proposition bounds the difference between xa
and xb in Definition 1.

Proposition 4. Consider the systems in Definition 1 operated
under the output feedback LEMPC of Eq. 10 and designed based
on a controller h(·), which satisfies Eqs 2, 3. Then, the following
bound holds:

|xa t( ) − xb t( )|≤fu γ, t( ) (61)

and initial states |xa(t0) − xb(t0)|≤ γ, where xb(t0) ! z1(t0) and
t0 = 0:

fu s, τ( ) ≔ seLxt + eLxt − 1( ) Luϵu + Lwθ

Lx
( ) (62)

Proof 2. Integrating Eqs 59a, 59b from t0 to t, subtracting the
second equation from the first, and taking the norm of both sides
gives

|xa t( ) − xb t( )|≤ |xa t0( ) − z1 t0( )| + ∫
0

t
|f xa s( ), !u 0( ), w s( )( )

−f xb s( ), û 0( ), 0( )| ds (63a)

≤ γ + ∫
0

t
|f xa s( ), !u 0( ), w s( )( ) − f xb s( ), !u 0( ), 0( )|[

+|f xb s( ), !u 0( ), 0( ) − f xb s( ), û 0( ), 0( )|] ds (63b)

for t ∈ [0, t1). Using Eqs 4a, 4c and the bound on w, the following
bound is achieved:

|xa t( ) − xb t( )|≤ γ+

∫
0

t
Lu|!u 0( ) − û 0( )| + Lx|xa s( ) − xb s( )| + Lw|w s( )|[ ] ds (64a)

≤γ+Lu|!u 0( )− û 0( )| t−0( )+Lx∫
0

t
|xa s( )−xb s( )|+Lw∫

0

t
θ ds

(64b)

≤ γ + Luϵu + Lwθ( )t + Lx ∫
0

t
|xa s( ) − xb s( )| ds (64c)

for t ∈ [0, t1), where the last inequality follows from Eq. 60.
Finally, using the Gronwall–Bellman inequality Khalil (2002), it is
obtained that

|xa t( ) − xb t( )|≤ γeLxt + eLxt − 1( ) Luϵu + Lwθ

Lx
( ) (65)

Proposition 4 can be used to develop an upper bound on the
maximum possible error that would be expected to be seen
between a state prediction and a state estimate at a sampling
time if no attacks occur. This bound is developed in the following
proposition.

Proposition 5. Consider xa and xb defined as in Definition 1. If
|zj(tk) − zp(tk)|< ϵmax and |zj(tk+1) − zp(tk+1)|< ϵmax, j = 1, . . . ,
M, p = 1, . . . , M, and Eq. 60 holds in the absence of an attack,
then the worst-case error between the state estimate z1(tk+1) and
the state prediction ~xb(tk+1|tk) of the state at time tk+1 from an
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estimate obtained at time tk in the absence of an attack on the
actuators or sensors is given by

|z1 tk+1( ) − ~xb tk+1|tk( )|≤ ϵpM + fu ϵ
p

M,Δ( ) (66)

Proof 3. Using Proposition 3 and Proposition 4 along with Eq.
32, we obtain

|z1 tk+1( )− ~xb tk+1|tk( )|≤ |z1 tk+1( )−xa tk+1( )|+ |xa tk+1( )− ~xb tk+1|tk( )|
≤ϵ

p

M +fu |xa tk( )−z1 tk( )|,Δ( )≤ϵpM +fu ϵ
p

M,Δ( )
(67)

Proposition 5 demonstrates that if an upper bound ]u ≥ ϵ
p

M +
fu(ϵpM,Δ) is placed on |z1(tk+1) − ~xb(tk+1|tk)|, then a cyberattack
could be flagged if |z1(tk+1) − ~xb(tk+1|tk)|> ]u without creating
false alarms, as |z1(tk+1) − ~xb(tk+1|tk)| should never become
greater than ]u if no attack is occurring according to the proof
of the proposition.

We now describe the implementation strategy of Detection
Strategy 2/3, which assumes that the process has already been run
successfully in the absence of attacks under the output feedback
LEMPC of Eq. 10 for some time (tq) such that |zj(t) − x(t)|≤ ϵpmj

for all j = 1, . . . , M.

1) At sampling time tk, when the output feedback LEMPC of Eq.
10 is used to control the process of Eq. 1, if |zj(tk)−zp(tk)| >
ϵmax or |zj(tk−1)−zp(tk−1)| > ϵmax, j = 1, . . . ,M, p = 1, . . . ,M, or
~x(tk) ! z1(tk) ∉ Ωρ (where z1 is the state estimate used in the
proposed LEMPC design that controls the process), detect
that a cyberattack is occurring and go to Step 2. If no attack is
flagged, check whether |~x(tk|tk−1) − z1(tk)|> ]u (where
]u ≥ ϵ

p

M + fu(ϵpM,Δ)). If yes, flag that a cyberattack is
happening and go to Step 2. Else, go to Step 3.

2) Mitigating actions may be applied (e.g., a backup policy such
as the use of redundant controller or an emergency shutdown
mode).

3) Control the process using the output feedback LEMPC of Eq.
10. Go to Step 4.

4) (tk ← tk+1). Go to Step 1.

7.2.1 Simultaneous Sensor and Actuator
Attack-Handling via Detection Strategies 3-S and 2-A:
Stability and Feasibility Analysis
In this section, we prove recursive feasibility and stability of the
process of Eq. 1 under the proposed output feedback LEMPC of
Eq. 10 whenever no sensor or actuator attacks are detected
according to the implementation strategy in Section 7.2 in the
presence of bounded plant/model mismatch, controller cross-
check error, and measurement noise. The following theorem
characterizes the safety guarantees of the process of Eq. 1 for
all time under the implementation strategy of Section 7.2 when
sensor and actuator cyberattacks are not detected. As for
Detection Strategy 1/3, because the actuator cyberattacks
would not be detected according to the implementation
strategy in Section 7.2 until a sampling period after they had
occurred (since they are being detected by their action on the state
estimates, which would not be obvious until they have had a
chance to impact the closed-loop state), it is necessary to define

supersets Ωρsamp3
and Ωρsamp4

of Ωρ, but which are contained in
Ωρsafe, to set the size of Ωρ with respect to Ωρsafe to ensure that Ωρ

is defined in a sufficiently conservative fashion such that even if
the closed-loop state is driven out ofΩρ, the closed-loop state will
still always be in Ωρsafe and the state estimate will go out of Ωρ

before the actual closed-loop state leaves Ωρsafe.

