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Foreword

The structure of this thesis is divided into three chapters examining distinct mathematical

problems: the Uprq phase retrieval problem, the problem of normalizing flow expressivity, and

the problem of higher order (and redundant information) Fourier transforms. While these topics

are distinct, they possess some striking mathematical connections. For instance Chapters 1 and

3 both examine what one might call “matrix frame theory,” albeit from different perspectives:

In Chapter 1 we ask the question of which generalized frames for Cnˆr of the form pAjq
m
j“1 Ă

SympCnq are sufficient to recover an arbitrary matrix z P Cnˆr from measurements of the form

pxzz˚, Ajyqmj“1, up to its orbit under right multiplication by Uprq. In doing so, we also give a

measure, in terms of the lower Lipschitz constant of a particular analysis map, of how good one

can expect said recovery to be in the presence of noise for a given choice of generalized frame. In

Chapter 3, meanwhile, we ask the question of what additional information is gained by extending

the discrete Fourier basis pekq
d´1
k“0 with pekqj :“ e2πijk{d for Cd to a quadratic Fourier frame of

the form pqk,lq
d
k,l“1 with pqk,lqj :“ e2πiplj

2`kjq{d (noting that the d2 quadratic Fourier coefficients

of v P Cd comprise the matrix rxqk,l, vysdk,l“1 P Cdˆd). In this context we show that there exist

sub-sampling schemes in which the loss of linear frequency information can be compensated

for by information from quadratic frequencies, and as in Chapter 1 provide an estimate of the

reconstruction error in the presence of noise.

The mathematical thread connecting Chapters 1 and 2 is not frame theory but differential

geometry. In Chapter 1, computation of the lower Lipschitz bounds of the analysis maps α and
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β necessitates a foray into the theory of Whitney stratification of semi-algebraic varieties (sets

defined by finite Boolean combinations of polynomial inequalities). This allows computation of

the relevant lower Lipschitz constants to be “stratified” over sets that are manifolds rather than

semi-algebraic varieties, which in turn allows the problem to be fully linearized. In somewhat of

a happy accident, we were also able to show that the family of Riemannian metrics giving rise

to one of the distance metrics of interest was “compatible” across the stratification of Cnˆr{Uprq

– in a sense defining a Riemannian geometry on the entire semi-algebraic variety. Meanwhile in

Chapter 2 we lean heavily on the basic machinery of differential geometry, employing normal-

izing flows not as global diffeomorphisms but instead as chart maps in a suitably chosen atlas.

Moreover, we similarly localize the technique used in [1] of post-composing normalizing flows

with conformal transformations in order to handle low dimensional manifolds. We show that

doing so is natural by appealing to the theory of locally conformally flat manifolds.

Finally one would be remiss not to note that both frame theory and more generally har-

monic analysis (Chapters 1 and 3) and generative machine learning (Chapter 2) are different

philosophical approaches to the same problem, namely to provide representations of functions

that are both sufficiently expressive (can accurately represent a rich class of functions) and have

nice properties (parameter efficiency, robustness to noise or partial loss of the representation, etc).

This thesis includes ongoing work and work already submitted for publication. In particu-

lar:

1. Chapter 1 was a project with Radu V. Balan. An abridged version of Chapter 1 was submit-

ted for publication to the SIAM Journal of Matrix Analysis and has passed the first round

of revisions. The full paper can be found on arχiv at https://arxiv.org/abs/2109.14522v2.
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2. Some of the results in Chapter 1 related to Lipschitz analysis were presented at the Approx-

imation Theory 16 conference at Vanderbilt University in May 2019. The full presentation

can be found at https://cbartondock.github.io/plain-academic/slides/AT16.pdf.

3. Results from Chapter 1 related to differential geometry of Sr,0pCnq and criteria for matrix

frames to be Uprq phase retrievable were presented at the AMS Fall Western Virtual Sec-

tional Meeting Special Session on Harmonic Analysis: Geometry, Frames, and Sampling

in October 2021. The full presentation can be found at https://cbartondock.github.io/plain-

academic/slides/AMSFall2021.pdf.

4. Chapter 2 was a project with Radu V. Balan, Sahil Sidheekh, Tushar Jain, and Maneesh

Singh. Chapter 2 was accepted as a conference paper for the 2022 conference Uncertainty

in Artificial Intelligence (UAI) that will be in Eindhoven in August 2022. Chapter 2 is also

available at https://arxiv.org/abs/2203.11556.

5. Chapter 3 is an ongoing project with Radu Balan and Yonina C. Eldar.
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Chapter 1: Generalized Phase Retrieval1

1.1 Introduction

Problems of “phase loss” type – in which a signal must be reconstructed from only the mag-

nitude of its Fourier transform or Fourier coefficients – are ubiquitous in applications, appearing

for example in inverse scattering problems, thin film optics, x-ray crystallography, electron mi-

croscopy, astronomy, speech processing, and pure state quantum tomography [5]. The intuitive

reasons for this ubiquity are essentially two-fold, the first of which will be familiar to anyone

who has studied electromagnetism and optics. Loosely speaking, if a field is described by a lin-

ear partial differential equation that admits travelling waves as solutions (for example Maxwell’s

equations and subsequently the Helmholtz equation), then data about “near field interactions” are

encoded in the Fourier transform of the “far field,” that is to say the state of the field sufficiently

far from the interaction relative to some intrinsic scale of interaction [5]. This principle is perhaps

most directly apparent in the Fraunhofer diffraction formula, which describes the diffraction pat-

tern produced by an aperture A (a compact, hence measurable subset of R2) when both the source

of the incident wave and the measurement apparatus are sufficiently far from the aperture relative

to its size. Specifically, the Fraunhofer diffraction formula gives the value of a component of the

1In collaboration with Radu V. Balan. This work was submitted for publication in somewhat shortened form to
the SIAM Journal of Matrix Analysis.
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electromagnetic field U at point x as:

Upxq9

ż

A
e2πix¨ydy “ Fr1Aspxq (1.1.1)

This formula and analogous results for lenses and other near field interactions allow one to predict

and in some cases to analytically compute the diffraction pattern produced, but in experimental

physics one is often tasked with the opposite problem: to analyze the near field interaction us-

ing measurements of the diffraction pattern (or scattering cross section) it produces. The second

reason the phase retrieval problem appears in optics and in inverse scattering problems is thus

practical: It is usually only possible to measure the magnitude of an oscillating field, not its

phase, at different points in space. Indeed, optical instruments typically measure photon flux

which is proportional to the squared magnitude of the electromagnetic field [5]. Similarly if one

measures the cross sectional density produced by scattering quantum particles off of an interac-

tion potential, then one can infer only the absolute square of the quantum wave function. Thus

if one seeks information about the near field interaction (for example the dielectric properties

of a lens or the approximate scattering potential) one must attempt to reconstruct the function

encoding the near field interaction from the absolute value of its Fourier transform. In practice,

one is of course further restricted to making finitely many measurements of the field, which leads

directly to the theory of discrete phase retrieval.

Further interest in the phase retrieval problem arose in the context of speech recognition

and speech processing. It is known that the human ear is quite reliably “phase deaf,” and as such

one should not expect the linguistic meaning of an audio waveform containing human language
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to depend on its phase. This intuition is made quantitative in the “cepstral analysis” of speech

signals in which phase retrieval plays a key role [6].

1.2 Variants of the phase retrieval problem

1.2.1 The continuous phase retrieval problem

The most natural general setting for the continuous phase retrieval problem arrives vis a vis

the theory of tempered distributions. Because it is most relevant to the phase retrieval problem we

restrict ourselves to a recapitulation of the one dimensional theory of distributions, but one may

extend it to tempered distributions on Rn without encountering serious theoretical difficulties. In

order to include all the usual variants of the phase retrieval problem we will also allow complex

valued Schwartz functions and tempered distributions, in contrast with the usual presentation of

distribution theory. In particular, let K P tR,Cu. Then f P C8pR Ñ Kq is termed rapidly

decreasing if for all N P N

lim
|x|Ñ8

|x|
N

|fpxq| “ 0 (1.2.1)

In this case the Schwartz class SKpRq is given by

SKpRq “ tf P C8
pR Ñ Kq | Bk

xf is rapidly decreasing for all k “ 0, 1, . . .u (1.2.2)

The Schwartz class is equipped with the family of norms || ¨ ||α,β defined to be ||f ||α,β “

supxPR |x|α|Bβ
xfpxq| for f P SKpRq and α, β P N (the natural generalization of ||f ||α,β to Rn
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yields only a family of semi-norms, but they nevertheless define a locally convex topology on

SKpRq and can be upgraded to a family of norms as needed). As such, one defines the tem-

pered distributions S 1
KpRq as the continuous dual of SKpRq, that is to say a K-linear functional

ϕ : SKpRq Ñ K is an element of S 1
KpRq if and only if for any sequence pfmqmě0 Ă SKpRq such

that limmÑ8 ||fm||α,β Ñ 0 for all α, β P N we have limmÑ8 |ϕpfmq| Ñ 0. Note that one may

restrict from S 1
CpRq to S 1

RpRq in the following sense: A distribution ϕ P S 1
CpRq is considered to

be real valued if for every real valued test function f P SRpRq one has ϕpfq P R. Finally we need

the definition of the Fourier transform for a tempered distribution: F : S 1
KpRq Ñ S 1pRq is defined

via the Fourier transform on SKpRq and the Parseval identity as:

Frψspϕq :“ ψpFrϕsq (1.2.3)

Where convenient we will also write ψ̂ for Frψs. If ψ P L1pRq (permitting a slight abuse of

notation in identifying ψ P L1pRq with the tempered distribution ϕ ÞÑ
ş

R ψϕdx) then of course

ψ̂pωq “
ş

R e
´2πiωxψpxqdx is the usual Fourier transform. The phase retrieval problem can then

be stated as follows: Recover

ψ P B Ă tϕ P S 1
KpRq|ϕ̂ P L1

locpR Ñ Kqu{ „ (1.2.4)

from |Frψs| where ψ1 „ ψ2 if and only if there exists a unimodular scalar λ P K such that

ψ1 “ λψ2. If K “ R then λ P t1,´1u, whereas if K “ C then λ P Up1q » teiθ | θ P r0, 2πqu.

The quotienting out of the overall phase factor λ is necessary because the Fourier transform is

K-linear, and thus any constant phase factor would not appear in |ϕ̂|). The technical requirement
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that ϕ̂ P L1

locpR Ñ Kq in combination with the Fourier inversion theorem has the effect of fully

determining ϕ once argpϕ̂q is known almost everywhere, thus the problem becomes to determine

argpϕ̂q from |ϕ̂| [7]. It should be noted that the continuous phase retrieval problem is usually

treated in the complex case, however we include the real case above because its discretization is

of interest.

With the problem thus stated, it is clear that the recovery of ψ P B is only possible if the

collection of functions B is sufficiently restrictive, since for arbitrary such ψ the phase and magni-

tude of the Fourier transform are independent. Indeed, if r P L2pRq and ψ “ F´1rrpωqe´2πippωqs

for any p P C8pRq then |ϕ̂| “ |r|. An example of B for which recovery is possible is to further

restrict to functions having having compact support or supported on the half line Rě0 [7]. This

particular setup is highly relevant to optics problems, in which B is typically taken to be a sub-

set of functions having compact support (representing the interaction region of the lens or other

impediment to the travelling wave solution).

1.2.2 The discrete phase retrieval problem for Fourier measurements

Obtainable from the continuous phase retrieval problem but of distinct theoretical and prac-

tical import is the discrete phase retrieval problem for Fourier measurements. In particular if we

take

B “ t
ÿ

iPI

ziδpx ´ xiq : z P l2pI,Kqu (1.2.5)
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where δ is the Dirac distribution, and I is a countable index set, then for ϕ P B one has

|ϕ̂pωq| “ |
ÿ

iPI

e´2πiωxizi| (1.2.6)

If for example I “ t0, . . . , N ´ 1u, xi “ i{N , and |ϕ̂| is only measured for ω P t0, . . . , N ´ 1u

then the problem becomes to reconstruct z P KN{ „ from measurements of the form

|ϕ̂pkq| “ |

N´1
ÿ

n“0

zne
´2πink{N

| “ |Zk| (1.2.7)

where Z P CN is the discrete Fourier transform of z. Let pejq
N
j“1 P CN with pejqk “ e2πijk{N be

the discrete Fourier basis for CN . Then the discrete phase retrieval problem may be formulated

as finding an inverse to the following function:

α : KN
{ „ Ñ RN

αpzq “

»

—

—

—

—

—

—

–

|xe1, zyC|

...

|xeN , zyC|

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.2.8)
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Because the map α is not everywhere differentiable, it is often useful to consider instead its

entry-wise square:

β : KN
{ „ Ñ RN (1.2.9)

βpzq “

»

—

—

—

—

—

—

–

|xe1, zyC|2

...

|xeN , zyC|2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.2.10)

One can also consider the problem for I countably infinite, but in many applied contexts the

discrete case suffices since one has access to only finitely many measurements and can reasonably

assume that ϕ̂ is composed of only finitely many frequencies. Moreover, it is known that if I is

countably infinite then the phase retrieval analysis map α is never lower Lipschitz with respect to

the natural distance (even allowing for non-Fourier frames) [8].

1.2.3 The discrete phase retrieval problem for arbitrary measurements

The formulation of the discrete Fourier phase retrieval problem in (1.2.8) generalizes read-

ily to non-Fourier measurements, and in particular to frames. Recall that if H is a separable

Hilbert space then a countable subset tfiuiPI Ă H is a frame for H if there exist A,B ą 0 such

that for every w P H

A||w||
2
H ď

ÿ

iPI

|xw, fiyH |
2

ď B||w||
2
H (1.2.11)
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For a finite dimensional Hilbert space the notion of a frame is identical to that of a spanning set.

A frame for Kn given by tfiu
m
i“1 Ă Kn is called a phase retrievable frame if

α : Kn
{ „Ñ Rm

αpzq “

»

—

—

—

—

—

—

–

|xf1, zyK|

...

|xfm, zyK|

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.2.12)

is injective (or equivalently if β is injective). Note that if K “ R one typically restricts to real

measurement vectors as well, and as such considers measurements of the form αkpzq “ |xfk, zyR|

rather than |xℜrfks, zyR ´ ixℑrfks, zyR|.

1.2.4 The group theoretic phase retrieval problem

In this chapter we will primarily analyze a further generalization of the discrete phase

retrieval problem to non-abelian phases belonging to Uprq. It is worth noting, however, that

this problem belongs to a large class of interesting group-theoretic phase retrieval problems.

Motivated by the fact that for K “ R we have that βkpzq “ |xfk, zy|2 may also be written as

βkpzq “ xfkf
T
k , zz

T yR and that analogously for K “ C we have βkpzq “ xfkf
˚
k , zz

˚yC, we

may generalize from fkf
T
k and fkf˚

k to arbitrary elements of SympRnq (resp. SympCnq) and re-

interpret β as the composition of the resulting linear measurements with a non-linear embedding

πpzq “ zzT (resp. πpzq “ zz˚) into the space of symmetric operators that encodes the phase

loss. By explicitly choosing the embedding to have a particular group of invariances, we can

significantly extend the notion of “phase ambiguity” to any unitary group action on a Hilbert
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space.

For now we content ourselves to the finite dimensional case: Fix finite dimensional Hilbert

spaces H (real or complex) and K (real), a group G, and a unitary representation of G on H –

that is to say a linear group action ψ : G ˆ H Ñ H that preserves || ¨ ||H . Denote by „ the

equivalence relation on H such that x „ y if and only if there exists g P G so that ψpg, xq “ y.

Fix further an embedding π : H Ñ K such that for x, y P H we have πpxq “ πpyq if and only

if x „ y. Then a finite collection A “ tAju
m
j“1 Ă K is called pG, πq phase retrievable (we will

simply say G phase retrievable when the embedding in question is clear) if the following map is

injective:

β : H{G Ñ Rm

βjpzq “ xAj, πpzqyK

(1.2.13)

Note that if π is surjective (or in fact ifK “ ∆π :“ Ranpπq´Ranpπq “ tπpxq´πpyq | x, y P Hu)

then the notion of a G phase retrievable collection corresponds with the notion of a frame for K

(and in general any frame for K is automatically G phase retrievable). For this reason, the

more interesting case is when ∆π is a proper subset of K and the collection A is not a frame

for K. As we’ll see, in many cases it is not necessary for A to be a frame for K in order to

be phase retrievable – the problem would hardly be very interesting if it were. Indeed, in the

Uprq phase retrieval problem (in which H “ Cnˆr, K “ SympCnq, G “ Uprq, ψpU, zq “ zU

and πpzq “ zz˚) it can be shown that when r ď n{2 a generic collection A of cardinality

|A| “ 4nr ´ 4r2 ď n2 is Uprq phase retrievable, whereas a frame for SympCnq would consist of

at least n2 elements [9].
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Some interesting variants of this problem are:

• H “ Rn, K “ SympRnq, G “ Op1q “ t1,´1u, ψpλ, xq “ λx, and πpxq “ xxT . In

this case it was shown in [10] that a collection of the form tfjf
T
j umj“1 will be Op1q phase

retrievable if and only if tfju
m
j“1 has the so-called complementing property, that is to say

that for every I Ă t1, . . . ,mu either tfjujPI or tfjujPIC spans Rn.

• H “ Cn, K “ SympCnq, G “ Up1q “ teiθ | θ P r0, 2πqu, ψpλ, xq “ λx, and πpxq “ xx˚.

It is shown in [11] that a collection of the form tfjfj
˚
j umj“1 will be Up1q phase retrievable

if and only if for all u P Cn with ||u||2 “ 1 one has spanRtfjf
˚
j uumj“1 “ spanRtiuuK.

• H “ Cnˆr with r ď n, K “ SympCnq, G “ Uprq, ψpU, xq “ xU , and πpxq “ xx˚.

It is shown in Theorem 1.8.13 that a collection tAju
m
j“1 Ă SympCnq will be Uprq phase

retrievable if and only if for all U P Cnˆr having orthonormal columns spanRtAjUu “

tUK | K˚ “ ´KuK. This result generalizes both to r ą 1 and to non rank 1 positive

semidefinite frame matrices the analogous result in [11].

• H “ Rnˆr with r ď n, K “ SympRnq, G “ Oprq ψpR, xq “ xR, πpxq “ xxT . This

problem, as far as I am aware, has not been studied. I would conjecture, however, that

it differs little from the case above, namely that tAju
m
j“1 Ă SympRnq will be Oprq phase

retrievable if and only if for all U P Rnˆr having orthonormal columns spanRtAjUu “

tUK | KT “ ´KuK.

• H “ Cn, K “ Rn, G “ Up1q ˆ ¨ ¨ ¨ ˆ Up1q, ψppθ1, . . . , θnq, xq “ diagpeiθ1 , . . . , eiθnqx,
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πpxq “ diagpxxT q “

»

—

—

—

—

—

—

–

|x1|2

...

|xn|2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. In this case ∆π “ Rn, that is any element of Rn can

be written as πpxq ´ πpyq for some x, y P Cn, hence the only Up1q ˆ ¨ ¨ ¨ ˆ Up1q phase

retrievable subsets of Rn are the frames for Rn.

1.2.5 Lipschitz analysis of the phase retrieval problem

If one wishes to “make quantitative” the question of phase retrievability, one option is to

strengthen the requirement that the measurement map be invertible to a requirement that it be

lower Lipschitz, and then compute its lower Lipschitz constant. Doing so of course requires

choosing a metric on H{G. Given the generalized phase retrieval problem set out in Section

1.2.4 there are essentially two reasonable choices for metrics on H{G:

(i) The induced metric ρπ (induced by π and the norm distance on K):

ρπ : H{G ˆ H{G Ñ R

ρπpx, yq “ ||πpxq ´ πpyq||K

(1.2.14)

(ii) The natural metric D:

D : H{G ˆ H{G Ñ R

Dpx, yq “ inf
gPG

||x ´ ψpg, yq||H

(1.2.15)

The fact that the natural metric is symmetric and obeys the triangle inequality follows di-

rectly from the fact that ψ is assumed to be linear and norm preserving on H and that G is
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a group. If G is compact then of course Dpx, yq “ mingPG ||x ´ ψpg, yq||H .

We note that if the set ∆π :“ Ranpπq ´ Ranpπq is closed in K then any G phase retrievable

collection tAjujPI Ă K will give rise to a β analysis map that is lower Lipschitz with respect to

the induced distance since if a0 is the square of the lower Lipschitz constant for β : pH, ρπq Ñ Rm

then

a0 “ inf
x,yPH

||βpxq ´ βpyq||2

||πpxq ´ πpyq||K

“ min
WP∆π

||W ||K“1

ÿ

iPI

|xAj,W yK |
2

(1.2.16)

Noting that for K finite dimensional ∆π X B1p0q is closed and bounded and hence compact.

Thus if a0 “ 0 there exists W0 P ∆π X B1p0q such that 0 “
ř

iPI |xAj,W0yK |2. The fact that

W0 P ∆π means that there exists x0, y0 P H such that W0 “ πpx0q ´ πpy0q, and the fact that

||W0||K “ 1 implies that x0 ȷ y0. Thus plugging W0 “ πpx0q ´ πpy0q into (1.2.16) yields that

βpx0q “ βpy0q, contradicting the fact that tAjujPI is G phase retrievable. Thus a0 ą 0 when A is

G phase retrievable. The converse is obviously true, so computation of a0, while potentially very

difficult, gives us a way of checking whether a given collection A Ă K is G phase retrievable.

This fact will eventually be employed to prove Theorem 1.8.13, providing equivalent criteria for

a collection A Ă SympCnq to be Uprq phase retrievable.

1.3 The Uprq phase retrieval problem

Let H “ Cnˆr with n ě r be the Hilbert space of tall matrices with complex entries,

equipped with the real inner product xz, wyR “ ℜtrtz˚wu, where z˚ denotes the transpose com-

plex conjugate of z (the hermitian conjugate). We denote by xz, wyC “ trtz˚wu the complex
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inner product and by Ranpzq “ tzu|u P Cru the range of z as an operator z : Cr Ñ Cn. Let Cnˆr
˚

be the open subset of Cnˆr consisting of full rank tall matrices. For p ě 1 we denote by ||z||p the

pth Schatten norm of z, that is to say the lp norm of the singular values of z. The pseudo-inverse

of z will be denoted z:. Let Uprq be the Lie group of r ˆ r matrices with entries in C satisfying

U˚U “ I. We denote by Cnˆr{Uprq and Cnˆr
˚ {Uprq the set of equivalence classes in Cnˆr and

Cnˆr
˚ respectively under the equivalence relation z „ w if and only if there exists U P Uprq such

that z “ wU . Let Sp,qpCnq denote the set of symmetric operators (hermitian matrices) on Cn

having at most p positive and q negative eigenvalues, and S̊p,qpCnq the set of symmetric oper-

ators (hermitian matrices) on Cn having exactly p positive and q negative eigenvalues. The set

Cnˆr{Uprq may then be identified with Sr,0pCnq and Cnˆr
˚ {Uprq with S̊r,0pCnq via Cholesky de-

composition. Being a finite dimensional space, a frame for Cnˆr is a collection tfju
m
j“1 Ă Cnˆr

that spans Cnˆr. In particular, tfju
m
j“1 is frame if and only if there exist A,B ą 0 (called frame

bounds) satisfying A||z||22 ď
řm

j“1 |xfj, zyR|2 ď B||z||22 for all z P Cnˆr. This condition may

also be written A||z||22 ď
řm

j“1xAj, zz
˚yR ď B||z||22 for all z P Cnˆr where Aj “ fjf

˚
j . Using

this fact, we may extend the concept of a frame for Cnˆr to collections of symmetric matrices

tAju
m
j“1 Ă SympCnq. Fix a frame for Cnˆr, then that frame is called generalized phase retriev-

able if the following map is injective:

β : Cnˆr
{Uprq Ñ Rm

βjpzq “ xAj, zz
˚
yR, j “ 1, . . . ,m

(1.3.1)

This definition is in agreement with the generalized phase retrieval problem laid out in [12]

for the case r “ 1. Note that if Aj “ fjf
˚
j then βjpzq “ ||f˚

j z||22. A breadth of literature
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exists on the classical phase retrieval problem where r “ 1 and H “ Cn or H “ Rn, see for

example [10] for an explicit construction of Parseval phase retrievable frames and [13] for a proof

of the stability of finite dimensional phase retrievability under perturbation of the frame vectors.

In contrast to the finite dimensional case, it is shown in [8] that infinite dimensional phase retrieval

is never lower-Lipschitz. Probabilistic error bounds for the case of noisy phase retrieval may be

found in [14] for frames sampled from a subgaussian distribution satisfying a so called “small

ball” assumption. Efficient algorithms exist for doing classical phase retrieval (for example via

Wirtinger flow as in [15]), as well for constructing frames with desirable properties (nearly tight

with low coherence) as in [16]. See for example [17] for an analysis of the stability statistics for

random frames and [18] for the interesting result that a large class of “non-peaky” vectors (so

called µ-flat vectors) are recoverable even when frame vectors are chosen as Bernoulli random

vectors, a case in which phase retrieval is well known to fail for arbitrary signals. Recently

several advances have been made in understanding natural generalizations of the problem to

arbitrary symmetric measurement matrices [12], unifying the problem of phase retrieval with that

of fusion frame reconstruction. Lipschitz stability questions for the generalized phase retrieval

are analyzed in [19]. The generalized phase retrieval problem in the case r “ 1 has proven

amenable to efficient implementations of gradient descent [20] and a probabilistic guarantee of

global convergence of first order methods like gradient descent has been obtained in [21] for

Opn log3pnqq frame vectors. In accordance with the classical phase retrieval we also define the α
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map as the entry-wise square root of the beta map (here we require that each Aj ě 0):

α : Cnˆr
{Uprq Ñ Rm

αjpzq “ xAj, zz
˚
y

1
2
R , j “ 1, . . . ,m

(1.3.2)

Note that if we write Aj “ fjf
˚
j using Cholesky decomposition then αjpzq “ ||f˚

j z||2. In this

paper we will study the global and local Lipschitz properties of these two maps in the case that the

frame is generalized phase retrievable. In particular, we analyze the following (squared) global

Lipschitz constants:

a0 :“ inf
x,yPCnˆr

x‰y

||βpxq ´ βpyq||22

||xx˚ ´ yy˚||22
, b0 :“ sup

x,yPCnˆr

x‰y

||βpxq ´ βpyq||22

||xx˚ ´ yy˚||22
(1.3.3)

A0 :“ inf
x,yPCnˆr

x‰y

||αpxq ´ αpyq||22

||pxx˚q
1
2 ´ pyy˚q

1
2 ||22

, B0 :“ sup
x,yPCnˆr

x‰y

||αpxq ´ αpyq||22

||pxx˚q
1
2 ´ pyy˚q

1
2 ||22

(1.3.4)

In doing so we will employ several distance metrics on Cnˆr{Uprq (equivalently on Sr,0pCnq),

the relationships between which are contained in Theorem 1.6.4. The Lipschitz properties of α

and β are intimately related to the geometry of Sr,0pCnq, which is the subject of Theorem 1.7.4.

Theorem 1.7.4 continues the results in [22] on the geometry of the nˆn positive definite matrices

Ppnq. The main contributions of this work are thus:

• In Section 1.6 we introduce the novel distance

dpx, yq :“
b

p||x||22 ` ||y||22q
2 ´ 4||x˚y||21 (1.3.5)

on Cnˆr{Uprq and in Theorem 1.6.4 provide optimal Lipschitz constants with respect to
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natural embeddings of pCnˆr{Uprq, dq into the Euclidean space pSympCnq, || ¨ ||2q. This

new distance metric allows us in 1.8.5 to compute local lower Lipschitz constants for the

β map generalizing those in Theorem 2.5 of [23]. 1.6.4 also provides optimal Lipschitz

constants with respect to natural embeddings of pCnˆr{Uprq, Dq into pSympCnq, || ¨ ||2q for

the Bures-Wasserstein distance Dpx, yq :“
a

||x||22 ` ||y||22 ´ 2||x˚y||1.

• In Section 1.7 Theorem 1.7.4 generalizes Theorem 5 in [22] by providing the geometry

not just of manifold of positive definite matrices Ppnq but of the algebraic semi-variety

Sr,0pCnq. In particular we manifest a Whitney stratification of Sr,0pCnq, obtain the Rieman-

nian metrics of the stratifying manifolds, and show that this family of metrics is compatible

across the strata in the sense that geodesics of lower strata are limiting curves of geodesics

in higher strata. In particular this proves that the geodesic in Sr,0pCnq connecting two ma-

trices of rank k ă r is completely contained in S̊k,0pCnq. This stratification of the low rank

positive-semidefinite matrices is crucial in simplifying the computation of the global lower

Lipschitz bounds for β and α in Theorems 1.8.5 and 1.8.8 respectively.

• In Section 1.8 Theorem 1.8.5 provides an explicit formula for the global lower bound a0

as the minimization over Upnq of the p2nr ´ r2qth eigenvalue of a family of matrices

parametrized by Upnq. Theorem 1.8.5 also uses the distance d to provide a generalization

of Theorem 2.5 in [23] to the case r ą 1 and shows that the analog Q̂z of Rpξq can be used

to control a0 to within a factor of 2. We also show in Theorem 1.8.8 that the corresponding

generalization of Theorem 2.2 in [23] to the case r ą 1 is false, namely that A0 “ 0 when

r ą 1. Thus in the case r ą 1 the more recently introduced β map (the entry-wise square of

the α map) is a more natural and well behaved analysis map for generalized phase retrieval,

16



owing primarily to the fact that it lifts to a linear map on the low rank positive semi-definite

matrices. It should be noted that Theorem 1.8.8 does not rule out the possibility of a better

distance metric with respect to which α is globally lower Lipschitz. Finally, in Theorem

1.8.13 we provide novel conditions for a frame tAju
m
j“1 for Cnˆr to be generalized phase

retrievable.

We caution the reader that throughout the paper the scalar product x¨, ¨yR is a real inner

product, however z˚ denotes the conjugate with respect to the complex inner product x¨, ¨yC. We

also note that the norm ||z||p for p ě 1 is the pth Schatten norm of z P Cnˆr seen as a C-

linear operator from Cr to Cn. Hence the norm || ¨ ||2, while it refers to the Schatten 2 norm,

is equivalently given as ||z||2 “
a

xz, zyR “
a

xz, zyC. If z were instead seen as an R-linear

operator from Cr to Cn then the resulting Schatten p norm would be amplified by a factor 2
1
p

since the multiplicity of each singular value would double.

1.4 A review of quantitative phase retrievability

The question of phase retrievability criteria for frames for Rn was addressed in [10], in

which it was shown that a frame F is phase retrievable if and only if it satisfies the “comple-

menting property,” that is if and only if for every subset I Ă F either I or FzI spans Rn. It was

moreover shown in [10] that if m ă 2n´1 then a frame for Rn of cardinality m will not be phase

retrievable and also that a generic frame for Rn of size m ě 2n ´ 1 will be phase retrievable –

that is to say the set tF “ tf1, . . . , fmu Ă Rn|F is phase retrievableu will be dense in the Zariski

topology when m ě 2n ´ 1. The question of phase retrievability criteria can be made quanti-

tative by asking for which frames the analysis maps α and β are lower Lipschitz with respect
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to some natural distance metrics, and computing their lower Lipschitz constants. Intuitively, a

frame is phase retrievable if and only if α (resp. β) is injective, thus it is natural to analyze (for

a given frame) the lower Lipschitz constant of α (resp. β), which measures“how” injective α

(resp. β) is. In answer to this refinement it was shown in [24] that for the α map and the distance

ρpx, yq “ mint||x ´ y||2, ||x ` y||2u we have:

Theorem 1.4.1. (See [24] Theorem 4.3.) For any index set I Ă t1, . . . ,mu let FrIs “ tfk|k P Iu

and let σ2
1rIs “ λmax

ˆ

ř

kPI fkf
˚
k

˙

and σ2
nrIs “ λmin

ˆ

ř

kPI fkf
˚
k

˙

. Then

A0 :“ inf
x,yPRn

xȷy

||αpxq ´ αpyq||22

ρpx, yq2
“ min

IĂt1,...,mu
σ2
nrIs ` σ2

nrICs (1.4.1)

This result implies in particular that for a phase retrievable frame for Rn the α map is

globally lower Lipschitz. An analogous result was given in [24] for the β map and the distance

||xxT ´ yyT ||1:

Theorem 1.4.2. (See [24] Theorem 2.1.) Let tfju
m
j“1 be a phase retrievable frame for Rn and let

R : Rn Ñ SympRnq be given by Rpxq “
řm

j“1 |xx, fjy|2fjf
T
j . Then

a0 :“ inf
x,yPRn

xȷy

||βpxq ´ βpyq||22

||xxT ´ yyT ||21
“ min

xPRn

||x||2“1

λnpRpxqq ą 0 (1.4.2)

Regarding the complex case the following phase retrievability criterion was obtained in

[11]:

Theorem 1.4.3. (See [11] Theorem 4.) Let tfju
m
j“1 be a frame for Cn. For u P Cn denote

Spuq “ spanRtfjf
˚
j uumj“1. Then the following are equivalent:

(i) The frame tfju
m
j“1 Ă Cn is phase retrievable.
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(ii) dimR Spuq ě 2n ´ 1 for every u P Cnzt0u.

(iii) Spuq “ spanRtiuuK for every u P Cn P zt0u.

In connection to this paper we note that the above result is extended to the case of gen-

eralized retrievability of frames for Cnˆr by Theorem 1.8.13. The quantitative lower Lipschitz

variant of Theorem 1.4.3 was obtained for the β analysis map in [23], in which it was proved that

for the beta map:

Theorem 1.4.4. (See [23] Theorem 2.3 and Theorem 2.5.) Let tfju
m
j“1 be a phase retrievable

frame for Cn. Define R : R2n Ñ SympR2nq via Rpξq “
řm

j“1Φjξξ
TΦj where Φj “ ϕjϕ

T
j `

Jϕjϕ
T
j J

T , ϕj “

»

—

—

–

ℜfj

ℑfj

fi

ffi

ffi

fl

and J is the symplectic form

»

—

—

–

0 ´I

I 0

fi

ffi

ffi

fl

. Then

a0 :“ inf
x,yPCn

xȷy

||βpxq ´ βpyq||22

||xx˚ ´ yy˚||21
“ min

ξPR2n

||ξ||2“1

λ2n´1pRpξqq ą 0 (1.4.3)

The connection of the above to Theorem 1.4.3 is that the null space of Rpξq includes the

realification of spanRtiξu for every ξ. Theorem 1.4.4 is extended to the case of generalized phase

retrievability of frames for Cnˆr by Theorem 1.8.5.

