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Foreword

The structure of this thesis is divided into three chapters examining distinct mathematical
problems: the U(r) phase retrieval problem, the problem of normalizing flow expressivity, and
the problem of higher order (and redundant information) Fourier transforms. While these topics
are distinct, they possess some striking mathematical connections. For instance Chapters 1 and
3 both examine what one might call “matrix frame theory,” albeit from different perspectives:
In Chapter 1 we ask the question of which generalized frames for C"*" of the form (A;)7., <
Sym(C") are sufficient to recover an arbitrary matrix z € C"*" from measurements of the form
({zz*, A;j))7,, up to its orbit under right multiplication by U(r). In doing so, we also give a
measure, in terms of the lower Lipschitz constant of a particular analysis map, of how good one
can expect said recovery to be in the presence of noise for a given choice of generalized frame. In
Chapter 3, meanwhile, we ask the question of what additional information is gained by extending
the discrete Fourier basis (e){_ with (e}); := €27/*/4 for C? to a quadratic Fourier frame of
the form (qx,)¢,_; with (gy); := €>™(*+*)/d (noting that the d? quadratic Fourier coefficients
of v € C? comprise the matrix [{gx;, v)]{,_; € C**%). In this context we show that there exist
sub-sampling schemes in which the loss of linear frequency information can be compensated
for by information from quadratic frequencies, and as in Chapter 1 provide an estimate of the
reconstruction error in the presence of noise.

The mathematical thread connecting Chapters 1 and 2 is not frame theory but differential

geometry. In Chapter 1, computation of the lower Lipschitz bounds of the analysis maps « and

il



[ necessitates a foray into the theory of Whitney stratification of semi-algebraic varieties (sets
defined by finite Boolean combinations of polynomial inequalities). This allows computation of
the relevant lower Lipschitz constants to be “stratified” over sets that are manifolds rather than
semi-algebraic varieties, which in turn allows the problem to be fully linearized. In somewhat of
a happy accident, we were also able to show that the family of Riemannian metrics giving rise
to one of the distance metrics of interest was “compatible” across the stratification of C"*" /U (r)
—1in a sense defining a Riemannian geometry on the entire semi-algebraic variety. Meanwhile in
Chapter 2 we lean heavily on the basic machinery of differential geometry, employing normal-
izing flows not as global diffeomorphisms but instead as chart maps in a suitably chosen atlas.
Moreover, we similarly localize the technique used in [1] of post-composing normalizing flows
with conformal transformations in order to handle low dimensional manifolds. We show that
doing so is natural by appealing to the theory of locally conformally flat manifolds.

Finally one would be remiss not to note that both frame theory and more generally har-
monic analysis (Chapters 1 and 3) and generative machine learning (Chapter 2) are different
philosophical approaches to the same problem, namely to provide representations of functions
that are both sufficiently expressive (can accurately represent a rich class of functions) and have
nice properties (parameter efficiency, robustness to noise or partial loss of the representation, etc).

This thesis includes ongoing work and work already submitted for publication. In particu-

lar:

1. Chapter 1 was a project with Radu V. Balan. An abridged version of Chapter 1 was submit-
ted for publication to the SIAM Journal of Matrix Analysis and has passed the first round

of revisions. The full paper can be found on aryiv at https://arxiv.org/abs/2109.14522v2.

il



2. Some of the results in Chapter 1 related to Lipschitz analysis were presented at the Approx-
imation Theory 16 conference at Vanderbilt University in May 2019. The full presentation

can be found at https://cbartondock.github.io/plain-academic/slides/AT16.pdf.

3. Results from Chapter 1 related to differential geometry of S™%(C™) and criteria for matrix
frames to be U(r) phase retrievable were presented at the AMS Fall Western Virtual Sec-
tional Meeting Special Session on Harmonic Analysis: Geometry, Frames, and Sampling
in October 2021. The full presentation can be found at https://cbartondock.github.io/plain-

academic/slides/AMSFall2021.pdf.

4. Chapter 2 was a project with Radu V. Balan, Sahil Sidheekh, Tushar Jain, and Maneesh
Singh. Chapter 2 was accepted as a conference paper for the 2022 conference Uncertainty
in Artificial Intelligence (UAI) that will be in Eindhoven in August 2022. Chapter 2 is also

available at https://arxiv.org/abs/2203.11556.

5. Chapter 3 is an ongoing project with Radu Balan and Yonina C. Eldar.
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Chapter 1:  Generalized Phase Retrieval

1.1 Introduction

Problems of “phase loss” type — in which a signal must be reconstructed from only the mag-
nitude of its Fourier transform or Fourier coefficients — are ubiquitous in applications, appearing
for example in inverse scattering problems, thin film optics, x-ray crystallography, electron mi-
croscopy, astronomy, speech processing, and pure state quantum tomography [5]. The intuitive
reasons for this ubiquity are essentially two-fold, the first of which will be familiar to anyone
who has studied electromagnetism and optics. Loosely speaking, if a field is described by a lin-
ear partial differential equation that admits travelling waves as solutions (for example Maxwell’s
equations and subsequently the Helmholtz equation), then data about “near field interactions” are
encoded in the Fourier transform of the “far field,” that is to say the state of the field sufficiently
far from the interaction relative to some intrinsic scale of interaction [5]. This principle is perhaps
most directly apparent in the Fraunhofer diffraction formula, which describes the diffraction pat-
tern produced by an aperture A4 (a compact, hence measurable subset of R?) when both the source
of the incident wave and the measurement apparatus are sufficiently far from the aperture relative

to its size. Specifically, the Fraunhofer diffraction formula gives the value of a component of the

'In collaboration with Radu V. Balan. This work was submitted for publication in somewhat shortened form to
the STAM Journal of Matrix Analysis.



electromagnetic field U at point z as:

U(x)oc J 2irvgy — F1](x) (LL1)
A

This formula and analogous results for lenses and other near field interactions allow one to predict
and in some cases to analytically compute the diffraction pattern produced, but in experimental
physics one is often tasked with the opposite problem: to analyze the near field interaction us-
ing measurements of the diffraction pattern (or scattering cross section) it produces. The second
reason the phase retrieval problem appears in optics and in inverse scattering problems is thus
practical: It is usually only possible to measure the magnitude of an oscillating field, not its
phase, at different points in space. Indeed, optical instruments typically measure photon flux
which is proportional to the squared magnitude of the electromagnetic field [5]. Similarly if one
measures the cross sectional density produced by scattering quantum particles off of an interac-
tion potential, then one can infer only the absolute square of the quantum wave function. Thus
if one seeks information about the near field interaction (for example the dielectric properties
of a lens or the approximate scattering potential) one must attempt to reconstruct the function
encoding the near field interaction from the absolute value of its Fourier transform. In practice,
one is of course further restricted to making finitely many measurements of the field, which leads

directly to the theory of discrete phase retrieval.

Further interest in the phase retrieval problem arose in the context of speech recognition
and speech processing. It is known that the human ear is quite reliably “phase deaf,” and as such

one should not expect the linguistic meaning of an audio waveform containing human language



to depend on its phase. This intuition is made quantitative in the “cepstral analysis” of speech

signals in which phase retrieval plays a key role [6].

1.2 Variants of the phase retrieval problem

1.2.1 The continuous phase retrieval problem

The most natural general setting for the continuous phase retrieval problem arrives vis a vis
the theory of tempered distributions. Because it is most relevant to the phase retrieval problem we
restrict ourselves to a recapitulation of the one dimensional theory of distributions, but one may
extend it to tempered distributions on R™ without encountering serious theoretical difficulties. In
order to include all the usual variants of the phase retrieval problem we will also allow complex
valued Schwartz functions and tempered distributions, in contrast with the usual presentation of
distribution theory. In particular, let K € {R,C}. Then f € C*(R — K) is termed rapidly
decreasing if forall N e N

lim |z|N|f(x)] =0 (1.2.1)

|| —c0

In this case the Schwartz class Sk(R) is given by

Sk(R) = {f € C*(R — K) | 0% f is rapidly decreasing for all k = 0,1, ...} (1.2.2)

The Schwartz class is equipped with the family of norms || - ||, s defined to be ||f||los =

sup,er |7|%10% f(z)] for f € Sk(R) and a, 3 € N (the natural generalization of || f||.5 to R"



yields only a family of semi-norms, but they nevertheless define a locally convex topology on
Sk(R) and can be upgraded to a family of norms as needed). As such, one defines the tem-
pered distributions Sy (R) as the continuous dual of Sk(R), that is to say a K-linear functional
¢ : Sk(R) — Kiis an element of Si(R) if and only if for any sequence (f,,)m=0 < Sk(R) such
that lim,,, . || fin||a,s — O for all a, 5 € N we have lim,,_,, |¢(fn)| — 0. Note that one may
restrict from S¢(R) to S{(R) in the following sense: A distribution ¢ € SE(R) is considered to
be real valued if for every real valued test function f € Sg(R) one has ¢(f) € R. Finally we need
the definition of the Fourier transform for a tempered distribution: F : S¢(R) — S’(R) is defined

via the Fourier transform on Sk (R) and the Parseval identity as:

Fl¥1(9) := ¥(Flo]) (1.2.3)

Where convenient we will also write ¢/ for F[¢]. If ¢» € L'(R) (permitting a slight abuse of
notation in identifying ¢ € L'(R) with the tempered distribution ¢ +— SR 1édr) then of course
Y(w) = (5 e ?™*)(x)dz is the usual Fourier transform. The phase retrieval problem can then

be stated as follows: Recover

peBc{peS(R)|pe Li (R—K)}/ ~ (1.2.4)

from |F[v]| where ¢y ~ 1) if and only if there exists a unimodular scalar A € K such that
1 = Mby. If K = Rthen A\ € {1, —1}, whereas if K = C then A € U(1) =~ {e? | § € [0,27)}.
The quotienting out of the overall phase factor A is necessary because the Fourier transform is

K-linear, and thus any constant phase factor would not appear in |g§\) The technical requirement



that ¢ € Llloc(R — K) in combination with the Fourier inversion theorem has the effect of fully
determining ¢ once arg(ngS) is known almost everywhere, thus the problem becomes to determine
arg(¢) from |@| [7]. It should be noted that the continuous phase retrieval problem is usually

treated in the complex case, however we include the real case above because its discretization is

of interest.

With the problem thus stated, it is clear that the recovery of ¢ € B is only possible if the
collection of functions B is sufficiently restrictive, since for arbitrary such 1 the phase and magni-
tude of the Fourier transform are independent. Indeed, if 7 € L?(R) and ¢ = F~![r(w)e~?7P«)]
for any p € C*(R) then |¢| = |r|. An example of B for which recovery is possible is to further
restrict to functions having having compact support or supported on the half line R [7]. This
particular setup is highly relevant to optics problems, in which B is typically taken to be a sub-
set of functions having compact support (representing the interaction region of the lens or other

impediment to the travelling wave solution).

1.2.2  The discrete phase retrieval problem for Fourier measurements

Obtainable from the continuous phase retrieval problem but of distinct theoretical and prac-
tical import is the discrete phase retrieval problem for Fourier measurements. In particular if we

take

B={> zd(x—x):zel’(IK)} (1.2.5)

iel



where ¢ is the Dirac distribution, and [ is a countable index set, then for ¢ € B one has

|w)| = | D e >z (1.2.6)

el

If for example = {0,..., N — 1}, z; = i/N, and |¢| is only measured for w € {0,..., N — 1}

then the problem becomes to reconstruct z € KV / ~ from measurements of the form

N—-1
(k)| = | Y] zne ™ MIN| = | Z (1.2.7)

=0

S

where Z € CV is the discrete Fourier transform of z. Let (e;)"; € CV with (e;), = ™/~ be

the discrete Fourier basis for CV. Then the discrete phase retrieval problem may be formulated

as finding an inverse to the following function:

a:K¥/~— RV

Cex: 2)cl (1.2.8)

alz) =

[ens 2)cl



Because the map « is not everywhere differentiable, it is often useful to consider instead its

entry-wise square:

B:KN/~ > RV (1.2.9)
[(er, z)cl®

B(z) = ; (1.2.10)
e, 2)c|?

One can also consider the problem for / countably infinite, but in many applied contexts the
discrete case suffices since one has access to only finitely many measurements and can reasonably
assume that (5 is composed of only finitely many frequencies. Moreover, it is known that if [ is
countably infinite then the phase retrieval analysis map « is never lower Lipschitz with respect to

the natural distance (even allowing for non-Fourier frames) [8].

1.2.3 The discrete phase retrieval problem for arbitrary measurements

The formulation of the discrete Fourier phase retrieval problem in (1.2.8) generalizes read-
ily to non-Fourier measurements, and in particular to frames. Recall that if H is a separable
Hilbert space then a countable subset { f;},c; — H is a frame for H if there exist A, B > 0 such

that for every w € H

Allwl3 < > [w, forl* < Bllwll} (1.2.11)

el



For a finite dimensional Hilbert space the notion of a frame is identical to that of a spanning set.

A frame for K™ given by {f;}!", < K" is called a phase retrievable frame if

a:K'/ ~—R™

NERE (1.2.12)

(s 2 |

is injective (or equivalently if 3 is injective). Note that if K = R one typically restricts to real

measurement vectors as well, and as such considers measurements of the form ay,(2) = |{fx, 2)r]|

rather than ’<§R[fk], Z>R — Z<%[fk], Z>R’.

1.2.4 The group theoretic phase retrieval problem

In this chapter we will primarily analyze a further generalization of the discrete phase
retrieval problem to non-abelian phases belonging to U(r). It is worth noting, however, that
this problem belongs to a large class of interesting group-theoretic phase retrieval problems.
Motivated by the fact that for K = R we have that (3;,(z) = |[{f, 2)|* may also be written as
Be(2) = {(fiff, 22" )r and that analogously for K = C we have (i(2) = {fifF, 22%)c, we
may generalize from f;, f] and f; f;* to arbitrary elements of Sym(R™) (resp. Sym(C")) and re-
interpret 5 as the composition of the resulting linear measurements with a non-linear embedding
7(z) = 22T (resp. m(z) = 22*) into the space of symmetric operators that encodes the phase
loss. By explicitly choosing the embedding to have a particular group of invariances, we can

significantly extend the notion of “phase ambiguity” to any unitary group action on a Hilbert



space.

For now we content ourselves to the finite dimensional case: Fix finite dimensional Hilbert
spaces H (real or complex) and K (real), a group GG, and a unitary representation of G on H —
that is to say a linear group action v : G x H — H that preserves || - ||. Denote by ~ the
equivalence relation on H such that = ~ y if and only if there exists g € G so that ¢ (g, z) = y.
Fix further an embedding 7 : H — K such that for z,y € H we have m(x) = 7(y) if and only
if # ~ y. Then a finite collection A = {A;}7., < K is called (G, ) phase retrievable (we will
simply say G phase retrievable when the embedding in question is clear) if the following map is
injective:

B:H/G — R™
(1.2.13)

Bi(2) = (A, m(2))k
Note that if 7 is surjective (or in factif X' = A, := Ran(n)—Ran(n) = {w(x)—7(y) | z,y € H})
then the notion of a GG phase retrievable collection corresponds with the notion of a frame for K
(and in general any frame for K is automatically G phase retrievable). For this reason, the
more interesting case is when A is a proper subset of K and the collection A is not a frame
for K. As we’ll see, in many cases it is not necessary for A to be a frame for K in order to
be phase retrievable — the problem would hardly be very interesting if it were. Indeed, in the
U (r) phase retrieval problem (in which H = C"*", K = Sym(C"), G = U(r), ¥(U,z) = zU
and 7(z) = zz*) it can be shown that when r < n/2 a generic collection A of cardinality
|A| = 4nr — 4r? < n? is U(r) phase retrievable, whereas a frame for Sym(C") would consist of

at least n? elements [9].



Some interesting variants of this problem are:

H =R", K = Sym(R"), G = O(1) = {1,—-1}, ¥(\,z) = Az, and 7(x) = z2T. In
this case it was shown in [10] that a collection of the form { f; f/'}72, will be O(1) phase
retrievable if and only if {f;}72, has the so-called complementing property, that is to say

that for every I < {1,...,m} either {f;} e or {f;},e;c spans R".

H=C" K =Sym(C"),G =U(1) = {e? |0 € [0,27)}, ¥(\, 1) = Az, and 7r(z) = za*.
It is shown in [11] that a collection of the form {f; fj5}7., will be U(1) phase retrievable

if and only if for all v € C" with [[u||; = 1 one has spang{f; fu}", = spang{iu}~.

H = C"" withr < n, K = Sym(C"), G = U(r), ¥(U,z) = zU, and 7(x) = zx*.
It is shown in Theorem 1.8.13 that a collection {A;}7", = Sym(C") will be U(r) phase
retrievable if and only if for all U € C"*" having orthonormal columns spang{A;U} =
{UK | K* = —K}*. This result generalizes both to r > 1 and to non rank 1 positive

semidefinite frame matrices the analogous result in [11].

H = R™" withr < n, K = Sym(R"), G = O(r) ¥(R,x) = xR, m(x) = xx’. This
problem, as far as I am aware, has not been studied. I would conjecture, however, that
it differs little from the case above, namely that {A;}72, < Sym(R") will be O(r) phase

retrievable if and only if for all U € R™*" having orthonormal columns spang{A4;U} =

(UK | KT = —K}*,

e H=C",K=R",G=U(1) x - xUQ),¥((0,...,0,),r) = diag(e’®r, ..., e")x,
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n(z) = diag(xz?) = : |. In this case A, = R", that is any element of R” can

be written as 7(z) — 7(y) for some z,y € C”, hence the only U(1) x --- x U(1) phase

retrievable subsets of R™ are the frames for R™.

1.2.5 Lipschitz analysis of the phase retrieval problem

If one wishes to “make quantitative” the question of phase retrievability, one option is to
strengthen the requirement that the measurement map be invertible to a requirement that it be
lower Lipschitz, and then compute its lower Lipschitz constant. Doing so of course requires
choosing a metric on H/G. Given the generalized phase retrieval problem set out in Section

1.2.4 there are essentially two reasonable choices for metrics on H/G:

(1) The induced metric p, (induced by 7 and the norm distance on K):

pr: H/Gx H/G—R
(1.2.14)

pr(,y) = l[m(x) —7(y)l|x
(i1) The natural metric D:

D:H/Gx H/G—R
(1.2.15)

D(z,y) = inf ||z — (g, y)||n
geG
The fact that the natural metric is symmetric and obeys the triangle inequality follows di-

rectly from the fact that ) is assumed to be linear and norm preserving on H and that G is

11



a group. If G' is compact then of course D(x,y) = mingq ||z — ¥(g, y)||u-

We note that if the set A, := Ran(m) — Ran(n) is closed in K then any G phase retrievable
collection {A;};e; = K will give rise to a § analysis map that is lower Lipschitz with respect to
the induced distance since if a is the square of the lower Lipschitz constant for 3 : (H, p,) — R™

then

o 1IB@) = Bl

g = 1
P we [r(e) — 7 (y)llx
(12.16)
— ; ) 2
= min > [(A), W]
Wil 21 i

Noting that for K finite dimensional A, n B;(0) is closed and bounded and hence compact.
Thus if ap = 0 there exists Wy € A, n B1(0) such that 0 = ., [(A;, Wo)k|*. The fact that
Wy € A, means that there exists xg,yo € H such that Wy = m(zg) — 7(yo), and the fact that
||[Wol|| = 1 implies that xy # yo. Thus plugging Wy = m(zo) — 7(yo) into (1.2.16) yields that
B(zo) = B(yo), contradicting the fact that {A;},c; is G phase retrievable. Thus ag > 0 when A is
G phase retrievable. The converse is obviously true, so computation of ag, while potentially very
difficult, gives us a way of checking whether a given collection A < K is G phase retrievable.
This fact will eventually be employed to prove Theorem 1.8.13, providing equivalent criteria for

a collection A < Sym(C™) to be U(r) phase retrievable.

1.3 The U(r) phase retrieval problem

Let H = C™" with n > r be the Hilbert space of tall matrices with complex entries,
equipped with the real inner product (z, w)r = Rtr{z*w}, where z* denotes the transpose com-
plex conjugate of z (the hermitian conjugate). We denote by (z,w)c = tr{z*w} the complex

12



inner product and by Ran(z) = {zu|u € C"} the range of z as an operator z : C" — C". Let C*"
be the open subset of C"*" consisting of full rank tall matrices. For p > 1 we denote by ||z||,, the
pth Schatten norm of z, that is to say the [, norm of the singular values of z. The pseudo-inverse
of z will be denoted z'. Let U(r) be the Lie group of r x r matrices with entries in C satisfying
U*U = |. We denote by C"*"/U(r) and C}*"/U(r) the set of equivalence classes in C"*" and
C*" respectively under the equivalence relation z ~ w if and only if there exists U € U(r) such
that = = wU. Let S”9(C") denote the set of symmetric operators (hermitian matrices) on C"
having at most p positive and ¢ negative eigenvalues, and S’p’q(C") the set of symmetric oper-
ators (hermitian matrices) on C" having exactly p positive and ¢ negative eigenvalues. The set
C™*" /U (r) may then be identified with S™°(C™) and C"*" /U (r) with S™°(C") via Cholesky de-
composition. Being a finite dimensional space, a frame for C"*" is a collection { f;}*; = C"*"
that spans C"*". In particular, { f; L, is frame if and only if there exist A, B > 0 (called frame
bounds) satisfying Al[z|[3 < 27, [(f;,2)r[* < Bl|2|]3 for all z € C"*". This condition may
also be written A|[2|[5 < }7" (A;, 22%)r < B[2|[5 for all z € C**" where A; = f;f;. Using
this fact, we may extend the concept of a frame for C"*" to collections of symmetric matrices
{A;}7L, = Sym(C"). Fix a frame for C"*", then that frame is called generalized phase retriev-
able if the following map is injective:

B:CV/U(r) —> R
(1.3.1)

BJ(Z) = <Aj7zZ*>R7 ] = 17"'7m

This definition is in agreement with the generalized phase retrieval problem laid out in [12]

for the case 7 = 1. Note that if A; = f;fF then 8;(z) = |[f¥2]|3. A breadth of literature
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exists on the classical phase retrieval problem where r = 1 and H = C" or H = R", see for
example [10] for an explicit construction of Parseval phase retrievable frames and [13] for a proof
of the stability of finite dimensional phase retrievability under perturbation of the frame vectors.
In contrast to the finite dimensional case, it is shown in [8] that infinite dimensional phase retrieval
is never lower-Lipschitz. Probabilistic error bounds for the case of noisy phase retrieval may be
found in [14] for frames sampled from a subgaussian distribution satisfying a so called ‘““small
ball” assumption. Efficient algorithms exist for doing classical phase retrieval (for example via
Wirtinger flow as in [15]), as well for constructing frames with desirable properties (nearly tight
with low coherence) as in [16]. See for example [17] for an analysis of the stability statistics for
random frames and [18] for the interesting result that a large class of “non-peaky” vectors (so
called p-flat vectors) are recoverable even when frame vectors are chosen as Bernoulli random
vectors, a case in which phase retrieval is well known to fail for arbitrary signals. Recently
several advances have been made in understanding natural generalizations of the problem to
arbitrary symmetric measurement matrices [12], unifying the problem of phase retrieval with that
of fusion frame reconstruction. Lipschitz stability questions for the generalized phase retrieval
are analyzed in [19]. The generalized phase retrieval problem in the case » = 1 has proven
amenable to efficient implementations of gradient descent [20] and a probabilistic guarantee of
global convergence of first order methods like gradient descent has been obtained in [21] for

O(nlog®(n)) frame vectors. In accordance with the classical phase retrieval we also define the o
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map as the entry-wise square root of the beta map (here we require that each A; > 0):

a:C™"/U(r) - R™
(1.3.2)

a;j(z) = (Aj,22%)2, j=1,....,m
Note that if we write A; = f; f7 using Cholesky decomposition then a;(z) = [|f z||2. In this
paper we will study the global and local Lipschitz properties of these two maps in the case that the
frame is generalized phase retrievable. In particular, we analyze the following (squared) global

Lipschitz constants:

_ 2 _ 2
z,yeCn>" ||ZL’ZL‘ — Yy ||2 z,yeC™*" H(L’l’ — Yy HQ
T#Y T#Y
_ 2 _ 2
A= inf ||04(961) Oé(y)||12 . Byi= sw ||04(561) Oé(y)||12 : (13.4)
e (o)t — (yy)H 3 s [[at)E — ()

In doing so we will employ several distance metrics on C"*” /U (1) (equivalently on S™°(C")),
the relationships between which are contained in Theorem 1.6.4. The Lipschitz properties of «
and /3 are intimately related to the geometry of S™°(C"), which is the subject of Theorem 1.7.4.
Theorem 1.7.4 continues the results in [22] on the geometry of the n x n positive definite matrices

P(n). The main contributions of this work are thus:

¢ In Section 1.6 we introduce the novel distance

d(z,y) = \/(Hﬂfl\% +1lyll3)* — 4|yl I} (1.3.5)

on C"*"/U(r) and in Theorem 1.6.4 provide optimal Lipschitz constants with respect to
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natural embeddings of (C"*"/U(r),d) into the Euclidean space (Sym(C"),|| - ||2). This
new distance metric allows us in 1.8.5 to compute local lower Lipschitz constants for the
£ map generalizing those in Theorem 2.5 of [23]. 1.6.4 also provides optimal Lipschitz

constants with respect to natural embeddings of (C™*"/U(r), D) into (Sym(C"), || - ||2) for

the Bures-Wasserstein distance D(z,y) := +/|z[]3 + [|y|[3 — 2[|z*y] ..

In Section 1.7 Theorem 1.7.4 generalizes Theorem 5 in [22] by providing the geometry
not just of manifold of positive definite matrices P(n) but of the algebraic semi-variety
SmO0(C™). In particular we manifest a Whitney stratification of S™°(C™), obtain the Rieman-
nian metrics of the stratifying manifolds, and show that this family of metrics is compatible
across the strata in the sense that geodesics of lower strata are limiting curves of geodesics
in higher strata. In particular this proves that the geodesic in S"°(C") connecting two ma-
trices of rank &£ < r is completely contained in gk’O(C”). This stratification of the low rank
positive-semidefinite matrices is crucial in simplifying the computation of the global lower

Lipschitz bounds for 5 and « in Theorems 1.8.5 and 1.8.8 respectively.

In Section 1.8 Theorem 1.8.5 provides an explicit formula for the global lower bound a,
as the minimization over U(n) of the (2nr — r?)th eigenvalue of a family of matrices
parametrized by U(n). Theorem 1.8.5 also uses the distance d to provide a generalization
of Theorem 2.5 in [23] to the case > 1 and shows that the analog QZ of R(&) can be used
to control ag to within a factor of 2. We also show in Theorem 1.8.8 that the corresponding
generalization of Theorem 2.2 in [23] to the case r > 1 is false, namely that Ay = 0 when
r > 1. Thus in the case > 1 the more recently introduced 5 map (the entry-wise square of

the o map) is a more natural and well behaved analysis map for generalized phase retrieval,

16



owing primarily to the fact that it lifts to a linear map on the low rank positive semi-definite
matrices. It should be noted that Theorem 1.8.8 does not rule out the possibility of a better
distance metric with respect to which « is globally lower Lipschitz. Finally, in Theorem
1.8.13 we provide novel conditions for a frame {A;}72, for C**" to be generalized phase

retrievable.

We caution the reader that throughout the paper the scalar product (-, -)g is a real inner
product, however z* denotes the conjugate with respect to the complex inner product (-, -)c. We
also note that the norm ||z||, for p > 1 is the pth Schatten norm of z € C"*" seen as a C-
linear operator from C" to C". Hence the norm || - ||, while it refers to the Schatten 2 norm,
is equivalently given as ||z|]s = /{2, 2)r = 1/{z,2)c. If 2 were instead seen as an R-linear
operator from C” to C" then the resulting Schatten p norm would be amplified by a factor 2

since the multiplicity of each singular value would double.

1.4 A review of quantitative phase retrievability

The question of phase retrievability criteria for frames for R” was addressed in [10], in
which it was shown that a frame F is phase retrievable if and only if it satisfies the “comple-
menting property,” that is if and only if for every subset Z — F either Z or F\Z spans R". It was
moreover shown in [10] that if m < 2n — 1 then a frame for R” of cardinality m will not be phase
retrievable and also that a generic frame for R" of size m > 2n — 1 will be phase retrievable —
that is to say the set {F = {f1,..., f} © R™|.F is phase retrievable} will be dense in the Zariski
topology when m > 2n — 1. The question of phase retrievability criteria can be made quanti-

tative by asking for which frames the analysis maps « and 3 are lower Lipschitz with respect
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to some natural distance metrics, and computing their lower Lipschitz constants. Intuitively, a
frame is phase retrievable if and only if « (resp. ) is injective, thus it is natural to analyze (for
a given frame) the lower Lipschitz constant of « (resp. (), which measures“how” injective o
(resp. () is. In answer to this refinement it was shown in [24] that for the & map and the distance

p(e,y) = minf[|z — ylla, [z + yll2} we have:
Theorem 1.4.1. (See [24] Theorem 4.3.) For any index set I < {1,...,m} let F[I| = {fx|k € I}

and let o3[I] = )‘max(ZkeI fkf;;") and o2 [I]| = Amin(ZkeI fkf,j‘>. Then

la(z) = a()ll3

Ay = inf = min o?[I] + o2[I€ "
: Yy p(z,y)? {1, m) all] + oy 17] (1.4.1)

This result implies in particular that for a phase retrievable frame for R” the o map is
globally lower Lipschitz. An analogous result was given in [24] for the S map and the distance

|z = yy" |1

Theorem 1.4.2. (See [24] Theorem 2.1.) Let { f; 17", be a phase retrievable frame for R™ and let

R :R" — Sym(R") be given by R(x) = 3| [(x, [;)[*f;f]. Then

e 8@ - B

agp := in = min M\, (R(z)) >0 1.4.2
0 I gt g T R M(A) (142)
TAY [[z|l2=1

Regarding the complex case the following phase retrievability criterion was obtained in
[11]:
Theorem 1.4.3. (See [11] Theorem 4.) Let {f; i1 be a frame for C". For u € C" denote
S(u) = spang{ f; fiu}jL,. Then the following are equivalent:
(i) The frame {f;}7, = C" is phase retrievable.
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(ii) dimg S(u) = 2n — 1 for every u € C™\{0}.
(iii) S(u) = spang{iu}* for every u € C" € \{0}.