Theorem 5. Consider the closed-loop system of Eq. 1 under
the implementation strategy of Section 7.2, in which no
sensor or actuator cyberattack is detected using the
proposed output feedback LEMPC of Eq. 10 based on an
observer and controller pair satisfying Assumption 1 and
Assumption 2 and formulated with respect to the i = 1
measurement vector and a controller h(·) that meets Eqs 2,
3. Let the conditions of Proposition 3 and Proposition 4 hold,
and θw ≤ θpw, θv,i ≤ θ

p

v,i, ϵi ∈ (ϵpLi, ϵ
p

Ui), and |zi(t0) − x(t0)|≤ em0i,
for i = 1, . . . , M. Also, let ϵW,1 > 0, Δ > 0, Ωρ ⊂ X, and
ρsafe > ρsamp4 > ρsamp3 > ρ> ρmax > ρ1,1 > ρe,1′ > ρmin ,1 > ρs,1 > 0, satisfy:

ρe,1′ ≤ ρmax

−max fV fW ϵ
p

M,Δ( )( ),Mf max tz1,Δ{ }α4 α−11 ρmax( )( ){ } (68)

ρe,1′ ≤ ρ − fV fW ϵ
p

M,Δ( )( ) − fV ϵ
p

M( ) (69)

−α3 α−1
2 ρs,1( )( ) + Lx′ MfΔ + ϵ

p

M( ) + Lw′ θw ≤ − ϵW,1/Δ (70)

ρmin ,1 ! max V x t + Δ( )( )|V x t( )( )≤ ρs,1{ } (71)

ρmin ,1 + fV fW ϵ
p

M,Δ( )( )≤ ρ (72)

ρmax + fV ϵ
p

M( )≤ ρ (73)

ρsamp3 ! max V x tk( )( ) : z1 tk( ) ∈ Ωρ, |z1 tk( ) − x tk( )|≤ ϵpM{ }
(74)

ρsamp4 !max V x t( )( ) :V x tk( )( )≤ ρsamp3, u tk( ) ∈U, t ∈ tk, tk+1[ ){ }
(75)

where tz1 is the first sampling time after tb1, and fv, fw, and fu

are defined as in Proposition 1, Proposition 2 (with the
subscripts dropped), and Proposition 4. Then, if
x(t0) ∈ Ωρe,1, x(t) ∈ Ωρmax

for all t≥ 0 and z1(th) ∈ Ωρ for
th ≥max {Δ, tz1} until a cyberattack is detected according to
the implementation strategy in Section 7.2, if the attack occurs
after tq.

Proof 4. The output feedback LEMPC of Eq. 10 has the same
form as in Oyama and Durand (2020). Therefore, in the absence
of attacks or in the presence of sensor attacks only, we obtain the
same results as in Oyama and Durand (2020). Specifically,
feasibility follows when z1(tk) ∈ Ωρ as proven in Oyama and
Durand (2020). Since z1(tk) ∉ Ωρ flags an attack according to the
implementation strategy of Section 7.2, there will not be a time
before an attack is detected that z1(tk) ∉ Ωρ before an attack, so
that the problem would not be infeasible before an attack. Also as
demonstrated in Oyama andDurand (2020), the closed-loop state
trajectory is contained inΩρmax

for t ∈ [t0, max{Δ, tz1}), and before
an attack occurs when t ≥ max{Δ, tz1}, x(t) is bounded within
Ωρmax

and z1(t) is bounded within Ωρ. Furthermore, it follows
from Proposition 3 and Proposition 5 that the implementation
strategy of Section 7.2 will not detect measurement noise,
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controller cross-check error, or bounded plant/model mismatch
as attacks, such that there will be no false detections. It remains to
demonstrate that if there is an attack at tk but it is not detected
using the proposed methodology (i.e., | zi(tk)−zj(tk)| ≤ ϵmax,
|zi(tk−1)−zj(tk−1)| ≤ ϵmax, for all i = 1, . . . , M, j = 1, . . . , M,
~x(tk) ! z1(tk) ∈ Ωρ, and |~x(tk|tk−1) − z1(tk)|≤ ]u), then z1(tk+1)
and x(t), t ∈ [tk, tk+1), are bounded in Ωρsafe.

If the control system is under only a sensor attack, but it is not
detected, then under the conditions of Theorem 5, the closed-
loop state remains inside Ωρmax

⊂ Ωρsafe and the state estimate
remains within Ωρsafe under the implementation strategy of
Section 7.2, following Oyama and Durand (2020).

If the control system is under only an actuator attack, then via
the same steps as in the proof of Theorem 4 for Case 4—Part 2
withΩρ1 replaced byΩρ, the attack will be detected before it drives
the closed-loop state out of Ωρsafe. The same proof demonstrates
that when simultaneous sensor and actuator attacks occur, the
closed-loop state will not be driven out ofΩρsafe before an attack is
detected. Applying these proofs recursively indicates that under
this implementation strategy, an attack is detected before the
closed-loop state leaves Ωρsafe.

Remark 11. The proof for actuator-only attacks for Theorem 5
described above gives an indication of how the proof of closed-
loop stability for actuator-only attacks on an LEMPC of the 2-A
form would be carried out, but state measurements might then be
used in place of state estimates, with the bound developed on the
difference between the state estimate and state prediction updated
to be between the measurement and prediction.

8 CYBERATTACK DISCOVERABILITY FOR
NONLINEAR SYSTEMS

The above sections reviewed a variety of cyberattack-handling
mechanisms that rely on specific detection strategies designed in
tandem with the controllers. None of those strategies, in the
manner discussed, detects every attack, but some ensure that
safety is maintained when the attacks are not detected. This raises
the question of when detection mechanisms can detect attacks
and when they cannot. This section is devoted to a discussion of
these points. In Oyama et al. (2021), we first presented the notions
of cyberattack discoverability for nonlinear systems in a
discussionary sense (i.e., a stealthy attack is fundamentally
“dynamics-based” or a “process-aware policy” and could fly
under the radar of any reasonable detection method; on the
other hand, a “non-stealthy” attack can be viewed as the one in
which the attack policy is not within the bounds of a detection
threshold and could promptly be flagged as a cyberattack using a
reasonable detection method). In this section, we present the
mathematical characterizations of nonlinear systems cyberattack
discoverability that allow us to cast the various attack detection
and handling strategies explored in this work in a unified
framework and to more deeply understand the principles by
which they succeed or do not succeed in attack detection.

We begin by developing a nonlinear systems definition of
cyberattack discoverability as follows:

Definition 2. (Cyberattack Discoverability): Consider the state
trajectories from t ∈ [t0, t1) that are the solutions of the systems:

_xa t( ) ! f xa t( ), ua x0 + va( ), wa t( )( ) (76)
_xb t( ) ! f xb t( ), ub x0 + vb( ), wb t( )( ) (77)

where ua(x0 + va) and ub(x0 + vb) are the inputs to the process for
t ∈ [t0, t1) computed from a controller when the controller receives
a measurement ~xa(t0) ! x0 + va (with |va|≤ θva) or ~xb(t0) ! x0 +
vb (with |vb|≤ θvb), respectively. If a reasonable detection method
would be able to distinguish between the xa and xb trajectories, then
the system is said to be cyberattack discoverable. Otherwise, it is
said to be cyberattack undiscoverable.