1.5 Applications of Phase Retrieval

1.5.1 Phase Retrieval in Optics: Fraunhofer diffraction

Historically, one of the first applications of phase retrieval was to the inverse problem of

inferring an object’s structure from the diffraction pattern it generates when it interacts with an
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incident electromagnetic field. It is a fundamental property of Maxwell’s equations that in the

“far field,” when the distance from the interfering object is large compared to the object’s size,

the structure of the object will be encoded in the Fourier transform of the field. Following [2] we

re-cap this principle in its most directly apparent form in the Fraunhofer diffraction regime, but it

is quite broadly applicable. For the purposes of this example assume we have a monochromatic

field

V px, tq “ Upxqe´iωt (1.5.1)

Here V is a component of the electric (or magnetic) field. In this case the wave equation c´2B2
t V ´

∆V “ 0 reduces to Helmholtzs’ equation

pk2 ` ∆qU “ 0 (1.5.2)

Where here k “ ω
c

“ 2π
λ

is the wave number. We would like to obtain a representation formula

for Upxq satisfying (1.5.2) in terms of its values on a surface containing x. To this end, consider

two solutions U and U 1 of (1.5.2) and let V Ă R3 be a compact, connected volume with boundary

δV and employ Green’s divergence theorem to the vector field U∇U 1 ´ U 1∇U to obtain:

ż

V

U∆U 1
´ U 1∆UdV “

¿

δV

Upn̂ ¨ ∇qU 1
´ U 1

pn̂ ¨ ∇qUdS (1.5.3)

This is of course Green’s second identity, with n̂pyq being the outwards pointing unit normal

vector to the surface δV at point y P δV . If we now substitute ∆U 1 “ ´k2U 1 and ∆U “ ´k2U
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into (1.5.3) we find that the left-hand side vanishes, thus

¿

δV

Upn̂ ¨ ∇qU 1
´ U 1

pn̂ ¨ ∇qUdS “ 0 (1.5.4)

With this in hand, let V Q x and let U 1pyq “ eiks{s where s “ ||y ´ x||2. This choice of U 1,

which is of course a Huygens’ wavelet emanating from the point x, is singular at y “ x, so one is

forced to pursue a limiting argument by first excluding from V a ball Bϵpxq of radius ϵ centered

at x. In this case, and noting that on the surface of said sphere n̂ ¨∇U 1 “ pik´s´1qeiks{s, (1.5.4)

becomes

¿

δV

Upn̂ ¨ ∇q
eiks

s
´
eiks

s
pn̂ ¨ ∇qUdS “ ´

¿

δBϵpxq

pik ´ s´1
qeiksUpyq{s ´ eiksU{sdSpyq

“ p1 ´ ikϵqeikϵ
¿

δBϵpxq

UpyqdΩpyq

(1.5.5)

The left-hand side of (1.5.5) is independent of ϵ, and in the limit ϵ Ñ 0 the right-hand side

converges to 4πUpxq, thus we conclude:

Upxq “
1

4π

¿

δV

Upn̂ ¨ ∇q
eiks

s
´
eiks

s
pn̂ ¨ ∇qUdS (1.5.6)
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Figure 1.1: From [2].

This result is known as the Fresnel-Kirchoff integral theorem, and follows directly from

Green’s theorem and (1.5.2). We can apply the Fresnel-Kirchoff theorem to the case of of diffrac-

tion through an aperture A by envisioning an imaginary sphere around that aperture, as in Figure

1.1. In this case (1.5.6) yields

Upxq “
1

4π
p

ż

A
`

ż

B
`

ż

C
qUpn̂ ¨ ∇q

eiks

s
´
eiks

s
pn̂ ¨ ∇qUdS (1.5.7)

At this point some reasonable physical assumptions can be used to arrive at the Fresnel-Kirchoff

diffraction formula. In particular if one assumes thatR is larger than cpt´ t0q where t0 is the time

of emission then the contribution of the third integral will be zero, since both U and pn̂ ¨ ∇qU

will be zero on C. Moreover, Kirchoff assumed that U |B and its normal derivative are zero,

and that U |A is the same as it would be absent the screen, that is to say U |A “ Aeikr{r and

pn̂ ¨ ∇qU |A “ cospθqpik ´ r´1qeikr{r. These assumptions are known as the Kirchoff boundary
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conditions. In this case (1.5.7) gives

Upxq “
A

4π

ż

A

eikpr`sqpik ´ s´1q

rs
cospθq `

eikpr`sqpik ´ s´1q

rs
cospψqdS (1.5.8)

In the far field, that is when λ ăă s and λ ăă r the terms ik´s´1 and ik´r´1 are approximately

equal to ik. Thus, in the far field:

Upxq “
iA

2λ

ż

A

eikpr`sq

rs
rcospθq ` cospψqsdS (1.5.9)

This is the celebrated Fresnel-Kirchoff diffraction formula. On the other hand, if the source x0

and target x are far from the aperture relative to its size, then cospθq ` cospψq « 2 cospδq where

δ is the angle between the screen’s normal and x´ x0. Moreover, 1
rs

will be almost constant over

A. Thus place the origin in A and let r1 and s1 be the respective distances of x0 and x from the

origin. In this case

Upxq «
iA cospδq

λr1s1

ż

A
eikpr`sqdS (1.5.10)

Now parameterize a point in the aperture via pξ, η, 0q so that dS “ dηdξ, r2 “ px0 ´ ξq2 ` py0 ´

ηq2 ` z20 , s2 “ px´ ξq2 ` py´ηq2 ` z2, r2 “ x20 `y20 ` z20 , and s2 “ x2 `y2 ` z2. A little algebra

yields that r « r1 ´ px0ξ`y0ηq{r and s « s1 ´ pxξ`yηq{s1 (the neglecting of higher order terms

in these expansion is precisely what gives the Fraunhofer diffraction formula) and we obtain the
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Fraunhofer diffraction formula

Upxq «
iA cospδq

λr1s1
eikpr1`s1q

ż

A
eikpx0{r1´x{s1qξ`py0{r1´y{s1qηdηdξ (1.5.11)

Thus using coordinates p “ px0{r
1 ´ x{s1q{λ and q “ py0{r

1 ´ y{s1q{λ yields

Upp, qq9

ż

A

e´2πippξ`qηqdηdξ “ Fr1Aspp, qq (1.5.12)

And we obtain that in the far field it is the Fourier transform of the aperture that is encoded in the

field. It is typically only possible to measure the magnitude of the field for some finite collection

txiuiPI , thus one would like to be able to recover A (or equivalently 1A) from t|Fr1Apxiqs|uiPI .

1.5.2 Phase Retrieval in Inverse Schrodinger Scattering

For simplicity we will consider one dimensional inverse scattering, in which one attempts

to recover the scattering potential from the frequency dependent magnitude of the reflected wave.

This example follows [7]. Assume a localized potential V pxq so that V pxq “ 0 for x ă 0. To the

left and right of the support of V the solutions of the time independent Schrodinger equation at

spatial frequency k equation are respectively

ψLpxq “ Apkqe2πik ` Bpkqe´2πik

ψRpxq “ Cpkqe2πik
(1.5.13)

Thus |Apkq| is the strength of the incident wave at frequency k, |Bpkq| the strength of the reflected

wave, and |Cpkq| the strength of the transmitted wave. Certain physical potentials without bound
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states are completely determined either by Bpkq or Cpkq, but in practice what one is able to

measure is |Bpkq| (or |Cpkq|) [7]. In the Born approximation (the high frequency regime) it can

be shown that

|

ż 8

0

dV

dx
e2ikdx| “ 4k2|Bpkq| (1.5.14)

Thus one is able to obtain only the magnitude of the Fourier transform of V 1pxq for each k, and

from this one would like to reconstruct V 1pxq (and hence V pxq).

1.5.3 Phase Retrieval in Speech Processing

The phase retrieval problem arises in a totally different manner in the field of speech pro-

cessing (and more generally discrete time signal processing). One typically assumes that the

speech signal s P cpZq is a bounded sequence of the form

spnq “ epnq ˚ θpnq “
ÿ

kPZ

epkqθpn ´ kq (1.5.15)

Where n is the discrete time variable, e is the “excitation signal” containing the actual meaning

of the speech and θ models the impulse response of the vocal system to the meaningful excitation

(typically θ has finite support) [6]. In recognition and translation tasks one would like therefore

to separate out the excitation signal e from the speech signal s. If the signal were instead of the

form

spnq “ epnq ` wpnq (1.5.16)
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With w being high frequency noise, linear signal processing has a ready answer in the discrete

time Fourier transform and spectral analysis. A low-pass filter of the form J rss “ F´1r1ωăω0Ss

where Spωq “
ř

kPZ srkse´2πikω would be sufficient to isolate erns since J rss « e. The convolu-

tional analog to this type of spectral analysis is termed “cepstral analysis” and was introduced by

Bogert, Healy, and Tukey in [25] and generalized by Oppenheim and Schafer to “homomorphic

signal analysis” in [26]. Analogous to the Fourier transform, the backbone of cepstral analysis is

the so-called real cepstrum:

Hrsspnq “ F´1
rlog |Spωq|s “

1

2π

ż π

´π

e´2πiωn log |Spωq|dω (1.5.17)

Here n is neither the frequency nor the discrete time, and is termed the “quefrency.” The field

is replete with a dictionary of such Seussian terms (“rahmonics” replace harmonics, “saphes”

replace phases, etc). The complex analog of H (using the complex logarithm to avoid the phase

annihilating absolute value) is used in [26] and has several nice theoretical properties, but turns

out to be less useful in practical speech processing tasks than (1.5.17) [6]. The key property of H

that allows it to play the role of the Fourier transform with respect to (1.5.15) is that

Hre ˚ θspnq “ F´1
rlog |Epωq| ` log |Θpωq|s “ Hrespnq ` Hrθspnq (1.5.18)

Because of this homomorphism, it makes sense to perform filtering (termed “liftering”) in the

quefrency domain. With appropriate quefrency filters and a forward discrete time Fourier trans-

form one is thus able to approximately isolate |Epωq|, at which point recovery of the excitation

signal epnq is precisely the phase retrieval problem.
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1.5.4 Phase Retrieval in Quantum Tomography

A motivating example for the Lipschitz analysis of α and β is quantum tomography of

impure states. A noisy quantum system is modeled as a statistical ensemble over pure quantum

states. The standard example is unpolarized light. In such cases, all of the measurable information

in the system is contained in a density matrix which, using bra-ket notation, has the form

ρ “
ÿ

jPI
pj|ψjyxψj| (1.5.19)

where pj is the ensemble probability that the system is in the pure quantum state |ψjy belonging

to a Hilbert space H . If we assume the cardinality of I is finite and equal to r and that the state

vectors themselves live in the Hilbert space Cn then ρ P Sr,0pCnq X tx P SympCnq|trtxu “ 1u.

The expectation of a given observable A (a symmetric operator on Cn) is therefore

EρrAs “
ÿ

jPI
pjxψj|A|ψjy “

ÿ

jPI
pjtrt|ψjyxψj|Au “ trtρAu “ ℜtrtρAu (1.5.20)

By repeatedly measuring the observable A and then allowing the quantum system to relax one

may estimate trtρAu (and perhaps higher moments) but the aim is to infer ρ itself. It was shown

in [27] that sufficiently many randomly sampled Pauli observables can be used along with meth-

ods from compressed sensing (trace minimization, matrix Lasso) to reconstruct a low rank density

matrix with high fidelity. In general, if a suite of observables is well-chosen (constitutes a gen-

eralized phase-retrievable frame) then the problem of inferring ρ from the expectation values of

said observables is subordinate to the problem of phase retrieval on Cnˆr. Asking if, for a col-
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lection of observables tAju
m
j“1, the density matrix ρ is recoverable is equivalent to asking if the

map

β̃ : Sr,0
pCn

q X tx P SympCn
q|trtxu “ 1u Ñ Rm

β̃pρq “

»

—

—

—

—

—

—

–

xρ,A1yR

...

xρ,AmyR

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.5.21)

is injective. In fact, given that we can only approximate the expectations using finitely many

measurements, we should hope that it is lower Lipschitz with respect to the Frobenius distance.

Such stability questions for phase retrievable frames for Cn (the pure state case) are investigated

in [13]. Given that ρ is positive semidefinite and rank at most r there exists a Cholesky factor

z P Cnˆr such that ρ “ zz˚. Indeed we may take z P Cnˆr{Uprq since ρ is invariant under

z Ñ zU , in which case trtρu “ 1 if and only if ||z||2 “ 1. We may therefore concern ourselves

with the Lipschitz properties of β restricted to z P Cnˆr{Uprq with ||z||2 “ 1, rather than β̃. For

the time being we consider a Lipschitz analysis of β : Cnˆr{Uprq Ñ Rm, deferring discussion of

a possible Lipschitz retract onto the unit sphere. Thus we seek information on the optimal global

lower Lipschitz constant of the β map, namely
?
a0. In the above example if a0 ą 0 this means

that if we can measure each EρrAjs to within error ϵ ą 0 then we can obtain an approximation ρ̂

to ρ that satisfies

||ρ ´ ρ̂||2 ď
ϵ
?
m

?
a0

(1.5.22)

In addition to quantum state tomography, Lipschitz analysis of spaces of low-rank matrices
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is central in a significant number of problems in science and engineering such as: the phase

retrieval problem [10, 28], source separation and inverse problems [29], as well as the low-rank

matrix completion problem [30].

1.6 Relevant distances and Lipschitz embeddings

Definition 1.6.1. We define the equivalence relation „ on Cnˆr via

x „ y ðñ DU P Uprq|x “ yU (1.6.1)

and denote by rxs the equivalence class of x P Cnˆr, and by Cnˆr{Uprq the collection of equiva-

lence classes trxs|x P Cnˆru.

The stability analysis that follows for β and α in Theorems 1.8.5 and 1.8.8 will rely heavily

on the following natural metrics on Cnˆr{Uprq.

Definition 1.6.2. We define D, d : Cnˆr ˆ Cnˆr Ñ R.

Dpx, yq “ min
UPUprq

||x ´ yU ||2

“

b

||x||22 ` ||y||22 ´ 2||x˚y||1

dpx, yq “ min
UPUprq

||x ´ yU ||2||x ` yU ||2

“

b

p||x||22 ` ||y||22q
2 ´ 4||x˚y||21

(1.6.2)
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We note that another distance on Cnˆr{Uprq given by

D1
px, yq “ max

UPUprq
||x ´ yU ||2

“

b

||x||22 ` ||y||22 ` 2||x˚y||1

(1.6.3)

and is introduced and analyzed for the r “ 1 case in [31]. We note merely that d “ D ¨ D1. This

does not imply d is a metric, however in fact we have the following proposition.

Proposition 1. Both D and d are metrics in the usual sense on Cnˆr{Uprq.

Proof. See 1.9.1.

The proof of Proposition 1 relies on Lemma 1.9.1, an apparently simple result about the

analytic geometry of parallelepipeds in R3 which may be of independent interest.

The minimizer U can be chosen to be the same for both d and D, and is characterized by

the following:

Proposition 2. The unitary minimizer in both d and D is given by the polar factor in x˚yU “

|x˚y|. The minimizer will be unique so long as x˚y is full rank. Otherwise, the minimizer will

be of the form U “ U0 ` U1 where U0 “ V0W
˚
0 with V0,W0 P Crˆrankpx˚yq the matrices whose

columns are the right and left singular vectors respectively of the non-zero singular values of x˚y

and U1 P Crˆr any matrix such that U1U
˚
1 “ Pkerpx˚yq and U˚

1U1 “ PRanpx˚yqK .

Proof. See 1.9.2

The metrics d and D can be compared to the usual Euclidean distance on SympCnq modulo

certain embeddings.
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Definition 1.6.3. We define θ, π, ψ : Cnˆr Ñ Sr,0pCnq as

θpxq “ pxx˚
q
1
2

πpxq “ xx˚
“ θpxq

2

ψpxq “ ||x||2pxx˚
q
1
2 “ ||θpxq||2θpxq

(1.6.4)

Proposition 3. The embeddings π, θ, and ψ are rank-preserving, surjective, and injective modulo

„, thus we write θ, π, ψ : Cnˆr{Uprq ãÑ SympCnq.

Proof. See 1.9.3

Theorem 1.6.4. Let x, y P Cnˆr{Uprq. Then

(i) θ : pCnˆr{Uprq, Dq Ñ pSr,0pCnq, || ¨ ||2q is a bi-Lipschitz map. In particular,

Cn||θpxq ´ θpyq||2 ď Dpx, yq ď ||θpxq ´ θpyq||2 (1.6.5)

where Cn “ 1 if n “ 1 and Cn “ 1?
2

for n ą 1. The constants Cn and 1 are optimal.

(ii) π : pCnˆr{Uprq, dq Ñ pSr,0pCnq, || ¨ ||1q is 1-Lipschitz and ψ´1 : pSr,0pCnq, || ¨ ||2q Ñ

pCnˆr{Uprq, dq is 2-Lipschitz for r ą 2 and
?
2-Lipschitz for r “ 1. In particular,

||πpxq ´ πpyq||2 ď ||πpxq ´ πpyq||1 ď dpx, yq ď cr||ψpxq ´ ψpyq||2 (1.6.6)

where cr “
?
2 if r “ 1 and cr “ 2 if r ą 1. The constants 1 and cr are optimal.
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(iii) For r “ 1

ψpxq “ πpxq (1.6.7)

dpx, yq “ ||πpxq ´ πpyq||1 (1.6.8)

The identity (1.6.8) was noticed and used in [23], its proof is included here for the benefit

of the reader.

(iv) For r ą 1, there is no constantC satisfyingC||πpxq´πpyq||2 ě dpx, yq for each x, y P Cnˆr

(hence the use of the alternate embedding ψ).

Proof. See 1.9.4

Remark 1.6.5. While d and D are evidently not Lipschitz equivalent (they scale differently), they

do generate the same topology on Cnˆr{Uprq since dpx, yq ď Dpx, yq2 and given sufficiently

small ϵ ą 0 we have dpx, yq ă ||x||
?
ϵ ùñ Dpx, yq ă ϵ.

1.7 Geometry of the matrix phase retrieval

It will be essential in the analysis and computation of (1.3.3) to understand the geometry

of the spaces Sr,0pCnq. In order to do so, we will demonstrate that Sr,0pCnq has a Whitney

stratification over the smooth Riemannian manifolds S̊i,0pCnq for i “ 0, . . . , r of real dimension

2ni ´ i2. We recall the following definitions, due to John Mather and sourced from [32]:

Definition 1.7.1. Let Vi, Vj be disjoint real manifolds embedded in Rd such that dimVj ą dimVi

and Vi X Vj non-empty. Let x P Vi X Vj . Then a triple pVj, Vi, xq is called a´ (resp. b´) regular

if
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(a) If a sequence pynqně1 Ă Vj converges to x in Rd and TynpVjq converges in the Grassmannian

GrdimVj
pRdq to a subspace τx of Rd then TxpViq Ă τx.

(b) If sequences pynqně1 Ă Vj and pxnqně1 Ă Vi converge to x in Rd, the unit vector pxn ´

ynq{||xn ´ yn||2 converges to a vector v P Rd, and TynpVjq converges in the Grassmannian

GrdimVj
pRdq to a subspace τx of Rd then v P τx.

Definition 1.7.2. Let V be a real semi-algebraic variety. A disjoint decomposition

V “
ğ

iPI

Vi, Vi X Vj “ H for i ‰ j (1.7.1)

into smooth manifolds tViuiPI , termed strata, is a Whitney stratification if

(a) Each point has a neighborhood intersecting only finitely many strata

(b) The boundary sets VjzVj of each stratum Vj are unions of other strata.

(c) Every triple pVj, Vi, xq such that x P Vi Ă Vj is a-regular and b-regular as in Definition 1.7.1.

A simple example of a semi-algebraic variety that is not a manifold but admits a Whitney

stratification is the cone C “ tpx, yq|xy ě 0u Ă R2 consisting off the first and third quadrant

of the coordinate plane. A possible Whitney stratification of this set is given by V0 “ t0u,

V1 “ tpx, 0q|x ‰ 0u, V2 “ tp0, yq|y ‰ 0u, and V3 “ tpx, yq|x ‰ 0, y ‰ 0u. In this case note

that condition paq is trivially satisfied since there are only finitely many strata, and moreover that

pbq is satisfied since V3zV3 “ V0 Y V1 Y V2, V2zV2 “ V0, V1zV1 “ V0, and that V0zV0 “ ϕ

(an empty union of the other strata). That this stratification is both paq and pbq regular may

be readily observed. For example the tangent space at any point of V3 is simply R2, and thus
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the Grassmanian limit of a convergent sequence of such tangent spaces is also R2 and certainly

contains the one dimensional tangent space at any point of V2 (identified with the y axis), the one

dimensional tangent space at any point of V1 (identified with the x axis), and the zero dimensional

tangent space associated with V0 (identified with the origin).

We will also need the following:

Definition 1.7.3. Let M and N be smooth manifolds and let π : M Ñ N be a smooth map. For

each x P M let

TxpMq :“ tγ1
p0q|γ : r´1, 1s Ñ M is a smooth curve with γp0q “ xu (1.7.2)

be the tangent space of M at x. Similarly for TπpxqpN q. Let Dπpxq : TxpMq Ñ TπpxqpN q be the

differential of π at x, that is to say Dπpxqpvq :“ α1p0q where α “ π ˝ γ, γp0q “ x, and γ1p0q “ v

(that Dπpxq does not depend on the exact choice of curve γ is an elementary result of differential

geometry). Then

(a) For each x P M define the vertical space at x as:

Vπ,xpMq Ă TxpMq :“ kerDπpxq “ tw P TxpMq|Dπpxqpwq “ 0u (1.7.3)

(b) If M is equipped with a Riemannian metric g : M ˆ TxpMq ˆ TxpMq Ñ R then we may

define the horizontal space at each x via the canonical orthogonal complement of the vertical

34



space:

Hπ,xpMq Ă TxpMq :“ Vπ,xpMq
K

“ tv P TxpMq|gpx, v, wq “ 0@w P Vπ,xpCnˆr
˚ qu

(1.7.4)

The following proposition will be essential both in proving the geometric results in Theo-

rem 1.7.4 and in the analysis of the Lipschitz constants for β and α set out in Theorems 1.8.5,

1.8.8, and 1.8.12:

Proposition 4. Let π : Cnˆr
˚ Ñ S̊r,0pCnq be as in Definition 1.6.3 and let Vπ,xpCnˆr

˚ q and

Hπ,xpCnˆr
˚ q denote the vertical and horizontal spaces as in Definition 1.7.3 of the manifold

Cnˆr
˚ at x with respect to the embedding π. Here the Riemmanian metric on Cnˆr

˚ is of course

g : Cnˆr
˚ ˆ Cnˆr ˆ Cnˆr Ñ R given by gpx, v, wq “ ℜtrtz˚wu. Let TπpxqpS̊

r,0pCnqq denote the

tangent space of S̊r,0pCnq at πpxq. Then

Vπ,xpCnˆr
˚ q “ txK|K P Crˆr, K˚

“ ´Ku (1.7.5)

Hπ,xpCnˆr
˚ q “ tHx ` X|H P Cnˆn, H˚

“ H “ PRanpxq
H, (1.7.6)

X P Cnˆr,PRanpxq
X “ 0u

TπpxqpS̊
r,0

pCn
qq “ tW P SympCn

q|PRanpxqKWPRanpxqK “ 0u (1.7.7)

“ DπpxqpHπ,xpCnˆr
˚ qq

Proof. See 1.10.1

Employing similar techniques to [22], but generalizing from the manifold of positive defi-

nite matrices to the semi-algebraic variety Sr,0pCnq semidefinite matrices, we prove:
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Theorem 1.7.4. Let π be as in Definition 1.6.3 and the distance D be as in (1.6.2). Then

(i) S̊p,qpCnq is a real analytic manifold for each p, q ą 0 of real dimension 2npp`qq´pp`qq2.

(ii) π : Cnˆr
˚ Ñ S̊r,0pCnq can be made into a Riemannian submersion by choosing the following

unique Riemannian metric on S̊r,0pCnq:

hpZ1, Z2q “ trtZ
∥
2

ż 8

0

e´uxx˚

Z
∥
1e

´uxx˚

duu ` ℜtrtZK˚
1 ZK

2 pxx˚
q

:
u (1.7.8)

Where Z1, Z2 P TπpxqpS̊
r,0pCnqq, pxx˚q: denotes the pseudo-inverse of xx˚, and

Z
∥
i “ PRanpxq

ZiPRanpxq
ZK

i “ PRanpxqKZiPRanpxq
(1.7.9)

(iii) S̊r,0pCnq equipped with the metric h is a Riemannian manifold with D as its geodesic dis-

tance.

(iv) The semi-algebraic variety Sr,0pCnq admits as an explicit Whitney stratification pS̊i,0qri“0.

(v) The geometry associated to h is compatible with the Whitney stratification in the following

sense: If pAiqiě1, pBiqiě1 Ă S̊p,0 have limits A and B respectively in S̊q,0 for q ă p and if

γi : r0, 1s Ñ S̊p,0 are geodesics in S̊p,0 connecting Ai to Bi chosen in such a way that the

limiting curve δ : r0, 1s Ñ S̊p,0 given by

δptq “ lim
iÑ8

γiptq (1.7.10)

exists, then the image of δ lies in S̊q,0 and is a geodesic curve in S̊q,0 connecting A to B.
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Proof. See 1.10.2

1.8 Computation of Lipschitz bounds

We are primarily interested in computing a0 and A0, the squared global lower Lipschitz

constants for the β and α analysis maps respectively. Owing to the linearity of the β analysis

map when interpreted as in (1.5.21), we will be able to show in Theorem 1.8.5 that the optimal

global lower Lipschitz bound a0 can be obtained via local considerations. For the α analysis map

we will be able to show in Theorem 1.8.8 that the optimal global lower Lipschitz bound A0 is

actually zero for r ą 1. Since the global lower Lipschitz bound for the α analysis map is trivial

we emphasize the analysis of the local lower Lipschitz bounds. Recall that

a0 “ inf
x,yPCnˆr

rxs‰rys

||βpxq ´ βpyq||22

||πpxq ´ πpyq||22
“ inf

x,yPCnˆr

rxs‰rys

řm
j“1pxxx˚, AjyR ´ xyy˚, AjyRq2

||xx˚ ´ yy˚||22
(1.8.1)

From purely topological considerations, we may obtain

Proposition 5. The constant a0 is strictly positive whenever the map β is injective, equivalently

whenever tAju
m
j“1 is a generalized phase retrievable frame of symmetric matrices.

Proof. See 1.11.1

Definition 1.8.1. Let z P Cnˆr have rank k. We will analyze the following four types of local

lower Lipschitz bounds for β, the first two with respect to the norm induced metric and the second
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two with respect to the metric d:

a1pzq “ lim
RÑ0

inf
xPCnˆr

||πpxq´πpzq||2ăR

||βpxq ´ βpzq||22

||πpxq ´ πpzq||22

a2pzq “ lim
RÑ0

inf
x,yPCnˆr

||πpxq´πpzq||2ăR
||πpyq´πpzq||2ăR

p||βpxq ´ βpyq||22

||πpxq ´ πpyq||22

â1pzq “ lim
RÑ0

inf
xPCnˆr

dpx,zqăR

rankpxqďk

||βpxq ´ βpzq||22

dpx, zq2

â2pzq “ lim
RÑ0

inf
x,yPCnˆr

dpx,zqăR
dpy,zqăR

rankpxqďk

rankpyqďk

||βpxq ´ βpyq||22

dpx, yq2

(1.8.2)

Note that in the definition of â1pzq and â2pzq we do not allow the ranks of x and y to exceed that

of z. As we shall prove, without the rank constraints these local lower bounds would be zero.

The following two “geometric” local lower bounds will prove helpful in our analysis.

Definition 1.8.2. Let z P Cnˆr have rank k and let ẑ P Cnˆk
˚ be such that there exists U P Uprq

with rẑ|0sU “ z. Let TπpẑqpS̊
k,0pCnqq and Hπ,ẑpCnˆk

˚ q be as 1.7.7 and 1.7.6. We define:

apzq :“ min
WPTπpẑqpS̊k,0pCnqq

||W ||2“1

m
ÿ

j“1

|xW,AjyR|
2 (1.8.3)

âpzq :“ min
wPHπ,ẑpCnˆk

˚ q

||w||2“1

m
ÿ

j“1

|xDπpẑqpwq, AjyR|
2 (1.8.4)

The following two families of matrices, Qz and Q̂z, indexed by Cnˆr, will allow us to

write the local lower Lipschitz bounds with respect to ||xx˚ ´ yy˚||2 and dpx, yq as eigenvalue

problems.
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Definition 1.8.3. Given z P Cnˆr having rank k ą 0 we define a matrix Qz P Rp2nk´k2qˆp2nk´k2q

in the following way. Let U1 P Cnˆk be a matrix whose columns are left singular vectors of z

corresponding to non-zero singular values of z, so that U1U
˚
1 “ PRanpzq

. Let U2 P Cnˆpn´kq be a

matrix whose columns are left singular vectors of z corresponding to the zero singular values of

z, so that U2U
˚
2 “ PRanzK . Then

Qz :“
m
ÿ

j“1

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

T

(1.8.5)

where the isometric isomorphisms τ and µ are given by

τ : SympCk
q Ñ Rk2 µ : Cpˆq

Ñ R2pq (1.8.6)

τpXq “

»

—

—

—

—

—

—

–

DpXq

?
2T pℜXq

?
2T pℑXq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

µpXq “ vecp

»

—

—

–

ℜX

ℑX

fi

ffi

ffi

fl

q

where

D : SympCk
q Ñ Rk T : SympRk

q Ñ R
1
2
kpk´1q (1.8.7)

DpW q “

»

—

—

—

—

—

—

–

X11

...

Xkk

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T pXq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

X12

X13

X23

...

Xk´1k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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and

vec : Rpˆq
Ñ Rpq vecpXq “ vecprX1| ¨ ¨ ¨ |Xqsq “

»

—

—

—

—

—

—

–

X1

...

Xq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.8.8)

We note that Qz depends only on Ranpzq, in particular it is invariant under pU1, U2q Ñ

pU1P,U2Qq for P P Upkq, Q P Upn ´ kq. We will also refer to Qz as QrU1|U2s where rU1|U2s P

Upnq.

Definition 1.8.4. Given z P Cnˆr having rank k ą 0 we define a matrix Q̂z P R2nkˆ2nk in the

following way. Let Fj “ Ikˆk b jpAjq P R2nkˆ2nk where

j : Cmˆn
Ñ R2mˆ2n

jpXq “

»

—

—

–

ℜX ´ℑX

ℑX ℜX

fi

ffi

ffi

fl

(1.8.9)

is an injective homomorphism. Then

Q̂z :“ 4
m
ÿ

j“1

Fjµpẑqµpẑq
TFj (1.8.10)

With these definitions in mind, we will prove the following:

Theorem 1.8.5. Let z P Cnˆr have rank k ą 0. Then
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(i) The global lower bound a0 is given as

a0 “ inf
zPCnˆrzt0u

apzq (1.8.11)

(ii) The local lower bounds a1pzq and a2pzq are squeezed between a0 and apzq

a0 ď a2pzq ď a1pzq ď apzq (1.8.12)

So that in particular

a0 “ inf
zPCnˆrzt0u

aipzq (1.8.13)

(iii) The infimization problem in apzq may be reformulated as an eigenvalue problem. Let Qz be

the 2nk ´ k2 ˆ 2nk ´ k2 matrix given in Definition 1.8.3. Then

apzq “ λ2nk´k2pQzq (1.8.14)

(iv) For r “ 1, âpzq differs from apzq by a constant factor, hence for r “ 1 the infimum

infzPCnˆrzt0u âpzq is non-zero. For r ą 1 this infimum is zero and hence there is no non-

trivial global lower bound â0 analogous to a0 for the alternate metric d.

(v) The local lower bounds with respect to the alternate metric d satisfy

â1pzq “ â2pzq “
1

4||z||22
âpzq (1.8.15)
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(vi) The infimization problem in âpzq may be reformulated as an eigenvalue problem. Let Q̂z be

the 2nk ˆ 2nk matrix given in Definition 1.8.4. Then âpzq is directly computable as

âpzq “ λ2nk´k2pQ̂zq (1.8.16)

(vii) We have the following local inequality relating apzq and âpzq.

1

4||z||22
âpzq ď apzq ď

1

2σkpzq2
âpzq (1.8.17)

(viii) Computation of the global lower bound a0 may be reformulated as the minimization of a

continuous quantity over the compact Lie group Upnq.

a0 “ min
UPUpnq

U“rU1|U2s

U1PCnˆr

U2PCnˆpn´rq

λ2nr´r2pQrU1|U2sq (1.8.18)

(ix) While pivq makes clear that a0 cannot be upper bounded by infzPCnˆrzt0u âpzq, we can

achieve a similar end by constraining z to have orthonormal columns. Namely

1

4
inf

zPCnˆr
˚

z˚z“Irˆr

âpzq ď a0 ď
1

2
inf

zPCnˆr
˚

z˚z“Irˆr

âpzq (1.8.19)

Proof. See 1.11.2

We now move on to analyzing the local lower Lipschitz bounds for the α map x ÞÑ
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xxx˚, Ajy
1
2
R . This was done for the case r “ 1 in [23]. Recall that θpxq “ pxx˚q

1
2 and that

A0 “ inf
x,yPCnˆr

rxs‰rys

||αpxq ´ αpyq||22

||θpxq ´ θpyq||22
“ inf

x,yPCnˆr

rxs‰rys

řm
j“1pxxx˚, Ajy

1
2
R ´ xyy˚, Ajy

1
2
Rq2

||pxx˚q
1
2 ´ pyy˚q

1
2 ||22

(1.8.20)

In analogy with Definition 1.8.1, we consider the local lower Lipschitz bounds for the α

map.

Definition 1.8.6. Let z P Cnˆr have rank k. We define

A1pzq “ lim
RÑ0

inf
xPCnˆr

||θpxq´θpzq||2ďR

rankpxqďk

||αpxq ´ αpzq||22

||θpxq ´ θpzq||22

A2pzq “ lim
RÑ0

inf
x,yPCnˆr

||θpxq´θpzq||2ďR
||θpyq´θpzq||2ďR

rankpxqďk

rankpyqďk

||αpxq ´ αpyq||22

||θpxq ´ θpyq||22

Â1pzq “ lim
RÑ0

inf
xPCnˆr

Dpx,zqďR

rankpxqďk

||αpxq ´ αpzq||22

Dpx, zq2

Â2pzq “ lim
RÑ0

inf
x,yPCnˆr

Dpx,zqďR
Dpy,zqďR

rankpxqďk

rankpyqďk

||αpxq ´ αpyq||22

Dpx, yq2

(1.8.21)

Definition 1.8.7. Given z P Cnˆr having rank k ą 0 we define two matrices T̂z, R̂z P R2nkˆ2nk.

Let I0pzq Ă t1, . . . ,mu be the indices such that αjpzq “ 0 (or equivalently such that αj is not

differentiable) for j P I0pzq, and let Ipzq “ t1, . . . ,muzI0pzq. Once again let Fj “ IkˆkbjpAjq P
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R2nkˆ2nk, then define T̂z and R̂z via

T̂z “
ÿ

jPIpzq

1

µpẑqTFjµpẑq
Fjµpẑqµpẑq

TFj (1.8.22)

R̂z “
ÿ

jPI0pzq

Fj (1.8.23)

With these definitions in mind we prove:

Theorem 1.8.8. Let z P Cnˆr have rank k ą 0. Then

(i) For r ą 1 it is the case that infzPCnˆrzt0u Aipzq “ 0 for i “ 1, 2, as such A0 “ 0.

