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Superconducting circuit is a promising platform for quantum computing and quantum

simulation. A number of efforts have been made to explore the physics in transmon systems

and optimize the qubit performance. Compared to transmon, fluxonium is a relatively

new type of qubit and attracts more attention recently due to its high coherence time and

large anharmonicity. In this thesis, we summarize recent progress toward high fidelity two-

qubit gate and readout for fluxonium qubits. We report improved fluxonium coherence

either in cavity or cavityless environment. In the former case, we demonstrate single-shot

joint readout for two fluxonium qubits and explore various two-qubit gate schemes such

as controlled-Z(CZ) gate, controlled-phase(CP) gate, bSWAP gate and cross-resonance(CR)

gate. The CZ gate realized by near-resonantly driving the high transitions exhibits 99.2%

fidelity from randomized benchmarking. A continuous CP gate set can be implemented by

off-resonantly driving the high transitions and shows an average 99.2% fidelity from the

cross-entropy benchmarking technique. Other gates involving only computational states

are also explored to further improve the gate fidelity, which can take advantage of the high



coherence of the fluxonium lower levels. In the cavityless environment, we demonstrate

fluorescence shelving readout with 1.7 MHz radiative decay rate for the readout transition

while maintaining 52 µs coherence time for the qubit transition. Our research explores the

basic elements for fluxonium-based quantum processors. The results suggest that fluxonium

can be an excellent candidate for not only universal quantum computation but also quantum

network and quantum optics studies.



QUANTUM CONTROL AND MEASUREMENT ON FLUXONIUM

by

Haonan Xiong

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Dissertation Committee:
Professor Vladimir E. Manucharyan, Chair
Professor Sankar Das Sarma
Professor Jay Deep Sau
Professor Benjamin S. Palmer
Professor Ichiro Takeuchi, Dean’s Representative



© Copyright by
Haonan Xiong

2022



ii

Acknowledgement

Pursuing a PhD for five years in a foreign land is never an easy journey. Fortunately, I was

surrounded by a group of people who care about me and supported me through the hard

times. Words are not enough to repay the kindness from them, which I know is priceless.

But right now at the final stage of my graduate study, I still thank all of you for making this

day come true.

I first thank my mom and dad, Dongmei and Qinglin, for their unconditional love and

support all the time. Even though they had a different opinion on my future career when

I chose to study physics in college nine years ago, they were always with me in no time

whenever I needed their help. They make me feel there is a place in this world called home

which is waiting for me wherever I go, with hot food and a comfy bed.

I would like to thank my advisor, Vladimir Manucharyan, without whom my accom-

plishments of all these years will be never possible. I still remember when I sent him my

derivation of a JPA circuit in my first year, he sent me back his derivation immediately on a

small piece of paper he managed to find nearby. I can also recall the time we spent together

soldering the skinny cables and testing the copper powders, not to mention the numerous

meetings on my projects. When a visitor came, he introduced me as ”the next generation”

and indeed, I learned a lot from him, not only the scientific knowledge and experimental

experiences, but also the ability to present the work. He tirelessly gave me feedbacks on

the slides of my talk and the figures in the paper. Thanks to the training of all these years,

I am much more professional on visualize the data and convey the ideas efficiently on a



iii

presentation. Vlad also gave me lots of suggestions when I was having trouble finding the

committee members. Besides, I express my gratitude to other members of the committee:

Professors Das Sarma, Sau, Palmer, and Takeuchi, for fitting my defense into their busy

schedule.

When I first came to the lab, Prof. Yen-Hsiang Lin, who was a postdoc at that time,

became my closest friend. Nothing can be more comforting than working with someone

speaking the native language during my first year in a foreign country. Yen-Hsiang is warm-

hearted, patient, and encouraging. I felt no pressure when discussing projects with him

and I could ask any stupid questions. He always explained to me nicely and leaded me

onto the right track. He was very experienced and taught me all most everything in the lab,

including the basics of fluxoniums, the measurement setup, designing cavities and waveg-

uides .... I am afraid I will run out of spaces if I list every details here. Yen-Hsiang was

also cared about my well-being and willing to offer any help and suggestions in my life.

Together, we improved the fluorescence experiment and got it published. This project was
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Chapter 1

Introduction

1.1 Quantum Computation and Simulation

Richard Feynman proposed the concept of a quantum computer at a conference on “Sim-
ulating physics with computers” in 1981 [1]. He believes that a quantum system is too
hard to simulate for a classical computer, but it is affordable with quantum computer ele-
ments. Before this conference, Paul Benioff already studied a quantum model of the Turing
machine [2]. But Feynman described the quantum computer as

It’s not a Turing machine, but a machine of a different kind.

One of the main reason is that he thinks there are too many variables that define the status
of a large quantum system. This idea was shared by Yuri Manin

The quantum phase space is much bigger than classical.

So actually the original proposal of quantum computer is for quantum simulation tasks. It is
more like a quantum simulator, rather than a computer. The idea is to study (simulate) large
scale complex quantum systems with much fewer quantum elements (atoms, for example)
or at least in a controllable way such that the predominant interaction is maintained and
easy to debug.

Years after, David Deutsch, Umesh Vazirani, and Ethan Bernstein developed Feynman’s
idea of quantum computation. It was proposed that a quantum computer can solve prob-
lems that have nothing to do with quantum systems and it can have a speedup on some tasks
over a classical computer. Then Peter Shor came up with the famous algorithm for factoring
large numbers with a exponential speedup. Due to its close relation to cryptography, the
concept of quantum computation began its public fame.



2

At the same time, what a quantum computer should be like becomes clear and specific. It
should base on fundamentally quantum mechanical objects (qubits) and be able to perform
any algorithm written in the gate and circuit language. This machine is called a universal
quantum computer, which is the ultimate goal for this thesis. As Feynman already pointed
out, this is not an easy problem. The biggest obstacle in this field has been, and will still be,
decoherence in a quantum system. Two outstanding atomic physicists Serge Haroche and
Jean-Michel Raimond said in 1996

The large-scale quantum machine, though it may be the computer scientist’s dream,
is the experimenter’s nightmare.

Decoherence brings errors on the qubit. Its time scale determines the lifetime of quantum
information stored in the system. On the other hand, decoherence originates from the inter-
action between the qubit and the environment, which is an interesting topic itself. Figuring
out where the interactions come from and how to engineer them is crucial to understand
the microscopic world, which can also inspire new research directions in material science
or even cosmology.

One solution to fight against decoherence is quantum error correction. It requires a
large number of qubits, and more importantly, operation fidelity above a certain threshold.
The idea is to use multiple physical qubits to construct a logical qubit that has a much lower
error rate. Google published their 54-qubit quantum processor Sycamore in 2019 on which
they demonstrated quantum supremacy [3]. Unfortunately, it only showed advantage over
a specific task and its practical benefit is obscure. It can not efficiently run any advantageous
quantum algorithms due to the error rate on the gates. Following experiments [4] showed
the possibility to build logical qubits on the same device. Even though the total physical
qubit error rate is still above the threshold required by the surface code, there is still hope
that we can cross the line in the near future. This work pointed out two main limiting
factors on the current superconducting qubit device – readout and two-qubit gate. These
two aspects will be the main topic of this thesis.

Nevertheless, Google’s experiment of quantum supremacy is a successful demonstration
that the current noisy quantum hardware is able to outperform classical computer in certain
situations, which sets a milestone of the Noisy Intermediate-Scale Quantum (NISQ) era. It
is not clear yet how a quantum processor without error correction can benefit us. At least,
it provides a new tool to study quantum systems. For example, NISQ devices can already
accomplish simulation tasks such as simulating energy spectrum of various systems [5]–[7].
These type of quantum simulators are closer to what Feynman imagines. The NISQ devices
do not look so powerful at this stage. However, as many competing efforts are devoted to
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investigating the possibilities across different physical systems, any breakthroughs or new
ideas may be able to trigger an revolution that has a profound impact upon the society.

In principle, any quantum system with well-defined distinct two levels can be the poten-
tial building block of a quantum computer, i.e. qubit. The two levels can be the microscopic
degree of freedom, such as the spin or orbital states of the electron. They can also be the
collective modes, such as the electron wavefunction of a superconductor. If we use universe
to describe all the possible qubits in nature, there are some stars that are brighter than the
others after years of research. Superconducting qubits are defined by the states of the super-
conducting wavefunction and are the focus of this thesis. Ion trap systems confine ions in
vacuum through electromagnetic field. Progress has been reported in achieving high-fidelity
gates and scaling up the system [8]. The coherent photonic state of a microwave resonator
is another type of macroscopic qubit and has been successfully used to exhibit unique quan-
tum error correction techniques [9]–[11]. On the other hand, travelling photon in free
space can also be harnessed for quantum computing, but it belongs to another architecture
called the measurement-based quantum computing [12]. Recently, high-fidelity two-qubit
gates were reported on the silicon spin qubit system, pushing it further towards the logical
qubit era, which attracts more attention in this field.

1.2 Outline

The rest of this dissertation is organized as follows. In chapter 2, we introduce the circuit
models in circuit quantum electrodynamics, especially for the fluxonium. We derive the key
properties of fluxonium in different environments and briefly review the energy relaxation
and dephasing mechanisms in superconducting systems. We then present the first part
of the experimental results on the qubit readout and initialization in chapter 3. We will
discuss two different readout schemes. One is dispersive readout with a 3D cavity. The
other is fluorescence readout in a 3D waveguide, which we call a cavityless environment.
We will explain the concept of non-QNDness and show the corresponding data for both
cases. In chapter 4, we will present the experiments on microwave gates with fluxonium.
We begin with introducing the gate characterization techniques, including quantum process
tomography and randomized benchmarking based techniques (IRB, PB, XEB). Then we will
explain the principles of the single-qubit and two-qubit gates and show the experimental
data. In the end, we will conclude all the experiments in chapter 5. We will emphasize the
significance and provide insights for future research.

In this thesis, we will use the following symbols for Pauli matrices {σ0, σ1, σ2, σ3}
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= {σI , σx, σy, σz} = {I,X, Y, Z} and

σ0 =

(
1 0

0 1

)
, σ1 =

(
1 0

0 −1

)
, σ2 =

(
0 1

1 0

)
, σ3 =

(
0 −i
i 0

)
. (1.1)



5

Chapter 2

Superconducting Circuit Models

In this chapter, we will introduce the basic concepts and models in circuit quantum elec-
trodynamics (cQED)[13]–[15]. Starting from the observation of coherent quantum super-
position and oscillation in superconducting circuits [16], [17], it has been realized that
the coherent electron wavefunction of the superconductor can be used to create a macro-
scopic quantum object, thanks to the Bose-Einstein condensation of the Cooper pairs. One
key ingredient to make superconducting circuits nontrivial compared to the conventional
circuits is the nonlinearity given by the Josephson junction, which will be introduced in
Sec. 2.1. Without nonlinearity there is no way to create a quantum superposition and the
system can always be described classically [9]–[11]. Josephson junction is the core for all
the superconducting qubits such that they can be an artificial atom. The invention of circuit
quantization technique [18]–[20] provides a useful tool to study cQED systems. It becomes
straightforward to design new qubit structures and understand how it behaves. There used
to be three types of superconducting qubits [20], the charge qubit [17], the flux qubit [21]
and the phase qubit [22]. After years of improvement and exploration, the superconducting
qubits are experiencing an evolution and modern types of qubits are realized experimen-
tally during the process including transmon [23], fluxonium [24], C-shunt flux qubit [25],
0−π qubit [26], Blochnium [27], etc. These new qubits come with the abilities to suppress
the noise from the environment and the environment itself is engineered in a more sophis-
ticated way than ever. We will introduce fluxonium as the main topic in the cQED context
and discuss the interaction with the environment and in the presence of another fluxonium.
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2.1 Josephson Junction

Josephson junction (JJ), first introduced in [28], is the essential building block of any type
of superconducting qubits. It is a trilayer structure created by two superconducting layer
sandwiching an insulating layer. For most superconducting qubits, the junction is made of
Al/AlOx/Al. This is the simplest way to make Josephson junctions and it turns out to be
quite robust. Aluminum is not necessarily the best material for making Josephson junc-
tions. One criteria is the critical temperature Tc. Even though superconductor has zero dc
resistance at T ≪ Tc, it exhibits non-zero ac losses and surface resistance at finite tem-
perature [15], [29]. This is because electrons can be thermally excited from the Cooper
pair state with a binding energy 2∆ = 3.52kBTc and become ’quasiparticles’. These quasi-
particles add a loss channel in the superconducting system, which will also be discussed
in Sec. 2.5.1. Therefore, a higher Tc means lower resistive loss and will be beneficial for
the qubit lifetime. For example, tantalum (Tc = 4.48 K) and niobium (Tc = 9.5 K) have
higher Tc than aluminum (Tc = 1.14 K). However, aluminum still has the advantage in
terms of the fabrication feasibility such as the stability of the oxide layer and the uniformity
of the edges. On the other hand, the property of the interface between the metal and the
substrate (the air or the oxide layer) is also important, as the defects in these interfaces
can be detrimental to the qubit lifetime. So one need to consider multiple aspects and it is
not straightforward to judge whether a material is better than the other without any tests.
There are ongoing efforts to introduce new materials in the superconducting circuit system,
which has always been a hot topic [30]–[38].

The most useful property of a Josephson junction as a circuit element is relations be-
tween the phase difference across the junction ϕ, the junction current I and the junction
voltage V . They can be described by the Josephson equations

I = Ic sinϕ, (2.1)

V = ϕ0
dϕ

dt
, (2.2)

where ϕ0 = Φ0/2π = ℏ/2e is the reduce flux quantum. (Φ0 is the flux quantum.) Combining
the two equations, we can have

V =
ϕ0

Ic cosϕ

dI

dt
. (2.3)

This is similar to the property of a classical inductor V = LJ(dI/dt), where

LJ =
ϕ0

Ic cosϕ
. (2.4)
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Therefore, the Josephson junction can be treated as a non-linear inductor classically. This
feature will be utilized when we derive the gain of a Josephson parametric amplifier (JPA)
in Sec. 3.3.

For a classical linear inductor, the voltage equals the changing rate of the flux Φ thread-
ing the loop

V =
dΦ

dt
. (2.5)

So the phase difference in the context of Josephson junction is equivalent to the reduced
flux in the context of the loop inductance ϕ = 2πΦ/Φ0. This is not surprising because the
flux and phase difference are linked with the Aharonov-Bohm effect [39]. This is why ϕ is
still called the reduced flux in some cases where the Josephson junction is not connected to
a loop and there is actually no well-defined physical ’flux’ in the system.

The inductance of a classical linear inductor comes from the fact that the energy in the
circuit can be converted to the magnetic field, which is determined by the wire geometry.
This type of inductance is called the geometric inductance. However, the inductance of a
Josephson junction LJ can be much larger considering its small geometry. This is because
the source of LJ is the inertia of the electrons at the junction and it is called kinetic induc-
tance which has a different origin from the inductance of a coil. The existence of kinetic
inductance makes it possible that a large inductance can be created without fabricating a
huge coil on the chip.

The energy of a linear inductor is HL = ELϕ
2/2, where EL = ϕ20/L is called the induc-

tive energy. The energy of a Josephson junction is HJ = −EJ cosϕ (droping a constant),
where EJ = ϕ20/LJ is the Josephson energy. EJ is also related to the normal resistance RN

of the junction at room temperature EJ = ∆AlRQ/(2RN ), where RQ = h/(2e)2 is the resis-
tance quantum. RN and LJ is inversely proportional to the junction area A. Therefore we
have EJ ∝ A. There also exists a small capacitance CJ between the two superconducting
layer of the junction and the energy associated with it isHC = 4ECn

2, where n is the charge
number and EC = e2/(2CJ) is the charging energy of the junction. For a Al/AlOx/Al junc-
tion, the empirical value for CJ per area is about 45 fF/µm2. Another important property
of a Josephson junction is the plasma frequency

ωp =
1

ℏ
√

8EJEC =
1√
LJCJ

. (2.6)

From the definition, we can find that ωp does not depend on the junction and only depends
on the transparency of the insulating layer. For Al/AlOx/Al junctions, the oxidation process
is the most important factor. Typically its plasma frequency can be 10−40 GHz [40]. In our
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experiment, ωp is usually around 20 GHz.

2.2 Resonator, Transmon and Fluxonium

There are three major elements in cQED: capacitor, inductor, and Josephson junction, which
can be characterized with the charging energy EC , the inductive energy and the Josephson
energy. Different combinations of these three elements can create the common circuit mod-
els: a resonator, a transmon, or a fluxonium.

A resonator is a capacitor shunted by an inductor as show in Fig. 2.1. In the experiment,
it can be the resonant mode of a metal structure. For example, the lowest mode of a on-chip
metal strip (2D coplanar waveguide cavity), the lowest mode of a copper box (3D cavity),
or a piece of metal pad (capacitor) connected with a Josephson junction chain (inductor)
[27], [41] can all be treated as a resonator. Its Hamiltonian can be written as

Hresonator = 4ECn
2 +

1

2
ELϕ

2. (2.7)

Now n and ϕ are canonically conjugate quantum operators that satisfy the canonical com-
mutation relation [ϕ, n] = i. n and ϕ are just like the momentum p and the position x

operator of a mass on the spring. 4ECn
2 is the kinetic energy and 1

2ELϕ
2 is the potential

energy. A resonator is essentially a harmonic oscillator. We can introduce the annihilation
and creation operators a and a† in the second quantization formalism.

ϕ =
1√
2

(
8EC

EL

) 1
4

(a† + a), (2.8)

n =
i√
2

(
EL

8EC

) 1
4

(a† − a). (2.9)

Eq. 2.8 and Eq. 2.9 are important when numerically simulating a arbitrary circuit Hamilto-
nian in the harmonic oscillator basis (using the Qutip python package for example). With
these equations, the Hamiltonian can be written as

Hresonator = ℏω(a†a+
1

2
), (2.10)

where ω =
√
8ELEC/ℏ = 1/

√
LC is the resonant frequency. The energy of the eigenstates

is En = ℏω(n+1/2), n=0, 1, 2, .... The vacuum state energy E0 = ℏω/2 will conventionally
be offset to 0 for simplicity in the following text. As shown in Fig. 2.1d, because of the
quadratic potential given by the inductor, the resonator spectrum is equally spaced. We can
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define the anharmonicity of the system using the first three levels α = (E2−E1)−(E1−E0),
which is obviously zero for a resonator. For this reason, a resonator itself can not be used as
a qubit. There is no way one can prevent the population leaking to higher two levels without
introducing a non-linear element in the circuit. If a drive with frequency ω is applied to the
resonator, it can be imagined that the population will keep climbing the equally-spaced
level ladder. Strictly speaking, for any linear classical drive, the evolution of the resonator
is described by the displacement operator D(α) = exp(−|α|2) exp(αa†) exp(−αa). α is a
complex number determined by the drive parameters. Applying the displacement operator
to the vacuum state, we can get a coherent state [42]

|α⟩ = D(α) |0⟩ (2.11)

= exp(−|α|2)
∑
n

αn

√
n!

|n⟩ . (2.12)

The coherent state is the eigenstate of the annihilation operator a |α⟩ = α |α⟩ and the mean
photon number is n̄ = ⟨α| a†a |α⟩ = |α|2. The parameters of the drive can only determines
the mean photon number and the phase of the coherent state, but can not change the fact
that the final state is a classical-like superposition of a series of Fock states and can not be
a qubit. This problem can only be solved after introducing a non-linearity by coupling the
resonator to a qubit. A cat state, a superposition of coherent states, can be created and used
as a qubit. Several error correction schemes have been explore in this type of system.

Now if we connect a Josephson junction in parallel with a large capacitor (which is
usually a large piece of metal pad), we can create a transmon. It is worth noticing that in
this case the extra capacitance is much larger than the capacitance of the junction itself,
that is, C ≫ CJ . The charging energy is dominated by the extra capacitance EC = e2/(2C).
In order to be in the transmon regime, EJ should be much larger than EC . This is necessary
to suppress the charge noise. In general, the transmon Hamiltonian can be written as

Htransmon = 4EC(n− ng)
2 − EJ cosϕ, (2.13)

where ng is the offset charge on the Cooper pair island (which is the metal pad connecting
to the junction). ng can fluctuate due to the quasiparticle tunneling. In the case of large
EC (small capacitance), the energy spectrum has a strong dispersion on the offset charge.
Tunneling events can significantly change the energy levels and cause decoherence. With a
small EC , ng barely affect the energy and can be set at 0 in the spectrum analysis. But the
suppression of charge noise comes with a price. The system anharmonicity also becomes
smaller. This can be more clear in the second quantization language. First, we need to
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expand cosϕ in Taylor series and substitute Eq. 2.8 and Eq. 2.9 into the Hamiltonian. Af-
ter dropping the fast rotating terms and the constants, the transmon Hamiltonian can be
written as

Htransmon = ℏ(ω +
α

2
)a†a+

ℏα
2
(a†a)2. (2.14)

where ω =
√
8EJEC/ℏ, α = −EC is the anharmonicity. For a typical transmon, α/2π is on

the order of 100 or 200 MHz [43] (the 0− 1 frequency is on the order of 5 GHz).
The existence of the anharmonicity α makes it possible to use the transmon 0− 1 tran-

sition as a qubit and α sets a limit on how fast we can perform a gate on this qubit. For
example, the Fourier spectrum of a Gaussian π pulse can not have a line width exceeding
|α|. Otherwise the population can be excited to the higher levels. Therefore in the time
domain, the width of the π pulse should be longer than 1/|α|. 100 MHz anharmonicity
corresponds to a time scale of 10 ns and this is the typical single-qubit gate time for trans-
mon qubits on state-of-the-art superconducting quantum processors. One way to suppress
the leakage at large drive strength is the Derivative Removal by Adiabatic Gate (DRAG)
technique. By adding an additional derivative component on the orthogonal quadrature of
the control pulse, the Fourier spectrum of the pulse can be engineered to avoid the leakage
transition. The pulse can be more adiabatic and there will be less leakage at the end of the
pulse.