This definition of cyberattack discoverability is related to
whether multiple valid measurements or multiple valid inputs
could be measured or could be possible from a given state at a
certain time, obscuring whether what is presented to the detection
algorithm is correct. Cyberattacks can involve deliberate changes
of the information that might make them observable. Detecting a
cyberattack purely from process physics data may be challenging
because it requires developing the “expectations” of what the
process data should be, which should be derived either from
experience or a model. If the data from which predictions are
made or conclusions are drawn are falsified, it may be difficult to
determine the appropriate expectation.

We now present a number of comments on the methods
discussed in this work and how these methods can be understood
in light of a broader discoverability context:

• If there are sensor attacks only, the functions ua and ub in
Definition 2 may be the same, with the different arguments
x0 + va and x0 + vb. If an actuator only is attacked, x0 + va and
x0 + vb can be the same.

• The detection strategies presented in this work have
implicitly relied on Definition 2. They have attempted,
when an attack would cause a safety issue, to force that
attack to be discoverable, by making, for example, the state
measurement under an expected control action ua(x0 + va)
different from the state measurement under a rogue policy
ub(x0 + vb). We have seen methods fail to detect attacks
when they cannot force this difference to appear. This
fundamental perspective has the benefit of allowing us to
better understand where the benefits and limitations of each
of the methods arise from, which can guide future work by
suggesting what aspects of strategies that fail would need to
change to make them viable.

• The definition presented in this section helps to clarify the
question of what the fundamental nature of a cyberattack is,
in particular a stealthy attack, that may distinguish it from
disturbances. Specifically, consider a robust controller
designed to ensure that any process disturbance within
the bounds of what is allowed for the control system
should maintain the closed-loop state inside a safe region
of operation for all time if no attack is occurring. In other
words, the plant–model mismatch is accounted for during
the control design stage and does not cause the feedback of
the state to be lost. However, a stealthy attack is essentially a
process-aware policy or an intelligent adversary that can
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modify the sensor measurements and/or actuator outputs
through attack policies with a specific goal of making it
impossible to distinguish between the actual and falsified
data. The result of this is that stealthy attacks could fly under
the radar of any reasonable detection mechanism and thus
the control actions applied to the process may not be
stabilizing. We have previously examined an extreme
case of an undiscoverable attack in Oyama et al. (2021),
where the attack was performed on the state measurements
of a continuous stirred tank reactor by generating
measurements that followed the state trajectory that
would be taken under a different realization of the
process disturbances and measurement noise and
providing these to the controller. This would make the
stealthy sensor attack, at every sampling time, appear
valid to a detection strategy that is not generating false
alarms.

• If a system is continuously monitored before and after an
attack and the pair {wb, vb} does not follow the same
disturbance and noise distribution as the pair {wa, va} in
Definition 2, a cyberattack could conceivably be flagged by a
detection method that is able to discern that.

• We note that although Definition 2 implies that if the
attacker knows the process model and disturbance and
noise distributions, they could implement an attack
policy such that xa and xb trajectories cannot be
distinguished (in the sense that one cannot be flagged as
abnormal); cyberattack undiscoverability does not
necessarily imply the loss of closed-loop stability.
Specifically, if the closed-loop state trajectory (xa) and the
false closed-loop state trajectory (xb) are “close enough”
such that a Lyapunov function decreases along the closed-
loop state trajectory in both cases under the inputs
computed for both, then the closed-loop state may still
be maintained within a desired operating region under the
attack. This is implied by the fact that conservatively
designed controllers can handle sufficiently small
measurement noise (as, for example, in Detection
Strategy 3-S described above). As a further example,
consider that an attacker seeks to develop a falsified state
measurement trajectory using disturbances w2 that are in
the same distribution as those (w1) impacting the actual
process for a closed-loop system under an explicit control
policy h(x) with full-state feedback:

_x1 t( ) ! f x1 t( ), h x2 t( )( ), w1 t( )( ) (78)
_x2 t( ) ! f x2 t( ), h x2 t( )( ), w2 t( )( ) (79)

Depending on the trajectories of w1 and w2 (i.e., how the
attacker’s simulated noise/disturbance profile deviates from
that which is experienced by the true process over time), the
closed-loop system of Eqs 78, 79 may maintain x1 in a
bounded operating region (i.e., it may be stabilizing for the
actual process system) or it may not. A nonlinear systems
analysis [via, for example, the Lyapunov stability theory for
the different potential functions of w1(t) and w2(t)] could be

used to evaluate what types of disturbance/noise realizations
and corresponding falsified conditions would enable a
“dynamics-based” attack with this structure to be
destabilizing. This is the same conclusion as was drawn
in cases where one of the detection strategies described
above was not effective at detecting an attack; many of the
undetected attacks described did not prevent safety issues,
which was the premise of the simultaneous actuator and
sensor detection policies.

• Definition 2 assumes that no change in the process
dynamics occurs. If the process dynamics change over
time, the state trajectories, which are the solutions of the
system indicated in the cyberattack discoverability
definition, may significantly differ from the state
trajectories prior to this change. If the detection scheme
would then be set up to compare expectations under the old
and new process models, the change in process dynamics
may be erroneously flagged as a cyberattack. In Rangan et al.
(2021), for example, we provide a two-fold control/
detection mechanism to prevent false attack detection
when the variations in the process dynamics are considered.

• Though methods for making cyberattacks discoverable
might benefit from the knowledge of the distribution of
the noise and disturbances (to better distinguish Eqs 76, 77),
the various detection strategies developed in this work make
no consideration for statistics; they look only at the bounds
on disturbances and sensor measurements. The only
requirements made on the attacks are that the sensor
measurement cyberattacks keep the state measurements
in the regions that do not flag the attacks (e.g., subsets of
the stability region), and that the inputs remain in the input
bounds (which must be true physically). Strategies such as
those described in Sections 7.1, 7.2 were demonstrated to
avoid false-positive detections of attacks by using these
bounds instead of distributional information for the noise
and disturbances.

9 PROBING THE PRACTICALITY OF
LEMPC-BASED
CYBERATTACK-RESILIENT CONTROL
DESIGN

The results above suggest that if controllers can be designed to
satisfy the theoretical requirements discussed in the prior
sections, there would be benefits to using them from a
cybersecurity perspective. However, an important question that
arises from these studies is how easy it might be to design
controllers satisfying the theoretical requirements (and if it
would be practical at all) and what the answer to this question
suggests about how the future work in cyberattack-resilient
LEMPC should continue. In our prior work (Oyama et al.
2021), a number of simulations of a sensor measurement
cyberattack-handling LEMPC that can also account for the
changes in the process dynamics were performed. The results
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indicated that checking that the parameters of the control law and
detection strategy (such as thresholds used in the detection policy
or ρe) prevent cyberattacks from being successful can be
challenging if it is performed using only a limited number of
simulations. This suggests that either a significant number of
simulations may be needed to design cyberattack-resilient
LEMPCs (which would be expected to be a challenging way to
design these controllers due to the interactions between the
various parameters and could also still potentially leave system
vulnerabilities if the simulations are not able to fully cover every
possible issue), or a method for obtaining the parameters of the
LEMPCs that meet the theory would be needed.