In connection to this paper we note that the above result is extended to the case of gen-
eralized retrievability of frames for C"*" by Theorem 1.8.13. The quantitative lower Lipschitz

variant of Theorem 1.4.3 was obtained for the 3 analysis map in [23], in which it was proved that

for the beta map:

Theorem 1.4.4. (See [23] Theorem 2.3 and Theorem 2.5.) Let {f;}7, be a phase retrievable

frame for C". Define R : R*™ — Sym(R*") via R(¢) = Dije D667 D, where ®; = ¢;0] +

Rf; 0 —I
J qzﬁjgzﬁjTJ T, o, = and J is the symplectic form . Then

S I 0

_ 2
w o= inf WD ZPWIL iy (R(€) > 0 (1.4.3)
sy ||z — yy*([} R

The connection of the above to Theorem 1.4.3 is that the null space of R (&) includes the

realification of spang{i{} for every . Theorem 1.4.4 is extended to the case of generalized phase

retrievability of frames for C"*" by Theorem 1.8.5.

1.5 Applications of Phase Retrieval

1.5.1 Phase Retrieval in Optics: Fraunhofer diffraction

Historically, one of the first applications of phase retrieval was to the inverse problem of

inferring an object’s structure from the diffraction pattern it generates when it interacts with an
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incident electromagnetic field. It is a fundamental property of Maxwell’s equations that in the
“far field,” when the distance from the interfering object is large compared to the object’s size,
the structure of the object will be encoded in the Fourier transform of the field. Following [2] we
re-cap this principle in its most directly apparent form in the Fraunhofer diffraction regime, but it
is quite broadly applicable. For the purposes of this example assume we have a monochromatic

field
V(z,t) =U(z)e ™ (1.5.1)

Here V' is a component of the electric (or magnetic) field. In this case the wave equation ¢ =202V —

AV = 0 reduces to Helmholtzs’ equation
(K> +A)U =0 (1.5.2)

Where here k£ = 2 = 27” is the wave number. We would like to obtain a representation formula
for U(z) satisfying (1.5.2) in terms of its values on a surface containing z. To this end, consider

two solutions U and U’ of (1.5.2) and let V' < R3 be a compact, connected volume with boundary

0V and employ Green’s divergence theorem to the vector field UVU’ — U’V U to obtain:

J UAU' — U'AUAV = § Ul VU = U'( - V)UdS (1.5.3)
1%
1%

This is of course Green’s second identity, with 7(y) being the outwards pointing unit normal

vector to the surface 6V at point y € 6V. If we now substitute AU’ = —k?U’ and AU = —k*U
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into (1.5.3) we find that the left-hand side vanishes, thus

ff Uh - VYU — U'(ir- V)UdS = 0 (1.5.4)

%

With this in hand, let V' > z and let U'(y) = ¢***/s where s = ||y — z||o. This choice of U,
which is of course a Huygens’ wavelet emanating from the point x, is singular at y = x, so one is
forced to pursue a limiting argument by first excluding from V' a ball B.(x) of radius € centered
at z. In this case, and noting that on the surface of said sphere - VU’ = (ik —s~1)et* /s, (1.5.4)

becomes

ezks ezks

fo(ﬁV) - v)Uds = - jE (ik — s~ )R U () /s — U /S (y)

0Be(x)

(1.5.5)

— (1 - ike)eit 35 U(y)dAy)
0Be(z)

The left-hand side of (1.5.5) is independent of ¢, and in the limit ¢ — 0 the right-hand side

converges to 47U (z), thus we conclude:

e'Lk‘s elks

(A~ V)UdS (1.5.6)

S S

Ule) = 4= § UG- V)
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Figure 1.1: From [2].

This result is known as the Fresnel-Kirchoff integral theorem, and follows directly from
Green’s theorem and (1.5.2). We can apply the Fresnel-Kirchoff theorem to the case of of diffrac-
tion through an aperture .4 by envisioning an imaginary sphere around that aperture, as in Figure
1.1. In this case (1.5.6) yields

eiks eiks

Ulz) - %(L+L+L)U(ﬁ-w — " vas (1.5.7)

At this point some reasonable physical assumptions can be used to arrive at the Fresnel-Kirchoff
diffraction formula. In particular if one assumes that R is larger than c(¢ — to) where ¢ is the time
of emission then the contribution of the third integral will be zero, since both U and (n - V)U
will be zero on C. Moreover, Kirchoff assumed that U|z and its normal derivative are zero,
and that U| 4 is the same as it would be absent the screen, that is to say U|4 = Ae™ /r and

(- V)U|4 = cos(#)(ik — r~1)e* /r. These assumptions are known as the Kirchoff boundary
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conditions. In this case (1.5.7) gives

ik(r+s)(;1. _ o—1 ik(r+s)(;1. _ o—1
Uz) = AJ ik = 57 cos(6) + ik =57 cos(v)dS (1.5.8)
A

rs rs

In the far field, that is when A << sand A << r the terms ik —s~ ' and ik —r~! are approximately

equal to ¢k. Thus, in the far field:

rs

Uw) = 4 f T os(6) + cos()]dS (1.5.9)
A

This is the celebrated Fresnel-Kirchoff diffraction formula. On the other hand, if the source x
and target z are far from the aperture relative to its size, then cos() + cos(¢)) ~ 2 cos(d) where
0 is the angle between the screen’s normal and x — zy. Moreover, % will be almost constant over
A. Thus place the origin in A and let 7’ and s’ be the respective distances of xy and x from the

origin. In this case

A cos(d ,
U(z) ~ MJ ek +9) 49 (1.5.10)
Ar's’ )y
Now parameterize a point in the aperture via (£, 7, 0) so that dS = dnd§, r* = (xg — €)% + (yo —
n)?+25, 8% =(x—&)?+(y—n)?+2% 1% =22 +yi+ 2%, and s* = 2% +y* + 2% Alittle algebra
yields that r ~ 1’ — (2o + yon)/r and s ~ s’ — (z€ +yn)/s’ (the neglecting of higher order terms

in these expansion is precisely what gives the Fraunhofer diffraction formula) and we obtain the
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Fraunhofer diffraction formula

iAcos(0) ik

Ar's!

Ulz) ~ T/H/)Jv eik(wo/r’*x/S’)@r(yo/W*y/S’)ndndf (1.5.11)
A

Thus using coordinates p = (zo/r" — z/s')/A and ¢ = (yo/1" — y/s’) /A yields

Up,q)ox J e 2t dnd¢ = F[1 4](p, q) (1.5.12)
A

And we obtain that in the far field it is the Fourier transform of the aperture that is encoded in the
field. It is typically only possible to measure the magnitude of the field for some finite collection

{x;}ics, thus one would like to be able to recover A (or equivalently 1 4) from {|F[1 a(x;)]|}icr-

1.5.2 Phase Retrieval in Inverse Schrodinger Scattering

For simplicity we will consider one dimensional inverse scattering, in which one attempts
to recover the scattering potential from the frequency dependent magnitude of the reflected wave.
This example follows [7]. Assume a localized potential V' (x) so that V(x) = 0 for z < 0. To the
left and right of the support of V' the solutions of the time independent Schrodinger equation at
spatial frequency k equation are respectively

Yp(x) = A(k)e*™ + B(k)e ™
(1.5.13)

V() = C(k)e*™*

Thus |A(k)| is the strength of the incident wave at frequency k, | B(k)| the strength of the reflected

wave, and |C' (k)| the strength of the transmitted wave. Certain physical potentials without bound

24



states are completely determined either by B(k) or C'(k), but in practice what one is able to
measure is | B(k)| (or |C(k)|) [7]. In the Born approximation (the high frequency regime) it can
be shown that

Q0
d .
yfo d—‘;emdxy = 4k*| B(k)| (1.5.14)

Thus one is able to obtain only the magnitude of the Fourier transform of V"’ (x) for each k, and

from this one would like to reconstruct V/(x) (and hence V' (z)).

1.5.3 Phase Retrieval in Speech Processing

The phase retrieval problem arises in a totally different manner in the field of speech pro-
cessing (and more generally discrete time signal processing). One typically assumes that the

speech signal s € ¢(Z) is a bounded sequence of the form
s(n) = e(n) +0(n) = Y e(k)d(n — k) (1.5.15)

Where n is the discrete time variable, e is the “excitation signal” containing the actual meaning
of the speech and # models the impulse response of the vocal system to the meaningful excitation
(typically 6 has finite support) [6]. In recognition and translation tasks one would like therefore
to separate out the excitation signal e from the speech signal s. If the signal were instead of the

form
s(n) =e(n) +w(n) (1.5.16)
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With w being high frequency noise, linear signal processing has a ready answer in the discrete
time Fourier transform and spectral analysis. A low-pass filter of the form J[s] = F{1<w, 5]
where S(w) = Y, s[k]e”*"* would be sufficient to isolate e[n] since J[s] ~ e. The convolu-
tional analog to this type of spectral analysis is termed “cepstral analysis” and was introduced by
Bogert, Healy, and Tukey in [25] and generalized by Oppenheim and Schafer to “homomorphic
signal analysis” in [26]. Analogous to the Fourier transform, the backbone of cepstral analysis is

the so-called real cepstrum:

H[s](n) = F log|S(w)|] = % JW e 2 og |S(w)|dw (1.5.17)

—T

Here n is neither the frequency nor the discrete time, and is termed the “quefrency.” The field
is replete with a dictionary of such Seussian terms (“rahmonics” replace harmonics, “saphes”
replace phases, etc). The complex analog of ‘H (using the complex logarithm to avoid the phase
annihilating absolute value) is used in [26] and has several nice theoretical properties, but turns
out to be less useful in practical speech processing tasks than (1.5.17) [6]. The key property of H

that allows it to play the role of the Fourier transform with respect to (1.5.15) is that
H[e « 0](n) = F log |E(w)| +log |O(w)|] = H[e](n) + H[O](n) (1.5.18)

Because of this homomorphism, it makes sense to perform filtering (termed “liftering”) in the
quefrency domain. With appropriate quefrency filters and a forward discrete time Fourier trans-
form one is thus able to approximately isolate | E'(w)|, at which point recovery of the excitation

signal e(n) is precisely the phase retrieval problem.
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1.5.4 Phase Retrieval in Quantum Tomography

A motivating example for the Lipschitz analysis of « and /3 is quantum tomography of
impure states. A noisy quantum system is modeled as a statistical ensemble over pure quantum
states. The standard example is unpolarized light. In such cases, all of the measurable information

in the system is contained in a density matrix which, using bra-ket notation, has the form

p =Y pil Xl (1.5.19)

JjeET

where p; is the ensemble probability that the system is in the pure quantum state [¢;) belonging
to a Hilbert space H. If we assume the cardinality of Z is finite and equal to r and that the state
vectors themselves live in the Hilbert space C" then p € S™°(C") N {x € Sym(C")|tr{z} = 1}.

The expectation of a given observable A (a symmetric operator on C") is therefore

E [A] = D il Al = D pjtr{[1)<u;| A} = tr{pA} = Rer{pA} (1.5.20)

JET JET

By repeatedly measuring the observable A and then allowing the quantum system to relax one
may estimate tr{pA} (and perhaps higher moments) but the aim is to infer p itself. It was shown
in [27] that sufficiently many randomly sampled Pauli observables can be used along with meth-
ods from compressed sensing (trace minimization, matrix Lasso) to reconstruct a low rank density
matrix with high fidelity. In general, if a suite of observables is well-chosen (constitutes a gen-
eralized phase-retrievable frame) then the problem of inferring p from the expectation values of

said observables is subordinate to the problem of phase retrieval on C"*". Asking if, for a col-
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lection of observables {A;}7.,, the density matrix p is recoverable is equivalent to asking if the

map

B:8m0(C™) A {x e Sym(C")|tr{z} = 1} — R™

A
(s Aur (1.5.21)

_<p7 Am>R_

is injective. In fact, given that we can only approximate the expectations using finitely many
measurements, we should hope that it is lower Lipschitz with respect to the Frobenius distance.
Such stability questions for phase retrievable frames for C" (the pure state case) are investigated
in [13]. Given that p is positive semidefinite and rank at most r there exists a Cholesky factor
z € C™ " such that p = zz*. Indeed we may take z € C"*"/U(r) since p is invariant under
z — 2U, in which case tr{p} = 1 if and only if ||z||» = 1. We may therefore concern ourselves
with the Lipschitz properties of 3 restricted to z € C"*" /U (r) with ||z||; = 1, rather than /3. For
the time being we consider a Lipschitz analysis of 3 : C**" /U(r) — R™, deferring discussion of
a possible Lipschitz retract onto the unit sphere. Thus we seek information on the optimal global
lower Lipschitz constant of the 5 map, namely /ao. In the above example if ag > 0 this means
that if we can measure each E,[A;] to within error ¢ > 0 then we can obtain an approximation p

to p that satisfies

e\/m
1.5.22
N ( )

o= pll2 <

In addition to quantum state tomography, Lipschitz analysis of spaces of low-rank matrices
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is central in a significant number of problems in science and engineering such as: the phase
retrieval problem [10, 28], source separation and inverse problems [29], as well as the low-rank

matrix completion problem [30].

1.6 Relevant distances and Lipschitz embeddings

Definition 1.6.1. We define the equivalence relation ~ on C™*" via
r~y < Wel(r)r=yU (1.6.1)

and denote by [z] the equivalence class of = € C"*", and by C"*" /U (r) the collection of equiva-

lence classes {[z]|z € C"*"}.

The stability analysis that follows for 8 and « in Theorems 1.8.5 and 1.8.8 will rely heavily

on the following natural metrics on C"*" /U (r).

Definition 1.6.2. We define D, d : C™*" x C™*" — R.

D(z,y) = UrgUig) |z —yUl|2

el + iyl — 2lle*ylls
(1.6.2)

d(a.y) = min [le = yUll2 e + yU]l

\/(chH% + [[9113)? — 4llz*yl
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We note that another distance on C"*" /U (r) given by

D'(x,y) = max ||z —yUl||2
vev(n) (1.6.3)

Al + [yl + 2=y,

and is introduced and analyzed for the » = 1 case in [31]. We note merely that d = D - D’. This

does not imply d is a metric, however in fact we have the following proposition.
Proposition 1. Both D and d are metrics in the usual sense on C**" /U (r).
Proof. See 1.9.1. O

The proof of Proposition 1 relies on Lemma 1.9.1, an apparently simple result about the
analytic geometry of parallelepipeds in R® which may be of independent interest.
The minimizer U can be chosen to be the same for both d and D, and is characterized by

the following:

Proposition 2. The unitary minimizer in both d and D is given by the polar factor in x*yU =
|z*y|. The minimizer will be unique so long as x*y is full rank. Otherwise, the minimizer will
be of the form U = U, + Uy where Uy = VoW with Vo, W, € CrxTank@*y) the matrices whose
columns are the right and left singular vectors respectively of the non-zero singular values of x*y

and U, € C™" any matrix such that UyU{ = Py (yxy) and UjU; = PRan(x*y)L
Proof. See 1.9.2 [

The metrics d and D can be compared to the usual Euclidean distance on Sym(C"™) modulo

certain embeddings.
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Definition 1.6.3. We define 0, 7,1 : C"" — S™0(C") as

(1.6.4)

(@) = [[a|la(z2*)? = [|0(2)]]20(x)

Proposition 3. The embeddings w, 6, and 1) are rank-preserving, surjective, and injective modulo

~, thus we write 0, ¢ : C"*" /U(r) — Sym(C").

Proof. See 1.9.3 [
Theorem 1.6.4. Let z,y € C**"/U(r). Then
(i) 0:(C™"/U(r), D) — (S™°(C"),|| - ||2) is a bi-Lipschitz map. In particular
Cull0(x) = 0(y)ll2 < D(z,y) < [|6(x) — 0(y)]l2 (1.6.5)
where C,, = 1ifn =1and C,, = \/Li forn > 1. The constants C,, and 1 are optimal.
(i) m : (C™7/U(r),d) — (S™(C"),|| - [lx) is I-Lipschitz and =" = (S™(C"), || - [|2) —
(C™" /U (r), d) is 2-Lipschitz for r > 2 and /2-Lipschitz for v = 1. In particular,
(1.6.6)

Iw(z) = w()l2 < [[7(x) = w(W)ll < d(z,y) < e |[e(x) = DY)l

where ¢, = /2 ifr = 1 and ¢, = 2 if r > 1. The constants 1 and ¢, are optimal.
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(iii) Forr =1

Y(z) = m(z) (1.6.7)

d(z,y) = ||n(z) = 7(y)|h (1.6.8)

The identity (1.6.8) was noticed and used in [23], its proof is included here for the benefit

of the reader.

(iv) Forr > 1, there is no constant C satisfying C||m(x)—7n(y)||2 = d(z,y) for each x,y € C**"

(hence the use of the alternate embedding 1)).

Proof. See 1.9.4 [

Remark 1.6.5. While d and D are evidently not Lipschitz equivalent (they scale differently), they
do generate the same topology on C"*" /U (r) since d(x,y) < D(x,y)? and given sufficiently

small € > 0 we have d(z,y) < ||z||\/e = D(x,y) <e.

1.7  Geometry of the matrix phase retrieval

It will be essential in the analysis and computation of (1.3.3) to understand the geometry
of the spaces S™°(C"). In order to do so, we will demonstrate that S™°(C") has a Whitney
stratification over the smooth Riemannian manifolds $ “0(C") fori = 0,...,r of real dimension

2ni — i2. We recall the following definitions, due to John Mather and sourced from [32]:

Definition 1.7.1. Let V;, V; be disjoint real manifolds embedded in R? such that dim V; > dim V;
and V; n V; non-empty. Let x € V; n V. Then a triple (V;, V;, z) is called a— (resp. b—) regular
if
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(a) If a sequence (yy,),>1 < V; converges to x in R? and T}, (V;) converges in the Grassmannian

Graim v, (R?) to a subspace 7, of R? then T,,(V;) < 7,.

(b) If sequences (y,)n>1 < V; and (z,),>1 < V; converge to x in R?, the unit vector (z, —
Yn)/||Zn — Ynll2 converges to a vector v € R%, and T}, (V;) converges in the Grassmannian

Graim v, (R?) to a subspace 7, of R* then v € 7.

Definition 1.7.2. Let V' be a real semi-algebraic variety. A disjoint decomposition

V=| Vi, VinV;=fori#j (1.7.1)

iel
into smooth manifolds {V;}c;, termed strata, is a Whitney stratification if

(a) Each point has a neighborhood intersecting only finitely many strata

(b) The boundary sets V;\V; of each stratum V; are unions of other strata.

(c) Every triple (V}, Vi, z) such that x € V; = Vj is a-regular and b-regular as in Definition 1.7.1.

A simple example of a semi-algebraic variety that is not a manifold but admits a Whitney
stratification is the cone C = {(z,y)|zy = 0} = R? consisting off the first and third quadrant
of the coordinate plane. A possible Whitney stratification of this set is given by Vj = {0},
Vi = {(z,0)|z # 0}, Vo = {(0,y)]y # 0}, and V53 = {(z,y)|x # 0,y # 0}. In this case note
that condition (a) is trivially satisfied since there are only finitely many strata, and moreover that
(b) is satisfied since V3\Vz = Vo u Vi U Vo, Vo\Va = Vg, Vi\Vi = V4, and that Vo\V, = ¢
(an empty union of the other strata). That this stratification is both (a) and (b) regular may

be readily observed. For example the tangent space at any point of Vj is simply R?, and thus
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the Grassmanian limit of a convergent sequence of such tangent spaces is also R? and certainly
contains the one dimensional tangent space at any point of V5 (identified with the y axis), the one
dimensional tangent space at any point of V) (identified with the z axis), and the zero dimensional
tangent space associated with V4 (identified with the origin).

We will also need the following:

Definition 1.7.3. Let M and N be smooth manifolds and let 7 : M — A be a smooth map. For

each z € M let

T (M) := {7/(0)|y: [-1,1] — M is a smooth curve with v(0) = x} (1.7.2)

be the tangent space of M at z. Similarly for T,y (N). Let Dm(z) : T,(M) — Tr(z)(N') be the
differential of 7 at x, that is to say D7 (z)(v) := /(0) where o« = w0y, y(0) = , and v'(0) = v
(that D (z) does not depend on the exact choice of curve + is an elementary result of differential

geometry). Then

(a) Foreach x € M define the vertical space at x as:

Viz(M) < T(M) := ker Drr(z) = {w € T,,(M)|Dr(z)(w) = 0} (1.7.3)

(b) If M is equipped with a Riemannian metric g : M x T,(M) x T,(M) — R then we may

define the horizontal space at each x via the canonical orthogonal complement of the vertical
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space:

Hyo(M) @ To(M) 1= Vio(M)* = {v € To(M)|g(z, v, w) = 0Vw € Vi1 (C3")}

(1.7.4)

The following proposition will be essential both in proving the geometric results in Theo-
rem 1.7.4 and in the analysis of the Lipschitz constants for 5 and « set out in Theorems 1.8.5,

1.8.8, and 1.8.12:

Proposition 4. Let 7 : C™" — S™0(C") be as in Definition 1.6.3 and let V, ,(C™*") and
H, .(C*") denote the vertical and horizontal spaces as in Definition 1.7.3 of the manifold
C " at x with respect to the embedding m. Here the Riemmanian metric on C}*" is of course
g : CX" x C™" x C"" — R given by g(x,v,w) = Retr{z*w}. Let TW(I)(gr’O(C”)) denote the

tangent space of S™°(C") at 7(z). Then

V. 2(CPX7) — {zK|K e C™" | K* = —K} (1.7.5)
H, ,(C™7) — {Hx+ X|HeC"" H* = H = Ppyp . H, (1.7.6)
X € C™" PRranm X = 0}
Ty (S™°(C)) = {W € Sym(C")IPRanw): WPRanw: = 0} (1.7.7)
= D (z)(Hr.(CE™))
Proof. See 1.10.1 [

Employing similar techniques to [22], but generalizing from the manifold of positive defi-
nite matrices to the semi-algebraic variety S™(C") semidefinite matrices, we prove:
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Theorem 1.7.4. Let 7 be as in Definition 1.6.3 and the distance D be as in (1.6.2). Then
(i) gp’q(C”) is a real analytic manifold for each p, q > 0 of real dimension 2n(p+q) — (p+q)*

(ii) m: C*" — S)'“O(C") can be made into a Riemannian submersion by choosing the following

unique Riemannian metric on S™°(C"):

ee}
WZy1, Zs) = tr{Z) J e zlemwr ™ quy + Rer{ 23 Z (wa*)T) (1.7.8)
0

Where Zy, Z5 € TW(I)(SO"”’O(C”)), (zx*)" denotes the pseudo-inverse of xz*, and
| 1
Zi = PRan) ZiPRanx) 2 = PRan(). ZiPRan() (1.7.9)

(iii) grvo(C") equipped with the metric h is a Riemannian manifold with D as its geodesic dis-

tance.
(iv) The semi-algebraic variety S™°(C™) admits as an explicit Whitney stratification (S°)7_.

(v) The geometry associated to h is compatible with the Whitney stratification in the following
sense: If (A;)i=1, (Bi)i=1 < SPO have limits A and B respectively in S9° for g < p and if
v+ [0,1] — SPO gre geodesics in Sp.0 connecting A; to B; chosen in such a way that the

limiting curve § : [0,1] — Sp0 given by

d(t) = lim ~;(¢) (1.7.10)

1—00
exists, then the image of 0 lies in S° and is a geodesic curve in S%° connecting A to B.
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Proof. See 1.10.2 [

1.8 Computation of Lipschitz bounds

We are primarily interested in computing ag and Ay, the squared global lower Lipschitz
constants for the # and « analysis maps respectively. Owing to the linearity of the 3 analysis
map when interpreted as in (1.5.21), we will be able to show in Theorem 1.8.5 that the optimal
global lower Lipschitz bound ag can be obtained via local considerations. For the v analysis map
we will be able to show in Theorem 1.8.8 that the optimal global lower Lipschitz bound A is
actually zero for r > 1. Since the global lower Lipschitz bound for the « analysis map is trivial

we emphasize the analysis of the local lower Lipschitz bounds. Recall that

18(x) = B3 2t ((ax®, Ajr — (yy*, Ajpr)®

ap = inf = inf (1.8.1)
,yeCnxr |’7T(g;) — w(y)H% z,yeCnxr H:Eaj* — yy*”%
[2][y] [=11y]

From purely topological considerations, we may obtain

Proposition 5. The constant ay is strictly positive whenever the map (3 is injective, equivalently

whenever {A; };”:1 is a generalized phase retrievable frame of symmetric matrices.
Proof. See 1.11.1 [

Definition 1.8.1. Let z € C™*" have rank k. We will analyze the following four types of local

lower Lipschitz bounds for (3, the first two with respect to the norm induced metric and the second
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two with respect to the metric d:

18(x) = B()I13

ai(z) = lim inf 2
R—0 2eCnXT a(x) = 7wz

\|7T(x)f7r(z)||2<RH ( ) ( )HQ

_ 2

a(z) = lim  inf W@ = SO

R—0 g yeCrnxr |7 (x) — w(y)||5

[J7(a)—(z)||2<R
[Im(y)—m()||l2<R

ir(z) = m g B@) =BGl

R—0  geCnxr d(zx, z)?
d(z,2)<R

rank(z)<k

_ 2
o) — . 1B@) =B
R—0 g,yeCnxr d(x,y)?
d(z,z)<R
d(y,z)<R
rank(z)<k
rank (y)<k

(1.8.2)

Note that in the definition of @ (z) and ay(z) we do not allow the ranks of x and y to exceed that

of z. As we shall prove, without the rank constraints these local lower bounds would be zero.

The following two “geometric” local lower bounds will prove helpful in our analysis.

Definition 1.8.2. Let z € C"*" have rank k and let 2 € C"** be such that there exists U € U(r)

with [2|0]U = z. Let Tﬂ(g)(gk’O(C”)) and H, ;(C"*) be as 1.7.7 and 1.7.6. We define:

alz) = min W, A
(2) WeTﬂz)(sko(Cn))Z (W, Ajrl?
[[W]l2=1

a(z) == min Z (D7 (2)(w), Ajr|?
’LUGHTr z C7L><k
[w]l=

(1.8.3)

(1.8.4)

The following two families of matrices, (), and Qz, indexed by C™*", will allow us to

write the local lower Lipschitz bounds with respect to ||zz* — yy*||2 and d(z,y) as eigenvalue

problem:s.
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Definition 1.8.3. Given z € C"*" having rank k > 0 we define a matrix (), € R(h—F*)x(2nk—k?)
in the following way. Let U; € C™** be a matrix whose columns are left singular vectors of z
corresponding to non-zero singular values of z, so that U U} = PRan(z)- Let Uy € C**("F) be a
matrix whose columns are left singular vectors of z corresponding to the zero singular values of

2, so that UsUy = PRgp,.- Then

T
| T(UF AU | | 7(UFA;UL)
Q=) (1.8.5)
= U5 AU || w(Us A;Uh)

where the isometric isomorphisms 7 and j are given by

7 : Sym(C*) — R¥* [ CPX4 — R4 (1.8.6)
D(X)
RX
T(X) = [ V2T (RX) (X)) = vec( )
3X
V2T (SX)
where
D : Sym(C*) — R* T : Sym(R¥) — Rz*(-1) (1.8.7)
X12
X11 X13
D(W) = : T(X) = Xo3
ka
Xk 1k
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and

vec : RP*9 — RV vec(X) = vec([X1] - |X,])

(1.8.8)

We note that (), depends only on Ran(z), in particular it is invariant under (U, Uy) —

(U, P,UyQ) for P e U(k),Q € U(n — k). We will also refer to ). as Q[u, v,] Where [U;|Us] €

U(n).

Definition 1.8.4. Given z € C"*" having rank k& > 0 we define a matrix Q. € R2"**2" ip the

following way. Let Fj = Iy« ® j(A;) € R 2% where

j . men N R2m><2n

is an injective homomorphism. Then

Q:i= 1), Fu(2u(2)"F,

With these definitions in mind, we will prove the following:

Theorem 1.8.5. Let z € C"*" have rank k > 0. Then
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(i) The global lower bound ay is given as

= inf 1.8.11
%= e (151D

(ii) The local lower bounds a,(z) and ay(z) are squeezed between ay and a(z)

ap < az(z) < a1(z) < a(z) (1.8.12)
So that in particular
= inf ; 1.8.1
o= nf a;(z) (1.8.13)

(iii) The infimization problem in a(z) may be reformulated as an eigenvalue problem. Let (), be

the 2nk — k* x 2nk — k? matrix given in Definition 1.8.3. Then

a(z) = Aonk—12(Q-) (1.8.14)

(iv) For r = 1, a(z) differs from a(z) by a constant factor, hence for r = 1 the infimum
inf ccnxr (0 a(z) is non-zero. For r > 1 this infimum is zero and hence there is no non-

trivial global lower bound aq analogous to aq for the alternate metric d.