Now let’s combine all the three circuit elements and connect them in parallel. In this
way, a fluxonium can be created and it is the main topic of this thesis. Fig. 2.2 shows
the design of a fluxonium. The fluxonium has a pair of antenna to couple to the external
environment, which also provides the charging energy. The inductance is provided by the
long Josephson junction array. Typically the number of junctions in the chain N is on the
order of 100. The junction size is much larger than the small junction on top of the loop.
The area ratio is on the order of 50, meaning that each junction has a very large Josephson
energy Echain

J . Because the phase across each junction in the chain is ϕ/N ≪ 1, the energy
contribution from the chain is

N∑
i

−Echain
J cos

ϕ

N
≈

N∑
i

−Echain
J

(
1− 1

2

(
ϕ

N

)2
)

(2.15)

= −NEchain
J +

1

2

Echain
J

N
ϕ2. (2.16)

Eq. 2.16 demonstrates that in the limit of small phase difference across each junction,
the Josephson junction chain behaves like a linear inductor with inductive energy EL =

Echain
J /N . One reason for large chain junctions is to suppress the phase slip which can
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a b c

d e f

Figure 2.1: Circuit diagrams and energy spectrum for a resonator, transmon and flux-
onium. (a) A resonator. It can be modeled as an inductor and a capacitor connected in
parallel. (b) A transmon. The Josephson junction behaves like a non-linear inductor and
makes the system anharmonic. (c) A fluxonium. The Josephson junction is shunted by a
large linear inductor. This forms a loop where an external flux can be applied to tune the
circuit Hamiltonian. (d, e, f) The potential energy and energy spectra for a typical res-
onator, transmon, and a fluxonium at half flux quanta. The resonator has equally spaced
spectrum. The transmon spectrum has smaller spacing between higher levels due to the
weak anharmonicity. On the contrary, fluxonium system can have much larger anharmonic-
ity that comes from the non-trivial potential.
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cause decoherence. This requires exp(−
√

8Echain
J /Echain

C ) ≪ 1 [40].
A long chain with hundreds of junctions may look difficult to fabricate. However, it

turns out the yield is quite high and the recipe is as easy as making a single junction. The
junction chain is deposited together with the small Josephson junction in the same double-
angle deposition process and no extra steps are needed. Yet, one need to avoid a chain that
is too long, because the chain modes can be lower down to the GHz range and have a strong
interaction with the typical fluxonium spectrum [44], [45]. Using the Josephson junction
chain as the linear inductor is not the only choice. In fact, there have been some studies
exploring the fluxonium fabricated by replacing the junction chain with granular aluminum
[46] or geometric inductor [47].

The junction chain forms a closed loop with the small Josephson junction. The external
magnetic flux Φext threading the loop corresponds to an extra phase difference ϕext =

2πΦext/Φ0. The fluxonium Hamiltonian can hence be expressed as

Hfluxonium = 4ECn
2 − EJ cos(ϕ− ϕext) +

1

2
ELϕ

2. (2.17)

Compared to the transmon Hamiltonian, the potential in a fluxonium Hamiltonian is more
complicated and can be tuned with the external flux. The potential has a quadratic en-
velope coming from the inductor and multiple small wells coming from the cos term of
the small Josephson junction that sit inside the parabola. At integer flux quanta (ϕext =

...,−2π, 0, 2π, ...), the wavefunctions of |0⟩ and |1⟩ are localized in the same well. The tran-
sition of these type of states is called the plasmon transition. On the other hand, the inter-
well transition is called the fluxon transition. At half flux quanta (ϕext = ...,−π, π, 3π...),
the potential has a double-well shape as shown in Fig. 2.1f. The local wavefunctions of the
two wells get hybridized and form the lowest two levels which are close in frequency. The
|0⟩ state wavefunction has even parity and the |1⟩ wavefunction has odd parity. The rules
are similar for higher levels: the parity of state number indicates the parity of the wave-
function. The transition between the states with the same parity is called an even transition
and the transition between the states with opposite parity is an odd transition. The parity
rule is quite useful when judging whether a matrix element is zero or not. For example, ϕ is
an odd function. Hence the integrand in the calculation of ⟨0|ϕ |2⟩ is also an odd function,
which gives ⟨0|ϕ |2⟩ = 0. The matrix element of n is proportional to the matrix element of
ϕ

⟨α|n |β⟩ = iℏωαβ

8EC
⟨α|ϕ |β⟩ , (2.18)

where ωαβ = ωα − ωβ is the transition frequency between state |α⟩ and |β⟩. This relation
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a

b c

Figure 2.2: Optical and SEM images for a single fluxonium (a) The optical image of
a single fluxonium. The metal strip connecting to the loop is the antenna that provides
the charging energy EC and also couples the fluxonium to the external environment. A
small Josephson junction (JJ) sits On the upper side of the loop and provides the Josephson
energy EJ . The lower part of the loop is a chain of Josephson junctions. Because of the
large area of the junction here, the chain behaves like a linear inductor and provides the
inductive energy EL in the circuit model. (b) The SEM image of the small Josephson
junction. The Al-AlOx-Al junction is fabricated with the standard Dolan bridge technique.
(c) The SEM image of the junction chain. The chain usually contains hundreds of large
Josephson junctions that are fabricated together with the small junction in the same batch.
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holds for any circuits that can be described with the Hamiltonian 4ECn
2 + V (ϕ). To prove

this, one needs to use the commutation relation

[H,ϕ] = [4ECn
2 + V (ϕ), ϕ] = [4ECn

2, ϕ] = −8iECn. (2.19)

We can calculate the matrix element for both sides. The left hand side gives

⟨α| [H,ϕ] |β⟩ = ⟨α| (Hϕ− ϕH) |β⟩ = (Eα − Eβ) ⟨α|ϕ |β⟩ , (2.20)

and the right hand side gives −8iEC ⟨α|n |β⟩. It is easy to arrive at Eq. 2.18 by equalling
the two sides. The matrix elements for a typical fluxonium at different flux are shown in
Fig. 2.3. For the 0− 1 transition at half flux quanta, the frequency can be 10 times smaller
than that at integer flux. The charge matrix element reaches minimum and the phase matrix
element reaches maximum at half flux quanta. From the state parity, we can know that the
even transitions have zero matrix elements for n and ϕ at half and integer flux quanta. This
is called the selection rule and will be frequently used when working at these flux points.

Unlike transmon, fluxonium is naturally insensitive to the offset charge noise because
the two sides of the small Josephson junction are galvanically connected by the inductor.
This ability is achieved without the price of sacrificing the anharmonicity. On the contrary,
the anharmonicity is much large than that of a transmon. For typical fluxonium parameter
regime, EJ/EC ∼ 1− 10 and EJ > EL [48]. The anharmonicity α = (E2−E1)− (E1−E0)

can easily achieve few GHz at half flux quanta, which is one order of magnitude larger
than the transmon. The non-trivial potential can push 0 − 1 transition down to sub GHz
level while keep 1− 2 transition still at several GHz. Therefore the 0− 1 transition is well-
isolated with other higher transitions and can be treated like a real spin. This feature is
quite convenient for quantum simulation tasks on spin-based models. On the other hand,
for using fluxonium as a qubit, the high anharmonicity also relieves the constraint on the
single qubit gate speed. Basically there is no need to worry about the population going to
the higher levels while driving the 0− 1 transition even with few nanosecond long π pulse.
In this case, other factors need to be taken into account when ramping up the single-qubit
gate rate. For example, a strong drive on a low-frequency qubit can break the rotating wave
approximation. One need to consider this effect when calibrating the pulses. On the other
hand, low-frequency fluxonium qubits have small charge matrix element (they are also
called heavy fluxoniums ) and the charge matrix element determines how strong it couples
to the external microwave drive. This means it is harder to drive these low-frequency qubits.
In order to do fast gates, one need to crank up the RF power, which increases the heat load
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Figure 2.3: Spectrum and matrix elements for a fluxonium. The left panel shows the
1 − 0 (blue), 2 − 0 (red), and 3 − 0 (green) transitions of a typical fluxonium with EC =
1 GHz, EJ = 4 GHz, EL = 0.5 GHz. The right panels show the charge matrix element
nαβ and the phase matrix element ϕαβ accordingly. At 0 flux, fluxonium’s 1 − 0 transition
frequency and matrix elements can be similar to that of a transmon. At half flux quanta
ϕext = π, the 1 − 0 transition can be much lower and the charge matrix element also
becomes much smaller. The 2 − 0 transition has vanishing matrix elements at half flux
quanta because of the even parity.
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of the dilution refrigerator. Another solution is to use flux pulse to activate single-qubit
rotations [49].

The most important advantage of fluxonium is its high coherence. It has been reported
that the coherence time can achieve hundreds of microseconds and one device achieved
1 ms [50], [51]. This is mainly because the small charge matrix element suppresses the
dielectric loss, which will be introduced in Sec. 2.5.1.

2.3 Dispersive Coupling

In order to readout a qubit state while protecting the qubit from radiative decay, one com-
mon strategy is to let the qubit interact with the environment through a resonator. This
well-studied in cavity quantum electrodynamics (CQED). In our experiment, the qubit is
located at the center of a 3D copper cavity as shown in Fig 2.4b. In the GHz regime, the
copper box can filter out the noise and prevent the qubit from directly emitting photons
into the transmission line. It only lets in the photons that are on resonant with the modes in
the cavity through the SMA connectors. These photons can be used to readout qubit states.
For clarification, the Jaynes-Cummings Hamiltonian can be a simple example: a two-level
system with frequency ωq coupled to a resonator with frequency ωr. The coupling strength
is g.

HJC = ℏωra
†a+

ℏωq

2
σz + ℏg(aσ+ + a†σ−) (2.21)

In the dispersive regime, the qubit-resonator detuning ∆qr = ωq − ωr is much larger than
the coupling strength |∆qr| ≫ g. Eq. 2.21 can be simplified with perturbation theory [15],
[52]

HJC = ℏωra
†a+

ℏωq

2
σz + ℏ

g2

∆qr

[
a†a+

1

2

]
σz. (2.22)

On one hand, the Hamiltonian can be rewritten as

HJC = ℏ
(
ωr +

g2

∆qr
σz

)
a†a+

ℏ
2

(
ωq +

g2

∆qr

)
σz, (2.23)

indicating the resonator frequency is dependent on the qubit state. The frequency shift is
called the dispersive shift

χ = 2g2/∆qr. (2.24)
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a b

c

Figure 2.4: A fluxonium capacitively coupled to a resonator (a) A spin inside a cavity.
The qubit interacts with the harmonic oscillator through a dipole coupling, which is com-
monly described by the Jaynes-Cummings Hamiltonian. (b) A fluxonium device inside a
copper 3D cavity. The two halves of the cavity are sealed with indium [not shown]. The
size of the fluxonium in this picture is exaggerated for better visibility. (c) The circuit di-
agram for a fluxonium capacitively coupled to a resonator. The blue part is the resonator
and the green part is the fluxonium. The two parts are coupled with a capacitance Cc.
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This mechanism can be utilized to readout a qubit. The experimental implementation is
further discussed in Sec. 3.1.1. On the other hand, we can also rewrite the Hamiltonian in
the form of

HJC = ℏωra
†a+

ℏ
2
(ωq +

g2

∆qr
+

2g2

∆qr
a†a)σz. (2.25)

The qubit frequency now depends on the photon number through the Stark shift term
2n̄g2/∆qr. There have been experiments carried out to use a Cooper pair box to detect
the photon number in a cavity [53].

To simulate a full spectrum of a fluxonium coupled to a resonator, one can consider a
circuit model shown in Fig. 2.4 with a capacitive coupling. For small coupling capacitance
Cc ≪ Cr, Cf , the Hamiltonian can be approximated as [52], [54]

Hrf = Hr +Hf + Vrf , (2.26)

Hr = 4ECrn
2
r +

1

2
ELrϕ

2
r , (2.27)

Hf = 4ECf
n2f − EJ cos(ϕ− ϕext) +

1

2
ELf

ϕ2f , (2.28)

Vrf = JCnrnf (2.29)

where JC = 4e2Cc/(CrCf ). For a 3D cavity, it is usually unnecessary to use three inde-
pendent parameters Lr, Cr, Cc to model the resonator and the coupling. We can introduce
the annihilation and creation operators of the resonator from Eq. 2.8 and Eq. 2.9 first to
simplify the notations.

Hr = ℏωra
†a, (2.30)

Vrf = ign(a
† − a)nf , (2.31)

gn =
JC√
2

(
ELr

8ECr

) 1
4

. (2.32)

Now we can just use two parameters ωr and gn to describe the resonator and the cou-
pling. Together with the fluxonium parameters ECf

, ELf
, and EJ , one can simulate the full

spectrum with 5 independent parameters.
Without an accurate numerical simulation, we can still use perturbation theory to get

an idea about what determine the dispersive shift of the resonator photon on the fluxonium
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[40], [55].

χα = g2n
∑
β ̸=α

|nαβ|2
2ωαβ

ω2
αβ − ω2

r

. (2.33)

χα is the dispersive shift felt by the fluxonium state α when there is an extra photon in
the resonator. Because gn > 0, the frequency shift can be thought of as the repulsion
between all the related fluxonium transitions and the resonator transition. ωαβ > ωr means
the resonator pushes the upper level α up and the lower level β down, and vice versa
for ωαβ < ωr. In experiment, we are more concerned about differential dispersive shift
χαβ = χα − χβ. For example, the dispersive shift of the 0− 1 transition is

χ10 = g2n

∑
α ̸=1

|n1α|2
2ω1α

ω2
1α − ω2

r

−
∑
α ̸=0

|n0α|2
2ω0α

ω2
0α − ω2

r

 . (2.34)

Therefore for a fluxonium qubit, even though the qubit frequency can be very far away
from the resonator frequency with a detuning on the order of GHz, the dispersive shift on
the qubit can be large thanks to the contributions from the higher levels. One can compare
Eq. 2.34 with Eq. 2.24 to treat the 0 − 1 transition as a spin and write down the effective
coupling gJC in the Jaynes-Cummings model

gJC = gn

√√√√√(ω10 − ωr)

∑
α ̸=1

|n1α|2
ω1α

ω2
1α − ω2

r

−
∑
α ̸=0

|n0α|2
ω0α

ω2
0α − ω2

r

. (2.35)

For inductive coupling, the coupling term Vrf takes the form of Vrf = gϕ(a
† + a)ϕ. This

corresponds to the case where the resonator and the fluxonium have shared junctions. One
can arrive at a similar result but replacing the charge matrix element nαβ with the phase
matrix element ϕαβ.

Apart from the frequency shift, the hybridization between the resonator mode and the
fluxonium mode makes it possible to drive the side-band transitions. For clarification, we
can denote the fluxonium-resonator state as |α, n⟩. α is the state index of the fluxonium
and n is the photon number in the resonator. There are two types of side-band transitions.
Assuming α > β, the red side-band transition |β, n⟩ − |α, n− 1⟩ locates at the frequency
|ωr−ωαβ|. The blue side-band transition |α, n⟩−|β, n− 1⟩ locates at the frequency |ωr+ωαβ|.
In a fluxonium-resonator spectrum, the fluxonium transitions are offset by the resonator
frequency to form the side-band transitions. That makes the resonator transition look like a
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mirror, as the blue side-band and the red side-band transitions are distributed symmetrically
with respect to the resonator. Another way to identify the side-band transition is that their
spectral lines disappear at half flux quanta due to vanishing matrix elements. The side-band
transitions can be used to initialize the qubit, which will be discussed in Sec. 3.4.

2.4 Coupled Fluxoniums

Now let’s move on to study a fluxonium that is coupled to another fluxonium, which is a
requirement to realize a two-qubit gate. We can start from the simplest case of two coupled
spins (set ℏ = 1 for simplicity)

H = −ωA

2
σAz − ωB

2
σBz + JσAx σ

B
x . (2.36)

Without loss of generality, we can assume the bare frequencies ωB > ωA > 0. The Hamilto-
nian can be diagnosed

H̃ = − ω̃A

2
σ̃Az − ω̃B

2
σ̃Bz . (2.37)

The coupled system can still be described with two independent spins in the new dressed
state basis (the Pauli matrices are labeled as σ̃i) and the energies are shifted to ω̃α, α = A,B.
Let’s define ω± = ωB ± ωA, ω̃± = ω̃B ± ω̃A. The relation between the bare energies and the
dressed energies is (

ω̃±
2

)2

=
(ω±

2

)2
+ J2. (2.38)

The coupling makes the total energy of the two spins higher and also pushes the two spin
frequencies away from each other. In the bare basis, the driving term can be expressed as
V = F cosωdt and

F = ΩAσ
A
x +ΩBσ

B
x (2.39)

ΩA(B) is the driving strength on spin A(B). The tensor product with the identity matrix of
the other qubit is omitted in the each term above. Without the coupling, the external drive
can only manipulate each spin individually. Now with the coupling, the actual qubits are
the dressed eigenstates and the external drive can create an entanglement in the new basis.
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a

b c

Figure 2.5: Two fluxoniums coupled with a capacitor. (a) The optical image of two ca-
pacitively coupled fluxoniums. The capacitance mainly comes from the antenna of the two
fluxoniums. (b) The circuit diagram of the system. CM is the capacitance between the two
fluxoniums. (c) The energy diagram considering the coupling term. The two fluxoniums
are coupled by the charge operators. This coupling term pushes state |21⟩ against |12⟩ and
lifts the degeneracy between transition |20⟩− |10⟩ and |21⟩− |11⟩. The energy splitting is ∆.

In the dressed basis, V → Ṽ = F̃ cosωdt and

F̃ = ΩA cos(θ− − θ+)σ̃
A
x +ΩA sin(θ− − θ+)σ̃

A
z σ̃

B
x

+ΩB cos(θ− + θ+)σ̃
B
x − ΩB sin(θ− + θ+)σ̃

A
x σ̃

B
z , (2.40)

where cos θ± =
√
(1 + ω±/ω̃±)/2 and sin θ± =

√
(1− ω±/ω̃±)/2. The extra ZX(XZ)

term indicates that the drive applied at spin A(B) can also flip qubit B(A) with a rate that is
dependent on the state of qubit A(B). This mechanism can be exploited to construct multiple
types of two-qubit gates that will be introduced in Sec. 4.3.

Now let’s consider a more complicated case where two fluxoniums are coupled together.
This can be done either through the capacitance between the antenna or sharing junctions
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in the junction. The former case corresponds to capacitive coupling shown in Fig. 2.5, which
will be discussed here. The details of the latter case corresponding to inductive coupling
can be found in Ref. [54], [56]. The system Hamiltonian is

HAB = HA +HB + VAB. (2.41)

The individual fluxonium Hamiltonian is

Hα = 4EC,αn
2
α − EJ,α cos(ϕα − ϕext,α) +

1

2
EL,αϕ

2
α, (2.42)

where α = A,B. The coupling term is

VAB = JCnAnB, (2.43)

JC = 4e2
CM

CACB
. (2.44)

Due to fluxonium’s multi-level nature, the interaction from the higher levels changes the
energies of the computational states. If we only consider the lowest two levels of both
fluxoniums, the Hamiltonian is

H = −ωA

2
σAz − ωB

2
σBz +

ξzz
4
σAz σ

B
z . (2.45)

The last term is the static ZZ interaction coming from the level pushing of the higher tran-
sitions, which is absent in the previous spin models. The effect of the ZZ interaction can be
thought of as conditional Z rotations. This means that the qubits can get entangled auto-
matically even if no external drive is applied. One solution is to inducing a ZZ interaction
with opposite sign to cancel it out as discussed in Sec. 4.3.1. Another way is to design
the qubit with lower frequencies. It has been observed that the low-frequency qubits have
smaller static ZZ interaction in general with the same coupling strength JC .

We can also extend the concept of static ZZ interaction to non-computational states such
as the 1 − 2 manifolds. Due to the level repulsion between |21⟩ and |12⟩, the degeneracy
between |10⟩ − |20⟩ and |11⟩ − |21⟩ is lifted and the energy splitting is denoted by ∆ as
demonstrated in Fig. 2.5c. This type of ZZ interaction is order of magnitude larger than that
of the computational states. Therefore it is possible to use these high energy transitions for
fast two-qubit gates shown in Sec. 4.3.

Similar to the spin model, the external drive can entangle the two qubits. Again, the
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driving term is V = F cosωdt and

F = ΩAnA +ΩBnB. (2.46)

In order to see its behavior in the computational space, we can calculate the matrix elements
of nA and nB in the coupled fluxonium basis. This can be done perturbatively and by
keeping the terms with major contributions [57]. We can define Vkl,k′l′ = ⟨kl|VAB |k′l′⟩ =
JC ⟨kA|nA |lA⟩ ⟨k′B|nB |l′B⟩ and express the dressed states in the bare fluxonium basis,

|00⟩ ≈ |0A⟩ |0B⟩ −
V11,00

ωA
10 + ωB

10

|1A⟩ |1B⟩ −
V31,00

ωA
30 + ωB

10

|3A⟩ |1B⟩ −
V13,00

ωA
10 + ωB

30

|1A⟩ |3B⟩+ · · · ,

(2.47)

|11⟩ ≈ |1A⟩ |1B⟩+
V00,11

ωA
10 + ωB

10

|0A⟩ |0B⟩ −
V20,11

ωA
21 − ωB

10

|2A⟩ |0B⟩+
V02,11

ωA
10 − ωB

21

|0A⟩ |2B⟩+ · · · ,

(2.48)

|01⟩ ≈ |0A⟩ |1B⟩ −
V10,01

ωA
10 − ωB

10

|1A⟩ |0B⟩ −
V12,01

ωA
10 + ωB

21

|1A⟩ |2B⟩ −
V30,01

ωA
30 − ωB

10

|3A⟩ |0B⟩+ · · · ,

(2.49)

|10⟩ ≈ |1A⟩ |0B⟩+
V01,10

ωA
10 − ωB

10

|0A⟩ |1B⟩ −
V21,10

ωA
21 + ωB

10

|2A⟩ |1B⟩+
V03,10

ωA
10 − ωB

30

|0A⟩ |3B⟩+ · · · .

(2.50)

We keep the first order terms with non-zero matrix elements and truncate the Hilbert space
up to the |3⟩ states. From the expansion, we can find the parity is conserved in the dressed
states, which indicates that matrix elements between the same parity states are zeros. For
example, ⟨00|nA |00⟩ = ⟨10|nA |01⟩ = ⟨00|nA |11⟩ = 0.

Because ⟨k|nα |l⟩ is pure imaginary in our convention, we can define nαkl = −i ⟨kα|nα |lα⟩
to simplify the expression and calculate other matrix elements of nA and nB. For example,
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the cross matrix elements for transitions of the other qubit are

⟨00|nA |01⟩ ≈ −2iJCn
B
01

[ (
nA01
)2
ωA
10(

ωA
10

)2 − (ωB
10

)2 +

(
nA03
)2
ωA
30(

ωA
30

)2 − (ωB
10

)2
]
, (2.51)

⟨10|nA |11⟩ ≈ 2iJCn
B
01

[ (
nA01
)2
ωA
10(

ωA
10

)2 − (ωB
10

)2 −
(
nA12
)2
ωA
21(

ωA
21

)2 − (ωB
10

)2
]
, (2.52)

⟨00|nB |10⟩ ≈ 2iJCn
A
01

[ (
nB01
)2
ωB
10(

ωA
10

)2 − (ωB
10

)2 +

(
nB03
)2
ωB
30(

ωA
10

)2 − (ωB
30

)2
]
, (2.53)

⟨01|nB |11⟩ ≈ −2iJCn
A
01

[ (
nB01
)2
ωB
10(

ωA
10

)2 − (ωB
10

)2 −
(
nB12
)2
ωB
21(

ωA
10

)2 − (ωB
21

)2
]
. (2.54)

One can use the matrix elements to express nα in terms of Pauli operators when only con-
sidering computational states. For example,

ncomp
A =

ξXI

2
σAx σ

B
0 +

ξXZ

2
σAx σ

B
z +

ξIX
2
σA0 σ

B
x +

ξZX

2
σAz σ

B
x . (2.55)

The absence of other terms such as IZ, ZZ,XX etc. is because of the zero matrix element.