In this section, we seek to provide some initial insights into
obtaining parameters for an LEMPC that meet the theory. To
make progress on this, we remove some of the complexity of the
problem by focusing on how to obtain the theoretical parameters
not of the more specialized LEMPCs for cyberattack-resilient
control discussed in this work, but instead for the original
LEMPC developed in Heidarinejad et al. (2012a). This
discussion is used to motivate future work in seeking to
extend the initial results presented here on obtaining LEMPC
parameters to more comprehensive methods for obtaining these
parameters that could then be scaled to the cyberattack-resilient
forms of LEMPC to eliminate the vulnerabilities.

9.1 LEMPC: Meeting Theoretical
Requirements in Control Design
Before moving to a study working toward obtaining LEMPC
parameters for a CSTR example, we first discuss a number of
preliminaries regarding this topic. First, since this section will focus
on the standard LEMPC of Eqs 8, 9, instead of its cyberattack-
resilient form, we consider Proposition 2 (where in the remainder
of this section; we will neglect the subscript i for the simplicity of
notation) and the following proposition and theorem.

Proposition 6. Mhaskar et al. (2012), Heidarinejad et al. (2012a)
Consider the following two systems:

_xa ! f xa t( ), u t( ), w t( )( ) (80a)
_xb ! f xb t( ), u t( ), 0( ) (80b)

with initial states of xa(t0) ∈ Ωρ and xb(t0) ∈ Ωρ. There exists a
class K function fW(·) that satisfies the following equations
∀ xa, xb ∈ Ωρ and ∀ w ∈ W:

|xa t( ) − xb t( )|≤ !fW t − t0( ) (81a)

where !fW τ( ) ≔
Lwθw
Lx

eLxτ − 1( ) (81b)

Theorem 6. Heidarinejad et al. (2012a) Consider the system of
Eq. 1 in closed loop under the LEMPC design of Eqs 8, 9 based on
a controller h(x) that satisfies the conditions of Eq. 2. Let ϵw > 0,
Δ> 0, and ρ> ρe > ρmin > ρs > 0 satisfy

ρe′ ≤ ρ − fV
!fW Δ( )( ) (82)

and

−α3 α−12 ρs( )( ) + Lx′MfΔ + Lw′ θw ≤ − ϵw/Δ (83)

where

fV s( ) ! α4 α−1
1 ρ( )( )s +Mvs

2 (84)

for Mv as a positive constant. If x(t0) ∈ Ωρ and N≥ 1 where

ρmin ! max V x t( )( ) : V x tk( )( )≤ ρs, t ∈ tk, tk+1[ ), u tk( ) ∈ U{ }
(85)

then the state x(t) of the closed-loop system is always bounded in
Ωρ and is ultimately bounded in Ωρmin

.
The conditions of Theorem 6 involve many functions and

parameters that must relate to one another in a specific way.
Finding all of these functions and parameters has the potential to
be somewhat cumbersome, particularly for larger systems. For
example, from Eq. 83, it can be seen that Δ cannot be too large (or
else the left-hand side of Eq. 83 will not be negative); however,
what “too large” means is unclear. One idea for attempting to
satisfy the theory is to set up mechanisms for moving the
parameters in desirable directions (e.g., smaller values of Δ),
hoping that will be “enough.” One idea like this was explored in
our prior work Durand and Messina (2020). In that work, we
focused specifically on the relationship between ρe′ and Δ. From
Eq. 82, it can be seen that larger values of ρe′ require smaller values
of Δ; however, how large ρe′ can be for a given value of Δ is not
obvious without obtaining all controller parameters to ensure that
they meet the set of all equations in Theorem 6. As the sampling
period approaches 0, the value of ρe′ might be able to be made
larger while retaining stability guarantees.

In practice, the value of Δ will always be nonzero and is
generally limited by the computation time of the LEMPC.
However, we consider that there may be more frequent
measurements from sensors than the frequency of the LEMPC
computation. Therefore, in Durand and Messina (2020), we
suggested attempting to utilize a desired ρe′ in the LEMPC,
and then to use sensor measurements obtained multiple times
throughout each Δ and activating a back-up explicit stabilizing
controller capable of driving the closed-loop state toward the
origin when the closed-loop state leavesΩρe′

. Due to the increased
frequency of measurements, the amount of time that may elapse
between the time the closed-loop state leaves Ωρe′

and the next
sensor measurement that detects the departure is decreased,
which may allow Ωρe′

to take a wider range of values
compared to the standard LEMPC formulation. However,
despite the fact that this is a possibility, this still does not
rigorously address how to develop an LEMPC that meets the
theoretical requirements and is therefore not a method that
would be expected to translate to a cyberattack-resilient
LEMPC design.

One of the first steps in designing an LEMPC design according
to the theory is obtaining functions such as V and h. A variety of
studies have been performed related to designing Lyapunov
functions and stabilizing control laws. For example, h(x) could
be designed with methods such as the linear quadratic regulator
(LQR) (Bemporad et al., 2002; Griffith, 2018) or Sontag’s formula
Lin and Sontag (1991) (the latter for input-affine process models).
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Methods have been explored for constructing Lyapunov
functions such as sum of squares (SOS) decomposition
(Papachristodoulou and Prajna, 2002). For an LEMPC, it is
not only functions such as V and h that must be found, but
also other functions such as αi, i = 1, 2, 3, 4, such that all
conditions of Theorem 6 are satisfied.

However, to design a “good” LEMPC meeting Theorem 6, we
would like to find parameters such as h and V that have special
properties; in particular, we would like them to cause the LEMPC
to: 1) have parameters such as Δ that allow it to be physically
implemented on existing systems; and 2) provide significant
profit (the most possible with physically-implementable
versions of the parameters). In the study in the next section,
we will start with an assumed h,V, and ρ, and then see what values
parameters such as Δ would take, to see if they are physically
realizable. This will provide insight into some potential challenges
of practically designing an LEMPC where the theory is met.