(ii) Let T̂z and R̂z be as in Definition 1.8.7. Then Â1pzq and Â2pzq are directly computable as

Â1pzq “ λ2nk´k2pT̂z ` R̂zq (1.8.24)

Â2pzq “ λ2nk´k2pT̂zq (1.8.25)

(iii) We have the following inequality between Aipzq and Âipzq for i “ 1, 2, which justifies not

treating them separately.

Âipzq ď Aipzq ď
?
2Âipzq (1.8.26)

Proof. See 1.11.3

For the sake of completeness we also include the following theorem on the global upper

Lipschitz bounds for the α and β analysis maps.
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Definition 1.8.9. We define the following (squared) upper Lipschitz constants for β and α re-

spectively:

b0 :“ sup
x,yPCnˆr

rxs‰rys

||βpxq ´ βpyq||22

||xx˚ ´ yy˚||22
(1.8.27)

B0 :“ sup
x,yPCnˆr

rxs‰rys

||αpxq ´ αpyq||22

||pxx˚q
1
2 ´ pyy˚q

1
2 ||22

(1.8.28)

A somewhat simplifying alternate upper Lipschitz constant for β is

b0,1 :“ sup
x,yPCnˆr

rxs‰rys

||βpxq ´ βpyq||22

||xx˚ ´ yy˚||21
(1.8.29)

Definition 1.8.10. The β map is the pullback of a linear operator acting on symmetric matrices

which we refer to as A. Specifically,

A : SympCn
q Ñ Rm

AjpXq “ xX,AjyR

(1.8.30)

Definition 1.8.11. When Aj ě 0 for each j, we define the operator Tr.

Tr : Cnˆr
Ñ pCnˆr

q
m

Trpxq “ pA
1
2
j xq

m
j“1

(1.8.31)
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In a slight abuse of notation we write for r “ 1

T1 : Cn
Ñ Cnˆm

T1pxq “ rA
1
2
1 x| ¨ ¨ ¨ |A

1
2
mxs

(1.8.32)

We compute explicitly b0, b0,1, and B0 via different norms of the operators A and Tr, as

well as providing formulas for b0 and B0 analogous to (1.8.18) and (1.8.25). Specifically, we

prove:

Theorem 1.8.12. Let b0, b0,1, B0, A, and Tr be as above. Then

(i) The global upper bound b0 is given by

b0 “ max
UPUpnq

U“rU1|U2s

U1PCnˆr,U2PCnˆn´r

λ1pQrU1|U2sq (1.8.33)

Where QU is as in Definition 1.8.3.

(ii) The global upper bound b0,1 is given by

b0,1 “ ||A||
2
1Ñ2 (1.8.34)

Additionally if Aj ě 0 for all j then

b0,1 “ ||Tr||
4
2Ñp2,4q “ ||T1||

4
2Ñp2,4q (1.8.35)

Where the || ¨ ||2,4 norm of a matrix is the l4 norm of the vector of l2 norms of its columns.
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(iii) The global upper bound B0 is given by

B0 “ sup
zPCnˆr

z‰0

λ1pT̂zq “ B (1.8.36)

Where T̂z is as in Definition 1.8.7 and B is the optimal upper frame bound for tAju
m
j“1.

Proof. See 1.11.4.

It turns out that Theorem 1.8.5 allows us to find novel algebraic conditions for a frame

for Cnˆr to be generalized phase retrievable, generalizing Theorem 4 in [11]. The benefit of

condition pviq over the definition of phase retrievability is that they involve checking a quantity

over all n ˆ r matrices with orthonormal columns, that is to say over the Stiefel manifold of

dimension 2nr ´ r2, as opposed to over all pairs of n ˆ r matrices.

Theorem 1.8.13. Let tAju
m
j“1 be a frame for Cnˆr. Then the following are equivalent:

(i) tAju
m
j“1 is generalized phase retrievable.

(ii) For all U1 P Cnˆr, U2 P Cnˆpn´rq such that rU1|U2s P Upnq the 2nr´ r2 ˆ 2nr´ r2 matrix

QrU1|U2s “

m
ÿ

j“1

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

T

(1.8.37)

is invertible.

(iii) For all z P Cnˆr such that z has orthonormal columns, the 2nr ˆ 2nr matrix

Q̂z “ 4
m
ÿ

j“1

pIkˆk b jpAjqqµpzqµpzq
T

pIkˆk b jpAjqq (1.8.38)
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has as its null space precisely the r2 dimensional Vz “ tµpuq|u P Vπ,zpCnˆr
˚ qu.

(iv) For all U1 P Cnˆr, U2 P Cnˆpn´rq such that rU1|U2s P Upnq, H P SympCrq, B P Cpn´rqˆr

there exist c1, . . . cm P R such that

U˚
1 p

m
ÿ

j“1

cjAjqU1 “ H (1.8.39a)

U˚
2 p

m
ÿ

j“1

cjAjqU1 “ B (1.8.39b)

(v) For all U1 P Cnˆr with orthonormal columns

spanRtAjU1u
m
j“1 “ tU1K|K P Crˆr, K˚

“ ´Ku
K (1.8.40)

(vi) For all U1 P Cnˆr with orthonormal columns

dimRtAjU1u
m
j“1 ě 2nr ´ r2 (1.8.41)

Proof. See 1.11.5

1.9 Proofs for Section 1.6

1.9.1 Proof of Proposition 1

Proof. Both dpx, yq and Dpx, yq are obviously positive and symmetry follows from the fact that

that Uprq is a group. Moreover, owing to the compactness of Uprq, both Dpx, yq and dpx, yq are
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zero if and only if there exists U0 such that x “ yU0, that is if and only if rxs “ rys. It remains

to prove the triangle inequality. For Dpx, yq the computation is straightforward and follows from

the unitary invariance of the Frobenius norm. If U1 and U2 are unitary minimizers for Dpx, zq

and Dpz, yq respectively then

Dpx, zq ` Dpy, zq “ ||x ´ zU1||2 ` ||z ´ yU2||2

“ ||x ´ zU1||2 ` ||zU1 ´ yU2U1||2

ě ||x ´ yU2U1||2 ě Dpx, yq

(1.9.1)

We note that the above argument also holds for any unitarily invariant norm ||| ¨ ||| so that each

D|||¨|||px, yq :“ minUPUprq |||x ´ yU ||| is a metric on Cnˆr{Uprq. A similar trick can be em-

ployed regarding dpx, yq, but it requires the following lemma which does not readily generalize

to arbitrary unitarily invariant norms or even p ‰ 2:

Lemma 1.9.1. The following triangle inequality holds for all x, y, z P Cnˆr

||x ´ y||2||x ` y||2 ď ||x ´ z||2||x ` z||2 ` ||z ´ y||2||z ` y||2 (1.9.2)

Proof. This is essentially a statement about the geometry of parallelepipeds in R3, namely that

the sum of the product of face diagonals from any two sides sharing a vertex will always exceed

the product of the two on the remaining side sharing the vertex. The lemma follows from the
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observation that for x, y P Rn

||x ´ y||2||x ` y||2 “

b

p||x||22 ` ||y||22q
2 ´ 4|xx, yyR|2

“
1

2

ˆ

||x||
2
2 ´ ||y||

2
2 `

b

p||x||22 ` ||y||22q
2 ´ 4|xx, yyR|2

˙

´
1

2

ˆ

||x||
2
2 ´ ||y||

2
2 ´

b

p||x||22 ` ||y||22q
2 ´ 4|xx, yyR|2

˙

“ λ`pxxT ´ yyT q ´ λ´pxxT ´ yyT q

“ ||xxT ´ yyT ||1

(1.9.3)

See the proof of Theorem 1.6.4 for a direct computation of the eigenvalues of xxT ´ yyT (the

theorem deals with the complex case but the real case is identical). This identity proves the

lemma immediately since the latter obeys the triangle inequality and

||x ´ y||2||x ` y||2 “ ||µpxq ´ µpyq||2||µpxq ` µpyq||2

“ ||µpxqµpxq
T

´ µpyqµpyq
T

||1

ď ||µpxqµpxq
T

´ µpzqµpzq
T

||1 ` ||µpzqµpzq
T

´ µpyqµpyq
T

||1

“ ||x ´ z||2||x ` z||2 ` ||z ´ y||2||z ` y||2

(1.9.4)

Where µ : Cnˆr Ñ R2nr is complex matrix vectorization.

The proposition then follows via a similar argument to (1.9.1), namely if U1, U2 are the

50



minimizers in dpx, zq and dpz, yq respectively then

dpx, zq ` dpz, yq “ ||x ´ zU1||2||x ` zU1||2 ` ||z ´ yU2||2||z ` yU2||2

“ ||x ´ zU1||2||x ` zU1||2 ` ||zU1 ´ yU2U1||2||zU1 ` yU2U1||2

ě ||x ´ yU2U1||2||x ` yU2U1||2 ě dpx, yq

(1.9.5)

1.9.2 Proof of Proposition 2

Proof. Both the trace trtx˚yUu in that appears in D and its square as it appears in d will be

maximized when x˚yU is positive semidefinite, thus we may take the minimizer to be the polar

factor for x˚y, the polar factor of course being the unique unitary for which x˚yU is non-negative

only when x˚y is full rank. The non-uniqueness of the minimizer arises precisely from the non-

uniqueness in choice of polar factor when x˚y does not have full rank. Note that even if y is full

rank, x˚y will have rank less than r whenever Ranpyq X RanpxqK ‰ 0.

1.9.3 Proof of Proposition 3

Proof. Note that the non-zero eigenvalues of πpxq are precisely the squares of the singular values

of x, the non-zero eigenvalues of θpxq agree with the non-zero singular values of x, and the non-

zero eigenvalues values of ψpxq differ from the non-zero singular values of x only by a factor of

||x||2. This proves that the embeddings preserve rank. It is readily checked that the embeddings
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are surjective and injective modulo „. In particular for A P Sr,0pCnq, we have

π´1
pAq “ rCholeskypAqs (1.9.6)

θ´1
pAq “ rCholeskypA2

qs (1.9.7)

ψ´1
pAq “ rCholeskypA2

{||A||2qs (1.9.8)

where CholeskypAq is a Cholesky decomposition of A in Cnˆr (note that the Cholesky decom-

position is unique up to equivalence class).

1.9.4 Proof of Theorem 1.6.4

Proof. To prove (1.6.5) we analyze the following quantity:

Qpx, yq “
Dpx, yq2

||θpxq ´ θpyq||22
“

||x||22 ` ||y||22 ´ 2||x˚y||1

||x||22 ` ||y||22 ´ 2trtpxx˚q
1
2 pyy˚q

1
2 u

(1.9.9)

We first note that ||x˚y||1 “ ||pxx˚q
1
2 pyy˚q

1
2 ||1 since pxx˚q

1
2 pyy˚q

1
2 and x˚y have the same non-

zero singular values. Hence if we define A “ θpxq “ pxx˚q
1
2 and B “ θpyq “ pyy˚q

1
2 we can

abuse notation slightly and write

QpA,Bq “
||A||22 ` ||B||22 ´ 2||AB||1

||A||22 ` ||B||22 ´ 2trtABu
(1.9.10)

Now trtABu ď ||AB||1, so we conclude that Qpx, yq ď 1. On the other hand this bound is

achievable by any x and y for having the same left singular vectors, since in this case A and B

commute hence AB ě 0 and ||AB||1 “ trtABu. We conclude that the upper Lipschitz constant
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is 1, and in particular

sup
x,yPCnˆr{Uprq

x‰y

Qpx, yq “ max
x,yPCnˆr{Uprq

x‰y

Qpx, yq “ 1 (1.9.11)

We now turn our attention to the lower bound. It is shown in [33] that for any unitarily invari-

ant norm ||| ¨ ||| and positive semidefinite matrices A and B the following generalization of the

arithmetic-geometric mean inequality holds:

4|||AB|||
2

ď |||pA ` Bq
2
||| (1.9.12)

We apply this inequality to the nuclear norm and conclude that

4||AB||1 ď ||pA ` Bq
2
||1

“ trtpA ` Bq
2
u

“ ||A||
2
2 ` ||B||

2
2 ` 2trtABu

(1.9.13)

We employ this fact in the analysis of Qpx, yq:

QpA,Bq “
1

2
¨
2||A||22 ` 2||B||22 ´ 4||AB||1

||A||22 ` ||B||22 ´ 2trtABu

ě
1

2
¨
2||A||22 ` 2||B||22 ´ p||A||22 ` ||B||22 ` 2trtABuq

||A||22 ` ||B||22 ´ 2trtABu
“

1

2

(1.9.14)

This implies a lower Lipschitz constant of at least 1?
2
. For the trivial case n “ r “ 1 the ratio

is 1. To prove the constant of 1?
2

is optimal for n ą 1, let e1 and e2 be any two orthogonal unit

vectors in Cn and let x “ e1 and pyjqjě1 be given by yj “

b

1 ´ 1
j2
e1 ` 1

j
e2. Define A “ θpxq

53



and Bj “ θpyjq, then both A and each Bj have unit norm and are rank 1 hence are idempotent,

so that

ABj “ pxxq
1
2 pyjy

˚
j q

1
2 “ xx˚yjy

˚
j

“ xx, yjyRxy
˚
j

“ p1 ´
1

j2
qe1e

˚
1 `

b

1 ´ 1
j2

j
e1e

˚
2

(1.9.15)

Thus trtABju “ 1 ´ 1
j2

. On the other hand, ||ABj||1 “ ||x˚yj||1 “ |xx, yjyR| “

b

1 ´ 1
j2

. We

find

lim
jÑ8

QpA,Bjq “ lim
jÑ8

1 ´ ||ABj||1

1 ´ trtABju

“ lim
jÑ8

j2p1 ´

c

1 ´
1

j2
q “

1

2

(1.9.16)

Thus we conclude

inf
x,yPCnˆr

x‰y

Qpx, yq “
1

2
(1.9.17)

We now concern ourselves with proving (1.6.6). To prove the lower bound, let U0 be the mini-

mizer in dpx, yq. Then

||πpxq ´ πpyq||1 “ ||xx˚
´ yy˚

||1

“ ||
1

2
px ´ yU0qpx ` yU0q

˚
`

1

2
px ` yU0qpx ´ yU0q

˚
||2

ď
1

2
||px ´ yU0qpx ` yU0q

˚
||1 `

1

2
||px ´ yU0qpx ` yU0q

˚
||1

ď ||x ´ yU0||2||x ` yU0||2 “ dpx, yq

(1.9.18)
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This implies a lower Lipschitz constant of at least 1, but in fact this constant is optimal since

the two are equal for r “ 1. Turning our attention to the upper bound, we will in fact prove the

following stronger inequality:

||ψpxq ´ ψpyq||2 ě
1

4
dpx, yq

2
`

1

4
Dpx, yq

4
` p||x||2 ´ ||y||2q

2

ˆ

||x˚y||1 `
1

2
p||x||2 ` ||y||2q

2

˙

(1.9.19)

We prove (1.9.19) by direct computation:

||ψpxq ´ ψpyq||
2
2 ´

1

4
dpx, yq

2

“ ||x||
4
2 ` ||y||

4
2 ´ 2||x||2||y||2trtpxx˚

q
1
2 pyy˚

q
1
2 u ´

1

4

ˆ

p||x||
2
2 ` ||y||

2
2q

2
´ 4||x˚y||

2
1

˙

“
3

4
||x||

4
2 `

3

4
||y||

4
2 ` ||x˚y||

2
1 ´

1

2
||x||

2
2||y||

2
2 ´ 2||x||2||y||2trtpxx˚

q
1
2 pyy˚

q
1
2 u

ě
3

4
||x||

4
2 `

3

4
||y||

4
2 ` ||x˚y||

2
1 ´

1

2
||x||

2
2||y||

2
2 ´ 2||x||2||y||2||pxx

˚
q
1
2 pyy˚

q
1
2 ||1

“
1

4
p||x||

2
2 ´ ||y||

2
2q

2
`

1

2
||x||

4
2 `

1

2
||y||

4
2 ` ||x˚y||

2
1 ´ 2||x||2||y||2||x˚y||1

(1.9.20)

We then note that

1

4
Dpx, yq

4
“

1

4
p||x||

2
` ||y||

2
´ 2||x˚y||1q

2

“
1

4
||x||

4
2 `

1

4
||y||

4
2 `

1

2
||x||

2
2||y||

2
2 ` ||x˚y||

2
1 ´ p||x||

2
2 ` ||y||

2
2q||x˚y||1

(1.9.21)
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So that if we add and subtract 1
4
Dpx, yq4 from (1.9.20) we obtain the result

||ψpxq ´ ψpyq||
2
2 ´

1

4
dpx, yq

2

ě
1

2
p||x||

2
2 ´ ||y||

2
2q

2
`

1

4
Dpx, yq

4
` p||x||2 ´ ||y||2q

2
||x˚y||1

“
1

4
Dpx, yq

4
` p||x||2 ´ ||y||2q

2

ˆ

p||x˚y||1 `
1

2
p||x||2 ` ||y||2q

2

˙

(1.9.22)

This immediately proves that 2||ψpxq ´ ψpyq||2 ě dpx, yq and hence that the upper Lipschitz

constant in (1.6.6) is at most 2. For r “ 1, we will prove shortly claim piiiq, implying that

dpx, yq “ ||πpxq´πpyq||1 “ ||ψpxq´ψpyq||1, hence in this case the optimal constant is
?
2, owing

to the fact that ψpxq´ψpyq will have rank at most 2 and in that case dpx, yq “ ||ψpxq´ψpyq||1 ď

?
2||ψpxq ´ ψpyq||2. For r ą 1, however, we show that the upper Lipschitz constant of 2 is

optimal by considering a sequence of matrices in Cnˆ2. As before let e1 and e2 be any unit

orthonormal vectors in Cn. Let x “ re1|0s, pyjqjě1 be given by yj “ r

b

1 ´ 1
j2
e1|1

j
e2s. As

before let A “ θpxq, Bn “ θpyjq. We first note that A and each Bj commute and are positive

semidefinite, so that ABj is also positive semidefinite and we have trtABju “ ||ABj||1 and

the inequality in (1.9.20) is actually an equality. This makes clear the impediment to a rank 1

sequence achieving the upper Lipschitz constant of 2: A and Bj could not be made to commute

without x and yj lying in the same equivalence class. Finally, we observe that ||x||2 “ ||yj||2 “ 1

so the remainder term in (1.9.19) disappears and we obtain

||ψpxq ´ ψpyjq||
2
2 “

1

4
dpx, yq

2
`

1

4
Dpx, yq

4 (1.9.23)
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We note moreover that dpx, yq2 “ Dpx, yq2p||x||22 ` ||y||22 ` 2||x˚y||1q so that

||ψpxq ´ ψpyjq||22

dpx, yjq2
“

1

4

ˆ

1 `
Dpx, yjq

4

dpx, yjq2

˙

“
1

4

ˆ

1 `
1 ´ ||x˚yj||1
1 ` ||x˚yj||1

˙

(1.9.24)

Now ||x˚yj||1 “ ||

»

—

—

–

e˚
1

0

fi

ffi

ffi

fl

»

—

—

–

b

1 ´ 1
j2

0

0 1
j

fi

ffi

ffi

fl

„

e1|e2

ȷ

||1 “

b

1 ´ 1
j2

so that

lim
jÑ8

||ψpxq ´ ψpyjq||22

dpx, yjq2
“ lim

jÑ8

1

4

ˆ

1 `

1 ´

b

1 ´ 1
j2

1 `

b

1 ` 1
j2

˙

“
1

4
(1.9.25)

Thus we have proven claims piq and piiq. To prove the first claim of piiiq note that for r “ 1,

pxx˚q
1
2 “ xx˚

||x||2
. The second part of piiiq follows from direct computation of ||xx˚ ´ yy˚||1 via

the method of moments. Clearly xx˚ ´ yy˚ will have one positive and one negative eigenvalue,

which we denote λ` and λ´. In this case

λ` ` λ´ “ trtxx˚
´ yy˚

u

“ ||x||
2
2 ´ ||y||

2
2

λ`λ´ “
1

2

ˆ

trtxx˚
´ yy˚

u
2

´ trtpxx˚
´ yy˚

q
2
u

˙

“ ||x||
2
||y||

2
´ |xx, yyR|

2

(1.9.26)

A little bit of algebra then yields

λ˘ “
1

2

ˆ

||x||
2
2 ´ ||y||

2
2 ˘

a

p||x||2 ` ||y||2q2 ´ 4|xx, yyR|2

˙

(1.9.27)
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Thus we find ||xx˚ ´ yy˚||1 “ λ` ´ λ´ “
a

p||x||2 ` ||y||2q2 ´ 4|xx, yyR|2 “ dpx, yq. It strikes

the authors that this is a minor miracle. Finally, to prove claim pivq consider x and y having a

common basis of singular vectors with singular values pσiq
r
i“1 and pµiq

r
i“1 respectively. Then

||πpxq ´ πpyq||
2
2 “

r
ÿ

i“1

pσ2
i ´ µ2

i q
2 (1.9.28)

dpx, yq
2

“

r
ÿ

i,j“1

pσi ` µiq
2
pσj ´ µjq

2 (1.9.29)

The latter is obviously larger, consistent with (1.6.6). If it were additionally the case that dpx, yq ď

C||πpxq ´ πpyq||2 we would have

ÿ

i‰j

pσi ` µiq
2
pσj ´ µjq

2
ď pC ´ 1q

r
ÿ

i“1

pσ2
i ´ µ2

i q
2 (1.9.30)

In the case r “ 1 the left hand side is zero and so we may take C “ 1. For r ą 1, in contradiction

of the above take σ1 “ µ1 “ δ, σ2 ‰ µ2 and all other singular values zero. We then would obtain

4δ2pσ2 ´ µ2q
2

ď pC ´ 1qpσ2
2 ´ µ2

2q
2 (1.9.31)

There is evidently no such C since δ may be chosen arbitrarily large. Thus claim pvq is proved,

justifying the use of the alternate embedding ψ in (1.6.6). This concludes the proof of Theorem

1.6.4.

58



1.10 Proofs for Section 1.7

1.10.1 Proof of Proposition 4

Proof. The proof of (1.7.5) is by direct computation. Namely

Vπ,xpCnˆr
˚ q “ kerDπpxq “ tw P Cnˆr

|xw˚
` wx˚

“ 0u (1.10.1)

We would like to obtain a direct parametrization, however, and note that

w P Vπ,xpCnˆr
˚ q ðñ wx˚

“ K̃ K̃ P Cnˆn, K̃˚
“ ´K̃,PRanpxq

K̃ “ K̃

ðñ wx˚
“ xKx˚ K P Crˆr, K˚

“ ´K

ðñ w “ xK K P Crˆr, K˚
“ ´K (1.10.2)

In the first line note that w is recoverable from such a K̃ via w “ K̃xpx˚xq´1. In the second

note that K “ pxx˚q:x˚K̃xpxx˚q:. The third “if and only if” is obtained by right multiplying
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xpx˚xq´1. The horizontal space is then computable as Vπ,xpCnˆr
˚ qK:

w P Hπ,xpCnˆr
˚ q ðñ ℜtrtw˚xKu “ 0 @K P Cnˆn, K˚

“ ´K

ðñ x˚w “ H̃ H̃ P Crˆr, H̃˚
“ H̃

ðñ x˚w “ x˚Hx H P Cnˆn, H˚
“ H,PRanpxq

H “ H

ðñ PRanpxq
w “ Hx H P Cnˆn, H˚

“ H,PRanpxq
H “ H

ðñ w “ Hx ` X H P Cnˆn, H˚
“ H “ PRanpxq

H,X P Cnˆr,PRanpxq
X “ 0

(1.10.3)

The second line follows from the fact that Cnˆn decomposes orthogonally into Hermitian and

skew-Hermitian matrices. In the second note that H “ px˚xq´1xH̃x˚px˚xq´1. The third fol-

lows from left multiplying by pxx˚q:x. Finally, the tangent space can be parametrized via the

horizontal space as its image through Dπpxq as

TπpxqpS̊
r,0

pCn
qq “ DπpxqpHπ,xpCnˆr

˚ qq

“ tHxx˚
` xx˚H ` xX˚

` Xx˚
|H P Cnˆn, H˚

“ H,PRanpxq
H “ H,PRanpxq

X “ 0u

(1.10.4)

This provides a direct parametrization, but for our purposes the simpler indirect description

given by (1.7.7) will be more useful. It is clear from (1.10.4) that TπpxqpS̊
r,0pCnqq Ă tW P

SympCnq|PRanpxqKWPRanpxqK “ 0u. To prove the reverse, note that if W P SympCnq and

PRanpxqKWPRanpxqK thenW “ W1`W2`W ˚
2 where PRanpxq

W1PRanpxq
“ W1 and PRanpxq

W2PRanpxqK “

W2. Any such W2 is representable as xX˚ where X is as in the description of the horizontal
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space. Indeed, take X “ W ˚
2 xpx˚xq´1. Finally, the Sylvester equation xx˚H `Hxx˚ “ W1 has

the unique solution

H “

ż 8

0

e´txx˚

W1e
´txx˚

dt (1.10.5)

1.10.2 Proof of Theorem 1.7.4

Proof. To prove piq in relatively short order we employ the following theorem:

Theorem 1.10.1 (see [34] and [35] Appendix B). Let ϕ : G ˆ M Ñ M be a smooth action of a

Lie group G on a smooth manifold M . If the action is semi-algebraic, then orbits of ϕ are smooth

submanifolds of M .

We apply this theorem in the case of S̊p,qpCnq. Sylvester’s Inertia Theorem says that A P

S̊p,qpCnq if and only ifA “ KIp,qK
˚ for someK P GLpCnq where Ip,q “ diagp1, . . . , 1,´1, . . . ,´1, 0, . . . , 0q

is the matrix of inertia indices. Thus S̊p,qpCnq is precisely the orbit of Ip,q under the smooth Lie

group action:

ψ : GLpCn
q ˆ Cnˆn

Ñ Cnˆn

ψpK,Lq “ KLK˚

(1.10.6)

Noting that ψpKJ,Lq “ ψpK,ψpJ, Lqq for K, J P GLpCnq. We need to check that the action is
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semi-algebraic. For a fixed L P Cnˆn the action has as its graph

"

pK,Y q

ˇ

ˇ

ˇ

ˇ

K P GLpCn
q, Y “ KLK˚

*

“

"

pkij, yijq

ˇ

ˇ

ˇ

ˇ

i, j P 1, . . . , n,Detpkijq ‰ 0, yij ´ Qijpkijq “ 0

*

(1.10.7)

where each Qij is a quadratic polynomial in pkijq
n
i,j“1 determined by L. This set is manifestly

semi-algebraic, so by Theorem 1.10.1 each S̊p,qpCnq is a smooth submanifold of Cnˆn. To prove

that the dimension of S̊p,qpCnq is given by 2npp ` qq ´ pp ` qq2 note that the dim S̊p,qpCnq “

dim S̊p`q,0 since matrix absolute value

| ¨ | : S̊p,q
pCn

q Ñ S̊p`q,0

|A| “ pAA˚
q
1
2

(1.10.8)

is surjective and injective of up to permutation of eigenvalues. The dimension of S̊p`q,0 can be

computed from TπpxqpS̊
r,0pCnqq as found in Lemma 4. Taking r “ p ` q then

dimTπpxqpS̊
r,0

pCn
qq “ n2

´ pn ´ rq2 “ 2nr ´ r2 “ 2npp ` qq ´ pp ` qq2 (1.10.9)

It remains to prove analyticity of S̊r,0pCnq. It is proved in Lemma 3.11 of [36] that S̊1,0pCnq is real

analytic. The proof in the general case is analagous. First note that owing to Sylvester’s inertia

theorem GLpCnq acts transitively on S̊p,qpCnq via conjugation, since if X, Y P S̊p,qpCnq then we

may obtain G1, G2 P GLpCnq so that G1XG
˚
1 “ Ip,q “ G2Y G

˚
2 , hence pG´1

2 G1qXpG´1
2 G1q

˚ “

Y . It remains to obtain that the stabilizer group is closed in GLpCnq so that we can invoke

the homogeneous space construction theorem. If Z P S̊p,qpCnq then Z “ zIp,qz
˚ for some
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z “ Uz

»

—

—

—

–

Λz

0

fi

ffi

ffi

ffi

fl

V ˚
z P Cnˆr

˚ . The stabilizer group at Z is given by T P GLpCnq such that

Tz P tzU |U P Upp, qqu. In a basis e1, . . . en for Cn where e1, . . . er span Ranpzq and er`1, . . . , en

span RanpzqK the stabilizer is therefore given by

Hr,0
Z “

"

»

—

—

—

–

ΛzUΛ
´1
z M1

0 M2

fi

ffi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

U P Upp, qq,M1 P Crˆn´r,M2 P Crˆr, detpM2q ‰ 0

*

(1.10.10)

It is easy to see that Hr,0
Z is a (relatively) closed subset of GLpCnq, hence by the homogeneous

space construction theorem S̊r,0pCnq is diffeomorphic to the analytic manifold GLpCnq{Hr,0
Z . This

concludes the proof of piq. Claims piiq and piiiq represent slight generalizations over the analo-

gous results in [22] for positive definite matrices, but the same key theorems apply. Namely, we

employ the following:

Theorem 1.10.2 (see [37] Proposition 2.28). Let pM, gq be a Riemannian manifold and letG be a

compact Lie group of isometries acting freely on M . Then let N “ M{G and π :M Ñ N be the

quotient map. Then there exists a unique Riemannian metric h on N so that π : pM, gq Ñ pN, hq

is a Riemannian submersion; and in particular that Dπpzq : Hπ,z Ñ TπpzqpNq is isometric for

each z P M .

Theorem 1.10.3 (see [37] Proposition 2.109). If π : pM, gq Ñ pN, hq is a Riemannian submer-

sion and γ is a geodesic in pM, gq such that 9γp0q is horizontal (i.e. 9γp0q P Hπ,γp0q) then

(i) 9γptq is horizontal for all t

(ii) π ˝ γ is a geodesic in pN, hq of the same length as γ
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In our case we are interested in the geometry of Cnˆr
˚ {Uprq, where Cnˆr

˚ is an open subset

of Cnˆr and is therefore a smooth Riemannian manifold of constant metric when equipped with

the standard real inner product on Cnˆr

xA,ByR “ ℜtrtA˚Bu (1.10.11)

The relevant compact Lie group of isometries will be Uprq, acting by matrix multiplication on

the right. We note that while Uprq does not act freely on Cnˆr, it does act freely on Cnˆr
˚ since

for x P Cnˆr
˚ and W P Uprq

x “ xW ðñ x˚x “ x˚xW ðñ px˚xq
´1

px˚xq “ W ðñ Irˆr “ W (1.10.12)

Therefore by Theorem 1.10.2 there exists a metric h on Cnˆr
˚ {Uprq such that the differential of π

at x

Dπpxq : pHπ,xpCnˆr
˚ q, x¨, ¨yRq Ñ pTπpxqpS

r,0
pCn

qq, hq

Dπpxqpwq “ xw˚
` wx˚

(1.10.13)

is an isometric isomorphism. Indeed

hpZ1, Z2q “ xDπpxq
:Z1, Dπpxq

:Z2yR (1.10.14)

Where Dπpxq: is the pseudo-inverse of the linear operator Dπpxq. In this case, for w1, w2 P
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Hπ,xpCnˆr
˚ q

hpDπpw1q, Dπpw2qq “ xDπpxq
:Dπpw1q, Dπpxq

:Dπpw2qyR “ xw1, w2yR (1.10.15)

We now determine h explicitly. Namely, if Z1, Z2 P TπpxqpS̊
r,0pCnqq “ DπpHπ,xpCnˆr

˚ qq then

Zi “ DπpxqpHix ` Xiq where Hi, Xi are as in (1.7.6). We must have

hpZ1, Z2q “ ℜtrrpH1x ` X1q
˚
pH2x ` X2qs

“ ℜtrrx˚H1H2xs ` ℜtrrX˚
1X2s

(1.10.16)

We define Z∥
i :“ PRanpxq

ZiPRanpxq
“ xx˚Hi `Hixx

˚ and ZK
i :“ PRanpxqKZiPRanpxq

“ Xix
˚.

Then

Hi “

ż 8

0

e´txx˚

Z
∥
i e

´txx˚

dt

Xi “ ZK
i xpx˚xq

´1

(1.10.17)

Plugging these expressions into (1.10.16) yields the expression

hpZ1, Z2q “ ℜtrtxx˚

ż 8

0

e´txx˚

Z
∥
1e

´txx˚

dt

ż 8

0

e´sxx˚

Z
∥
2e

´sxx˚

dsu ` ℜtrtZK˚
1 ZK

2 pxx˚
q

:
u

:“ h0pZ1, Z2q ` h1pZ1, Z2q

(1.10.18)

The first term in (1.10.18) h0pZ1, Z2q can be simplified via the change of coordinates u “ t ` s
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and v “ t ´ s as

h0pZ1, Z2q “

ż 8

0

ż 8

0

ℜtrte´xx˚pt`sqZ
∥
1e

´xx˚pt`sqxx˚Z
∥
2udsdt

“
1

2

ż 8

0

ż u

´u

ℜtrte´uxx˚

Z
∥
1e

´uxx˚

xx˚Z
∥
2udvdu

“

ż 8

0

uℜtrte´uxx˚

Z
∥
1e

´uxx˚

xx˚Z
∥
2udu

“

ż 8

0

utrte´uxx˚

Z
∥
1e

´uxx˚

xx˚Z
∥
2 ` Z

∥
2xx

˚e´uxx˚

Z
∥
1e

´uxx˚

udu

“ ´trtZ∥
2

ż 8

0

u
B

Bu
e´uxx˚

Z
∥
1e

´uxx˚

duu

“ trtZ∥
2

ż 8

0

e´uxx˚

Z
∥
1e

´uxx˚

duu

“ xH1, Z2yR “ xZ1, H2yR

(1.10.19)

Where the last equality follows from cycling under the trace immediately and then repeating the

same calculation. With this metric in hand we have shown piiq, namely that the map

π : pCnˆr
˚ , x¨, ¨yRq Ñ pS̊r,0

pCn
q, hq (1.10.20)

is a Riemannian submersion. To prove piiiq, let A,B P S̊r,0pCnq and let xx˚ and yy˚ be their

respective Cholesky decompositions, so that x, y P Cnˆr
˚ . Consider the following straight line

curve in Cnˆr:

σx,y : r0, 1s Ñ Cnˆr

σx,yptq “ p1 ´ tqx ` tyU

(1.10.21)

Where U is a polar factor such that x˚yU “ |x˚y| (equivalently U is a minimizer of the distance
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D, as in Proposition 2). The claim is that we will be able to apply Theorem 1.10.3 to the push-

forward of σx,y, proving that it is a geodesic connecting A “ πpxq to B “ πpyUq. Specifically,

we would like to prove

σx,yptq P Cnˆr
˚ @t P r0, 1s (1.10.22)

9σx,yp0q P Hπ,xpCnˆr
˚ q (1.10.23)

We first prove (1.10.22), namely that σx,yptq does not drop rank as t varies from 0 to 1 even

though Cnˆr
˚ is not convex. The endpoints σx,yp0q “ x and σx,yp1q “ yU are of course full rank,

so it is enough to prove it for t P p0, 1q. Consider x˚σx,yptq:

x˚σx,yptq “ p1 ´ tq x˚x
loomoon

P Pprq

` t x˚yU
loomoon

|x˚y| P PSDprq

P Pprq for t P p0, 1q (1.10.24)

This implies that σx,yptq P Cnˆr
˚ for t P p0, 1q, so (1.10.22) is proved. Let v “ 9σx,yp0q “ yU ´ x.