ξXI = ⟨00|nA |10⟩+ ⟨01|nA |11⟩ , (2.56)

ξXZ = ⟨00|nA |10⟩ − ⟨01|nA |11⟩ , (2.57)

ξIX = ⟨00|nA |01⟩+ ⟨10|nA |11⟩ , (2.58)

ξZX = ⟨00|nA |01⟩ − ⟨10|nA |11⟩ . (2.59)

ξXI is the zeroth order term. This is trivial term corresponding to direct drive on qubit A.
ξIX and ξZX are linear in JC , meaning that the electric field on qubit A can excite qubit B.
ξXZ is quadratic in JC . This term indicates that the drive directly applied on qubit A can
also slightly depend on the state of qubit B. We can compare the result to Eq. 2.40 and find
that the higher level of fluxonium give rise to the extra IX and XZ terms that are absent
in the simple spin model. In Sec. 4.3, we are going to explain how we can use these terms
for two-qubit gates with only computational states.

2.5 Energy Relaxation and Dephasing

Before introducing the last circuit model of a fluxonium in a waveguide, it is necessary
to first discuss the concepts in noise and decoherence. The noise from the environment
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is always inevitable and can cause energy relaxation and dephasing in superconducting
circuits. These effects can be treated with the master equation in Lindblad form [52], [58],
[59] in order to simulate the evolution of a quantum system.

dρt
dt

= − i

ℏ
[H, ρt] +

∑
i

D[Li](ρt) (2.60)

D[L](ρt) is called dissipator and is defined as

D[Li](ρt) = LiρtL
†
i −

1

2
L†
iLiρt −

1

2
ρtL

†
iLi. (2.61)

Li are the Lindblad operators. L1 =
√
Γ↓σ− is for the downward transition. L2 =

√
Γ↑σ+ is

for the upward transition. L3 =
√
Γϕ/2σz is for pure dephasing. We can consider a simplest

example by assuming H = 0 and only keeping the dissipators. The differential equation can
be written in Pauli coordinates

dxt = −
(
Γ1

2
+ Γϕ

)
xtdt (2.62)

dyt = −
(
Γ1

2
+ Γϕ

)
ytdt (2.63)

dzt = −Γ1 (zt − zth) dt. (2.64)

Even though the upward and downward transitions are in opposite directions, the two
transition rates contribute to the energy relaxation rate with the same sign Γ1 = Γ↑ + Γ↓.
The transition direction makes a difference when it comes to the expectation value of σz at
thermal equilibrium zth = (Γ↑ − Γ↓)/Γ1. Γ1 determines how fast the Z component of the
qubit Bloch vector decays to the equilibrium value and the decoherence rate Γ2 = Γ1/2+Γϕ

determines how fast the transverse components decay to zero.
The energy relaxation time T1 = 1/Γ1 and the coherence time T2 = 1/Γ2 can be mea-

sured experimentally with the pulse sequence shown in Fig. 2.6. To measure T1, one needs
to flip the qubit, wait for a variable amount of time and measure the qubit population. As-
suming the qubit is always at the ground state |0⟩ at the beginning of the sequence and the
qubit pulse length can be neglected, the excited state population measured at the end of
the sequence is P|1⟩ = e−t/T1 . It is worth mentioning that sometimes the T1 curve can take
double-exponential form, which can come from T1 fluctuations caused by quasiparticles
[60].

To measure T2, there are two common pulse protocols and they can give different T2
values. One is the Ramsey sequence, where the qubit is first flipped to the equator on the
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Figure 2.6: T1, Ramsey and spin echo measurements. Xπ and Xπ
2

are π and π/2 pulses
around X axis. Assuming the qubit starts from the ground state and the qubit pulses are
much faster than the decay time, the T1 and Ramsey curves starts from P|1⟩ = 1 and the
spin echo curve starts from P|1⟩ = 0. The Ramsey curve oscillation rate equals the detuning
of the drive.
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Bloch sphere with a π/2 pulse, evolve for time t and applied a second π/2 pulse. The final
population is P|1⟩ = e−t/TRamsey

2 cos (δωt) + 1/2, where TRamsey
2 is the measured T2 with this

Ramsey sequence and δω is the detuning of the qubit drive. The other pulse protocol is the
spin echo sequence. It is similar to the Ramsey sequence, but there is an extra π pulse in the
middle of the sequence to refocus the qubit phase on the XY plane. The σz rotations coming
from the drive detuning before and after the π pulse are cancelled out. There will be no
oscillations on the spin echo trace and the population is P|1⟩ = −e−t/T echo

2 + 1/2. Typically
T echo
2 > TRamsey

2 because the spin echo sequence can filter out low frequency noise on the
qubit phase. Imagine the case where the qubit frequency is drifting randomly over a long
time scale. In experiment one need to average the Ramsey traces from multiple repetitive
measurements to get a good contrast. Because these traces oscillates at different frequency,
the average curve decays faster than each of the single trace. But averaging echo traces will
not introduce this problem because each single trace does not oscillate and decays with the
same rate. T2 can typically be longer using the dynamical decoupling technique with more
π pulses in the sequence. One can have more rigorous comparison on the filtering effect by
calculating the filter function for different pulse sequence [61]. It is worth noticing that T2
curves can also have non-exponential behavior depending on the noise type [62].

2.5.1 Energy relaxation mechanisms

Generally speaking, the energy relaxation rate can be calculated with Fermi’s golden rule
[63], [64]. The relaxation rate from state α to state β is

Γαβ =
1

ℏ2
| ⟨β| Ô |α⟩ |2S(ωαβ) (2.65)

Ô is the operator that couples the quantum system to the noise source. S(ωαβ) is the noise
spectral density at frequency ωαβ. In most cases, the spectral density satisfy the relation
S(−ω)/S(ω) = e−ℏω/kBT in thermal equilibrium, where S(ω) corresponds to the downward
transition and S(−ω) corresponds to the upward transition. This leads to the detailed
balance relation in thermal equilibrium

Γ↑/Γ↓ = e−ℏω/kBT . (2.66)

The upward transition is more significant for low frequency qubits such as fluxoniums at
half flux quanta. Assuming the temperature of a dilution refrigerator at base plate is 20
mK. This corresponds to a frequency at 417 MHz, which is the typical frequency of the
fluxonium 0− 1 transition.



28

Superconducting qubit T1 are susceptible to several noise source, such as dielectric loss,
Purcell effect, quasiparticle loss and 1/f flux noise. These are the typical relaxation mecha-
nism considered for superconducting circuits.

Dielectric loss

Dielectric loss comes from the defects in the environment. These defects behave like lossy
two-level systems (TLSs) exchanging energy with the superconducting circuit and they exist
on different interfaces such as the metal-substrate interface, substrate-air interface, etc [65].
This can be modeled by assuming the capacitor in the circuit is filled with lossy dielectric
materials such that Ceff = C(1 + tan δC). tan δC is called the loss tangent. In this way, the
dielectric loss rate can be written as

Γdiel
αβ =

1

(2e)2
| ⟨β|ϕ |α⟩ |2Sdiel(ωαβ), (2.67)

Sdiel(ω) = 2ℏωRe[Ydiel(ω)]
∣∣∣∣coth( ℏωαβ

2kBT
+ 1

)∣∣∣∣ , (2.68)

Re[Ydiel(ω)] = ωC tan δC . (2.69)

The temperature dependence comes from the stimulated emission by thermal photons in
the lossy environment [18], [50]. Combine the equations above, the relaxation rate is

Γdiel
αβ =

ℏω2
αβ

8EC
| ⟨β|ϕ |α⟩ |2 tan δC

∣∣∣∣coth( ℏω
2kBT

)
+ 1

∣∣∣∣ (2.70)

This formula demonstrates that 1/(T diel
1 | ⟨β|ϕ |α⟩ |2) can have a quadratic dependence on

qubit frequency at zero temperature assuming the loss tangent is constant. It also has been
observed experimentally that the loss tangent can have a weak dependence on frequency
[50]. Using Eq. 2.18, the relaxation rate can also be expressed in term of the charge matrix
element

Γdiel
αβ =

8EC

ℏ
| ⟨β|n |α⟩ |2 tan δC

∣∣∣∣coth( ℏωαβ

2kBT

)
+ 1

∣∣∣∣ , (2.71)

where the ω2
αβ dependence is absorbed in the charge matrix element. Therefore fluxoniums

can have suppressed dielectric loss with low qubit frequency and small matrix elements.
At the same time, there are on-going efforts to experiment with different materials [30]–
[38]. Because the total loss tangent comes from different parts of the material, it is also
possible to make it smaller by optimizing the qubit design and engineering the participation
ratios [65]. The dieletric loss introduced above is considered to be an averaged effect from
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many defects in the material. Recent work also shows that there are some two-level systems
that can be coupled strongly with the qubit. Qubit T1 can drop significantly When the qubit
frequency is near these two-level systems [66]. These defects are distributed randomly over
the spectrum, can drift over time and can be quite different between different cool-downs.

Purcell effect

Another energy relaxation channel is Purcell effect [67] when the qubit is coupled to a lossy
resonator. The qubit can lose energy to the environment when exchanging excitation with
the resonator. Assuming the resonator line width is κ, the coupling strength is g and the
detuning is ∆qr. The Purcell decay rate can be derived with the Jaynes-Cummings model
[52]

ΓPurcell = |g|2 κ

∆2
qr + (κ/2)2

. (2.72)

On the other hand, one can also derive the relaxation rate from a circuit model for a qubit
coupled to a coplanar waveguide resonator [40], [68]. Because fluxonium qubit frequency
is much lower than the resonator frequency, the Purcell effect can be neglected in this case.
However, the high energy transitions such as the 0−3 transition can be close to the resonator
and limited by the Purcell effect. In the more extreme case where the cavity has a strong
coupling to the external environment and becomes a waveguide, the high transition can
have a large spontaneous emission rate and emit fluorescence signal that depends on the
ground state population (See Sec. 2.6 and Sec. 3.1.2).

1/f flux noise

1/f flux noise is one of the main noise source for dissipation in flux qubits. There has
been research demonstrating that the absorbed molecular O2 at the surface is the main
contributor of the magnetic noise [69]. The flux noise is coupled to the qubit through the
term HδΦext = ILδΦext. IL = Φ/L is the current flow around the loop [25], [70]

ΓΦ
αβ =

1

2e2L2
| ⟨β|ϕ |α⟩ |2SΦ(ωαβ), (2.73)

SΦ(ω) =
A2

Φ

ω
. (2.74)

Flux qubits have faster relaxation rate at low frequency due to the 1/ω dependence. How-
ever, this effect is not observed in fluxonium system, which can be explained by the large
inductance provided by the junction chain. For typical fluxonium parameters, the corre-
sponding relaxation rate can be smaller by a factor of 102 − 104 compared to flux qubits.
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Quasiparticle loss

Quasiparticle loss is also an important relaxation channel for superconducting circuits.
Quasiparticles are unpaired electrons and can affect qubit lifetime when they tunnel through
the junctions. In fluxonium system, the tunneling can happen at the small junction and the
junction chain. The corresponding relaxation rates are [71]

Γqp,SJJ
αβ =

8EJ

πℏ

√
2∆g

ℏωαβ
| ⟨β| sin(ϕ− ϕext

2
) |α⟩ |2xqp, (2.75)

Γqp,chain
αβ =

8EL

πℏ

√
2∆g

ℏωαβ
| ⟨β| ϕ

2
|α⟩ |2xqp, (2.76)

xqp =

(√
2πT/∆g

)
e−∆g/T . (2.77)

∆g is the superconductor energy gap. xqp is the normalized quasiparticle density. These
equations are based on two assumptions. First, the quasiparticle is in thermal equilibrium.
In reality, the observed quasiparticle density is higher than that corresponding to the en-
vironment temperature, which means the non-equilibrium quasiparticles is quite common.
Still, the above relations hold with some effective xqp and Teff [72], [73]. The second
assumption is that the qubit is in the high-frequency regime ωαβ ≫ δE, where δE is the
characteristic energy of a quasiparticle. In thermal equilibrium, δE ∼ T . For a low fre-
quency qubit, if we still use Eq. 2.75 and 2.76, the accurate expression of xqp can have
a dependence on frequency [71]. But the good new is that, when ωαβ ∼ T which is the
typical case for fluxonium qubit, the deviation of Eq. 2.77 is still acceptable. In order to
measure the quasiparticle density xqp, one can fit the T1 curve with double exponential for-
mula [74], measure T1 variations [75], [76], monitor the quantum jumps [77] or measure
the frequency jump of the charge-sensitive Cooper pair box [76], [78].

At half flux quanta ϕext = π, the parity of the operator in Eq. 2.75 leads to Γqp,SJJ
10 =

0. The quasiparticle loss is dominated by the tunneling event happened in the junction
chain. It has been reported that cosmic rays [76], high energy photons [79]–[81] and
strong microwave pulses [75], [77] can generate quasiparticles on the sample. The general
strategy of suppressing quasiparticle loss is to have good shielding and filtering. Infrared
filters such as Eccosorb filters are widely used to filter out the high energy photons in the
measurement line. It is believed that these photons (over 100 GHz) are a common source
in superconducting experiments and these filters need to be few centimeters long. One has
to make sure that the sample holder is well sealed and there are no apertures or slits on
the last few stage of shielding where the infrared filters are located. Otherwise the high
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energy photons can leak into the measurement line after the infrared filter through the slits
at the connectors. There are also some other techniques to mitigate quasiparticle loss such
as trapping quasiparticles with vortices[75], quasiparticle pumping[74], engineering the
superconducting gap and using normal metal to absorb quasiparticles [82]–[84].

2.5.2 Dephasing mechanism

The coherence time T2 is limited by T1 and the dephasing time Tϕ = Γϕ. By definition,

1

T2
=

1

2T1
+

1

Tϕ
. (2.78)

This indicates T2 should be always shorter than 2T1. Because T2 determines how long the
quantum information can survive in qubits, it is worth the efforts to suppress the dephasing
rate in order to push T2 to the 2T1 limit. Dephasing process is often modeled as the noise on
the qubit phase (or qubit frequency) [54], [62]. In terms of the noise spectral density, the
noise can be classified as white noise, 1/f noise, long-time correlated noise and telegraph
noise. The mathematical form of the noise spectral density determines the shape of the
decay curves measured in Ramsey or spin echo experiments. Most of the time, the decaying
envelope takes the form of e−t/Tϕ , which corresponds to a white noise. For other types of
noise, the decaying envelope can be more complicated and can be usually approximated as
e−(t/Tϕ)

2
. It worth noticing that the Gaussian type of decay does not necessarily indicate

non-white noise. Non-accurate π pulse in the spin echo sequence shown in Fig. 2.6 can also
lead to Gaussian decay envelope.

One common dephasing mechanism for flux-tunable qubits is flux noise. It is especially
important when the qubit is not at flux sweet spot. A fluctuation on the external flux
can be translated to qubit frequency fluctuation through the derivative with respect to the
external flux ∂ω/∂Φext of the spectrum. It is also possible that the flux noise can affect
the qubit through the second order effect where the frequency fluctuation depends on the
∂2ω/∂Φ2

ext. But it is not the dominate dephasing mechanism for recent qubit experiments
[50].

The white flux noise induced dephasing time has a quadratic dependence on ∂ω/∂Φ

Γϕ =

(
∂ω

∂Φext

)2 Swhite

2
. (2.79)

Swhite is a constant. For white noise, Ramsey and spin echo measurements will give the
same dephasing rate. It is reported that the flux noise spectral density has 1/f behavior
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[25], [70]. In this case, the spin echo decay envelope is Gaussian e−(Γϕt)
2

and the dephasing
rate is

Γecho
ϕ =

∂ω

∂Φext
S1/f

√
ln 2. (2.80)

S1/f is the 1/f noise spectral density strength. The decay envelope for Ramsey measurement
is more complicated in theory but Gaussian is still a good approximation [62]

ΓRamsey
ϕ ∝ ∂ω

∂Φext
S1/f . (2.81)

Because Ramsey measurement is sensitive to the noise at low frequency, or equivalently
speaking, the long-time scale frequency fluctuations. ΓRamsey under 1/f noise can be de-
pendent on the total measurement duration and it is faster than Γecho.

At flux sweet spot, ∂ω/∂Φext = 0, which means fluxonium can be protected against
flux noise at this point. Therefore fluxoniums are usually biased at the sweet spot for gate
operation and readout. But in order to do flux-activated gates, the external flux will be
tuned away and the flux noise need to be considered during this flux pulse [49], [85].

Similar to flux noise, offset charge noise has been the dominate dephasing channel
for charge qubits, because the qubit frequency is sensitive to offset charge ng [23]. The
invention of transmon solved this problem though a large capacitance. On the other hand,
fluxonium avoid the charge noise by shunting the circuit with a junction chain, such that
the offset charge can flow through the chain and will not accumulate on the metal pads
[24].

At flux sweet spot, thermal photon shot noise becomes an important dephasing mech-
anism. When the qubit is dispersively coupled to a resonator, the qubit frequency can be
shifted according to the resonator photon number as shown in Sec. 2.3. In thermal equilib-
rium, the photon number can fluctuate randomly and lead to qubit frequency fluctuation.
The dephasing rate of the 0− 1 transition due to these thermal photons is

Γϕ =
nthκχ

2
01

κ2 + χ2
01

. (2.82)

nth is the thermal photon number. κ is the resonator line width. χ01 is the dispersive shift
of the 0− 1 transition. If we fix κ, the larger χ01 is, the larger Γϕ will be. If we fix χ01, the
dephasing rate reaches maximum at κ = χ01. Because the parameters κ and χ01 are also
related to the readout fidelity. One need to be careful when optimizing these parameters in
order to keep a balance between a good readout fidelity and the thermal photon dephasing
rate.
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Another way to address this dephasing channel is to make the resonator colder. This
does not just mean that the resonator itself should be thermalized well. For example, the
3D copper cavity is directly mounted on the cold fingers. The copper body should be as
cold as the base plate. However, the measured thermal photon temperature is typically
higher than the base temperature. This is because the thermal photons mainly come from
the measurement line as explained in Appendix B.4. The thermal photon number can be
related with the effective temperature using the Bose-Einstein distribution

nth =
1

eℏωr/kBTeff − 1
. (2.83)

Similar dephasing mechanism can appear in a cavityless environment described in Sec. 2.6.
There is no cavity mode and dispersive coupling in this case. Instead, the thermal photons
can directly excite the high energy transitions that are strongly coupled to the transmis-
sion line and have large downward transition rates. The qubit absorbs a photon at a rate
Γ↑ = Γ↓e

−ℏω/kBTeff and decays back to the 0 − 1 manifold immediately due to the large
fluorescence rate. The emitted photon carries the qubit phase information and flies away.
Therefore the qubit loses its coherence during this process. Because the qubit can be ex-
cited by the thermal photon at 0 state or at 1 state depending on the environment, the
corresponding dephasing rate can be written as [86]

Γϕ,10 ∼
∑
i>1

(Γi0e
−ℏωi0/kBTeff + Γi1e

−ℏωi1/kBTeff ). (2.84)

2.6 Fluxonium in a Cavityless Environment

One fundamental challenge in quantum technology is to interface qubits with travelling
photons. This is essential in constructing quantum network where qubits can get entangled
remotely by exchanging photons. In this architecture, waveguide is the key component to
propagate microwave photons from one qubit to another with low loss [87]. One simple
case to study the interaction between the qubit and the photons in the waveguide is the
reflection setup where the qubit sits inside a waveguide with a closed end. In experiment,
we can replace the small pin of the cavity to a gigantic launcher to ensure free access of the
microwave from the transmission line to the space inside the box as shown in Fig. 2.7. The
port can be viewed as a broadband coaxial-to-waveguide adapter [41]. Therefore the box
does not behave like a single mode cavity and a continuous spectrum of modes can exist
in the box. The photons go into the box and bounce back into transmission line. Standing
waves are formed inside the box and the qubit can interact with the microwaves which do
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Figure 2.7: A fluxonium in a waveguide. (a) A spin inside a waveguide with a closed end.
Within certain frequency range, the photons can travel inside a waveguide and interacts
with the qubit. (b) A fluxonium device inside a copper waveguide. The two halves of the
waveguide are sealed with indium [not shown]. The size of the fluxonium in this picture
is exaggerated for better visibility. (c) The circuit diagram for a fluxonium capacitively
coupled to a transmission line. The blue part is the transmission line and the green part is
the fluxonium. The two parts are coupled with a capacitance Cc.

not have a node at the qubit position.
The circuit diagram is depicted in Fig. 2.7. The fluxonium circuit is directly coupled

to the transmission line where the incoming photon mode is ain and the outgoing photon
mode is aout. For clarification, we are going to consider a semi-classical model and treat the
fluxonium transition as a spin, instead of solving the full fluxonium spectrum [88].

The spin evolution in the presence of the input field can be described by the Hamiltonian

H =
ℏωq

2
σz + iℏ

√
Γr(ain + a†in)(σ+ − σ−). (2.85)

Γr is the radiative Purcell rate that quantifies how strong the spin is coupled to the trans-
mission line. Here we treat the photon field classically ain = αine

−iωdt, where αin is a real
number without loss of generality. In the rotating frame at ωd and with the Rotating Wave
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Figure 2.8: Optical image of a fluxonium inside a waveguide. In order to increase the
coupling between the fluxonium and the itinerant photons, a pair of couplers is designed
next to the fluxonium. The couplers are 3 mm long Al strips that are deposited with the
qubit within the same batch.

Approximation (RWA), we arrive at the textbook spin Hamiltonian in the presence of drive

HR = ℏ
δ

2
σz − ℏ

Ω

2
σy, (2.86)

where δ = ωq − ωd is the drive detuning and Ω = 2
√
Γrαin is the drive strength. It can

be noticed that the same Hamiltonian is used for driving a qubit inside a cavity. In both
cases, the driving term comes from the direct coupling between the qubit and the input
port. What is different in the waveguide setup is that the bulky launcher together with the
coupler design shown in Fig. 2.8 significantly increases the Purcell rate Γr.