Remark 12. As a comment on the last paragraph above, we
remark that the requirements noted form a sort of optimization
problem for h and V. To gain insight into the task, we could ask
whether it would be possible to form the set of every possible h
(Lipschitz continuous functions) and V (positive definite
functions) and then to search within this set for h and V
combinations that not only satisfy fundamental objectives of
these functions (such as satisfaction of Eqs 2a, 2b) but which
also enable the resulting h and V to cause all other parameters of
the LEMPC to satisfy the two objectives of the LEMPC in the
prior paragraph. We might begin by considering suggesting
forms of h and V and then finding their form via
optimization based on techniques in Brunton et al. (2016).
Specifically, Brunton et al. (2016) develops potential dynamic
models by guessing the terms that may appear on the right-hand
side and then attempting to use a sparse regression to locate
which of those should be used to represent the process dynamics.
This begs the question of whether a form for h might be guessed,
and then an optimization problem solved in which the
coefficients of the terms of the form of h are the decision
variables and the constraints enforce _V to be negative at many
points in a discretization of the state-space, to determine a form of
h systematically. Because this relates h and V to an optimization
problem, a method like this might have flexibility to then be
combined with other strategies for optimizing the h and V choice
to attempt to achieve the goals in the paragraph above. However,
even for this preliminary optimization problem concept that does
not explicitly account for those alternative goals, without careful
structuring, the resulting optimization problem is not guaranteed
to be feasible. We can analyze this from a fundamental control-
theoretic perspective. First, we note that for a given discretization
of the state-space, there does not necessarily exist any input policy
that, at all points in the state-space, can drive the closed-loop state
to the origin (this only occurs within the region of attraction).
Second, even if the discretization of the state-space being
examined only includes the region of attraction, the input
trajectory that could drive the closed-loop state to the origin
from a given initial condition in that portion of the state-space
does not necessarily stay within that discretized region or cause a

given V to decrease (i.e., the region of attraction is independent
from V). Therefore, guessing a form of h to search for a control
design that might make _V negative via optimization of its terms
(with the subsequent goal of modifying the problem to account
for other goals we would like to achieve with these functions) may
have limitations. Even if it was possible to suggest a form of h that
could approximate many functions, for each V, there is an upper
bound on it where the level set is in the region of attraction (it is
not possible to consider beyond that ρ). The question asked is
which h and V combination with an upper bound on V below the
threshold for that V gives the maximum EMPC profit and
implementable parameters. This could be explored in a brute
force fashion by looking at every possible value of V, for each
finding the maximum value of ρ, testing it for every possible value
of h, obtaining the resulting control parameters, and seeing the
best profit among those with reasonable control parameters, and
selecting the one with the best profit. The challenge with doing
this is the need to test every point and every function (and then
also there is no guarantee that practically implementable
parameters will be obtained). If there is a finite set of h’s, it is
not guaranteed that there is one that is stabilizing in that set. The
guarantee is that there is some trajectory u that is stabilizing in the
region of attraction, but whether that includes the ones that are
allowed once the function is parametrized is not guaranteed. This
discussion indicates that considering how to obtain optimal and
practical designs of LEMPCs will require many questions to be
addressed beyond what is presented in the subsequent section as a
preliminary step in moving toward developing LEMPCs with
parameters related to the full control theory.

9.1.1 Obtaining Control-Theoretic Parameters for
LEMPC Applied to a CSTR
In this section, we provide a brute force-type method for
exploring the parameters of an LEMPC that might be more
aligned with the theory than assumed values. The brute force-
type approach does not ensure that all of the parameters meet the
theory, but it provides many insights into the shortcomings of
this initial approach for attempting to obtain the parameters to
motivate further studies on this topic and potential challenges
with the parameters that might be obtained.

We consider the nonlinear process model of Eqs 40, 41. The
manipulated inputs are CA0 (the reactant feed concentration of
species A) and Q (the heat rate input), with the bounds of 0.5 ≤

CA0 ≤ 7.5 kmol/m3 and –5.0 × 105 ≤Q ≤ 5.0 × 105 kJ/h. The values
of the parameters of the CSTRmodel are presented inTable 2. An
open-loop asymptotically stable steady-state occurs at CAs =
1.2 kmol/m3 and Ts = 438.2 K, where the subscript s indicates
the steady-state values. In the control formulation, the state and
input vectors are represented using deviation variables as xT =
[CA−CAs T−Ts] and uT = [CA0–CA0s Q–Qs], respectively.

According to Theorem 6, the first step in finding the control-
theoretic parameters for LEMPC is to find a controller h(x)
satisfying Eq. 2 so that Ωρ, V, and h in the LEMPC of Eqs 8,
9 can be defined. In general, it may be challenging to find the
functions α1, α2, α3, α4, and h(x) satisfying the requirements of
Eq. 2. The input-affine form of Eqs 40, 41 allows Sontag’s
formula (Lin and Sontag 1991) to be used for h(x) (assuming
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ĥ1 ! u1 ! 0 kmol/m3 and that Sontag’s formula is then used only
for ĥ2) with a guaranteed decrease on V(x), and an attempt to use
a quadratic form of V as xTPx with a positive definite P makes it
possible to find some α1 and α2 satisfying Eq. 2a (if that selection
of V turns out to be successful; notably, however, the fact that
these functions satisfy some of the equations does not mean that
they will make it possible or straightforward to satisfy the others).
The manner in which we proceed here is as follows: initially, we
select a quadratic form of V with P = [2,000 −10; −10 3]. For a
symmetric P, λmin(P)x

Tx ≤ xTPx ≤ λmax(P)x
Tx, where λmin(P) and

λmax(P) represent the minimum and maximum eigenvalues of P,
respectively. This indicates that for a symmetric P utilized for V =
xTPx, α1(|x|) can be set to λmin(P)|x|

2, and α2(|x|) can be set to
λmax(P)|x|

2. For the given P, λmin(P) and λmax(P) can be found
using MATLAB’s eig function to be 2.95 and 2,000.05,
respectively. From this, we will set a1 = 2.9 and a2 = 2001,
where α1(|x|) = a1|x|

2 and α2(|x|) = a2|x|
2.

The next function that we would like to obtain is α3. According
to Eq. 2b, α3(|x|) should be a class K function that provides an
upper bound to _V along the closed-loop state trajectories at all
points in the stability region. While it would be ideal in general to
find such a function analytically, we perform an approximate
check numerically here using ĥ1(x) ! 0 kmol/m3 and ĥ2(x) given
by Sontag’s formula (Lin and Sontag 1991). Notably, as soon as
simulations are introduced to check that theoretical conditions
are true, the potential for vulnerabilities in the design (in the sense
that the safety results may not hold) opens up. The more points
that are checked within the stability region to ensure that the
chosen α3 satisfies Eq. 2b within that region, the greater the
expectation one might have that it does everywhere (although an
expectation is not a proof), but simulations are not as rigorous of
a check as an analytic check. However, it may not always be
possible to perform the checks analytically. Still, this is a part of
the methodology that will need further improvements for
designing safe systems under LEMPC and ultimately building
to a cyberattack-resilient LEMPC design.