(v) The local lower bounds with respect to the alternate metric d satisfy

a1(z) = as(z) = a(z) (1.8.15)
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(vi) The infimization problem in a(z) may be reformulated as an eigenvalue problem. Let Q. be

the 2nk x 2nk matrix given in Definition 1.8.4. Then a(z) is directly computable as

~

a(z) = Aonk—i2(Q2) (1.8.16)

(vii) We have the following local inequality relating a(z) and a(z).

1 1
< <
%a(z) a(z) eI

a(z) (1.8.17)

4|

(viii) Computation of the global lower bound ay may be reformulated as the minimization of a
continuous quantity over the compact Lie group U (n).
= i Aonr—r 1.8.18
) UlglUla) 2 2 (Q[U1 \UQ]) ( )
U=[U1|Uz]

U, eCnxr
UQEC”X (n—r)

(ix) While (iv) makes clear that ay cannot be upper bounded by inf ccnxr 0 a(z), we can

achieve a similar end by constraining z to have orthonormal columns. Namely

1 1
S inf a(2) <ap <~ inf a() (1.8.19)
4 2eCL*" 2 2eCL*"
Z*Z=|»,-><T Z*Z=|T><T
Proof. See 1.11.2 O

We now move on to analyzing the local lower Lipschitz bounds for the & map = —
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1 1
xx*, A;>3. This was done for the case r = 1 in [23]. Recall that #(x) = (xx*)2 and that
i/R

— 5 I x:v*,A-%_ *,A-%2
AO = lnf ’|||(;E$; g((y))|||22 _ in Z]—l<< 1]>R <yy1 ) ]>R) (1'8.20)
x,yeCnxr €x) — y x,yeCnxr *\5 _ %)=
[12y] 2 (zz*)2 — (yy*)2 |3

In analogy with Definition 1.8.1, we consider the local lower Lipschitz bounds for the «

map.

Definition 1.8.6. Let z € C™*" have rank k. We define

A5 = lim  inf e@ el

R—0 reCnXT 0(1) — 0(z B
16(z)—6(=)l2<R 10(z) = 0(2)I13

rank(z)<k

It
[16(y)—0(2)|l2<R
rank(z)<k
ranki<x (1.8.21)
i m lo(z) — a(2)ll3
A =1 f
1(2) RILI%) xelélnw D(z.2)?
D(z,z)<R
rank(z)<k

A2(Z) = lim lla(z) — a(y)]l3

inf

R—0 I,yECnXT D(.CC, y)Q
D(z,z)<R
D(y,2)<R
rank(z)<k
rank(y)<k

Definition 1.8.7. Given z € C"*" having rank k > 0 we define two matrices 7}, R, € R2kx2nk,
Let Iy(z) < {1,...,m} be the indices such that o;(z) = 0 (or equivalently such that «; is not

differentiable) for j € Iy(z),andlet I(z) = {1,...,m}\Io(z). Once againlet F; = ;. ®j(A4;) €
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R2nkx2nk then define 7. and R, via

1(2)u(2)" F (1.8.22)

F; (1.8.23)

With these definitions in mind we prove:
Theorem 1.8.8. Let z € C™*" have rank k > 0. Then
(i) Forr > 1itis the case that inf ccnxr g0y Ai(2) = 0 fori = 1,2, as such Ay = 0.

(ii) Let T, and R, be as in Definition 1.8.7. Then A,(z) and Ay(z) are directly computable as

~

A1(2) = Dopii2 (T + R.) (1.8.24)

~

Ag(2) = Nanpsa(T%) (1.8.25)

(iii) We have the following inequality between A;(z) and fl,(z) for i = 1,2, which justifies not

treating them separately.

Ai(2) < Ai(2) < V244(2) (1.8.26)

Proof. See 1.11.3 O

For the sake of completeness we also include the following theorem on the global upper

Lipschitz bounds for the « and 5 analysis maps.

44



Definition 1.8.9. We define the following (squared) upper Lipschitz constants for S and « re-

spectively:

18(z) — By)ll3

by := sup ” o (1.8.27)
x,yeCnx" ||ZE£L‘ — Yy ||2
[z]#[y]
zyecrr ||(za*) 2 — (yy*)2 |3
[2]#[y]
A somewhat simplifying alternate upper Lipschitz constant for [ is
7 x,yeCnx" ||ZIZ'£L'* _yy*H%
[z]#[y]

Definition 1.8.10. The $ map is the pullback of a linear operator acting on symmetric matrices

which we refer to as 4. Specifically,

A : Sym(C") - R™

(1.8.30)
Aj(X) = (X, Aj)r
Definition 1.8.11. When A; > 0 for each j, we define the operator 7.
TT CTLXT’ — (CTLXT’)m
(1.8.31)

T, (x) = (Af2)]

J=1
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In a slight abuse of notation we write for r = 1

Ty : C" — Cvm

Ti(z) = [Afz|-- - [Af]

(1.8.32)

We compute explicitly by, b1, and By via different norms of the operators A and 7, as

well as providing formulas for by and By analogous to (1.8.18) and (1.8.25). Specifically, we

prove:

Theorem 1.8.12. Let by, by 1, Bo, A, and T, be as above. Then

(i) The global upper bound by is given by

bp = A 1.8.33
0 Jmax 1(Qur jv2) ( )
U=[U1|Uz2]
Ulech'r’UQEC'n,anr
Where QQy is as in Definition 1.8.3.
(ii) The global upper bound by ; is given by
boa = || Al (1.8.34)
Additionally if A; > 0 for all j then
bor = ITollo- 20y = 1711220 (1.8.35)
Where the || - ||2,.4 norm of a matrix is the I* norm of the vector of 1> norms of its columns.
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(iii) The global upper bound By is given by

By = sup \(T,) =B (1.8.36)
ZeCnXT‘
2#0

Where TZ is as in Definition 1.8.7 and B is the optimal upper frame bound for {A; };”:1

Proof. See 1.11.4. 0

It turns out that Theorem 1.8.5 allows us to find novel algebraic conditions for a frame
for C™*" to be generalized phase retrievable, generalizing Theorem 4 in [11]. The benefit of
condition (vi) over the definition of phase retrievability is that they involve checking a quantity
over all n x r matrices with orthonormal columns, that is to say over the Stiefel manifold of

dimension 2nr — 2, as opposed to over all pairs of n x r matrices.
Theorem 1.8.13. Let {A; };":1 be a frame for C"*". Then the following are equivalent:
(i) {A;j}7L, is generalized phase retrievable.

(ii) Forall U, € C™*", Uy € C"*"=") such that [U,|Us] € U(n) the 2nr — r? x 2nr — 12 matrix

m | T(UFA;Uh) | | (U A;Uy)
Qurva) = (1.8.37)
= U3 AU | | m(Us AU

is invertible.

(iii) For all z € C™*" such that z has orthonormal columns, the 2nr x 2nr matrix

= 43 o ® (AN () (s © 5(A4,)) (1838)

7j=1
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has as its null space precisely the r* dimensional V, = {u(u)|u € V, .(C?*")}.

(iv) For all Uy € C™", Uy € C"™"=") such that [U1|Us) € U(n), H € Sym(C"), B € Cn=r)x"

there exist c1, . . .cp,, € R such that

UF (), ¢iA)U = H

j=1
Us (D, ciA)U = B
j=1

(v) For all U; € C™*" with orthonormal columns
spang{A;UL}7L = {U1K|K e C"" K™ = —K}*
(vi) For all Uy € C™*" with orthonormal columns
dimg{A;U,}L, = 2nr — r?
Proof. See 1.11.5

1.9 Proofs for Section 1.6

1.9.1 Proof of Proposition 1

(1.8.39a)

(1.8.39b)

(1.8.40)

(1.8.41)

Proof. Both d(z,y) and D(x,y) are obviously positive and symmetry follows from the fact that

that U () is a group. Moreover, owing to the compactness of U(r), both D(z,y) and d(z,y) are
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zero if and only if there exists Uy such that = = yUy, that is if and only if [z] = [y]. It remains
to prove the triangle inequality. For D(z, y) the computation is straightforward and follows from
the unitary invariance of the Frobenius norm. If U; and U, are unitary minimizers for D(z, z)

and D(z,y) respectively then

D(z,2) + D(y,2) = ||z — 2Uill2 + ||z — yUs|l2
= ||z — 2U1||2 + ||2U1 — yUsUs ||z (1.9.1)

> ||z — yUsUs||s = D(x,y)

We note that the above argument also holds for any unitarily invariant norm ||| - ||| so that each
Dz, y) = mingeyy |||z — yU]|| is a metric on C**"/U(r). A similar trick can be em-
ployed regarding d(x,y), but it requires the following lemma which does not readily generalize

to arbitrary unitarily invariant norms or even p # 2:

Lemma 1.9.1. The following triangle inequality holds for all x,y,z € C™*"

|z = yllallz + yll2 < llz = 2[l2lle + 2ll2 + [Iz = yll2llz + ll2 (1.9.2)

Proof. This is essentially a statement about the geometry of parallelepipeds in R?, namely that
the sum of the product of face diagonals from any two sides sharing a vertex will always exceed

the product of the two on the remaining side sharing the vertex. The lemma follows from the
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observation that for z,y € R”

VUll3 + 11y13)2 — 41 el
1
3 (1ol = 18 + /el + 18 ~ 4G, xl

1z = yllallz + yll2

1
- 5(qu3 ~ 1lg113 — 4/l + l1gl13)? 4\<x,y>R\2) (1.9.3)

= A (zz” —yy") = A_(zz” — yy")

= |lzz" — yy"IIx

See the proof of Theorem 1.6.4 for a direct computation of the eigenvalues of za? — yy? (the
theorem deals with the complex case but the real case is identical). This identity proves the

lemma immediately since the latter obeys the triangle inequality and

|z = yllallz + ylla = llp(z) = p@)llalln(2) + 1(y)]l2

= [Ju(@) ()" = p(y)py)
(1.9.4)
< lp(@) (@)’ = u(2)p(2) |+ lw2)nz)" = wly)u@)" |h
= [|lz = 2ll2l|z + 2[|2 + ||z = yll2|[2 + yll2
Where j : C™" — R?"" is complex matrix vectorization. [

The proposition then follows via a similar argument to (1.9.1), namely if Uy, U, are the
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minimizers in d(z, z) and d(z, y) respectively then

d(z,2) + d(z,y) = ||z — 2Ui2||z + 2Uil]2 + ||z — yUsll2|]2 + yUsl2
= H[E — ZU1||2||CL’ + ZU1H2 + ||ZU1 — yU2U1H2||zU1 + yU2U1||2 (195)

> [l = yUsUhla| |2 + yUelh]l2 = d(z, y)

1.9.2  Proof of Proposition 2

Proof. Both the trace tr{z*yU} in that appears in D and its square as it appears in d will be
maximized when x*yU is positive semidefinite, thus we may take the minimizer to be the polar
factor for *y, the polar factor of course being the unique unitary for which x*yU is non-negative
only when x*y is full rank. The non-uniqueness of the minimizer arises precisely from the non-
uniqueness in choice of polar factor when x*y does not have full rank. Note that even if y is full

rank, z*y will have rank less than r whenever Ran(y) n Ran(z)* # 0. O

1.9.3  Proof of Proposition 3

Proof. Note that the non-zero eigenvalues of 7(z) are precisely the squares of the singular values
of x, the non-zero eigenvalues of #(x) agree with the non-zero singular values of x, and the non-
zero eigenvalues values of ¢)(x) differ from the non-zero singular values of x only by a factor of

||z||2. This proves that the embeddings preserve rank. It is readily checked that the embeddings
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are surjective and injective modulo ~. In particular for A € S™°(C™), we have

7 1(A) = [Cholesky(A)] (1.9.6)
6~'(A) = [Cholesky(A?)] (1.9.7)
¥~ (A) = [Cholesky(A?/||Al|)] (1.9.8)

where Cholesky(A) is a Cholesky decomposition of A in C"*" (note that the Cholesky decom-

position is unique up to equivalence class). [

1.9.4 Proof of Theorem 1.6.4

Proof. To prove (1.6.5) we analyze the following quantity:

Dz, y)? ol 2 + lIyli2 = 20"yl
) = _ il 1.9.9
) = 606 — 06 ~ Tl + Il — 2ot a by

We first note that ||z*y||; = ||(z2*)2 (yy*)2||; since (x2*)2 (yy*)2 and z*y have the same non-
zero singular values. Hence if we define A = 6(z) = (z2*)2 and B = 6(y) = (yy*)2 we can

abuse notation slightly and write

|A]3 + [1B]13 = 2/|AB[x
Q(A, B) = (1.9.10)
|A[13 + [|B|[3 — 2tr{AB}

Now tr{AB} < ||AB]||;, so we conclude that Q(x,y) < 1. On the other hand this bound is
achievable by any z and y for having the same left singular vectors, since in this case A and B

commute hence AB > 0 and ||AB||; = tr{ AB}. We conclude that the upper Lipschitz constant
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is 1, and in particular

sup Qz,y) = max Qx,y) =1 (1.9.11)
x,yeC*" /U (r) z,yeC™ > /U(r)
T£Y T#Y

We now turn our attention to the lower bound. It is shown in [33] that for any unitarily invari-
ant norm ||| - ||| and positive semidefinite matrices A and B the following generalization of the

arithmetic-geometric mean inequality holds:

A[|ABJI)? < |[I(A + B)?||] (1.9.12)

We apply this inequality to the nuclear norm and conclude that

AlIAB]: < [I(A+ B)*|h
— tr{(A + B)*} (1.9.13)
= [|A[l3 +11B|lz + 2tr{AB}

We employ this fact in the analysis of Q(z,y):

1 2[JAl +2[| B3 — 4llAB|L

Q(Aa B) =5
2" TJJAIR + 1] — 2wl AB) Hots
1 2f|AJS + 2[Bll5 — (1A]5 + [1B]l5 + 2u{AB}) 1
T2 1[5 + [1B]]5 — 2u{AB} 2

L

75 For the trivial case n = r = 1 the ratio

This implies a lower Lipschitz constant of at least

L

is 1. To prove the constant of 7

is optimal for n > 1, let e; and e; be any two orthogonal unit

vectors in C" and let x = e; and (y;);>1 be given by y; = /1 — j%el + %62. Define A = 6(z)
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and B; = 0(y;), then both A and each B; have unit norm and are rank 1 hence are idempotent,

so that

find

Thus we conclude

1 1
AB; = (zx)2(y;y7)? = x2™y,y;

= (z,Y;)RTY; (1.9.15)

-
j
= (1 - —)eie] + ————e1€;
J

Thus tr{AB;} = 1 — 5. On the other hand, ||AB;| = [|z*y;|h = Kz,y;r| = 4/1— 5. We
1—||AB;
lim Q(A, B;) = lim #{Aé“}l)
—00 —00 — r .
’ ’ ! (1.9.16)
1 1
= lim j%(1 —4/1— =) = =
7 7 =3
inf Q(z,y) — & (1.9.17)
T,y) = = 9.
xVyean'r y 2
z#y

We now concern ourselves with proving (1.6.6). To prove the lower bound, let U, be the mini-

mizer in d(z,y). Then

() = ()l = [[z2” = yy*|

1 1
= |15 (@ = yUo)(z + yUo)" + 5 (2 + yUo)(z — yUo)"|l2

(1.9.18)

1 * 1 E3
< §||($—?JU0)(5L“+?JU0) ||1+§||(9U—ZJU0)(9U+3/U0) IR

< ||z — yUollo||z + yUsl|2 = d(z,y)
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This implies a lower Lipschitz constant of at least 1, but in fact this constant is optimal since
the two are equal for » = 1. Turning our attention to the upper bound, we will in fact prove the

following stronger inequality:

I96e) = 900l > o) + (o) + el = Iol? (112"l + 5ol + v]l?)

4 4
(1.9.19)

We prove (1.9.19) by direct computation:

o) — v~ 3G, v)?

1 1 1
= |lz|l3 + llyll3 — 2[|z]]2][y||2tr{ (z2*)2 (yy*)2 } — 2 <(||1’H§ +[lyl3)* — 4\|x*y|ﬁ)

3 3 1 1
= llllz + Zllyllz + llz*yllt = Sll=lElylE = 2llla/lyllatrf(22")> (yy™)

=

}
3 3 1 1 1
> llellz + Zllyllz + l"wllE = S llBlylls = 2l [yl [ (z2*)> (yy™) 2 [l

_1 2 22 1 4 1 4 *l12 _ 9 #
= 2 Ulellz = lll2)" + Sllellz + Sllyllz + lzyl[i = 2llz/l2/lyll2]lz"yl]:

(1.9.20)

We then note that

1 1
ZD(fc,y)4 = Z(HW +|lyl* = 2[|z*yl[1)?
(1.9.21)

1 1 1
= lllle + Zllwllz + SlllBlll3 + [y [T = lll3 + [yl =" yll:
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So that if we add and subtract ;D(z,y)* from (1.9.20) we obtain the result

1
(@) = )z = d(,9)”
1 1
= (21l = Nlyl)* + 3 Dz, 9)* + (llll2 = [lyll2)*lleyll: (1.9.22)
1 1
= 1 D@ y)" + (]l - Hsz)Q((Hx*yHl + 5 ]2 + Hyl\z)2>

This immediately proves that 2||1)(x) — ¥ (y)||2 = d(z,y) and hence that the upper Lipschitz
constant in (1.6.6) is at most 2. For r = 1, we will prove shortly claim (iii), implying that
d(x,y) = ||m(x)—7(y)||1 = |[¥(x)—(y)||1, hence in this case the optimal constant is v/2, owing
to the fact that 1)(x) — ¢ (y) will have rank at most 2 and in that case d(z,y) = || (z) —(y)||: <
V2||¢(z) — ¥(y)||2. For r > 1, however, we show that the upper Lipschitz constant of 2 is
optimal by considering a sequence of matrices in C"*2. As before let ¢; and e; be any unit
orthonormal vectors in C". Let x = [e1[0], (y;);>1 be given by y; = [4/1 — wei|sea]. As
before let A = 0(x), B, = 6(y;). We first note that A and each B, commute and are positive
semidefinite, so that AB; is also positive semidefinite and we have tr{AB;} = ||AB,||; and
the inequality in (1.9.20) is actually an equality. This makes clear the impediment to a rank 1
sequence achieving the upper Lipschitz constant of 2: A and B; could not be made to commute
without = and y; lying in the same equivalence class. Finally, we observe that ||z||s = ||y;||]2 = 1
so the remainder term in (1.9.19) disappears and we obtain

1
() — (| = dw9)* + 1D, p)" (1923)
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We note moreover that d(z, y)? = D(z,y)(||x| + [|y]|3 + 2||x*y||1) so that

ot slf () D)

d )2 - 4 d 2
(=:45) (z,5) (1.9.24)
= 1(1 + 1- H~T*Z/jH1>
4 L+ [|z*y;] 1
ey 1—ji2 0 1
Now |[z*y;|ly = || | — {€1|62]||1=4/1—j—250that
1
0 0 3
1
i 1) = 0B _ o 1( B\ 1 o)
eyt A Ty i) A

Thus we have proven claims (i) and (iz). To prove the first claim of (7i7) note that for r = 1,

(zz*)2 = ﬁ;ﬁz. The second part of (iii) follows from direct computation of ||zz* — yy*||; via

the method of moments. Clearly zz* — yy* will have one positive and one negative eigenvalue,

which we denote A, and \_. In this case

Ay + A = tr{za™ — yy*}

STIST ST
1 (1.9.26)
A= (tr{m* Y — (et — yy*>2})
~ N2l Pl = Gz, )al?
A little bit of algebra then yields
1
VL <Hxl|§ 2 + /I + T = 4|<x,y>R|2) (1.927)
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Thus we find |[zz* — yy*||i = Ay — A= = /(|[7]2 + |[y]|2)2 — 4]{z, y)r[> = d(z,y). It strikes
the authors that this is a minor miracle. Finally, to prove claim (iv) consider x and y having a

common basis of singular vectors with singular values (o;)!_, and (u;)i_, respectively. Then

r

Im(z) =7 (@W)I3 = D (07 — 1)’ (1.9.28)
i=1
d(z,y)* = ), (o1 + )’ (05 — ;) (1.9.29)
i,j=1

The latter is obviously larger, consistent with (1.6.6). If it were additionally the case that d(x, y) <

Cl|r(xz) — 7(y)||2 we would have

T

Doi+ i)’ (05— py)* < (C = 1) > (07 — )’ (1.9.30)

i#j i=1

In the case = 1 the left hand side is zero and so we may take C' = 1. For r > 1, in contradiction

of the above take 01 = j1; = 9, 09 # s and all other singular values zero. We then would obtain

46% (03 — p2)? < (C = 1)(0F — pi3)° (1.9.31)

There is evidently no such C' since 6 may be chosen arbitrarily large. Thus claim (v) is proved,
justifying the use of the alternate embedding v in (1.6.6). This concludes the proof of Theorem

1.6.4. [l
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1.10 Proofs for Section 1.7

1.10.1 Proof of Proposition 4

Proof. The proof of (1.7.5) is by direct computation. Namely

Ve z(CY") = ker Drr(z) = {w € C""|zw™* + wz™ = 0} (1.10.1)

We would like to obtain a direct parametrization, however, and note that

weV, (C) —= wr* =K K e C"X",f(* = —K’7 PRan(x)f{ =K
— wz* = xKz* KeC™" K*=-K
— w=1aK KeC" K*=-K (1.10.2)

In the first line note that w is recoverable from such a K via w = Kz(z*z)~!. In the second

note that K = (za*)'2* Ka(xx*)". The third “if and only if” is obtained by right multiplying
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x(z*x) L. The horizontal space is then computable as V. . (C*")+:

w e Hﬂ,x(czxr) < %tr{w*x[(} — 0 VK = Cnxn’K* _ —K

— r*w=H HeC>™" H*=H
— z*w=2"Hzr HeCY™" H*=H, PRanwmH = H
= PRanwyw = He HeC™" H* = HPpan H = H

— w=Hr+ X HeCY" H*=H = PRan(x)HaX € CnXTaPRan(x X=0

)
(1.10.3)

The second line follows from the fact that C"*" decomposes orthogonally into Hermitian and
skew-Hermitian matrices. In the second note that H = (z*z) 'z Haz*(z*z)~!. The third fol-
lows from left multiplying by (z2*)'z. Finally, the tangent space can be parametrized via the

horizontal space as its image through D (z) as

Tr) (S70(C")) = Drr() (Hr e (CF7))

= {Hzz" + za"H + x X" + Xa*|H € C"*", H* = H,PRyy, X =0}

)H =M, PRan(m

)

(1.10.4)

This provides a direct parametrization, but for our purposes the simpler indirect description
given by (1.7.7) will be more useful. It is clear from (1.10.4) that Tﬂ(x)(ér’O(C”)) c {W e
Sym(C")|PRan()- WPRanw): = 0}. To prove the reverse, note that if W € Sym(C") and
PRan(x) LWPRan(z) . then W = Wy +Wso+ W5 where PRan(m)Wl PRan(x) = W and PRan(x) WQPRan(m) L=

Ws. Any such W, is representable as x X* where X is as in the description of the horizontal
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space. Indeed, take X = Wz (z*x)!. Finally, the Sylvester equation xz* H + Hxx* = W, has

the unique solution

o0
H = J e Y et gt (1.10.5)

1.10.2 Proof of Theorem 1.7.4

Proof. To prove (i) in relatively short order we employ the following theorem:

Theorem 1.10.1 (see [34] and [35] Appendix B). Let ¢ : G x M — M be a smooth action of a
Lie group G on a smooth manifold M. If the action is semi-algebraic, then orbits of ¢ are smooth

submanifolds of M.

We apply this theorem in the case of gp’q(C"). Sylvester’s Inertia Theorem says that A €

50"”‘1(C”) ifandonly if A = K'I, ,K* forsome K € GL(C") where [, , = diag(1,...,1,—1,...,—1,0,...

is the matrix of inertia indices. Thus gp’q(C”) is precisely the orbit of [, , under the smooth Lie

group action:

¢ : GL(C") x C™*" — X
(1.10.6)

W(K,L) = KLK*

Noting that (K J, L) = ¢(K,(J, L)) for K, J € GL(C"). We need to check that the action is
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semi-algebraic. For a fixed L € C™*" the action has as its graph

{(K, Y)‘K e GL(C"),Y = KLK*}
(1.10.7)

={(/<:Z-j, Yij)

’i,j S 1, . ,n,Det(kij) 7+ Oyyij — QZJ(kZ]) = 0}

where each (;; is a quadratic polynomial in (k;;);';_, determined by L. This set is manifestly
semi-algebraic, so by Theorem 1.10.1 each gp’q(C") is a smooth submanifold of C"*". To prove
that the dimension of 574(C") is given by 2n(p + ¢) — (p + ¢)? note that the dim $P4(C") =
dim $P+40 since matrix absolute value

BECECURS- s

(1.10.8)

A] = (447)2

is surjective and injective of up to permutation of eigenvalues. The dimension of S0 can be

computed from T, (S™°(C™)) as found in Lemma 4. Taking 7 = p + ¢ then
dimTﬂ(x)(S’r’O(C")) =n’—(n—r)?=2nr—7>=2n(p+q) — (p+q)* (1.10.9)

It remains to prove analyticity of S™°(C™). It is proved in Lemma 3.11 of [36] that 52(C™) is real
analytic. The proof in the general case is analagous. First note that owing to Sylvester’s inertia
theorem GL(C") acts transitively on $7¢(C") via conjugation, since if X,Y € $P4(C") then we
may obtain G, Gy € GL(C") so that G1 XGF = I,, = GoY G5, hence (G5 'G1) X (G5 'Gh)* =
Y. Tt remains to obtain that the stabilizer group is closed in GL(C") so that we can invoke

the homogeneous space construction theorem. If Z € SP4(C") then Z = 21, ,2* for some
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A,
z = U,

V* e CI*". The stabilizer group at Z is given by 7' € GL(C") such that
0

Tze{zU|U <€ U(p,q)}. Inabasisey,...e, for C" where e, ... e, span Ran(z) and €,,1, ..., e,

span Ran(z)" the stabilizer is therefore given by

UeU(p,q), My € C”" " My e C™" det(Ms) # 0} (1.10.10)

It is easy to see that HEO is a (relatively) closed subset of GL(C"), hence by the homogeneous
space construction theorem S™°(C") is diffeomorphic to the analytic manifold GL(C™)/H%°. This
concludes the proof of (i). Claims (ii) and (iii) represent slight generalizations over the analo-
gous results in [22] for positive definite matrices, but the same key theorems apply. Namely, we

employ the following:

Theorem 1.10.2 (see [37] Proposition 2.28). Let (M, g) be a Riemannian manifold and let G be a
compact Lie group of isometries acting freely on M. Thenlet N = M /G and 7 : M — N be the
quotient map. Then there exists a unique Riemannian metric h on N so that 7 : (M, g) — (N, h)
is a Riemannian submersion; and in particular that Dr(z) : Hy . — Tr)(N) is isometric for

each z € M.

Theorem 1.10.3 (see [37] Proposition 2.109). If w : (M, g) — (N, h) is a Riemannian submer-

sion and vy is a geodesic in (M, g) such that 7(0) is horizontal (i.e. 7(0) € Hy (o)) then
(i) (t) is horizontal for all t
(ii) 7o~y is a geodesic in (N, h) of the same length as ~y
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In our case we are interested in the geometry of C!*" /U (r), where C*" is an open subset
of C™*" and is therefore a smooth Riemannian manifold of constant metric when equipped with

the standard real inner product on C™*"

(A, B)g = Rtr{A* B} (1.10.11)

The relevant compact Lie group of isometries will be U(r), acting by matrix multiplication on
the right. We note that while U(r) does not act freely on C™"*", it does act freely on C?*" since

forx e CI*"and W € U(r)

r =W <= z*r=z"2W <= (2"2) ' (z*2) =W = |, =W (1.10.12)

Therefore by Theorem 1.10.2 there exists a metric » on C?*" /U (r) such that the differential of 7

atx

Dr(x) : (Hro(CL"), ¢, 9r) = (Ta(@) (S™(C™)), h)

(1.10.13)
Dr(z)(w) = zw* + wzx*
is an isometric isomorphism. Indeed
h(Zy, Zy) = (Dn(z)'Z,, Dr(x)" Z,)r (1.10.14)

Where Dr(z)' is the pseudo-inverse of the linear operator Dr(z). In this case, for wy, ws €
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Hﬂ*,:ﬂ(czxr>
h(Dn(w,), Dr(wsy)) = (Dn(z) Dr(wy), Dr(z)  Dr(ws)dr = (wy, wadr (1.10.15)

We now determine % explicitly. Namely, if Z1, Zy € Tra)(S7°(C")) = Dr(Hy.(C2*")) then

Z; = Dr(z)(H;xz + X;) where H;, X; are as in (1.7.6). We must have

h(Zy, Zs) = Rte[(Hizx + Xp)* (Hax + Xo)]
(1.10.16)

= Rtr[z* Hy Hox | + Rtr[ X7 Xo]

*

h._ - * . _
We define Z; := PRan(x)ZiPRan(x) = yx*H; + H;xz™ and ZZ-L = PRan(x)iZiPRan(x) = X,z*.
Then

« * *
Hi — f eft:r:v ZZ“eftzx dt
0 (1.10.17)

X; = Z}rao(z*z)™

Plugging these expressions into (1.10.16) yields the expression

0
h(Zl, ZQ) = ﬂ?tr{xx* f

o0
g tea Z{le_t”*dtf g sz de_sm*ds} + %tr{Zf*Zj(xx*)T}
0

0

= ho(Zl, ZQ) + hl(Zl, ZQ)

(1.10.18)

The first term in (1.10.18) ho(Z1, Z2) can be simplified via the change of coordinates u = ¢ + s
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andv =t — sas

Q0 0
ho(Z1, Z2) = J J Rir{e " (+9) Zll gmw* rs) o 7N st
0 Jo

1 0 U
= 5[ Rir{e v lee_“”*atx*Zg}dvdu
0 —u

Q0
= J uRtr{e =" Zl' e_““"”"*:1::1:"‘Z£| tdu
0

Q0
= f utr{e " Zle=wrr pox Z) 4 Zlpgremuan® gl y gy, (1.10.19)
0

o0
0 ¥ *
- Z”J LA —
r{Z, . uaue e u}

Q0
= tr{Z] f e Zllgmua gy

0

= <H1> Z2>R = <Z17 H2>R

Where the last equality follows from cycling under the trace immediately and then repeating the

same calculation. With this metric in hand we have shown (i), namely that the map
71 (CV7 (-, R) — (S™°(C™), h) (1.10.20)

is a Riemannian submersion. To prove (iii), let A, B € 5™°(C") and let zz* and yy* be their
respective Cholesky decompositions, so that =,y € C?*". Consider the following straight line

curve in C™*":

Opy :[0,1] = C™*7
(1.10.21)

Ouy(t) = (1 —t)z + tyU

Where U is a polar factor such that z*yU = |z*y| (equivalently U is a minimizer of the distance
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D, as in Proposition 2). The claim is that we will be able to apply Theorem 1.10.3 to the push-

forward of ¢, ,, proving that it is a geodesic connecting A = 7(z) to B = m(yU). Specifically,

we would like to prove

Ouy(t) € CL" Vt e [0,1]

00y (0) € Hr o (CL7)

(1.10.22)

(1.10.23)

We first prove (1.10.22), namely that o, ,(¢) does not drop rank as ¢ varies from 0 to 1 even

though C*" is not convex. The endpoints ¢, ,(0) = = and 0, ,(1) = yU are of course full rank,

so it is enough to prove it for ¢ € (0, 1). Consider z*o ,(t):

T¥0,,(1t) = (1—t) %z + ta*yU eP(r)forte (0,1)
€ P(r) lz*y| € PSD(r)

(1.10.24)

This implies that 0, ,(¢) € C3*" for t € (0, 1), so (1.10.22) is proved. Let v = ¢,,,(0) = yU — x.