At the same time, the spin is coupled to the outgoing field through the same Purcell rate.
This can be treated as an incoherent channel in the spin evolution. In general, the qubit
energy relaxation rate Γ1 = Γr + Γnr, where Γnr includes all the non-radiative channels
such as the dielectric loss, quasiparticle loss, etc. We can use master equation to model this
system.

dρt
dt

= − i

ℏ
[H, ρt] +D[

√
Γ1σ−](ρt) +D[

√
Γϕ

2
σz](ρt). (2.87)
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In the steady state where t→ ∞, the components of the Bloch vector are

x∞ = Γ1Γ2Ω/(Γ1(Γ
2
2 + δ2) + Γ2Ω

2), (2.88)

y∞ = Γ1δΩ/(Γ1(Γ
2
2 + δ2) + Γ2Ω

2), (2.89)

z∞ = −1 + Γ2Ω
2/(Γ1(Γ

2
2 + δ2) + Γ2Ω

2). (2.90)

This can be calculated using x∞ = ⟨σx⟩ = tr(ρtσx), y∞ = ⟨σy⟩ = tr(ρtσy), and z∞ = ⟨σz⟩ =
tr(ρtσz).

The outgoing field aout can be calculated in terms of the incoming field and the qubit
operator from the input-output formalism [20] aout = ain − √

Γrσ−. In circuit language,
this is equivalent to the boundary condition of the incoming wave and the outgoing wave
at the end of a transmission line with a lumped circuit Vout + Vin = V . The outgoing field
can also be considered as the result of the interference between the directly reflected field
that does not interact with the qubit and the field radiated by the qubit. In experiment,
one can measure the reflection coefficient r = ⟨aout⟩/⟨ain⟩. The expectation values for the
field operators are the oscillation amplitude that we introduced earlier ⟨ain(out)⟩ = αin(out).
Even though αin is a real number in our convention, αout can be complex. Substituting
Eq. 2.88−Eq. 2.90 into ⟨σ−⟩ = (⟨σx⟩ − i⟨σy⟩)/2 and assuming Γr ≫ Γnr,Γϕ, the reflection
coefficient is

r = 1− 2
1 + 2iδ/Γr

1 + 4(δ/Γr)2 + 2(Ω/Γr)2
. (2.91)

This model can be applied to the high energy transitions (e.g. 0−3) of a fluxonium that are
strongly coupled to the continuum of photon states. In this case, the spin refers to the two
levels of that transition instead of the computational states in the usual context. The total
population p0 on these two levels adds a contrast factor in Eq. 2.91

r = 1− 2p0
1 + 2iδ/Γr

1 + 4(δ/Γr)2 + 2(Ω/Γr)2
. (2.92)

This can serve as a novel readout scheme to measure fluxonium qubit population. The
experiment implementations are presented in Sec. 3.1.2.
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Chapter 3

Experiments on Readout and
Initialization

The quantum error correction (QEC) codes on superconducting qubits require the qubit
readout need to be single-shot, high-fidelity, and fast [4], [89]–[91]. For whatever readout
scheme, the qubit signal is typically rather weak and needs multi-stage amplifications in
order to fight against the thermal noise picked up during the trip from the base plate to
the room temperature digitizer. Without a quantum amplifier [92]–[94] at the base tem-
perature, a single experiment needs to be repeated thousands of times and the measured
signal needs to be averaged over all the realizations to get a better signal-to-noise ratio
(SNR). Therefore this type of measurement gives the expectation value (e.g. tr(ρσz)) over
a ensemble and it is impossible to identify whether there is an error among one of the real-
izations. According to Copenhagen interpretation of quantum mechanics, the wavefunction
collapses instantaneously after a projective measurement and the measurement outcome
should be the eigenvalues of the measurement operator. In QEC codes like surface code,
the eigenvalues should be obtained in a single run instead of averaging over all the realiza-
tions. This is called single-shot measurement. The readout fidelity depends on the SNR the
single-shot histogram and whether extra transitions are induced during the readout pro-
cess. This puts a constraint on the readout pulse strength and duration. When one qubit is
being measured, other qubits are still suffering from decoherence. Hence the readout pulse
should be as short as possible. On the state-of-art quantum processors, the readout pulse is
much longer than the gate time. High-fidelity readout with short pulses have been reported
in a few demonstrations, indicating the current quantum processors can have better readout
performance potentially [59].

In this chapter, the main topic will be on qubit readout and introduce relevant concepts.
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The last section is focused on initialization schemes for fluxonium qubits. On one hand, QEC
requires qubit reset during the algorithm and fluxonium qubits have long T1. On the other
hand, fluxonium qubits have low frequency, resulting in significant thermal populations.
The characteristic frequency of 20 mK is 417 MHz, corresponding to a thermal population
of P|1⟩ = 0.27. Therefore high-fidelity fast initialization techniques are quite beneficial in
fluxonium experiments and several initialization schemes are discussed in this section.

3.1 Readout schemes

Fluxonium qubits can be measured with or without cavity. When the qubit coupled to the
cavity, we can perform dispersive readout by measuring the cavity transmission. The cavity
mode frequency depends on the qubit state and the transmitted signal can change in phase
and amplitude accordingly. When the fluxonium is strongly coupled to the transmission line
using a waveguide, we can perform fluorescence readout taking advantage of the higher
transitions. We used 0 − 3 transition as the fluorescence transition and 0 − 1 transition as
the qubit. The change of qubit population is manifested in the reflection coefficient.

In both cases, the outgoing signal is down-converted and recorded by the digitizer.
We performed heterodyne detection in which both quadratures, named I and Q, of the
oscillating signal are simultaneously measured. The two quadratures correspond to the real
and the imaginary part of the complex amplitude. It is a common technology in microwave
measurements. The heterodyne setups are depicted in Sec. B.4.

3.1.1 Dispersive Readout

As introduced in Sec. 2.3, dispersive readout is the most common way to readout a qubit.
The qubit can be detuned away from the cavity frequency for protection against the Purcell
effect while dispersively coupled to the cavity mode for readout. It has been demonstrated
that the cavity frequency is dependent on the qubit state in the JC model. How does give us
the state-dependent IQ signal in the experiment? We need to first understand how a single
cavity respond to external drives.

In general, the cavity’s response is measured in the form of transmission or reflection.
Depending on how the cavity is connected to the external circuits, the response can be dif-
ferent. For a 3D cavity, the setup can either be one-port (reflection) or two-port (transmis-
sion). In 2D architecture, the widely adopted hanger geometry is another type of reflection
setup. Here in this thesis, we focus on the 3D architecture.
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Figure 3.1: Two-port cavity transmission. (a) Transmission coefficient amplitude |S21| of
a cavity at 7 GHz calculated from Eq. 3.2. κ1 = 1 MHz, κ2 = 5 MHz, κL = 0.5 MHz. The
parameters are close to the case for a copper cavity in the experiment. (b) Transmission
coefficient on the complex plane (IQ plane) at different drive frequency. The trace forms a
circle. The points with large detuning are close to the origin. (c) Cavity transmission when
dispersively coupled to a qubit. χ = 6 MHz. The blue peak corresponds to the qubit at |0⟩
state. The red peak corresponds to the qubit at |1⟩ state. (d) The readout signal on the IQ
plane when reading at the frequency indicated by the light green dashed line in (c). The
blue and the red blobs correspond to the qubit at |0⟩ and |1⟩ state. The angle spanned by
the two blobs α ≈ arctanχ/κtot when the readout frequency is at the middle of the two
peaks and α is small.
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The S parameters are defined as the transmission and reflection coefficients for a multi-
port system. For a 3D cavity, the reflection S11 and the transmission S21 are

S11(ω) =
κ1 − κ2 − κL + 2i(ω − ωr)

κ1 + κ2 + κL − 2i(ω − ωr)
(3.1)

S21(ω) =
2
√
κ1κ2

κ1 + κ2 + κL − 2i(ω − ωr)
(3.2)

ωr is the cavity frequency. κ1 (κ2) is the coupling rate to port 1 (2), corresponding to the
external quality factor Qext

i = ωr/κi. κL is the cavity internal loss rate, corresponding to
the internal quality factor Qin = ωr/κL. One may notice that the phase definitions can be
different in the literature. For example, the definition can be Sij → −S∗

ij in some other
references. κtot = κ1 + κ2 + κL is the total damping rate. Q = ωr/κtot is the cavity quality
factor. We use Eq. 3.1 to measure the external quality factors for the multi-port cavity and
use Eq. 3.2 to fit the total damping rate.

As shown in Fig. 3.1, the transmission amplitude reaches maximum at the resonance
frequency. The amplitude square has a Lorentzian shape. On the IQ plane, the transmission
data at different drive frequency fall on a circle. When it is far detuned, the transmission
is at the origin. When it is on resonance, the transmission is at the other end of the circle
on the imaginary axis. If the cavity is coupled to a qubit, there will be a frequency shift
depending on the state of the qubit. For example in Fig. 3.1c, if the qubit is at ground state,
the transmission is the blue curve. If the qubit is at the excited state, the transmission is
the red curve. If the population is equally distributed on the two states, the transmission
would be the summation of two complex transmission numbers weighted on the population
on each state. This could be a way to measure qubit population in principle. In practice,
the measurement line itself can have non-trivial frequency-dependent transmission due to
attenuation, reflection or amplification. The height of the Lorentzian can not be directly
converted to population. A better way to measure population would be the single-shot
readout (Sec. 3.1.1).

If the readout frequency is set the position indicated by the green dashed line Fig. 3.1c,
the S21 in the two cases correspond to the position of the two blobs on the IQ plane in
Fig. 3.1d. When χ ≪ κtot, the angle spanned by the two blobs α ≈ arctanχ/κtot. In the
experiment, we usually directly work with the transmitted signal instead of S21 which is
the ratio between the input and the output. We can assume that the positions of the two
blobs on the IQ plane of the signal are bk = xk + iyk and k = 0, 1 and the populations are
p0, p1. The averaged signal would be m = p0b0 + p1b1 and p0 + p1 = 1. When the qubit
population changes, the point m moves on the line connected by the two blobs. Therefore
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its quadratures are linearly dependent on the qubit population. We can rewrite the the
population with the expectation value of the Pauli matrix p0 = (⟨σI⟩ + ⟨σz⟩)/2 and p1 =

(⟨σI⟩− ⟨σz⟩)/2. Then we have m = βI⟨σI⟩+ βZ⟨σz⟩, where βI = 1/2 and βZ = (p0 − p1)/2.
From this formula, we can see that the averaged signal m is actually the expectation value
of the measurement operator

M = βIσI + βZσz, (3.3)

and m = ⟨M⟩ = tr(ρM) [59].

Joint Readout

When a cavity is coupled to two qubits simultaneously, we perform joint readout to the two-
qubit system. Assuming the dispersive shifts are χA and χB for the two qubits, the shifted
cavity frequencies are

ω00
r = ωr −

χA

2
− χB

2
, (3.4)

ω01
r = ωr −

χA

2
+
χB

2
, (3.5)

ω10
r = ωr +

χA

2
− χB

2
, (3.6)

ω11
r = ωr +

χA

2
+
χB

2
. (3.7)

There are four blobs on the IQ plane, corresponding to the four computational states |00⟩,
|01⟩, |10⟩, and |11⟩ as demonstrated in Fig. 3.2. One need to avoid the case where χA±χB ∼
0, as this will result in overlap of two blobs and making the two states indistinguishable.
The optimal situation would be χA ∼ ±2χB (assuming κ is large) and the four blobs get
maximum separation.

The measurement operator is

M = βIIσI ⊗ σI + βIZσI ⊗ σz + βZIσz ⊗ σI + βZZσz ⊗ σz. (3.8)

Because the averaged signal now depends on the population of the four blobs, its trace can
be more complicated. It is not limited on a straight line but can be any where in the region
spanned by the four blobs. For example, when one measures the T1 of qubit A by looking
at one quadrature of the signal, the fitted decay rate can be inaccurate if qubit B is also
decaying at the same time. To solve this problem, one can apply a π/2 pulse on qubit B to
equalize the population at the |0⟩ state and |1⟩ state. This only works when qubit B is not
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Figure 3.2: Joint readout for two qubits in the same cavity. (a) |S21| of a cavity in the
case for four computational states. The simulation parameters are the same as those in
Fig. 3.1. χA = 4 MHz, χB = 2 MHz. (b) The readout signal when reading at the frequency
indicated by the light green dashed line in (a). There are four different blobs corresponding
to the four computational states. The population of both qubits can affect the averaged
signal.

at a coherent superposition of |0⟩ and |1⟩. That is, its density matrix can be described by
ρB = (σI + (2pB0 − 1)σz)/2. Otherwise, or if the π/2 pulse is not accurate, the populations
may not equal.

Single-shot Readout

When the readout SNR is good enough, one can distinguish qubit state in a single acquisi-
tion without averaging over many traces. In this case, we are able to perform single-shot
readout which is essential for quantum error correction codes. Single-shot readout has been
demonstrated and well-studied for dispersive readout. As shown in Fig. 3.1, depending on
the qubit state, the cavity transmission can be at either of the two blobs on the IQ plane.
At low power, the probability of the data point falling on the positions around the blob
follows a Gaussian distribution. The width of the Gaussian is determined by the quantum-
limited noise from the uncertainty principle after amplification and the added noise from
the components on the readout line. Therefore the criteria to distinguish the two blobs is
the distance between the blobs d should be larger than the width of the blobs. The smaller
overlap the blobs have, the higher readout fidelity one can achieve.
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Figure 3.3: Single-shot histograms. (a) Single-shot data taken from the experiment. The
four blobs correspond to the four computational states and have the same width. There
are some data points fallen between the blobs, which are caused by non-QNDness during
readout. (b) Fitted histograms. The slight difference between the fit and the data comes
from the readout non-QNDness.
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Single-shot readout provides a simple way to measure the qubit population in CQED.
One can make a histogram of the single-shot data and fit it to multiple Gaussian functions
as shown in Fig. 3.3. The blobs have the same width and the heights are proportional to the
population at corresponding state. Another way is to separate the IQ into different regions
and determine the qubit state by the region where data point falls into. For example,
one can use a linear support vector machine which divides the plane with perpendicular
bisectors of the two blobs. Or one can draw a circle around each blob and discard the
points outside the circle as demonstrated in Fig. 3.13. After setting up the regions, one can
simply count the number of points in each region and the ratio give the population.

In practice, the non-QND effect can be observed in fluxonium single-shot experiments.
This can result in blob distortion as the population can change during the readout process.
Some of the data points can migrate to other blobs due to the cavity photons and some
other points get ’captured’ midway and fall on the lines connecting two blobs. This effect
will be discussed in Sec. 3.2.

3.1.2 Fluorescence readout

Another way to readout the qubit is through the high energy transition fluorescence, which
is also called shelving readout. As introduced in Sec. 2.6, we mount the device chip inside
a rectangular waveguide with a specially designed single input/output port. Above the
waveguide cut-off frequency, given by its dimensions, the photons can enter or leave the
box freely and interact with the fluxonium strongly. As shown in Fig. 3.4d, the port coupling
is near unity in a few-GHz band. Below the cut-off, the port coupling drops rapidly with
frequency. It is designed that the 0−3 transition is within the passband to emit fluorescence
and other transitions are protected by the cut-off frequency. Therefore, the radiative lifetime
of state |1⟩ can be orders of magnitude longer than that of state |3⟩, even though transitions
|0⟩-|1⟩ and |0⟩-|3⟩ have comparable dipoles – matrix elements of the Cooper pair number
operator −i∂ϕ. Moreover, radiative decays |3⟩ → |1⟩ and |3⟩ → |2⟩ → |1⟩ are inhibited by the
parity selection rule and the weak port coupling, respectively. As a result, resonant driving
of |0⟩-|3⟩ transition would continuously generate fluorescence if and only if the atom (and
hence the qubit) is initially in state |0⟩. Despite a periodic transit of population through the
non-computational state |3⟩, the atom rapidly relaxes back to state |0⟩ on switching off the
drive. Likewise, the atom starting in state |1⟩ remains unperturbed by the far off-resonant
readout drive (fluorescence is absent or “shelved”).

We begin our experiment by probing the readout transition (Fig. 3.5a,b). The measured
reflection amplitude r as a function of drive frequency ω and amplitude Ω fits well to the
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Figure 3.4: Measured port coupling (solid black) vs. frequency and the calculated
transition dipoles (colored stars). Note the absence of resonant modes in the adapter in
the entire 0− 8 GHz frequency range. The |0⟩ − |3⟩ transition is within the passband of the
waveguide. Other transitions such as |0⟩ − |1⟩ , |1⟩ − |2⟩ , |2⟩ − |3⟩ are protected against the
Purcell effect by the high waveguide cutoff frequency.

Eq. 2.92 model. Only four adjustable parameters are used in the global fit: ω03 = 2π ×
6.544 GHz, Γ = 2π×1.74 MHz, the thermal equilibrium ground state population pth

0 = 0.78,
and the scaling factor converting the value of Ω to the RF-source amplitude. We integrate
the reflection signal during a time τm = 0.5 µs after a delay τw = 0.5 µs. The wait time is
chosen so that it is much longer than the characteristic emission time 1/Γ = 91 ns but much
shorter than the time scale of non-radiative processes in the system. As a result the atom
is in the driven steady state while fluorescence is being integrated. At low power, Ω ≪ Γ,
the reflection amplitude r as a function of frequency becomes a circle in the parametric
IQ-plot, bounded by the values Re[r] = 1 for |ω−ω03| ≫ Γ and Re[r] = 1− 2pth0 at ω = ω03.
As stronger driving saturates the |0⟩-|3⟩ transition, the circle deforms into an ellipse and
progressively shrinks into a point at r = 1 for Ω ≫ Γ. This good agreement between
spectroscopy data and the Eq. 2.92 model indicates that transition |0⟩-|3⟩ is coupled to
itinerant radiation with a nearly unit efficiency, similarly to previous works on artificial
two-level atoms.

The characterization presented in Fig. 3.5a,b provides absolute calibration of the mea-
surement records in terms of the ground state population p0. This is in regard with standard
superconducting qubit readout based on the dispersive interaction with a far-detuned cavity,
where the measurement records are only known up to a scaling factor to the qubit popula-
tion and have to be independently calibrated. In order to account for small thermal fluctu-
ations over the course of the experiment, we repeated the previous calibration over 5 days.
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We find an average thermal equilibrium value of pth
0 = 0.76 ± 0.026, which corresponds to

the atom being at thermal equilibrium with the effective temperature T = 45±5 mK, which
is indeed commonly encountered in superconducting qubits. In what follows, we operate
the readout at the optimal power/frequency settings (Fig. 3.5a – black star) where the re-
flection amplitude becomes a real positive number between zero and unity, with p0 = 1− r.

The protocol for time-domain qubit manipulations matches that of traditional circuit
quantum electrodynamics. For example, applying a drive at the qubit frequency ω01 =

2π × 1.15 GHz prior to the readout pulse results in Rabi oscillations of p0 as a function of
drive duration (Fig. 3.5c - left panel). Operating the circuit slightly off the sweet-spot at
ϕext/2π = 0.507, i.e. weakly breaking the parity selection rule, we could produce Rabi os-
cillations between states |0⟩ and |2⟩ by compensating the vanishing transition dipole with a
strong drive at frequency ω02 = 2π×3.88 GHz. Importantly, the non-zero decay rates of even
transitions resulting from breaking the parity selection rule remain several orders of magni-
tude smaller than other decoherence processes. The reflection coefficient measured during
Rabi oscillations between |0⟩ and |1⟩ or |2⟩ yields equilibrium ratios pth

1 /p
th
0 = 0.329 and

pth
2 /p

th
0 = 0.007 independently of the absolute calibration of pth

0 . Assuming pth
0 +pth

1 +pth
2 = 1,

we obtain the equilibrium value of pth
0 = 0.75, in close agreement with the spectroscopic

calibration.
The energy relaxation signal following the 0−1 swap is exponential with a characteristic

decay time T1 = 52 µs, which is nearly three orders of magnitude longer than the radiative
decay time of the |3⟩-state (Fig. 3.5c - right panel). Yet, given the highly suppressed port
coupling at the qubit frequency, such value of T1 is still too short to be accounted for by
radiative decay. In fact, the qubit decay is likely due to the dielectric loss in the circuit’s
antenna capacitance with an effective quality factor Qdiel = 5 × 105. The spin-echo signal
decay is also exponential with a characteristic coherence time T2 = 52 µs. The additional
dephasing Γφ = 1/T2 − 1/2T1 is likely due to measurement induced dephasing caused by
thermal photons at readout frequency. In fact, the rate of thermal jumps |0⟩ → |3⟩ can
be linked to the effective photon temperature T at the microwave port via the detailed
balance equation Γφ = Γexp(−ℏω03/kBT ). Plugging in the same value T = 45 ± 5 mK
corresponding to the equilibrium ground state population leads to a close agreement with
the measured dephasing rate. Such an error process could be exponentially suppressed in
the future by a moderate improvement of circuit thermalization and increasing the readout
transition frequency.
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Figure 3.5: Conditional fluorescence readout. (a) Complex plane representation and (b)
real part of the reflection coefficient r as a function of readout drive frequency ω at various
powers represented by the |0⟩-|3⟩ transition Rabi frequency Ω (inset). The experimental
data (colored dots) are fitted by the theory of Eq. 2.92 (lines) with Γ = 2π × 1.74 MHz
and p0 = 0.78 due to thermal occupation of excited states. In the limit Ω → 0, the data
in Fig. 2a becomes a circle with a radius p0 (gray circle, p0 = 1 and dashed circle, p0 =
0.78). The optimal readout settings are highlighted by the black star and arrow (see text).
(c) Rabi oscillations (left panel), energy relaxation (right panel, yellow circles), and spin-
echo coherence decay (green triangles) measured using conditional fluorescence readout at
optimal settings. Fitting to exponential decay yields (coincidentally) T1 = T2 = 52 µs.
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3.2 non-QNDness

Quantum non-demolition (QND) measurement means that the quantum state is read out
without being ’destroyed’ in contrast with the destructive measurement. A classical example
for destructive measurement is when detecting a flying photon with a photon-counter. The
photon is absorbed and destroyed at the detector. On the contrary, a strong QND measure-
ment projects the qubit state to the eigenstates of the measurement operator and another
immediate QND measurement after that will generate the same measurement result. Ide-
ally, the readout should be single-shot and QND to reach high fidelity. The readout fidelity
is

F = 1− P (e|g)− P (g|e), (3.9)

where P (e|g) is the probability of measuring the qubit to be at the excited state when
preparing the qubit at the ground state assuming perfect preparation and vice versa for
P (g|e). Ideally, it is related to the overlap of the blobs in the single-shot histogram. In-
tuitively, a larger readout power can lead to a greater separation of the blobs and thus
smaller overlap. However, a large photon number in the resonator can induce extra transi-
tion rates between qubit levels through measurement-induced qubit state mixing [95], [96]
and non-RWA coupling [97]. This unwanted dynamics adds an additional error rate to the
probabilities of P (x|y). There is an trade-off between the overlap error and the non-QND
error when choosing the readout power. On the other hand, another important property of a
readout pulse is the integration time. The trade-off should also considered when determine
the integration time. On a multi-qubit quantum processor, a longer integration time means
the other qubits that are not been measured are more susceptible to the decoherence error
while the measured qubit is suffering from the non-QND error. A shorter integration time,
however, will cause wider spread of the blob (the integration process can be considered as
another type of averaging but in a single-shot manner). This can be compensate with larger
power. Therefore one need to optimize the power and integration time simultaneously to
minimize the summation of the effects from overlap error, non-QND error, and decoherence
error during the readout, because they can all contribute to the logical error in a QEC code.