The first thing that we will check is that _V is negative
throughout the stability region that we plan to use so that we
have reason to check if there is a negative definite upper-
bounding function on _V as required by Eq. 2b. Specifically,
initially, a check was made that _V was negative throughout Ωρ

under the proposed h(x) (saturated at the input bounds) for ρ =
1,800, by discretizing the state-space in the increments of
0.01 kmol/m3 in CA from 0 to 4 kmol/m3, and in the

increments of 1 K in T from 340 to 560 K. Since _V was
negative at the points tested, we suggest the function α3(|x|) =
a3|x|

2, with a3 originally set to 100, and then, throughout the
stability region, check whether _V is less than the negative of this
function. If it is not (implying that a3 is too large), a3 is changed to
be equal to − _V/|x|2 at the point where _Vwas not less than or equal
to −α3(|x|). This results in a3 = 0.008 22; setting a3 = 0.008 ensures
that the inequality in Eq. 2b is satisfied at the points tested for this
choice of α3(|x|). Notably, a3 is rounded down to obtain a suitable
parameter, whereas the other parameters discussed below will be
rounded up from the values returned by MATLAB because a3
appears in a term that reflects a worst case when it is smaller,
whereas the others appear in the terms that reflect the worst cases
when they are larger.

The next function to be obtained is α4(|x|). We again here
guess a form for α4(|x|) and then check whether Eq. 2c is satisfied
at the points in the discretized stability region. Specifically,
assuming that α4(|x|) = a4|x|

2, we set a4 initially to −100 and
then update it to be |zV

zx|/|x|
2 whenever |zV

zx|> α4(|x|). This gives
that a4 = 8,156.72 would work throughout the stability region
with ρ = 1,800. We will choose a4 = 8,160.

Next, the value ofMf is determined to satisfy Eq. 5. In this case,
it is necessary to discretize not only the state-space within the
stability region but also the input space and disturbance space.
Furthermore, the upper bound on the magnitude of the
disturbances will play a role in determining not only Mf but
also whether the conditions of Proposition 2 and Proposition 6
and Theorem 6 are satisfied for the controller parameters. Again,
the larger the value of ρ, the larger the value ofMf. To obtainMf in
this simulation, the state-space was discretized in the manner
described above, and, in addition, the range of CA0 was discretized
in the units of 0.5 kmol/m3, while the range of Q was discretized
in the units of 105 kJ/h. Furthermore, the disturbances used for
this process had disturbance bounds of 2 kmol/m3 h and 5 K/h for
the disturbances added to the right-hand sides of Eqs 40, 41,
respectively. The disturbance space was therefore considered to
go from −2 to 2 kmol/m3 h in the units of 0.1 kmol/m3 h for the
disturbances added to the right-hand side of Eq. 40 in deviation
form and from −5 to 5 K/h in the increments of 0.5 K/h for the
disturbances added to the right-hand side of Eq. 41 in deviation
form. Mf was originally set to 0, but then, it was changed to
|f(x, u, w)| at any of the discretized points where |f(x, u, w)| was
greater than the stored value of Mf. This results in a value of Mf

within the stability region ρ = 1,800 of 4,465.75. The selected value
for this simulation is 4,466.

Lx and Lw are the Lipschitz constants for f, as shown in Eq. 4a.
To obtain these, first, Lx and Lw are obtained on their own by
discretizing the state, input, and disturbance spaces, and finding
the values that work when only the state is changed (for Lx) or
when only the disturbances are changed (for Lw). Subsequently, it
is checked that the resulting Lx and Lw satisfy Eq. 4a for the points
in the discretized state-space. However, using the brute force
method in this paper of checking many points (an aspect of this
strategy that would scale poorly and therefore pose limitations for
larger processes), the computation time can become many hours
if the same discretization is used as was used above. Therefore, to
obtain values for Lx and Lw more quickly, the discretization was

TABLE 2 | Parameters for the CSTR model.

Parameter Value Unit

V 1 m3

T0 300 K

Cp 0.231 kJ/kg·K
k0 8.46 × 106 m3/h·kmol

F 5 m3/h

ρL 1,000 kg/m3

E 5 × 104 kJ/kmol

R 8.314 kJ/kmol·K
ΔH −1.15 × 104 kJ/kmol
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made coarser; however, it should be understood that this also
means that these parameter values (like the others above with
other discretizations) are not necessarily the values that would be
obtained with a finer discretization and therefore still leave the
potential for safety vulnerabilities if the controller parameters are
designed with these imperfect values of Lx and Lw. This also
provides an insight into the challenges of using strategies like this
for the safety-critical design of controllers, such as for the
cyberattack-resilience extension.

Using a discretization of the input range of 1 kmol/m3 in CA0,
of 105 kJ/h in Q, of 0.1 kmol/m3 in CA, of 1 K in T, and of 1 kmol/
m3 h for the disturbance added to the right-hand side of Eq. 40 in
a deviation form and of 1 K/h for the disturbance added to the
right-hand side of Eq. 41 in a deviation form, and then only
looking at points in the stability region, the value of Lx was
initialized at −1 and then reset to |f(x, u, w)− f(x′, u, w)|/|x−x′|
whenever |f(x, u, w)−f(x′, u, w)| > Lx|x−x′| among the points
checked. This resulted in a value of Lx = 3,008.66 being selected. A
similar procedure for Lw gave Lw = 1.00. Then, a code that checks
that Eq. 4a is satisfied at the points in the discretization with Lx =
3,009 and Lw = 1.1 was utilized, and the points in the
discretization satisfied it.

Subsequently, it is necessary to calculate Lx′ and Lw′ . Using a
similar strategy to that used in computing Lx and Lw, with the
same discretization of the state, input, and disturbance spaces and
only looking at points within the stability region, and setting the
initial value of Lx′ to −1 but updating it to |zV(x)

zx f(x, u, w)−
zV(x′)
zx f(x′, u, w)|/|x − x′| whenever |zV(x)

zx f(x, u, w)−
zV(x′)
zx f(x′, u, w)|> Lx′ |x − x′| among the points checked, the

value Lx′ ! 439 218.83 results. Following a similar procedure
for Lw′ , the value Lw′ ! 3747.27 results. Subsequently, it is
checked that Eq. 4b is satisfied at the points checked with Lx′ !
439 220 and Lw′ ! 3750.

The final parameter to obtain isMv in Eq. 16. This is obtained
in a similar spirit to the methods above. Specifically, the range of
CA is discretized in the units of 0.01 kmol/m3, while the range of T
is discretized in the units of 1 K. Mv was originally set to 0. The
points in this discretization in the stability region are examined.
Subsequently, Mv is set to (V(x) − V(x̂) − a4ρ

λmin
|x − x̂|)/(|x − x̂|2)

if (V(x) − V(x̂))> a4ρ
λmin

|x − x̂| +Mv(|x − x̂|2). The value of Mv

after this algorithm was run was still 0. Therefore, Mv was set
to 10–5.