Then

r¥v = —z¥x + 2¥yU = —x*z + (" yy*x)

NI

PRan(x)U = —(zx*) za*s + (xx*)Tx(a:*yy*x)%

1
PRan(x)U = (_PRan(x) + (za*) a (e yy z) 2ot (za*) ) 2

o >

~
H

v=Hr+X, PranyX =0 H*=PpayH=H

(1.10.25)

Hence (1.10.23) is proved and so by Theorem 1.10.3 we have that v4 g := 7o 0, is a geodesic
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on (S'T’O(C”), h) connecting A and B. We find specifically that this geodesic is given by

YaB(t) = m((1 —t)z + tyU)
= (1 —t)z +tyU)((1 —t)z + tyU)* (1.10.26)

= (1 —t)2xx* + yy* +t(1 — t)(aU*y* + yUz™)
Clearly A = zz* and B = yy*, but what about xU*y* and yUx*? Fortunately, a minor miracle
occurs. Namely,

(yUx*)2 = yUz*yUx™ = yU|x*ylx* = y(|a*y|U*)*z* = y(*y)*z* = yy*za*
(1.10.27)

Thus in fact xU*y* and yUx* are matrix square roots (not necessarily symmetric, but having
positive non-zero eigenvalues) for BA and AB respectively. We obtain the following expression

for the family of geodesics on LSO’T’O(C") connecting A and B

van(t) = (1 — £)2zz* + tyy* + t(1 — )@Uy* + yUox®) + t(1 — ) (xUy* + yUra™)

(1.10.28)

Where Uy and U, are as in Proposition 2. The fact that the form of this expression is independent
of r is somewhat surprising, and motivates claims (zv) and (v). In order to prove (iv) we must
first check that the collection of smooth manifolds (gi’O(C”));f:O provide a stratification of the

cone S™%(C") (conditions (a) and (b) of Definition 1.7.2). Condition (a) is satisfied trivially and
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for (b) we note that

SHO(CPM\SHO(C™) = {0} U SO U - -- U GO (1.10.29)

It remains to check that whenever p > ¢ the triple (S7°(C"), S%°(C"), A) is a-regular and b-
regular for A € S0 %. It was noted by John Mather in Proposition 2.4 of [38] that b-
regularity implies a-regularity, but we will use a-regularity in our proof of b-regularity so we need
to prove a-regularity first. Specifically, a-regularity in this case states that if (A4;);>; < So’p’o(C”)
converges to A € $90(C") and if T, (SP°(C")) converges in Grassmannian sense to the vector
space 74 then TA([;'QVO(C”)) < 74. Upon examining the form of the tangent space as given by
(1.7.7) it becomes clear that convergence of the tangent spaces 1’ Ai(gp’O(C")) is equivalent to
convergence of RanA; to a space we denote L, so that the Grassmannian limit of the tangent

spaces is given by

74 = {W € Sym(C")|P,. WP, . = 0} (1.10.30)

It is evident that L should contain as a subspace RanA, and that this would prove that the strati-
fication given is a-regular. Indeed, if A, = U;A;U/ is the low rank diagonalization of A; so that
A; = diag()y, ..., A,) is the diagonal matrix of non-zero eigenvalues of A; and U;U* = Pra, Ay
UU; = l,, then by compactness we can obtain a subsequence of (U;);>; that converges to a
matrix U such that the columns of U are precisely an orthonormal basis for L. In this case, we

may write A = UAU* since A = lim;_,,, U;A\;U} and the sequences of eigenvalues converge
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(some to zero), so that if U = [uy] - - - |u,] then

RanA = span{u;|A;; # 0} < span{u;}?_, = L (1.10.31)

Thus, owing to (1.10.30) and the description of the tangent space in (1.7.7) we conclude that
TA(S%°(C™)) © 74 and our stratification is a-regular. As for b-regularity, let (A;);=; < SP2(C™),
Ae SO"I’O(C”), and 74 be as before (specifically we assume the Grassmannian limit defining 74

converges) and let (B;);>1 < 520 (C™) be convergent also to A such that the following limit exists

A; — B;
= lim Q; : hm _ (1.10.32)
@ 00 @i - ||A; — Bill2
We claim that () € 74. Specifically, let ©; = A; PRan( A )B PRan A9 and ¥; = PRan B PRan A~

B;. Then either ¥; = 0, in which case Q; = 0,/|0;|2, or ¥; # 0, so that

11042 O; IAIE 0,
[|A; = Bill2 ||©dl]2  [|Ai — Bill2 [|W4]]2

Qi = (1.10.33)

We will obtain convergent subsequences for the sequences of unit norm matrices ©;/||0;||, and

U, /||¥;||2, but first note that

||®Z||2 HPRan (A B)PRan 1)”2
14; = Bill» HAZ Bill

<1 (1.10.34)

Hence ||¥,||2/||A; — Bil|2 is also a bounded sequence (if it were not ); would fail to con-
verge). Next note that for ¢ sufficiently large W; PRan B PRan A — B, is the difference

of two matrices in S%°(C"), both converging to A. Therefore, owing to the fact that $7°(C")
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is an analytic manifold, any convergent subsequence of W;/|| V||, will have its limit lying in
T A(gq’O(C”)) (see for example Lemma 4.12 in [39]). Owing to the already proved a-regularity
we conclude that the limit of any convergent subsequence of W, /||V;||2 lies in 74. Similarly,
©: = Prana,) (Ai — Bi)PRana,) hence any convergent subsequence of ©;/[|©;[> must lie in 74.
Thus we may obtain a subsequence such that the sequences of real numbers ||©;,|[2/||Ai; — By, ||
and ||W; ||2/[|Ai; — B,||2 converge to some o, 3 € R and the sequences of unit norm matrices

©i,/]|0;,||2 and ¥, /|[¥; ||2 converge to some O,V € 74. Since (Q;);>1 converges, we find that

Q=00+ Ve, (1.10.35)

Thus the stratification (gi’O(C"));f:O is b-regular and in particular is a Whitney stratification of
SHo(Cn).

In order to prove (v), let A; = x;25 and B; = y;y; be Cholesky decompositions of A; and
B; such that z;, y; € C"*P and note that we are told the following limit exists at each ¢

§(t) = lim (1 — t)?wxf + Pyl + t(1 — ) (2 UfyF + yiUix) (1.10.36)

1—00

Where U; € U(p) is such that z}y;U; > 0. We note that since (A;);>1 and (B;);>; converge
we may obtain convergent subsequences for their Cholesky factors x; and y; (||z;||2 and ||y:||2
must both be bounded or else A; and B; would not converge). We may also obtain a convergent
subsequence for (U;);>; owing to the compactness of U(p). Denote these subsequential limits by
x, y, and U respectively and consider a combined subsequential indexing such that each occurs.

Let V, and V,, be the matrices of right singular vectors for z and y so that x = [z|0]V, and
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y = [y|0]V}, for some z, §j € Ci™?. Then clearly

0(t) = (1 —t)%22* + 299" + t(1 — t)(@U*g* + gUz*)

Where U is the upper left ¢ x ¢ block of V,UV¥. We will prove that in fact

VUV = | —

(1.10.37)

(1.10.38)

In particular, this will imply that U € U(q) since V,UV;* € U(p) hence the upper left ¢ x ¢ blocks

of (V,UV})(V,UV})* and (V,UV})*(V,UV;) must both be equal to the ¢ x ¢ identity matrix.

In order to prove (1.10.38), note that U = VW * where
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is a singular value decomposition for 2*¢ then

_ ~lAlO _ -
plol|l~ T 1% 10lo

y=Vl——110l0 —— 1V, (1.10.41)
olP||— T ||0]|Q

Where ]57 Q € U(p — q) are in general arbitrary, but may of course be chosen in accordance with

W and V. Thus

VUV = V,VW*V, = (1.10.42)

g 0
*yU = VF V,U
0 0
PG 0
=V VUV,
0 0
- - (1.10.43)
g 0|l U 0
v v,
0 o|l]|lo0 U
U0 0
:Vx* V;
0 0
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Thus z*yU will be positive semidefinite only if :2**3)(7 is positive semidefinite, and since x*yU =
lim; o 2Fy;Us = lim; o |2Fy;| = 0 we conclude that i*QU > (. A nearly identical proof shows

that Ux*y > 0. We conclude that ¢ is a geodesic in So'q’o(C”) connecting A and B. ]

1.11 Proofs for Section 1.8

1.11.1 Proof of Proposition 5

Proof. We may first note that (xz*, A;)r — (yy*, Aj)r = {(xz* — yy*, A;)r. The expression
(1.3.3) then becomes
ap = inf L, A;)? (1.11.1)
0 )Z< i

Lesmr(cn) &
ILll2=1 7~

The claim follows by contradiction if S™" is closed. Explicitly, if S™" is closed then S™" N {z €
C™ ™ . ||x||o = 1} is compact. Assume ay = 0, then there exists Ly € S™" n {x € C"*" : ||z||2 =

1} so that

0= (Lo, 4;)° (1.11.2)
j=1

This implies that the map [ is not injective since, in particular, if xz* = (Lg), and yy* = (Lg)_
then za* # yy* since ||Ly|l2 = 1 but f(x) = [B(y). It remains to show that the spaces SP?
and in particular S™" are closed. Consider the map n : C™" — {0,...,n}? with n(A4) =
(rank(A, ), rank(A_)) taking A to its Sylvester indices (p, ¢). Then 7 is continuous with respect

to the usual topology on C"*™ and with respect to the “upper box” topology 7, on {0, ..., n}?
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generated by the base

Byp = {z,....,n} x{y,...,n}|(z,y) € {0,...,n + 1}} (1.11.3)

The maps A — A are continuous and it is well known that rank(A + B) > rank(A) whenever
|Bl|l2—2 < 0p+q(A), hence 1 is continuous. Moreover {0, ...,p} x {0,..., ¢} is closed in 7,

hence SP9, its pullback through the continuous map 7, is closed in C"*", [

1.11.2 Proof of Theorem 1.8.5

Proof. We first prove that ag = inf ccnxr a(2). We note that

ag = Z [za® — yy*, A;de|? (1.11.4)

1n
zyeCn \Im* yy*|ls =
zat £yy*

We may change coordinates to z = %(m +y) and w = = — y so that

ap = inf 2w* + wz*, Adg|? 1.11.5
O Luecnsr ||zw* + wz*||2 Z < 2 ( )
zw*-i—wz*;ﬁ()

Recall that 2 has rank k, and therefore we may take 2 = [2|0]U for 2 € C?** and U € U(r). We

then define @ € C™** via the first £ columns of wU* then zw* +wz* = 20* +w2* = Dm(2)(w),

75



so that in fact we may take 1w € H, :(C?**)\{0}. We obtain

ag =  inf inf Dr(2) (), Aj)r|?
" zeC"”\{O}weH”(c“’“\{O}IIDW H2Z’< Airrl
= Inf min W, A
2€C™ {0} WeT, ;) ($%0(C™)) Z < J>R
[[Wll2=1
m (1.11.6)
= inf min W, A g|?
zeCNXT WETTF( )(ék,O(Cn)) g ’< ]>R|
=t W=
= inf a
_inf a(z)
llz]l2=1

This proves (1.8.11). The first two inequalities of (1.8.12) are clear from the definitions of the
quantities involved, namely ay < a(2) < ay(z). It remains to prove that a,(z) < a(z). We will

need the following families of real-linear subspaces of C"*" indexed by z € C™*"".

={Hz+ X|H e C™" H* = H = PRan. H, X € C"" ,PRans X = 0, XPier(z) = 0}

(2) (2)

(1.11.7)

A, ={weC™ Jp>0 Vi <p z*(z+ew) =0} (1.11.8)

={ye CnXT|PRan(z)y =0, YPrer(z) =y} (1.11.9)
Lemma 1.11.1. The space A. is alternately characterized as

A, ={weC""|z"w = w*z} (1.11.10)
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And is thus manifestly a real-linear subspace. Moreover, A\, decomposes orthogonally into
A, =H, 0T, (1.11.11)
Finally, if z = [2|0]U for 2 € C** then

H, = lyﬁ,g(c:“)

O]U (1.11.12)

Proof. Clearly a necessary and sufficient condition for w € A, is that z*w = w*z, for in this

case take |¢| < ox(z)/||w]||2. We can use this condition to obtain a parametrization for A:

weAN, < z*w=w"z

— 'w=H He CTXT,]:I* - H= Pker(z)iﬁ
— 'w=2'Hz HeC"" H"=H = PRan(z)H

— w=Hz+X HeC™ H*=H=Ppy, HXeC™ Ppyy X =0

(2)
(1.11.13)

This proves (1.11.11), with orthogonality easily verified. To prove (1.11.12) note that if z =

[2|0]U for 2 € C**, U € U(r), and w = Hz + X € H, then the condition X P, (,) = 0 implies
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X = [X]0]U for X € C"** and PRy, X = 0if and only if PRy . X = 0. Thus

H, = {H[2|0]U + [X|0]U|H € C™", H* = H = PRy . H, X € C"* Ppay ., X = 0}
2 " nxn * % nxk %
= {[Hz + X[0]U|H € C"", H* = H = PRanz), X € C"*, PRanc5 X = 0}
= [H.:(CM)o]U
(1.11.14)
0

With this lemma in mind, we may transform a, (z) into a linear minimization problem over
A,. Namely

" wat — z2*, ADR|?
ai(z) = lim inf Z]—l K< iR

R—0  geCnxr ||za* — 22*||3
[|lzz* —z2*||2<R

1.11.15
D ¥ 1 e D R
R—0  geCnxr ||za* — 22*||3
[|lzz*—z2*||2<R 2
2¥2>0

We can add the z*x > 0 constraint without altering the infimimum since doing so amounts to a
choice of representative for x, but = only appears as m(z) = zz*. We now show the following

lemma, implying that we may instead minimize over ||z — z||; < R.

Lemma 1.11.2. For all z € C"*" and ¢ > 0 there exists 6 > 0 such that if z*x > 0 and

||z2* — xa*||o < 0 then ||z — x||2 < €.
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Proof. We begin with the fact that the operation

¢ : PSD(n) — PSD(n)
(1.11.16)

C(A) = VirAvA
is continuous with respect to the topology induced by the Frobenius norm. Note that {(zz*) =
||z|]2(zz*)2 = 9(z) (the embedding ¢ as given in Definition 1.6.3). Therefore, given any z €

C™ " and €, there exists ¢ such that

1 1
|z — 22%|]s < 0 = ||||z]]2(z2™)2 — ||2]]|2(227)2]|2 < & (1.11.17)

The latter expression here is of course |[¢)(x) — ¥(2)||2, which satisfies |[¢(x) — ¥(2)|]2 =
$D(x,2)? by (1.9.19). If z*2 > 0 then D(z, z) = ||z — z||2, so if we take ¢; = % then the above

¢ satisfies the lemma. ]

With this lemma in hand we may freely replace ||zz* —zz*||5 by ||z —z||2 in the infimization
constraint for a1 (z) (note that the converse of the lemma is immediate since 7 is continuous with

respect to the topology induced by the Frobenius norm). After doing so, we change variables
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from x to w =  — z so that

" Krxt — zz*, ADR|?
a;(z) = lim inf 21 1€ )R]

R—0  geCnxr ||za* — 22%||3
[lx—z||]2<R
2*2>0

Do [t + w2 + ww, ApDrl?

= lim inf
R—0  weCnxT |[zw* + wz* + ww*||3
lwll2<R ?
2*(z+w)=0
b it 2ol [Gw w2+ wwt, Ajrl?
- N * * |2
A0 webep llzwr Fwer wwr; (1.11.18)
T Do [t + w2 + ww, Apdrl?
= R0 =t ||zw* + wz* + ww*||3
wll2<<
h 2oL Kew* 4+ w2+ ww*, Ajel?
= lim in

R0 weH. |[zw* + wz*||3 + ||lww*|[3 + 4Rtr{zw*ww*}
lwll2<R

2o [t w2+ ww, AR|?
4§Rtl‘{zw*ww*})

||zw*+wz*\|%

< lim inf

RHOH;UE;%R ||Zw* + wz*||%(1 +

We need to show that the ratio

[ Rr{zwtww* |

N 2w* + wz||?
2

R(w) (1.11.19)

is O(||w]||) when w € H,. We employ the parametrization of H, given in (1.11.7) and note that

forw=Hz+ X

zw* + wz*||3 = 2(|[z*Hz||3 + ||zz*H||3 + || X*[[3) (1.11.20)

Rer{zw*ww*} = Rr{z*H?22*Hz} + Rr{ X* X 2*Hz} (1.11.21)
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Thus we find

2|Rtr{2* H?zz* Hz}| + 2|Rtr{ X* X 2* H 2 }|

R(w) <
[l H2|[3 + [[22*H[3 + [[=X*|13
* T2, % * *
< 2|§Rtr{z H 222H2}| mtl’{)g Xz HZ}|2 (1.11.22)
EZE BSIEIEEEL
[ H?2]l2  [IX* X2
Sl Hz e []2Xl2

Up until this point we have not used the fact that [/ PRan(z) =H = PRan(z)H and X Pye(.) = 0.

We do so now by noting that if z = U;AV* for U; € C™* such that U, U} = PRan)» A =

(2)

diag(o1(z2), ..., 0k(z)) is the diagonal matrix of ordered singular values oy(2) = -+ = ox(z) >

0, and V; € C™% such that V; Vy* = Py,(,)1 then

|=*H22)| = |AUF UL |2 < 01 (2[UF HP U |2 = 04(2) /tr{PRan HPRanc B2} = 01(2)?] 1]

|2 Hall = [[AUF HU Al = 0u(2)2|[U3 HU 12 = 0(2)? e{PRancy HPRany H} = 0u(2)l1H I

)

[2X ]2 = [[AVFX*||o = [[AXV)*[|2 = ow(2)[| X V1|2 = Uk(Z)\/tr{XPker(z)LX*} = 0k(2)||X]]2

(1.11.23)
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Thus if x(z) = 01(2)/0k(2) is the condition number of z we find

[1H2]]2 XX

R(w) < 2k(2)? T, + op(2) —HXH2

< 26(2)*[|H|l2 + o (2)[| X |2

< 25(2)2%(2)_1\!1{3% + o ()1 X]2

(1.11.24)
ﬂmax 2k(z
< D AR + X3
O’k<
24/2k(2)?
= —— w2
ok (2)
—
C(z)
Thus returning to a;(z) we obtain
" zwt + w2k, AR
a1(z) < lim inf 21 ¢ . i (1 +20(2)|[w|l2)
R—0 weH, ||zw* + wz*||3
[[w|l2<R
_ inf 2 [Cw w2, Aprl?
weH, [|zw* + wz*||3
w#0
™S + 5%, AR
g 2 KA T 2l (1.11.25)
welly,; ||Z0* + 2[5
£0

min Z (W, AjHrl|?

WeTy (2 (S*0(
IWll2= 1

= a(z)

This proves (1.8.12). In order to prove (1.8.14) we will employ an explicit parametrization of
Tz (S*0(C™)) implied by (1.7.7). The condition on W € Sym(C") in (1.7.7) that PRan()- WPRan(:)-

0 implies that

W e Tz (SHO(CM)) = W =Wi+ = (W2+W2) (1.11.26)
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For Wl, W2 e C™*™ where PRal’l(z)Wl = W1 = Wl . PRan W2 = 0, and W2PRan = W2 In

other words, if U; € C"** and U, € C**"* are as in Definition 1.8.3 then
. 1
ﬂ@&W%:{MAU5+§wﬂﬂ¢+0ﬁﬁuﬁmeswmdm36c%“ﬂ (1.11.27)

We will now employ the fact that the maps 7 and p in (1.8.6) are isometries. Specifically, if
A, B € Sym(C") then (A, B)r = 7(A)T7(B) and if X, Y € C"*" then (X, Y )r = pu(X)Tu(Y).

With this in mind, we obtain that for W e T7: (S R0)

DKW, Aje]® = Z KULAUT + <UQBU1* + U B*U3), Ajr|?
= Z KUlAUl ) J>R + <U2BU1 5 ]>R‘

Jj=1

I
RgE

|<A UlA U1>R +<B UQA U1>R‘

<.
Il
_

T_ —_

(TM) dw&w)y (1.11.28)

I
NNgE

—_

J

u(B) | | m(Us A;Uh)

- . T

7(A) (i T(UFA;Uy) | | T(UFA;UL) ) 7(A)
u(B)|
WTQZW

I

(U A;Uh) || (U3 A;U) 1(B)

7(4)
Where W = e R +2k(n—k) — R2k—F* Meanwhile, again owing to the fact that 7 and

u(B)
w are isometries, we find that for W € Tﬂ-(g)(gk’o) we have ||[W||2 = ||[W]||2. Thus returning to

83



our computation of a(z)

m

a(z) = min W, A gl
= ) DOV A
[[W(l2=1

~ min WTOW (1.11.29)

WeRan—k2
[Wl[2=1

= >\2nk7k2 (Qz)

This concludes the proof of (i) — (i7i). As for (iv) and (v) note that when rank(x) < k then
we may find P € U(r) such that z = [2|0]P for # € C"** and moreover d(x,z) = d(&, 2) and

xx* — zz* = xx* — 22*. Thus

Doy [(ra® — 22, Aprl?

ai(z) = lim  inf

R—0 geCnxr d($,2)2
d(z,x)<R
rank(z)<k (1.11.30)
L i KEer = 22 AR
= lim inf J —
R—0 gecnxk d(:L‘,Z)Q
d(#,5)<R

The constraint rank(z) < k is therefore equivalent to the assumption that z € C"**. Hence,
in order to avoid a plethora of hats we will assume z € C"**, This assumption simplifies the
situation considerably since in this case A, = H, ,. As we shall see, if the I', component of A,
were to be non-trivial, the local lower bounds a;(z) and as(z) would be zero. We next note that
d(x, z) = ||z — z||2||z + z||2 precisely when 2*z = z*z > 0, which may be achieved without loss

of generality in @, () via choice of representative for z. Thus, keeping in mind that z € C"**, we
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find

Do Kaa* — 22, Ajrl?

A

a1(z) = lim  inf

R—0 gecnxk d(z, z)?
d(z,x)<R
2 [ = 2)* + (x = 2)2* + (2 = 2)(x — 2)*, Apr[?
= lim inf J 5 5
. |z = 2[13 - [l + 2[5

llz—z|l2-||z+z|[2<R
¥ z=2%2>0

(1.11.31)

In analogy with our analysis of a;(z) we change variables from x to w = x — z and are thus able
to linearize the infimization constraint, since for ||w||s < oy(z) we have that z*(z + w) = 0 if
and only if 2*w = w*z, or in other words if and only if z € A, <= =z € H,, (the vertical
component of A, namely I',, is trivial for = € C™**). We also exploit the fact that D and d
generate the same topology and therefore instead of ||w||2||22 + w||s < R we may simply take

|w|]e < R.

~

o 2 [t e+ ww”, Ajel®
ai(z) = lim inf =

R0 weHr.. wl|?]|22 + wl|?
uehe. Tl + ul?
= gm i [Cew® +w2", Aprl*(1+ O([[w][2))
Af|2|[5 &0 wettr: |lwl]]3 =
[lw||l2<R (1.11.32)

1 m

= —— inf Z 2wt + w2z, ADR[?

AR i 2416 Al
llw|l2=177

We now consider as(z). In a manner precisely analogous to (1.11.30) the constraint in ay(z) that

rank(z) < k and rank(y) < k is equivalent to the assumption that z € C"**, We first employ the
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unitary freedom of x and y to note that

fft_ CC.I'* o *714, 2
ia(2) = lim inf e € yy*, ARl

R—0g,yecnxk d(z,y)?
d(z,z)<R
d(y,z)<R

T 3 o it AT

R—0 :t,yEC"Xk d<x7 y)Q
[|z—2]|2||z+z||2<R
ly—=2|l2[ly+2|l2<R (1.11.33)
¥ z=z%r>0
y¥*z=2%y>=0

TR St Kea* —yy*, Ajrl?

R—0 zyeCnxk d(l‘, y)2
[lx—z||2<R
[ly—z|l2<R
x¥z=z%x
y*a=z*y

We now weaken the infimization constraints and obtain a lower bound. We note that z*z = z*x
and y*z = z*y taken together imply that (z — y)*z = z*(x — y), and also that the denominator

d(z,y)? < ||z — yl|3]|]z + y||3. Thus, changing variables to £ = x — z and = y — 2 we obtain

S (€ = m)* 4 (& —m)z* + 6 —m*, Apel?

A

as(z) = lim inf

R>0 ¢ pecnxk 1€ = nll3]122 + € +nl[3
[[€]l2<R
lInll2<R
2% (E—n)=(§—n)*z
1 2t 1€ =)+ (€= n)2*, Aprl?
— —_lim inf J (L+O(J|El5 + 1In1]3))
AR RS0 ¢t 1€ —ll3 T
[[E]l2<R
[Inll2<R
2 (E—n)=(§—n)*z
1 : 2t [z (€=m)* + (& —m)2*, Al
= — lim inf 5
4]|z||3 R0 gpecnxk 1€ —nll5
[[€]l2<R

lIn|la<R
2*(§—m)=(§—m)*=

21 1€ = m)* + (€ —m)z", Ajrl?

- —lim  inf
Al|z][5 B0 gpecn 1€ = nli3
I nll2<2R

2*(§—m)=(§—m)*2

(1.11.34)
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The last line is an equality rather than an inequality owing to homogeneity in £ — 7. Changing
variables once more to w = £ — 7 and using the fact that for z € C"** 2*w = w*z < w e

A, = we H,(C¥) gives

DL [Gwt w2, Ajrl?

as(z) = —— lim inf

AI213 70 wer, - (cp) [[w][3
[lw|l2<2R
1
aw* + wz*, Ape|* (1.11.35)
4||Z||2 weH”(c’lxk) 2 < )R]
lwll2=1

The reverse inequality Go(z) < a1(z) is immediate from the definitions of G,(z) and as(2),
thus (1.8.15) is proved. We now turn to explicit computation of a(z) as the smallest non-zero
eigenvalue of (.. As with the computation of a(z) we rely on several embeddings. Specifically

we define

l Cnxk R2n><k: ] . Cnxk R2n><2k
RX rRX —-SX

I(X) = §(X) = (1.11.36)
X X RX

J(X) = [Z(X) JZ(X)} (1.11.37)
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where J € R?"*2" ig the symplectic form

J— (1.11.38)

Note that Jj(X) = j(X)J for all X € C"*™.The embedding [ is isometric, and the embedding
j is isometric up to a constant since for X, Y € C"** we have (X,Y)r = {(X),[(Y))r =
1

5¢j(X),j(Y))r. The embedding j is furthermore a structure preserving homomorphism since

for p e C*** ¢ € C*! we have that j(p)i(q) = U(pq), j(pq) = 7(p)j(q), and j(p*) = j(p)".