Then

x˚v “ ´x˚x ` x˚yU “ ´x˚x ` px˚yy˚xq
1
2

PRanpxq
v “ ´pxx˚

q
:xx˚x ` pxx˚

q
:xpx˚yy˚xq

1
2

PRanpxq
v “ p´PRanpxq

` pxx˚
q

:xpx˚yy˚xq
1
2x˚

pxx˚
q

:
q

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

H

x

v “ Hx ` X, PRanpxq
X “ 0, H˚

“ PRanpxq
H “ H

(1.10.25)

Hence (1.10.23) is proved and so by Theorem 1.10.3 we have that γA,B :“ π ˝ σx,y is a geodesic
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on pS̊r,0pCnq, hq connecting A and B. We find specifically that this geodesic is given by

γA,Bptq “ πpp1 ´ tqx ` tyUq

“ pp1 ´ tqx ` tyUqpp1 ´ tqx ` tyUq
˚

“ p1 ´ tq2xx˚
` t2yy˚

` tp1 ´ tqpxU˚y˚
` yUx˚

q

(1.10.26)

Clearly A “ xx˚ and B “ yy˚, but what about xU˚y˚ and yUx˚? Fortunately, a minor miracle

occurs. Namely,

pyUx˚
q
2

“ yUx˚yUx˚
“ yU |x˚y|x˚

“ yp|x˚y|U˚
q

˚x˚
“ ypx˚yq

˚x˚
“ yy˚xx˚

pxU˚y˚
q
2

“ xU˚y˚xU˚y˚
“ xpx˚yUq

˚U˚y˚
“ x|x˚y|U˚y˚

“ xx˚yy˚

(1.10.27)

Thus in fact xU˚y˚ and yUx˚ are matrix square roots (not necessarily symmetric, but having

positive non-zero eigenvalues) for BA and AB respectively. We obtain the following expression

for the family of geodesics on S̊r,0pCnq connecting A and B

γA,Bptq “ p1 ´ tq2xx˚
` t2yy˚

` tp1 ´ tqpxU˚
0 y

˚
` yU0x

˚
q ` tp1 ´ tqpxU˚

1 y
˚

` yU1x
˚
q

(1.10.28)

Where U0 and U1 are as in Proposition 2. The fact that the form of this expression is independent

of r is somewhat surprising, and motivates claims pivq and pvq. In order to prove pivq we must

first check that the collection of smooth manifolds pS̊i,0pCnqqri“0 provide a stratification of the

cone Sr,0pCnq (conditions paq and pbq of Definition 1.7.2). Condition paq is satisfied trivially and
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for pbq we note that

S̊i,0pCnqzS̊i,0
pCn

q “ t0u Y S̊1,0
Y ¨ ¨ ¨ Y Si´1,0 (1.10.29)

It remains to check that whenever p ą q the triple pS̊p,0pCnq, S̊q,0pCnq, Aq is a-regular and b-

regular for A P S̊q,0 Ă S̊p,0. It was noted by John Mather in Proposition 2.4 of [38] that b-

regularity implies a-regularity, but we will use a-regularity in our proof of b-regularity so we need

to prove a-regularity first. Specifically, a-regularity in this case states that if pAiqiě1 Ă S̊p,0pCnq

converges to A P S̊q,0pCnq and if TAi
pS̊p,0pCnqq converges in Grassmannian sense to the vector

space τA then TApS̊q,0pCnqq Ă τA. Upon examining the form of the tangent space as given by

(1.7.7) it becomes clear that convergence of the tangent spaces TAi
pS̊p,0pCnqq is equivalent to

convergence of RanAi to a space we denote L, so that the Grassmannian limit of the tangent

spaces is given by

τA “ tW P SympCn
q|PLKWPLK “ 0u (1.10.30)

It is evident that L should contain as a subspace RanA, and that this would prove that the strati-

fication given is a-regular. Indeed, if Ai “ UiΛiU
˚
i is the low rank diagonalization of Ai so that

Λi “ diagpλ1, . . . , λpq is the diagonal matrix of non-zero eigenvalues of Ai and UiU
˚
i “ PRanAi

,

U˚
i Ui “ Ipˆp then by compactness we can obtain a subsequence of pUiqiě1 that converges to a

matrix U such that the columns of U are precisely an orthonormal basis for L. In this case, we

may write A “ UΛU˚ since A “ limiÑ8 UiΛiU
˚
i and the sequences of eigenvalues converge
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(some to zero), so that if U “ ru1| ¨ ¨ ¨ |ups then

RanA “ spantui|Λii ‰ 0u Ă spantuiu
p
i“1 “ L (1.10.31)

Thus, owing to (1.10.30) and the description of the tangent space in (1.7.7) we conclude that

TApS̊q,0pCnqq Ă τA and our stratification is a-regular. As for b-regularity, let pAiqiě1 Ă S̊p,0pCnq,

A P S̊q,0pCnq, and τA be as before (specifically we assume the Grassmannian limit defining τA

converges) and let pBiqiě1 Ă S̊q,0pCnq be convergent also toA such that the following limit exists

Q “ lim
iÑ8

Qi :“ lim
iÑ8

Ai ´ Bi

||Ai ´ Bi||2
(1.10.32)

We claim thatQ P τA. Specifically, let Θi “ Ai´PRanpAiq
BiPRanpAiq

and Ψi “ PRanpAiq
BiPRanpAiq

´

Bi. Then either Ψi “ 0, in which case Qi “ Θi{||Θi||2, or Ψi ‰ 0, so that

Qi “
||Θi||2

||Ai ´ Bi||2

Θi

||Θi||2
`

||Ψi||2

||Ai ´ Bi||2

Ψi

||Ψi||2
(1.10.33)

We will obtain convergent subsequences for the sequences of unit norm matrices Θi{||Θi||2 and

Ψi{||Ψi||2, but first note that

||Θi||2

||Ai ´ Bi||2
“

||PRanpAiq
pAi ´ BiqPRanpAiq

||2

||Ai ´ Bi||2
ď 1 (1.10.34)

Hence ||Ψi||2{||Ai ´ Bi||2 is also a bounded sequence (if it were not Qi would fail to con-

verge). Next note that for i sufficiently large Ψi “ PRanpAiq
BiPRanpAiq

´ Bi is the difference

of two matrices in S̊q,0pCnq, both converging to A. Therefore, owing to the fact that S̊q,0pCnq
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is an analytic manifold, any convergent subsequence of Ψi{||Ψi||2 will have its limit lying in

TApS̊q,0pCnqq (see for example Lemma 4.12 in [39]). Owing to the already proved a-regularity

we conclude that the limit of any convergent subsequence of Ψi{||Ψi||2 lies in τA. Similarly,

Θi “ PRanpAiq
pAi´BiqPRanpAiq

hence any convergent subsequence of Θi{||Θi||2 must lie in τA.

Thus we may obtain a subsequence such that the sequences of real numbers ||Θij ||2{||Aij ´Bij ||2

and ||Ψij ||2{||Aij ´ Bij ||2 converge to some α, β P R and the sequences of unit norm matrices

Θij{||Θij ||2 and Ψij{||Ψij ||2 converge to some Θ̂, Ψ̂ P τA. Since pQiqiě1 converges, we find that

Q “ αΘ̂ ` βΨ̂ P τA (1.10.35)

Thus the stratification pS̊i,0pCnqqri“0 is b-regular and in particular is a Whitney stratification of

Sr,0pCnq.

In order to prove pvq, let Ai “ xix
˚
i and Bi “ yiy

˚
i be Cholesky decompositions of Ai and

Bi such that xi, yi P Cnˆp and note that we are told the following limit exists at each t

δptq “ lim
iÑ8

p1 ´ tq2xix
˚
i ` t2yiy

˚
i ` tp1 ´ tqpxiU

˚
i y

˚
i ` yiUix

˚
i q (1.10.36)

Where Ui P Uppq is such that x˚
i yiUi ě 0. We note that since pAiqiě1 and pBiqiě1 converge

we may obtain convergent subsequences for their Cholesky factors xi and yi (||xi||2 and ||yi||2

must both be bounded or else Ai and Bi would not converge). We may also obtain a convergent

subsequence for pUiqiě1 owing to the compactness of Uppq. Denote these subsequential limits by

x, y, and U respectively and consider a combined subsequential indexing such that each occurs.

Let Vx and Vy be the matrices of right singular vectors for x and y so that x “ rx̂|0sVx and
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y “ rŷ|0sVy for some x̂, ŷ P Cnˆq
˚ . Then clearly

δptq “ p1 ´ tq2x̂x̂˚
` t2ŷŷ˚

` tp1 ´ tqpx̂Û˚ŷ˚
` ŷÛ x̂˚

q (1.10.37)

Where Û is the upper left q ˆ q block of VyUV ˚
x . We will prove that in fact

VyUV
˚
x “

»

—

—

—

—

—

–

Û 0

0 Ũ

fi

ffi

ffi

ffi

ffi

ffi

fl

(1.10.38)

In particular, this will imply that Û P Upqq since VyUV ˚
x P Uppq hence the upper left qˆq blocks

of pVyUV
˚
x qpVyUV

˚
x q˚ and pVyUV

˚
x q˚pVyUV

˚
x q must both be equal to the q ˆ q identity matrix.

In order to prove (1.10.38), note that U “ VW ˚ where

x˚y “ W

»

—

—

—

–

Σ 0

0 0

fi

ffi

ffi

ffi

fl

V ˚ (1.10.39)

is a singular value decomposition of x˚y. On the other hand if

x̂˚ŷ “ P

»

—

—

—

–

Λ 0

0 0

fi

ffi

ffi

ffi

fl

Q˚ (1.10.40)
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is a singular value decomposition for x̂˚ŷ then

x˚y “ V ˚
x

»

—

—

—

—

—

–

P 0

0 P̃

fi

ffi

ffi

ffi

ffi

ffi

fl

loooooomoooooon

W

»

—

—

—

—

—

—

—

—

—

—

—

–

Λ 0

0 0

0

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

Q 0

0 Q̃

fi

ffi

ffi

ffi

ffi

ffi

fl

Vy

looooomooooon

V ˚

(1.10.41)

Where P̃ , Q̃ P Upp´ qq are in general arbitrary, but may of course be chosen in accordance with

W and V . Thus

VyUV
˚
x “ VyVW

˚Vx “

»

—

—

–

PQ 0

0 P̃ Q̃

fi

ffi

ffi

fl

(1.10.42)

is as in (1.10.38). The question remains whether x̂˚ŷÛ ě 0, but we note that

x˚yU “ V ˚
x

»

—

—

–

x̂˚ŷ 0

0 0

fi

ffi

ffi

fl

VyU

“ V ˚
x

»

—

—

–

x̂˚ŷ 0

0 0

fi

ffi

ffi

fl

VyUV
˚
x Vx

“ V ˚
x

»

—

—

–

x̂˚ŷ 0

0 0

fi

ffi

ffi

fl

»

—

—

–

Û 0

0 Ũ

fi

ffi

ffi

fl

Vx

“ V ˚
x

»

—

—

–

x̂˚ŷÛ 0

0 0

fi

ffi

ffi

fl

Vx

(1.10.43)
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Thus x˚yU will be positive semidefinite only if x̂˚ŷÛ is positive semidefinite, and since x˚yU “

limiÑ8 x
˚
i yiUi “ limiÑ8 |x˚

i yi| ě 0 we conclude that x̂˚ŷÛ ě 0. A nearly identical proof shows

that Ux˚y ě 0. We conclude that δ is a geodesic in S̊q,0pCnq connecting A and B.

1.11 Proofs for Section 1.8

1.11.1 Proof of Proposition 5

Proof. We may first note that xxx˚, AjyR ´ xyy˚, AjyR “ xxx˚ ´ yy˚, AjyR. The expression

(1.3.3) then becomes

a0 “ inf
LPSr,rpCnq

||L||2“1

m
ÿ

j“1

xL,Ajy
2 (1.11.1)

The claim follows by contradiction if Sr,r is closed. Explicitly, if Sr,r is closed then Sr,r X tx P

Cnˆn : ||x||2 “ 1u is compact. Assume a0 “ 0, then there exists L0 P Sr,r X tx P Cnˆn : ||x||2 “

1u so that

0 “

m
ÿ

j“1

xL0, Ajy
2 (1.11.2)

This implies that the map β is not injective since, in particular, if xx˚ “ pL0q` and yy˚ “ pL0q´

then xx˚ ‰ yy˚ since ||L0||2 “ 1 but βpxq “ βpyq. It remains to show that the spaces Sp,q

and in particular Sr,r are closed. Consider the map η : Cnˆn Ñ t0, . . . , nu2 with ηpAq “

prankpA`q, rankpA´qq taking A to its Sylvester indices pp, qq. Then η is continuous with respect

to the usual topology on Cnˆn and with respect to the “upper box” topology τub on t0, . . . , nu2
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generated by the base

Bub “ ttx, . . . , nu ˆ ty, . . . , nu|px, yq P t0, . . . , n ` 1uu (1.11.3)

The maps A Ñ A˘ are continuous and it is well known that rankpA ` Bq ě rankpAq whenever

||B||2Ñ2 ă σp`qpAq, hence η is continuous. Moreover t0, . . . , pu ˆ t0, . . . , qu is closed in τub

hence Sp,q, its pullback through the continuous map η, is closed in Cnˆn.

1.11.2 Proof of Theorem 1.8.5

Proof. We first prove that a0 “ infzPCnˆr apzq. We note that

a0 “ inf
x,yPCnˆr

xx˚‰yy˚

1

||xx˚ ´ yy˚||22

m
ÿ

j“1

|xxx˚
´ yy˚, AjyR|

2 (1.11.4)

We may change coordinates to z “ 1
2
px ` yq and w “ x ´ y so that

a0 “ inf
z,wPCnˆr

zw˚`wz˚‰0

1

||zw˚ ` wz˚||22

m
ÿ

j“1

|xzw˚
` wz˚, AjyR|

2 (1.11.5)

Recall that z has rank k, and therefore we may take z “ rẑ|0sU for ẑ P Cnˆk
˚ and U P Uprq. We

then define ŵ P Cnˆk via the first k columns of wU˚ then zw˚ `wz˚ “ ẑŵ˚ `ŵẑ˚ “ Dπpẑqpŵq,
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so that in fact we may take ŵ P Hπ,ẑpCnˆk
˚ qzt0u. We obtain

a0 “ inf
zPCnˆrzt0u

inf
ŵPHπ,ẑpCnˆk

˚ qzt0u

1

||Dπpẑqpŵq||22

m
ÿ

j“1

|xDπpẑqpŵq, AjyR|
2

“ inf
zPCnˆrzt0u

min
WPTπpẑqpS̊k,0pCnqq

||W ||2“1

m
ÿ

j“1

|xW,AjyR|
2

“ inf
zPCnˆr

||z||2“1

min
WPTπpẑqpS̊k,0pCnqq

||W ||2“1

m
ÿ

j“1

|xW,AjyR|
2

“ inf
zPCnˆr

||z||2“1

apzq

(1.11.6)

This proves (1.8.11). The first two inequalities of (1.8.12) are clear from the definitions of the

quantities involved, namely a0 ď a2pzq ď a1pzq. It remains to prove that a1pzq ď apzq. We will

need the following families of real-linear subspaces of Cnˆr indexed by z P Cnˆr.

Hz “ tHz ` X|H P Cnˆn, H˚
“ H “ PRanpzq

H,X P Cnˆr,PRanpzq
X “ 0, XPkerpzq “ 0u

(1.11.7)

∆z “ tw P Cnˆr
| Dρ ą 0 @|ϵ| ă ρ z˚

pz ` ϵwq ě 0u (1.11.8)

Γz “ ty P Cnˆr
|PRanpzq

y “ 0, yPkerpzq “ yu (1.11.9)

Lemma 1.11.1. The space ∆z is alternately characterized as

∆z “ tw P Cnˆr
|z˚w “ w˚zu (1.11.10)
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And is thus manifestly a real-linear subspace. Moreover, ∆z decomposes orthogonally into

∆z “ Hz ‘ Γz (1.11.11)

Finally, if z “ rẑ|0sU for ẑ P Cnˆk
˚ then

Hz “

„

Hπ,ẑpCnˆk
˚ q

ˇ

ˇ

ˇ

ˇ

0

ȷ

U (1.11.12)

Proof. Clearly a necessary and sufficient condition for w P ∆z is that z˚w “ w˚z, for in this

case take |ϵ| ă σkpzq{||w||2. We can use this condition to obtain a parametrization for ∆z:

w P ∆z ðñ z˚w “ w˚z

ðñ z˚w “ H̃ H̃ P Crˆr, H̃˚
“ H̃ “ PkerpzqKH̃

ðñ z˚w “ z˚Hz H P Cnˆn, H˚
“ H “ PRanpzq

H

ðñ w “ Hz ` X H P Cnˆn, H˚
“ H “ PRanpzq

H,X P Cnˆr,PRanpzq
X “ 0

(1.11.13)

This proves (1.11.11), with orthogonality easily verified. To prove (1.11.12) note that if z “

rẑ|0sU for ẑ P Cnˆk
˚ , U P Uprq, and w “ Hz ` X P Hz then the condition XPkerpzq “ 0 implies
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X “ rX̃|0sU for X̃ P Cnˆk and PRanpzq
X “ 0 if and only if PRanpzq

X̃ “ 0. Thus

Hz “ tHrẑ|0sU ` rX̃|0sU |H P Cnˆn, H˚
“ H “ PRanpzq

H, X̃ P Cnˆk,PRanpzq
X̃ “ 0u

“ trHẑ ` X̃|0sU |H P Cnˆn, H˚
“ H “ PRanpẑq

, X̃ P Cnˆk,PRanpẑq
X̃ “ 0u

“ rHπ,ẑpCnˆk
˚ q|0sU

(1.11.14)

With this lemma in mind, we may transform a1pzq into a linear minimization problem over

∆z. Namely

a1pzq “ lim
RÑ0

inf
xPCnˆr

||xx˚´zz˚||2ăR

řm
j“1 |xxx˚ ´ zz˚, AjyR|2

||xx˚ ´ zz˚||22

“ lim
RÑ0

inf
xPCnˆr

||xx˚´zz˚||2ăR
z˚xě0

řm
j“1 |xxx˚ ´ zz˚, AjyR|2

||xx˚ ´ zz˚||22

(1.11.15)

We can add the z˚x ě 0 constraint without altering the infimimum since doing so amounts to a

choice of representative for x, but x only appears as πpxq “ xx˚. We now show the following

lemma, implying that we may instead minimize over ||x ´ z||2 ă R.

Lemma 1.11.2. For all z P Cnˆr and ϵ ą 0 there exists δ ą 0 such that if z˚x ě 0 and

||zz˚ ´ xx˚||2 ă δ then ||z ´ x||2 ă ϵ.
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Proof. We begin with the fact that the operation

ζ : PSDpnq Ñ PSDpnq

ζpAq “
?

trA
?
A

(1.11.16)

is continuous with respect to the topology induced by the Frobenius norm. Note that ζpxx˚q “

||x||2pxx
˚q

1
2 “ ψpxq (the embedding ψ as given in Definition 1.6.3). Therefore, given any z P

Cnˆr and ϵ1 there exists δ such that

||xx˚
´ zz˚

||2 ă δ ùñ ||||x||2pxx˚
q
1
2 ´ ||z||2pzz

˚
q
1
2 ||2 ă ϵ1 (1.11.17)

The latter expression here is of course ||ψpxq ´ ψpzq||2, which satisfies ||ψpxq ´ ψpzq||2 ě

1
2
Dpx, zq2 by (1.9.19). If z˚x ě 0 then Dpx, zq “ ||x´ z||2, so if we take ϵ1 “ ϵ2

2
then the above

δ satisfies the lemma.

With this lemma in hand we may freely replace ||xx˚´zz˚||2 by ||x´z||2 in the infimization

constraint for a1pzq (note that the converse of the lemma is immediate since π is continuous with

respect to the topology induced by the Frobenius norm). After doing so, we change variables
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from x to w “ x ´ z so that

a1pzq “ lim
RÑ0

inf
xPCnˆr

||x´z||2ăR
z˚xě0

řm
j“1 |xxx˚ ´ zz˚, AjyR|2

||xx˚ ´ zz˚||22

“ lim
RÑ0

inf
wPCnˆr

||w||2ăR
z˚pz`wqě0

řm
j“1 |xzw˚ ` wz˚ ` ww˚, AjyR|2

||zw˚ ` wz˚ ` ww˚||22

“ lim
RÑ0

inf
wP∆z

||w||2ăR

řm
j“1 |xzw˚ ` wz˚ ` ww˚, AjyR|2

||zw˚ ` wz˚ ` ww˚||22

ď lim
RÑ0

inf
wPHz

||w||2ăR

řm
j“1 |xzw˚ ` wz˚ ` ww˚, AjyR|2

||zw˚ ` wz˚ ` ww˚||22

“ lim
RÑ0

inf
wPHz

||w||2ăR

řm
j“1 |xzw˚ ` wz˚ ` ww˚, AjyR|2

||zw˚ ` wz˚||22 ` ||ww˚||22 ` 4ℜtrtzw˚ww˚u

ď lim
RÑ0

inf
wPHz

||w||2ăR

řm
j“1 |xzw˚ ` wz˚ ` ww˚, AjyR|2

||zw˚ ` wz˚||22p1 ` 4ℜtrtzw˚ww˚u

||zw˚`wz˚||22
q

(1.11.18)

We need to show that the ratio

Rpwq “ 4
|ℜtrtzw˚ww˚u|

||zw˚ ` wz˚||22
(1.11.19)

is Op||w||q when w P Hz. We employ the parametrization of Hz given in (1.11.7) and note that

for w “ Hz ` X

||zw˚
` wz˚

||
2
2 “ 2p||z˚Hz||

2
2 ` ||zz˚H||

2
2 ` ||zX˚

||
2
2q (1.11.20)

ℜtrtzw˚ww˚
u “ ℜtrtz˚H2zz˚Hzu ` ℜtrtX˚Xz˚Hzu (1.11.21)
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Thus we find

Rpwq ď
2|ℜtrtz˚H2zz˚Hzu| ` 2|ℜtrtX˚Xz˚Hzu|

||z˚Hz||22 ` ||zz˚H||22 ` ||zX˚||22

ď 2
|ℜtrtz˚H2zz˚Hzu|

||z˚Hz||22
` 2

|ℜtrtX˚Xz˚Hzu|

||zX˚||22 ` ||z˚Hz||22

ď 2
||z˚H2z||2

||z˚Hz||2
`

||X˚X||2

||zX˚||2

(1.11.22)

Up until this point we have not used the fact that HPRanpzq
“ H “ PRanpzq

H and XPkerpzq “ 0.

We do so now by noting that if z “ U1ΛV
˚ for U1 P Cnˆk such that U1U

˚
1 “ PRanpzq

, Λ “

diagpσ1pzq, . . . , σkpzqq is the diagonal matrix of ordered singular values σ1pzq ě ¨ ¨ ¨ ě σkpzq ą

0, and V1 P Crˆk such that V1V ˚
1 “ PkerpzqK then

||z˚H2z|| “ ||ΛU˚
1H

2U1Λ||2 ď σ1pzq
2
||U˚

1H
2U1||2 “ σ1pzq

2
b

trtPRanpzq
H2PRanpzq

H2u “ σ1pzq
2
||H2

||2

||z˚Hz|| “ ||ΛU˚
1HU1Λ||2 ě σkpzq

2
||U˚

1HU1||2 “ σkpzq
2
b

trtPRanpzq
HPRanpzq

Hu “ σkpzq||H||2

||zX˚
||2 “ ||ΛV ˚

1 X
˚
||2 “ ||ΛpXV1q

˚
||2 ě σkpzq||XV1||2 “ σkpzq

b

trtXPkerpzqKX˚u “ σkpzq||X||2

(1.11.23)
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Thus if κpzq “ σ1pzq{σkpzq is the condition number of z we find

Rpwq ď 2κpzq
2 ||H2||2

||H||2
` σkpzq

´1 ||X˚X||2

||X||2

ď 2κpzq
2
||H||2 ` σ´1

k pzq||X||2

ď 2κpzq
2σkpzq

´1
||Hz||2 ` σ´1

k pzq||X||2

ď

?
2maxp2κpzq2, 1q

σkpzq

b

||Hz||22 ` ||X||22

“
2
?
2κpzq2

σkpzq
loooomoooon

Cpzq

||w||2

(1.11.24)

Thus returning to a1pzq we obtain

a1pzq ď lim
RÑ0

inf
wPHz

||w||2ăR

řm
j“1 |xzw˚ ` wz˚, AjyR|2

||zw˚ ` wz˚||22
p1 ` 2Cpzq||w||2q

“ inf
wPHz
w‰0

řm
j“1 |xzw˚ ` wz˚, AjyR|2

||zw˚ ` wz˚||22

“ inf
wPHπ,ẑ

ŵ‰0

řm
j“1 |xẑŵ˚ ` ŵẑ˚, AjyR|2

||ẑŵ˚ ` ŵẑ˚||22

“ min
WPTπpẑqpS̊k,0pCnqq

||W ||2“1

m
ÿ

j“1

|xW,AjyR|
2

“ apzq

(1.11.25)

This proves (1.8.12). In order to prove (1.8.14) we will employ an explicit parametrization of

TπpẑqpS̊
k,0pCnqq implied by (1.7.7). The condition onW P SympCnq in (1.7.7) that PRanpzqKWPRanpzqK “

0 implies that

W P TπpẑqpS̊
k,0

pCn
qq ðñ W “ W1 `

1

2
pW2 ` W ˚

2 q (1.11.26)
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For W1,W2 P Cnˆn where PRanpzq
W1 “ W1 “ W ˚

1 , PRanpzq
W2 “ 0, and W2PRanpzq

“ W2. In

other words, if U1 P Cnˆk and U2 P Cnˆn´k are as in Definition 1.8.3 then

TπpẑqpS̊
k,0

q “ tU1AU
˚
1 `

1

2
pU2BU

˚
1 ` U1B

˚U˚
2 q|A P SympCk

q, B P Cn´kˆk
u (1.11.27)

We will now employ the fact that the maps τ and µ in (1.8.6) are isometries. Specifically, if

A,B P SympCnq then xA,ByR “ τpAqT τpBq and if X, Y P Cnˆr then xX, Y yR “ µpXqTµpY q.

With this in mind, we obtain that for W P TπpẑqpS̊
k,0q

m
ÿ

j“1

|xW,AjyR|
2

“

m
ÿ

j“1

|xU1AU
˚
1 `

1

2
pU2BU

˚
1 ` U1B

˚U˚
2 q, AjyR|

2

“

m
ÿ

j“1

|xU1AU
˚
1 , AjyR ` xU2BU

˚
1 , AjyR|

2

“

m
ÿ

j“1

|xA,U˚
1AjU1yR ` xB,U˚

2AjU1yR|
2

“

m
ÿ

j“1

ˆ

»

—

—

–

τpAq

µpBq

fi

ffi

ffi

fl

T »

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

˙2

“

»

—

—

–

τpAq

µpBq

fi

ffi

ffi

fl

T

ˆ m
ÿ

j“1

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

T

˙

»

—

—

–

τpAq

µpBq

fi

ffi

ffi

fl

“ WTQzW

(1.11.28)

Where W “

»

—

—

–

τpAq

µpBq

fi

ffi

ffi

fl

P Rk2`2kpn´kq “ R2nk´k2 . Meanwhile, again owing to the fact that τ and

µ are isometries, we find that for W P TπpẑqpS̊
k,0q we have ||W ||2 “ ||W ||2. Thus returning to
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our computation of apzq

apzq “ min
WPTπpẑqpS̊k,0pCnqq

||W ||2“1

m
ÿ

j“1

|xW,AjyR|
2

“ min
WPR2nk´k2

||W||2“1

WTQzW

“ λ2nk´k2pQzq

(1.11.29)

This concludes the proof of piq ´ piiiq. As for pivq and pvq note that when rankpxq ď k then

we may find P P Uprq such that x “ rx̂|0sP for x̂ P Cnˆk and moreover dpx, zq “ dpx̂, ẑq and

xx˚ ´ zz˚ “ x̂x̂˚ ´ ẑẑ˚. Thus

â1pzq “ lim
RÑ0

inf
xPCnˆr

dpz,xqăR

rankpxqďk

řm
j“1 |xxx˚ ´ zz˚, AjyR|2

dpx, zq2

“ lim
RÑ0

inf
x̂PCnˆk

dpx̂,ẑqăR

řm
j“1 |xx̂x̂˚ ´ ẑẑ˚, AjyR|2

dpx̂, ẑq2

(1.11.30)

The constraint rankpxq ď k is therefore equivalent to the assumption that z P Cnˆk
˚ . Hence,

in order to avoid a plethora of hats we will assume z P Cnˆk
˚ . This assumption simplifies the

situation considerably since in this case ∆z “ Hπ,z. As we shall see, if the Γz component of ∆z

were to be non-trivial, the local lower bounds â1pzq and â2pzq would be zero. We next note that

dpx, zq “ ||x´z||2||x`z||2 precisely when x˚z “ z˚x ě 0, which may be achieved without loss

of generality in â1pzq via choice of representative for x. Thus, keeping in mind that z P Cnˆk
˚ , we
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find

â1pzq “ lim
RÑ0

inf
xPCnˆk

dpz,xqăR

řm
j“1 |xxx˚ ´ zz˚, AjyR|2

dpx, zq2

“ lim
RÑ0

inf
xPCnˆk

||x´z||2¨||x`z||2ăR
x˚z“z˚xě0

řm
j“1 |xzpx ´ zq˚ ` px ´ zqz˚ ` px ´ zqpx ´ zq˚, AjyR|2

||x ´ z||22 ¨ ||x ` z||22

(1.11.31)

In analogy with our analysis of a1pzq we change variables from x to w “ x´ z and are thus able

to linearize the infimization constraint, since for ||w||2 ă σkpzq we have that z˚pz ` wq ě 0 if

and only if z˚w “ w˚z, or in other words if and only if z P ∆z ðñ z P Hπ,z (the vertical

component of ∆z, namely Γz, is trivial for z P Cnˆk
˚ ). We also exploit the fact that D and d

generate the same topology and therefore instead of ||w||2||2z ` w||2 ă R we may simply take

||w||2 ă R.

â1pzq “ lim
RÑ0

inf
wPHπ,z

||w||2ăR

řm
j“1 |xzw˚ ` wz˚ ` ww˚, AjyR|2

||w||22||2z ` w||22

“
1

4||z||22
lim
RÑ0

inf
wPHπ,z

||w||2ăR

1

||w||22

m
ÿ

j“1

|xzw˚
` wz˚, AjyR|

2
p1 ` Op||w||

2
2qq

“
1

4||z||22
inf

wPHπ,z

||w||2“1

m
ÿ

j“1

|xzw˚
` wz˚, AjyR|

2

“
1

4||z||22
âpzq

(1.11.32)

We now consider â2pzq. In a manner precisely analogous to (1.11.30) the constraint in â2pzq that

rankpxq ď k and rankpyq ď k is equivalent to the assumption that z P Cnˆk
˚ . We first employ the
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unitary freedom of x and y to note that

â2pzq “ lim
RÑ0

inf
x,yPCnˆk

dpx,zqăR
dpy,zqăR

řm
j“1 |xxx˚ ´ yy˚, AjyR|2

dpx, yq2

“ lim
RÑ0

inf
x,yPCnˆk

||x´z||2||x`z||2ăR
||y´z||2||y`z||2ăR

x˚z“z˚xě0
y˚z“z˚yě0

řm
j“1 |xxx˚ ´ yy˚, AjyR|2

dpx, yq2

“ lim
RÑ0

inf
x,yPCnˆk

||x´z||2ăR
||y´z||2ăR
x˚z“z˚x
y˚z“z˚y

řm
j“1 |xxx˚ ´ yy˚, AjyR|2

dpx, yq2

(1.11.33)

We now weaken the infimization constraints and obtain a lower bound. We note that x˚z “ z˚x

and y˚z “ z˚y taken together imply that px ´ yq˚z “ z˚px ´ yq, and also that the denominator

dpx, yq2 ď ||x ´ y||22||x ` y||22. Thus, changing variables to ξ “ x ´ z and η “ y ´ z we obtain

â2pzq ě lim
RÑ0

inf
ξ,ηPCnˆk

||ξ||2ăR
||η||2ăR

z˚pξ´ηq“pξ´ηq˚z

řm
j“1 |xzpξ ´ ηq˚ ` pξ ´ ηqz˚ ` ξξ˚ ´ ηη˚, AjyR|2

||ξ ´ η||22||2z ` ξ ` η||22

“
1

4||z||22
lim
RÑ0

inf
ξ,ηPCnˆk

||ξ||2ăR
||η||2ăR

z˚pξ´ηq“pξ´ηq˚z

řm
j“1 |xzpξ ´ ηq˚ ` pξ ´ ηqz˚, AjyR|2

||ξ ´ η||22
p1 ` Op||ξ||

2
2 ` ||η||

2
2qq

“
1

4||z||22
lim
RÑ0

inf
ξ,ηPCnˆk

||ξ||2ăR
||η||2ăR

z˚pξ´ηq“pξ´ηq˚z

řm
j“1 |xzpξ ´ ηq˚ ` pξ ´ ηqz˚, AjyR|2

||ξ ´ η||22

“
1

4||z||22
lim
RÑ0

inf
ξ,ηPCnˆk

||ξ´η||2ă2R
z˚pξ´ηq“pξ´ηq˚z

řm
j“1 |xzpξ ´ ηq˚ ` pξ ´ ηqz˚, AjyR|2

||ξ ´ η||22

(1.11.34)
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The last line is an equality rather than an inequality owing to homogeneity in ξ ´ η. Changing

variables once more to w “ ξ ´ η and using the fact that for z P Cnˆk
˚ z˚w “ w˚z ðñ w P

∆z ðñ w P Hπ,zpCnˆk
˚ q gives

â2pzq ě
1

4||z||22
lim
RÑ0

inf
wPHπ,zpCnˆk

˚ q

||w||2ă2R

řm
j“1 |xzw˚ ` wz˚, AjyR|2

||w||22

“
1

4||z||22
inf

wPHπ,zpCnˆk
˚ q

||w||2“1

m
ÿ

j“1

|xzw˚
` wz˚, AjyR|

2

“ âpzq “ â1pzq

(1.11.35)

The reverse inequality â2pzq ď â1pzq is immediate from the definitions of â1pzq and â2pzq,

thus (1.8.15) is proved. We now turn to explicit computation of âpzq as the smallest non-zero

eigenvalue of Q̂z. As with the computation of apzq we rely on several embeddings. Specifically

we define

l : Cnˆk
Ñ R2nˆk j : Cnˆk

Ñ R2nˆ2k

lpXq “

»

—

—

–

ℜX

ℑX

fi

ffi

ffi

fl

jpXq “

»

—

—

–

ℜX ´ℑX

ℑX ℜX

fi

ffi

ffi

fl

(1.11.36)

Note that j is an injective homomorphism and moreover that

jpXq “

„

lpXq JlpXq

ȷ

(1.11.37)
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where J P R2nˆ2n is the symplectic form

J “

»

—

—

–

0 ´Inˆn

Inˆn 0

fi

ffi

ffi

fl

(1.11.38)

Note that JjpXq “ jpXqJ for all X P Cnˆn.The embedding l is isometric, and the embedding

j is isometric up to a constant since for X, Y P Cnˆk we have xX, Y yR “ xlpXq, lpY qyR “

1
2
xjpXq, jpY qyR. The embedding j is furthermore a structure preserving homomorphism since

for p P Cnˆk, q P Ckˆl we have that jppqlpqq “ lppqq, jppqq “ jppqjpqq, and jpp˚q “ jppqT .