The set of parameters obtained via these methods that is
used in the first simulation is shown in Table 3. We note that
many of these parameters were obtained within a given Ωρ,
where if that region shrinks, it is possible that some values
may change. To select the values of ρe′, Δ, ρs, ϵw, and ρmin that
satisfy the conditions of Proposition 2 and Proposition 6 and
Theorem 6, we consider formulating the following
optimization problem:

max
ρe′,Δ,ρs ,!ϵw,ρmin

ρe′ (86a)

s.t. ρe′ − ρ + fV
!fW Δ( )( )≤ 0 (86b)

−α3 α−1
2 ρs( )( ) + Lx′MfΔ + Lw′ θw + !ϵw ≤ 0 (86c)

ρs + Lx′MfΔ
2 + Lw′ θwΔ − ρmin ≤ 0 (86d)

ρmin − ρe′ + 0.000 01≤ 0 (86e)
0≤ ρe′≤ ρ (86f )
0≤Δ≤ 5 (86g)
0≤ ρs ≤ ρ (86h)

10−5 ≤ !ϵw ≤ 10
17 (86i)

0≤ ρmin ≤ ρ (86j)

In Eq. 86, !ϵw represents ϵw/Δ, so that the value of ϵw can be
obtained from !ϵwΔ after Eq. 86 is solved. The objective function
of Eq. 86 was selected as ρe′ to attempt to maximize the size of the
region in which process economics is optimized under the
constraint of Eq. 9a. Equation 86b was implemented as
ρe′ − ρ + a4ρ

a1
[LwθwLx

(eLxΔ − 1)] +Mv[LwθwLx
(eLxΔ − 1)]2 ≤ 0, and Eq.

86c was implemented as −a3
ρs
a2
+ Lx′MfΔ + Lw′ θw + !ϵw ≤ 0, in

accordance with Eqs 16, 81b, 82, 83. Eq. 86d was developed
due to the fact that the closed-loop state may enter Ωρs under the
operation of the LEMPC of Eqs 8, 9 with the constraint of Eq. 9b
activated, where then:

_V x t( )( )≤ − α3 |x tk( )|( ) +
zV x τ( )( )

zx
f x τ( ), u tk( ), w τ( )( )

−
zV x tk( )( )

zx
f x tk( ), u tk( ), 0( ) (87)

for t ∈ [tk, tk+1), according to Eq. 18 in Heidarinejad et al. (2012a).
In a worst case, −α3(|x(tk)|) is close to zero near the origin, so that
it can be neglected. From the requirement of Eq. 85, V(x(tk)) +
_VΔ≤ ρmin when x(tk) ∈ Ωρs. Substituting ρs and _V from Eq. 87
gives Eq. 86d. Equation 86e comes from the requirement that
Ωρmin

⊂ Ωρe′
. The bounds on the decision variables were set based

on expectations of the values of the parameters and theoretical
requirements. For example, because Ωρmin

⊂ Ωρe′
⊂ Ωρ and ρmin >

0, ρe′ > 0, and ρ > 0 Eqs 86f, 86h, 86jwere set (if the parameters ρe′,
ρs, or ρmin were to equal zero in the result of Eq. 86, then our
conclusion would be that the algorithm did not work properly). Δ
should be positive (leading to the lower bound of 0 in Eqs 86g,
where again if Δ = 0, it would be considered that the result is
problematic), and we expected it to be relatively small given
the conditions of Proposition 2 and Proposition 6 and
Theorem 6, so that an upper bound on Δ of 5 was selected
in Eq. 86g, but this could be adjusted to be higher if desired.

TABLE 3 | First set of parameters for CSTR model.

Parameter Value

ρ 1,800

a1 2.9

a2 2,001

a3 0.008

a4 8,160

Mf 4,466

Lx 3,009

Lw 1.1

Lx′ 439,200

Lw′ 3,750

Mv 10–5

θw
555
29

√
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Finally, due to a lack of knowledge of what value !ϵw should take
besides that it should be positive, a large upper bound was
provided to this parameter in Eq. 86i, with a lower bound
enforcing that the parameter be positive. The lower bound of
10–5 was selected to prevent the parameter from decreasing all
the way to zero, as it should be positive, but this lower bound
could be adjusted. This optimization problem was solved in
MATLAB using fmincon. From the initial guess ρe′ ! 1, Δ =
10–12, ρs = 1, !ϵw ! 1, and ρmin = 1, fmincon returned that the
solution had converged to an infeasible point. To better
understand the reason for the infeasibility and how to
overcome it, the constraints can be analyzed one by one
with the parameters shown in Table 3. Several of the
constraints are shown in Table 4.

Our first task is to analyze what values of the decision
variables might satisfy these constraints, particularly those of
interest in applying LEMPC (e.g., larger sampling periods and
values of ρe′). Considering first Eq. 86b in Table 4, we note that
the value of Δ would need to be small due to the exponential
terms in which Δ appears (for example, Δ of 10–5 h would
enable Eq. 86b to be satisfied with ρe′ at an example value in its
allowable range (from Eq. 86f) of 1,000). However, moving to
Eq. 86c in Table 4, we see that problems arise. First, we note
that even if !ϵw takes its smallest value according to Eq. 86i, if Δ
= 10–5 h, then ρs would need to be at least 9, 957, 459, 550,
which is not less than ρ and is therefore not allowable.
However, even if Δ was 0 (which is asymptotically the
smallest value it could reach) and !ϵw was 10–5, the term
containing the noise bound θw would still cause the
requirement on ρs to be that it be at least 5, 051, 116, 305,
which again is much larger than ρ and therefore not allowable.
This provides an indication that for the parameters of the
LEMPC to provide guarantees for the selected values of ρ, V, h,
α1(·), α2(·), α3(·), and α4(·), the value of θw needs to be small. In
the following discussion, we will consider that it is 0 (no
disturbances/plant-model mismatch).

If θw = 0, then values of ρe′ ! 1799, ρmin = 11, ρs = 10, Δ =
10–15 h, and !ϵw ! 10−5 satisfy the requirements of Eqs 86b–86j.
However, this small sampling period would likely pose
significant implementation challenges, particularly due to
the need to execute an optimization problem every 10–15 h,
and then it could also be challenging to simulate with these
parameters (e.g., it could take a long time to simulate any
substantial time length if 10–15 h was explicitly used as the time
period). The problem with the sampling period size in this case
is not only due to ρs being small; even if ρs was set to its
maximum possible value of ρ = 1,800 from Eq. 86h in this case,
!ϵw was set to its minimum value, and θw was set to 0, then Eq.

86c still indicates that Δ would need to be no more than 3.66 ×
10–12 h. This motivates the question of what might happen to Δ
if ρ was made smaller to affect some of the parameters in
Table 3.