We will also employ the isometric embedding vec defined in the obvious way in (1.8.8). We will

need the fact that if A € R"** and B € R**! then

vec(AB) = (l;x; ® A)vec(B) (1.11.39)

Note that this further implies that for x,y € R"** and F' € R™*" we have that

vec(2) (i ® F)vec(y) = vec(x) vec(Fy) = (x, Fy)r = tr{z’ Fy} (1.11.40)

88



With this in mind we find that for z € C*** and w € H, . (CI*¥)

(D (2)(w), Ajprl* = 4K wz", Ajr*
= (j(wz"), A;)°
= (j(w), Ajj(2))*

(vec Tvec( j(AJ)j(Z)))Q (1.11.41)

(vectito) %xzmmj))vecu(z»)z
<Vec<z( N (e ® j(A ))vec(l(z»)2

= AWTF; 22T ;W

where W = p(w), Z = pu(z) and Fj = lgx, ® j(A;). This should not be too surprising since in

fact

Bi(z) = (22", Aj)r

= <Z= AjZ>R

_ %Q(z),j(Aj)j(z»
(1.11.42)

= vec(j(2)) " vec(i(4,)i (=)
= %Vec(j(z))T(bkxzk ® j(Aj))vec(j(z))

= vee(I(2))" (I ® (A vee(l(2)) = 27 F;Z

Thus when j3; is viewed as map from R?"* to R we find that | D3;(2)(W)|? = AWTF;ZZT F;W.
Returning to a(z) we first note that the constraint w € H, ,(C"*¥) precisely avoids the “trivial”

kernel of dimension &% common to each F;ZZ" F;. Specifically, we note that Z7 F;V = 0 for
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V eV,  R* where

V, = {vec(JI(2)S + 1(2)A)|S € Sym(R¥), A € Asym(R¥)} (1.11.43)

Namely if V € V, and = JI(2)S + [(2)A € R for A € Asym(R¥) and S € Sym(RF) so that

V' = vec(n) then

Z'FV = vee(l(2))" (lexk ® j(A;))vee(n)
= w{l(2)"5(A;)n}
= tr{l(2)75(A;) (JU(2)S + 1(2) A)} (1.11.44)
= w{l(2)"5(4;)J1(2) S} + u{l(2)" 5 (A;)I(2) A}

=0

The last line follows from the fact that j(A;) is symmetric and j(A,).J is anti-symmetric since
(j(A;)JJ)* = —Jj(A;) = —j(A;)J. The reason that w € H, ,(C?**) avoids this common kernel

is that in fact V, = p(V, ,(C?**)). Recall that

Ve (CF) = {2 K| K € Asym(CF)} (1.11.45)

We may decompose K € Asym(C") as K = A + ¢S where A € Asym(R") and S € Sym(R").
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Hence if u € V. ,(C"**) then on the one hand j(u) = [I(u)|JI(u)] and on the other

A -8
Ju) = j(zK) = j(2)i(K) = [I(z)JI(2)] = [l(z)A + JI(2)5] = I(2)S + JU(2)A]
S A
(1.11.46)
From which we may clearly identify [(u) = [(z)A + JI(z)S, thus
V. = {p(u)lu eV, .(C*")} (1.11.47)

The map 4 is an isometry, so if w € H, ,(C"**) then the image W = yu(w) lies precisely in the

orthogonal complement of V,. Thus

m

min Z (D7 (2)(w), Ajr|?

weHr :(Cy™*) 55

Q>
—
N
SN~—
I

[[wll2=1
= min W) FZZ"F)W (1.11.48)
WeR2nk —
Wiy, j=1
[[Wll2=1

Note that at this point the hats return and Z = p(2). Eigenvalues are continuous with respect to
matrix entries, and Qz is manifestly continuous with respect to z. As a result of this and the fact
that & — 2nk — k? is monotone increasing for k& < n we conclude that a(z) approaches zero
whenever z approaches a drop in rank. Indeed, a(z) jumps discontinuously to a non-zero value

once the surface of lower rank is actually reached, but this cannot prevent inf,ccnxr a(2) from
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being zero, thus there is no hope of defining a non-zero global lower bound ay. This concludes
the proof of claims (iv)-(vi).

Claim (vii) gives local control of a(z) in terms of a(z). We first prove that the the inequality
(1.8.17) holds. To do so we consider the following operators:

I3 (2) ¢ (Tagey (S™2C™), - 12) = (R™, 1] - [|2)
(1.11.49)

IL (2)(W) = (r{WA; 1)L,
y(2) : (Hr2(CM), [ - l2) — (R™, |- []2)

(1.11.50)
I (2)(w) = (r{(Zw* + wz*)A;})T, =1L (2) D7 (2)w

Note that a(z) and a(z), defined respectively in (1.8.3) and (1.8.4), are expressible in terms of

the operator norms of the pseudo-inverses of I1;(£) and I15(Z2).

a(z) = || (2)"]|3

(1.11.51)
a(z) = [|,(2)']],2
We may therefore obtain operator-theoretic inequalities relating a(z) and a(z), namely
1TL2(2) "] = [[D(2) 7L (2) ] < [[D7(2) ] T (2) |-
(1.11.52)
1T (2)"] | = [[Dr(2)TL2(2) ] < ||D7(2)]][TL2(2) ]«
Hence
1D (2)]],%a(2) < a(z) < ||D7(2) 7 |[ia(2) (1.11.53)
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It remains only to compute appropriate bounds for || Drr(2)||;2 and || D7 (2)~!||2 in order to prove

(1.8.17). First note that

D 2)—1 W 2 2 *_|_ 2%112 —1
|D7(2)7Y)2 = sup || D7(2) (2 )2 :< inf || 2w uzjz HQ)
WET 12 (3R0(CP))\ (0 W13 weH, ;C 0oy |[wl]]3

(1.11.54)

Next note that for w = HZ + X € H, :(C"**) we have ||w||3 = ||[HZ|2 + || X]|3 and ||Zw* +

wi|3 = 2([#*HE[5 + ||22* H||3 + [|2X™[[3) thus

2 *_|_ s ||2
IDr) 2= wp el
weH, :(CE*F)\{0} |Jwl3
., . 2 HEIR + 1227 I + 12X°13
HeSym(cn),PRan<2)H:H |HZz|)5 + || X]]3
XeC"X"',PRan(i)Xzo

- inf |12*HE|5 + 12X ][5
" " neSymen pran. #=r A+ 11X (1.11.55)
XeC"Xk,PRan(é>X=0

oo IH]3 + X115

=k HeSym(cn),p n—m |[HZ|)3 + || X]]3

ym(cr), Rang) 2 2
XGC"X’“,PRan(é)X:O

= 20k(2)2
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Hence ||D7(2) |3 < g, 5z For the opposing bound note that

|Zw* + wi*||3

) |
|IDx(2)|]2 = sup 5
weHy »(C¥*)\{0} ]l
||2w* + wi*|[?
< sup 2
weHy - (C*)\{0} [lwll2 (1.11.56)
4 2w*||3
< sup —

weHy :(CE*F)\{0} [lwl[3

<Alll13

Hence || D7 (2)|[.2 = 4Hi”2,proving (1.8.17). We note that choosing w = 2 € H, ;(C"**) proves
2

that in fact || D7 (2)||e1 = 2Hi||2' Finally, the claimed bounds in (1.8.17) are tight in the case

rank(z) = 1, since in this case the inequality is equivalent to the norm inequality for /" € C™*"

1

—||W|1 < |[W]]2 < ||W 1.11.57
— e Wl < Vs < 1) (11157)

Specifically if W € Ty (.)(S™0(C™)) for z € CP then W = zw* + wz* for some w € H, .(C?) c

C™ and has rank at most 2. Moreover we have that
]' *
HWH1:sz*—I—wz*H1:§H(z—|—w)(z+w) —(z=w)(z —w)*|; (1.11.58)

Recall (1.6.8) that for z,y € C" we have that ||zz* — yy*||; = d(z,y) and that d(z,y) =
|z — yll2||z + y||» when 2*y > 0. Let z = z + w and y = z — w, and note that in this case

w e H,,(C}) implies x*y = z*z + w*z — z*w — w*w = z*z — w*w > 0 for ||w||, sufficiently
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small. Thus for ||w||; or equivalently ||WW||; sufficiently small,
1
Wl = 5ll(z +w) = (z = w)lla[[(z + w) + (2 = w)l2 = 2[2][a][w]]2 (1.11.59)

The condition that ||WW]|, be sufficiently small is of no issue since the ratio in a(z) is homoge-

neous in ||W||2, hence recalling that rank(W) < 2 (1.11.57) implies

V2llzllallwllz < [[W]l2 < 2|2l [wlly (1.11.60)

Thus for rank(z) = 1 the inequality (1.11.57) is equivalent to

1 1
a(z) < a(z) < a(z) (1.11.61)
41z[[3 2]|z[[3
which is recognizable as (1.8.17) since if rank(z) = 1 then ||z||2 = 1(2)? and hence since

(1.11.57) is tight so too is (1.8.17). This concludes the proof of (vii).

To prove (viii) we combine (1.8.11) and (1.8.14) to obtain the following formula for com-

puting ag:

— mi i Ao 1.11.62
Go = mmin - mmin - Ay k2 (Qu) ( )
U=[U1|U2]
Ulecnxk
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Recalling that

T
m | T(UF AU | | 7(UFA;UL)
Qurws) = ) (1.11.63)
= w(Us A;Un) || (U5 A;Uy)

Finally, we need to prove that the minimum over £ in fact occurs at k = r. We may write

1 m
ap = min inf min W, A g|? (1.11.64)
D koL seopk W, ) ($50(C) |W||§J-21’< 2
Then note that if 2 € C* and z € C*"™ is such that 27 = 0 then z = [|Z] € C**"

and moreover, recalling the parametrization of the tangent space (1.7.7) (or alternately that the
stratification is a-regular), we find that Ty(,)(S™0(C")) S Txz(S¥°(C")) since Ran(z)+ =

Ran(2)* n Ran(2)*. Thus, in fact

ap = min Ay, _2(Qu) (1.11.65)
UeU(n)
U=[U1]U2]
Ulecnxr
UQECnX(n7T>

We now set out to prove (ix), specifically to control ag using an infimization of a(z) rather than

of a(z) by including the additional constraint that z*z = |,.,,.. With this constraint we may write

any w € H,,(C™")asw = zH + X where H € Sym(C") and X € C"*" satisfies PRan-X =0
(equivalently X satisfies z* X = (). We note that for z satisfying the constraint

lwll3 = 14113 + 1I1X][3 (1.11.66)

[lzw* +w2*|[5 = 4[| H|[3 + 2/ X|[3 (1.11.67)
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Hence referring to (1.8.3) and (1.8.4) we find that for 2%z = |,

(1.11.68)

Note that a direct application of (1.8.17) to the case where z has orthonormal columns would lead

to the lower constant being ﬁ rather than }L.The form (1.8.18) for ay tells us that a(z) depends

only on the range of z, and that we may obtain a, via

ap = inf a(z)
2eCL*"
Z*Z:I’I‘X’V‘
Thus
1 . 1 .
- inf a(z)<ap <= inf a(z)
4 ZEC:XT 2 ZGCZXT
Z*Z:haxr Z*Zzlrxr

This concludes the proof of (iz) and Theorem 1.8.5.

Remark 1.11.3. For r = 1 the inequality (1.8.17) tells us that

(1.11.69)

(1.11.70)

(1.11.71)

But in fact, as was proved in [23], more is true. Namely if the nuclear norm is used in the

definition of aq instead of the Frobenius norm so that

1_ .
a; = inf

2oy ((ax*, Ajr — (yy*, Ajr)?

2,yeCnxr ||za* — yy*||?
TFY
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And similarly in the definition of a(z) so that

a'(z) = min W, ADg|? 1.11.73
) WeTm)(é’“’O(c"));K % ( )
IW]l=1
then

ay = inf a'(z) (1.11.74)

zeCnxm\{0}
a'(z) = 12d(z) (1.11.75)

4| 2[[3

Remark 1.11.4. Forr = 1, @), is orthogonally equivalent to the restriction of Q. to the orthogonal
complement of its null space, giving a correspondence between (1.8.14) and (3.5) in [40] when

the frame is positive semidefinite (A; = f; /7). Specifically, if r = 1 then we may take U; =

Hj L =6 and U = ey, ...,e,] whereey, ..., e, forms an orthonormal basis for C" with respect

to the complex inner product <, - )c. Thus

NA|2 1
T(Ul*Ale) _ |<Z,fJ>C| — ||Z||2<@17fj>c<fj,z>c

12113

Cea, fi)clfis 2)e (1.11.76)

WUy A;Uy) = h

_<6n,f}>0<f}>Z>C_

Note that 7(U; A;U,) is real, hence if we insert a single 0 in the middle of ;(U; A;U;) between
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vec(R(Usy A;Uy)) and vec(S(Usy A;Uy)) we obtain

T(UFA;Uh) ]
vec(R(U5 A;Uy)) Cers fipelfin 2e
= I(
12112
0
| Cens fipel s 2)e
vec(S(Us A;Uq))

(1.11.77)

Where in the last inequality the algebraic properties of [ and j are employed. Thus (up to a row

and column of zeros)

Q= { i]

=1

oo
.

In accordance with the notation of [40] we denote £ =

¢;0] + Jo;¢] J" so that the above becomes

Q. - |

oo

j(Aj)}j(U) (1.11.78)

[(2), ¢; = U(f;), and ®; = j(A;) =

i gg%} U) (1.11.79)

Finally note that the column of j(U) corresponding to the the row and column of zeros on the left

hand side is J1(2)/||z||» = J&/||€

99

2, thus if we multiply on the left by j(U) and on the right by



J(U)T we obtain

FNQ-(U)T = (1= Pye) {||£H2 Z D7D, }(I —PJe) (1.11.80)

1.11.3 Proof of Theorem 1.8.8

Proof. As was the case for d(z) and ay(z) the rank constraints in A;(z), Ay(2), Ay(2), and
Ay(z) allow us to assume that z € C?** rather than C**". As before, this is done because without
this assumption the resulting lower bounds would be zero for every z not full rank. We begin
with the analysis of A;(z), the simpler of the local lower bounds (we will show () that A;(2)
differ from A,(z) only by a constant factor, and hence will not analyze them separately). As we

have done several times before we will employ the right hand unitary freedom of the variable x

to require that z*z > 0, and then make the change of variables from z tow = = — 2.

A(e) = im inf B Z (wa®, Ajy? — (22", A3
D 2)oR

3

= lim inf
R—0 weCnxk
zw*+wz*+ww*7&0 =
[[wllz<R
2¥ (z4+w)=0

* * * . 2
. g 1 { 2 (wi®, A5 + Z |Czw* 4+ wz* + ww*, AR >1|2}
j 2

R0 wecrxk |[w]| ) (2 + w) (2 + w)*, AT 4 (z2%, A

(z +w)(z + w)*,Aj>% — <zz*,Aj>%\2

NN

2w* +wz* +ww* #£0 Jjelo(2) Jel(z
llwll2<R
wEA ,
(1.11.81)
Where [y(z) = {j € {1,...,m}|a;(z) = 0} are the indices for which «; is zero (and hence not
differentiable) and I(z) = {j € {1,...,m}|a;(z) # 0} are the indices for which «; is not zero
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(and hence is differentiable). Thus, since z is full rank we know that A, = Hﬂ,Z(CZX’“) and since
2w* + wz* +ww* # 0 <= w # 0forw e H,,(C'") and sufficiently small in norm, we

obtain

~ 1 * * * A 2
Ai(z) = lim inf —{ Z (ww*, Aj)r + Z |Czw* + wz —I—w;w s ADR| 1 }
R=0weH, .(Cp*F) [|w][3 ’<(Z + w)(z + w)*, j>§ + <ZZ*,A]->§’2

jel I(z
0<llwll2<R jelo(2) sell

= lim inf
R—0 weH,r,Z(c:;Xk
0<||lw||l2<R

Wil D et 3 KRt o)

jelo(z) jel(z

oo

= min
UJEHW,Z((ZI;XIc
[|w|[2=1

{ Z (ww*; Aj)r + Z ’<Zw*+wz*7Aj>R’2}

jelo(2z) jel(z 4<ZZ*’ AJ>

(1.11.82)

Now recall from (1.11.41) and (1.11.42) respectively that [(zw*+wz*, A;)r|? = (D7 (z)(w), 4;)r|* =

AWTF; ZZT F;W and (ww*, Ay = 3;(w) = WTF;W. Thus the above is

A F.Z7ZTF,

Al(z)zwmégk WT{ dF+ ), W}W (1.11.83)
WLV, jelo(2) jel(z) 7
[W]l2=1

As has already been noted in (1.11.44) the null space of each F;Z ZTF]‘ contains V., but in
fact so does the null space of each Fj for j € Iy(z) since in this case Fju(zK) = (lpxx ®

J(A;))vec(l(zK)) = vec(j(A;)l(zk)) = vec(l(AjzK)) = 0. Thus we obtain finally that

Ai(2) = Aas( D) F+ 2 F) (1.11.84)

jelo(z) jel(z) )

Note that in addition to proving (1.8.24) this also proves (viii) as this form makes clear that,

owing to continuity of eigenvalues, infimizing A, (z) over z will give zero (and hence so too will
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infimizing Ay(z) over z since Ay(z) < A;(z)). Specifically the number of possibly non-zero
eigenvalues of R. +T. is 2nk — k? and is thus monotone increasing in rank, and thus a sequence
(2i)i=1 € C™" approaching a surface of lower rank k will have Ao, _,2(R. + 1) approach zero.
Somewhat more remarkably, (1.11.84) actually gives us /12(2) as an eigenvalue problem also.
Specifically, we prove that the “differentiable” terms in A,(z) are equal to those in A;(z) and

that in fact these are the only terms which contribute to 1212(2). We define

2

N 2 Ap(T) — Op\Y
Al) =l inf Der(z) |k () — ar(y)]
R—0 {l‘,yECnXT D(l‘, y)2

D(z,z)<R

D(y,z)<R

rank(z)<k

rank(y)<k

2
~ ) 1OE\T) — QY
e g Dt 06 — ()
R—0 g yeCnxr D(Q?,y)Z
D(z,2)<R
D(y,z)<R
rank(z)<k (1.11.85)
rank(y)<k

R ) — s
Al(z) = lim  inf Dker(z) [on(7) k(2)]

R—0 geCnxr D(z,2)?

2

rank(z)<k

2
2 og(x oz
A{O(z) = lim inf Zke}(’(z” #(@) k(2)]

R0 gecnxr D(z, z)?
D(z,z)<R
rank(z)<k

So that Ay(z) = Al (2) + Al(2) = AL(2), AL(2) < Al(2), and Al (z) < Al(2). Applying the
mean value theorem to the functions g : [0,1] — R, gr(c) = ax((1 — ¢)x + cy) for k € 1(z)
we see that there exist ¢, € [0, 1] so that ax(y) — ax(x) = g(1) — ¢g(0) = ¢'(cx) = Dag((1 —
ck)T + cxy)(y — x) (recall that these are precisely the k for which said differential exists, and
the differential is taken with respect to the real vector space structure). Hence, replacing the rank

constraints with the assumption that z € C"** and aligning both z and y with z so that z*z > 0
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and z*y > 0 we have:

A DOék 1-— Ck)T + Cg 2
Al(z) = lim inf et Dol ) u)ly — )| (1.11.86)
R—0 g yeCnxk D(l’, y)
[lx—z||<R
[ly—zl[<R
2*x>=0
2*y=0

Using the fact that D(z,y) < ||y — z||2 and writing z = 2z + £ and y = z + 7 we obtain that

Al(z) = lim inf Dker(zy Doz + (1= ) + cun)(n — §)I?

R—0n,LeA, (1.11.87)
182, = €3
lInll<R

The trick of linearizing the conic constraints here to £,7 € A, is crucial since it allows us to
strictly weaken the constraints in the infimum by taking w = n — £ so that, after using the

continuity of Day, (o is continuously differentiable when differentiable)

Al(z) = lim inf Diker(z) [Pz + (1= ) + cun)(n — §)*

R—0 n, e/,
nien, =<l

[[nll2<R

Dker(z) | Dar(2)(n — I

= lim inf +0 2 4 2

R—0 n, e, ||77 f||% (Hfﬂz H"?Hz)
[[€]l2<R
[[nll2<R

Dker(zy 1 Dar(2)(w)? (1.11.88)

RHOHU?\)EAJQR |Jwl|3

min Z |Day(2)
weH,r 2 ( C"Xk
i kel

N GO N
el 3 S -
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We already had the reverse inequality AL(z) < A!(z), hence AL(z) = Al(z). Moreover, assum-
ing this minimum is achieved by wy € HWVZ(CQX’“) then if we put x = 2z + %wo Yy=2z— %wo we
see that the AL (z) term vanishes and AL(z) is achieved, hence Ay(z) < AZ(z). We already had

~

the reverse inequality, so we conclude that A,(z) = Al(z) = Al(z) and A®(z) = 0. In summary

IWll2=1 (1.11.89)

Thus claims (7) and (i¢) are proven. Claim (i77) follows immediately from the inequality (1.6.6).

This concludes the proof of the Theorem 1.8.8. [

Remark 1.11.5. If z were not assumed full rank in (1.11.81) then w € A, would possibly have
a non-zero component wr in I', < VW,Z(CZX’“). As a result, it would be possible to obtain a
sequence (with the horizontal space component of w converging to zero) for which the second
sum in the last line of (1.11.81) is eventually fourth order in ||w||s, thus A;(z) would be zero
wherever « is differentiable (almost everywhere in measure). The rank constraint in the definition
of A;(z) that rank(z) < k avoids this, since it allows us to assume that z is full rank and hence

that I, is trivial.

1.11.4 Proof of Theorem 1.8.12

Proof. The proof of (i) is essentially identical to the proof of the analogous eigenvalue formula

for the lower bound a( in Theorem 1.8.5. One first changes coordinates to z = %(x + y) and
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w = x — y and repeats the computation (1.11.6) to obtain

M
by = sup max W, ADg|? (1.11.90)
0= S A ;K Rl

[Wll2=1
At this point we note that
AW)||3
bp <  sup M =|Alj3_, (1.11.91)
weSym(cn) W[5
As before we observe that it suffices to take z € C"*" since if 2 € C"* and 7 € C*"*) and

z = [2]Z] with 2*2 = 0 then T,r(z)(S’T’O(C”)) - Tﬂ(g)(é’“o). One then employs the tangent space

parametrization (1.11.27) and repeats the computation (1.11.28) to obtain

bo = Sunli)(r Al(@z) = UI?Ua()fl) >\1<Q[U1|Ug]) (11192)
2€C} U=[U1|Us]

UlECnXT’U2ECan—T‘

This concludes the proof of (7). To prove (i) we will employ the following lemma.

Lemma 1.11.6. Let ||| - ||| be any norm. Then
Al = sup [[lAGz27)]] (1.11.93)
xeCn
|z|l2=1
In other words the operator norm || Al of A : (Sym(C")(C"™), || - ||l1) = (R™, ||| - |||) is achieved
on a matrix of rank 1.
Proof. Let R € Sym(C™) be non-zero such that ||R||; = 1 and ||| A(R)||| = ||A||+||R]||:. Write
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R =};_ rje;je; and note that ||R[[; = 1 implies };7_, |r;| = 1. Then

n

Al = [[ Al R[], = H!Zm (e;ei)lll < Z\ml Jmax ||| A(eje)ll] = max [[[A(e;e5)]]]

o — ~ g=L..n "2 =1,

(1.11.94)

Let xy = ej, where jj is the index that achieves the maximum. Then ||zo||z = 1 and ||A]], <
||[A(xozf)]|||, but of course this bound is achievable by just plugging in zoxj into A. Thus the

operator norm of A is achieved on a matrix of rank 1 and the lemma holds. [
Next note that

2o Kaa® — yy*, Ajel®
bo1 = sup

x,yeCnxr ||$5L‘* - yy*“%

[]#[y]
AW)|3
S ap  AOVIB
2€CL*" WeTy (. (ST0(Cn)) W[5

(1.11.95)
< sup  |JAW)f3

weSym(cr)
[W]lh=1

= [IA[l1-

2

Note that by an identical computation by < |[.A|[22. By the Lemma [|A[|1 2 = Sup,ccn |jz,=1 [MA(z27)]]3,
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hence

| A(zz*)[[5
b sup ————5—
O e a3
*\ |2
< sup || A(zz*)|[3

secrr |lza*][]
A (o) |13
|wox]|? (1.11.96)
AMW)]13

< sup sup —HWH%

UzeC™ =k weSym(cn)

UFUs=ln—kxn—k UFWUy=0
k=1,..r

= by

Where in the second to last equality we note that it suffices to take Us such that UsUs = PR, (z0)*

and in the last equality we use the implicit parametrization of the tangent space (1.7.7). Thus

A *\[|2 A *\]|2
boa = || Al|l12 = sup llAG)ll; (x:i )2H2 = sup NlAG*)lly (xa:* )2H2 (1.11.97)
wecn etl[i peemer lpe¥|lt
We now seek an operator 7, : C"*" — (C™*")™, an integer ¢, and a norm ||| - ||| so that for
T € CTZX’I‘
T @17 = [ A@z")|l3 (1.11.98)

We find that if A; > 0 for all j then

m m 1
[A(zz*)[[3 = ) [Ce®, Apel* = D [|AZ 2]l (1.11.99)
J=1 Jj=1
So we let 7, be as in Definition 1.8.11, |[|.X ||| = |||X|||2.4 and ¢ = 4 and find by = HTTH§_>(2,4) =
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|\T1|]4 This concludes the proof of (ii). To prove (iii) note that by (1.6.5) ||(zz*)2 —

—(2,4)°

(yy*)2||2 = D(z,y) hence

la(z) — a(y)|l3
By < sup (1.11.100)
x,yeCnxT D(Jf,y)Q
[=]#[y]
Thus
Bo< swp mov Z [Caa, A% = (yy*, A3l
xyECTLXT
[=]#[y] ) (1.11.101)
1 m * * A
= sup 2 Z Kxx 1 L ]>R’ 1
x,yeCnx" ||IL‘ - yHQ j=1 (<x$*714j>§ + <yy*7‘4j>§)2
x¥y>0

We now make the change of coordinates z = 3(z+y), w = v —ysothatz = z+ 3w,y = z—sw.
As before let [y(z) be the subset of {1,...,m} for which A;z = 0 and I(z) its complement in
{1,...,m}. In this case we note that if j € Iy(z) then 0{zw* + wz*, A;)r = (xa™* — yy*, A;).
Thus, employing the triangle inequality via (zz*, A;)2 + (yy*, A;)2 = HAj%tz + HA]%yHQ >

2||Az z||o = 222", A;)7 we find that

1 m * * A 2
By < sup 3 [re” — gy, Aj)el (1.11.102)
zyecrr |7 — ylf3 jel(e) (@™, ANe 4 (yy*, Aj)e)?
z*y=0
1 % 4 *,A' 2
< sup sup ;> Kzw e iR (1.11.103)
2eCNXT weCn*T HwH2 jel(z) 4<ZZ 7Aj>

270 z*zfiw*er%(w*zfz*w)ZO

Next note that the condition z*z — Tw*w + 3(w*z — z*w) = 0 holds if and only if z*w = w*z

and w*w < 4z*z. Moreover, since w only appears as w/||w||s we may scale w so that oy (w) <
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0k(z) (where z has rank k), thus the latter non-linear criterion becomes the linear criterion that
WPyer(zy = 0. Taken together, these these criterion hold if and only if w € H,. Thus, with

reference to the computations (1.11.41) and (1.11.42) we find that

1 * * A 2
By< sup sup —— [Czw” + o iR (1.11.104)
2eC™ X7 weH, 'LUH2 jel(z) 4<ZZ 7A.7>
z7#0 J z
Fou(2)u(2)TF;
= sup max WT( 3 ”’;EQ’?Z)(A)J)W (1.11.105)
zeCr T Ry jeltz) HVE)HIHE
[Wll2=1
= sup M(T%) (1.11.106)
ZECnXT‘
z#0
Moreover note that by setting y = 0 in the definition of B, and observing that ||(zz*)z ||, = | |||,
and that (xz*, A;) > 0 we obtain that
By > sup Z<:cx A =B (1.11.107)

zeCnxr H%‘HQ

1
Meanwhile by Cauchy-Schwartz (zw*, A;) < [| A w2 HA 2|2 = (ww*, AJ> (zz*, AJ>2 (simi-

larly for (wz*, A;)). Hence

By < sup A (T%)

zeC™ "
z7#0
1 [(zw* + wz*, Aj)r|?
sup sup
S0 S ol 20~ K Ay
270 ! (1.11.108)
< sup Z (ww*, A;)
UIEHZ H HQ
< sup (ww*, Aj)r = B
3P, T 2 A
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Thus B < By < sup,ccnxr AI(TZ) < B and hence all three are equal. This concludes the proof
z#0

of (i7i) and of Theorem 1.8.12. O

1.11.5 Proof of Theorem 1.8.13

Proof. It is shown in Proposition 5 that the map [ is injective if and only if it is lower Lipschitz,
that is if and only if ag > 0. This gives equivalence of (7) to (i7) immediately since we proved in

Theorem 1.8.5 that

apg = min _ )\Qnr—rQ(Q[Ul\Ug]) (1.11.109)
UleC’!LXT

UpeCnX (n—r)
[U1|U2]eU(n)

Similarly, it is evident from (1.11.70) that ap > 0 if and only if a(z) > 0 whenever z*z = |,.,.. It
is proved in Theorem 1.8.5 that a(z) = Aonr_,2(Q.), and also that the null space of (), includes
the 72 dimension V.. Thus the frame is generalized phase retrievable if and only if the null space
Qz does not extend beyond V, for any z of orthonormal columns, proving equivalence of (i) to
(4i7). We prove equivalence of (i) to (iv) by noting that Q[¢, |i,] is invertible if and only if

T(U*AUl)
spang{| |y, = R (1.11.110)

M(Uz*Ale)

Noting that 7~*(R"™) = Sym(C") and p~'(R*"~2") = C"*", thus Q[u,|u,] is invertible if
and only if there exist ¢y,...,¢,, € R so that (1.8.39a) and (1.8.39b) are satisfied. To prove

equivalence with (v) note that (1.8.39a) and (1.8.39b) both hold if and only if for all U = [U;|Us]
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we have

H
spang{A,;U;} = {U |H € Sym(R"™), B e C("=)>x7}

B (1.11.111)

= {UK|K eC™" K* = —K}*

Finally note that while (v) trivially implies (v7) it is also the case that (A; Uy, U1 K )r = (U} A;Uy, K)r =
0 for every U; and every K since U;A;U; is Hermitian and K is skew-Hermitian, hence it is au-
tomatically true that spang{A;U;} = {U;K|K € C™", K* = —K}*. Thus we also obtain (vi)
implies (v).