3.2.1 non-QNDness for dispersive readout

The non-QND process is observed by measuring the qubit population after a readout pulse
as demonstrated in Fig. 3.6 for a two-qubit device. The populations of four computational
states are changed by the first readout pulse. The measurement-induced transitions move
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Figure 3.6: Non-QND process of the cavity readout pulse. Non-QNDness is usually ob-
served in two-fluxonium joint readout experiment at large power. A pulse at the readout
frequency and with the same amplitude and varying duration is applied to the qubits fol-
lowed by a joint single-shot readout. The qubit populations tends to be moved to the excited
states after applying a long cavity pulse. The readout pulse duration is 6 µs in this experi-
ment.

the population to the |eg⟩ state. The system is prepared with π/2 pulses on both qubits.
Because the second readout pulse integration time is 6 µs, it can be seen that already a
significant non-QND effect at the beginning of the traces (t = 0).

In our two-qubit experiment, the qubit population is measured by fitting the single-shot
histogram acquired with many repetitions. In this case, one can compensate the non-QND
error on the population measurement empirically. We assume the measured populations p′ij
are linked to populations pij at the beginning of the readout by a linear transformation Me,

p′gg
p′ge
p′eg
p′ee

 =Me


pgg

pge

peg

pee

 . (3.10)
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The error matrix Me has 6 parameters that account for the incorrect mapping |0⟩ → |1⟩
and |1⟩ → |0⟩ for both qubits and entangling transitions between the two qubits during the
readout. The error matrix reads

Me =


1− a1 − b1 b2 a2 0

b1 1− a1 − b2 − c1 c2 a2

a1 c1 1− a2 − b1 − c2 b2

0 a1 b1 1− a2 − b2

 . (3.11)

Among the 6 parameters, a1 and a2 represent incorrect mappings |0⟩A → |1⟩A and |1⟩A →
|0⟩A. b1 and b2 represent incorrect mappings |0⟩A → |1⟩B and |1⟩B → |0⟩A. c1 and c2

describe the readout cross-talk where the two qubits swap excitations. In addition to these
six parameters, the initial populations for the two qubits p0gA, p0gB are also two unknown
variables that need to be determined. To calibrate the eight parameters, we perform Rabi
measurements on each qubits while the other qubit is left in the |+⟩ state, as shown in
Fig. 3.7. Assuming that the system starts with the populations

pgg

pge

peg

pee

 =


p0gAp

0
gB

p0gA(1− p0gB)

(1− p0gA)p
0
gB

(1− p0gA)(1− p0gB)

 , (3.12)

one can predict the Rabi oscillation amplitudes and offsets in the two Rabi measurements
of Fig. 3.7 as a function of the 6 parameters of the error matrix plus 2 parameters for the
qubit initial population. In each Rabi measurement, there are 4 equations for the amplitude
and 4 equations for the oscillation offset. Even though there are 16 equations in total, 8 of
them are redundant in this model. Therefore the number of equations matches the number
of unknown variables. Me can be deduced by solving the 8 equations. The corrected
populations are obtained by applying M−1

e to the measured populations (p′gg, p
′
ge, p

′
eg, p

′
ee)

T .
With this calibration technique, the populations for both qubits oscillates around 0.5 and
only the rotated qubit displays oscillations during the Rabi experiment.

Alternatively, one can include the information in the readout non-QNDness measure-
ment of Fig. 3.6 and add more parameters in the error matrix to match the number of
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a b

c d

Figure 3.7: Rabi oscillations with and without readout errors correction. Oscillations
of qubit A (a, b) and qubit B (c, d). Before correction (left), the Rabi oscillations are not
centered around 0.5 because of qubit transitions occuring during the readout. We also
correct for readout cross-talk: qubit B readout signal oscillates when qubit A is rotated
before correction, and vice-versa.



52

constraints. For example, we can come up with a 10-parameter matrix

Me =


1− a1 − b1 − d1 b2 a2 d2

b1 + e 1− a1 − b2 − c1 c2 a2

a1 − e c1 + f 1− a2 − b1 − c2 b2

d1 a1 − f b1 − f 1− a2 − b2 − d2

 . (3.13)

In this matrix, d1 and d2 describe the bSWAP-type of readout cross-talk connecting state
|00⟩ and |11⟩, in contrast with the SWAP-type parameters c1 and c2. The parameter e (f)
describes the population that falls into the blob of |01⟩ (|10⟩) when immigrating from blob
|00⟩ (|01⟩) to blob |10⟩ (|11⟩). The measurement of Fig. 3.6 gives the fixed point P⃗ ∗ of the
non-QND effect

P⃗ ∗ =


p∗gg
p∗ge
p∗eg
p∗ee

 =MeP⃗
∗. (3.14)

For this model, 9 constraints in the Rabi measurements are independent. Plus the 3 inde-
pendent equations in the fixed point definition Eq. 3.14, the 12 constraints can be solved for
the 12 unknow variables. Because of the extra information from the non-QNDness measure-
ment in this model, the correction on the population is more robust than the 6-parameter
matrix. It needs to be emphasized that these models are purely empirical because the
exact dynamics for the non-QNDness in fluxonium-cavity system are not fully understood
yet. More theoretical efforts are needed to investigate the accurate physical picture in the
presence of cavity photons.

3.2.2 non-QNDness for fluorescence readout

The non-QND effect also exists in the conditional fluorescence measurement, which is un-
derstood better than the fluxonium dispersive readout. To test the readout QNDness, we
drive the |0⟩-|3⟩ transition for a duration τ ≫ 1/Γ, pause for a brief period for state |3⟩ to re-
lax, swap the state of interest with state |0⟩, and perform the readout (Fig. 3.8a - top panel).
As a result, we acquire the population transients p0(t), p1(t), and p2(t) of states |0⟩, |1⟩, and
|3⟩, respectively, during the readout. The fidelity of this population measurement is limited
by the swap gate fidelities, which is above 99% for |0⟩−|1⟩ and above 90% for |0⟩−|2⟩. The
p0(t)-data indicates a gradual leakage of population outside the cycling manifold {|0⟩, |3⟩}
on a characteristic time scale τcyc = 9.6 µs. Importantly, the leakage involves only states |1⟩
and |2⟩ as the data satisfies p0+p1+p2 = 1 within the measurement uncertainty (Fig. 3.8a -
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bottom panel). The average number of fluorescence cycles Ncyc = Γ× τcyc ≈ 105 quantifies
the deviation of our readout from ideal QND behavior.

The finite fluorescence lifetime is expected in presence of non-radiative transitions out-
side the cycling manifold. Additional information about energy relaxation in our circuit was
obtained by measuring populations of states |0⟩, |1⟩, and |2⟩ as a function of time following
the |0⟩-|2⟩ swap (Fig. 3.8b). Combining the two data sets represented on Fig. 3.8a and b,
we constructed a relaxation model based on two additional decay mechanisms, dielectric
loss and quasiparticle tunneling across the weak junction. Indeed, such model adequately
fits the six experimental curves with only three adjustable parameters: the dielectric loss
quality factor Qdiel = 5 × 105, previously introduced to explain the |1⟩ → |0⟩ decay, the
dimensionless quasiparticle density xqp = 10−6, and a fudge-factor of 2.5 in front of the
|3⟩ → |2⟩ decay rate. The presence of additional decay for this precise transition could be
due to a nearly resonant two-level system [66]. From this model we conclude that fluores-
cence lifetime originates from two error processes. A smaller contribution comes from the
direct decay |3⟩ → |1⟩ with a characteristic time 36 µs due to quasiparticle tunneling. Such
process may break the parity selection rule for ϕext ̸= 0, a prediction that has not been tested
so far. The dominant error though comes from the decay |3⟩ → |2⟩ with a characteristic time
of 3.6 µs due to dielectric loss in the fluxonium capacitance. Therefore, improving our fabri-
cation procedures will likely increase the fluorescence lifetime and hence the QND-fidelity.
Alternatively, with a modified choice of circuit parameters, one can increase the frequency
of |1⟩-|2⟩ transition and use it for cycling, in which case the fluorescence lifetime would be
limited by the qubit T1.

3.3 Noise and Quantum Limited Amplifiers

3.3.1 Added Noise

The non-linearity of a Josephson junction makes it inherently an core component to con-
struct amplifiers that are essential for detecting weak microwave signals of qubit systems.
Over decades, many different amplifiers are invented with Josephson junctions, includ-
ing the Josephson Parametric Amplifier (JPA), the Josephson Parametric Converter (JPC),
Josephson bifurcation amplifier (JBA), the Josephson Traveling Wave Parametric Amplifier
(JTWPA), etc. In this section, the basic principle of JPA will be explained as a simple exam-
ple among all these amplifiers. After that, we are going to compare it with the JTWPA that
we used in our experiments. JPA and JTWPA can be used phase insensitive amplifiers (i.e.
phase preserving amplifiers) with equal amplification on both quadratures of the signal in
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Figure 3.8: Transient dynamics of fluorescence. (a) Time-domain evolution of popula-
tions p0 (down blue triangles), p1 (up red triangles), and p2 (yellow squares) induced by
cycling of the readout transition. Note that p0 decays approximately exponentially in time
with a characteristic time scale τcyc = 9.6 µs, after which the population is transfered from
state |0⟩ to states |1⟩ and |2⟩. The black circles indicate p0 + p1 + p2 and the error bars
represent the standard deviation coming from the repetition of the measurements over two
days. (b) Free evolution of populations starting predominantly from state |2⟩. The data in
both (a) and (b) is adequately explained by an optical pumping model (solid lines) (see
text) where the dominant error mechanism is a non-radiative decay due to dielectric loss.
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contrast with the phase sensitive amplifier which only amplifies one quadrature.
Before introducing JPA, we need to first understand why we need Josephson-junction-

based amplifiers. The general goal of any amplifiers is to fight against noise and extract
weak signals but one also need to realize that the noise at the input of the amplifier gets
magnified together with the signal. Starting from the photons in the cavity, the noise already
exists from Heisenberg uncertainty principle [98]. The electric field of a single-mode signal
can be written as

E(t) =
1

2
(ae−iωt + a†eiωt). (3.15)

Its variance ⟨∆E2⟩ = ⟨|∆a|2⟩/2, where ⟨|∆a|2⟩ = ⟨|a|2⟩ − |⟨a⟩|2 is the symmetric variance
of a and |a|2 = (aa† + a†a)/2. The uncertainty principle puts an constraint on the variance
⟨|∆a|2⟩ ≥ 1/2. The lower bound is the half-quantum of the vacuum noise. When it is
reached, the noise is quantum limited.

The attenuators and the amplifiers on the measurement line not only modify the noise
at the input but also add extra noise [99]. Assuming the noise at the input is Nin in terms
of the photon number, the noise at the output is Nout = G(Nin + Nadded). Nadd is the
added noise and G is the gain of the component. G > 1 for an amplifier and G < 1 for an
attenuator. Because the signal also gets modified by the same factor Sout = GSin, the SNR
at the output is

SNRout =
Sout
Nout

=
SNRin

1 +Nadded/Nin
. (3.16)

Therefore, any components, including amplifiers, can only degrade the SNR due to the
inevitable added noise. This may sound counter-intuitive and does not mean we should not
put amplifiers on the measurement line. To understand this paradox, we can first look at
the case for the attenuator. The added noise is

Nadded =

(
1

G
− 1

)
NT (3.17)

and NT is the thermal photon number

NT =
1

eℏω/kBT − 1
. (3.18)

T is the physical temperature of the attenuator and give rise to the noise through Planck’s
blackbody radiation into the line. The prefactor in front of NT in Eq. 3.17 is crucial to make
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the model self-consistent. Without this factor, one can imagine that by connecting a chain
of 0 dB attenuators at room temperature, the noise amplitude can be increased to infinity,
which is obviously unphysical. Using Eq. 3.17, it can be checked that two consecutive
attenuators with the same temperature T and loss factor L = 1/G are equivalent to one
attenuator with temperature T and loss factor L2.

The typical readout frequency in our experiment is 7.5 GHz, corresponding to a temper-
ature of 0.36 K. The thermal photon numbers at different stages of the dilution refrigerator
are listed in Table 3.1. The noise is rather small compared to the quantum noise of the pho-
ton in the cavity but starts to become significant at the pulse tube plate (3 K). Imagine there
is a loss as small as 3 dB, the prefactor 1/G− 1 ≈ 1, indicating an added noise equalling to
the thermal noise will be added to the input noise, which is already a significant amount.
From Eq. 3.16, it is straightforward that the ratio Nadded/Nin determines how much SNR is
reduced. Now we can see why amplifiers are necessary. In fact, the strategy is to increase
Nin and Sin simultaneously at the cost of a small portion of SNR, such that the SNR be-
comes resilient to the Nadded afterwards because of the small Nadded/Nin ratio. Otherwise,
the weak qubit signal on the order of 10 photons coming out from the cavity can be easily
buried into the thermal noise due to a small loss on the line. Due to the limit of gain on
a single amplifier, multiple amplifiers at different stages are required to transmit the signal
from the base plate inside the fridge all the way up to the room temperature acquisition
setup.

T 14 mK 80 mK 0.78 K 3 K 53 K 300 K
NT 7e-12 1e-2 1.7 7.8 147 833

Table 3.1: Thermal photon noise at different stages. Photon numbers are calculated
from Eq. 3.18 at 7.5 GHz which is the typical readout frequency.

As we mentioned earlier, there is no free lunch in nature. The amplifier itself is always
accompanied by an added noise. The Haus-Caves theorem puts a lower bound on the phase
insensitive amplifier’s added noise that is required by quantum mechanics

Namplifier
added ≥ 1

2

(
1− 1

G

)
. (3.19)

The amplifier close to the lower bound is called the quantum limited amplifier. When the
gain G ≫ 1, the amplifier adds at least half of a photon noise to the signal. Generally
speaking, the added noise is due to the uncontrolled degrees of freedoms. the added noise
can be introduced in the idler mode [100]. One can define an equivalent noise temperature
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Te for an amplifier such that

Namplifier
added =

1

eℏω/kBTe − 1
. (3.20)

In the high temperature limit kBTe ≫ ℏω, or equivalently Namplifier
added ≫, the noise tempera-

ture can be approximated as

Te =
Namplifier

added ℏω
kB

. (3.21)

Another physical quantity to describe the added noise of an amplifier is the noise figure. It
is defined as the reduction of SNR when the input noise is from a resistor at T0 = 290 K,

F =
SNRin

SNRout
= 1 +

Nadded

Nin
≈ 1 +

Te
T0
. (3.22)

In this way, one can immediately know where is optimal to put an amplifier judging by its
noise temperature or noise figure.

Quantum efficiency η is a commonly used concept to describe the added noise in the
measurement line. For a single amplifier, it is given by

η =
1

Nadded + 1/2
. (3.23)

In some literature, the definition can be slightly different η̃ = η/2. If the amplifier is
quantum limited Nadded = 1/2, η = 1, indicating this is the best case one can achieve.
For the case of an amplification chain with large gain, the total quantum efficiency can be
calculated by normalizing the total noise at the output with the total gain

ηtot =
1

Ntot/Gtot + 1/2
. (3.24)

Just like the property of SNR, adding extra amplifiers will only degrade the total quantum
efficiency. A good measurement setup should have the total quantum efficiency close to
that of the first stage amplifier, which should be close to 1 [101]–[103].

3.3.2 JPA and JTWPA

JPA is one of the simplest quantum limited amplifier. The circuit model is depicted in
Fig. 3.9. The incoming signal consists of a strong pump tone and a weak signal Iin = Ipump+
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Figure 3.9: Circuit diagram of a JPA galvanically connected to a transmission line. Iin
and Iout are the incoming and outgoing current in the transmission line. The total current
at the end of the transmission line is I, which splits into the current going to the Josephson
junction (IJ) and the current going to the capacitor (IC).

Isignal. The phase difference across the junction is denoted as δ which can be also separated
into two parts corresponding to the pump and the signal δ = δpump + δsignal. Because the
signal tone is much smaller than the pump tone. We first solve for the system’s response to
the pump and ignore the signal part. Therefore we assume Iin = Ipump = Ip cos(ωpt+φ) and
δ = δpump = δa cosωpt. We are going to introduce the conclusions briefly in this section and
leave the derivation in appendix C.1. The relation between the phase oscillation amplitude
and the input current amplitude is(

(ω2
0 − ω2

p)δa −
ω2
0

8
δ3a

)2

+ (2γωpδa)
2 =

(
2Ip
Cϕ0

)2

, (3.25)

where ω2
0 = I0/(Cϕ0) and γ = 1/(2ZcC). We keep the lowest non-linear term for the

Josephson junction.
At small pump power (i.e. small Ip), the circuit behave like a harmonic oscillator and

the resonant frequency is ω0. The Purcell rate is Γ = 2γ. At large pump power, the phase
amplitude δa’s response to the pump at different frequency starts to display non-linearity
in Fig. 3.10. When the power is above the critical power, bifurcation starts to occur where
two stable states can exist at the same time at one pump tone. In this regime, the system
is called Josephson bifurcation amplifier (JBA) [104] which can also have a performance
close to the quantum limit.

The system’s response to the weak signal can then be solved assuming δpump is not
affected by the small signal. We can define cin(out) as the field operator for the input (output)
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Figure 3.10: Phase amplitude δa at different pump frequency. The power is close to
the critical power and the curve deviates from the linear Lorentzian response. The external
quality factor is 100.

signal and ω′ = ω − ωp is the signal detuning from the pump. Then we have

cout(ω
′) =

(
−1 +

2γ(−iω′ − i(ω0 − ωp) + γ − iω0ϵ/2)

(−iω′ + λ0)(−iω′ + λ1)

)
cin(ω

′) (3.26)

+
γe2iφω0ϵ/2

(−iω′ + λ0)(−iω′ + λ1)
c†in(−ω′), (3.27)

=G(ω′)cin(ω
′) +M(ω′)c†in(−ω′). (3.28)

The parameters λ0/1 and ϵ are defined as

ϵ = δ2a/4, (3.29)

λ0/1 = γ ∓
√
ω2
0ϵ

2

16
−
(
ω0 − ωp −

ω0ϵ

2

)2
. (3.30)

For simplicity, let’s substitute ω′ with ω. The signal gain Gs and image gain Gi can be
defined as

Gs(ω) ≡ |Gs(ω)|2, (3.31)

Gi(ω) ≡ |Ms(ω)|2. (3.32)

The image tone (i.e. the idler tone) and the signal tone are symmetrically distributed on
two sides of the pump tone. When the signal only has one mode, the idler mode on the
other side of the pump becomes the source of the added noise that will get mixed with the
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Figure 3.11: Signal gain Gs at different pump frequency and power. The signal fre-
quency is kept the same as the pump frequency in this simulation and ∆ωp = ωpump − ω0.
At small power (P = 0.5Pcritical), the signal gain is small (purple line). When the power
is close to the critical power (P = 0.99Pcritical), the gain peak is high and sharp (green
line). The pump frequency at the maximum gain is also further away from the low power
resonance frequency ω0.

signal mode at the output.
As shown in Fig. 3.11, when the pump and signal have the same frequency, the maxi-

mum signal gain Gs gets larger with increasing pump power and diverges at critical power
Pcritical. The gain peak shifts to the low frequency side, which is consistent with the bending
direction of the curve in Fig. 3.10. On the other hand, we can fix the pump frequency at the
maximum gain and change the signal power, as demonstrated in Fig. 3.11. When the signal
is at the same frequency as the pump (ω = 0), the gain is maximized. The gain curve is
symmetric with respect to the pump frequency. The half-maximum bandwidth Bω is smaller
at higher pump power. One can prove that Bω ∝ 1/

√
Gmax, which is quite common in many

amplifiers. At the same time, it is also worth mentioning that, in practice, it is more im-
portant to talk about the ’bandwidth’ achieving over 20 dB rather than the half-maximum
bandwidth Bω.

The bandwidth Bω when Gmax reaches 20 dB is also called dynamic bandwidth. Typ-
ically it is on the order of few MHz [59]. From Fig. 3.12, we can see the bandwidth is
proportional to γ, which is linked to the external Q of the circuit. Because JPA requires a
high-Q system, one can not broaden the bandwidth by simply lower the quality factor. One
strategy is to fabricate a SQUID instead of a single junction which adds tunability to the
system. By operating at different flux point, one can achieve 20 dB gain over 500 MHz,
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Figure 3.12: Signal gain Gs at different signal frequency and pump power. The pump
frequency is set to get the maximum gain. At higher power, the bandwidth is smaller, but
the frequency range where the gain is above 20 dB is actually broader.

which is called the static bandwidth.
In recent years, a new type of amplifier called Josephson traveling-wave parametric

amplifier was invented. The JTWPA used in our lab is from Lincoln Labs. It takes advantage
of a metamaterial transmission line made by Josephson junction chain. It can achieve 20 dB
gain over 3 GHz bandwidth by satifying the phase-matching condition. This is accomplished
by manipulating the dispersion relation using an array of subwavelength resonators. Apart
from the wide bandwidth, JTWPA can also tolerate higher input power than JPA. This is
quantified by 1 dB-compression point – the input power when the gain is reduced by 1dB.
The typical 1 dB-compression point can be -120 dBm for JPA, while our JTWPA can reach
-105 to -95 dBm.

3.4 Initialization Schemes

In fluxonium experiments, fast initialization is instrumental to increase the averaged signal
contrast and hence speed up the measurement. It is also going to be indispensable in
the future when doing repetitive error corrections on logical qubits during a complicated
algorithm. We explored some initialization techniques in our lab and other schemes will
also be discussed in this section.
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3.4.1 Preselection initialization

If the readout is quite QND, one can preselect the data to achieve an effective initialization
in the experiment. At the beginning of each sequence, an additional preselection readout
pulse is applied to perform single-shot readout. This means that the acquisition setup will
record two set of data in an interleaved way. One corresponds to the measurement result
before the sequence and the other is the usual measurement after the sequence.