To investigate this, we can redo the procedure above for a
different value of ρ that is smaller, to analyze the effects on the
parameters of Table 3 and also on the feasible space of Eq. 86.
Selecting ρ = 200 (i.e., ρ is about an order of magnitude
smaller than above) and neglecting disturbances, we note that
a1 and a2 are fixed by P for the selected form of V, α1(·), and
α2(·), so that if these are still “large” in the resulting problem,
V, α1(·), or α2(·) would need to change to make an impact on
these. Though ρ is smaller here, we do not update the
discretization of the stability region used, as the values that
are obtained from the above procedure provide a best case
(i.e., additional points in the stability region can only make a3
smaller, making it harder to find a larger Δ meeting Eq. 86c, and
cannot make a4,Mf, Lx, Lw, Lx′ , Lw′ , andMv smaller, which can also
make it harder to find a larger Δ meeting Eq. 86c). Therefore, we
attempt to obtain a sense of whether changing the size of ρ allows Δ
to be significantly larger than in the case with ρ = 1,800 with the
coarser discretization.

The new parameters from the above procedure with ρ = 200
are shown in Table 5. With these updated parameters, Eq. 86
gives a solution this time, specifically the solution in Table 6.
The value of ρe′ is maximized by driving it to its upper bound
(since ρe′ should be less than ρ, a constraint could be added in
the future versions of this problem with a form similar to that
in Eq. 86e but replacing ρmin with ρe′ and ρe with ρ, to enforce
thatΩρe′

is a strict subset ofΩρ). The value of Δ in Table 6 is still
incredibly small for process simulation. To check whether this
is a fundamental limit of the parameters in Table 5 or a
function of the maximization of ρe′ in Eq. 86, we can
perform an analysis of the maximum possible value of Δ in
Eq. 86c. For the parameters in Table 5, if ρs was its maximum
possible value of ρ = 200 in Eq. 86c and !ϵw was its minimum
possible value of 10–5, then Δ in this equation would still need
to be no larger than 2.245 × 10–10 h (again, a very small
number).

The maximum possible value of Δ from this procedure from
the case with ρ = 200 is about 2 orders of magnitude smaller
than the maximum possible value of Δ for the case with ρ =
1,800; this begs the question of whether a further reduction of ρ
may improve the situation (we also note that the discretization
could play a role in this, which was not further explored in the
preliminary analyses of this study). We could consider ρ = 20
for which the parameters obtained via the method above and
Eq. 86 are provided in Tables 7, 8. In this case, although a3 is
increased compared to Table 5 (at least among the points in
the discretization used), ρ is smaller so that the maximum
possible value of ρs is smaller and therefore the negative term
in Eq. 86c does not become as large as would be desired to raise
Δ. In this case, the maximum possible value of Δ from the
procedure described is 3.82 × 10–10 h, which again is
very small.

We see then that for the discretizations checked, decreasing
the size of the stability region did not put the magnitude of Δ

TABLE 4 | Constraints of Eq. 86 using the parameters of Table 3.

Equation number Equation form

Equation 86b ρe′ − 11 770.90 + 9970.90e3009Δ + 3.88 × 10−11e6018Δ ≤0

Equation 86c −4.00× 10−6ρs + 1961 556 520Δ + 20194.37 + !ϵw ≤0

Equation 86d ρs + 1961 556 520Δ2 + 20,194.37Δ−ρmin ≤ 0

Equation 86e ρmin − ρe′ + 0.000 01≤0
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in a reasonable range for the selected for h, V, and αi, i = 1, 2, 3,
4. This gives a greater insight into Remark 12, which indicated
that it is necessary to select h and V such that reasonable
parameters can be obtained. Future work could explore other
functions h, V, and αi, i = 1, 2, 3, 4 for this process to see
whether there exists any that could result in more reasonable
values of Δ or not. The results of this section also shed light on
what changes could aid in making Δ larger (for example, it is
seen above that a major reason why Δ is so small in each
simulation is because a3 is small compared to a2 in each case
and ρs is limited in magnitude by ρ, causing the only negative
term in Eq. 86c to be small, and then since the terms that
multiply Δ are large for the given shape of Ωρ, Δmust be small
in each case to prevent the positive term containing Δ from
overwhelming the negative term containing ρs and preventing
!ϵw from being positive as required by Eq. 86i). Although these
results have not focused directly on the cybersecurity of
control systems, they give some indication of the challenges
that would be faced in working toward developing the control
parameters of a cyberattack-resilient LEMPC meeting the
theory in this work. They indicate that meeting the theory
requires better strategies than that used in this section for
preventing vulnerabilities.

10 CONCLUSION

This work extended the control/detection strategies developed in
Oyama and Durand (2020) to handle actuator attacks and cases
where actuator and sensor attacks can occur simultaneously. For
the event where multiple attacks are considered, several

integrated control/detection frameworks that pair the
detection strategies designed for single attack-type events were
investigated. It was demonstrated that certain combinations of
the detection strategies can be ineffective to flag both types of
cyberattacks evaluated in this work, while others create a
cyberattack-resilient structure that enables the detection of
individual or simultaneous sensor and actuator attack types
while ensuring safe operation even if undetected attacks
occur. In particular, the pairing of Detection Strategies 1-A
and 3-S and the pairing of Detection Strategies 2-A and 3-S
were shown to be resilient against both types of cyberattacks. The
major benefits of these methods are that multiple attack
scenarios can be discovered, which adds a layer of protection,
and closed-loop stability is guaranteed if an attack policy is not
flagged by these two-piece structures. Finally, to characterize the
fundamental nature of sensor and actuator attacks, we
mathematically defined the concept of cyberattack
discoverability in the context of process control and stealthy
attack policies, which may provide insights for future detection
strategy development. The potential practical challenges with
designing LEMPCs meeting theoretical conditions, a precursor
study for getting the parameters of cyberattack-resilient
LEMPCs, elucidated some of the potential challenges with
obtaining the parameters meeting the theory that could be
addressed in future work.
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TABLE 5 | Second set of parameters for CSTR model.

Parameter Value

ρ 200

a1 2.9

a2 2,001

a3 1.14

a4 8,160

Mf 2,660

Lx 1,554

Lw 0

Lx′ 190,800

Lw′ 0

Mv 10–5

θw 0

TABLE 6 | Equation 86 parameters from the second set of parameters for CSTR

model in Table 5.

Parameter Value

ρe′ 200.00

Δ 1.40 × 10–11

ρs 37.49

!ϵw 0.0071

ρmin 45.092

TABLE 7 | Third set of parameters for CSTR model.

Parameter Value

ρ 20

a1 2.9

a2 2,001

a3 11.15

a4 5,601

Mf 2,294

Lx 1,221

Lw 0

Lx′ 126,910

Lw′ 0

Mv 10–5

θw 0

TABLE 8 | Equation 86 parameters from the third set of parameters for CSTR

model in Table 7.

Parameter Value

ρe′ 20.00

Δ 7.09 × 10–11

ρs 11.11

!ϵw 0.021

ρmin 13.93
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