We will also employ the isometric embedding vec defined in the obvious way in (1.8.8). We will

need the fact that if A P Rnˆk and B P Rkˆl then

vecpABq “ pIlˆl b AqvecpBq (1.11.39)

Note that this further implies that for x, y P Rnˆk and F P Rnˆn we have that

vecpxq
T

pIkˆk b F qvecpyq “ vecpxq
TvecpFyq “ xx, FyyR “ trtxTFyu (1.11.40)
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With this in mind we find that for z P Cnˆk
˚ and w P Hπ,zpCnˆk

˚ q

|xDπpzqpwq, AjyR|
2

“ 4|xwz˚, AjyR|
2

“ xjpwz˚
q, Ajy

2

“ xjpwq, Ajjpzqy
2

“

ˆ

vecpjpwqq
TvecpjpAjqjpzqq

˙2

“

ˆ

vecpjpwqq
T

pI2kˆ2k b jpAjqqvecpjpzqq

˙2

“ 4

ˆ

vecplpwqq
T

pIkˆk b jpAjqqvecplpzqq

˙2

“ 4W TFjZZ
TFjW

(1.11.41)

where W “ µpwq, Z “ µpzq and Fj “ Ikˆk b jpAjq. This should not be too surprising since in

fact

βjpzq “ xzz˚, AjyR

“ xz, AjzyR

“
1

2
xjpzq, jpAjqjpzqy

“
1

2
vecpjpzqq

TvecpjpAjqjpzqq

“
1

2
vecpjpzqq

T
pI2kˆ2k b jpAjqqvecpjpzqq

“ vecplpzqq
T

pIkˆk b jpAjqqvecplpzqq “ ZTFjZ

(1.11.42)

Thus when βj is viewed as map from R2nk to R we find that |DβjpZqpW q|2 “ 4W TFjZZ
TFjW .

Returning to apzq we first note that the constraint w P Hπ,zpCnˆk
˚ q precisely avoids the “trivial”

kernel of dimension k2 common to each FjZZ
TFj . Specifically, we note that ZTFjV “ 0 for
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V P Vz Ă R2nk where

Vz “ tvecpJlpzqS ` lpzqAq|S P SympRk
q, A P AsympRk

qu (1.11.43)

Namely if V P Vz and η “ JlpzqS ` lpzqA P R2nˆr for A P AsympRkq and S P SympRkq so that

V “ vecpηq then

ZTFjV “ vecplpzqq
T

pIkˆk b jpAjqqvecpηq

“ trtlpzq
T jpAjqηu

“ trtlpzq
T jpAjqpJlpzqS ` lpzqAqu

“ trtlpzq
T jpAjqJlpzqSu ` trtlpzq

T jpAjqlpzqAu

“ 0

(1.11.44)

The last line follows from the fact that jpAjq is symmetric and jpAjqJ is anti-symmetric since

pjpAjqJq˚ “ ´JjpAjq “ ´jpAjqJ . The reason that w P Hπ,zpCnˆk
˚ q avoids this common kernel

is that in fact Vz “ µpVπ,zpCnˆk
˚ qq. Recall that

Vπ,zpCnˆk
˚ q “ tzK|K P AsympCk

qu (1.11.45)

We may decompose K P AsympCnq as K “ A ` iS where A P AsympRnq and S P SympRnq.
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Hence if u P Vπ,zpCnˆk
˚ q then on the one hand jpuq “ rlpuq|Jlpuqs and on the other

jpuq “ jpzKq “ jpzqjpKq “ rlpzq|Jlpzqs

»

—

—

–

A ´S

S A

fi

ffi

ffi

fl

“ rlpzqA ` JlpzqS| ´ lpzqS ` JlpzqAs

(1.11.46)

From which we may clearly identify lpuq “ lpzqA ` JlpzqS, thus

Vz “ tµpuq|u P Vπ,zpCnˆk
˚ qu (1.11.47)

The map µ is an isometry, so if w P Hπ,zpCnˆk
˚ q then the image W “ µpwq lies precisely in the

orthogonal complement of Vz. Thus

âpzq “ min
wPHπ,ẑpCnˆk

˚ q

||w||2“1

m
ÿ

j“1

|xDπpẑqpwq, AjyR|
2

“ min
WPR2nk

WKVz
||W ||2“1

W T
p4

m
ÿ

j“1

FjZZ
TFjqW

“ λ2nk´k2pQ̂zq

(1.11.48)

Note that at this point the hats return and Z “ µpẑq. Eigenvalues are continuous with respect to

matrix entries, and Q̂z is manifestly continuous with respect to z. As a result of this and the fact

that k ÞÑ 2nk ´ k2 is monotone increasing for k ď n we conclude that âpzq approaches zero

whenever z approaches a drop in rank. Indeed, âpzq jumps discontinuously to a non-zero value

once the surface of lower rank is actually reached, but this cannot prevent infzPCnˆr âpzq from
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being zero, thus there is no hope of defining a non-zero global lower bound â0. This concludes

the proof of claims pivq-pviq.

Claim pviiq gives local control of apzq in terms of âpzq. We first prove that the the inequality

(1.8.17) holds. To do so we consider the following operators:

Π1pẑq : pTπpẑqpS̊
k,0

pCn
qq, || ¨ ||2q Ñ pRm, || ¨ ||2q

Π1pẑqpW q “ ptrtWAjuq
m
j“1

(1.11.49)

Π2pẑq : pHπ,ẑpCnˆk
˚ q, || ¨ ||2q Ñ pRm, || ¨ ||2q

Π2pẑqpwq “ ptrtpẑw˚
` wẑ˚

qAjuq
m
j“1 “ Π1pẑqDπpẑqw

(1.11.50)

Note that apzq and âpzq, defined respectively in (1.8.3) and (1.8.4), are expressible in terms of

the operator norms of the pseudo-inverses of Π1pẑq and Π2pẑq.

apzq “ ||Π1pẑq
:
||

´2
˚

âpzq “ ||Π2pẑq
:
||

´2
˚

(1.11.51)

We may therefore obtain operator-theoretic inequalities relating apzq and âpzq, namely

||Π2pẑq
:
||˚ “ ||Dπpẑq

´1Π1pẑq
:
||˚ ď ||Dπpẑq

´1
||˚||Π1pẑq

:
||˚

||Π1pẑq
:
||˚ “ ||DπpẑqΠ2pẑq

:
||˚ ď ||Dπpẑq||˚||Π2pẑq

:
||˚

(1.11.52)

Hence

||Dπpẑq||
´2
˚ âpzq ď apzq ď ||Dπpẑq

´1
||
2
˚âpzq (1.11.53)

92



It remains only to compute appropriate bounds for ||Dπpẑq||´2
˚ and ||Dπpzq´1||2˚ in order to prove

(1.8.17). First note that

||Dπpẑq
´1

||
2
˚ “ sup

WPTπpẑqpS̊k,0pCnqqzt0u

||Dπpẑq´1pW q||22

||W ||22
“

ˆ

inf
wPHπ,ẑpCnˆk

˚ qzt0u

||ẑw˚ ` wẑ˚||22

||w||22

˙´1

(1.11.54)

Next note that for w “ Hẑ ` X P Hπ,ẑpCnˆk
˚ q we have ||w||22 “ ||Hẑ||22 ` ||X||22 and ||ẑw˚ `

wẑ||22 “ 2p||ẑ˚Hẑ||22 ` ||ẑẑ˚H||22 ` ||ẑX˚||22q thus

||Dπpẑq
´1

||
´2
˚ “ inf

wPHπ,ẑpCnˆk
˚ qzt0u

||ẑw˚ ` wẑ˚||22

||w||22

“ 2 inf
HPSympCnq,PRanpẑq

H“H

XPCnˆk,PRanpẑq
X“0

||ẑ˚Hẑ||22 ` ||ẑẑ˚H||22 ` ||ẑX˚||22

||Hẑ||22 ` ||X||22

ě 2 inf
HPSympCnq,PRanpẑq

H“H

XPCnˆk,PRanpẑq
X“0

||ẑ˚Hẑ||22 ` ||ẑX˚||22

||Hẑ||22 ` ||X||22

ě 2σkpẑq
2 inf
HPSympCnq,PRanpẑq

H“H

XPCnˆk,PRanpẑq
X“0

||Hẑ||22 ` ||X||22

||Hẑ||22 ` ||X||22

“ 2σkpzq
2

(1.11.55)
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Hence ||Dπpẑq´1||2˚ ď 1
2σkpzq2

. For the opposing bound note that

||Dπpẑq||
2
˚ “ sup

wPHπ,ẑpCnˆk
˚ qzt0u

||ẑw˚ ` wẑ˚||22

||w||22

ď sup
wPHπ,ẑpCnˆk

˚ qzt0u

||ẑw˚ ` wẑ˚||21

||w||22

ď sup
wPHπ,ẑpCnˆk

˚ qzt0u

4||ẑw˚||21

||w||22

ď 4||z||
2
2

(1.11.56)

Hence ||Dπpẑq||´2
˚ ě 1

4||z||22
, proving (1.8.17). We note that choosing w “ ẑ P Hπ,ẑpCnˆk

˚ q proves

that in fact ||Dπpẑq||2Ñ1 “ 1
2||z||2

. Finally, the claimed bounds in (1.8.17) are tight in the case

rankpzq “ 1, since in this case the inequality is equivalent to the norm inequality for W P Cnˆn

1
a

rankpW q
||W ||1 ď ||W ||2 ď ||W ||1 (1.11.57)

Specifically if W P TπpzqpS̊
1,0pCnqq for z P Cn

˚ then W “ zw˚ ` wz˚ for some w P Hπ,zpCn
˚q Ă

Cn and has rank at most 2. Moreover we have that

||W ||1 “ ||zw˚
` wz˚

||1 “
1

2
||pz ` wqpz ` wq

˚
´ pz ´ wqpz ´ wq

˚
||1 (1.11.58)

Recall (1.6.8) that for x, y P Cn we have that ||xx˚ ´ yy˚||1 “ dpx, yq and that dpx, yq “

||x ´ y||2||x ` y||2 when x˚y ě 0. Let x “ z ` w and y “ z ´ w, and note that in this case

w P Hπ,zpCn
˚q implies x˚y “ z˚z ` w˚z ´ z˚w ´ w˚w “ z˚z ´ w˚w ě 0 for ||w||2 sufficiently
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small. Thus for ||w||2 or equivalently ||W ||2 sufficiently small,

||W ||1 “
1

2
||pz ` wq ´ pz ´ wq||2||pz ` wq ` pz ´ wq||2 “ 2||z||2||w||2 (1.11.59)

The condition that ||W ||2 be sufficiently small is of no issue since the ratio in apzq is homoge-

neous in ||W ||2, hence recalling that rankpW q ď 2 (1.11.57) implies

?
2||z||2||w||2 ď ||W ||2 ď 2||z||2||w||2 (1.11.60)

Thus for rankpzq “ 1 the inequality (1.11.57) is equivalent to

1

4||z||22
âpzq ď apzq ď

1

2||z||22
âpzq (1.11.61)

which is recognizable as (1.8.17) since if rankpzq “ 1 then ||z||22 “ σ1pzq2 and hence since

(1.11.57) is tight so too is (1.8.17). This concludes the proof of pviiq.

To prove pviiiq we combine (1.8.11) and (1.8.14) to obtain the following formula for com-

puting a0:

a0 “ min
k“1,...,r

min
UPUpnq

U“rU1|U2s

U1PCnˆk

U2PCnˆpn´kq

λ2nk´k2pQUq (1.11.62)
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Recalling that

QrU1|U2s “

m
ÿ

j“1

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

T

(1.11.63)

Finally, we need to prove that the minimum over k in fact occurs at k “ r. We may write

a0 “ min
k“1,...,r

inf
zPCnˆk

˚

min
WPTπpzqpS̊k,0pCnqq

1

||W ||22

m
ÿ

j“1

|xW,AjyR|
2 (1.11.64)

Then note that if ẑ P Cnˆk
˚ and z̃ P Cnˆpr´kq

˚ is such that ẑ˚z̃ “ 0 then z “ rẑ|z̃s P Cnˆr
˚

and moreover, recalling the parametrization of the tangent space (1.7.7) (or alternately that the

stratification is a-regular), we find that TπpzqpS̊
r,0pCnqq Ą TπpẑqpS̊

k,0pCnqq since RanpzqK “

RanpẑqK X Ranpz̃qK. Thus, in fact

a0 “ min
UPUpnq

U“rU1|U2s

U1PCnˆr

U2PCnˆpn´rq

λ2nr´r2pQUq (1.11.65)

We now set out to prove pixq, specifically to control a0 using an infimization of âpzq rather than

of apzq by including the additional constraint that z˚z “ Irˆr. With this constraint we may write

any w P Hπ,zpCnˆr
˚ q as w “ zH̃`X where H̃ P SympCrq and X P Cnˆr satisfies PRanpzq

X “ 0

(equivalently X satisfies z˚X “ 0). We note that for z satisfying the constraint

||w||
2
2 “ ||H̃||

2
2 ` ||X||

2
2 (1.11.66)

||zw˚
` wz˚

||
2
2 “ 4||H̃||

2
2 ` 2||X||

2
2 (1.11.67)
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Hence referring to (1.8.3) and (1.8.4) we find that for z˚z “ Irˆr

1

4
âpzq ď apzq ď

1

2
âpzq (1.11.68)

Note that a direct application of (1.8.17) to the case where z has orthonormal columns would lead

to the lower constant being 1
4r

rather than 1
4
.The form (1.8.18) for a0 tells us that apzq depends

only on the range of z, and that we may obtain a0 via

a0 “ inf
zPCnˆr

˚

z˚z“Irˆr

apzq (1.11.69)

Thus

1

4
inf

zPCnˆr
˚

z˚z“Irˆr

âpzq ď a0 ď
1

2
inf

zPCnˆr
˚

z˚z“Irˆr

âpzq (1.11.70)

This concludes the proof of pixq and Theorem 1.8.5.

Remark 1.11.3. For r “ 1 the inequality (1.8.17) tells us that

1

4||z||22
âpzq ď apzq ď

1

2||z||22
âpzq (1.11.71)

But in fact, as was proved in [23], more is true. Namely if the nuclear norm is used in the

definition of a0 instead of the Frobenius norm so that

a10 “ inf
x,yPCnˆr

x‰y

řm
j“1pxxx˚, AjyR ´ xyy˚, AjyRq2

||xx˚ ´ yy˚||21
(1.11.72)

97



And similarly in the definition of apzq so that

a1pzq “ min
WPTπpẑqpS̊k,0pCnqq

||W ||1“1

m
ÿ

j“1

|xW,AjyR|
2 (1.11.73)

then

a10 “ inf
zPCnˆrzt0u

a1pzq (1.11.74)

a1pzq “
1

4||z||22
âpzq (1.11.75)

Remark 1.11.4. For r “ 1,Qz is orthogonally equivalent to the restriction of Q̂z to the orthogonal

complement of its null space, giving a correspondence between (1.8.14) and (3.5) in [40] when

the frame is positive semidefinite (Aj “ fjf
˚
j ). Specifically, if r “ 1 then we may take U1 “

z
||z||2

“: e1 and U2 “ re2, . . . , en] where e1, . . . , en forms an orthonormal basis for Cn with respect

to the complex inner product x¨, ¨yC. Thus

τpU˚
1AjU1q “

|xz, fjyC|2

||z||22
“

1

||z||2
xe1, fjyCxfj, zyC

µpU˚
2AjU1q “

1

||z||2
lp

»

—

—

—

—

—

—

–

xe2, fjyCxfj, zyC

...

xen, fjyCxfj, zyC

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

q

(1.11.76)

Note that τpU˚
1AjU1q is real, hence if we insert a single 0 in the middle of µpU˚

2AjU1q between
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vecpℜpU˚
2AjU1qq and vecpℑpU˚

2AjU1qq we obtain

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

τpU˚
1AjU1q

vecpℜpU˚
2AjU1qq

0

vecpℑpU˚
2AjU1qq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
1

||z||2
lp

»

—

—

—

—

—

—

–

xe1, fjyCxfj, zyC

...

xen, fjyCxfj, zyC

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

q “
1

||z||2
lpU˚Ajzq “

1

||z||2
jpUq

T jpAjqlpzq

(1.11.77)

Where in the last inequality the algebraic properties of l and j are employed. Thus (up to a row

and column of zeros)

Qz “ jpUq
T

"

1

||z||22

m
ÿ

j“1

jpAjqlpzqlpzq
T jpAjq

*

jpUq (1.11.78)

In accordance with the notation of [40] we denote ξ “ lpzq, ϕj “ lpfjq, and Φj “ jpAjq “

ϕjϕ
T
j ` Jϕjϕ

T
j J

T so that the above becomes

Qz “ jpUq
T

"

1

||ξ||22

m
ÿ

j“1

Φjξξ
TΦj

*

jpUq (1.11.79)

Finally note that the column of jpUq corresponding to the the row and column of zeros on the left

hand side is Jlpzq{||z||2 “ Jξ{||ξ||2, thus if we multiply on the left by jpUq and on the right by
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jpUqT we obtain

jpUqQzjpUq
T

“ pI ´ PJξq

"

1

||ξ||22

m
ÿ

j“1

Φjξξ
TΦj

*

pI ´ PJξq (1.11.80)

1.11.3 Proof of Theorem 1.8.8

Proof. As was the case for â1pzq and â2pzq the rank constraints in A1pzq, A2pzq, Â1pzq, and

Â2pzq allow us to assume that z P Cnˆk
˚ rather than Cnˆr. As before, this is done because without

this assumption the resulting lower bounds would be zero for every z not full rank. We begin

with the analysis of Â1pzq, the simpler of the local lower bounds (we will show pxq that Aipzq

differ from Âipzq only by a constant factor, and hence will not analyze them separately). As we

have done several times before we will employ the right hand unitary freedom of the variable x

to require that z˚x ě 0, and then make the change of variables from x to w “ x ´ z.

Â1pzq “ lim
RÑ0

inf
xPCnˆk

xx˚‰zz˚

Dpx,zqăR

1

Dpx, zq2

m
ÿ

j“1

|xxx˚, Ajy
1
2 ´ xzz˚, Ajy

1
2 |

2

“ lim
RÑ0

inf
wPCnˆk

zw˚`wz˚`ww˚‰0
||w||2ăR

z˚pz`wqě0

1

||w||22

m
ÿ

j“1

|xpz ` wqpz ` wq
˚, Ajy

1
2 ´ xzz˚, Ajy

1
2 |

2

“ lim
RÑ0

inf
wPCnˆk

zw˚`wz˚`ww˚‰0
||w||2ăR
wP∆z

1

||w||22

"

ÿ

jPI0pzq

xww˚, AjyR `
ÿ

jPIpzq

|xzw˚ ` wz˚ ` ww˚, AjyR|2

|xpz ` wqpz ` wq˚, Ajy
1
2 ` xzz˚, Ajy

1
2 |2

*

(1.11.81)

Where I0pzq “ tj P t1, . . . ,mu|αjpzq “ 0u are the indices for which αj is zero (and hence not

differentiable) and Ipzq “ tj P t1, . . . ,mu|αjpzq ‰ 0u are the indices for which αj is not zero
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(and hence is differentiable). Thus, since z is full rank we know that ∆z “ Hπ,zpCnˆk
˚ q and since

zw˚ ` wz˚ ` ww˚ ‰ 0 ðñ w ‰ 0 for w P Hπ,zpCnˆk
˚ q and sufficiently small in norm, we

obtain

Â1pzq “ lim
RÑ0

inf
wPHπ,zpCnˆk

˚ q

0ă||w||2ăR

1

||w||22

"

ÿ

jPI0pzq

xww˚, AjyR `
ÿ

jPIpzq

|xzw˚ ` wz˚ ` ww˚, AjyR|2

|xpz ` wqpz ` wq˚, Ajy
1
2 ` xzz˚, Ajy

1
2 |2

*

“ lim
RÑ0

inf
wPHπ,zpCnˆk

˚ q

0ă||w||2ăR

1

||w||22

"

ÿ

jPI0pzq

xww˚, AjyR `
ÿ

jPIpzq

|xzw˚ ` wz˚, AjyR|2

4xzz˚, Ajy
` Op||w||

3
q

*

“ min
wPHπ,zpCnˆk

˚ q

||w||2“1

1

||w||22

"

ÿ

jPI0pzq

xww˚, AjyR `
ÿ

jPIpzq

|xzw˚ ` wz˚, AjyR|2

4xzz˚, Ajy

*

(1.11.82)

Now recall from (1.11.41) and (1.11.42) respectively that |xzw˚`wz˚, AjyR|2 “ |xDπpzqpwq, AjyR|2 “

4W TFjZZ
TFjW and xww˚, Ajy “ βjpwq “ W TFjW . Thus the above is

Â1pzq “ min
WPR2nk

WKVz
||W ||2“1

W T

"

ÿ

jPI0pzq

Fj `
ÿ

jPIpzq

FjZZ
TFj

ZTFjZ

*

W (1.11.83)

As has already been noted in (1.11.44) the null space of each FjZZ
TFj contains Vz, but in

fact so does the null space of each Fj for j P I0pzq since in this case FjµpzKq “ pIkˆk b

jpAjqqvecplpzKqq “ vecpjpAjqlpzkqq “ vecplpAjzKqq “ 0. Thus we obtain finally that

Â1pzq “ λ2nk´k2p
ÿ

jPI0pzq

Fj `
ÿ

jPIpzq

FjµpẑqµpẑqTFj

µpẑqTFjµpẑq
q (1.11.84)

Note that in addition to proving (1.8.24) this also proves pviiiq as this form makes clear that,

owing to continuity of eigenvalues, infimizing Â1pzq over z will give zero (and hence so too will
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infimizing Â2pzq over z since Â2pzq ď Â1pzq). Specifically the number of possibly non-zero

eigenvalues of R̂z ` T̂z is 2nk´ k2 and is thus monotone increasing in rank, and thus a sequence

pziqiě1 Ă Cnˆr
˚ approaching a surface of lower rank k will have λ2nr´r2pR̂z ` T̂zq approach zero.

Somewhat more remarkably, (1.11.84) actually gives us Â2pzq as an eigenvalue problem also.

Specifically, we prove that the “differentiable” terms in Â2pzq are equal to those in Â1pzq and

that in fact these are the only terms which contribute to Â2pzq. We define

ÂI
2pzq “ lim

RÑ0
inf

x,yPCnˆr

Dpx,zqăR
Dpy,zqăR

rankpxqďk

rankpyqďk

ř

kPIpzq
|αkpxq ´ αkpyq|2

Dpx, yq2

ÂI0
2 pzq “ lim

RÑ0
inf

x,yPCnˆr

Dpx,zqăR
Dpy,zqăR

rankpxqďk

rankpyqďk

ř

kPI0pzq
|αkpxq ´ αkpyq|2

Dpx, yq2

ÂI
1pzq “ lim

RÑ0
inf

xPCnˆr

Dpz,xqăR

rankpxqďk

ř

kPIpzq
|αkpxq ´ αkpzq|2

Dpx, zq2

ÂI0
1 pzq “ lim

RÑ0
inf

xPCnˆr

Dpz,xqăR

rankpxqďk

ř

kPI0pzq
|αkpxq ´ αkpzq|2

Dpx, zq2

(1.11.85)

So that Â2pzq ě ÂI0
2 pzq ` ÂI

2pzq ě ÂI
2pzq, ÂI

2pzq ď ÂI
1pzq, and ÂI0

2 pzq ď ÂI0
1 pzq. Applying the

mean value theorem to the functions gk : r0, 1s Ñ R, gkpcq “ αkpp1 ´ cqx ` cyq for k P Ipzq

we see that there exist ck P r0, 1s so that αkpyq ´ αkpxq “ gp1q ´ gp0q “ g1pckq “ Dαkpp1 ´

ckqx ` ckyqpy ´ xq (recall that these are precisely the k for which said differential exists, and

the differential is taken with respect to the real vector space structure). Hence, replacing the rank

constraints with the assumption that z P Cnˆk
˚ and aligning both x and y with z so that z˚x ě 0
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and z˚y ě 0 we have:

ÂI
2pzq “ lim

RÑ0
inf

x,yPCnˆk

||x´z||ăR
||y´z||ăR
z˚xě0
z˚yě0

ř

kPIpzq
|Dαkpp1 ´ ckqx ` ckyqpy ´ xq|2

Dpx, yq2
(1.11.86)

Using the fact that Dpx, yq ď ||y ´ x||2 and writing x “ z ` ξ and y “ z ` η we obtain that

ÂI
2pzq ě lim

RÑ0
inf

η,ξP∆z

||ξ||ăR
||η||ăR

ř

kPIpzq
|Dαkpz ` p1 ´ ckqξ ` ckηqpη ´ ξq|2

||η ´ ξ||22 (1.11.87)

The trick of linearizing the conic constraints here to ξ, η P ∆z is crucial since it allows us to

strictly weaken the constraints in the infimum by taking w “ η ´ ξ so that, after using the

continuity of Dαk (αk is continuously differentiable when differentiable)

ÂI
2pzq ě lim

RÑ0
inf

η,ξP∆z

||ξ||2ăR
||η||2ăR

ř

kPIpzq
|Dαkpz ` p1 ´ ckqξ ` ckηqpη ´ ξq|2

||η ´ ξ||22

“ lim
RÑ0

inf
η,ξP∆z

||ξ||2ăR
||η||2ăR

ř

kPIpzq
|Dαkpzqpη ´ ξq|2

||η ´ ξ||22
` Op||ξ||

2
2 ` ||η||

2
2q

ě lim
RÑ0

inf
wP∆z

||w||2ă2R

ř

kPIpzq
|Dαkpzqpwq|2

||w||22

“ min
wPHπ,zpCnˆk

˚ q

||w||2“1

ÿ

kPIpzq

|Dαkpzqpwq|
2

“ λ2nk´k2p
ÿ

jPIpzq

FjµpẑqµpẑqTFj

µpẑqTFjµpẑq
q “ ÂI

1pzq

(1.11.88)
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We already had the reverse inequality ÂI
2pzq ď ÂI

1pzq, hence ÂI
2pzq “ ÂI

1pzq. Moreover, assum-

ing this minimum is achieved by w0 P Hπ,zpCnˆk
˚ q then if we put x “ z ` 1

2
w0 y “ z ´ 1

2
w0 we

see that the ÂI0
2 pzq term vanishes and ÂI

2pzq is achieved, hence Â2pzq ď ÂI
2pzq. We already had

the reverse inequality, so we conclude that Â2pzq “ ÂI
2pzq “ ÂI

1pzq and ÂI0
2 pzq “ 0. In summary

Â2pzq “ min
WPR2nk

WKVz
||W ||2“1

W T

"

ÿ

jPIpzq

FjZZ
TFj

ZTFjZ

*

W

“ λ2nk´k2p
ÿ

jPIpzq

FjZZ
TFj

ZTFjZ
q

(1.11.89)

Thus claims piq and piiq are proven. Claim piiiq follows immediately from the inequality (1.6.6).

This concludes the proof of the Theorem 1.8.8.

Remark 1.11.5. If z were not assumed full rank in (1.11.81) then w P ∆z would possibly have

a non-zero component wΓ in Γz Ă Vπ,zpCnˆk
˚ q. As a result, it would be possible to obtain a

sequence (with the horizontal space component of w converging to zero) for which the second

sum in the last line of (1.11.81) is eventually fourth order in ||w||2, thus A1pzq would be zero

wherever α is differentiable (almost everywhere in measure). The rank constraint in the definition

of Â1pzq that rankpxq ď k avoids this, since it allows us to assume that z is full rank and hence

that Γz is trivial.

1.11.4 Proof of Theorem 1.8.12

Proof. The proof of piq is essentially identical to the proof of the analogous eigenvalue formula

for the lower bound a0 in Theorem 1.8.5. One first changes coordinates to z “ 1
2
px ` yq and
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w “ x ´ y and repeats the computation (1.11.6) to obtain

b0 “ sup
zPCnˆr

max
WPTπpẑqpS̊k,0pCnqq

||W ||2“1

M
ÿ

j“1

|xW,AjyR|
2 (1.11.90)

At this point we note that

b0 ď sup
WPSympCnq

||ApW q||22

||W ||22
“ ||A||

2
2Ñ2 (1.11.91)

As before we observe that it suffices to take z P Cnˆr
˚ since if ẑ P Cnˆk

˚ and z̃ P Cnˆpr´kq
˚ and

z “ rẑ|z̃s with z̃˚ẑ “ 0 then TπpzqpS̊
r,0pCnqq Ą TπpẑqpS̊

k,0q. One then employs the tangent space

parametrization (1.11.27) and repeats the computation (1.11.28) to obtain

b0 “ sup
zPCnˆr

˚

λ1pQzq “ max
UPUpnq

U“rU1|U2s

U1PCnˆr,U2PCnˆn´r

λ1pQrU1|U2sq (1.11.92)

This concludes the proof of piq. To prove piiq we will employ the following lemma.

Lemma 1.11.6. Let ||| ¨ ||| be any norm. Then

||A||1Ñ|||¨||| “ sup
xPCn

||x||2“1

|||Apxx˚
q||| (1.11.93)

In other words the operator norm ||A||˚ of A : pSympCnqpCnq, || ¨ ||1q Ñ pRm, ||| ¨ |||q is achieved

on a matrix of rank 1.

Proof. Let R P SympCnq be non-zero such that ||R||1 “ 1 and |||ApRq||| “ ||A||˚||R||1. Write
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R “
řn

j“1 rjeje
˚
j and note that ||R||1 “ 1 implies

řn
j“1 |rj| “ 1. Then

||A||˚ “ ||A||˚||R||1 “ |||

n
ÿ

j“1

rjApeje
˚
j q||| ď p

n
ÿ

j“1

|rj|q max
j“1,...,n

|||Apeje
˚
j q||| “ max

j“1,...,n
|||Apeje

˚
j q|||

(1.11.94)

Let x0 “ ej0 where j0 is the index that achieves the maximum. Then ||x0||2 “ 1 and ||A||˚ ď

|||Apx0x
˚
0q|||, but of course this bound is achievable by just plugging in x0x˚

0 into A. Thus the

operator norm of A is achieved on a matrix of rank 1 and the lemma holds.

Next note that

b0,1 “ sup
x,yPCnˆr

rxs‰rys

řm
j“1 |xxx˚ ´ yy˚, AjyR|2

||xx˚ ´ yy˚||21

“ sup
zPCnˆr

˚

sup
WPTπpzqpS̊r,0pCnqq

||ApW q||22

||W ||21

ď sup
WPSympCnq

||W ||1“1

||ApW q||
2
2

“ ||A||
2
1Ñ2

(1.11.95)

Note that by an identical computation b0 ď ||A||2Ñ2. By the Lemma ||A||1Ñ2 “ supxPCn,||x||2“1 ||Apxx˚q||22,
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hence

b0,1 ď sup
xPCn

||Apxx˚q||22

||xx˚||21

ď sup
xPCnˆr

||Apxx˚q||22

||xx˚||21

“
||Apx0x

˚
0q||22

||x0x˚
0 ||21

ď sup
U2PCnˆn´k

U˚
2 U2“In´kˆn´k

k“1,...,r

sup
WPSympCnq

U˚
2 WU2“0

||ApW q||22

||W ||21

“ b0

(1.11.96)

Where in the second to last equality we note that it suffices to takeU2 such thatU2U
˚
2 “ PRanpx0qK

and in the last equality we use the implicit parametrization of the tangent space (1.7.7). Thus

b0,1 “ ||A||1Ñ2 “ sup
xPCn

||Apxx˚q||22

||xx˚||21
“ sup

xPCnˆr

||Apxx˚q||22

||xx˚||21
(1.11.97)

We now seek an operator Tr : Cnˆr Ñ pCnˆrqm, an integer q, and a norm ||| ¨ ||| so that for

x P Cnˆr

|||Trpxq|||
q

“ ||Apxx˚
q||

2
2 (1.11.98)

We find that if Aj ě 0 for all j then

||Apxx˚
q||

2
2 “

m
ÿ

j“1

|xxx˚, AjyR|
2

“

m
ÿ

j“1

||A
1
2
j x||

4
2 (1.11.99)

So we let Tr be as in Definition 1.8.11, |||X||| “ |||X|||2,4 and q “ 4 and find b0 “ ||Tr||
4
2Ñp2,4q

“
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||T1||
4
2Ñp2,4q

. This concludes the proof of piiq. To prove piiiq note that by (1.6.5) ||pxx˚q
1
2 ´

pyy˚q
1
2 ||2 ě Dpx, yq hence

B0 ď sup
x,yPCnˆr

rxs‰rys

||αpxq ´ αpyq||22

Dpx, yq2
(1.11.100)

Thus

B0 ď sup
x,yPCnˆr

rxs‰rys

1

Dpx, yq2

m
ÿ

j“1

|xxx˚, Ajy
1
2 ´ xyy˚, Ajy

1
2 |

2

“ sup
x,yPCnˆr

x˚yě0

1

||x ´ y||22

m
ÿ

j“1

|xxx˚ ´ yy˚, AjyR|2

pxxx˚, Ajy
1
2 ` xyy˚, Ajy

1
2 q2

(1.11.101)

We now make the change of coordinates z “ 1
2
px`yq, w “ x´y so that x “ z` 1

2
w, y “ z´ 1

2
w.

As before let I0pzq be the subset of t1, . . . ,mu for which Ajz “ 0 and Ipzq its complement in

t1, . . . ,mu. In this case we note that if j P I0pzq then 0xzw˚ ` wz˚, AjyR “ xxx˚ ´ yy˚, Ajy.