This concludes the proof of Theorem 1.8.13. [

1.12  Numerical experiments

The main benefit of lower Lipschitz results like Theorem 1.8.1 is that they provide quan-
titative control over reconstruction error in the generalized phase retrieval problem, as opposed
to the topological result in Proposition 5 that the error is bounded whenever the matrix frame is
generalized phase retrievable (1.e. that ag > 0). This is only true, however, if for a given frame
one can make headway in computing the lower Lipschitz constant ay. Unfortunately (1.8.18)
yields ag as a non-convex optimization problem, so for the time being we content ourselves with
examining the statistics of the local lower Lipschitz constants ao(z) and a(z). We also verify
numerically the result in Theorem 1.8.8 that « is not globally lower Lipschitz (i.e. that Ay = 0)
by examining the statistics of the local lower Lipschitz constant Ag(z).

For each experiment we use a fixed frame set of cardinality m = 4nk — 4k?, noting that
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Theorem 2.1 in [9] implies that a generic frame for C"** with cardinality m > 4nk — 4k? will
be generalized phase retrievable when 2k < n. The experiment shown in Figure 1.2 supports the
result in Theorem 1.8.8 that inf ccnxn (o 1212(2) = 0 for r > 1, thus that the « analysis map is
not globally lower Lipschitz with respect to either D(z,y) or ||(zz*)2 — (yy*)2||, when r > 1.
This experiment also supports the earlier result in [23] that when 7 = 1 inf.ccnxn (o) flg(z) > 0.
The experiment shown in Figure 1.3 supports the result noted in the proof of Theorem 1.8.5 that
inf,ecnxr\fo G2(2) = 0 for r > 1, thus that the 3 analysis map is not globally lower Lipschitz
with respect to d(z,y) when r > 1. That this quantity is non-zero when r = 1 follows from the
fact that for r = 1 we have d(x,y) = ||zz* — yy*||1 (see Theorem 1.6.4). Finally, the experiment
shown in Figure 1.4 supports the result in Theorem 1.8.5 that ay = inf ccnxr (o) a(z) > 0 even
when r > 1, thus that the /5 analysis map is globally lower Lipschitz with respect to ||zz* —yy*||2
whenever the frame (A;),;>; is generalized phase retrievable. Code for all numerical experiments

can be found at github.com/cbartondock/LipschtizAnalysisofGenPR.
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Ay (z) forn = 8, r = 4, and I = 10000 random z

400

|
300 |
300 ™
|
200
£ 200
100 100
O - - 0 | I
0 0.1 0.2 0 0.002 0.004 0.006

300

200

100

0 00005  0.001 0.0015 0 aoop

Ay(2)

200p

Ay(2)

rank(z) =1
rank(z) = 2
rank(z) = 3
rank(z) = 4

Figure 1.2: In all experiments Ay(z) is computed for a fixed frame of 4nk — 4k? matrices in
C™** for [ = 10* samples of z having rank k. The entries of both z and the frame matrices are
sampled from a complex Gaussian with unit variance and zero mean. As can clearly be seen only

the £ = 1 case has a clear separation from zero.
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dz(z) forn = 8,7 = 4, and | = 10000 random z

400

B rank(z)=1
B rank(z) =2
200 300 B rank(z) =3
B rank(z) =4
£ 200
100
100
% % 0.002 0004 0006
IS

0 —— - 0 W o -
0 0.0005 0.001 0.0015 0 200p 400p 600p

as(z) a2 (2)

Figure 1.3: In all experiments () is computed for a fixed frame of 4nk — 4k* matrices in C"**
for | = 10* samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the
k = 1 case has a clear separation from zero.
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a(z) forn = 8, r = 4, and | = 10000 random z

B rank(z) =1
300 200 B rank(z) =2
M rank(z) =3
rank(z) = 4
& 200 o (2)
100
100
0 0
0 0
300
200
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£
100
100
0 - - - O -
0 0.05 0.1 0 0.02 0.04 0.06
a(2) a(z)
log(1 + a(z)) for n = 8, r = 4, and [ = 10000 random z
W rank(z) =1
400 W rank(z) = 2
I rank(z) =3
W rank(z) =4

350

300
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200

150

100

50

log(1 + a(2))

Figure 1.4: ° In all experiments a(z) = Aong—x2(Q[u|1z]) is computed for a fixed frame of
4nk — 4k*® matrices in C™* for | = 10* samples of U € U(n) distributed according to the
uniform Haar distribution on U(n). U; € C™* is composed of the first k columns of U so
that Qpu,u,) € C*"F~***21h=k* The entries of the frame matrices are sampled from a complex
Gaussian with unit variance and zero mean. In this case an overlapping log-plot is also included,
in which clear separation from zero can be seen for k = 1, ..., 4.
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1.13 Conclusion

This paper extends known results about the stability of generalized phase retrieval to the
“impure state” case where the phase no longer comes from U(1) but instead the non-abelian
groups U(r) where » > 1. We showed that the situation changes drastically in this case, both
because U () is non-abelian and because for r > 1 a sequence in C*" /U (r) with ||z, ||» = 1 can
come arbitrarily close to dropping in rank. In particular, we showed that while the 5 analysis map
remains lower Lipschitz with respect to the norm induced distance on Sym(C") (Theorem 1.8.5),
the o analysis map does not (Theorem 1.8.8). Our analysis relies on several Lipschitz embeddings
of C"*"/U(r) into the Euclidean space Sym(C") (Theorem 1.6.4) and a Whitney stratification
of the positive semidefinite matrices into positive semidefinite matrices of fixed rank (Theorem
1.7.4). This investigation of the geometry of positive semidefinite matrices incidentally provided
the interesting and (to the best of our knowledge) previously unknown result that the Riemannian
geometry of the stratifying manifolds given by the Bures-Wasserstein metric is compatible with
the stratification. In particular geodesics of positive semi-definite matrices with respect to the
Bures-Wasserstein metric are rank preserving and may be approximated by geodesics of higher
rank. We note that the fact that ¢, > 0 and can be explicitly computed as in (1.8.18) suggests that
known convergent algorithms for generalized phase retrieval may be extended to the case r > 1.
Finally, the explicit computation of the lower Lipschitz bound for the 5 map allowed for a novel
characterization of generalized phase retrievable frames in the impure state case » > 1 (Theorem

1.8.13).
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Chapter 2: Chart Based Normalizing Flows'

2.1 Introduction

Generative modeling is a machine learning paradigm that aims to learn data distributions
and sample from it. If the data is drawn from a random variable x ~ p(z), then one way to do this
is to directly model p(x) via a parameterized model so that py(z) ~ p(x). Such a model can then
be used to generate new samples, which are expected to be statistically indistinguishable from the
observed samples. Moreover, generative models that learn p(z) are useful for data augmentation,
outlier detection, domain transfer [41,42], and as priors for other downstream tasks [43—45].

Among the most successful generative models are deep latent variable models, which as-
sume that the latent factors of variation underlying the generative process of the data follow a
simple distribution, such as a Gaussian or a uniform distribution. The non-linear function trans-
forming this latent space to the data space (or vice-versa) is parameterized as a neural network
and learned using gradient descent. Depending upon their formulation, there are three broad cat-
egories of deep latent variable models - GANs [46], VAEs [47], and normalizing flows. In this
work, we focus on normalizing flows, a class of deep latent variable models introduced in [48]

that support efficient sampling, exact density estimation, and inference [49]. A normalizing flow

Tn collaboration with Radu V. Balan, Sahil Sidheekh, Tushar Jain, and Maneesh Singh. This work was submitted
to the Uncertainty in Artificial Intelligence (UAI) conference. My contribution to this section was the theoretical
component of the work.
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maps the data space to a latent space through a series of diffeomorphisms (differentiable, bijec-
tive transformations with differentiable inverses). The data is assumed to follow an analytically
computable distribution in the latent space, typically a Gaussian. Since the mapping is a diffeo-
morphism, the density in the data space can be obtained using the change of variables formula.
To generate new samples using a flow, one can sample from the latent distribution and use the
inverse transformation to map them to the data space. This makes normalizing flows powerful
generative models that support exact density evaluation in contrast to GANs and VAEs.

Despite the advantages of normalizing flows over other generative models, their diffeomor-
phic requirement poses several restrictions. Firstly, a continuous bijective transformation with
continuous inverse preserves the topology of its domain. Therefore, the data space is required to
be topologically equivalent to the support of the latent distribution, typically to D dimensional
Euclidean space since the latent distribution is assumed to be a Gaussian. However, real data dis-
tributions typically differ from Euclidean space in many topological respects, such as the number
of connected components, the presence of holes, etc. A normalizing flow would thus fail to model
such data distribution accurately.

A particularly troubling consequence of the continuous invertibility of flow transformations
is that they are dimensionality preserving. However, according to the manifold hypothesis, high
dimensional real-world data living in X ~ RP is often supported on a d << D manifold of
the embedding space. To efficiently learn such distributions using flows, one needs to design
expressive transformations that can map from a d dimensional latent space to a the D dimensional
data space without making learning intractable. Recent work using stochastically invertible tall
matrices [50] and dimension raising conformal embeddings [1] have paved the way in designing
such transformations, however in both works expressivity is limited by the fact that the dimension
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| a ‘/u

(a) Real Data (b) Classic Flow (c) VQ-Flow

Figure 2.1: Augmentation of our framework (c) enables a classic flow (b) to better model the
discontinuities in the data manifold through a learned atlas of charts(shaded region).

changing operations are restricted to be linear (in [50]) or made up of Mobius transformations
(in [1]).

In this work, we propose to address the above limitations by parameterizing a family of
normalizing flows to compose an atlas of charts over the data manifold. As the topology of the
data manifold is expected to be “locally” equivalent to Euclidean space, a local normalizing flow
should be able to model the local distribution over a chart region effectively. Further, by learning
a mixture of flows over well-chosen charts, our approach compensates naturally for the limited

expressiveness of existing flows. We summarize the main contributions of this work below:

* We provide an understanding of the limited expressive power of existing flow-based models

in modeling data distributions over complex topological spaces.

* We present a statistical framework for defining an expressive mixture of local normalizing
flows that is flexible and generic enough to be used with existing approaches. We show
that this framework allows for efficient sampling, inference of latent variables, and exact

density evaluation while improving expressivity.
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* We validate experimentally that the proposed approach improves flows for density estima-
tion and sample generation, and is thus able to resolve many of the topological restrictions

on expressivity imposed by using global diffeomorphisms.

2.2 Global Normalizing Flows

Given data {r,})"; ¢ X ~ RP distributed according to an unknown distribution p(z), a
normalizing flow maps it through a diffeomorphism f : X — Z to a latent space Z ~ R” such
that z = f(x) is simply distributed, for example z ~ ¢(z) where ¢ = N(0,1). Recall that a
diffeomorphism is a differentiable map that is bijective and whose inverse is also differentiable.
Typically one denotes by g the inverse of f and paramaterizes the normalizing flow as = = gy(z),
where 6 is the vector of learnable model parameters. The process of going from the latent space
to data space is called generation or sampling and is accomplished by the function gy, while the

inverse procedure is termed inference and is accomplished by fy = g, L.

fG X - Z go . Z—->X
2.2.1)
x — fo(x) 2 go(2)
— —
Inference Sampling

The approximation py(z) to the true probability density p(x) is then obtained from ¢(z) through

the change of variables formula as:

po(x) = q(fo(x))| det[J fo(z)]] (2.2.2)
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As compositions of diffeomorphisms are also diffeomorphisms, one can design expressive flows
by composing individual transformations that have simple to compute inverses and Jacobian de-
terminants. Suppressing the vector of model parameters 6, we will use the notation f(z) =
flo-- o fl(x) where f!,..., fF are assumed to have easily computable Jacobian determi-
nants and inverses. Define recursively 2/~ = f!(z!), 1 < | < L, with 2% = 2. Note that

xt = flo... o fl(x) and 2° = f(x). One can then write the log-likelihood as:

L
log p(x) = log q(z) + log ]_[ | det[J f* ()]
(=1 (2.2.3)

= log q(f(x)) + Y log | det[J f'(«")]]

A given layer f' of the normalizing flow will depend only on a subset 6; of the parameters of
0 := (6q,...,0r). Temporarily adding back in the 6 dependence of fj, maximum likelihood

estimation of 6 then yields the following optimization problem:

X
0* = min — —lo T
o nz_:l g po(xn)

0=(01,...,

1N
= min — —lo Tn 224
6=(01,... eL)an_:l{ gq(fo(zn)) (2.2.4)

ol i 1

2.3 Related Work

Normalizing flows have come a long way since it was introduced in [49, 51], with much
efforts focused on expanding their scalability and applicability. This has resulted in several dif-

ferent formulations [52-55], each with a multitude of proposed architectures [56-61], aimed at

121



defining expressive yet analytically invertible flow transformations with efficiently computable
jacobian determinants. However, as these approaches define invertible transformations in Eu-
clidean space, they are dimensionality preserving and less suited for modeling distributions over
lower dimensional manifolds [62, 63]. Subsequent works have tried to address this challenge
by building injective flows [50, 64—68]. However, they trade off the benefits of dimensionality
change to intractable density estimation or stochastic inverses. The work by [1] overcomes the
above limitations using conformal embeddings, but has limited expressive power, as we show in
this work. One way to improve the expressivity of all the above approaches, and enable them
to overcome topological constraints [69], is to relax their global diffeomorphic requirement by
defining a mixture of flows. Prior works in this direction have looked at infinite mixtures by
defining flows in a lifted space [70] or by using continuous indexing [71]. However, their added
expressivity comes at the cost of tractable density computation, and one has to rely on varia-
tional approximations to train the model. On similar lines with this work, [72] proposes to use
a finite mixture of flows through piecewise-invertible transformations over partitions of the data
space by introducing both real and discrete valued latent variables in the flow. However, this
formulation introduces discontinuities in the model density that leads to unstable training [71],
necessitating the enforcement of boundary conditions through ad-hoc architectural changes. It is
therefore limited in its generalizability to novel flow formulations. Our work, on the other hand,
by decoupling the partition learning from the flow training, introduces a more generic and scal-
able framework that can aid existing flows to overcome topological constraints and learn complex

data distributions efficiently.
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2.4 Local Normalizing Flows

A traditional normalizing flow provides a global diffeomorphism between the latent space
Z and the data space X ~ R”, and as such requires the latent space to have the same dimension
as the data space. This can lead to numerical instability when the data is supported ona d < D
dimensional manifold M < X because the learned transformation will tend to become “less and
less injective” as it seeks to restrict its range to M [62, 63].

One way to overcome this challenge is to build transformations that map across dimen-
sions while preserving invertibility on its image. Unfortunately, the natural approach of post-
composing a d dimensional bijective normalizing flow ¢ : Z — U with a dimension-raising
embedding e : &/ — X leads in general to an intractable likelihood since the determinant in the
change of variables formula p(z) = q(f(x))|Det[J,J J.J,] =2 no longer separates into a prod-
uct of simpler determinants. We will focus on the solution to this issue developed in [1], namely
to post-compose the d dimensional bijective normalizing flow g : Z — U with a dimension
raising conformal embedding c : U — X. An alternative solution developed in [50] is to use a
linear dimension raising embedding and invert it stochastically, but this approach relies on the
dimension change operation being linear which is restrictive. The approach taken in [1] hinges
on the fact that for every u € U the Jacobian J,(u) satisfies J.(u)T J.(u) = A(u)?l for A : U — R,

thus

det[JT, Jeog]? = det[JT T T, T2

= [A(u)] det[JgTJg]% (2.4.1)

= [A(u)[[ det[J,]]
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This splitting keeps the likelihood computation tractable, but the requirement that M be the
range of a conformal embedding is artificially restrictive. This issue is exacerbated by the ne-
cessity of parameterizing c. As noted in [1] the easiest way to dosoistoletc = cjo---0¢
where each c; is either a trivially conformal zero padding operation or a dimension preserv-
ing conformal transformation. A dimension preserving conformal transformation f : RY — R?
with d > 2 is restricted by Liouville’s theorem to be a Mdobius transformation, of the form
f(z) = (A a,b,a,€)(x) = b+ a(Ax — a)/||Ax — a||* where A € O(d) is an orthogonal matrix,
a € R, a,b € RY, and ¢ is either 0 or 2. Though it might initially appear that the composi-
tion of many such operations would give increased expressive power, the group structure of the
Mobius transformations prevents this. Indeed, if p, : R — RY** is the zero padding operation,
my = (Ay,aq,b1,a1,€) is a d dimensional Mobius transformation and my = (As, ag, ba, g, €2)

is a d + s dimensional Mébius transformation then it is easily verified that for 2 € R?

ma 0 ps omy(x) = (mg - mq)(ps(z)) (2.4.2)

Where m; is the d + s dimensional Mo6bius transformation

my = ( ;ps(ar), ps(b1), an, 1) (2.4.3)
O Ime

Thus, this parametrization yields c as a Mobius transformation of R composed with pp_4. Prac-

tically speaking, if ¢ is parameterized as above, the assumption that M is the image of a global

conformal embedding severely limits expressiveness. The class of global conformal embeddings

is not subject to Liouville’s theorem and is far richer than the set of Mobius transformations, but
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it is hard to parameterize.

2.4.1 Motivation: Geometry of conformally flat manifolds

A weaker and more natural assumption than M being the image of a conformal embedding
is that M is locally conformally flat. Recall that if f : (N ;1) — (M, n2) is a map between
differentiable manifolds N and M with metrics ; : N x TN x TN andny : M x TM x TM
respectively then the pullback f*ny of the metric 7y through f is defined via:

f e : N x TN x TN — R
2.4.4)

ey, v,w) = no(f(y), Df(y)(v), Df(y)(w))

With this in mind a d dimensional manifold M is called locally conformally flat if n, = Zf;l dy?
is the flat metric and for any x € M there is a neighborhood U > z, an open set O < RY,
a diffeomorphism f : O — U, and a differentiable scalar function A\ : O — R such that
F*n2(y, ) = My)m (-, -) forall y € O [73]. An alternate definition replaces R? with a flat mani-
fold (defined as having an identically vanishing Riemannian curvature tensor), but this definition
is equivalent to the above since any d dimensional flat manifold is locally isometric to R? (not
globally isometric, for example tori are flat when equipped with appropriate coordinates) [37]. In
our case the metric 7, is assumed to be inherited from the Euclidean metric on X ~ R,

The notion of local conformal flatness provides far more flexibility than its global coun-
terpart. It is well known, for example, that every 2 dimensional Riemannian manifold is locally
conformally flat, but even the sphere S?(R) is not globally conformally flat (by contrast an explicit

local conformal equivalence of S¢(R) to R? is given by stereographic projection from the north
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and south poles) [37]. In general, criteria are known for a Riemannian manifold of dimension
d > 2 to be locally conformally flat: For d = 3 a pseudo-Riemanian manifold is locally confor-
mally flat if and only if the Cotton tensor vanishes everywhere, for d > 4 a pseudo-Riemannian
manifold is locally conformally flat if and only if the Weyl tensor vanishes everywhere [37].
The question of which manifolds are globally conformally flat is more difficult, and in applied

problems this requirement is artificially restrictive.

2.4.2 A chart based probability model

We thus propose to break up the data manifold & into an atlas of overlapping charts
Uy, ..., Uk such that given x € X there exists a neighborhood U, > z that may be written as
Uy = cx(U) where ¢y, is a conformal dimension raising map. Because chart regions may in gen-
eral overlap, we propose to choose between them probabilistically. In other words we introduce a
discrete random variable & taking values in {1, ..., K’} that labels the chart regions and condition
the normalizing flow on this quantization of the data space.

Given a collection of charts Uy, ..., Uk that cover the data manifold M on which p(z)
is supported, we model p(z) via a latent random variable z that takes values in Z and a “chart
picking” random variable & that takes values in {1,..., K}. Fork =1,... Kletg, : Z — Uy

be a diffeomorphism with inverse f; : Uy — Z. Then let the joint distribution of x, z, and k be:

p(z, 2, k) = 6(x — gr(2))q(2)pk (2.4.5)

where ¢ = N(0,1)org = m 15, (0) and py, is the normalized frequency with which x occurs
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in Uy, that is:

Pk = =

Siplzely) 3§, pla)de

One may then compute the joint distribution of = and £ as

plz, k) = Jz p(z,z,k)dz

=p¢L&x—%@»«@w

=pﬂwu)[xz—nu»Maw%um*«@w

Z

= prLu, (2)| det[Jgi(fiu(2)]| 7 a(fi(=))

= pirlly, (z)| det[J fi(z)]]q(fr(z))

- Z Pk L{ 3z — gr(2))q(z)dx
= q(2) Zpk =q(2)
h=1
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(2.4.7)

(2.4.8)



and

m@=quwmx

r

= Pr | Ly, (z)| det[J fi(2)]lq(fu(x))dx
f (2.4.9)
i | det[J fr(2)]]g(fr(z))dx

= ij Q(Z)dz = Dk
Z

Taken together, (2.4.8) and (2.4.9) yield that z and k are independent random variables since

p@¢»—Lpuwwa—m¢@—p@mu> (2.4.10)

Moreover simply dividing (2.4.7) by p(k) = px we conclude that the distribution of = conditioned

on a particular chart is given by

p(zlk) = 1y, (z)| det[] fi()]lq(fr(x)) (2.4.11)
In particular, p(z|k) is zero unless x € Uy. The density p(x) is then given by

pla) = 3] plalk)p(k)
k=1 (2.4.12)
= > paldet[J fu(@)]lg(fr(x))

k:xeUy
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Figure 2.2: Learning quantized centers on the low dimensional data manifold using a vector
quantized auto-encoder.

Meanwhile p(k|x) is given by the Bayes’ formula as

o plalkp(®)
P = S i)

 puly ()] detl (o))

> e, 2o 0L (1))

(2.4.13)

The distribution p(k|z) is thus also zero unless € Uy, a fact that will be employed during

inference.
Practically speaking, it remains to learn a “good” collection of charts Uy, . . . , Uk, estimate
P1,- .., DK, and then to parameterize gi, ..., gx via normalizing flows ¢¢. ..., g% and obtain a

maximum likelihood estimate for § by optimizing — log pg(x) (Where py(z) is as in (2.4.12)),
which we elaborate below.
1. We learn the charts Uy, ..., Uy via a vector-quantized auto encoder (VQ-AE) [74], as

it provides an effective and scalable mechanism to learn quantized centers on lower dimensional
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manifolds. The VQ-AE learns an encoder map £/ : X — V, adecodermap D : V — X, and a
collection of “encoded chart centers” ) = {v;}_, = V that minimize the reconstruction error
L(D(argmin, . |[v—E(z)||2), ). Once D, E, and () are learned we compute dy(z) = ||E(x) —
vg||z for k = 1,... K. With dy(z), ... di(x) in hand it remains to compute our charts. We would
like the charts to overlap, but we also want them to be sparse in the sense that no individual x has
too many relevant charts. One possible choice is to fix m € {1,..., K} and let d; < --- < dg
be the sorted permutation of di, ..., d then define U, = {z : ||E(z) — v||s < dm(z)}, so
that every point x has at least m charts associated to it (those whose encoded chart centers are
among the m closest to £(x)). With this choice, a point = will have exactly m associated charts
so long as the m!" closest chart center is unique. Another choice would be to fix ¢ > 0 and let
Up = {z : ||[E(X) — vg||2 < (1 + €)d,n(2)} (increasing e enlarges each chart). For now we leave
m and e as hyper-parameters, and in general denote m(x) = |{k : z € Uy}| (one always has
m(x) = m). Note that checking if € U}, amounts to computing E(z) and d,(z), . .., dx (x) and
verifying that || E(z) — v|| < (1 4 €)dpm ().

2. Once Uy, ..., Uk are fixed note that if r, := p(x € Uy),

Tk = Eonp(a)[ L, ()] (2.4.14)

The density p(x) is unknown at this point, but we may estimate r; using the empirical dis-

tribution p(z) = + ZnN:1 d(x — xp) so that r, ~ E,p@)[lu,(x)]. Practically speaking we

thus perform a second pass over the training data and update 1, ..., rx (initialized as zero) via

r,(g") = ”—_1rl(€n_1) + %ILUk(mn), 1 < n < N, finally setting 7, = r,(CN) and p = 11/ ZJK:1 r;.

n

3. Once Uy,...,Uk and py,...,px are obtained we model g, : Z — Uy as an L lay-
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Figure 2.3: Learning the data distribution using a family of normalizing flows conditioned on the
quantized centers.

ered invertible conditional normalizing flow. Where dimensionality change is required, we post-
compose it with a conformal dimension raising map so that g, = ¢ 0 gF o - - 0 gi. We write the
left inverse of gy, via fr = flo---o fLocl where f. = (gL)~" and ¢] denotes the left inverse
of the conformal map c obtained by removing the zero padding and inverting the various M&bius
transformations composing ci. In practice, we reduce the number of parameters of our model by

restricting each ¢! (and f}) to depend on k only through the value of the encoded chart center vy

With this parametrization of fi, ..., fx in hand (2.4.11) becomes

p(alk) = Lu, (2)a(fi(z)) M (@)
(2.4.15)

[ [1det[TA(f o0 fir(@)]]

where i (u) is defined via (Jeg(u))T (Jeg(u)) = A (uw)?l.
As we’ll see this approach allows for far higher expressive power than global conformal

flows without sacrificing the ability to generate realistic samples, perform inference, or compute
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exact densities. Indeed we may rewrite (2.4.12) via

plz) = > plalk)p(k)

k:xeUy,
. (2.4.16)
= Erpwp@lk)] D] p()
j::EGUj
—

piecewise constant

Where p, (k) = p(klp(z[k) > 0) = p(k)/ 2;..ep, P(J). Thus, during training of the conditional
normalizing flow we may replace the expectation E; ;. [p(x|k)] with the stochastic quantity
p(z|k),k ~ p(k), performing only a single gradient descent pass per data-point as opposed
to m(x) passes. If the exact likelihood is needed, however, it can be computed at the cost of
evaluating the normalizing flow and its Jacobian m(x) times:

p(x) = > plalk)p(k)

k:xeUy

= 3 pralful@) Ml (@) (2.4.17)

[ [1det[ T oo (@)l

=1

Since z and k are independent, one can perform the sampling task via first sampling z ~
q(z) and k ~ p(k) and then computing a single forward pass of the normalizing flow chosen by
k to obtain z = gi(2).

The inference task is complicated slightly by the fact that z is no longer wholly determined
given z, but instead takes values (fx(z))g.cc,, With corresponding probabilities (p(k|))k.zev,, -
One could perform a stochastic inference via sampling & ~ p(k|x) and computing z = fi(x) (this

amounts to choosing among the relevant charts for =), however if deterministic inference is pre-
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ferred then of course one may always compute the expected value of z as z = Ey k(o) [ fe(2)] =

2kwer, P(K[T) fi(x) or the most probable value of z as z = f,(z) where s = argmax;, .y, p(k|).

2.4.3 Hard-boundary or deterministic approximation

A particularly simple special case of the above model is the case m = 1 and ¢ = 0, in
which only a single chart is associated to a given x. This case reduces our atlas of overlapping
charts to a disjoint partition of the data manifold M. In this case U} is exactly the subset of X
for whom F(z) is closest to the encoded chart center vy, and thus with the exception of x lying
on the chart boundaries, the random variable k& can be treated as a deterministic function of the

random variable z, namely k(z) = argming,_;, x||E(z) — vlls = St kly, (). Sampling

in the hard-boundary case is identical to sampling in the soft-boundary case: generate samples

for x by first sampling z ~ ¢(z) and k ~ p(k) and then computing x = gi(z). Inference in the

hard-boundary case is unambiguous since

Erep(klz) [fr(2)] = fs(2)
(2.4.18)

s = argmax p(k|x) = argmin || E(z) — vkl|2
k=1,...,K k=1,....K

That is to say that one performs inference by first identifying which region R, contains x and

then computing z = fs(z). The most significant simplification in the hard-boundary case from a

133



Model Spherical Helix Lissajous  Twisted-Eight Knotted Interlocked-Circles
Real NVP  3.15 £0.07 -337+£0.16 242 +0.07 094+0.15 -2.17+0.14 0.95 £ 0.13
VQ-RealNVP 3.55+0.04 -1.66+0.08 3.04£0.15 229+0.14 039 +0.18 242 £0.25
MAF 438 £0.10 -290+0.02 250+0.12 134+022 -1.02+0.14 1.07 £ 0.07
VQ-MAF 443+0.14 -049 +£0.03 348 +0.16 2.01+0.10 0.62+£0.16 229 £0.18
CEF 091 £0.07 -3.71 £0.09 042 +0.15 -038£0.21 -2.48 +0.26 -0.72 £ 0.11
VQ-CEF 098 +0.11 -290+0.17 1.65+0.14 -032+0.19 -1.93+0.17 1.24 £0.15

Table 2.1: Quantitative evaluation of Density Estimation in terms of the test log-likelihood in
nats (higher the better) on the 3D datasets. The values are averaged across 5 independent trials,
+ represents the 95% confidence interval.

computational standpoint comes in computing the likelihood p(z), since if « € Uy, then

p(x) = p(x, k) = p(z|k)p(k)

= p(k)a(fi(x))[Ax(c(2))] !

[ [1det[ T oo (@)l

=1

(2.4.19)

Thus only one normalizing flow needs to be evaluated to compute the exact likelihood p(x) (as
opposed to m(x) of them) and the normalizing flows may be trained using the exact likelihood

as opposed to an unbiased estimator for it.