The first readout pulse is QND, meaning that it does not change the ensamble probabil-
ity distribution of the mixed state. Therefore directly averaging the post-sequence measure-
ment data will give the same result as if there is no preselection pulse. Instead, one needs to
analyze the single-shot histogram of the pre-sequence measurement and select part of the
data. For example, as shown in Fig. 3.13, if we want to initialize the qubit to |10⟩ state, we
select the sequence indices for which the pre-sequence data fall into the solid circle. Then
we pick out the data from the post-sequence measurement that have the same sequence
indices. The data after selection look like Fig. 3.13b. The population is concentrated into
the |10⟩ blob. There is some residual population visible on |11⟩ state. This is mainly because
the non-QNDness of the pre-sequence pulse moves the population to the |11⟩ state.

This initialization method sacrifices the data collection efficiency and is not scalable. As
the number of qubit increases, the population of a specific state can decrease exponentially.
Because the contrast can only be enhanced after collecting a large amount of data and
post-processing, it is not as straightforward as other initialization schemes.

3.4.2 Cavity tone initialization

It is observed that for the devices used in our experiments, the readout can be highly non-
QND with a high readout power and long pulse duration. The population tend to be moved
to the exicted states, as shown in Fig. 3.14. The mechanism is not fully understood yet,
but there is evidence that the high levels are involved during the process. Typically a 10 µs

delay need to be set between the initialization pulse and the following sequence in order
to wait for the high level population gets depleted and decays back to the computational
space.

We tried this scheme on two different two-qubit devices. We achieved 69 % and 82 %
excited state population on one device along with 86 % and 88 % on the other device.
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a

b

Figure 3.13: Initialization by preselection. (a) Single-shot data from the heralding read-
out pulse. The populations extracted from the heights of the blobs are p00 = 0.17, p01 =
0.17, p10 = 0.37, p11 = 0.29. The experiments corresponding to the points within the solid
circle are selected in order to initialize the population to |10⟩. (b) Single-shot histograms
after preselection. The populations are p00 = 0.02, p01 = 0.02, p10 = 0.72, p11 = 0.25.
There is still a significant population at |11⟩, which is due to the readout non-QNDness.



64

Figure 3.14: Initialization using the cavity pulse Non-QNDness. A strong pump pulse at
the readout frequency is applied to pump the qubit population to the excited states. A 10 µs
delay is placed after the initialization pulse in order to deplete the population outside the
compuational space. The population of the ee state can reach 0.6 after 10 µs of pumping.
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Figure 3.15: Qubit population initialization by pumping |1⟩-|3⟩. Time-domain evolution
of populations during |1⟩-|3⟩ pumping. 88% of the population can be prepared to |0⟩ after
pumping for 5 µs.

3.4.3 Initialization in the fluorescence experiment

With the ability to drive the even transitions at the flux point in the fluorescence experiment
(Sec. 3.1.2), we could prepare the ground state by driving the transition |1⟩-|3⟩ as presented
in Fig. 3.15. By design of the readout transition, |3⟩ decays to |0⟩ much faster than to other
states. Therefore if thermal population gets pumped to |3⟩, most of it decays to |0⟩. We
checked that the qubit can be initialized with p0 ≈ 0.9 after 5 µs pumping, limited by the
driving strength of the pumping transition |1⟩ → |3⟩. In theory, the maximal value of p0
approaches unity upon increasing T1 and reducing the error rate of decay from state |3⟩ to
state |1⟩.

3.4.4 Other fluxonium initialization schemes

Similar to the fluorescence experiment, the cavity also provides a lossy transition with large
radiative decay rate. Here we use |αn⟩ for the joint state with qubit at state α and n photons
in the cavity. The transition |g1⟩ − |g0⟩ and |e1⟩ − |e0⟩ decay at a rate of κ that is on the
order of tens of MHz and can be utilized to initialize the qubit (Fig. 3.16).

One way to do this is to use the sideband transition |e0⟩− |g1⟩ [105], [106]. Away from
the half flux quanta, one can directly pump this transition just like pumping the |1⟩-|3⟩ tran-
sition in the fluorescence experiment. At the half flux quanta, the sideband transition is a
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a b

Figure 3.16: Other initialization diagrams. (a) Sideband cooling. The system population
is pumped to |g1⟩ using the two-photon transition of the red sideband transition |e0⟩ − |g1⟩
and then decays back to |g0⟩ rapidly. (b) Initialization using the |h0⟩ state. Two microwave
drives are applied to the system to move the population from |g0⟩ to |e1⟩ through |h0⟩. The
population then decays back to |e0⟩.

forbidden even transition and can not be directly driven. Instead, by applying a strong drive
at half of the sideband transition, the population can be pumped up through two-photon
process. A initialization fidelity of 99 % has been reported in Ref. [106]. Alternatively, if a
fast flux line is available on the chip, one can apply a flux pulse to bias the fluxonium away
from the sweet spot temporarily to open the forbidden channel and go back to sweet spot
after the initialization pulse [85].

Another approach is to use a intermediate state, for example, the |h0⟩ state [49]. Be-
cause |g0⟩ − |h0⟩ and |h0⟩ − |e1⟩ both have large matrix elements, one can drive these two
transitions simultaneously to pump the population to |e1⟩ state. A population of 95 % can
be initialized to the excited state in this way.
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Chapter 4

Microwave Gate Experiments with
Fluxonium

Entanglement is a critical resource in quantum information. It makes a quantum computer
fundamentally distinct from a classical computer. One might be able to describe superposi-
tion of quantum states with classical probabilities. But this type of attempt will fail in the
presence of quantum entanglement as it breaks the Bell’s inequality. The quantum magics
such as quantum teleportation need to be performed at the cost of quantum entanglement,
which is also the case for the exponential speedup of the Shor’s algorithms. Entangle-
ment is generated with gates on the qubits in a quantum processor and the essential part
is two-qubit gates. For superconducting qubits, the gate can be activated with flux [49],
[85], [107]–[114] or microwave pulses [115]–[124]. The invention of flux-tunable cou-
plers makes it possible to turn the interaction between qubits on and off on-demand while
the microwave toolbox are also being expanded for the fixed frequency qubits. Generally
speaking, flux gates have shorter gate times due to its ability to turn on a large interac-
tion. But the qubit coherence time can be degraded away from the sweet spot, especially
when the qubit transition crosses two-level defects on the spectrum. On the contrary, the
microwave gate are performed with better coherence and does not require a fast flux line,
which is simpler in terms of the hardware. However, its gate time is usually longer. The
incoherent error of a gate coming from decoherence can be estimated with [125]

ϵ =
tgate
3

(
1

T1
+

1

Tϕ

)
. (4.1)

Therefore the gate time and the coherence both need to be taken into account to get an
optimal gate fidelity. Recent experiments have exhibited two-qubit gate fidelity approaching
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99.9 % for both types of architecture.
Even though fluxonium is flux-tunable by nature, we focus on microwave-activated gates

in this chapter. There are efforts exploiting flux gates on fluxoniums including theoretical
proposals and experimental demonstrations [49], [85], [126]–[128]. We believe that mi-
crowave gates implemented at flux sweet spot can make the most of the high coherence of
fluxonium qubits. We are going to first introduce the tools for characterizing gates including
process tomography and randomized benchmarking based techniques. We will discuss our
single-qubit gate measurement and then describe different types of two-qubit microwave
gates that we explored for fluxoniums. The last section will briefly present our routine for
parameter optimization.

4.1 Characterization techniques

We used quantum process tomography (QPT) and various randomized benchmarking based
methods to characterize the gates. QPT is a universal technique to identity a quantum
operation and can be implemented in most cases. However, it can be limited by state-
preparation-and-measurement (SPAM) errors [129]. This concern is addressed in random-
ized benchmarking techniques by repeating the gates and fitting for the decay constant.
There are some other techniques reported in literature but will not be discussed in this
section, such as QPT with Pauli transfer matrix representation [130] and the gate set to-
mography (GST) [131].

4.1.1 Quantum process tomography

Just like quantum state tomography (QST) can depict a full picture of a quantum state,
QPT includes all the information of a quantum operation. In our experiments, we perform
a process tomography of the gate operation using a standard procedure described in [132],
[133]. The quantum process to be characterized is interleaved between one preparation
pulse and one tomography pulse chosen in Table 4.1. The process matrix χ characterizes
fully the quantum process E . We prepare 16 input states {ρj} and measure the output states
through QST. Using the information from the 16 measurements, we can extract the process
matrix χ.

State tomography

For a n qubit system, the Hilbert space dimension is d = 2n. There are 4n = d2 correspond-
ing Pauli matrices σv1 ⊗σv2 ⊗· · ·⊗σvn , where vi = 0, 1, 2, 3. They are also d×d matrices and
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Preparation pulses Tomography Pulses
II, IXπ/2, II, XπI, Xπ/2I, X−π/2I,

IYπ/2, IX−π/2, Yπ/2I, Y−π/2I, IXπ, XπXπ,
XπI, XπXπ, Xπ/2Xπ, X−π/2Xπ, Yπ/2Xπ, Y−π/2Xπ,

XπYπ/2, XπX−π/2, IXπ/2, XπXπ/2, Xπ/2Xπ/2, X−π/2Xπ/2,
Yπ/2I, Yπ/2Xπ, Yπ/2Yπ/2, Y−π/2Yπ/2, IX−π/2, XπX−π/2,

Yπ/2Yπ/2, Yπ/2X−π/2, Xπ/2X−π/2, X−π/2X−π/2,
X−π/2I, X−π/2Xπ, Yπ/2X−π/2, Y−π/2X−π/2,

X−π/2Yπ/2, X−π/2X−π/2 IYπ/2, XπYπ/2, Xπ/2Yπ/2, X−π/2Yπ/2,
Yπ/2Yπ/2, Y−π/2Yπ/2, IY−π/2, XπY−π/2,

Xπ/2Y−π/2, X−π/2Y−π/2,
Yπ/2Y−π/2, Y−π/2Y−π/2

Table 4.1: Preparation and tomography pulses used for two-qubit quantum process
tomography. The first letter refers to the rotation axis and the subscript is the rotation
angle. I is the identity. We prepare d2 = 16 input states (where d = 4 is the dimension
of the Hilbert space). An overcomplete set of 36 pulses is used for the state tomography –
combined with a maximum likelihood estimation – to reduce the sensitivity of our tomog-
raphy to pulse imperfections.

are linearly independent of each other. Therefore the Pauli matrices form the basis for any
complex d × d matrices. This naturally applies to any density state ρ and it can be written
as a linear superposition of the Pauli matrices

ρ =
1

2n

∑
mv1,v2···vn(σv1 ⊗ σv2 ⊗ · · · ⊗ σvn) (4.2)

with coefficients mv1,v2···vn = tr(σv1 ⊗ σv2 ⊗ · · · ⊗ σvnρ). For example, a single qubit density
matrix is

ρ =
1

2
(I + tr(Xρ)X + tr(Y ρ)Y + tr(Zρ)Z). (4.3)

Here we used the fact that ρ is Hermitian with trace one and there are only three inde-
pendent real parameters, corresponding to the three Bloch vector coordinates. Similarly,
a two-qubit density matrix can be described by 15 independent real parameters. One can
definitely write it in terms of the summation of 16 Pauli matrices. Alternatively, we parame-
terize the density matrix with 16 real parameters as ρ = T †T /Tr(T †T ), where T is a lower
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triangular matrix given by

T =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

 . (4.4)

This Cholesky decomposition ensures that ρ corresponds to a physical quantum state (see
Appendix F of Ref. [134]). Even though we introduced an extra redundant degree of
freedom for a more concise representation, it turns out that they can still be handled well
in numerical optimizations.

To do QST on a two-qubit joint state, the density matrix of is reconstructed by maximiz-
ing the likelihood of a list of 36 measurements obtained by applying the tomography pulses
given in Table 4.1. The Maximum Likelihood Estimation (MLE) technique [135] searches
the space of density matrices to find the one that is the most likely to reproduce the ob-
servations. To calculate the expected output signal for an arbitrary density matrix, we first
calibrate the measurement operator

M = βIIσI ⊗ σI + βIZσI ⊗ σz + βZIσz ⊗ σI + βZZσz ⊗ σz (4.5)

where βij are complex coefficients. βij are measured by applying the pulses {I,Xπ}⊗2 =

{II, IXπ, XπI,XπXπ} to the initial state before measuring the output signal, taking into
account the initial state effective temperature from the single-shot measurement. After
calibrating the measurement operator, we can predict the output signal for a state ρ after
any of the 36 tomography pulses. The state ρ is then obtained by maximizing the likelihood
of the 36 output measurements over the 16 parameters of T . Here we did not do single-shot
readout to directly measure the population in each of the 36 measurements and measured
the averaged value tr(Mρ) instead, simply because fore our data acquisition setup, it is
faster than demodulating each recorded trace and fitting the single-shot histograms.

Process matrix

The χ matrix representation is defined as follows. For any quantum process E acting on a
density matrix ρ, the final density matrix can be written as a superposition of basis operators
Ẽn acting on ρ

ρfinal = E(ρ) =
∑
mn

ẼmρẼ
†
nχmn. (4.6)
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The operator basis we choose is {σI/
√
2, σx/

√
2, σy/

√
2, σz/

√
2}⊗n. χ is a d2 × d2 com-

plex matrix containing d4 − d2 independent real parameters required by the density matrix
properties. To calculate χ matrix, we first prepare d2 linearly independent density matrices
that automatically form the basis for any density matrix. When we apply E to one of these
density matrix ρj , the final state can be written with the basis

E(ρj) =
∑
k

λjkρk. (4.7)

The density matrix basis is prepared by applying the preparation pulses in Table 4.1. In
the experiment, the final state E(ρj) is obtained with QST. It is worth mentioning that the
density matrices are not orthogonal to each other (and actually they can be mixed states).
The coefficients λjk can not be directly calculated with tr(E(ρj)ρk) like what we do with the
Pauli matrix basis. One need to first calculate the Gram matrix

G =


tr(ρ1ρ1) . . . tr(ρd2ρ1)

...
. . .

...
tr(ρ1ρd2) . . . tr(ρd2ρd2)

 . (4.8)

The coefficients can be calculated by
λj1
...

λjd2

 = G−1


tr(E(ρj)ρ1)

...
tr(E(ρj)ρd2)

 . (4.9)

On the other hand, the right hand side of Eq. 4.6 can be written as

ẼmρjẼ
†
n =

∑
k

βmn
jk ρk, (4.10)

which can be calculated theoretically. Combining Eq. 4.7 and Eq. 4.10, we have∑
kmn

χmnβ
mn
jk ρk =

∑
k

λjkρk. (4.11)

Because the expansion on the basis {ρk} is unique, the coefficients should all equal∑
mn

βmn
jk χmn = λjk. (4.12)
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b

Figure 4.1: χ matrix in quantum process tomography of a CZ gate. (a) The χ matrix of
a CZ gate in theory. The height of the histogram indicates the magnitude of the matrix ele-
ment and the color indicates the phase. The non-zero elements only exist for II, IZ, ZI, ZZ
indexes.(b) The measured χ matrix for the CZ gate introduced in Sec. 4.3.1. The fidelity
calculated by comparing the χ matrix is 0.959.
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Therefore the χ matrix is directly related to the measurement observables through the λ
matrix. For convenience, we can reshape the matrix χ and λ to vectors and the tensor β to
d4 × d4 matrix

βχ⃗ = λ⃗. (4.13)

Then it is straightforward to calculate the vector χ⃗ = αλ⃗ with α = β−1 and reshape χ⃗ back
to its matrix form. In the case that β−1 does not exist, one can always find a generalized
inverse α such that βαβ = β.

The ideal quantum process is described by a unitary operator

Eideal(ρ) = UρU †. (4.14)

We can write the unitary operator U in terms of the operator basis {Ẽn}

U =
∑
n

enẼn = (Ẽ1, Ẽ2, · · · , Ẽd2)


e1

e2
...
ed2

 . (4.15)

We can define e⃗ = (e1, e2, . . . , ed2)
T and the ideal process matrix is χideal = e⃗e⃗T from

Eq. 4.6. The gate fidelity of the measured χmatrix [136] compared to χideal is F (χ, χideal) =

(tr(χ†χideal)d+ 1)/(d+ 1). Fig. 4.1 shows the χ matrix histogram of a CZ gate in Sec. 4.3.1
with fidelity 0.959. Additional process matrices χ of CPhase gates for control phases
ϕ = π/16, π/8, and π/4 are also measured. We found the QPT fidelity saturates around
0.978 due to SPAM errors and it is always lower than the fidelity from the cross-entropy
benchmarking experiment.

4.1.2 Randomized benchmarking

Randomized benchmarking (RB) [137]–[140] is a standard technique to quantify the aver-
age fidelity of the gate inside the Clifford group [141]. Inspired by this idea, many other
similar techniques are invented to focus on different types of fidelity measurements. As
will introduced later, interleaved randomized benchmarking (IRB) is used to measure the
fidelity of a specific Clifford gate. Purity benchmarking is to measure the average incoher-
ent error of the Clifford group. Cross-entropy benchmarking is used to measure the fidelity
of a non-Clifford gate.
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There are 24 unique Clifford gates (up to a overall phase factor) in the single-qubit
Clifford group. These gates describe any possible rotations between the six axial states
(eigenvectors of the Pauli matrices) on the Bloch sphere. Depending on the pulses used in
a experiment, the Clifford gate representation can be different as shown in Table 4.2. One
can write Clifford gates using only X and Y rotations (including I). Or equivalently, each
Clifford gate can be constructed with one X or Y rotations at most with Z rotations. A
Clifford gate can have a different number of pulses (i.e. I,X, Y , or Z gates). On average,
one Clifford gate has 1.875 pulses In the first representation and 1.833 pulses in the second
representation. Two-qubit Clifford group is much larger and has 11520 gates. They fall into
four categories: single-qubit based gates, CNOT-like gates, iSWAP-like gates, and SWAP-like
gates. Likewise, they can have different representations. For example, one can use CZ gate
and single-qubit X and Y rotations to construct the Clifford gates. In this case, it requires
on average 1.5 CZ gates and 8.25 single qubit gates to build a two-qubit Clifford gate.

The pulse sequence for a standard RB is depicted as Fig. 4.2a. A series of randomly
chosen Clifford gates Ci are applied to the qubit (the random number seed also changes
with the sequence length m). From the mathematical properties of a group, we know that
multiplying Clifford gates will still end up with a gate in the Clifford group and its inverse
also exists in the Clifford group. Therefore we can apply a recovery gate Cr at the end to go
back to the initial state. The whole process is equivalent to an identity gate ideally. Due to
the gate errors accumulated in the sequence, the final state always deviates from the initial
state. We can measure the final state population and average it over many different random
Clifford sequence with the same sequence length. The sequence fidelity (sometimes people
directly use the qubit population) follows the curve

Fseq(m) = Apm +B. (4.16)

A and B absorb the SPAM errors and the error of the recovery gate. p is the depolarizing
parameter that is related to the average error of a Clifford gate r = (d− 1)(1− p)/d, where
d = 2n is the Hilbert space dimension. The average error for each pulse in the Clifford gate
is therefore rpulse = r/1.875 for the left representation in Table 4.2. In the experiment, we
fit the exponential decay curve with Eq. 4.16 and use the fitting error to calculate the error
bar on the Clifford gate fidelity F = 1 − r (or 1 − rpulse for the fidelity of the pulse). It is
obvious that by definition the above formalism can be directly applied to multi-qubit case.



75

a

b

c

d

Figure 4.2: Different benchmarking techniques based on random Clifford gates. (a)
Standard randomized benchmarking (RB) sequence. A random sequence of Clifford gates
{C1, C2, · · · , Cm} is applied to the qubit and a recovery gate Cr is applied at the end to
convert the qubit back to the initial state. (b) Interleaved randomized benchmarking (IRB)
sequence. The test Clifford gate G is inserted after each random Clifford gate in the RB
sequence. (c) Single-qubit purity benchmarking (PB) sequence. State tomography pulses
are applied at the end of the RB sequence in order to measure the final state purity. (d)
Two-qubit cross-entropy benchmarking (XEB) sequence. The sequence consists of m cycles,
during which a random single qubit Clifford gate [CA

i , C
B
i ] is applied to both qubits, fol-

lowed by the test two-qubit gate G. Unlike IRB, the test gate G in XEB can be a non-Clifford
gate.
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Interleaved randomized benchmarking

If we insert a specific Clifford gate G after each Clifford gate Ci in the RB sequence (see
Fig. 4.2b, now Cr needs to undo the sequence including G), we can measure the fidelity of
G by comparing the depolarizing parameters from the RB measurement [140]. Let’s denote
the depolarizing parameter of the IRB measurement by pG (the one of the RB measurement
by p). The gate error of G is given by

rG =
(d− 1)(1− pG/p)

d
, (4.17)

and the gate fidelity is defined as FG = 1 − rG. One can also insert n repetitions of G into
the sequence (Gn is still a Clifford gate). The total incoherent error increases linearly while
the unitary error increases in a non-linear way [142]. We use this to demonstrate the CZ
gate in Sec. 4.3.2 is limited by decoherence.