Thus, employing the triangle inequality via xxx˚, Ajy
1
2 ` xyy˚, Ajy

1
2 “ ||A

1
2
j x||2 ` ||A

1
2
j y||2 ě

2||A
1
2
j z||2 “ 2xzz˚, Ajy

1
2 we find that

B0 ď sup
x,yPCnˆr

x˚yě0

1

||x ´ y||22

m
ÿ

jPIpzq

|xxx˚ ´ yy˚, AjyR|2

pxxx˚, Ajy
1
2 ` xyy˚, Ajy

1
2 q2

(1.11.102)

ď sup
zPCnˆr

z‰0

sup
wPCnˆr

z˚z´ 1
4
w˚w` 1

2
pw˚z´z˚wqě0

1

||w||22

ÿ

jPIpzq

|xzw˚ ` wz˚, AjyR|2

4xzz˚, Ajy
(1.11.103)

Next note that the condition z˚z ´ 1
4
w˚w ` 1

2
pw˚z ´ z˚wq ě 0 holds if and only if z˚w “ w˚z

and w˚w ď 4z˚z. Moreover, since w only appears as w{||w||2 we may scale w so that σ1pwq ď
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σkpzq (where z has rank k), thus the latter non-linear criterion becomes the linear criterion that

wPkerpzq “ 0. Taken together, these these criterion hold if and only if w P Hz. Thus, with

reference to the computations (1.11.41) and (1.11.42) we find that

B0 ď sup
zPCnˆr

z‰0

sup
wPHz

1

||w||22

ÿ

jPIpzq

|xzw˚ ` wz˚, AjyR|2

4xzz˚, Ajy
(1.11.104)

“ sup
zPCnˆr

z‰0

max
WPR2nk

WKVZ
||W ||2“1

W T

ˆ

ÿ

jPIpzq

FjµpẑqµpẑqTFj

µpẑqTFjµpẑq

˙

W (1.11.105)

“ sup
zPCnˆr

z‰0

λ1pT̂zq (1.11.106)

Moreover note that by setting y “ 0 in the definition ofB0 and observing that ||pxx˚q
1
2 ||2 “ ||x||2

and that xxx˚, Ajy ě 0 we obtain that

B0 ě sup
xPCnˆr

1

||x||22

m
ÿ

j“1

xxx˚, Ajy “ B (1.11.107)

Meanwhile by Cauchy-Schwartz xzw˚, Ajy ď ||A
1
2
j w||2||A

1
2
j z||2 “ xww˚, Ajy

1
2 xzz˚, Ajy

1
2 (simi-

larly for xwz˚, Ajy). Hence

B0 ď sup
zPCnˆr

z‰0

λ1pT̂zq

“ sup
zPCnˆr

z‰0

sup
wPHz

1

||w||22

ÿ

jPIpzq

|xzw˚ ` wz˚, AjyR|2

4xzz˚, Ajy

ď sup
wPHz

1

||w||22

ÿ

jPIpzq

xww˚, Ajy

ď sup
wPCnˆr

1

||w||22

m
ÿ

j“1

xww˚, AjyR “ B

(1.11.108)
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Thus B ď B0 ď supzPCnˆr

z‰0
λ1pT̂zq ď B and hence all three are equal. This concludes the proof

of piiiq and of Theorem 1.8.12.

1.11.5 Proof of Theorem 1.8.13

Proof. It is shown in Proposition 5 that the map β is injective if and only if it is lower Lipschitz,

that is if and only if a0 ą 0. This gives equivalence of piq to piiq immediately since we proved in

Theorem 1.8.5 that

a0 “ min
U1PCnˆr

U2PCnˆpn´rq

rU1|U2sPUpnq

λ2nr´r2pQrU1|U2sq (1.11.109)

Similarly, it is evident from (1.11.70) that a0 ą 0 if and only if âpzq ą 0 whenever z˚z “ Irˆr. It

is proved in Theorem 1.8.5 that âpzq “ λ2nr´r2pQ̂zq, and also that the null space of Q̂z includes

the r2 dimension Vz. Thus the frame is generalized phase retrievable if and only if the null space

Q̂z does not extend beyond Vz for any z of orthonormal columns, proving equivalence of piq to

piiiq. We prove equivalence of piiq to pivq by noting that QrU1|U2s is invertible if and only if

spanRt

»

—

—

–

τpU˚
1AjU1q

µpU˚
2AjU1q

fi

ffi

ffi

fl

u
m
j“1 “ R2nr´r2 (1.11.110)

Noting that τ´1pRr2q “ SympCrq and µ´1pR2nr´2r2q “ Cn´rˆr, thus QrU1|U2s is invertible if

and only if there exist c1, . . . , cm P R so that (1.8.39a) and (1.8.39b) are satisfied. To prove

equivalence with pvq note that (1.8.39a) and (1.8.39b) both hold if and only if for all U “ rU1|U2s
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we have

spanRtAjU1u “ tU

»

—

—

–

H

B

fi

ffi

ffi

fl

|H P SympRn
q, B P Cpn´rqˆr

u

“ tU1K|K P Crˆr, K˚
“ ´Ku

K

(1.11.111)

Finally note that while pvq trivially implies pviq it is also the case that xAjU1, U1KyR “ xU˚
1AjU1, KyR “

0 for every U1 and every K since U˚
1AjU1 is Hermitian and K is skew-Hermitian, hence it is au-

tomatically true that spanRtAjU1u Ă tU1K|K P Crˆr, K˚ “ ´KuK. Thus we also obtain pviq

implies pvq.

This concludes the proof of Theorem 1.8.13.

1.12 Numerical experiments

The main benefit of lower Lipschitz results like Theorem 1.8.1 is that they provide quan-

titative control over reconstruction error in the generalized phase retrieval problem, as opposed

to the topological result in Proposition 5 that the error is bounded whenever the matrix frame is

generalized phase retrievable (i.e. that a0 ą 0). This is only true, however, if for a given frame

one can make headway in computing the lower Lipschitz constant a0. Unfortunately (1.8.18)

yields a0 as a non-convex optimization problem, so for the time being we content ourselves with

examining the statistics of the local lower Lipschitz constants â2pzq and apzq. We also verify

numerically the result in Theorem 1.8.8 that α is not globally lower Lipschitz (i.e. that A0 “ 0)

by examining the statistics of the local lower Lipschitz constant Â2pzq.

For each experiment we use a fixed frame set of cardinality m “ 4nk ´ 4k2, noting that
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Theorem 2.1 in [9] implies that a generic frame for Cnˆk with cardinality m ě 4nk ´ 4k2 will

be generalized phase retrievable when 2k ď n. The experiment shown in Figure 1.2 supports the

result in Theorem 1.8.8 that infzPCnˆrzt0u Â2pzq “ 0 for r ą 1, thus that the α analysis map is

not globally lower Lipschitz with respect to either Dpx, yq or ||pxx˚q
1
2 ´ pyy˚q

1
2 ||2 when r ą 1.

This experiment also supports the earlier result in [23] that when r “ 1 infzPCnˆrzt0u Â2pzq ą 0.

The experiment shown in Figure 1.3 supports the result noted in the proof of Theorem 1.8.5 that

infzPCnˆrzt0u â2pzq “ 0 for r ą 1, thus that the β analysis map is not globally lower Lipschitz

with respect to dpx, yq when r ą 1. That this quantity is non-zero when r “ 1 follows from the

fact that for r “ 1 we have dpx, yq “ ||xx˚ ´ yy˚||1 (see Theorem 1.6.4). Finally, the experiment

shown in Figure 1.4 supports the result in Theorem 1.8.5 that a0 “ infzPCnˆrzt0u apzq ą 0 even

when r ą 1, thus that the β analysis map is globally lower Lipschitz with respect to ||xx˚ ´yy˚||2

whenever the frame pAjqjě1 is generalized phase retrievable. Code for all numerical experiments

can be found at github.com/cbartondock/LipschtizAnalysisofGenPR.
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Figure 1.2: In all experiments Â2pzq is computed for a fixed frame of 4nk ´ 4k2 matrices in
Cnˆk for l “ 104 samples of z having rank k. The entries of both z and the frame matrices are
sampled from a complex Gaussian with unit variance and zero mean. As can clearly be seen only
the k “ 1 case has a clear separation from zero.
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Figure 1.3: In all experiments â2pzq is computed for a fixed frame of 4nk´ 4k2 matrices in Cnˆk

for l “ 104 samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the
k “ 1 case has a clear separation from zero.
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Figure 1.4: ’ In all experiments apzq “ λ2nk´k2pQrU1|U2sq is computed for a fixed frame of
4nk ´ 4k2 matrices in Cnˆk for l “ 104 samples of U P Upnq distributed according to the
uniform Haar distribution on Upnq. U1 P Cnˆk is composed of the first k columns of U so
that QrU1|U2s P C2nk´k2ˆ2nk´k2 . The entries of the frame matrices are sampled from a complex
Gaussian with unit variance and zero mean. In this case an overlapping log-plot is also included,
in which clear separation from zero can be seen for k “ 1, . . . , 4.
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1.13 Conclusion

This paper extends known results about the stability of generalized phase retrieval to the

“impure state” case where the phase no longer comes from Up1q but instead the non-abelian

groups Uprq where r ą 1. We showed that the situation changes drastically in this case, both

because Uprq is non-abelian and because for r ą 1 a sequence in Cnˆr
˚ {Uprq with ||xn||2 “ 1 can

come arbitrarily close to dropping in rank. In particular, we showed that while the β analysis map

remains lower Lipschitz with respect to the norm induced distance on SympCnq (Theorem 1.8.5),

the α analysis map does not (Theorem 1.8.8). Our analysis relies on several Lipschitz embeddings

of Cnˆr{Uprq into the Euclidean space SympCnq (Theorem 1.6.4) and a Whitney stratification

of the positive semidefinite matrices into positive semidefinite matrices of fixed rank (Theorem

1.7.4). This investigation of the geometry of positive semidefinite matrices incidentally provided

the interesting and (to the best of our knowledge) previously unknown result that the Riemannian

geometry of the stratifying manifolds given by the Bures-Wasserstein metric is compatible with

the stratification. In particular geodesics of positive semi-definite matrices with respect to the

Bures-Wasserstein metric are rank preserving and may be approximated by geodesics of higher

rank. We note that the fact that a0 ą 0 and can be explicitly computed as in (1.8.18) suggests that

known convergent algorithms for generalized phase retrieval may be extended to the case r ą 1.

Finally, the explicit computation of the lower Lipschitz bound for the β map allowed for a novel

characterization of generalized phase retrievable frames in the impure state case r ą 1 (Theorem

1.8.13).
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Chapter 2: Chart Based Normalizing Flows1

2.1 Introduction

Generative modeling is a machine learning paradigm that aims to learn data distributions

and sample from it. If the data is drawn from a random variable x „ ppxq, then one way to do this

is to directly model ppxq via a parameterized model so that pθpxq « ppxq. Such a model can then

be used to generate new samples, which are expected to be statistically indistinguishable from the

observed samples. Moreover, generative models that learn ppxq are useful for data augmentation,

outlier detection, domain transfer [41, 42], and as priors for other downstream tasks [43–45].

Among the most successful generative models are deep latent variable models, which as-

sume that the latent factors of variation underlying the generative process of the data follow a

simple distribution, such as a Gaussian or a uniform distribution. The non-linear function trans-

forming this latent space to the data space (or vice-versa) is parameterized as a neural network

and learned using gradient descent. Depending upon their formulation, there are three broad cat-

egories of deep latent variable models - GANs [46], VAEs [47], and normalizing flows. In this

work, we focus on normalizing flows, a class of deep latent variable models introduced in [48]

that support efficient sampling, exact density estimation, and inference [49]. A normalizing flow

1In collaboration with Radu V. Balan, Sahil Sidheekh, Tushar Jain, and Maneesh Singh. This work was submitted
to the Uncertainty in Artificial Intelligence (UAI) conference. My contribution to this section was the theoretical
component of the work.
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maps the data space to a latent space through a series of diffeomorphisms (differentiable, bijec-

tive transformations with differentiable inverses). The data is assumed to follow an analytically

computable distribution in the latent space, typically a Gaussian. Since the mapping is a diffeo-

morphism, the density in the data space can be obtained using the change of variables formula.

To generate new samples using a flow, one can sample from the latent distribution and use the

inverse transformation to map them to the data space. This makes normalizing flows powerful

generative models that support exact density evaluation in contrast to GANs and VAEs.

Despite the advantages of normalizing flows over other generative models, their diffeomor-

phic requirement poses several restrictions. Firstly, a continuous bijective transformation with

continuous inverse preserves the topology of its domain. Therefore, the data space is required to

be topologically equivalent to the support of the latent distribution, typically to D dimensional

Euclidean space since the latent distribution is assumed to be a Gaussian. However, real data dis-

tributions typically differ from Euclidean space in many topological respects, such as the number

of connected components, the presence of holes, etc. A normalizing flow would thus fail to model

such data distribution accurately.

A particularly troubling consequence of the continuous invertibility of flow transformations

is that they are dimensionality preserving. However, according to the manifold hypothesis, high

dimensional real-world data living in X » RD is often supported on a d ăă D manifold of

the embedding space. To efficiently learn such distributions using flows, one needs to design

expressive transformations that can map from a d dimensional latent space to a theD dimensional

data space without making learning intractable. Recent work using stochastically invertible tall

matrices [50] and dimension raising conformal embeddings [1] have paved the way in designing

such transformations, however in both works expressivity is limited by the fact that the dimension
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(a) Real Data (b) Classic Flow (c) VQ-Flow

Figure 2.1: Augmentation of our framework (c) enables a classic flow (b) to better model the
discontinuities in the data manifold through a learned atlas of charts(shaded region).

changing operations are restricted to be linear (in [50]) or made up of Möbius transformations

(in [1]).

In this work, we propose to address the above limitations by parameterizing a family of

normalizing flows to compose an atlas of charts over the data manifold. As the topology of the

data manifold is expected to be “locally” equivalent to Euclidean space, a local normalizing flow

should be able to model the local distribution over a chart region effectively. Further, by learning

a mixture of flows over well-chosen charts, our approach compensates naturally for the limited

expressiveness of existing flows. We summarize the main contributions of this work below:

• We provide an understanding of the limited expressive power of existing flow-based models

in modeling data distributions over complex topological spaces.

• We present a statistical framework for defining an expressive mixture of local normalizing

flows that is flexible and generic enough to be used with existing approaches. We show

that this framework allows for efficient sampling, inference of latent variables, and exact

density evaluation while improving expressivity.
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• We validate experimentally that the proposed approach improves flows for density estima-

tion and sample generation, and is thus able to resolve many of the topological restrictions

on expressivity imposed by using global diffeomorphisms.

2.2 Global Normalizing Flows

Given data txnuNn“1 Ă X » RD distributed according to an unknown distribution ppxq, a

normalizing flow maps it through a diffeomorphism f : X Ñ Z to a latent space Z » RD such

that z “ fpxq is simply distributed, for example z „ qpzq where q “ Np0, Iq. Recall that a

diffeomorphism is a differentiable map that is bijective and whose inverse is also differentiable.

Typically one denotes by g the inverse of f and paramaterizes the normalizing flow as x “ gθpzq,

where θ is the vector of learnable model parameters. The process of going from the latent space

to data space is called generation or sampling and is accomplished by the function gθ, while the

inverse procedure is termed inference and is accomplished by fθ “ g´1
θ :

fθ : X Ñ Z

x ÞÑ fθpxq
loooomoooon

Inference

gθ : Z Ñ X

z ÞÑ gθpzq
loooomoooon

Sampling

(2.2.1)

The approximation pθpxq to the true probability density ppxq is then obtained from qpzq through

the change of variables formula as:

pθpxq “ qpfθpxqq| detrJfθpxqs| (2.2.2)
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As compositions of diffeomorphisms are also diffeomorphisms, one can design expressive flows

by composing individual transformations that have simple to compute inverses and Jacobian de-

terminants. Suppressing the vector of model parameters θ, we will use the notation fpxq “

f 1 ˝ ¨ ¨ ¨ ˝ fLpxq where f 1, . . . , fL are assumed to have easily computable Jacobian determi-

nants and inverses. Define recursively xl´1 “ f lpxlq, 1 ď l ď L, with xL “ x. Note that

xl “ f l`1 ˝ ¨ ¨ ¨ ˝ fLpxq and x0 “ fpxq. One can then write the log-likelihood as:

log ppxq “ log qpzq ` log
L

ź

l“1

| detrJf l
pxlqs|

“ log qpfpxqq `

L
ÿ

l“1

log | detrJf l
pxlqs|

(2.2.3)

A given layer f l of the normalizing flow will depend only on a subset θl of the parameters of

θ :“ pθ1, . . . , θLq. Temporarily adding back in the θ dependence of fθ, maximum likelihood

estimation of θ then yields the following optimization problem:

θ˚
“ min

θ“pθ1,...,θLq

1

N

N
ÿ

n“1

´ log pθpxnq

“ min
θ“pθ1,...,θLq

1

N

N
ÿ

n“1

"

´ log qpfθpxnqq

´

L
ÿ

l“1

log | detrJf l
θl

pxlnqs|

*

(2.2.4)

2.3 Related Work

Normalizing flows have come a long way since it was introduced in [49, 51], with much

efforts focused on expanding their scalability and applicability. This has resulted in several dif-

ferent formulations [52–55], each with a multitude of proposed architectures [56–61], aimed at
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defining expressive yet analytically invertible flow transformations with efficiently computable

jacobian determinants. However, as these approaches define invertible transformations in Eu-

clidean space, they are dimensionality preserving and less suited for modeling distributions over

lower dimensional manifolds [62, 63]. Subsequent works have tried to address this challenge

by building injective flows [50, 64–68]. However, they trade off the benefits of dimensionality

change to intractable density estimation or stochastic inverses. The work by [1] overcomes the

above limitations using conformal embeddings, but has limited expressive power, as we show in

this work. One way to improve the expressivity of all the above approaches, and enable them

to overcome topological constraints [69], is to relax their global diffeomorphic requirement by

defining a mixture of flows. Prior works in this direction have looked at infinite mixtures by

defining flows in a lifted space [70] or by using continuous indexing [71]. However, their added

expressivity comes at the cost of tractable density computation, and one has to rely on varia-

tional approximations to train the model. On similar lines with this work, [72] proposes to use

a finite mixture of flows through piecewise-invertible transformations over partitions of the data

space by introducing both real and discrete valued latent variables in the flow. However, this

formulation introduces discontinuities in the model density that leads to unstable training [71],

necessitating the enforcement of boundary conditions through ad-hoc architectural changes. It is

therefore limited in its generalizability to novel flow formulations. Our work, on the other hand,

by decoupling the partition learning from the flow training, introduces a more generic and scal-

able framework that can aid existing flows to overcome topological constraints and learn complex

data distributions efficiently.
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2.4 Local Normalizing Flows

A traditional normalizing flow provides a global diffeomorphism between the latent space

Z and the data space X » RD, and as such requires the latent space to have the same dimension

as the data space. This can lead to numerical instability when the data is supported on a d ă D

dimensional manifold M Ă X because the learned transformation will tend to become “less and

less injective” as it seeks to restrict its range to M [62, 63].

One way to overcome this challenge is to build transformations that map across dimen-

sions while preserving invertibility on its image. Unfortunately, the natural approach of post-

composing a d dimensional bijective normalizing flow g : Z Ñ U with a dimension-raising

embedding e : U Ñ X leads in general to an intractable likelihood since the determinant in the

change of variables formula ppxq “ qpfpxqq|DetrJgJ
T
e JeJgs|´ 1

2 no longer separates into a prod-

uct of simpler determinants. We will focus on the solution to this issue developed in [1], namely

to post-compose the d dimensional bijective normalizing flow g : Z Ñ U with a dimension

raising conformal embedding c : U Ñ X . An alternative solution developed in [50] is to use a

linear dimension raising embedding and invert it stochastically, but this approach relies on the

dimension change operation being linear which is restrictive. The approach taken in [1] hinges

on the fact that for every u P U the Jacobian Jcpuq satisfies JcpuqTJcpuq “ λpuq2I for λ : U Ñ R,

thus

detrJT
c˝gJc˝gs

1
2 “ detrJT

g J
T
c JcJgs

1
2

“ |λpuq| detrJT
g Jgs

1
2

“ |λpuq|| detrJgs|

(2.4.1)
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This splitting keeps the likelihood computation tractable, but the requirement that M be the

range of a conformal embedding is artificially restrictive. This issue is exacerbated by the ne-

cessity of parameterizing c. As noted in [1] the easiest way to do so is to let c “ cJ ˝ ¨ ¨ ¨ ˝ c1

where each cj is either a trivially conformal zero padding operation or a dimension preserv-

ing conformal transformation. A dimension preserving conformal transformation f : Rd Ñ Rd

with d ą 2 is restricted by Liouville’s theorem to be a Möbius transformation, of the form

fpxq “ pA, a, b, α, ϵqpxq “ b ` αpAx ´ aq{||Ax ´ a||ϵ where A P Opdq is an orthogonal matrix,

α P R, a, b P Rd, and ϵ is either 0 or 2. Though it might initially appear that the composi-

tion of many such operations would give increased expressive power, the group structure of the

Möbius transformations prevents this. Indeed, if ps : Rd Ñ Rd`s is the zero padding operation,

m1 “ pA1, a1, b1, α1, ϵ1q is a d dimensional Möbius transformation and m2 “ pA2, a2, b2, α2, ϵ2q

is a d ` s dimensional Möbius transformation then it is easily verified that for x P Rd

m2 ˝ ps ˝ m1pxq “ pm2 ¨ m̃1qppspxqq (2.4.2)

Where m̃1 is the d ` s dimensional Möbius transformation

m̃1 “ p

»

—

—

–

A1 0

0 Imˆm

fi

ffi

ffi

fl

, pspa1q, pspb1q, α1, ϵ1q (2.4.3)

Thus, this parametrization yields c as a Möbius transformation of RD composed with pD´d. Prac-

tically speaking, if c is parameterized as above, the assumption that M is the image of a global

conformal embedding severely limits expressiveness. The class of global conformal embeddings

is not subject to Liouville’s theorem and is far richer than the set of Möbius transformations, but
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it is hard to parameterize.

2.4.1 Motivation: Geometry of conformally flat manifolds

A weaker and more natural assumption than M being the image of a conformal embedding

is that M is locally conformally flat. Recall that if f : pN , η1q Ñ pM, η2q is a map between

differentiable manifolds N and M with metrics η1 : N ˆ TN ˆ TN and η2 : Mˆ TMˆ TM

respectively then the pullback f˚η2 of the metric η2 through f is defined via:

f˚η2 : N ˆ TN ˆ TN Ñ R

f˚η2py, v, wq “ η2pfpyq, Dfpyqpvq, Dfpyqpwqq

(2.4.4)

With this in mind a d dimensional manifold M is called locally conformally flat if η1 “
řd

i“1 dy
2
i

is the flat metric and for any x P M there is a neighborhood U Q x, an open set O Ă Rd,

a diffeomorphism f : O Ñ U , and a differentiable scalar function λ : O Ñ R such that

f˚η2py, ¨, ¨q “ λpyqη1p¨, ¨q for all y P O [73]. An alternate definition replaces Rd with a flat mani-

fold (defined as having an identically vanishing Riemannian curvature tensor), but this definition

is equivalent to the above since any d dimensional flat manifold is locally isometric to Rd (not

globally isometric, for example tori are flat when equipped with appropriate coordinates) [37]. In

our case the metric η2 is assumed to be inherited from the Euclidean metric on X » RD.

The notion of local conformal flatness provides far more flexibility than its global coun-

terpart. It is well known, for example, that every 2 dimensional Riemannian manifold is locally

conformally flat, but even the sphere S2pRq is not globally conformally flat (by contrast an explicit

local conformal equivalence of SdpRq to Rd is given by stereographic projection from the north
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and south poles) [37]. In general, criteria are known for a Riemannian manifold of dimension

d ą 2 to be locally conformally flat: For d “ 3 a pseudo-Riemanian manifold is locally confor-

mally flat if and only if the Cotton tensor vanishes everywhere, for d ě 4 a pseudo-Riemannian

manifold is locally conformally flat if and only if the Weyl tensor vanishes everywhere [37].

The question of which manifolds are globally conformally flat is more difficult, and in applied

problems this requirement is artificially restrictive.

2.4.2 A chart based probability model

We thus propose to break up the data manifold X into an atlas of overlapping charts

U1, . . . , UK such that given x P X there exists a neighborhood Uk Q x that may be written as

Uk “ ckpUq where ck is a conformal dimension raising map. Because chart regions may in gen-

eral overlap, we propose to choose between them probabilistically. In other words we introduce a

discrete random variable k taking values in t1, . . . , Ku that labels the chart regions and condition

the normalizing flow on this quantization of the data space.

Given a collection of charts U1, . . . , UK that cover the data manifold M on which ppxq

is supported, we model ppxq via a latent random variable z that takes values in Z and a “chart

picking” random variable k that takes values in t1, . . . , Ku. For k “ 1, . . . , K let gk : Z Ñ Uk

be a diffeomorphism with inverse fk : Uk Ñ Z . Then let the joint distribution of x, z, and k be:

ppx, z, kq “ δpx ´ gkpzqqqpzqpk (2.4.5)

where q “ Np0, Iq or q “ 1
volpB1p0qq

1B1p0q and pk is the normalized frequency with which x occurs
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in Uk, that is:

pk :“
ppx P Ukq

řK
j“1 ppx P Ujq

“

ş

Uk
ppxqdx

řK
j“1

ş

Uj
ppxqdx

(2.4.6)

One may then compute the joint distribution of x and k as

ppx, kq “

ż

Z
ppx, z, kqdz

“ pk

ż

Z
δpx ´ gkpzqqqpzqdz

“ pk1Uk
pxq

ż

Z
δpz ´ fkpxqq| detrJgkpzqs|

´1qpzqdz

“ pk1Uk
pxq| detrJgkpfkpxqqs|

´1qpfkpxqq

“ pk1Uk
pxq| detrJfkpxqs|qpfkpxqq

(2.4.7)

It is readily verified that ppzq “ qpzq and ppkq “ pk, in particular:

ppzq “

K
ÿ

k“1

ż

X
ppx, z, kqdx

“

K
ÿ

k“1

pk

ż

X
δpx ´ gkpzqqqpzqdx

“ qpzq

K
ÿ

k“1

pk “ qpzq

(2.4.8)
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and

ppkq “

ż

X

ppx, kqdx

“ pk

ż

X

1Uk
pxq| detrJfkpxqs|qpfkpxqqdx

“ pk

ż

Uk

| detrJfkpxqs|qpfkpxqqdx

“ pk

ż

Z
qpzqdz “ pk

(2.4.9)

Taken together, (2.4.8) and (2.4.9) yield that z and k are independent random variables since

ppz, kq “

ż

X
ppx, z, kqdx “ pkqpzq “ ppkqppzq (2.4.10)

Moreover simply dividing (2.4.7) by ppkq “ pk we conclude that the distribution of x conditioned

on a particular chart is given by

ppx|kq “ 1Uk
pxq| detrJfkpxqs|qpfkpxqq (2.4.11)

In particular, ppx|kq is zero unless x P Uk. The density ppxq is then given by

ppxq “

M
ÿ

k“1

ppx|kqppkq

“
ÿ

k:xPUk

pk| detrJfkpxqs|qpfkpxqq

(2.4.12)
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Learned Quantized Centers

Figure 2.2: Learning quantized centers on the low dimensional data manifold using a vector
quantized auto-encoder.

Meanwhile ppk|xq is given by the Bayes’ formula as

ppk|xq “
ppx|kqppkq

řK
j“1 ppx|jqppjq

“
pk1Uk

pxq| detrJfkpxqs|qpfkpxqq
ř

j:xPUj
pj| detrJfjpxqs|qpfjpxqq

(2.4.13)

The distribution ppk|xq is thus also zero unless x P Uk, a fact that will be employed during

inference.

Practically speaking, it remains to learn a “good” collection of charts U1, . . . , UK , estimate

p1, . . . , pK , and then to parameterize g1, . . . , gK via normalizing flows gθ1, . . . , g
θ
K and obtain a

maximum likelihood estimate for θ by optimizing ´ log pθpxq (where pθpxq is as in (2.4.12)),

which we elaborate below.

1. We learn the charts U1, . . . , UK via a vector-quantized auto encoder (VQ-AE) [74], as

it provides an effective and scalable mechanism to learn quantized centers on lower dimensional
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manifolds. The VQ-AE learns an encoder map E : X Ñ V , a decoder map D : V Ñ X , and a

collection of “encoded chart centers” Q “ tvkuKk“1 Ă V that minimize the reconstruction error

LpDpargminvPQ ||v´Epxq||2q, xq. Once D, E, and Q are learned we compute dkpxq “ ||Epxq´

vk||2 for k “ 1, . . . K. With d1pxq, . . . dkpxq in hand it remains to compute our charts. We would

like the charts to overlap, but we also want them to be sparse in the sense that no individual x has

too many relevant charts. One possible choice is to fix m P t1, . . . , Ku and let d̃1 ď ¨ ¨ ¨ ď d̃K

be the sorted permutation of d1, . . . , dK then define Uk “ tx : ||Epxq ´ vk||2 ď d̃mpxqu, so

that every point x has at least m charts associated to it (those whose encoded chart centers are

among the m closest to Epxq). With this choice, a point x will have exactly m associated charts

so long as the mth closest chart center is unique. Another choice would be to fix ϵ ą 0 and let

Uk “ tx : ||EpXq ´ vk||2 ă p1 ` ϵqd̃mpxq} (increasing ϵ enlarges each chart). For now we leave

m and ϵ as hyper-parameters, and in general denote mpxq “ |tk : x P Uku| (one always has

mpxq ě m). Note that checking if x P Uk amounts to computing Epxq and d̃1pxq, . . . , d̃Kpxq and

verifying that ||Epxq ´ vk||2 ă p1 ` ϵqd̃mpxq.

2. Once U1, . . . , UK are fixed note that if rk :“ ppx P Ukq,

rk “ Ex„ppxqr1Uk
pxqs (2.4.14)

The density ppxq is unknown at this point, but we may estimate rk using the empirical dis-

tribution ρpxq “ 1
N

řN
n“1 δpx ´ xnq so that rk « Ex„ρpxqr1Uk

pxqs. Practically speaking we

thus perform a second pass over the training data and update r1, . . . , rK (initialized as zero) via

r
pnq

k “ n´1
n
r

pn´1q

k ` 1
n
1Uk

pxnq, 1 ď n ď N , finally setting rk “ r
pNq

k and pk “ rk{
řK

j“1 rj .

3. Once U1, . . . , UK and p1, . . . , pK are obtained we model gk : Z Ñ Uk as an L lay-
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Figure 2.3: Learning the data distribution using a family of normalizing flows conditioned on the
quantized centers.

ered invertible conditional normalizing flow. Where dimensionality change is required, we post-

compose it with a conformal dimension raising map so that gk “ ck ˝ gLk ˝ ¨ ¨ ¨ ˝ g1k. We write the

left inverse of gk via fk “ f 1
k ˝ ¨ ¨ ¨ ˝ fL

k ˝ c:

k where f l
k “ pglkq´1 and c:

k denotes the left inverse

of the conformal map c obtained by removing the zero padding and inverting the various Möbius

transformations composing ck. In practice, we reduce the number of parameters of our model by

restricting each glk (and f l
k) to depend on k only through the value of the encoded chart center vk.

With this parametrization of f1, . . . , fK in hand (2.4.11) becomes

ppx|kq “ 1Uk
pxqqpfkpxqq|λkpc:

kpxqq|
´1

L
ź

l“1

| detrJf l
kpf l`1

k ˝ ¨ ¨ ¨ ˝ fL
k pxqqs|

(2.4.15)

where λkpuq is defined via pJckpuqqT pJckpuqq “ λkpuq2I.

As we’ll see this approach allows for far higher expressive power than global conformal

flows without sacrificing the ability to generate realistic samples, perform inference, or compute
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exact densities. Indeed we may rewrite (2.4.12) via

ppxq “
ÿ

k:xPUk

ppx|kqppkq

“ Ek„p̃xpkqrppx|kqs
ÿ

j:xPUj

ppjq

loooomoooon

piecewise constant

(2.4.16)

Where p̃xpkq “ ppk|ppx|kq ą 0q “ ppkq{
ř

j:xPUj
ppjq. Thus, during training of the conditional

normalizing flow we may replace the expectation Ek„p̃pkqrppx|kqs with the stochastic quantity

ppx|kq, k „ p̃pkq, performing only a single gradient descent pass per data-point as opposed

to mpxq passes. If the exact likelihood is needed, however, it can be computed at the cost of

evaluating the normalizing flow and its Jacobian mpxq times:

ppxq “
ÿ

k:xPUk

ppx|kqppkq

“
ÿ

k:xPUk

pkqpfkpxqq|λkpc:

kpxqq|
´1

L
ź

l“1

| detrJf l
kpf l`1

k ˝ ¨ ¨ ¨ ˝ fL
k pxqqs|

(2.4.17)

Since z and k are independent, one can perform the sampling task via first sampling z „

qpzq and k „ ppkq and then computing a single forward pass of the normalizing flow chosen by

k to obtain x “ gkpzq.

The inference task is complicated slightly by the fact that z is no longer wholly determined

given x, but instead takes values pfkpxqqk:xPUk
with corresponding probabilities pppk|xqqk:xPUk

.

One could perform a stochastic inference via sampling k „ ppk|xq and computing z “ fkpxq (this

amounts to choosing among the relevant charts for x), however if deterministic inference is pre-
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ferred then of course one may always compute the expected value of z as z “ Ek„ppk|xqrfkpxqs “

ř

k:xPUk
ppk|xqfkpxq or the most probable value of z as z “ fspxq where s “ argmaxk:xPUk

ppk|xq.