2.5 Experiments

To experimentally validate the efficacy of the proposed framework, we consider six 3-
dimensional data distributions over manifolds of varying complexity as shown in Figure 2.4.
Each dataset consists of 10, 000 datapoints, 5, 000 of which we use for training and 2, 500 each for

validation and testing. We train three different normalizing flows - ReaINVP [51], Masked Au-
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(c) Lissajous (d) Twisted- (e) Knotted (f) Interlocked-
Eight Circles

Figure 2.4: Qualitative visualization of the samples generated by a classical flow - RealNVP
(Middle Row) and its VQ-counterpart (Bottom Row) trained on Toy 3D data distributions (Top
Row).

toregressive Flows (MAF) [56] and Conformal Embedding Flows (CEF) [1] over these datasets
with and without the augmentation of our framework. We refer to a base flow augmented with
the vector quantized conditioning as VQ-flow. We define each model using 5 flow transforma-
tions and train them for 100 epochs using an Adam optimizer, early stopping if the validation
performance does not improve over 10 epochs. For CEF, we use a 2-dimensional ReaNVP as
the base flow, which is then raised to the 3-dimensional space using the conformal embedding.
We parameterize the VQ-AE using feedforward neural networks and use a latent dimension of
2 with & = 32, to learn the partitioning of the data manifold. To define the conditional nor-
malizing flow, we use the parameterization given in [75]. We evaluate the models for density
estimation and sample generation. We follow the same hyperparameters for a base flow and its

VQ-counterpart without any tuning and report the performance averaged over 5 independent tri-
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Model Spherical Helix Lissajous  Twisted-Eight Knotted Interlocked-Circles
Real NVP 0.50 £0.07 -57.46 +2.11 0.18 £0.14 -2.724+090 -8.65 £+ 0.87 -2.18 + 0.37
VQ-RealNVP 099 +0.14 -385+098 059+0.08 0.18+0.17 -1.44 +£0.37 -0.11 £ 0.12
MAF 0.65+026 -9283+5.69 0.12+0.16 -2.77+0.81 -7.04 £0.49 -2.49 +0.14
VQ-MAF 1.01 £0.07 -4.62+037 059+0.07 -032+0.13 -2.44 +0.11 -0.15 + 0.08
CEF -1.17 £ 0.06 -2990 £2.12 038 +0.14 -4.03+£0.38 -19.40+ 1.80 -3.42 +0.49
VQ-CEF 0.80 +3.42 -20.75+2.22 049 +0.03 -351+0.73 -14.44 +1.57 -3.23 £0.19

Table 2.2: Quantitative evaluation of Sample Generation in terms of the log-likelihood of gen-
erated sampes in nats (higher the better) on the 3D datasets. The values are averaged across 5
independent trials, + represents the 95% confidence interval.

als. We defer further details on data generation, implementation as well as results on additional

3D data distributions to the supplementary material.

2.5.1 Density Estimation

The ability to compute exact likelihood is one of the critical features of a normalizing flow
that makes it a potential tool in solving inverse problems. Improving the expressive power of
flows can thus enhance their utility as priors by better modeling the data density. Thus, we first
evaluate the proposed framework’s ability to enhance the expressivity of flows to perform better
density estimation. Table 2.1 compares the log-likelihood (in nats) achieved by different flow
models with and without the VQ-augmentation on a held-out test set. A higher value indicates a
better learned density. We observe that VQ-flows are able to achieve higher test log-likelihoods
than their non-VQ-counterparts consistently across the considered data distributions. Thus, our

framework enables better density estimation for normalizing flows over complex manifolds.
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Figure 2.5: Ablation Study on the effect of the partitioning method and the number of partitions
k on sample generation (a) and density estimation (b). (c)-The learning trajectory of the flow for
a fixed k(=32), in terms of validation log-likelihood. The shaded region represents the standard
deviation over 3 independent trials.

2.5.2 Sample Generation

The other key desiderata of an expressive generative model is its ability to generate high
fidelity samples from the data distribution. Figure 2.4 depicts the qualitative visualizations of the
samples generated by a RealNVP flow trained on the 3D data distributions with and without the
VQ augmentation. We observe that while the classical flow is able to generate samples from the
data manifold, it also generates data points off the manifold, resulting in a poorer fit to the real
data distribution. This is, in fact, expected due to the expressivity restrictions imposed on its being
a global diffeomorphism. On the other hand, VQ-flows are able to overcome these restrictions,
better approximate the real data distribution, and generate samples from the data manifold. To
further quantitatively establish the efficacy of our framework in improving sample generation,
we evaluate the log-likelihood of the generated samples using a kernel density estimator fitted
on the training data. We use a gaussian kernel, with an optimal bandwidth obtained through

cross-validation for each data distribution. We observe (Table 2.2) that VQ-flows, owing to their
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ability to model the topology of the data manifold better, significantly outperform their non-VQ

counterparts on sample generation.

2.5.3 Ablation Study

Parameterizing the partitioning function using a VQ-AE is a design choice that we make.
Further, the no. of partitions k to consider over the data manifold is a critical hyperparameter un-
derlying the proposed framework. Thus, we conduct ablation experiments to study the sensitivity
of the local normalizing flow on k and the partitioning method. We consider k-means clustering
as an alternative design choice for the partitioning function. We train a RealNVP flow over the
HELIX data distribution using k-means and VQ-AE, across increasing values of k. We plot the
validation log-likelihood post training for 25 epochs as a function of k in Figure 2.5. We observe
that VQ-AE results in better performance of the flow consistently across k, over k-means. Fur-
ther, the choice of £ beyond a threshold does not have any significant effect on the model, hence

it is sufficient to fix it to a large enough value.

2.6  Future Work & Conclusion

Our framework is particularly well suited to high dimensional datasets (such as natural
images) that obey the manifold hypothesis, an avenue we hope to explore in the sequel. One of
the practical issues we encountered with our approach is that training g, only on samples from
Uy, does not always restrict the learned p(x|k) to be supported only on Uy. In such cases, the
sum over k such that x € Uy in (2.4.17) yields an underestimate for p(x), and the total sum
k =1,..., K must be used instead during testing. In the future, we hope to address this issue by

explicitly discouraging the generation of samples outside Uj.
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To summarize, motivated by differential and conformal geometry, we have developed a
novel probabilistic framework for “local” flows. We have demonstrated experimentally on toy
data distributions with various topological features that this framework outperforms global flows
- both dimension preserving (bijective flows) and dimension raising (embedding flows). Our
framework is agnostic to the type of flow transformation employed and retains the key feature
of normalizing flows: exact density evaluation. As such, we argue that using local flows as
probabilistic chart maps over the data manifold is a natural way to overcome limited expressivity

in the presence of dimension change or other topological impediments.
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Chapter 3: Higher Order Fourier Transforms'

3.1 Introduction

Given a measurable space (X, 0y, ) and 1 < p < oo denote by LP(X,du) the set of
measurable functions modulo equivalence almost everywhere (with respect to measure p) f :

X — C such that

[1£11s, :=(L |f($)!pdﬂ($)); < ®© 3.1.D

When there is no confusion about the ambient measure space we will simply write || f[|zz as
|| f]|p- Given an exponent p € (1, 00) the dual exponent p’ is defined so that % + z% = 1, so that
the dual of LP(X, dyt) can be identified with L” (X', 11). As usual denote by L* (X, du) the set of
measurable functions such that || f||,, = essup,.y|f(x)| < oo and define p’ = 1 when p = o (we
caution that in this case it is not true that LP(X, du)* = L¥ (X, du)). Given a second measure
space (), oy, v) define the mixed space LLLI(X x ), dudv) as the set of measurable functions

modulo equivalence almost everywhere (with respect to the product measure) f : X x Y — C

Tn collaboration with Radu V. Balan and Yonina C. Eldar.
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such that

110~ ( | ( [ e (o)) Zdu<y>)’l’ <o (3.12)

Denote by F the Fourier transform on L?(R", dx):

F: L*(R" dv) — L*(R",dx)

(3.1.3)
FIAE) = | e oo
With these definitions in mind, define the Chirp Fourier Transform (CFT) via
T : L*(R",dx) — L%L;(Sym(R™) x R" dAdb)
(3.1.4)

T[f] (A, b) _ .F[e_2ﬁi<"A'>f] (b) _ JRn e—27ri(<:c,A:z:}—&-<b,az:>)jf(x)daj

This definition concurs with that in [76] when n = 1. The transform in [76] is not studied directly
but is instead employed for the purpose of chirp rate estimation to obtain good chirp parameters
to be used in the chirplet transform [77] [78]. The transform thus given is invertible since for any

fixed A and almost every x € R”
f(x) = AR FATI(A, )] (@) (3.1.5)

Note further that it is indeed true that for f € L?*(R™) we have ||T'f|| Loz < 90, since for A fixed

Parseval gives

ITTFICA e = [le >4 flla = [1f1]2 (3.1.6)
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As we will see, this transform arises naturally in nuclear magnetic resonance imaging when
multiple frequency gradients are used, as well as in connection to an interesting symmetric matrix

variant of the free Schrodinger equation. In the context of matrix Schrodinger, it will often be

more natural to work with

(3.1.7)

Also of interest for applications will be the discrete variant of the above transform. If

Z, := Z/dZ then define

Tp : 1%(Z3) — I*(Sym(Z3) x Z3)

(3.1.8)
Tp[A,b] == d 2 Z 2[j]e2riGAD+ .3/
JEZY
When n = 1 can be T'p may be written as
TD Cd Cd><d
- (3.1.9)
Tpzlk,1] d-3 Z o~ 2milks+15)/d

The discrete CFT above is introduced in the case n = 1 in [79] in the context of chirp rate
estimation. As noted in [79] and in complete analogy with the continuous case, for fixed A €

Sym(Z7) the discrete CFT is precisely the multidimensional discrete fourier transform of the
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signal (e~270-492/45[]); 70, and as such is invertible via

beZ?

For any A € Sym(Z}}). As in the continuous case the discrete CFT is thus highly redundant.

3.2 Application: Nuclear Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) works by first aligning the spins of atomic nuclei with
a strong external magnetic field B.,;, then hitting the nuclei with a weaker perpendicular radio-
frequency (RF) oscillating magnetic field, then finally measuring the voltage induced by the
precession of the nuclear spins caused by the RF field to infer the distribution of various elements
in the body [80]. A variety of nuclei may be targeted by MRI, but for the sake of example
we may consider commonly targeted spin 1/2 nuclei such as ' H. In this case (fixing any axis of
measurement) the two available magnetic quantum numbers (the component of the spin magnetic
moment along the measurement axis) m = % and m = —% have equal energy in the absence of
an external magnetic field, and so will be approximately equally common. Once the field B,,; is
switched on, however, the energy associated to a magnetic moment j; becomes F = — B - 4 =
By, where we have taken (without loss of generality) B.,; = Bye, to be along the z axis. Here
1, = ymh where + is the gyromagnetic ratio and A the reduced Planck’s constant. Thus there
is now an energy difference between the m = % (aligned) and m = —% (anti-aligned) states of
AFE = vhH, thus the nuclear magnetic moments will thermally align with the external magnetic

field in proportion to the strength of the applied field, eventually resulting in an overall parallel

net magnetization of the nuclei [80].
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The energy difference AE = ~hB, also induces a characteristic Larmor frequency of
precession of the spin magnetic moments around the z axis wy = AFE/h = B, (for typical
field strengths this wy is a radio frequency [81]). This precession occurs on much smaller time-
scales than the thermal alignment, and as such can be assumed to have ceased by the time the
spins have aligned with the applied field. The intrinsic precession frequency can, however, be
exploited via the application of a transverse field (perpendicular to B.,;) oscillating at the Larmor
frequency: Brr = DBjcos(wot)e, (in reality of course, By is applied as a pulse and is thus
not monochromatic but supported over a thin band of frequencies). In this case, solving the
Schrodinger equation induced by the Hamiltonian H = B -y = ~(ByS. + By cos(wgt)S,) yields

the wave function

wit

[9(0)) = cos(2 (=

)|0) 4 €@t gin )1 (3.2.1)

Where w; = 3B,

0) is the low energy (aligned) magnetization, and |1) is the high energy
(anti-aligned) magnetization (see [82]). This fully describes the dynamics on the Bloch sphere,
geometrically (in physical space) (3.2.1) yields that the magnetic moment now has a transverse
component and is precessing about the z axis at the Larmor frequency wy, and that the polar angle
of this precession is also oscillating (more slowly) with frequency w; (incidentally, the reason it
is oscillating with w; and not <3 is precisely the so-called “Dirac belt-trick,” in which two full
polar rotations on the Bloch sphere are equivalent to a single rotation in physical space). The
probability of measuring the nuclear spin to be aligned (or anti-aligned) thus varies proportionally
|2

to | cos(“’T) This flipping between low and high energy states periodically “sucks energy” out

of the RF' field and can be easily detected as it induces an AC current in the receiver coil [3],
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yielding the NMR signal.

59”

Lower frequencies

L

"Eher frequencies
=

Magnetic gradient (25 mT/m)

Figure 3.1: From [3]. The strength of the RF pulse varies in space.

While in this setup an RF sinc pulse of bandwidth w; allows for the determination of the
elements present, it does not give information on their spatial distribution [80]. In order to do
obtain spatial information, one approach is to replace the constant field B.,; with a magnetic
gradient B.,; = (By+ gz)e, (see Figure 3.1). Because the magnetic field gradient varies spatially
and the Larmor frequency varies proportionally to the strength of the field, only a thin slice of
width § oc wj/g resonates with the RF pulse [81]. An issue with this approach is that the resolution
of the image is constrained by the bandwidth of the RF pulse (assuming a fixed gradient g), and
that as a result the peak power of the RF pulse grows qguadratically in the resolution [83].

solution to this problem is to use a frequency modulated RF' signal as in Figure 3.2 in which
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Figure 3.2: From [4]. A frequency modulated RF pulse.

the frequency varies linearly in time. In this case the peak power of the RF pulse grows only
linearly in the resolution, allowing for cheaper and simpler RF amplifiers to be used [83]. In the
frequency modulated case, the spatial information is encoded in the quadratic phase of the NMR
signal. In particular, we note that the spatial dependence of the phase of the transverse excitation

in the presence of a constant magnetic gradient B.,; = (By + gz)e, will be given by

¢g = 2myg2T (3.2.2)

where 7' is the duration of the RF pulse [4] (the local Larmor frequency here is simply vBy+7¢g2).
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In the case of a variable frequency RF pulse, as in Figure 3.2 where

(3.2.3)
f&) = fo otherwise

the time of excitation 7" will depend on the position of the spin along the direction of the applied

gradient [4]. In particular, for the pulse shown in Figure 3.2 we will have T'(z) = T,(3% B

where zj is the position of the spin that has Larmor frequency fy and Dy is the (spatial) width of
the RF pulse: D, = % [4]. Thus the phase shift of the transverse excitation (which corresponds
to a phase shift in the measured AC current) depends quadratically on the position as:

1 z—2

b= Ty (= —
Prr = 2779 (2 D.

E (3.2.4)

An additional spatially varying contribution to the phase arises due to the constant phase change

of the excitation pulse [4]:

T Bw Bw

he=2r | fl0t = L TP+ 2x(y - SOTE 1) 629)

Combining these two contributions, simplifying, and dropping constant terms one finds a spa-

tially varying phase contribution:

2
E=20) (3.2.6)

¢rr = my9Ts(x + D.

The linear term may in fact be removed by a gradient pulse with the appropriate area [4] [3], thus
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measuring at multiple center locations as(()") = x9 + nd one would like to be able to reconstruct a

signal ¢(z) (the true NMR profile) from measurements of the form

s(@Q,n) = J(b(x)ez”Q(xné)Qd:c (3.2.7)

Where we take o = 0 without loss of generality and ) = 'gg—DTS is known as the “second order

coefficent” arising from the RF pulse. Up to an overall constant phase, we can write s(Q),n) as a

multiple of the one dimensional CFT
T[¢](A,b) = J¢(m)e_2”(“2+bx)d:ﬁ (3.2.8)
In particular, if A = ) and b = —2Qn then
2
s(Q,n) = e *™1aT(A,b) (3.2.9)

Thus if we would like to be able to reconstruct the NMR profile from measurements of different
central locations (¢ or correspondingly fy) and different frequency gradients Bw /T, it behooves

us to study the properties of the Chirp Fourier Transform (CFT).

3.3 Connection to the Linear Canonical Transform

An additional motivation for introducing the Chirp Fourier Transform is that it provides
a novel perspective on the much celebrated Linear Canonical Transform (LCT). The LCT is a

generalization of the Fourier transform that appears in applications such as paraxial wave optics
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and accelerator physics [84] [85]. Given L,,, L;; € Sym(R") and L;, € GL(R") the LCT is

defined as

LCT : L*(R") — L*(R")

(3.3.1)
LCT[f] (k) _ (Z'—l det Lio)% J €7Ti(kTLook*QkTLiox*ILiiI)f(m)dm
Like the Fourier transform, the LCT is unitary in the sense that
(LCT[f], LCT[9]>L2(R") = ([, 9>L2(Rn) (3.3.2)

While the Fourier transform can be thought of as a 7 rotation in phase space, there is an LCT
for each metaplectic transformation of phase space. In particular, since Mp(2n,R) is a double
cover of the symplectic group Sp(2n, R) there are two LCTs for a given element of the symplectic
group [84]. Recall that

0 _Inxn
Sp(2n,R) = {M e R*™*" | MT = lopwon} (3.3.3)

IHX’I’L 0
To obtain the phase space deformation associated with a given linear canonical transform, one can
compute the Wigner distribution (the uncertainty principle precludes the existence of an instan-
taneous time-frequency distribution, however for a large class of signals the Wigner distribution

provides the highest possible time-frequency resolution allowable within the bounds of the un-
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certainty principle [86]):

1 1 bt
Wiz, k)= | flz+ éx’)f(:z: - 5&:’)6’2’”@’1 ’da’ (3.3.4)
R

In this case we can compute the effect of the LCT on the Wigner distribution via

Wicrip(e.) = | LOT[f)(a + 5a)LCT[f)a = ga)e > s’

n

1 1 : /
= f(AHZU + Alzk’ + E.Z'/)f(All.T + Algk — 51”)6_27r1<(A21x+A22k)’x >d.fE/
Rn

— W;(Az + Bk,Cx + Dk)

(3.3.5)

Where A11 = L;}Lii’ A12 = L;Ol, A21 = LooLizlLii — LT

20°

and Ay = L,oL;," (see the appendix
of [84] for the full computation). Thus the LC'T is associated to the transformation M of phase

space:

T L' Li; Lt T

0

— (3.3.6)
k LooLi)'Liy — LY Lo L' | | K

~
M

If we allow the triple (L, Lio, Loo) to vary and write LCT[f] = LCT(Ly;, Lio, Loo)[ f] then,

returning the to the CFT:

T[f](A,b) = LCT(0,1,2A)[£](b) (3.3.7)
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Thus for fixed A, the CFT is associated to the transformation of phase space
M = (3.3.8)

And for fixed A, the transformation 7' = T o F ! is associated to a shear transformation of phase

space:
M = (3.3.9)

Thus the exact nature of the redundancy present in the CFT is that it corresponds to all possible
shearings of phase space (only one of which is required to recover the signal f in the absence of

noise, owing to the unitarity of the LCT).

3.4 Connection to Matrix Schrodinger

Choosing units so that % = % and using time variable a and space variable b (for reasons

that will be obvious) the free Schrodinger equation becomes

i0ub(a,b) = 5V (a,b) (B.4.1)
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It is easily verified that for sufficiently well behaved initial data, this equation has as its general

solution:
Y(a,b) = f e~ 2miallkIP+R (0, k) dke (3.4.2)

Thus the behavior of the wave function for the free particle is determined at all times by its initial
momentum space wave function integrated against the kernel K (a, b) = e~ 2m(@lFI>+0) \which
is precisely the kernel for the CFT when the chirp matrix A is the multiple of identity A = al.

Evidently,

Y(a,b) = T[£(0,)](al,b) (3.4.3)

This clarifies exactly the nature of the redundancy of the CFT when A = al, since of course the
behavior of the wave function is determined at all future (and past) times given its value at any
particular time. We might hope, therefore, that the the redundancy present in the general CFT
(for abitrary symmetric A) arises exactly from an underlying PDE, as it does when A = al. And

indeed, we define the free matrix Schrodinger equation by

1
iDYYM (A, b) = 5 Hy(A,b) (3.4.4)

Sym

Where Diym is the gradient operator on the vector space of symmetric matrices, namely (D" 1));; =
%(Miﬁ + a%ﬂ)@b and H,, is the Hessian operator with respect to b, specifically (Hy);; = % .
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In this case let
WA, B) = (0, )](A, b) = T[H(0, )](A, b) — J ~2RADLOR) L0 Wk (3.4.5)

Then, assuming every entry in ¢(0, k)(I + kkT) is an L' function we obtain by Lebesgue domi-

nated convergence:

Z‘Diym1/1<14, b) _ f i<_27_‘_2->kkTe—Qwi(<k,Ak>+<b,k>),(L(0’ k)dk
! (3.4.6)
L Hy(ALY)
T ’

And moreover 1 satisfies the boundary condition 7[¢(0, -)](0, b) = (0, b). Thus as expected the
transform coordinates A and b are not independent but are related by the free matrix Schrodinger
partial differential equation. This connection to Schrodinger also yields an important representa-

tion formula for 7' f vis a vis the matrix analog of the Schrodinger propagator. In particular,

TT)(A,b) = Fle ™49 (b)

- (3.4.7)
= _27ri<'7A'> *
¢ »(b)
=K (A,b)
The propagator K (A, b) can be computed via a contour integral when A is invertible:
K(A, b) — f 6—27ri<b,k>6—27ri<k,z4k> (348)
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Write A = UAUT where U € O(n) and A = diag(\, ..., \,) is diagonal, then make the change

of coordinates k = Uk and let ; = (U7'b); so that

K(Ab) = J =27 o1 kNS g (3.4.9)
Rn

n 0
11 J o~ 2miCisiHAis?) (3.4.10)

j=17-%

We then note that
foo 6—27ri('ys+)\52)d8 _ 2 e%i’yz/A J'OO e—iZQdZ — ;6%72/)‘ (3411)
o 27| Al 0 2i| Al

Where in the last step an arc contour with angle —7 /4 yields S(O]O e dz = \/§ . Multiplying the

n copies of this integral together one obtains

1 .
K(Ab) = ———20A7D (3.4.12)
(20)"| Al

Where |A| := | det A|. Thus an alternate form of the CFT is T[f] = K = f or

TF(A, D) = (K(A,-) = f)(b) (3.4.13)

3.5 Strichartz Estimates for Matrix Schrodinger

The connection between the transform 7' and the free matrix Schrodinger PDE gives us
hope that we should be able to use a variant of the homogeneous Strichartz estimate to further

constrain the range of 7'. In particular a pair of exponents (g, p) is called admissible if 2 < ¢, p <
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0, (¢, p,n) # (2,%0,2), and 2 + > = 5. Then when A = al for any admissible exponents (g, p)

the homogeneous Strichartz estimate states that there exists constant C . ,, such that

||Tf||L3Lg(Ran) < Cyrnll fll2r) (3.5.1)

In other words, 7" is a bounded operator from L*(R) to LZLY(RxR™) [87]. We would like to prove
an analogous result when A is not assumed to be a multiple of identity. It will be instructive to
first consider the proof of the homogeneous Strichartz estimate in the usual setting where A = al.

In particular we would like to show for (g, p, n) admissible that

||f el O () dal| gy rurey < Copnl|£]]2 (3.5.2)

It will be convenient to work with 7" = 7' o F~! instead of T, replacing f with its inverse Fourier

transform on the left hand side and instead showing

—2mi(al|z||? T)) £
[ e2malel o) F(a)da|| g omrmn < Copnll £l (3.5.3)
Rn

This latter estimate is equivalent to the first, owing to the unitarity of the Fourier transform. We
will follow [87] in proving the homogeneous Strichartz estimate vis a vis the dual homogeneous

Strichartz estimate. In particular we compute 7* : Lg’L’b’/(R x R") — L?(R") via the property
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that (F, Tf) = (T*F, f) forany F' € LIL?(R x R") and f € L*(R"):

| f Fla, b)(Fe 2P F1F)(b)dbda

(" . 2
= | Fla,), Fe "M FLf) panyda

.)rR (3.5.4)
= <~F€27ria”.H2JT'._1F(av ')7f>L2(Rn)da

JR

= <J Fem M F1F (a,-)da, fyp2e
R

Where we employ Fubini in the last step. Since this holds for all f € L*(R™) we find that T* is
given by
T*: LYLY (R x R") — L*(R")

(3.5.5)
— J J e~ 2mi(—allk[|>+<y.k)) F(a, k)dkda

Employing the fact that ||| L2(R)>LILE (RxR7) = | 17| o it thus suffices to prove

LY LY (RxRn)—L2(R")

the dual homogeneous Strichartz estimate
‘ ’T*F‘ ’L2(R”) < Cp,q,n| ’F’ |LZIL€/(R><R") (356)
in order to show (3.5.1). In fact, we will seek an estimate of the form

HTT FHL‘ZLP RXR") ~pqn HFH (357)

LY Lp (RxR™)
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since in this case

|T*F[32gey = (T*F,T* F) 12(gn)

— (F,TT*F)
(3.5.8)
<||F]

Ik
18 ¢ ®xrm | T T Fll g p )

SP,QJL ||F||ig’L§/

And we will have proved the homogeneous Strichartz estimate. In order to show (3.5.7) we will
interpolate between two “fixed time” estimates. The first is an equality rather than an inequality,
namely that that T is an isometry: ||7f(a,")||z2rn) = ||f]|z2(rn). The second estimate comes

from the propagator form 7 f = K = f. In the case A = al this form yields

=1 | (2ila]) 2P fz — y)dyl
R (3.5.9)

< (2lal) 21| 1l 1y emy

Tf(a,b)

Thus we have the additional fixed time estimate HTfHLgo(Rn) < (2|a\)*%\|f|\Lé(Rn). We can
combine these two estimates via Marcinkiewicz interpolation to obtain the following family of

fixed time estimates for r € [1, 2]:

n

Tl g ey < (2375

fHLr(Rn) (3.5.10)
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In addition to this fixed time estimate we will need the Hardy-Littlewood-Sobolev fractional

integration estimate:

- 117 = f]

Ls(Rd) Sswdo Hf||Lv(Rd) 3.5.11)

Where % = % + d_Ta. With this in mind we can compute

|TT*F|| 310 Rwre) HJ f “2mil(a=s) P+ ORI B (5 k) dkds

)

The innermost integral here is of non other than (T'F(s,-))(a — s,b), thus we can employ our

LILY(RxR")

(3.5.12)

< ds

LY(Rm)

f o~ 2mil(a—s)||KI[*+(b,k)] F(s, k)dk

Li(R)

fixed time estimate and conclude

\\H

HTT*FHLng’(Ran) < ds

| la= sy

Finally, we note that this is a convolution with a kernel of the form |- |~*, and thus employ Hardy-

[1£(s,

S]] (3.5.13)

Li(R)

Littlewood-Sobolev with o = 1% — % d=1,s=gq,and v = ¢ (itis easy to check that this choice

for v results in the required identity % = % + dTTa):

||TT F||L‘1LP RxR") Span [|[F]] o (3.5.14)

Ly Lp (RxR™)

This concludes the proof of the homogeneous Strichartz estimate, in other words the proof that
when the chirp matrix A = al is restricted to be a multiple of identity 7" is a bounded operator

from L?(R) to L4LY(R x R™). Towards a generalization of this result to arbitrary chirp matrices,
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we will prove the following the following:

Theorem 3.5.1. (Dual homogeneous Strichartz for matrix Schrodinger)

Let2 < p,q < o0 such that 2 + == 3. Deﬁne the null aliasing operator T on Lj/ (Sym(R™))
via
Tg(At) = > f g(A+ oW 72+ Az (0)1))dZ (3.5.15)
ee{—1,1}n Z(det)

where for e € {—1,1}"

oc : P(n) — Sym(R")

(3.5.16)
o (UAUT) = U diag(ey, ..., e,) AUT
and \z(t) is the unique positive increasing function such that
(1 + Az (1) - (pn + Az(t)) = 2 (3.5.17)

where (i1, . .., i, are the eigenvalues of Z*. Then if F € LZ;L@’/ (Sym(R™) x R™) satisfies the

growth condition

THFH (A t) < ||F(A+tl,-) (3.5.18)

||L£/(Rn)

We have:

HT*FHL2 R™) ~pqn HFHLq LP Sym(Rn)an)H HF|’L?4L3/L§,(VI><VT><R”) (3519)
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Where Vi = {A\l | X € R} is the identity subspace of Sym(R™) and Vi = {A € Sym(R") | tr{ A} =

0} the traceless subspace.