Purity benchmarking

To evaluate the average incoherent error of a Clifford gate, one can add tomography pulses
at the end of the RB sequence (Fig. 4.2c) to measure the purity of the final states, which
is called purity benchmarking (PB) [125], [143]. Gate errors such as misrotations do not
change the state purity while decoherence errors do. The purity is defined by P = tr(ρ2). It
can be normalized so that it ranges from 0 to 1

Pnormalized =
d

d− 1

(
P − 1

d

)
. (4.18)

For a single qubit, Pnormalized = ⟨σx⟩2 + ⟨σy⟩2 + ⟨σz⟩2, which can be directly measured
with the three tomography pulses in Fig. 4.2c. One can repeat the same RB sequence with
different tomography pulses, calculate the purity, and then average the purity for different
random sequences. The purity decays as

Pnormalized(m) = Aum +B. (4.19)

u is the unitarity. The incoherent error of a Clifford gate on average is

rincoherent =
d− 1

d
(1−√

u). (4.20)
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Cross-entropy benchmarking

Non-Clifford two-qubit gate is a helpful tool to construct a universal gate set for arbitrary
unitary operations. Non-Clifford gates can not be evaluated with traditional IRB techniques
because it is hard to build a recovery gate for every random sequence. In recent years,
cross-entropy benchmarking technique [3], [109], [144], [145] (XEB) was implemented as
a universal approach to benchmark non-Clifford gates. Fig. 4.2d shows the pulse sequence
for a two-qubit XEB sequence. It is similar to the IRB sequence in the sense that it consists
of m cycles. In each cycle, we apply random single-qubit Clifford gates to the two qubits
individually, followed by the non-Clifford gate G. At the end of the sequence, instead
of applying a recovery gate like what we do in IRB, we directly measure the population
distribution of the two qubits {p00,i, p01,i, p10,i, p11,i}, where i = 1, 2, · · · , l is the random
sequence index. Combining the l distributions into one, we have

Pmeasured = {pj} = {p00,1
l
,
p01,1
l
,
p10,1
l
,
p11,1
l
,
p00,2
l
,
p01,2
l
,
p10,2
l
,
p11,2
l
,

· · · ,p00,l
l
,
p01,l
l
,
p10,l
l
,
p11,l
l

}, (4.21)

and
∑4l

j pj = 1. On the other hand, we can calculate the probability distribution Pexpected =

{qj} in theory with the knowledge of the composition of each random sequence. We can
use cross-entropy to quantify the ’distance’ between these two distributions

S(Pmeasured, Pexpected) = −
4l∑
j

pj log qj (4.22)

The cross-entropy is minimized when the two distributions are identical. The sequence
fidelity can be therefore defined as

FXEB =
S(Pincoherent, Pexpected)− S(Pmeasured, Pexpected)

S(Pincoherent, Pexpected)− S(Pexpected, Pexpected)
, (4.23)

where Pincoherent = {1/(4l), 1/(4l), · · · , 1/(4l)} is the maximally incoherent mixture. When
the measured distribution agrees with the expected one, FXEB = 1. When the final states
are maximally mixed states, FXEB = 0. By fitting the sequence fidelity versus number of
cycles with FXEB = Apm +B, the Pauli error per cycle rPcycle is given by

rcycle =
d− 1

d
(1− p) (4.24)

rPcycle =
d+ 1

d
rcycle (4.25)
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Then we extract the non-Clifford gate Pauli error rPG from the equation (1 − rPcycle) = (1 −
rPA)(1− rPB)(1− rPG), where rPA , r

P
B are the average single-qubit Pauli error measured from

the simultaneous RB experiment on the two qubits. The gate fidelity of G is calculated by
converting Pauli error back to the gate error rG. Even though XEB is claimed to be able to
evade the SPAM errors, a readout error on the order of 10 % coming from non-QNDness still
needs to be calibrated out in order to get a reasonable single exponential decaying curve of
FXEB.

4.2 Single-qubit Gates

In this section, we are going to show how to perform single-qubit gates, i.e. the X,Y, and
Z gates, with microwaves. We will discuss two different scenarios – on-resonance driving
and off-resonance driving. In our experiment, we also studied qubit control crosstalk which
can be a notable issue for single-qubit gates across a multi-qubit device.

4.2.1 X and Y gates

We can consider a simple spin model in the lab frame

H lab = −ωq

2
σz +

Ω

2
cos(ωdt+ φd)σx. (4.26)

The second time-dependent term in the Hamiltonian is a classical driving term. For the
0 − 1 transition of a fluxonium, the drive strength Ω is proportional to the electric field
amplitude at the qubit and the fluxonium matrix element | ⟨0|n |1⟩ |. In order to obtain an
analytical solution, we go into a rotating frame with frequency ωd and initial phase φd for a
time-independent Hamiltonian. If we denote the state in the lab frame by |ψlab⟩, it becomes
|ψRWA⟩ = U † |ψlab⟩ in the rotating frame. The transformation operator U = exp(−iOt),
where O = −ωdσz/2 is on resonance with the drive. In the rotating frame, the Hamiltonian
transforms as

HRWA = U †H labU − iU †∂tU. (4.27)

Then we can apply the rotating wave approximation (RWA) to keep the co-rotating term
and neglect the counter-rotating term. One can think of the counter-rotating term as a
drive with a large detuning ωd + ωq ≫ Ω. As we will demonstrate later, large detuning
drive barely changes the qubit population but it can shift the qubit frequency. With RWA,
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the Hamiltonian is now time-independent

HRWA = −δ
2
σz +

Ω

2
cosφdσx −

Ω

2
sinφdσy. (4.28)

δ = ωq − ωd is the detuning of the drive. Because there is a degree of freedom on choosing
which direction of the x axis on a 2D plane, we can offset the qubit phase by applying a
unitary operator Uφ = exp(iφσz/2) to the system, so that |ψRWA⟩ → U †

φ |ψRWA⟩ and the
Hamiltonian becomes

HRWA = −δ
2
σz +

Ω

2
cos(φd − φ)σx −

Ω

2
sin(φd − φ)σy. (4.29)

We can choose φ = φd and the drive only involves the σx term

HRWA = −δ
2
σz +

Ω

2
σx. (4.30)

When the drive is on resonance, δ = 0. The Bloch sphere does not spin anymore and the
qubit evolution is purely an X rotation that is described by

UX = exp(−iθX
2
σx), (4.31)

where θX = Ωt. For example, the gate Xπ corresponds to θX = π (note that it is not
θX/2 = π), which is a π pulse on the qubit. X2π is equivalent to an identity gate in qubit
systems because it only brings an overall phase factor to the state. One can realize a Y

rotation by changing the phase of the drive to φd − π/2 while using the same phase offset
φ = φd in Eq. 4.29.

In a typical experiment, the pulses sequences are sent to the device continuously and
each sequence contains its own initialization pulse and readout pulse. It is more conve-
nient to treat each sequence as an independent measurement and set the time origin at the
beginning of that sequence. However, the microwave generated from the RF source is con-
tinuous, meaning that the microwave phase offset ϕd may be different for two successive
sequences. For example, let’s assume the sequence length is T and the phase offset of the
first sequence is ϕd,0. Hence the phase offset of the second sequence is ϕd,1 = ϕd,0 + ωdT .
To prevent an X gate in one sequence becomes a Y gate in another sequence, we need to
keep in mind that we need to re-define the x axis of the Bloch sphere in each sequence, so
that φ = φd is satisfied in Eq. 4.29. This will be important when we come to Sec. 4.3.3.
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4.2.2 ac Stark shift and virtual Z gates

The Z rotation can be trickier than the X and Y rotations. We have to keep in mind that
we eventually need to work in the rotating frame on resonance with the qubit. We can not
just do nothing and wait because the qubit does not spin around the z axis in this frame.
The Z gates can be straightforward with the use of a flux pulse which can change the qubit
frequency for some time to acquire a Z phase. But this is at the cost of leaving the flux
sweet spot which is not the optimal solution. In fact, there are multiple ways to implement
Z gates using only microwaves. In practice, the virtual Z gate [146] works the best in our
experiment. But before introducing this technique, let’s look at the other approaches which
are helpful to understand qubit dynamics.

One way to realize a Z rotation is through off-resonance driving. The qubit subjected to
Eq. 4.30 rotates on the Bloch sphere around the axis n⃗ = (−δ/2,Ω/2, 0) and the effective
Rabi frequency is

Ωeff =
√
δ2 +Ω2, (4.32)

meaning that after t2π = 2π/Ωeff , the qubit finishes one cycle on the Bloch sphere and
returns to its starting point with an overall phase. Therefore the evolution operator in this
frame is an identity UI .

Now we can transform UI to the on-resonance rotating frame. First, let’s define Uδ(t) =

exp(iωdtσz/2) is the transformation operator from the lab frame to the off-resonance frame
and U0(t) = exp(iωqtσz/2) is from the lab frame to the on-resonance frame. Assuming the
evolution begins at t1 and ends at t2 = t1+t2π So the evolution operator in the on-resonance
frame is

U = U †
0(t2)Uδ(t2)UIU

†
δ (t1)U0(t1) = exp(−iθZ

2
σz), (4.33)

where θZ = δt2π is picked up due to the different rotating speeds of the two frames.
If we fix the drive strength and increase the detuning such that δ ≫ Ω > 0, the rotation

axis of the Rabi oscillation n⃗ becomes close to the −z axis. We can consider that one cycle
acquires a Z phase of −2π (the sign is crucial here). Because the effective Rabi frequency
is fast, we can wait for n cycles to accumulate the Z phase θZ = nδt2π − 2nπ. The average
accumulation rate is

ω̄Z =
θZ
nt2π

= δ −
√
δ2 +Ω2. (4.34)
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Actually in this large detuning regime, it is not necessary to completely go back to the
starting point in the off-resonance frame because it will only lead to a tiny error due to a
little bit of X rotation. In this case, the external microwave drive can keep adding Z phase
to the qubit as if the qubit frequency is shifted. Indeed, this can be understood with the
dressed state approach and the energy difference between the dressed states and the bare
states is the ac Stark shift.

We can diagonalize the Hamiltonian Eq. 4.30

Hdressed = −sign(δ)

√
δ2 +Ω2

2
σz = −δ +∆ω

2
σz. (4.35)

The ac Stark shift (i.e. the qubit frequency change) is ∆ω = sign(δ)
√
δ2 +Ω2− δ. When the

drive is red-detuned δ = ωq−ωd > 0, ∆ω > 0 indicating the |0⟩ state energy is pushed down
and the |1⟩ state energy is pushed up by |∆ω|/2, i.e. the transition is ’distended’. When the
drive is blue-detuned, the energy levels go to the opposite direction and the transition is
’squeezed’. We denote the dressed eigenstates by |0′⟩ and |1′⟩. One can prove that they are
actually located on the rotating axis n⃗.

When we apply the far-detuned drive |δ| ≫ Ω, we can approximate the original qubit
state |ψ⟩ = α |0⟩+ β |1⟩ as |ψ⟩ = α |0′⟩+ β |1′⟩ in the off-resonance frame, because |i′⟩ ≈ |i⟩.
That’s why we can use the qubit frequency shift to describe the unitary evolution

UZ = exp(−i(−∆ω

2
)σz), (4.36)

which is consistent with our previous calculation for the evolution of multiple cycles on the
Bloch sphere.

The ac Stark shift picture is straightforward when we are thinking of the accumulated
Z rotations with an off-resonant drive. However, it seems it only works at a large detun-
ing, because otherwise we can not have |i′⟩ ≈ |i⟩ and the bare states |i⟩ will keep rotating
around the axis n⃗. Fortunately, this issue can be addressed with adiabatic pulses. A process
is adiabatic when the Hamiltonian changes slow enough so that the bare eigenstates can fol-
low the evolution of the instantaneous dressed eigenstates. That is, if H(t) changes slowly
with time, the eigenstates |i(0)⟩ of H(0) evolve as |i(t)⟩ up to a phase factor, where |i(t)⟩
is the instantaneous eigenstates of H(t). This idea was implemented in flux pulses [107]
which tune the repulsion between two coupled states. We can use the same Hamiltonian of
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Eq. 4.30 to describe the two levels

H(t) = −δ(t)
2
σz +

Ω

2
σx (4.37)

and assume δ = δ(t) changes with flux. The population that does not follow the dressed
state is

Plost = exp(− πΩ2

2|∂tδ|
), (4.38)

which is called the Landau-Zener tunnel probability [147]. The adiabatic condition is sat-
isfied when Plost ≪ 1, indicating that |∂tδ| ≪ Ω2. For microwave pulses, we can fix δ

and change the pulse amplitude over time Ω = Ω(t). Similarly, we can have the adiabatic
condition for microwave pulses is

|∂tΩ| ≪ δ2. (4.39)

As long as Eq. 4.39 is satisfied, the initial eigenstates will follow the rotating axis n⃗ as it
slowly travels away from the z axis with increasing pulse amplitude and comes back when
the pulse is slowly turned off. In this case, we can safely use ac Stark shift to describe this
process even if |δ| ∼ Ω without worrying about the σx error. The adiabatic pulse can be
understood in the frequency domain. We can take a Gaussian pulse for example. Assume
the pulse has a width of 2σ in time domain, its Fourier transform is also Gaussian with a
width of 1/(2σ). If the pulse changes slowly with time, σ is large and its Fourier spectrum is
sharp so that there is less frequency component on the qubit transition that has a detuning
δ away from the Gaussian center.

One can immediately point out the disadvantage of an adiabatic pulse which is that it
requires a long time to finish such an operation. Again We can take the Gaussian pulse for
example to do a rough estimation. Assume the pulse has a width of 2σ and amplitude of Ωm

that is on the same order of magnitude with the detuning Ωm ∼ δ. Therefore ∂tΩ(t) ∼ Ωm/σ

and Eq. 4.39 leads to σ ≫ Ωm/δ
2 ∼ 1/δ. If δ/(2π) is on the order of 10 MHz, the width

of the pulse needs to be much larger than 100 ns, which is definitely too long for a single
qubit gate. To mitigate this problem, we can leverage the pulse-shaping techniques such
as the Derivative Removal by Adiabatic Gate (DRAG) [148]–[150]. The basic idea is to
add an auxiliary pulse on the other quadrature (i.e. through σy) with an amplitude that is
proportional to ∂tΩ(t)/δ, which reduce the Fourier spectrum near the transition. With this
technique, the pulse can be faster while maintaining part of the adiabaticity. In fact, DRAG
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was originally proposed to suppress the leakage to the higher levels in transmon systems.
This is because the anharmonicity of transmon is on the order of 100 MHz. If a pulse with
Ω = 50 MHz with a duration of 10 ns is applied to the 0− 1 transition, the 1− 2 transition
will also be off-resonantly driven, which is inevitable. Therefore adiabaticity is required to
make sure the population can come back to the computational states.

Another way to realize a Z gate is to use a combination of X and Y gates. As demon-
strated in Table 4.2, the Clifford group can be constructed using X and Y rotations. For
example,

Yπ ·Xπ = Zπ, (4.40)

X−π/2 · Yπ/2 ·Xπ/2 = Z−π/2, (4.41)

X−π/2 · Y−π/2 ·Xπ/2 = Zπ/2. (4.42)

The errors of these Z gates are the summation of the corresponding X and Y gate errors.
The consequence is that the Z gate is always much worse than the X and Y gates.

Finally, we are going to introduce the optimal realization of Z gates for our experiments
– the virtual Z gate. When we want to perform a Z gate, intuitively we will rotate the Bloch
sphere around the z axis by applying certain pulses. One just need to realize that rotating
the Bloch sphere is equivalent to rotating the x and y axes in the opposite direction and the
solution is going to be much simpler. Whenever we perform a Z gate, we only need to re-
define the directions of the x and y axes conceptually without changing the qubit physically.
That is why it is called the virtual Z gate, as it happens instantly on the software level. As
we derived in Sec. 4.2.1, the X gate is defined after we choose the direction of the x axis
by setting φ = φd in Eq. 4.29. Hence the same microwave pulse can be a Y rotation if we
set φ = φd − π/2, and a Y pulse becomes an X pulse in with the new definition.

For example, let’s say we want to apply a sequence asXπ ·Zπ/2·Xπ ·Yπ. The firstXπ pulse
is applied with the drive phase φd (meaning that φ = φd). The virtual Zπ/2 gate changes the
axis definition and now φ = φd−π/2, which is memorized by the pulse sequence compiling
program. Therefore when we apply the second Xπ pulse, we need to change the drive
phase to be φd + π/2, which is a Y−π pulse in the original definition. For the last Yπ pulse,
the drive phase should be φd, which is a Xπ pulse in the original definition. In the end, the
sequence will just look like Xπ ·Y−π ·Xπ in the original definition. Other arbitrary virtual Z
rotation angles can be implemented in the same way. Unlike a physical Z pulse, the virtual
Z gate affects the definition of all the X and Y types of gate (including the two-qubit gates
with X or Y terms) after it in the sequence, while the Z type of gates are not affected
(such as CPhase gates). Thus the program needs to keep track of the virtual rotation angles
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Figure 4.3: Single-qubit gate RB for a two-qubit device. (a) Ground state population
of qubit A and (b) population of qubit B as a function of the sequence length. A list of 51
randomly chosen sequence of Clifford gates are applied to the individually or simultane-
ously to the qubits before applying a recovery gate. The average single qubit fidelity for
qubit A (resp. qubit B) for a gate duration of 45 ns (resp. 26 ns) is (99.69 ± 0.01)% (resp.
(99.91± 0.003)%) in the individual case and (99.63± 0.01)% (resp. (99.57± 0.01)%) in the
simultaneous case. The duration of a simultaneous operation is given by the longest gate
time (gate time of qubit A or gate time of qubit B if a zero-duration pulse is applied to A).
Taken this into account, the residue error on qubit B comes from cross-talk

throughout the sequence in order to assign the correct phase to the microwave pulses.
Because the virtual Z gate has zero duration, it is almost immune to decoherence just

like identity gate, except for the case where qubit A is applied with anX or Y gate and qubit
B applied with a virtual Z gate needs to wait for A to finish. The major error for the virtual Z
gate comes from the imperfect microwave IQ mixing, which is negligible compared to other
gate errors as long as the IQ mixer is working at the correct parameter range. So the virtual
Z gate is almost as perfect as the identity gate in our experiment with fidelity close to 1.
What’s more, the virtual Z gate is highly flexible with arbitrary phases and they are equally
simple to implement. It outperforms all the other realizations of Z gates in every aspect and
becomes our optimal option. This is the reason that we chose the second representation of
single-qubit Clifford group in Table 4.2 when benchmarking the gates. However, this does
not mean the ac Stark shift is not an important effect. As we will introduce in the rest of
this chapter, it can still play a major role in cross-talk and two-qubit gates.
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4.2.3 Cross-talk

The cross-talk between single-qubit gates on different qubits can be classified as quantum
cross-talk and classical cross-talk [123], [151]–[153]. Quantum cross-talk refers to the
entangling operators between the qubits. It can be the static ZZ interaction or the cross-
resonance ZX terms in the presence of the drive. We will come back to them in Sec. 4.3.
Classical cross-talk, on the contrary, is manifested as IX or IZ types of terms that do not
create entanglement. This usually happens when the control signal on one qubit drive
line leaks to other qubit drive lines through the mutual capacitance or inductance. In this
case, two remote qubits can be affected by each other’s control signal if their control lines
are too close somewhere on the device. The classical cross-talk can also happen when the
electromagnetic field generated by the drive line on one qubit is not localized enough in
space, such that it is sensed by other nearby qubits. The latter case is especially significant
in a 3D architecture. This type of leakage is small, but can contribute to an error on the
order of 0.001 to the single-qubit gates. One can partly solve this problem by increase the
detuning between the qubits, such that the X types of misrotations are converted to the
Z type of error described by the ac Stark shift, which can be also suppressed with large
detuning. But as the number of qubit increases, this can potentially lead to the problem of
frequency. One can also apply corrections to the single-qubit pulses. For example, when
applying a X gate on qubit A, we can apply a weak Z rotation simultaneously on qubit B to
cancel out the ac Stark shift (this does not work with the virtual Z gate if qubit B is applied
with X or Y rotations at the same time). This approach can be tedious with a large number
of qubits. A clever way to address the classical cross-talk is to eliminate it on the hardware
level through ground plane shielding with airbridges [3], [154], [155].

In our experiment, we characterized cross-talk between two qubits by performing single-
qubit RB on each qubit – individually and simultaneously. Z rotations are performed with
virtual Z gates. Therefore, our Z rotations and identity gates have a zero duration. In the
individual single-qubit RB sequence, one Clifford gate contains on average 0.83 physical
pulses. As shown in Fig. 4.3, the average individual single-qubit fidelity is (99.69 ± 0.01)%

for qubit A with 45 ns-long pulses and (99.91± 0.003)% for qubit B with 26 ns-long pulses.
In our simultaneous RB sequence, there is a possible idle time for one qubit when the

other qubit is rotated on the Bloch sphere. So the simultaneous RB sequence is longer
than the individual RB sequences with the same number of Clifford gates. The change of
fidelity when operating the qubits simultaneously cannot be directly associated to cross-
talks but can be thought of as an upper bound of the cross-talk. With such sequences, the
simultaneous single qubit fidelity is (99.63±0.01)% for qubit A and (99.57±0.01)% for qubit
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B. Because qubit A has longer pulses than qubit B, the change of qubit A fidelity should be
closer to the cross-talk error, which is still quite small compared to the other errors such as
incoherent error.

By assigning the same sequence length to the individual RB and simultaneous RB, one
can quantify the cross-talk (or addressability) following the procedure described in [156].
Even though this condition is not satisfied in our measurement, we can still measure the
correlations in the errors by examining δp = p12 − p1|2p2|1. The depolarizing parameter p1|2
is obtained by fitting qubit A population p10 + p11 in the simultaneous RB and p12 is from
fitting p00 + p11. The correlation is δp = (0.11± 0.05)% from our measurements.

4.3 Two-qubit Gates

As we mentioned at the beginning of this chapter, entanglement is essential for quantum
speedup. However, it is not a sufficient condition. According to Gottesman–Knill theorem,
a circuit consisting of only Clifford gates can be perfectly simulated within polynomial time
on a classical computer. Therefore a truely powerful quantum computer should be able to
execute a universal gate set, which can construct any unitary operations. This means even-
tually we need to be able to perform all kinds of non-Clifford gate with the finite number of
gates that we can physically implemented. For example, a standard set of universal gates
contains the Hadamard gate, phase gate, CNOT gate, and the π/8 gates. One would need
two or more of these gates to construct a specific two-qubit gate needed in an algorithm,
such as a CPhase gate required in the Shor’s algorithm. This type of composite gate will
have an error worse than its components. Therefore, it will be quite beneficial if we have
direct access to different types of two-qubit gate from the hardware level. In this way, we
can expand the toolbox of the fundamental gates and create shortcuts in a real algorithm.

In this section, we are going to discuss the realization of several microwave two-qubit
gate schemes for capacitively coupled fluxoniums, including non-Clifford gate sets. As we
will illustrate, entanglement can be either created with the high energy transitions (off-
resonance CPhase gate and the near-resonance CZ gate) or using only computational states
(off-resonance CPhase gate, bSWAP gate, and the cross-resonance gate).

4.3.1 Off-resonance CPhase gate

An arbitrary control-phase (CPhase) gate can be realized by inducing ZZ interaction with
an external microwave drive. Here we are going to introduce two experiments. In one
experiment, we leveraged the high energy transitions. In the other experiment, we only
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utilized the computatonal states.
For the first experiment, qubit A (B) has a frequency fA = 217.2 MHz (fB = 488.9 MHz).