2.4.3 Hard-boundary or deterministic approximation

A particularly simple special case of the above model is the case m “ 1 and ϵ “ 0, in

which only a single chart is associated to a given x. This case reduces our atlas of overlapping

charts to a disjoint partition of the data manifold M. In this case Uk is exactly the subset of X

for whom Epxq is closest to the encoded chart center vk, and thus with the exception of x lying

on the chart boundaries, the random variable k can be treated as a deterministic function of the

random variable x, namely kpxq “ argmink“1,...,K ||Epxq ´ vk||2 “
řK

k“1 k1Uk
pxq. Sampling

in the hard-boundary case is identical to sampling in the soft-boundary case: generate samples

for x by first sampling z „ qpzq and k „ ppkq and then computing x “ gkpzq. Inference in the

hard-boundary case is unambiguous since

Ek„ppk|xqrfkpxqs “ fspxq

s “ argmax
k“1,...,K

ppk|xq “ argmin
k“1,...,K

||Epxq ´ vk||2

(2.4.18)

That is to say that one performs inference by first identifying which region Rs contains x and

then computing z “ fspxq. The most significant simplification in the hard-boundary case from a
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Model Spherical Helix Lissajous Twisted-Eight Knotted Interlocked-Circles

Real NVP 3.15 ˘ 0.07 -3.37 ˘ 0.16 2.42 ˘ 0.07 0.94 ˘ 0.15 -2.17 ˘ 0.14 0.95 ˘ 0.13
VQ-RealNVP 3.55 ˘ 0.04 -1.66 ˘ 0.08 3.04 ˘ 0.15 2.29 ˘ 0.14 0.39 ˘ 0.18 2.42 ˘ 0.25

MAF 4.38 ˘ 0.10 -2.90 ˘ 0.02 2.50 ˘ 0.12 1.34 ˘ 0.22 -1.02 ˘ 0.14 1.07 ˘ 0.07
VQ-MAF 4.43 ˘ 0.14 -0.49 ˘ 0.03 3.48 ˘ 0.16 2.01 ˘ 0.10 0.62 ˘ 0.16 2.29 ˘ 0.18

CEF 0.91 ˘ 0.07 -3.71 ˘ 0.09 0.42 ˘ 0.15 -0.38 ˘ 0.21 -2.48 ˘ 0.26 -0.72 ˘ 0.11
VQ-CEF 0.98 ˘ 0.11 -2.90 ˘ 0.17 1.65 ˘ 0.14 -0.32 ˘ 0.19 -1.93 ˘ 0.17 1.24 ˘ 0.15

Table 2.1: Quantitative evaluation of Density Estimation in terms of the test log-likelihood in
nats (higher the better) on the 3D datasets. The values are averaged across 5 independent trials,
˘ represents the 95% confidence interval.

computational standpoint comes in computing the likelihood ppxq, since if x P Uk then

ppxq “ ppx, kq “ ppx|kqppkq

“ ppkqqpfkpxqq|λkpc:

kpxqq|
´1

L
ź

l“1

| detrJf l
kpf l`1

k ˝ ¨ ¨ ¨ ˝ fL
k pxqqs|

(2.4.19)

Thus only one normalizing flow needs to be evaluated to compute the exact likelihood ppxq (as

opposed to mpxq of them) and the normalizing flows may be trained using the exact likelihood

as opposed to an unbiased estimator for it.

2.5 Experiments

To experimentally validate the efficacy of the proposed framework, we consider six 3-

dimensional data distributions over manifolds of varying complexity as shown in Figure 2.4.

Each dataset consists of 10, 000 datapoints, 5, 000 of which we use for training and 2, 500 each for

validation and testing. We train three different normalizing flows - RealNVP [51], Masked Au-
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(a) Spherical (b) Helix (c) Lissajous (d) Twisted-
Eight

(e) Knotted (f) Interlocked-
Circles

Figure 2.4: Qualitative visualization of the samples generated by a classical flow - RealNVP
(Middle Row) and its VQ-counterpart (Bottom Row) trained on Toy 3D data distributions (Top
Row).

toregressive Flows (MAF) [56] and Conformal Embedding Flows (CEF) [1] over these datasets

with and without the augmentation of our framework. We refer to a base flow augmented with

the vector quantized conditioning as VQ-flow. We define each model using 5 flow transforma-

tions and train them for 100 epochs using an Adam optimizer, early stopping if the validation

performance does not improve over 10 epochs. For CEF, we use a 2-dimensional RealNVP as

the base flow, which is then raised to the 3-dimensional space using the conformal embedding.

We parameterize the VQ-AE using feedforward neural networks and use a latent dimension of

2 with k “ 32, to learn the partitioning of the data manifold. To define the conditional nor-

malizing flow, we use the parameterization given in [75]. We evaluate the models for density

estimation and sample generation. We follow the same hyperparameters for a base flow and its

VQ-counterpart without any tuning and report the performance averaged over 5 independent tri-
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Model Spherical Helix Lissajous Twisted-Eight Knotted Interlocked-Circles

Real NVP 0.50 ˘ 0.07 -57.46 ˘ 2.11 0.18 ˘ 0.14 -2.72 ˘ 0.90 -8.65 ˘ 0.87 -2.18 ˘ 0.37
VQ-RealNVP 0.99 ˘ 0.14 -3.85 ˘ 0.98 0.59 ˘ 0.08 0.18 ˘ 0.17 -1.44 ˘ 0.37 -0.11 ˘ 0.12

MAF 0.65 ˘ 0.26 -92.83 ˘ 5.69 0.12 ˘ 0.16 -2.77 ˘ 0.81 -7.04 ˘ 0.49 -2.49 ˘ 0.14
VQ-MAF 1.01 ˘ 0.07 -4.62 ˘ 0.37 0.59 ˘ 0.07 -0.32˘ 0.13 -2.44 ˘ 0.11 -0.15 ˘ 0.08

CEF -1.17 ˘ 0.06 -29.90 ˘ 2.12 0.38 ˘ 0.14 -4.03 ˘ 0.38 -19.40 ˘ 1.80 -3.42 ˘ 0.49
VQ-CEF 0.80 ˘ 3.42 -20.75 ˘ 2.22 0.49 ˘ 0.03 -3.51 ˘ 0.73 -14.44 ˘ 1.57 -3.23 ˘ 0.19

Table 2.2: Quantitative evaluation of Sample Generation in terms of the log-likelihood of gen-
erated sampes in nats (higher the better) on the 3D datasets. The values are averaged across 5
independent trials, ˘ represents the 95% confidence interval.

als. We defer further details on data generation, implementation as well as results on additional

3D data distributions to the supplementary material.

2.5.1 Density Estimation

The ability to compute exact likelihood is one of the critical features of a normalizing flow

that makes it a potential tool in solving inverse problems. Improving the expressive power of

flows can thus enhance their utility as priors by better modeling the data density. Thus, we first

evaluate the proposed framework’s ability to enhance the expressivity of flows to perform better

density estimation. Table 2.1 compares the log-likelihood (in nats) achieved by different flow

models with and without the VQ-augmentation on a held-out test set. A higher value indicates a

better learned density. We observe that VQ-flows are able to achieve higher test log-likelihoods

than their non-VQ-counterparts consistently across the considered data distributions. Thus, our

framework enables better density estimation for normalizing flows over complex manifolds.
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(a) Sample Generation (b) Density Estimation (c) Upon further training

Figure 2.5: Ablation Study on the effect of the partitioning method and the number of partitions
k on sample generation (a) and density estimation (b). (c)-The learning trajectory of the flow for
a fixed k(=32), in terms of validation log-likelihood. The shaded region represents the standard
deviation over 3 independent trials.

2.5.2 Sample Generation

The other key desiderata of an expressive generative model is its ability to generate high

fidelity samples from the data distribution. Figure 2.4 depicts the qualitative visualizations of the

samples generated by a RealNVP flow trained on the 3D data distributions with and without the

VQ augmentation. We observe that while the classical flow is able to generate samples from the

data manifold, it also generates data points off the manifold, resulting in a poorer fit to the real

data distribution. This is, in fact, expected due to the expressivity restrictions imposed on its being

a global diffeomorphism. On the other hand, VQ-flows are able to overcome these restrictions,

better approximate the real data distribution, and generate samples from the data manifold. To

further quantitatively establish the efficacy of our framework in improving sample generation,

we evaluate the log-likelihood of the generated samples using a kernel density estimator fitted

on the training data. We use a gaussian kernel, with an optimal bandwidth obtained through

cross-validation for each data distribution. We observe (Table 2.2) that VQ-flows, owing to their
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ability to model the topology of the data manifold better, significantly outperform their non-VQ

counterparts on sample generation.

2.5.3 Ablation Study

Parameterizing the partitioning function using a VQ-AE is a design choice that we make.

Further, the no. of partitions k to consider over the data manifold is a critical hyperparameter un-

derlying the proposed framework. Thus, we conduct ablation experiments to study the sensitivity

of the local normalizing flow on k and the partitioning method. We consider k-means clustering

as an alternative design choice for the partitioning function. We train a RealNVP flow over the

HELIX data distribution using k-means and VQ-AE, across increasing values of k. We plot the

validation log-likelihood post training for 25 epochs as a function of k in Figure 2.5. We observe

that VQ-AE results in better performance of the flow consistently across k, over k-means. Fur-

ther, the choice of k beyond a threshold does not have any significant effect on the model, hence

it is sufficient to fix it to a large enough value.

2.6 Future Work & Conclusion

Our framework is particularly well suited to high dimensional datasets (such as natural

images) that obey the manifold hypothesis, an avenue we hope to explore in the sequel. One of

the practical issues we encountered with our approach is that training gk only on samples from

Uk does not always restrict the learned ppx|kq to be supported only on Uk. In such cases, the

sum over k such that x P Uk in (2.4.17) yields an underestimate for ppxq, and the total sum

k “ 1, . . . , K must be used instead during testing. In the future, we hope to address this issue by

explicitly discouraging the generation of samples outside Uk.
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To summarize, motivated by differential and conformal geometry, we have developed a

novel probabilistic framework for “local” flows. We have demonstrated experimentally on toy

data distributions with various topological features that this framework outperforms global flows

- both dimension preserving (bijective flows) and dimension raising (embedding flows). Our

framework is agnostic to the type of flow transformation employed and retains the key feature

of normalizing flows: exact density evaluation. As such, we argue that using local flows as

probabilistic chart maps over the data manifold is a natural way to overcome limited expressivity

in the presence of dimension change or other topological impediments.
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Chapter 3: Higher Order Fourier Transforms1

3.1 Introduction

Given a measurable space pX , σX , µq and 1 ď p ă 8 denote by LppX , dµq the set of

measurable functions modulo equivalence almost everywhere (with respect to measure µ) f :

X Ñ C such that

||f ||Lp
X
:“

ˆ
ż

X
|fpxq|

pdµpxq

˙
1
p

ă 8 (3.1.1)

When there is no confusion about the ambient measure space we will simply write ||f ||Lp
X

as

||f ||p. Given an exponent p P p1,8q the dual exponent p1 is defined so that 1
p

` 1
p1 “ 1, so that

the dual of LppX , dµq can be identified with Lp1

pX , µq. As usual denote by L8pX , dµq the set of

measurable functions such that ||f ||8 “ essupxPX |fpxq| ă 8 and define p1 “ 1 when p “ 8 (we

caution that in this case it is not true that LppX , dµq˚ “ Lp1

pX , dµq). Given a second measure

space pY , σY , νq define the mixed space Lp
xL

q
ypX ˆ Y , dµdνq as the set of measurable functions

modulo equivalence almost everywhere (with respect to the product measure) f : X ˆ Y Ñ C

1In collaboration with Radu V. Balan and Yonina C. Eldar.
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such that

||f ||p,q :“

ˆ
ż

X

ˆ
ż

Y
|fpx, yq|

qdµpxq

˙
p
q

dνpyq

˙
1
p

ă 8 (3.1.2)

Denote by F the Fourier transform on L2pRn, dxq:

F : L2
pRn, dxq Ñ L2

pRn, dxq

Frf spkq “

ż

Rn

e´2πixk,xyfpxqdx

(3.1.3)

With these definitions in mind, define the Chirp Fourier Transform (CFT) via

T : L2
pRn, dxq Ñ L8

AL
2
bpSympRn

q ˆ Rn, dAdbq

T rf spA, bq “ Fre´2πix¨,A¨yf spbq “

ż

Rn

e´2πipxx,Axy`xb,xyqfpxqdx

(3.1.4)

This definition concurs with that in [76] when n “ 1. The transform in [76] is not studied directly

but is instead employed for the purpose of chirp rate estimation to obtain good chirp parameters

to be used in the chirplet transform [77] [78]. The transform thus given is invertible since for any

fixed A and almost every x P Rn

fpxq “ e2πixx,AxyF´1
rT rf spA, ¨qspxq (3.1.5)

Note further that it is indeed true that for f P L2pRnq we have ||Tf ||L8
AL2

b
ă 8, since for A fixed

Parseval gives

||T rf spA, ¨q||L2
b

“ ||e´2πix¨,A¨yf ||2 “ ||f ||2 (3.1.6)
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. As we will see, this transform arises naturally in nuclear magnetic resonance imaging when

multiple frequency gradients are used, as well as in connection to an interesting symmetric matrix

variant of the free Schrödinger equation. In the context of matrix Schrödinger, it will often be

more natural to work with

T̃ :“ T ˝ F´1 (3.1.7)

Also of interest for applications will be the discrete variant of the above transform. If

Zd :“ Z{dZ then define

TD : l2pZn
dq Ñ l2pSympZn

dq ˆ Zn
dq

TDrA, bs :“ d´n
2

ÿ

jPZn
d

zrjse´2πipxj,Ajy`xb,jyq{d
(3.1.8)

When n “ 1 can be TD may be written as

TD : Cd
Ñ Cdˆd

TDzrk, ls “ d´ 1
2

d´1
ÿ

j“0

zrjse´2πipkj2`ljq{d

(3.1.9)

The discrete CFT above is introduced in the case n “ 1 in [79] in the context of chirp rate

estimation. As noted in [79] and in complete analogy with the continuous case, for fixed A P

SympZn
dq the discrete CFT is precisely the multidimensional discrete fourier transform of the
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signal pe´2πixj,Ajy{dzrjsqjPZn
d
, and as such is invertible via

zrjs “ d´n
2 e2πixj,Ajy{d

ÿ

bPZn
d

ZrA, bse2πixb,jy{d (3.1.10)

For any A P SympZn
dq. As in the continuous case the discrete CFT is thus highly redundant.

3.2 Application: Nuclear Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) works by first aligning the spins of atomic nuclei with

a strong external magnetic field Bext, then hitting the nuclei with a weaker perpendicular radio-

frequency (RF) oscillating magnetic field, then finally measuring the voltage induced by the

precession of the nuclear spins caused by the RF field to infer the distribution of various elements

in the body [80]. A variety of nuclei may be targeted by MRI, but for the sake of example

we may consider commonly targeted spin 1{2 nuclei such as 1H . In this case (fixing any axis of

measurement) the two available magnetic quantum numbers (the component of the spin magnetic

moment along the measurement axis) m “ 1
2

and m “ ´1
2

have equal energy in the absence of

an external magnetic field, and so will be approximately equally common. Once the field Bext is

switched on, however, the energy associated to a magnetic moment µ becomes E “ ´Bext ¨ µ “

B0µz where we have taken (without loss of generality) Bext “ B0ez to be along the z axis. Here

µz “ γmℏ where γ is the gyromagnetic ratio and ℏ the reduced Planck’s constant. Thus there

is now an energy difference between the m “ 1
2

(aligned) and m “ ´1
2

(anti-aligned) states of

∆E “ γℏH , thus the nuclear magnetic moments will thermally align with the external magnetic

field in proportion to the strength of the applied field, eventually resulting in an overall parallel

net magnetization of the nuclei [80].
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The energy difference ∆E “ γℏB0 also induces a characteristic Larmor frequency of

precession of the spin magnetic moments around the z axis ω0 “ ∆E{ℏ “ γB0 (for typical

field strengths this ω0 is a radio frequency [81]). This precession occurs on much smaller time-

scales than the thermal alignment, and as such can be assumed to have ceased by the time the

spins have aligned with the applied field. The intrinsic precession frequency can, however, be

exploited via the application of a transverse field (perpendicular toBext) oscillating at the Larmor

frequency: BRF “ B1 cospω0tqex (in reality of course, BRF is applied as a pulse and is thus

not monochromatic but supported over a thin band of frequencies). In this case, solving the

Schrodinger equation induced by the Hamiltonian Ĥ “ B ¨µ “ γpB0Ŝz `B1 cospω0tqŜxq yields

the wave function

|ψptqy “ cosp
ω1t

2
q|0y ` eipω0`πq sinp

ω1t

2
q|1y (3.2.1)

Where ω1 “
γ
2
B1, |0y is the low energy (aligned) magnetization, and |1y is the high energy

(anti-aligned) magnetization (see [82]). This fully describes the dynamics on the Bloch sphere,

geometrically (in physical space) (3.2.1) yields that the magnetic moment now has a transverse

component and is precessing about the z axis at the Larmor frequency ω0, and that the polar angle

of this precession is also oscillating (more slowly) with frequency ω1 (incidentally, the reason it

is oscillating with ω1 and not ω1

2
is precisely the so-called “Dirac belt-trick,” in which two full

polar rotations on the Bloch sphere are equivalent to a single rotation in physical space). The

probability of measuring the nuclear spin to be aligned (or anti-aligned) thus varies proportionally

to | cospω1t
2

q|2. This flipping between low and high energy states periodically “sucks energy” out

of the RF field and can be easily detected as it induces an AC current in the receiver coil [3],
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yielding the NMR signal.

Figure 3.1: From [3]. The strength of the RF pulse varies in space.

While in this setup an RF sinc pulse of bandwidth ωb allows for the determination of the

elements present, it does not give information on their spatial distribution [80]. In order to do

obtain spatial information, one approach is to replace the constant field Bext with a magnetic

gradientBext “ pB0`gzqez (see Figure 3.1). Because the magnetic field gradient varies spatially

and the Larmor frequency varies proportionally to the strength of the field, only a thin slice of

width δ 9 ωb{g resonates with the RF pulse [81]. An issue with this approach is that the resolution

of the image is constrained by the bandwidth of the RF pulse (assuming a fixed gradient g), and

that as a result the peak power of the RF pulse grows quadratically in the resolution [83]. A

solution to this problem is to use a frequency modulated RF signal as in Figure 3.2 in which
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Figure 3.2: From [4]. A frequency modulated RF pulse.

the frequency varies linearly in time. In this case the peak power of the RF pulse grows only

linearly in the resolution, allowing for cheaper and simpler RF amplifiers to be used [83]. In the

frequency modulated case, the spatial information is encoded in the quadratic phase of the NMR

signal. In particular, we note that the spatial dependence of the phase of the transverse excitation

in the presence of a constant magnetic gradient Bext “ pB0 ` gzqez will be given by

ϕg “ 2πγgzT (3.2.2)

where T is the duration of the RF pulse [4] (the local Larmor frequency here is simply γB0`γgz).
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In the case of a variable frequency RF pulse, as in Figure 3.2 where

$

’

’

’

&

’

’

’

%

fptq “ f0 ` Bw
Ts

pt ´ Ts

2
q 0 ď t ď Ts

fptq “ f0 otherwise

(3.2.3)

the time of excitation T will depend on the position of the spin along the direction of the applied

gradient [4]. In particular, for the pulse shown in Figure 3.2 we will have T pzq “ Tsp
1
2

´ z´z0
Ds

q

where z0 is the position of the spin that has Larmor frequency f0 and Ds is the (spatial) width of

the RF pulse: Ds “ Bw
γg

[4]. Thus the phase shift of the transverse excitation (which corresponds

to a phase shift in the measured AC current) depends quadratically on the position as:

ϕ1
RF “ 2πγgTsp

1

2
´
z ´ z0
Ds

qz (3.2.4)

An additional spatially varying contribution to the phase arises due to the constant phase change

of the excitation pulse [4]:

ϕ2
RF “ 2π

ż Ts

T pzq

fptqdt “
πBw

Ts
pTs ´ T pzqq

2
` 2πpf0 ´

Bw

2
qpT pzq ´ Tsq (3.2.5)

Combining these two contributions, simplifying, and dropping constant terms one finds a spa-

tially varying phase contribution:

ϕRF “ πγgTspx `
px ´ x0q

2

Ds

q (3.2.6)

The linear term may in fact be removed by a gradient pulse with the appropriate area [4] [3], thus
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measuring at multiple center locations xpnq

0 “ x0 ` nδ one would like to be able to reconstruct a

signal ϕpxq (the true NMR profile) from measurements of the form

spQ, nq “

ż

ϕpxqe´2πiQpx´nδq2dx (3.2.7)

Where we take x0 “ 0 without loss of generality and Q “
γgTs

2Ds
is known as the “second order

coefficent” arising from the RF pulse. Up to an overall constant phase, we can write spQ, nq as a

multiple of the one dimensional CFT

T rϕspA, bq “

ż

ϕpxqe´2πipAx2`bxqdx (3.2.8)

In particular, if A “ Q and b “ ´2Qδn then

spQ, nq “ e´2πi b2

4AT pA, bq (3.2.9)

Thus if we would like to be able to reconstruct the NMR profile from measurements of different

central locations (x0 or correspondingly f0) and different frequency gradientsBw{Ts, it behooves

us to study the properties of the Chirp Fourier Transform (CFT).

3.3 Connection to the Linear Canonical Transform

An additional motivation for introducing the Chirp Fourier Transform is that it provides

a novel perspective on the much celebrated Linear Canonical Transform (LCT). The LCT is a

generalization of the Fourier transform that appears in applications such as paraxial wave optics
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and accelerator physics [84] [85]. Given Loo, Lii P SympRnq and Lio P GLpRnq the LCT is

defined as

LCT : L2
pRn

q Ñ L2
pRn

q

LCT rf spkq “ pi´1 detLioq
1
2

ż

Rn

eπipk
TLook´2kTLiox´xLiixqfpxqdx

(3.3.1)

Like the Fourier transform, the LCT is unitary in the sense that

xLCT rf s, LCT rgsyL2pRnq “ xf, gyL2pRnq (3.3.2)

While the Fourier transform can be thought of as a π
2

rotation in phase space, there is an LCT

for each metaplectic transformation of phase space. In particular, since Mpp2n,Rq is a double

cover of the symplectic group Spp2n,Rq there are two LCTs for a given element of the symplectic

group [84]. Recall that

Spp2n,Rq “ tM P R2nˆ2n
| MT

»

—

—

–

0 ´Inˆn

Inˆn 0

fi

ffi

ffi

fl

“ I2nˆ2nu (3.3.3)

To obtain the phase space deformation associated with a given linear canonical transform, one can

compute the Wigner distribution (the uncertainty principle precludes the existence of an instan-

taneous time-frequency distribution, however for a large class of signals the Wigner distribution

provides the highest possible time-frequency resolution allowable within the bounds of the un-
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certainty principle [86]):

Wf px, kq :“

ż

Rn

fpx `
1

2
x1

qfpx ´
1

2
x1qe´2πixk,x1ydx1 (3.3.4)

In this case we can compute the effect of the LCT on the Wigner distribution via

WLCT rf spx, kq “

ż

Rn

LCT rf spx `
1

2
x1

qLCT rf spx ´
1

2
x1qe´2πixk,x1ydx1

“

ż

Rn

fpA11x ` A12k `
1

2
x1

qfpA11x ` A12k ´
1

2
x1qe´2πixpA21x`A22kq,x1ydx1

“ Wf pAx ` Bk,Cx ` Dkq

(3.3.5)

Where A11 “ L´1
io Lii, A12 “ L´1

i0 , A21 “ LooL
´1
io Lii ´LT

io, and A22 “ LooL
´1
io (see the appendix

of [84] for the full computation). Thus the LCT is associated to the transformation M of phase

space:

»

—

—

–

x

k

fi

ffi

ffi

fl

Ñ

»

—

—

–

L´1
io Lii L´1

i0

LooL
´1
io Lii ´ LT

io LooL
´1
io

fi

ffi

ffi

fl

looooooooooooooooomooooooooooooooooon

M

»

—

—

–

x

k

fi

ffi

ffi

fl

(3.3.6)

If we allow the triple pLii, Lio, Looq to vary and write LCT rf s “ LCT pLii, Lio, Looqrf s then,

returning the to the CFT:

T rf spA, bq “ LCT p0, I, 2Aqrf spbq (3.3.7)
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Thus for fixed A, the CFT is associated to the transformation of phase space

M “

»

—

—

–

2A I

´I 0

fi

ffi

ffi

fl

(3.3.8)

And for fixed A, the transformation T̃ “ T ˝F´1 is associated to a shear transformation of phase

space:

M “

»

—

—

–

I 2A

0 I

fi

ffi

ffi

fl

(3.3.9)

Thus the exact nature of the redundancy present in the CFT is that it corresponds to all possible

shearings of phase space (only one of which is required to recover the signal f in the absence of

noise, owing to the unitarity of the LCT ).

3.4 Connection to Matrix Schrödinger

Choosing units so that ℏ
m

“ 1
π

, and using time variable a and space variable b (for reasons

that will be obvious) the free Schrödinger equation becomes

iBaψpa, bq “ ´
1

2π
∇2

bψpa, bq (3.4.1)
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It is easily verified that for sufficiently well behaved initial data, this equation has as its general

solution:

ψpa, bq “

ż

Rn

e´2πipa||k||2`xb,kyqψ̌p0, kqdk (3.4.2)

Thus the behavior of the wave function for the free particle is determined at all times by its initial

momentum space wave function integrated against the kernel Kpa, bq “ e´2πipa||k||2`xb,kyq, which

is precisely the kernel for the CFT when the chirp matrix A is the multiple of identity A “ aI.

Evidently,

ψpa, bq “ T rf̌p0, ¨qspaI, bq (3.4.3)

This clarifies exactly the nature of the redundancy of the CFT when A “ aI, since of course the

behavior of the wave function is determined at all future (and past) times given its value at any

particular time. We might hope, therefore, that the the redundancy present in the general CFT

(for abitrary symmetric A) arises exactly from an underlying PDE, as it does when A “ aI. And

indeed, we define the free matrix Schrödinger equation by

iD
Sym
A ψpA, bq “ ´

1

2π
HbψpA, bq (3.4.4)

WhereDSym
A is the gradient operator on the vector space of symmetric matrices, namely pD

Sym
A ψqij “

1
2
p B

BAij
` B

BAji
qψ and Hb is the Hessian operator with respect to b, specifically pHbψqij “ B2

BbiBbj
ψ.
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In this case let

ψpA, bq “ T̃ rψp0, ¨qspA, bq “ T rψ̌p0, ¨qspA, bq “

ż

Rn

e´2πipxk,Aky`xb,kyqψ̌p0, kqdk (3.4.5)

Then, assuming every entry in ψ̌p0, kqpI ` kkT q is an L1 function we obtain by Lebesgue domi-

nated convergence:

iD
Sym
A ψpA, bq “

ż

Rn

ip´2πiqkkT e´2πipxk,Aky`xb,kyqψ̌p0, kqdk

“ ´
1

2π
HbψpA, bq

(3.4.6)

And moreover ψ satisfies the boundary condition T̃ rψp0, ¨qsp0, bq “ ψp0, bq. Thus as expected the

transform coordinates A and b are not independent but are related by the free matrix Schrödinger

partial differential equation. This connection to Schrödinger also yields an important representa-

tion formula for Tf vis a vis the matrix analog of the Schrodinger propagator. In particular,

T rψ̌spA, bq “ Fre´2πix¨,A¨yψ̌spbq

“ {e´2πix¨,A¨y
looomooon

:“KpA,bq

˚ψpbq
(3.4.7)

The propagator KpA, bq can be computed via a contour integral when A is invertible:

KpA, bq “

ż

Rn

e´2πixb,kye´2πixk,Aky (3.4.8)
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Write A “ UΛUT where U P Opnq and Λ “ diagpλ1, . . . , λnq is diagonal, then make the change

of coordinates k̃ “ UTk and let γi “ pUT bqi so that

KpA, bq “

ż

Rn

e´2πi
řn

j“1 γjkj`λjk
2
jdk (3.4.9)

“

n
ź

j“1

ż 8

´8

e´2πipγisi`λis
2
i q (3.4.10)

We then note that

ż 8

´8

e´2πipγs`λs2qds “
2

a

2π|λ|
e

πi
2
γ2{λ

ż 8

0

e´iz2dz “
1

a

2i|λ|
e

πi
2
γ2{λ (3.4.11)

Where in the last step an arc contour with angle ´π{4 yields
ş8

0
e´z2dz “

a

π
i
. Multiplying the

n copies of this integral together one obtains

KpA, bq “
1

a

p2iqn|A|
e

πi
2

xb,A´1by (3.4.12)

Where |A| :“ | detA|. Thus an alternate form of the CFT is T̃ rf s “ K ˚ f or

TfpA, bq “ pKpA, ¨q ˚ f̂qpbq (3.4.13)

3.5 Strichartz Estimates for Matrix Schrodinger

The connection between the transform T and the free matrix Schrödinger PDE gives us

hope that we should be able to use a variant of the homogeneous Strichartz estimate to further

constrain the range of T . In particular a pair of exponents pq, pq is called admissible if 2 ď q, p ď
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8, pq, p, nq ‰ p2,8, 2q, and 2
q

` 1
p

“ 1
2
. Then when A “ aI for any admissible exponents pq, pq

the homogeneous Strichartz estimate states that there exists constant Cq,r,n such that

||Tf ||Lq
aL

r
bpRˆRnq ď Cq,r,n||f ||L2pRq (3.5.1)

In other words, T is a bounded operator fromL2pRq to Lq
aL

p
bpRˆRnq [87]. We would like to prove

an analogous result when A is not assumed to be a multiple of identity. It will be instructive to

first consider the proof of the homogeneous Strichartz estimate in the usual setting whereA “ aI.

In particular we would like to show for pq, p, nq admissible that

||

ż

Rn

e´2πipa||x||2`xb,xyqfpxqdx||Lq
aL

p
b pRˆRnq ď Cq,p,n||f ||2 (3.5.2)

It will be convenient to work with T̃ “ T ˝F´1 instead of T , replacing f with its inverse Fourier

transform on the left hand side and instead showing

||

ż

Rn

e´2πipa||x||2`xb,xyqf̌pxqdx||Lq
aL

p
b pRˆRnq ď Cq,p,n||f ||2 (3.5.3)

This latter estimate is equivalent to the first, owing to the unitarity of the Fourier transform. We

will follow [87] in proving the homogeneous Strichartz estimate vis a vis the dual homogeneous

Strichartz estimate. In particular we compute T̃ ˚ : Lq1

a L
p1

b pR ˆ Rnq Ñ L2pRnq via the property
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that xF, T̃ fy “ xT̃ ˚F, fy for any F P Lq
aL

p
bpR ˆ Rnq and f P L2pRnq:

xF, T̃ fy “

ż

R

ż

Rn

F pa, bqpFe´2πia||¨||2F´1fqpbqdbda

“

ż

R
xF pa, ¨q,Fe´2πia||¨||2F´1fyL2pRnqda

“

ż

R
xFe2πia||¨||2F´1F pa, ¨q, fyL2pRnqda

“ x

ż

R
Fe2πia||¨||2F´1F pa, ¨qda, fyL2pRnq

(3.5.4)

Where we employ Fubini in the last step. Since this holds for all f P L2pRnq we find that T̃ ˚ is

given by

T̃ ˚ : Lq1

a L
p1

b pR ˆ Rn
q Ñ L2

pRn
q

T̃F pyq “

ż

R

ż

Rn

e´2πip´a||k||2`xy,kyqF̌ pa, kqdkda

(3.5.5)

Employing the fact that ||T̃ ||L2pRqÑLq
aL

r
bpRˆRnq “ ||T̃ ˚||

Lq1

a Lp1

b pRˆRnqÑL2pRnq
it thus suffices to prove

the dual homogeneous Strichartz estimate

||T̃ ˚F ||L2pRnq ď Cp,q,n||F ||
Lq1

a Lp1

b pRˆRnq
(3.5.6)

in order to show (3.5.1). In fact, we will seek an estimate of the form

||T̃ T̃ ˚F ||Lq
aL

p
b pRˆRnq Àp,q,n ||F ||

Lq1

a Lp1

b pRˆRnq
(3.5.7)
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since in this case

||T̃ ˚F ||
2
L2pRnq “ xT̃ ˚F, T̃ ˚F yL2pRnq

“ xF, T̃ T̃ ˚F y

ď ||F ||
Lq1

a Lp1

b pRˆRnq
||T̃ T̃ ˚F ||Lq

aL
p
b pRˆRnq

Àp,q,n ||F ||
2

Lq1

a Lp1

b

(3.5.8)

And we will have proved the homogeneous Strichartz estimate. In order to show (3.5.7) we will

interpolate between two “fixed time” estimates. The first is an equality rather than an inequality,

namely that that T̃ is an isometry: ||T̃ fpa, ¨q||L2pRnq “ ||f ||L2pRnq. The second estimate comes

from the propagator form T̃ f “ K ˚ f . In the case A “ aI this form yields

|T̃ fpa, bq| “ |

ż

Rn

p2i|a|q
´n

2 e
πi
2a

||y||2fpx ´ yqdy|

ď p2|a|q
´n

2 ||f ||L1
bpRnq

(3.5.9)

Thus we have the additional fixed time estimate ||T̃ f ||L8
b pRnq ď p2|a|q´n

2 ||f ||L1
bpRnq. We can

combine these two estimates via Marcinkiewicz interpolation to obtain the following family of

fixed time estimates for r P r1, 2s:

||T̃ f ||Lr1

b pRnq
ď p2|a|q

n
2

´n
r ||f ||LrpRnq (3.5.10)

157



In addition to this fixed time estimate we will need the Hardy-Littlewood-Sobolev fractional

integration estimate:

|||| ¨ ||
´α

˚ f ||LspRdq Às,v,d,α ||f ||LvpRdq (3.5.11)

Where 1
v

“ 1
s

` d´α
d

. With this in mind we can compute

||T̃ T̃ ˚F ||Lq
aL

p
b pRˆRnq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R

ż

Rn

e´2πirpa´sq||k||2`xb,kysF̌ ps, kqdkds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
aL

p
b pRˆRnq

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rn

e´2πirpa´sq||k||2`xb,kysF̌ ps, kqdk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lp
b pRnq

ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
apRq

(3.5.12)

The innermost integral here is of non other than pT̃F ps, ¨qqpa ´ s, bq, thus we can employ our

fixed time estimate and conclude

||T̃ T̃ ˚F ||Lq
aL

p
b pRˆRnq ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R
p2|a ´ s|q

np 1
2

´ 1
p1 q

||F ps, ¨q||
Lp1

b pRnq
ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
apRq

(3.5.13)

Finally, we note that this is a convolution with a kernel of the form | ¨ |´α, and thus employ Hardy-

Littlewood-Sobolev with α “ n
p1 ´ n

2
, d “ 1, s “ q, and v “ q1 (it is easy to check that this choice

for v results in the required identity 1
v

“ 1
s

` d´α
d

):

||T̃ T̃ ˚F ||Lq
aL

p
b pRˆRnq Àp,q,n ||F ||

Lq1

a Lp1

b pRˆRnq
(3.5.14)

This concludes the proof of the homogeneous Strichartz estimate, in other words the proof that

when the chirp matrix A “ aI is restricted to be a multiple of identity T is a bounded operator

from L2pRq to Lq
aL

p
bpR ˆ Rnq. Towards a generalization of this result to arbitrary chirp matrices,
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we will prove the following the following:

Theorem 3.5.1. (Dual homogeneous Strichartz for matrix Schrödinger)

Let 2 ď p, q ď 8 such that 2
q

` 1
p

“ 1
2
. Define the null aliasing operator τ on Lq1

ApSympRnqq

via

τgpA, tq “
ÿ

ϵPt´1,1un

ż

Zpdetq

gpA ` σϵp
a

Z2 ` λZptqIqqdZ (3.5.15)

where for ϵ P t´1, 1un

σϵ : Ppnq Ñ SympRn
q

σϵpUΛU
T

q “ U diagpϵ1, . . . , ϵnqΛUT

(3.5.16)

and λZptq is the unique positive increasing function such that

pµ1 ` λZptqq ¨ ¨ ¨ pµn ` λZptqq “ t2 (3.5.17)

where µ1, . . . , µn are the eigenvalues of Z2. Then if F P Lq1

AL
p1

b pSympRnq ˆ Rnq satisfies the

growth condition

τ ||F ||
Lp1

b pRnq
pA, tq À ||F pA ` tI, ¨q||

Lp1

b pRnq
(3.5.18)

We have:

||T̃ ˚F ||
2
L2pRnq Àp,q,n ||F ||

Lq1

ALp1

b pSympRnqˆRnq
|| ¨ ||F ||

Lq
ALq1

t Lp1

b pVIˆVT ˆRnq
(3.5.19)
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Where VI “ tλI | λ P Ru is the identity subspace of SympRnq and VT “ tA P SympRnq | trtAu “

0u the traceless subspace.