Proof. The proof proceeds in the same manner as in the multiple of identity case, up until
it comes to computing fixed time estimates. The first estimate, namely unitarity of 7', is identical.
For the second estimate, however, we employ the fact that T f = K » f where K is as in (3.4.12)

and find that for all A invertible and all b € R™ we have
~ 1
ITF(A,b)] < 2"[A)”2[| ] rey (3.5.20)
In this case we can again employ Marcinkiewicz to obtain for r € [1, 2] the estimate

1
T

~ 1_
T f ey < [AD> [ f]] Ly ey (3.5.21)

We continue as before with the TT* estimate until we arrive at

S

(2"A— S|)2~ ds

ITT*F||,, e

||F(Sv '>||L€'(Rn)

p—
L(Sym(Rm)xRn) S 1+ Symeen)

(3.5.22)

Here difficulties occur, since the kernel |A|~® is singular not only at zero but on the entire deter-
minental variety Z(det) = {A € Sym(R™) | det A = 0}, and as such Hardy-Littlewood-Sobolev
cannot be directly applied. If we had a “determinental coordinate system” in which ¢ = det A
was a coordinate, then |¢|~® could be factored out of the inner most integral and perhaps Hardy-

Littlewood-Sobolev could be used. In particular we will seek ¢ : Z(det) x R — Sym(R")
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satisfying

&(Z,0) = Z (3.5.23)

det[o(Z,1)] =t (3.5.24)

If we compute the ¢ derivative of (3.5.24) we obtain

1 = (Vdet[¢(Z,1)], 6ib(Z, 1)) (3.5.25)

If we further impose the requirement that the coordinate curves for ¢ be orthogonal to the level

sets of the determinant, then we obtain the following first order ODE in %n(n + 1) variables:

dg _ 1
dt ||V det[¢(Z, 1)]|[3

Vdet[o(Z,1)]
(3.5.26)

o(Z,0) =2

The trick is that in general the gradient of the determinant, put into matrix form, is the matrix of

signed cofactors (this follows from Laplace expansion):
V det[¢] = cof(¢) = adj(¢)” (3.5.27)

But ¢ is symmetric, which means its adjugate matrix is symmetric too! Thus V det[¢] =

adj(¢) = det[¢]¢! and our ODE becomes

do 1 -1
&~ &g’ o2
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Next note that det ¢ = ¢ and multiply ‘fl—‘f on the left and the right by ¢ and add the two together

to obtain

d , do do 2
— P =p— 4+ L = | 5.2
i’ =0t T e (5529
Thus if ) = ¢? then v obeys the ODE
i) 2
— = — 3.5.30
at ~ ol (3230

Only the diagonal entries of 1/ change under this flow, and their time derivative is a multiple of
identity. Thus we may assume that 1 (t) = ¥(0) + A(¢)l = Z* + A(¢)l, in which case we obtain

a one dimensional ODE for A(t) when ¢ > 0

dx 2
dt (22 + X)),

(3.5.31)
A(0) =0

Thus if 1, . . ., y, are the eigenvalues of 1(0) = Z2 then ||(¢(0) + X)) 7|1 = (1 + N) 71 +

-+ + (i, + A\) 7! thus we may explicitly integrate to obtain the solution

1+ Al + A = A2 (3.5.32)

The initial condition A(0) = 0 taken together with the fact that |u; ... u,| = (det¢)? = ¢
sets the integration constant A = 1. Thus A is a positive, non-decreasing function depending

only on fi, ..., ti, defined such that det[Z? + A(¢)I] = t2. If ¢(Z,t) is positive definite then
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O(Z,t) = A/ Z? + A(t)], otherwise we have to account for the signature € € {—1, 1}" of ¢(Z, t)

via p(Z,t) = o.(+/Z? + A(t)]) where

. : P(n) — SP4(C)
(3.5.33)
o (UNUT) = U diag(ey, ..., e,)AUT

Thus, using ¢ as a change of variables to evaluate the troublesome integral in the upper bound of

3.5.22 we obtain

T Pl Symime <o <Hf QAN HF(A + 8, )|y dS
LY LY (Sym(Rr) xR") Sym(r~) Ly (R™) L% (Sym(rn))
(3.5.34)
1_ 1
et S [ ol 200y
R ce{—1,1}n Y Z(det) ’ L% (Sym(Rr™))
(3.5.35)
1_ 1
:’ f(2”|t|)z Py gy (A (3.5.36)
R b L% (Sym(Rrn))
< f<2"|t|>%‘é|F<A+tl>|| yodt (3.5.37)
' ®m |
R L% (Sym(Rrm))

Where in the last line the assumption (3.5.18) is used. We now decompose the symmetric matrices
into two parts: the identity component V; = {\l | A\ € R} and the traceless component V = {A €

Sym(R™) | tr{A} = 0}. We then note that for g € L% (Sym(R")) we have HgHLZ‘(Sym(Rn)) -
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gl e vy, (vy)» thus:

=

<

ITTFY| 3 1y Symgey xre)

1_
L(z )27 [F (A + )]y gt

Lhvo)Li(VD)  (3.5.38)

< ||FHL174L§/L§/(V1><VT><R")

Where in the first inequality Hardy-Littlewood-Sobolev is used with v = }% — % d=1,s=gq,

and v = ¢’ (the assumption % + zlv = % then implies the requirement Hardy-Littlewood-Sobolev

% =14 d’T‘)‘). This concludes the proof of the theorem since in this case

vl

|7 F|[72rey Spaon ||F] L] (3.5.39)

L9 ¥ (Sym(Rr)xR» LY LY LY (Vi x Vi xR™)

3.6 A Convolution Identity for the CFT

An alternate approach is to enlarge the range of 7" and T by using a measure different from

the Haar measure (the Lebesgue measure) on Sym(R"™) x R". Instead, we consider a measure

dW = W (A, b)dAdb with W (A, b) > 0 so that

W10 := supJ W(A,b)dA < 0 (3.6.1)
Sym(rn)

beR™

and define our transform as

T: L*R") — L*(Sym(R") x R™, W (A, b)dAdb)
(3.6.2)
T()AD) = | emtheto s i

n
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The added factor of % in the phase we will be convenient in this context. We will prove the

following theorem:

Theorem 3.6.1. Let T be as in (3.6.2). Then T is a bounded linear operator with closed range,
and moreover if W(A,b) = W(A), that is if the weight depends only on the symmetric chirp

matrix we have:
(i) T*T is a multiple of identity on L*(R™).

(ii) F e L*(Sym(R") x R, W(A)dAdb) is in Ran(T) if and only if F = K = (W F) where

K(A,b) = LAe””A_%”'P (3.6.3)

(iii) Ran(T) is not closed under multiplication, however if T fTg € Ran(T) then TfTg =

T(f « g) where
Frge) = [ Wi+ %(mT 2T f(2)g(z — 2)da (3.6.4)
In general for any f, g € L2(R") we have
TiTg="T(f*g) + H (3.6.5)

where for almost every x € R

0= J J 2milz@AD=bD) F1 (A bYW (A, b)dbd A (3.6.6)
Sym(rn) JR
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Proof.

Define W (A) := sup,cgn W (A, b) then

2

HTfH%Q(G,dW) = J W (A, b)dbdA

J J 672771(%<I,A:):>+<b,x>)f(l,)dx
Sym(rnr) Jrn| JRn

——

= —2mil (A (b)
fSym(Rn) Ln ¢ ’ /

2
W (A, b)dbdA

(3.6.7)

2

bW (A)dA

sy )
Sym(Rr») Jrn

- [ @emiepa | waa
n Sym(r»)

e—2m%<~,A~>f(b)

= 11122y W 11,00

This proves that T is a bounded operator with ||T'||. < +/||W]|1,. Note that this holds for any

operator of the form

T, : L*(R") — L*(X x R™,dW) (3.6.8)
Tsf(A,D) = f e~ 2mi@Aa)+ b)) £ (1) da (3.6.9)
R

Where (X x R", dW) is a measure space and ¢ : X — R. Finally we observe for convenience

that if TV depends only on A then ||V ||1., = W(0).

Our strategy will be to seek a left inverse transform in terms of the adjoint 7™ which is given
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T*F(x) = J J 2z @A+ OD) (A BYW (A, b)dbd A (3.6.10)
Sym(rn) Jrr

We observe that

T*Tf(z) = J

J e27ri(%<:(:,A:c>+<b,x>) f e—27ri(%<y,Ay>+<b,y>)f(y)dydbdA

= J f(y) JS J 6—27ri(%<A,ny_xxT>+<b,y—x>)W(A, b)dbdAdy (3.6.11)
n ym(Rn) n

= | Wiyy" — a2,y —2)f(y)dy

Rn

At first glance this “quadratic convolution” doesn’t look terribly promising, however we note that

if W(A,b) = W(A) depends only on A then

W(yy" — e’y —z) = f J e~ AuyT =D Gu=D) Y (A) dbd A
ym(Rn) n

s

_ J W (A)e2risAm™ =55 (0 14 (3.6.12)
Sym(r»)

= W(0)6(x —y)

From now on we thus consider W depending only on A and normalize 1 (0) = dW (Sym(R™)) =
1 so that T*T is the identity on L?(R™) (this proves (i)). Two related questions about this left-
invertible transform are how to characterize Ran(T) < L?*(G,dW) and whether there exists
a ‘“convolution like” operation such that 7" is an algebra homomorphism. We may say with

confidence that Ran(T) is a strict subspace of L*(G, dW) since if F' € Ran(T') then there exists
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f such that F' = o—2mi3(,A) ¢, thus one characterization of Ran(T’) is

Ran(T) :{F e LX(G, dW)|3f € LAR™F(A, ) (z) = e 2mis(mAn) f(x)} (3.6.13)

This characterization also provides incidentally that Ran(T) is closed. A second characterization

is given by computing 77™ = PRan(T) and noting that F' € Ran(T) < TT*F = F.

TT*F(A,b) = T( f f 2z @A) (A BYW (A, b)dbd A)
Sym(rn) Jrn

J 672771‘(%<y,/iy>+<l~7,y>) f J eQwi(%<z,Am>+<b,:p>)F(A’ b)W(A, b)dbdAdy
Rn Sym(r») JrRn

J W(A)J F(A,b) f e~ 2mi A=W+ G-b1) gy dhd A
Sym(rn») n n

1 SRS D
W(A f F(A, b)——m™llA=A) 2 0=0I gp,q A
JSym(Rn) 4) n ( )W\A—A\E

— (K « (WF))(A,b)

(3.6.14)
Where
L a2
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Thus a second characterization of of Ran(7’) is
Ran(T) = {F € L*(G,dW)|TT*F = F} :{F e L2(G,dW)|K = (WF) = F} (3.6.16)

Proving (i7). Thus if TfTg € Ran(T) then T'fTg = (TT*)TfTg = T(T*(TfTg)), hence
f*g:=T*(TfTg) satisfies the convolution like identity T'(f x g) = T fT'g solong as T fTg €
Ran(7"). Moreover, T'fT'g ¢ Ran(T') then T'(f « g) = (TT*)(TfTg) = K « (WT fTg). As one
might expect given the final expression in (3.6.11) the operation f * g involves a kind of nonlinear

convolution with kernel TV Namely

frg(z) =TT fTg)(z)

_ J J e27ri(%<z,Az>+<b,z>)
Sym(rn) Jr»
( J e2’”(§<I’Ax>+<b’x>)f(x)dm) ( J e2m'(§<y,Ay>+<b,y>)g(y)dy> de(A)dA

_ J 627ri%<z,Az> J J €f2wi(%<:p,Ax>+<y,Ay>)f(x)g(y)é(z — 2z — y)dzdyW (A)dA
Sym(r») n JRn

= J J e 2T @ADFEADI (A) f(2)g(2 — x)drd A
Sym(r») Jr»

— | Wz + %(IZT + za)) f(x)g(z — z)dx
Rn

(3.6.17)

This proves (iii) since TfTg € L*(Sym(R") x R", W (A), dAdb) and may thus always be de-
composed as T'fTg = TT*(TfTg) + H where T*H = 0. This concludes the proof of the

theorem.
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3.7 Sampling and Reconstruction for Discrete CFT

In this section we will concern ourselves with the numerical invertibility of the discrete
Chirp Fourier Transform T in the case whenn = 1. Let I = {(a1,b1), ..., (@, b))} € Zgx 24
be of cardinality |/| = M. In this case define the sampling operator

Sy Cixd . cM
(3.7.1)

SI[X]k = Xa

&bk

Then S; o Tp, the down-sampling of T, corresponding to the collection I, can be written accord-

ing to 3.1.9 in terms of the m x d matrix
1 oy
Tk = (SiTpe;)i = Tge”“’(“““b“)/d (3.7.2)

We will examine the conditioning of this matrix for various collections of M polynomials (pg)i~,
where pi(7) = apj® + brj mod d on Z,;. Without taking into account the fact that two different
polynomials may take equal values for all j € Z;, there are (ﬁ) choices for the collection /. If
d = 2d is even, however, and we consider the polynomials p and p corresponding to (a,b) and

(a +d,b+ d) then for all j € Z,

p() — p(j) = d(j* +j) = dj(j + 1) = Omod d (3.7.3)
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since j(j + 1) is even. Moreover, if da = @ — a and 6b = b — b then

p(j) —p(j) = 0mod d Vje Z,
— daj*+6bj =0moddVje Z, (3.7.4)

<= j(daj +db) =0moddVje Z,

The only way for j(da + jb) to have a common divisor h > 1 for all j € Z; is if h divides da
and 6b. Thus let h = ged(da, 6b) and x, y be such that ged(z,y) = 1, da = zh, and 0b = yh. In
this case p(j) — p(j) = hj(xj + y). Now unless h also divides d, the only choice of z,y such
that hj(xj +y) = 0mod d for all j € Z;is x = 0,y = 0. Thus assume d = hc, then we wish to
find x and y such that j(zj + y) = 0 mod ¢ for all j € Z,.. Since this polynomial has at most 2
distinct roots, we must take ¢ = 2 in which case x = y = 1 is the only non-trivial choice. Thus
there are no two quadratic polynomials that take equal values over Z; unless d = 2d is even, in
which case this occurs when 6b = da = d. Thus, up to equivalence of values there are

(%A(f) d even

7[d; M| := # Choices for I = (3.7.5)

(4)  dodd

As such, for small values of d we will be able to “brute force” the number theoretic problem of
which I give rise to full rank matrices 7[/] (see Table 3.1 and Figure 3.3). Before doing so,
however, we note that there is another trivial failure mode for which 7[/] will not be full rank.
In particular, if py(j1) — pr(j2) = const mod d for all k£ then the j;th and jsth columns of [
will be proportional. Unfortunately other types of linear dependencies between the columns of

T[I] do not readily lift to relations between the polynomials py, ..., py, so in general it is a
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d | 7|d;d] | # w/ proportional columns | # Invertible | # Not Invertible
3 84 9 75 0

4 70 2 36 32

5] 53125 25 48005 5100

6 | 18564 177 5625 12762

Table 3.1: Results from brute force counting the number of invertible 7 [/] when M = d and
d = 3,...,6. Unfortunately the problem quickly becomes intractable for larger d, indeed for
d = 7 we have 7[d; d| = 85900584.

difficult problem to obtain necessary and sufficient criteria for a given collection of M distinct
polynomials to give rise to 7 [I] full rank (simpler criteria than just constructing the matrix 7]
and verifying that it is full rank). After removing the case of proportional columns we will be
forced to manually check if the remaining 7 [/] are full rank by computing o4(7[1]).

We will focus first on the case when M = d, in the hopes of finding the sparsest possible
sampling from which to reconstruct the signal z € C%. Obviously the collection I; = {(a, k)}{_}
corresponds to the discrete Fourier transform of (e~2™% ?/ dzj)?;é and 1s invertible with condition
number k£ = 1, thus in order to make the problem “hard” it is of interest to consider restricting the
number of linear frequencies available and to compensate using well chosen chirp frequencies.
This setup lends itself to applications in which sampling many linear frequencies is expensive.
Specifically, given a family of strict subsets of linear frequencies (By)gs2 with By < {0,...,d —
1} we would like to find a family of polynomials (¢;);=1 = (a;z? 4+ b;x);>1 with b; € By
whenever j < d so that for every d > 2 the d polynomials (¢;|z d)?zl give rise to an invertible
matrix 7T [y = T[{(a1,b1),..., (aq,bs)}]. Consider the simple case in which we disallow the
highest linear frequency, that is By = {0,...,d — 2}. In this case numerical experiments show

that the choice I; = {(0,7)[j = 0,...,d — 2} U {(1,0)} yields T[] invertible except when d is

172



k(T ford =3,...,6

md=3
50 30 "d=4
"d=5
] =
40 25 d=26
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& (T) (T
Figure 3.3: Histogram of the inverse condition number of 7[/] when M = d = 3,...,6 over

possible choices of I (excluding choices for I that yield proportional columns for 7[I]).
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an integer multiple of 4. Indeed, when d = 0 mod 4 we can show that

eQTri(d—l)/d

ker[T(0,0), ..., (0,d —2),(1,0)]] 3

Wy (3.7.6)

e27rz/d

Here wy is precisely the (reversed) vector whose entries are the d dth roots of unity. Indeed if

k < d—1and we denote X = T7[(0,0),...,(0,d — 2),(1,0)] then

— d—1
Z Xkl (wd)l = Z 6727m'kl/d627ri(d,171)/d

1=0
d—1

2mild=1)/d Z o= 2milk+1)l/d
1=0 (3.7.7)

62m'(d—1)/d 1 — 6—27ri(k+1)

1 _ e2mi(kr1)/d

~0

Meanwhile for £ = d — 1 we have

d—1
Z sz(wd Z —2m12/d 27mi(d—1-1)/d

1=0 (3.7.8)

1
e —2mi(12+1+1)/d

T

~
Il
o

Up to a constant factor of e~>"/¢ this last sum is the (complex conjugate of) the generalized
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quadratic Gauss sum G(1, 1, d), defined via

c—1
G(a,b,c) = ). e*milarinye (3.7.9)

=0

Such sums are not easy to evaluate in general. The celebrated result of Gauss is that

(1+4)(5)vVE k=0 mod4
() vk k=1 mod 4
G(s,0,k) = 1 (3.7.10)
0 k=2 mod4
i (%) NG k=3 mod4

One can however show using Hensel’s lemma and the multiplicative property of quadratic Gauss
sums that when d = 0 mod 4 we have G(1,1,d) = 0. The multiplicative property says that if

ged(e, d) = 1 then

G(a,b,cd) = G(ac,b,d)G(ad, b, c) (3.7.11)

See Chapter 6 of [88] for a derivation. In this case if d = 0 mod 4 then we may write d = 2¢

with £ > 1 and ¢ odd. Thus

G(1,1,d) = G(2%,1,¢9)G(q, 1,2%) (3.7.12)

We will show that G(q,1,2%) = 0. First note that q/> + | mod 2* takes only even values (if

[ is even then it is the sum of two even numbers, and if [ is odd then it is the sum of two odd
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numbers). We will then need the following form of Hensel’s lemma (Hensel’s lemma has plentiful

generalizations, but the following version will suffice for our purposes):

Lemma 3.7.1. Hensel’s lemma [89]. If p > 2 is a natural number, f(x) € Z|x], and ay, ... ,ar €
Z, are such that f(a;) = 0 mod p and f'(«;) is coprime to p for | = 1,... L, then for any k > 1

there exist at least L distinct solutions by, ..., by, € Zx such that f(b;) = 0 mod p".

We apply this lemma to the polynomials g/ + | — 2s where s = 0, ..., d/2. Considered

mod 2 we have that
q*+1=0 mod 2 (3.7.13)

has two solutions, namely [ = 0 and [ = 1 are both solutions. By the lemma, for each value of s
both solutions extend uniquely to solutions of g/? +1—2s = 0 mod 2¥, thus we have determined
that each even number 0, . .., 2" — 2 occurs as a residue of ¢/?> + [ mod 2* at least twice. Thus,
including multiplicities, we have determined 2(2*/2) = 2* residues of ¢/?> + [ mod 2*. But of
course this is all of them! So Hensel’s lemma tells us that each even number occurs exactly twice

as a residue of ¢l? + [ mod 2*. Thus

G<q7 1’ 2k> ) 2 627Tis/2k
s even
0<s<2k

2k—1_1
-9 e47rin/2k

(3.7.14)

n=0
1— (647ri/2k>2k—1

1 — edmi/2k
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Note that the second to last equality requires k£ > 1, hence why G(1, 1, d) = 0 when d = 0 mod 4
but not in general for d = 0 mod 2. Thus we have shown that the sum in (3.7.8) is zero, and
hence that 77(0,0),...,(0,d —2),(1,0)]ws = 0.

Meanwhile, the choice I; = {(0,7)[j = 0,...,d — 2} u {(1,1)} yields T[I,] invertible
except when d — 2 is an integer multiple of 4. Indeed, an essentially identical proof to the above

yields that

ker[TT(0,0),...,(0,d —2),(1,1)] 3wy (3.7.15)

When d = 2 mod 4. Therefore a good strategy to guarantee the invertibility of 7[/,] is to take

Li=1{(0,7)5=0,....d—2} U{(1,e)} with

1 d=0 mod4
€4 = (3.7.16)

0 d#0 mod4

The resulting <~ (7 [1;]) for this strategy are shown in Figure 3.4. As seen in this figure choosing
the final chirp frequency pair to be (1, ¢;) always yields the larger of the two inverse condition
numbers corresponding to the final chirp frequency pair being (1,0) or (1,1), suggesting that
kY (T[14]) > 0. Indeed, we note that the nullity of 7[/;] is at most 1 since the first d — 1
columns of 7[1,] are the first d — 1 columns of the DFT matrix and are independent. Thus 7 [/,]

will fail to be invertible if and only if the last column is in the span of the first d — 1 columns, that
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is:
<€*27”'(j2+5dj)/d);,l;é € span{fo, ..., fao} = span{fs_1}* (3.7.17)

Thus we compute

0 = (e 2mil realdyd =4 f) 1)

d—1

_ 2 627ri(j2+(6d—(d—1))j)/d (3718)
j=0

= G<1a €4 + 17 d)

At this point note that if @ = 5 mod 2 we have the useful identity
G(L, o, d)| = |G(1, 3, d))| (3.7.19)

Indeed, if @ = 3 + 2s then completing the square yields:

d—1
|G(1, a, d)’ _ ’ Z 62”i(j2+(5+2s)j)/d‘
j=0
d—1
_ ’e—Qﬂi(52+ﬁ8)/d Z 627Ti((j+5)2+/3(j+5))/d|
3=0 (3.7.20)
d—1
. .2 .
= | Z e2mi(i +/3J)/d’
=0
= |G(1, 8,d)|

Thus there are only two cases to concern ourselves with: |G(1,0, d)| when ¢, is odd and |G(1, 1, d)|

when ¢, is even. In this case (3.7.10) tells us immediately that |G (1,0, d)| # 0 when d # 2 mod 4
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k~1(T[I]) for three different strategies

) (ad,ba) = (1
- “d}bd) = (1
- O‘,d,bd) = (1
0.8
0.6
~
)
T
0.4
0.2
0
10 20 30 40 50 60 70 80 90
d

Figure 3.4: Plotted above is the inverse condition number k(T [I]) = o4(T[I])/o1(T[I]) for
I =1{(0,0,),...,(0,d —2),(aq,bq)}. As is shown, the choice (aq4,b;) = (1,¢€4) gives the larger
of the two singular values for the choices (a4, b4) = (1,0) and (ag4,bs) = (1,1) and as such it is
always the case that <= *(7{(0,0),...,(0,d —2),(1,€4)}]) > 0.

hence 7[(0,0),...,(0,d — 2), (1, eq)] is invertible when ¢, is odd and when d # 2 mod 4. It re-

mains to show that |G (1, 1,d)| # 0 when d # 0 mod 4. Fortunately, it was shown in [90] that

1—47¢

1441

G(1,1,d) = Vd (3.7.21)

Thus 77(0,0),...,(0,d —2), (1, €e4)] is invertible when ¢4 is even and when d # 0 mod 4.

We would of course like to do better than removing a single linear frequency. The previous
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example suggests that it should suffice to consider the inclusion of a single chirp frequency,
so for simplicity we will consider sampling schemes of the form I; = {(0,b1),...,(0,b,)} U
{(1,b1),...,(1,bs)} where t = [d/2] and s = |d/2| so that t + s = d. In the case where d is
odd we will thus have one additional chirp zero sample, and we are restricting to a set of linear

frequencies By = {1,...,b;} of size | By| = [d/2]. A useful family of such schemes is given by:

§
{(l,2mk + 7))} =01 d = 0 mod 2m
k=0,...,|d/2m| -1
S(d,m) = < J=0m=l (3.7.22)
{(1,2mk + j)} 1=0,1 d # 0 mod 2m
k=0,...,|d/2m|
\ j=0,...m—1—n(d,m,l,k)

Where if d = 2mq + r for 0 < r < 2m and 2m — r = 2u + v for v either 0 or 1 then n(d, m, [, k)

is given by

0 k < |d/2m|

n(d,m, k) =1 k= |d/2m],1 = 0 (3.7.23)

u+v k=|d2m|l=1
\

This somewhat complicated definition arises from wanting to sample exactly d points. In partic-
ular, if we allow 2 choices for [ (0 or 1), [d/2m/] choices for k (|{0,...|d/2m| — 1}| = [d/2m]
when d = 0 mod 2m and [{0, ... |d/2m|}| = [d/2m] when d # 0 mod 2m), and m choices for
Jj (G =0,...,m— 1) then the total number of samples is 2m[d/2m]|. If d = 2mq + r then the
number of extra samples is 0 when 7 = 0 and 2m[d/2m| —d = 2m(q¢+ 1) —2mq—7r =2m —r
when r > 0. If 2m — r = 2u + v then we remove u samples from & = |d/2m| and [ = 0 and

u + v samples from k = |d/2m| and [ = 1, thus removing a total of 2u + v = 2m — r samples to
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obtain a total of d samples. The sampling schemes S(d, m) are shown in Figure 3.5 for d = 20
andm =1,2,4,8.

S(20,m) form =1,2,4,8

12 1 S5(20,1)
- - - 5(20,2)
15 I 14 1 - 5(20,4)
. . 12 - © - 5(20,8)
o 10 - . 10 |
| 8
| 6
5 I 4
! 2
0 ] 0
0 02 04 06 08 1 0O 02 04 06 08 1
18 18
16 - . 16 -
14 14
12 12
10 - . 10
o g | .
6 6
4 4
2 2
0 0
0 02 04 06 08 1 0 02 04 06 0.8 1
a a

Figure 3.5: The sampling scheme S(d, m) samples [ = 0 and [ = 1 equally when d is even, with
one additional sample granted to [ = 0 when d is odd. When m is 1 only even frequencies are
sampled, when m is 2 only frequencies that are equal to 0 or 1 modulo 4 are sampled, etc.

The inverse condition numbers resulting from the sampling schemes S(d, m) are shown
in Figure 3.6. Interestingly, as m increases the largest value of <~ (7S (d, m)]) decreases but
the period with which k' (7[S(d, m)]) vanishes increases. In particular when m = 1 we find
that <=1 (7[S(d, m)]) vanishes for d = 0 mod 4 = 0, for d = 0 mod 8 when m = 2, for
d = 0 mod 32 when m = 4, and for d = 0 mod 128 when m = 8. A reasonable assumption

is therefore that the sampling scheme S(d,d) = {(0,1)...,(0,[d/2])} v {(1,1)...,(1,]d/2])}
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will always have k! (T[S(d, d)]) > 0. While this appears to be the case (see Figure 3.7 for a log

plot of k1 (T[S(d, d)])) the inverse condition number decays exponentially, too quickly for this

scheme to be useful for large d (for example x~! (T[S (100, 100)]) = 1.04743 - 10~'2).

k(T [S(d,m)]) form =1,2,4,8

1 1

0.8 0.8
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Figure 3.6: Plotted above is k(T[S (d, m)]) form = 1,2,4, 8.
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& (T[S(d,d)]) ford=2,...,100

1
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d

Figure 3.7: Log plot of k™ '(T[S(d, d)]) demonstrating that 7[S(d, d)] is always invertible but
with an exponentially increasing condition number.

At this point we will relax the requirement that M/ = d and consider the family of sampling

schemes:

S(d,m,q) = < §=0,m=1 (3.7.24)

{(l,2mk + j)} 10,...
k=0,...,|d/2m|
\ 7=0,....m—1

Note that S(d, m,2) is only equal to S(d,m) when 2m divides d, if d # 0 mod 2m and d =
2mq + r for 1 < r < 2m then S(d, m,2) contains an extra 2m — r sample points in addition to
those of S(d, m). In general |S(d, m, q)| = gm[d/2m]|.

As one would expected and as is shown in Figure 3.8, increasing ¢ increases x = (7[S(d, d, ¢)]).
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Moreover, Figure 3.8 shows that increasing the number of chirp frequencies both delays the decay
of and reduces the decay rate of x ' (7[S(d, d, q)]) as d increases. Indeed, as we can see from
Figure 3.9 k1(T[S(d,d, d)]) does not decay at all as d increases, but instead oscillates between
1 when d = 0 mod 2 and a value that is approximately 0.471 when d = 1 mod 2. Note that
|S(d,d,d)| = O(d?), thus it remains an interesting open problem to obtain a sampling scheme
that grows as O(d) and whose associated inverse condition number does not decay. Nevertheless,
it is thus possible to sample fewer linear frequencies and compensate by sampling a greater num-
ber of chirp frequencies and obtain a stably invertible sub-sampling of the discrete chirp Fourier

transform for any value of d.
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k=1 (T[S(d, d, min(g, d))])

k 1(T[S(d,d, min(q,d))]) for g =2,...,10

— S(d, d, min(2, d))
1 — S(d, d, min(3, d))
—8(d, d, min(4, d))
— 5(d, d, min(5, d))
S(d, d, min(6, d))
08 —S5(d,d, m%n(T, d))
— 8(d, d, min(8, d))
(d,d d))
(d,d

10 20 30 40 50 60 70 80 90 100
d

Figure 3.8: Plotted here is the inverse condition number x~'(7[S(d, d, min(q, d))] for ¢ =
2,...,10 and d = 2,...,100. Note that ¢ cannot exceed d since only d chirp frequencies are
available.
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k1(T[S(d,d,d)]) ford =2,...,50
1

0.8

0.4

& (T(S(d, d, d)])

0.2

5 10 15 20 25 30 35 40 45 50
d

Figure 3.9: Plotted here is the inverse condition number = '(7[S(d,d,d)]). Evidently
k1(T[S(d,d,d)]) = 1 when d is even. The value of x (7 [S(d,d,d)]) for d odd appears
to approach a limit close to 0.471.
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