Proof. The proof proceeds in the same manner as in the multiple of identity case, up until

it comes to computing fixed time estimates. The first estimate, namely unitarity of T̃ , is identical.

For the second estimate, however, we employ the fact that T̃ f “ K ˚ f where K is as in (3.4.12)

and find that for all A invertible and all b P Rn we have

|T̃F pA, bq| ď p2n|A|q
´ 1

2 ||f ||L1pRnq (3.5.20)

In this case we can again employ Marcinkiewicz to obtain for r P r1, 2s the estimate

||T̃ f ||Lr1

b pRnq
ď p2n|A|q

1
2

´ 1
r ||f ||Lr

bpRnq (3.5.21)

We continue as before with the T̃ T̃ ˚ estimate until we arrive at

||T̃ T̃ ˚F ||
Lq
ALp

b pSympRnqˆRnq
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

SympRnq

p2n|A ´ S|q
1
2

´ 1
p1 ||F pS, ¨q||

Lp1

b pRnq
dS

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
ApSympRnqq

(3.5.22)

Here difficulties occur, since the kernel |A|´α is singular not only at zero but on the entire deter-

minental variety Zpdetq “ tA P SympRnq | detA “ 0u, and as such Hardy-Littlewood-Sobolev

cannot be directly applied. If we had a “determinental coordinate system” in which t “ detA

was a coordinate, then |t|´α could be factored out of the inner most integral and perhaps Hardy-

Littlewood-Sobolev could be used. In particular we will seek ϕ : Zpdetq ˆ R Ñ SympRnq
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satisfying

ϕpZ, 0q “ Z (3.5.23)

detrϕpZ, tqs “ t (3.5.24)

If we compute the t derivative of (3.5.24) we obtain

1 “ x∇ detrϕpZ, tqs, BtϕpZ, tqy (3.5.25)

If we further impose the requirement that the coordinate curves for t be orthogonal to the level

sets of the determinant, then we obtain the following first order ODE in 1
2
npn ` 1q variables:

dϕ

dt
“

1

||∇ detrϕpZ, tqs||22
∇ detrϕpZ, tqs

ϕpZ, 0q “ Z

(3.5.26)

The trick is that in general the gradient of the determinant, put into matrix form, is the matrix of

signed cofactors (this follows from Laplace expansion):

∇ detrϕs “ cofpϕq “ adjpϕq
T (3.5.27)

But ϕ is symmetric, which means its adjugate matrix is symmetric too! Thus ∇ detrϕs “

adjpϕq “ detrϕsϕ´1 and our ODE becomes

dϕ

dt
“

1

detϕ||ϕ´1||22
ϕ´1 (3.5.28)
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Next note that detϕ “ t and multiply dϕ
dt

on the left and the right by ϕ and add the two together

to obtain

d

dt
ϕ2

“ ϕ
dϕ

dt
`
dϕ

dt
ϕ “

2

t||ϕ´1||22
I (3.5.29)

Thus if ψ “ ϕ2 then ψ obeys the ODE

dψ

dt
“

2

t||ψ´1||1
I (3.5.30)

Only the diagonal entries of ψ change under this flow, and their time derivative is a multiple of

identity. Thus we may assume that ψptq “ ψp0q ` λptqI “ Z2 ` λptqI, in which case we obtain

a one dimensional ODE for λptq when t ą 0

dλ

dt
“

2

t||pZ2 ` λptqIq´1||1

λp0q “ 0

(3.5.31)

Thus if µ1, . . . , µn are the eigenvalues of ψp0q “ Z2 then ||pψp0q ` λptqIq´1||1 “ pµ1 ` λq´1 `

¨ ¨ ¨ ` pµn ` λq´1 thus we may explicitly integrate to obtain the solution

|µ1 ` λ| ¨ ¨ ¨ |µn ` λ| “ At2 (3.5.32)

The initial condition λp0q “ 0 taken together with the fact that |µ1 . . . µn| “ pdetϕq2 “ t2

sets the integration constant A “ 1. Thus λ is a positive, non-decreasing function depending

only on µ1, . . . , µn defined such that detrZ2 ` λptqIs “ t2. If ϕpZ, tq is positive definite then
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ϕpZ, tq “
a

Z2 ` λptqI, otherwise we have to account for the signature ϵ P t´1, 1un of ϕpZ, tq

via ϕpZ, tq “ σϵp
a

Z2 ` λptqIq where

σϵ : Ppnq Ñ S̊p,q
pCn

q

σϵpUΛU
T

q “ U diagpϵ1, . . . , ϵnqΛUT

(3.5.33)

Thus, using ϕ as a change of variables to evaluate the troublesome integral in the upper bound of

3.5.22 we obtain

||T̃ T̃ ˚F ||
Lq
ALp

b pSympRnqˆRnq
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

SympRnq

p2n|A|q
1
2

´ 1
p1 ||F pA ` S, ¨q||

Lp1

b pRnq
dS

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
ApSympRnqq

(3.5.34)

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R
p2n|t|q

1
2

´ 1
p1

ÿ

ϵPt´1,1un

ż

Zpdetq

||F pA ` σϵp
a

Z2 ` λZptqIq, ¨q||
Lp1

b pRnq
dZ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
ApSympRnqq

(3.5.35)

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R
p2n|t|q

1
2

´ 1
p1 τ ||F ||

Lp1

b pRnq
pA, tqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
ApSympRnqq

(3.5.36)

À

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R
p2n|t|q

1
2

´ 1
p1 ||F pA ` tIq||

Lp1

b pRnq
dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
ApSympRnqq

(3.5.37)

Where in the last line the assumption (3.5.18) is used. We now decompose the symmetric matrices

into two parts: the identity component VI “ tλI | λ P Ru and the traceless component VT “ tA P

SympRnq | trtAu “ 0u. We then note that for g P Lq
ApSympRnqq we have ||g||

Lq
ApSympRnqq

“
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||g||Lq
ApVT qLq

ApVIq, thus:

||T̃ T̃ ˚F ||
Lq
ALp

b pSympRnqˆRnq
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R
p2n|t|q

1
2

´ 1
p1 ||F pA ` tIq||

Lp1

b pRnq
dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lq
ApVT qLq

ApVIq

À ||F ||
Lq
ALq1

t Lp1

b pVIˆVT ˆRnq

(3.5.38)

Where in the first inequality Hardy-Littlewood-Sobolev is used with α “ 1
p1 ´ 1

2
, d “ 1, s “ q,

and v “ q1 (the assumption 2
q

` 1
p

“ 1
2

then implies the requirement Hardy-Littlewood-Sobolev

1
v

“ 1
s

` d´α
d

). This concludes the proof of the theorem since in this case

||T̃ ˚F ||
2
L2pRnq Àp,q,n ||F ||

Lq1

ALp1

b pSympRnqˆRnq
|| ¨ ||F ||

Lq
ALq1

t Lp1

b pVIˆVT ˆRnq
(3.5.39)

3.6 A Convolution Identity for the CFT

An alternate approach is to enlarge the range of T and T̃ by using a measure different from

the Haar measure (the Lebesgue measure) on SympRnq ˆ Rn. Instead, we consider a measure

dW “ W pA, bqdAdb with W pA, bq ą 0 so that

||W ||1,8 :“ sup
bPRn

ż

SympRnq

W pA, bqdA ă 8 (3.6.1)

and define our transform as

T : L2
pRn

q Ñ L2
pSympRn

q ˆ Rn,W pA, bqdAdbq

T pfqpA, bq “

ż

Rn

e´2πip 1
2

xx,Axy`xb,xyqfpxqdx

(3.6.2)
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The added factor of 1
2

in the phase we will be convenient in this context. We will prove the

following theorem:

Theorem 3.6.1. Let T be as in (3.6.2). Then T is a bounded linear operator with closed range,

and moreover if W pA, bq “ W pAq, that is if the weight depends only on the symmetric chirp

matrix we have:

(i) T ˚T is a multiple of identity on L2pRnq.

(ii) F P L2pSympRnq ˆ Rn,W pAqdAdbq is in RanpT q if and only if F “ K ˚ pWF q where

KpA, bq “
1

a

i|A|
eπi||A

´ 1
2 b||2 (3.6.3)

(iii) RanpT q is not closed under multiplication, however if TfTg P RanpT q then TfTg “

T pf ‹ gq where

f ‹ gpzq :“

ż

Rn

Ŵ pxxT `
1

2
pxzT ` zxT qqfpxqgpz ´ xqdx (3.6.4)

In general for any f, g P L2pRnq we have

TfTg “ T pf ‹ gq ` H (3.6.5)

where for almost every x P Rn

0 “

ż

SympRnq

ż

R
e2πip

1
2

xx,Axy´xb,xyqHpA, bqW pA, bqdbdA (3.6.6)
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Proof.

Define W pAq :“ supbPRn W pA, bq then

||Tf ||
2
L2pG,dW q “

ż

SympRnq

ż

Rn

ˇ

ˇ

ˇ

ˇ

ż

Rn

e´2πip 1
2

xx,Axy`xb,xyqfpxqdx

ˇ

ˇ

ˇ

ˇ

2

W pA, bqdbdA

“

ż

SympRnq

ż

Rn

ˇ

ˇ

ˇ

ˇ

Ź

e´2πi 1
2

x¨,A¨yfpbq

ˇ

ˇ

ˇ

ˇ

2

W pA, bqdbdA

ď

ż

SympRnq

ż

Rn

ˇ

ˇ

ˇ

ˇ

Ź

e´2πi 1
2

x¨,A¨yfpbq

ˇ

ˇ

ˇ

ˇ

2

dbW pAqdA

“

ż

Rn

|fpxqe´2πi 1
2

xx,Axy
|
2dx

ż

SympRnq

W pAqdA

“ ||f ||
2
L2pRnq||W ||1,8

(3.6.7)

This proves that T is a bounded operator with ||T ||˚ ď
a

||W ||1,8. Note that this holds for any

operator of the form

Tϕ : L2
pRn

q Ñ L2
pX ˆ Rn, dW q (3.6.8)

TϕfpA, bq “

ż n

R
e´2πipϕpA,xq`xb,xyqfpxqdx (3.6.9)

Where pX ˆ Rn, dW q is a measure space and ϕ : X Ñ R. Finally we observe for convenience

that if W depends only on A then ||W ||1,8 “ Ŵ p0q.

Our strategy will be to seek a left inverse transform in terms of the adjoint T ˚ which is given
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by

T ˚F pxq “

ż

SympRnq

ż

Rn

e2πip
1
2

xx,Axy`xb,xyqF pA, bqW pA, bqdbdA (3.6.10)

We observe that

T ˚Tfpxq “

ż

SympRnq

ż

Rn

e2πip
1
2

xx,Axy`xb,xyq

ż

Rn

e´2πip 1
2

xy,Ayy`xb,yyqfpyqdydbdA

“

ż

Rn

fpyq

ż

SympRnq

ż

Rn

e´2πip 1
2

xA,yyT ´xxT y`xb,y´xyqW pA, bqdbdAdy

“

ż

Rn

Ŵ pyyT ´ xxT , y ´ xqfpyqdy

(3.6.11)

At first glance this “quadratic convolution” doesn’t look terribly promising, however we note that

if W pA, bq “ W pAq depends only on A then

Ŵ pyyT ´ xxT , y ´ xq “

ż

SympRnq

ż

Rn

e´2πip 1
2

xA,yyT ´xxT y`xb,y´xyqW pAqdbdA

“

ż

SympRnq

W pAqe2πi
1
2

xA,yyT ´xxT yδpy ´ xqdA

“ Ŵ p0qδpx ´ yq

(3.6.12)

From now on we thus consider W depending only onA and normalize Ŵ p0q “ dW pSympRnqq “

1 so that T ˚T is the identity on L2pRnq (this proves piq). Two related questions about this left-

invertible transform are how to characterize RanpT q Ă L2pG, dW q and whether there exists

a “convolution like” operation such that T is an algebra homomorphism. We may say with

confidence that RanpT q is a strict subspace of L2pG, dW q since if F P RanpT q then there exists
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f such that F “

Ź

e´2πi 1
2

x¨,A¨yf , thus one characterization of RanpT q is

RanpT q “

"

F P L2
pG, dW q|Df P L2

pRn
q F pA, ¨qpxq “ e´2πi 1

2
xx,Axyfpxq

*

(3.6.13)

This characterization also provides incidentally that RanpT q is closed. A second characterization

is given by computing TT ˚ “ PRanpT q
and noting that F P RanpT q ðñ TT ˚F “ F .

TT ˚F pÃ, b̃q “ T p

ż

SympRnq

ż

Rn

e2πip
1
2

xx,Axy`xb,xyqF pA, bqW pA, bqdbdAq

“

ż

Rn

e´2πip 1
2

xy,Ãyy`xb̃,yyq

ż

SympRnq

ż

Rn

e2πip
1
2

xx,Axy`xb,xyqF pA, bqW pA, bqdbdAdy

“

ż

SympRnq

W pAq

ż

Rn

F pA, bq

ż

Rn

e´2πip 1
2

xy,pÃ´Aqyy`xb̃´b,yyqdydbdA

“

ż

SympRnq

W pAq

ż

Rn

F pA, bq
1

?
i|Ã ´ A|

1
2

eπi||pÃ´Aq
´ 1

2 pb̃´bq||2dbdA

“ pK ˚ pWF qqpÃ, b̃q

(3.6.14)

Where

KpA, bq “
1

a

i|A|
eπi||A

´ 1
2 b||2 (3.6.15)
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Thus a second characterization of of RanpT q is

RanpT q “ tF P L2
pG, dW q|TT ˚F “ F u “

"

F P L2
pG, dW q|K ˚ pWF q “ F

*

(3.6.16)

Proving piiq. Thus if TfTg P RanpT q then TfTg “ pTT ˚qTfTg “ T pT ˚pTfTgqq, hence

f ‹ g :“ T ˚pTfTgq satisfies the convolution like identity T pf ‹ gq “ TfTg so long as TfTg P

RanpT q. Moreover, TfTg R RanpT q then T pf ‹ gq “ pTT ˚qpTfTgq “ K ˚ pWTfTgq. As one

might expect given the final expression in (3.6.11) the operation f ‹g involves a kind of nonlinear

convolution with kernel Ŵ . Namely

f ‹ gpzq “ T ˚
pTfTgqpzq

“

ż

SympRnq

ż

Rn

e2πip
1
2

xz,Azy`xb,zyq

ˆ
ż

Rn

e´2πip 1
2

xx,Axy`xb,xyqfpxqdx

˙ˆ
ż

Rn

e´2πip 1
2

xy,Ayy`xb,yyqgpyqdy

˙

dbW pAqdA

“

ż

SympRnq

e2πi
1
2

xz,Azy

ż

Rn

ż

Rn

e´2πip 1
2

xx,Axy`xy,Ayyqfpxqgpyqδpz ´ x ´ yqdxdyW pAqdA

“

ż

SympRnq

ż

Rn

e´2πipxx,Axy`xz,AxyqW pAqfpxqgpz ´ xqdxdA

“

ż

Rn

Ŵ pxxT `
1

2
pxzT ` zxT qqfpxqgpz ´ xqdx

(3.6.17)

This proves piiiq since TfTg P L2pSympRnq ˆ Rn,W pAq, dAdbq and may thus always be de-

composed as TfTg “ TT ˚pTfTgq ` H where T ˚H “ 0. This concludes the proof of the

theorem.
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3.7 Sampling and Reconstruction for Discrete CFT

In this section we will concern ourselves with the numerical invertibility of the discrete

Chirp Fourier Transform TD in the case when n “ 1. Let I “ tpa1, b1q, . . . , pam, bmqu Ă Zd ˆ Zd

be of cardinality |I| “ M . In this case define the sampling operator

SI : Cdˆd
Ñ CM

SIrXsk “ Xakbk

(3.7.1)

Then SI ˝TD, the down-sampling of TD corresponding to the collection I , can be written accord-

ing to 3.1.9 in terms of the m ˆ d matrix

T rIsk,j “ pSITDejqk “
1

?
d
e´2πipakj

2`bkjq{d (3.7.2)

We will examine the conditioning of this matrix for various collections ofM polynomials ppkqMk“1

where pkpjq “ akj
2 ` bkj mod d on Zd. Without taking into account the fact that two different

polynomials may take equal values for all j P Zd, there are
`

d2

M

˘

choices for the collection I . If

d “ 2d̃ is even, however, and we consider the polynomials p and p̃ corresponding to pa, bq and

pa ` d̃, b ` d̃q then for all j P Zd

p̃pjq ´ ppjq “ d̃pj2 ` jq “ d̃jpj ` 1q “ 0 mod d (3.7.3)
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since jpj ` 1q is even. Moreover, if δa “ ã ´ a and δb “ b̃ ´ b then

p̃pjq ´ ppjq “ 0 mod d @j P Zd

ðñ δaj2 ` δbj “ 0 mod d @j P Zd

ðñ jpδaj ` δbq “ 0 mod d @j P Zd

(3.7.4)

The only way for jpδa ` jδbq to have a common divisor h ą 1 for all j P Zd is if h divides δa

and δb. Thus let h “ gcdpδa, δbq and x, y be such that gcdpx, yq “ 1, δa “ xh, and δb “ yh. In

this case p̃pjq ´ ppjq “ hjpxj ` yq. Now unless h also divides d, the only choice of x, y such

that hjpxj ` yq “ 0 mod d for all j P Zd is x “ 0, y “ 0. Thus assume d “ hc, then we wish to

find x and y such that jpxj ` yq “ 0 mod c for all j P Zc. Since this polynomial has at most 2

distinct roots, we must take c “ 2 in which case x “ y “ 1 is the only non-trivial choice. Thus

there are no two quadratic polynomials that take equal values over Zd unless d “ 2d̃ is even, in

which case this occurs when δb “ δa “ d̃. Thus, up to equivalence of values there are

τ rd;M s :“ # Choices for I “

$

’

’

’

&

’

’

’

%

` 1
2
d2

M

˘

d even

`

d2

M

˘

d odd

(3.7.5)

As such, for small values of d we will be able to “brute force” the number theoretic problem of

which I give rise to full rank matrices T rIs (see Table 3.1 and Figure 3.3). Before doing so,

however, we note that there is another trivial failure mode for which T rIs will not be full rank.

In particular, if pkpj1q ´ pkpj2q ” const mod d for all k then the j1th and j2th columns of I

will be proportional. Unfortunately other types of linear dependencies between the columns of

T rIs do not readily lift to relations between the polynomials p1, . . . , pM , so in general it is a
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d τ rd; ds # w/ proportional columns # Invertible # Not Invertible

3 84 9 75 0

4 70 2 36 32

5 53125 25 48005 5100

6 18564 177 5625 12762

Table 3.1: Results from brute force counting the number of invertible T rIs when M “ d and
d “ 3, . . . , 6. Unfortunately the problem quickly becomes intractable for larger d, indeed for
d “ 7 we have τ rd; ds “ 85900584.

difficult problem to obtain necessary and sufficient criteria for a given collection of M distinct

polynomials to give rise to T rIs full rank (simpler criteria than just constructing the matrix T rIs

and verifying that it is full rank). After removing the case of proportional columns we will be

forced to manually check if the remaining T rIs are full rank by computing σdpT rIsq.

We will focus first on the case when M “ d, in the hopes of finding the sparsest possible

sampling from which to reconstruct the signal z P Cd. Obviously the collection Id “ tpa, kqu
d´1
k“0

corresponds to the discrete Fourier transform of pe´2πiaj2{dzjq
d´1
j“0 and is invertible with condition

number κ “ 1, thus in order to make the problem “hard” it is of interest to consider restricting the

number of linear frequencies available and to compensate using well chosen chirp frequencies.

This setup lends itself to applications in which sampling many linear frequencies is expensive.

Specifically, given a family of strict subsets of linear frequencies pBdqdě2 with Bd Ĺ t0, . . . , d´

1u we would like to find a family of polynomials pqjqjě1 “ pajx
2 ` bjxqjě1 with bj P Bd

whenever j ď d so that for every d ě 2 the d polynomials pqj|Zd
qdj“1 give rise to an invertible

matrix T rIds “ T rtpa1, b1q, . . . , pad, bdqus. Consider the simple case in which we disallow the

highest linear frequency, that is Bd “ t0, . . . , d ´ 2u. In this case numerical experiments show

that the choice Id “ tp0, jq|j “ 0, . . . , d´ 2u Y tp1, 0qu yields T rIds invertible except when d is
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Figure 3.3: Histogram of the inverse condition number of T rIs when M “ d “ 3, . . . , 6 over
possible choices of I (excluding choices for I that yield proportional columns for T rIs).
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an integer multiple of 4. Indeed, when d “ 0 mod 4 we can show that

kerrT rp0, 0q, . . . , p0, d ´ 2q, p1, 0qss Q

»

—

—

—

—

—

—

—

—

—

—

–

e2πipd´1q{d

...

e2πi{d

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

:“ ωd (3.7.6)

Here ωd is precisely the (reversed) vector whose entries are the d dth roots of unity. Indeed if

k ă d ´ 1 and we denote X “ T rp0, 0q, . . . , p0, d ´ 2q, p1, 0qs then

d´1
ÿ

l“0

Xklpωdql “

d´1
ÿ

l“0

e´2πikl{de2πipd´1´lq{d

“ e2πipd´1q{d
d´1
ÿ

l“0

e´2πipk`1ql{d

“ e2πipd´1q{d 1 ´ e´2πipk`1q

1 ´ e´2πipk`1q{d

“ 0

(3.7.7)

Meanwhile for k “ d ´ 1 we have

d´1
ÿ

l“0

Xklpωdql “

d´1
ÿ

l“0

e´2πil2{de2πipd´1´lq{d

“

d´1
ÿ

l“0

e´2πipl2`l`1q{d

(3.7.8)

Up to a constant factor of e´2πi{d this last sum is the (complex conjugate of) the generalized
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quadratic Gauss sum Gp1, 1, dq, defined via

Gpa, b, cq “

c´1
ÿ

l“0

e2πipal
2`blq{c (3.7.9)

Such sums are not easy to evaluate in general. The celebrated result of Gauss is that

Gps, 0, kq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p1 ` isq
`

k
s

˘
?
k k “ 0 mod 4

`

s
k

˘
?
k k “ 1 mod 4

0 k “ 2 mod 4

i
`

s
k

˘
?
k k “ 3 mod 4

(3.7.10)

One can however show using Hensel’s lemma and the multiplicative property of quadratic Gauss

sums that when d “ 0 mod 4 we have Gp1, 1, dq “ 0. The multiplicative property says that if

gcdpc, dq “ 1 then

Gpa, b, cdq “ Gpac, b, dqGpad, b, cq (3.7.11)

See Chapter 6 of [88] for a derivation. In this case if d “ 0 mod 4 then we may write d “ 2kq

with k ą 1 and q odd. Thus

Gp1, 1, dq “ Gp2k, 1, qqGpq, 1, 2kq (3.7.12)

We will show that Gpq, 1, 2kq “ 0. First note that ql2 ` l mod 2k takes only even values (if

l is even then it is the sum of two even numbers, and if l is odd then it is the sum of two odd
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numbers). We will then need the following form of Hensel’s lemma (Hensel’s lemma has plentiful

generalizations, but the following version will suffice for our purposes):

Lemma 3.7.1. Hensel’s lemma [89]. If p ě 2 is a natural number, fpxq P Zrxs, and a1, . . . , aL P

Zp are such that fpalq “ 0 mod p and f 1palq is coprime to p for l “ 1, . . . L, then for any k ą 1

there exist at least L distinct solutions b1, . . . , bL P Zpk such that fpblq “ 0 mod pk.

We apply this lemma to the polynomials ql2 ` l ´ 2s where s “ 0, . . . , d{2. Considered

mod 2 we have that

ql2 ` l “ 0 mod 2 (3.7.13)

has two solutions, namely l “ 0 and l “ 1 are both solutions. By the lemma, for each value of s

both solutions extend uniquely to solutions of ql2` l´2s “ 0 mod 2k, thus we have determined

that each even number 0, . . . , 2k ´ 2 occurs as a residue of ql2 ` l mod 2k at least twice. Thus,

including multiplicities, we have determined 2p2k{2q “ 2k residues of ql2 ` l mod 2k. But of

course this is all of them! So Hensel’s lemma tells us that each even number occurs exactly twice

as a residue of ql2 ` l mod 2k. Thus

Gpq, 1, 2kq “ 2
ÿ

s even
0ďsă2k

e2πis{2k

“ 2
2k´1´1

ÿ

n“0

e4πin{2k

“ 2
1 ´ pe4πi{2

k
q2

k´1

1 ´ e4πi{2k

“ 0

(3.7.14)
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Note that the second to last equality requires k ą 1, hence why Gp1, 1, dq “ 0 when d “ 0 mod 4

but not in general for d “ 0 mod 2. Thus we have shown that the sum in (3.7.8) is zero, and

hence that T rp0, 0q, . . . , p0, d ´ 2q, p1, 0qsωd “ 0.

Meanwhile, the choice Id “ tp0, jq|j “ 0, . . . , d ´ 2u Y tp1, 1qu yields T rIds invertible

except when d ´ 2 is an integer multiple of 4. Indeed, an essentially identical proof to the above

yields that

kerrT rp0, 0q, . . . , p0, d ´ 2q, p1, 1qs Q ωd (3.7.15)

When d “ 2 mod 4. Therefore a good strategy to guarantee the invertibility of T rIds is to take

Id “ tp0, jq|j “ 0, . . . , d ´ 2u Y tp1, ϵdqu with

ϵd :“

$

’

’

’

&

’

’

’

%

1 d “ 0 mod 4

0 d ‰ 0 mod 4

(3.7.16)

The resulting κ´1pT rIdsq for this strategy are shown in Figure 3.4. As seen in this figure choosing

the final chirp frequency pair to be p1, ϵdq always yields the larger of the two inverse condition

numbers corresponding to the final chirp frequency pair being p1, 0q or p1, 1q, suggesting that

κ´1pT rIdsq ą 0. Indeed, we note that the nullity of T rIds is at most 1 since the first d ´ 1

columns of T rIds are the first d´ 1 columns of the DFT matrix and are independent. Thus T rIds

will fail to be invertible if and only if the last column is in the span of the first d´1 columns, that
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is:

pe´2πipj2`ϵdjq{d
q
d´1
j“0 P spantf0, . . . , fd´2u “ spantfd´1u

K (3.7.17)

Thus we compute

0 “ xe´2πipj2`ϵdjq{d
q
d´1
j“0, fd´1y

“

d´1
ÿ

j“0

e2πipj
2`pϵd´pd´1qqjq{d

“ Gp1, ϵd ` 1, dq

(3.7.18)

At this point note that if α “ β mod 2 we have the useful identity

|Gp1, α, dq| “ |Gp1, β, dq| (3.7.19)

Indeed, if α “ β ` 2s then completing the square yields:

|Gp1, α, dq| “ |

d´1
ÿ

j“0

e2πipj
2`pβ`2sqjq{d

|

“ |e´2πips2`βsq{d
d´1
ÿ

j“0

e2πippj`sq2`βpj`sqq{d
|

“ |

d´1
ÿ

j“0

e2πipj
2`βjq{d

|

“ |Gp1, β, dq|

(3.7.20)

Thus there are only two cases to concern ourselves with: |Gp1, 0, dq| when ϵd is odd and |Gp1, 1, dq|

when ϵd is even. In this case (3.7.10) tells us immediately that |Gp1, 0, dq| ‰ 0 when d ‰ 2 mod 4
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Figure 3.4: Plotted above is the inverse condition number κ´1pT rIsq “ σdpT rIsq{σ1pT rIsq for
I “ tp0, 0, q, . . . , p0, d ´ 2q, pad, bdqu. As is shown, the choice pad, bdq “ p1, ϵdq gives the larger
of the two singular values for the choices pad, bdq “ p1, 0q and pad, bdq “ p1, 1q and as such it is
always the case that κ´1pT rtp0, 0q, . . . , p0, d ´ 2q, p1, ϵdqusq ą 0.

hence T rp0, 0q, . . . , p0, d ´ 2q, p1, ϵdqs is invertible when ϵd is odd and when d ‰ 2 mod 4. It re-

mains to show that |Gp1, 1, dq| ‰ 0 when d ‰ 0 mod 4. Fortunately, it was shown in [90] that

Gp1, 1, dq “
?
d
1 ´ i´d

1 ` i´1
(3.7.21)

Thus T rp0, 0q, . . . , p0, d ´ 2q, p1, ϵdqs is invertible when ϵd is even and when d ‰ 0 mod 4.

We would of course like to do better than removing a single linear frequency. The previous
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example suggests that it should suffice to consider the inclusion of a single chirp frequency,

so for simplicity we will consider sampling schemes of the form Id “ tp0, b1q, . . . , p0, btqu Y

tp1, b1q, . . . , p1, bsqu where t “ rd{2s and s “ td{2u so that t ` s “ d. In the case where d is

odd we will thus have one additional chirp zero sample, and we are restricting to a set of linear

frequencies Bd “ t1, . . . , btu of size |Bd| “ rd{2s. A useful family of such schemes is given by:

Spd,mq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

tpl, 2mk ` jqu l“0,1
k“0,...,td{2mu´1

j“0,...,m´1

d “ 0 mod 2m

tpl, 2mk ` jqu l“0,1
k“0,...,td{2mu

j“0,...,m´1´ηpd,m,l,kq

d ‰ 0 mod 2m

(3.7.22)

Where if d “ 2mq` r for 0 ď r ă 2m and 2m´ r “ 2u` v for v either 0 or 1 then ηpd,m, l, kq

is given by

ηpd,m, l, kq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 k ă td{2mu

u k “ td{2mu, l “ 0

u ` v k “ td{2mu, l “ 1

(3.7.23)

This somewhat complicated definition arises from wanting to sample exactly d points. In partic-

ular, if we allow 2 choices for l (0 or 1), rd{2ms choices for k (|t0, . . . td{2mu ´ 1u| “ rd{2ms

when d “ 0 mod 2m and |t0, . . . td{2muu| “ rd{2ms when d ‰ 0 mod 2m), and m choices for

j (j “ 0, . . . ,m ´ 1) then the total number of samples is 2mrd{2ms. If d “ 2mq ` r then the

number of extra samples is 0 when r “ 0 and 2mrd{2ms ´ d “ 2mpq` 1q ´ 2mq´ r “ 2m´ r

when r ą 0. If 2m ´ r “ 2u ` v then we remove u samples from k “ td{2mu and l “ 0 and

u` v samples from k “ td{2mu and l “ 1, thus removing a total of 2u` v “ 2m´ r samples to
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obtain a total of d samples. The sampling schemes Spd,mq are shown in Figure 3.5 for d “ 20

and m “ 1, 2, 4, 8.

Figure 3.5: The sampling scheme Spd,mq samples l “ 0 and l “ 1 equally when d is even, with
one additional sample granted to l “ 0 when d is odd. When m is 1 only even frequencies are
sampled, when m is 2 only frequencies that are equal to 0 or 1 modulo 4 are sampled, etc.

The inverse condition numbers resulting from the sampling schemes Spd,mq are shown

in Figure 3.6. Interestingly, as m increases the largest value of κ´1pT rSpd,mqsq decreases but

the period with which κ´1pT rSpd,mqsq vanishes increases. In particular when m “ 1 we find

that κ´1pT rSpd,mqsq vanishes for d “ 0 mod 4 “ 0, for d “ 0 mod 8 when m “ 2, for

d “ 0 mod 32 when m “ 4, and for d “ 0 mod 128 when m “ 8. A reasonable assumption

is therefore that the sampling scheme Spd, dq “ tp0, 1q . . . , p0, rd{2squ Y tp1, 1q . . . , p1, td{2uqu
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will always have κ´1pT rSpd, dqsq ą 0. While this appears to be the case (see Figure 3.7 for a log

plot of κ´1pT rSpd, dqsq) the inverse condition number decays exponentially, too quickly for this

scheme to be useful for large d (for example κ´1pT rSp100, 100qsq “ 1.04743 ¨ 10´12).

Figure 3.6: Plotted above is κ´1pT rSpd,mqsq for m “ 1, 2, 4, 8.
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Figure 3.7: Log plot of κ´1pT rSpd, dqsq demonstrating that T rSpd, dqs is always invertible but
with an exponentially increasing condition number.

At this point we will relax the requirement that M “ d and consider the family of sampling

schemes:

Spd,m, qq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

tpl, 2mk ` jqu l“0,...,q´1
k“0,...,td{2mu´1

j“0,...,m´1

d “ 0 mod 2m

tpl, 2mk ` jqu l“0,...,q´1
k“0,...,td{2mu
j“0,...,m´1

d ‰ 0 mod 2m

(3.7.24)

Note that Spd,m, 2q is only equal to Spd,mq when 2m divides d, if d ‰ 0 mod 2m and d “

2mq ` r for 1 ď r ă 2m then Spd,m, 2q contains an extra 2m ´ r sample points in addition to

those of Spd,mq. In general |Spd,m, qq| “ qmrd{2ms.

As one would expected and as is shown in Figure 3.8, increasing q increases κ´1pT rSpd, d, qqsq.
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Moreover, Figure 3.8 shows that increasing the number of chirp frequencies both delays the decay

of and reduces the decay rate of κ´1pT rSpd, d, qqsq as d increases. Indeed, as we can see from

Figure 3.9 κ´1pT rSpd, d, dqsq does not decay at all as d increases, but instead oscillates between

1 when d “ 0 mod 2 and a value that is approximately 0.471 when d “ 1 mod 2. Note that

|Spd, d, dq| “ Opd2q, thus it remains an interesting open problem to obtain a sampling scheme

that grows as Opdq and whose associated inverse condition number does not decay. Nevertheless,

it is thus possible to sample fewer linear frequencies and compensate by sampling a greater num-

ber of chirp frequencies and obtain a stably invertible sub-sampling of the discrete chirp Fourier

transform for any value of d.
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Figure 3.8: Plotted here is the inverse condition number κ´1pT rSpd, d,minpq, dqqs for q “

2, . . . , 10 and d “ 2, . . . , 100. Note that q cannot exceed d since only d chirp frequencies are
available.
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Figure 3.9: Plotted here is the inverse condition number κ´1pT rSpd, d, dqsq. Evidently
κ´1pT rSpd, d, dqsq “ 1 when d is even. The value of κ´1pT rSpd, d, dqsq for d odd appears
to approach a limit close to 0.471.
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