While the qubit lifetimes are above 100 µs, the Ramsey coherence times are in the 10−14 µs

interval, limited by insufficient thermalization of the measurement lines. The relevant part
of the measured two-qubit spectrum is shown in Fig. 4.4a. The simulated quantity Ωkl−k′l′

attached to every transition is the Rabi frequency that would be induced by a resonant drive
with the same amplitude for all transitions. The computational states |00⟩, |10⟩, |01⟩, and
|11⟩ are separated in energy from non-computational states by at least a few GHz, which
exceeds the qubit frequencies by almost an order of magnitude. Within the computational
subspace, the two-qubit dynamics obeys the Hamiltonian

H = fA
ZI

2
+ fB

IZ

2
+ ξZZ

ZZ

4
, (4.43)

where ξZZ = ξstatic
ZZ = −357 kHz is the ZZ-interaction strength. The quantity ξstatic

ZZ has a
negative sign because the non-computational levels push stronger on level |11⟩ than on the
other computational levels.

Tuning the magnitude of ξZZ by an externally applied microwave drive can be under-
stood as follows. First, let us note that the capacitive coupling leads to much stronger inter-
action between the non-computational states, splitting the otherwise degenerate transitions
|10⟩−|20⟩ and |11⟩−|21⟩ by ∆ = 8.47 MHz ≫ |ξstatic

ZZ |, which provides us the resource to dy-
namically modify ξZZ . The same is true for other transition pairs, e.g. |11⟩−|12⟩, |01⟩−|02⟩,
or |00⟩ − |03⟩, |10⟩ − |13⟩, although the splitting may vary. Consider driving the circuit at
the frequency fd, blue-detuned from the |10⟩ − |20⟩ resonance by an amount δ ≫ ∆ (see
Fig. 4.4b). Except for the paired transition |11⟩ − |21⟩, there are no other circuit transitions
in the GHz-vicinity (see Fig. 4.4a) due to the large anharmonicity. Therefore, the effect of
the drive reduces to the attraction between levels in pairs {|10⟩ , |20⟩} and {|11⟩ , |21⟩}, while
other transitions are not driven. Specifically, if qubit B is in the ground state, there is a pos-
itive ac Stark shift δfStark(Ω, δ) = (

√
Ω2 + δ2 − δ)/2 on the qubit A frequency, which can be

thought of as pulling level |10⟩ towards level |20⟩ by the δ-detuned drive (see Sec. 4.2.2).
However, this shift is larger when qubit B is in the excited state, because the detuning
(δ − ∆) is smaller and the effective drive amplitude Ω is larger. Therefore, the qubit ac-
quires a differential ac Stark shift, which is equivalent to modifying the ZZ-term in Eq. 4.43
as ξZZ = ξstatic

ZZ + ξdrive
ZZ , where ξdrive

ZZ = δfStark(Ω11−21, δ −∆) − δfStark(Ω10−20, δ). Because
ξstatic
ZZ < 0 and ξdrive

ZZ > 0 for typical fluxonium parameters, the total qubit-qubit interaction
ξZZ in Eq. 4.43 can be tuned through zero or increased by about an order of magnitude
compared to the static value by adjusting the drive frequency and amplitude (see Fig. 4.4c
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Figure 4.4: Differential ac Stark shift in a two-fluxonium circuit. (a) Spectrum of al-
lowed transitions of the two-fluxonium circuit extracted from spectroscopy data. The sim-
ulated quantity Ωkl−k′l′ defines an on-resonance Rabi frequency that a drive field would
induce, assuming the field amplitude is frequency-independent. Note that only transitions
between states with different parity are allowed. The green arrow indicates the drive fre-
quency fd used to induce the differential ac Stark shift. (b) Schematic of the energy level
diagram for qubit B in the ground state (left) and qubit B in the excited state (right). A
drive at frequency fd pulls the energy level |11⟩ more than the energy level |10⟩, without
affecting levels |00⟩ and |01⟩, which is equivalent to a differential ac Stark shift ξdrive

ZZ > 0.
(c) Calculated total ZZ-interaction rate ξZZ = −|ξstaticZZ | + ξdriveZZ for a fixed drive amplitude
(Ω11−21 = 52 MHz). Note, at an appropriate detuning δ, the total qubit-qubit interaction is
switched off, we get ξZZ = 0.
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and Fig. 4.5c).
We verify that the qubit-qubit interaction indeed takes the form of Eq. 4.43 using a

tomography protocol depicted in Fig. 4.5a [157]. The pulse sequence shown results in
the observation of Ramsey-type fringes oscillating at the frequency ξZZ . Fig. 4.5b shows
the measured oscillations by sweeping the driving frequency around fd ≈ 4.5 GHz and
fixing the amplitude such that Ω11−21 = 52 MHz. As the drive frequency approaches either
the |10⟩ − |20⟩ or |11⟩ − |21⟩ transitions (marked by the black dashed lines at 4.488 GHz

and 4.496 GHz, respectively), the ZZ-interaction rate reaches about 6 MHz before the off-
resonant ac Stark shift picture breaks down (Fig. 4.5b). Beyond that point, the drive field
and the two non-computational transitions undergo a coherent energy exchange, witnessed
by the detection of rapidly oscillating ripple features in Fig. 4.5b. The ZZ-interaction can
also be controlled by off-resonantly driving the pair of doublets of transitions |00⟩ − |03⟩,
|10⟩ − |13⟩, |01⟩ − |31⟩, |00⟩ − |30⟩, near the frequency f ′d ≈ 6.5 GHz, where we obtained
ξZZ > 10 MHz (Fig. 4.6).

The ZZ-term in Eq. 4.43 can be switched on and off on a time scale of about 10 ns using
Gaussian-edge pulses supplemented with the commonly used derivative removal (DRAG)
distortion. During the time interval of ξZZ(t) ̸= 0, the states |10⟩ and |11⟩ accumulate
different phases ϕ10 and ϕ11, which is equivalent to the action of a unitary evolution oper-
ator U = diag(1, e−iϕ10 , 1, e−iϕ11) in the computational subspace. Using virtual Z rotations,
the accumulated phase can be entirely assigned to any state such as |11⟩ to implement a
controlled-phase operation UCP(ϕ) = diag(1, 1, 1, e−iϕ) where ϕ = ϕ11 − ϕ10. In principle,
one can modulate both the drive frequency and amplitude during the gate pulse, but for
simplicity we fixed the drive frequency and tried two different values, fd = 4.545 GHz (de-
tuned by 49 MHz from transition |11⟩− |21⟩) and f ′d = 6.665 GHz (detuned by 55 MHz from
|00⟩ − |30⟩).

At ϕ = π the CP gate belongs to the Clifford group, i.e. it becomes the controlled-Z
gate. Hence, it can be characterized using randomized benchmarking (RB), which evades
SPAM limitations. Using procedures similar to those described in Ref. [120], we optimized
the gate pulses and obtained a CZ gate fidelity of 0.989 ± 0.001 at fd = 4.545 GHz and
0.991 ± 0.001 at f ′d = 6.665 GHz (Fig. 4.7). Next, we characterize the CP gate at ϕ = π

using the cross-entropy benchmarking technique. The XEB procedure applied to the CZ
gate at fd = 4.545 GHz yields a gate fidelity of 0.988 ± 0.001 which agrees with the results
of randomized benchmarking and hence validates the use of XEB for other values ϕ of the
controlled phase.

Finally, we apply the XEB procedure to a family of CP gates with the value of ϕ equally
spaced by π/16. The extracted gate error grows approximately linearly in ϕ with a slope
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Figure 4.5: Tuning the ZZ-interaction. (a) Pulse sequence used to measure the interac-
tion rate ξZZ . The qubits evolve under Uac that corresponds to the ZZ-term in Eq. 4.43. We
use a refocusing pulse on each qubit in the middle of the sequence to cancel single-qubit
Z rotations. (b) Induced ZZ-interactions (a two-qubit Ramsey-type fringe) as a function
of drive frequency around the |10⟩ − |20⟩ and |11⟩ − |21⟩ transitions. The color scale is
proportional to ⟨ZI⟩, which is related to qubit A population. The oscillation rate expect-
edly increases on approaching a resonance condition. (c) The induced interaction rate at
different drive frequency and drive strength. It can reach about ξZZ = 5 MHz on-demand.
(d) Cancellation of the qubit-qubit interaction. When applying a drive at 4.65 GHz, the ZZ-
oscillations slow down and speed back up as the drive amplitude passes though the value
Ω11−21 = 30.4 MHz. At this point, we can extract that ξZZ < 20 kHz.
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Figure 4.6: ZZ-interactions induced by driving around 6.5 GHz. (a) ZZ-oscillations mea-
sured with the pulse protocol depicted in Fig. 4.5(a). Within this frequency range, the four
transitions |00⟩−|03⟩, |10⟩−|13⟩, |01⟩−|31⟩, and |00⟩−|30⟩ contribute to the ac Stark shift in
the computational subspace. (b) The induced interaction rate at different drive frequency
and drive strength. We achieve interaction rates exceeding 10 MHz.

of about 3 × 10−3 per radian (Fig. 4.8(d), circular markers). For ϕ = π/16, the CP gate
error reaches 2 × 10−3, which is close to the experimental resolution limit. In order to
understand the origin of the gate error, we performed detailed master-equation simulations
of the driven two-fluxonium system with the measured coherence time in Table 4.3 [121].
Our numerical model closely reproduces the data while relying only on experimentally
measured parameters (Fig. 4.8(d), square markers). According to the model, the error is
entirely due to incoherent processes, while the coherent error is absent down to the 10−4

level thanks to the strong anharmonicity of fluxonium’s non-computational transitions.
The second experiment is perform on another two-qubit device with fA = 498 MHz and

fB = 853 MHz. Compared to the device used in the first experiment, the qubit frequencies
are higher and the charge matrix elements are larger leading to a stronger effective cou-
pling between the computational states with the same mutual capacitance between the two
fluxonium circuits. This can be supported with the measured static ZZ interaction of 0.7
MHz. Such a strong effective coupling makes it possible to induce substantial ZZ interaction
while keeping the population inside the high-coherence computational space.

Similar effects have been explored with transmon systems [122], [123] where the mi-
crowave drive needs to be applied to the two qubits simultaneously. This can be understood
as an off-resonant effect of the ZX term of the drive (see Sec. 2.4). A ZX term alone can
not generate different ac Stark shift because qubit B experiences the same drive strength
with a π phase difference depending on the state of qubit A, indicating equal ac Stark shifts
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Figure 4.7: Interleaved randomized benchmarking (IRB) for CZ gates. (a) IRB of a
145 ns CZ gate using the 1 − 2 manifold. The drive frequency is fd = 4.545 GHz (detuned
by 49 MHz from transition |11⟩ − |21⟩) and the drive amplitude is Ω11−21 = 68 MHz. The
gate fidelity is 0.989 ± 0.001 from IRB, which is consistent with the XEB fidelity on the
same gate. (b) IRB of a 115 ns CZ gate using the 0 − 3 manifold. The drive frequency is
f ′d = 6.665 GHz (detuned by 55 MHz from transition |00⟩ − |30⟩) and the drive amplitude
is Ω00−30 = 91 MHz. The gate fidelity is 0.991± 0.001.
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Figure 4.8: Cross-entropy benchmarking for arbitrary CPhase gates. (a) XEB for the
phases ϕ = π/2 and π. We extract the Pauli and gate errors from the decay of the XEB
sequence fidelity with the number of cycles. The gate fidelity at ϕ = π/2 reaches (99.2 ±
0.1)%. (b) Fidelity of the controlled-phase gate family. The green circles are obtained
by cross-entropy benchmarking and the magenta squares are obtained by master equation
simulations using the average T1 and TE

2 shown in Table 4.3. The gate fidelity averaged
over the complete family exceeds 99.2%.
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Figure 4.9: Measured ZZ rates when applying the drive near the qubit transitions.
The drive frequency is 650 MHz and the drive amplitude ΩB is the equivalent Rabi rate
when driving qubit B on resonance. The data point at 0 pulse amplitude shows the static
ZZ interaction of the system is 0.7 MHz. The total ZZ rate gets stronger with larger drive
amplitude and then saturates around 7 MHz which is mainly because the rotating wave
approximation starts to break down.
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in both cases. The symmetry can be broken when an addition IX term is created by ap-
plying the drive with the same frequency at qubit B. The non-local input field of the 3D
architecture fulfills this requirement by nature, enabling us to induce differential ac Stark
shift with only one port.

The ZZ interaction is induced by driving at 650 MHz in Fig. 4.9. We quantify the drive
strength with the Rabi frequency of qubit B when applying the same power on resonance.
The induced ZZ rate can be as high as 7 MHz, suggesting that a potential fast CZ gate. The
ZZ rate saturates at large drive strength. This is mainly because the driving strength starts
to be comparable with the qubit frequency and the rotating wave approximation starts to
break down. We optimized a CZ gate at ΩB = 133 MHz. The gate duration is 138 ns
and the measured fidelity is (99.0 ± 0.1)%, which we believe is limited by driving induced
decoherence [152], [158] and pulse distortion [106].

4.3.2 Near-resonance CZ gate

A CZ gate can be implemented by Rabi drive |10⟩ − |20⟩ and |11⟩ − |21⟩ at a frequency
in between. Let us start by considering the gate transitions |10⟩ − |20⟩ and |11⟩ − |21⟩
as two-level systems. Our gate exploits the geometric-phase accumulations during round
trips in these two systems. The accumulated phase can be divided into two parts: the
dynamical phase, which is proportional to the evolution time and the energy of the system,
and the geometric phase, which depends only on the trajectory followed in the Hilbert
space. Applying a microwave tone drives the system with the Hamiltonian

Hdrive = (ϵAnA + ϵBnB) cos(2πfdt). (4.44)

When the drive frequency fd is nearly resonant with one of the two gate transitions, we
observe Rabi oscillations (Fig. 4.10a) with the resonance Rabi frequencies

Ω10−20 = |⟨10|Hdrive|20⟩|, (4.45)

Ω11−21 = |⟨11|Hdrive|21⟩|, (4.46)

respectively. A strong hybridization of the |12⟩ and |21⟩ states creates an imbalance between
the rotation speeds given by the ratio r = Ω11−21/Ω10−20 ≃ 1.36.

In order to eliminate leakage to higher states, one needs to synchronize off-resonance
Rabi oscillations determined by the two transitions to ensure that the state vector always
comes back to the computational subspace. This is achieved by matching the generalized
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Figure 4.10: Gate principle of the near-resonance CZ gate. (a) Rabi oscillations near
the |10⟩ − |20⟩ and |11⟩ − |21⟩ transitions versus driving frequency with a 330 ns-long pulse.
The two transitions display different resonance Rabi frequencies characterized by the ratio
r = Ω11−21/Ω10−20 ≃ 1.36. The drive frequency fd indicated in brown given by Eq. 4.48
is used to synchronize the oscillations on the two transitions. (b) Bloch sphere representa-
tions of the trajectories in the {|10 ⟩, |20⟩} and {|11⟩, |21⟩} manifolds in the frame rotating
at the drive frequency. The quantum state follows a closed path in the Hilbert space leading
to a relative phase accumulation given by the difference of the solid angles spanned by the
two trajectories. (c) Gate error versus gate duration simulated using the Hamiltonian in the
presence of a Gaussian flat-topped pulse and without decoherence. For every gate dura-
tion, drive frequency and amplitude are optimized to minimize the coherent leakage error
(dashed line). The dots represent the gate error caused by incorrect phase accumulation
∆φ = φ11 − φ10 ̸= π. With the optimal pulse duration around ∼ 62 ns, the infidelity due to
coherent errors is well below 10−3.
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Rabi frequencies
Ω =

√
Ω2
11−21 + δ2 =

√
Ω2
10−20 + (δ −∆)2, (4.47)

where δ = f11−21 − fd is the detuning between the |11⟩ − |21⟩ transition and the drive fre-
quency (Fig. 4.10a). A full rotation is then performed in the shortest gate time tgate = 1/Ω.
During the gate operation, the state vector trajectory can be depicted in a Bloch sphere
representation (Fig. 4.10b) when the system starts in |10⟩ or |11⟩. These circular trajec-
tories, which are traveled in opposite directions with respect to the centers of the Bloch
spheres, define two cones inside the spheres. The cones and directions of travel define
the solid angles Θ10 = 2π[1 − (∆ − δ)/Ω] and Θ11 = 2π(1 + δ/Ω), which correspond to
a geometric phase accumulation φij = −Θij/2 on state |ij⟩. Our gate thus implements
a unitary operation U = diag(1, 1, eiφ10 , eiφ11). Using virtual Z rotations, the phase dif-
ference can be assigned to any computational state such as |11⟩ to realize a controlled-
phase operation U = diag(1, 1, 1, ei∆φ) with ∆φ = φ11 − φ10. A CZ gate is obtained when
∆φ = −(Θ11 − Θ10)/2 = −π∆/Ω = ±π. Using this condition in Eq. 4.47 we obtain the
optimal drive frequency (brown arrow on Fig. 4.10a)

δ

∆
=
r2 −

√
(r2 − 1)2 + r2

r2 − 1
≃ 0.29 . (4.48)

For δ given by Eq. 4.48 and Ω = ∆, a CZ gate with zero leakage is achieved in time exactly
tgate = 1/∆.

Our understanding of the gate process is validated by simulating the Hamiltonian in
the presence of the drive term, given by Eq. 4.44. The full Hamiltonian takes into account
the dynamical phase ϕdyn = 2πξZZtgate ≃ 10−2 ≪ π which is negligible after one gate
operation thanks to the small ZZ-interaction term. Starting with the driving frequency
given by Eq. 4.48, we minimize the final populations leakage out of the computational
subspace by adjusting the drive amplitude and frequency for every gate duration. Because
of the rising and lowering edges of the pulse in the simulation, we find a slightly longer
optimal gate duration ∼ 62 ns (compared to 1/∆ = 45.5 ns) for which coherent errors on
the gate fall below < 10−3, see Fig. 4.10c. Note, even at the error level of 10−4, the optimal
point does not require an excessive fine-tuning of the gate pulse parameters: it corresponds
to a fraction of a percent variation in terms of the gate time, gate pulse amplitude, and
frequency.

We assess the quality of the optimized CZ gate by iterative interleaved randomized
benchmarking [159]. We obtain a reference fidelity FClifford2 = (96.0± 0.1)%. Interleaving
the gate CZn, obtained by concatenating n pulses corresponding to a single CZ gate, yields
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Figure 4.11: IRB of different number of CZ gates. (a) Average probability p(|11⟩) as
a function of sequence length. For each sequence length, we average over 100 random
sequences repeated 1500 times. We insert a variable number n = 0, 1, ..., 10 (encoded in the
color) of CZ gates between the randomly chosen Clifford gates. (b) Fidelity of CZn versus
n. The gate error grows linearly with n indicating that the errors are incoherent.

the CZ gate fidelity of F (CZ) = (99.2 ± 0.1)% for n = 1 (yellow curve in Fig. 4.11a). The
error grows linearly with n (we tried n = 2, 3, ..., 10) (Fig. 4.11b), which is a solid evidence
that the gate error is due to incoherent processes [142].

4.3.3 bSWAP gate

A bSWAP gate can be realized through driving the two-photon transition of the 00 − 11

transition. We can start from the spin model introduced in Sec. 2.4 and define the total
Hamiltonian Htot = H̃ + F̃ cos(ωdt + φ3) using Eq. 2.37 and Eq. 2.40. To understand the
origin of the two-photon effect, we need to first go to a rotating frame with transformation
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operator U2 = exp(−iO2t) and

O2 =


−ωd 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ωd

 , (4.49)

which we called the bSWAP gate frame. In this rotating frame, state |00⟩ and |11⟩ become
almost degenerate and form a low-energy manifold. We can define ∆ = −(ω̃B − ω̃A)/2 and
δ = ωd− (ω̃A+ ω̃B)/2. If we can treat the drive term as a perturbation ΩA,ΩB < ∆, we can
apply Schrieffer-Wolff transformation [160] (see Sec. C.2) to arrive at a Hamiltonian Heff

with the effective coupling between |00⟩ and |11⟩ as well as the coupling between |01⟩ and
|10⟩

Heff =
αIZ

2
IZ +

αZI

2
ZI +

αZZ

2
ZZ +

ΩER

4
(XX − Y Y )

+
ΩEI

4
(XY + Y X) +

ΩO

4
(XX + Y Y ), (4.50)

where ΩER = ΩE cos 2φ3, ΩEI = ΩE sin 2φ3 and

ΩE =
∆

2(∆2 − δ2)
(Ω2

A sin 2(θ− − θ+) + Ω2
B sin 2(θ− + θ+)) (4.51)

ΩO =
δ

2(∆2 − δ2)
(Ω2

A sin 2(θ− − θ+)− Ω2
B sin 2(θ− + θ+)). (4.52)

The IZ, ZI, and ZZ terms are the computational state energies modified by the ac Stark
shifts in the rotating frame. Let’s ignore these terms for now and focus on the unitary
evolution of the last three terms in Eq. 4.50

UXY =


cos ΩEt

2 0 0 −iei(2φ3) sin ΩEt
2

0 cos ΩOt
2 −i sin ΩOt

2 0

0 −i sin ΩOt
2 cos ΩOt

2 0

−ie−i(2φ3) sin ΩEt
2 0 0 cos ΩEt

2

 . (4.53)

It is clear from Eq. 4.53 that XX−Y Y and XY +Y X terms are the X-like and Y -like Rabi
rotations for the 00 − 11 transition, corresponding to the bSWAP process. ΩE is the Rabi
frequency with a quadratic dependence on the drive amplitude ΩA,ΩB and 2φ determines
the direction of the rotation axis. The XX + Y Y term is the X-like Rabi rotation for the
01 − 10 transition, corresponding to the iSWAP process with Rabi frequency ΩO, which
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Figure 4.12: Two-tone spectroscopy of the |00⟩ − |11⟩ two-photon transition under
different drive strength. The drive amplitude ΩB is the equivalent Rabi rate when driving
qubit B on resonance. At low power, the transition frequency is at 677 MHz. The two-
photon transition shifts significantly at higher power due to the unequal ac stark shifts on
the two qubits.

should be avoided if we only want a bSWAP gate.
Next, we can include the ac Stark shift terms. Because the ZZ term commutes with

all the other terms in Eq. 4.50, we can separate it from the unitary evolution of the other
operators UH = UXY ZUZZ , where UXY Z contains the IZ, ZI, and the X or Y types of
terms. For simplicity, we rewrite the single-qubit Z terms as

αIZ

2
IZ +

αZI

2
ZI =

α+

4
(IZ + ZI) +

α−
4

(IZ − ZI), (4.54)

and focus on the off-diagonal terms in UXY Z .

UXY Z =


u00 0 0 −iei(2φ3) ΩE

Ω′
E
sin

Ω′
Et
2

0 u01 −iΩO
Ω′

O
sin

Ω′
Ot
2 0

0 −iΩO
Ω′

O
sin

Ω′
Ot
2 u10 0

−ie−i(2φ3) ΩE
Ω′

E
sin

Ω′
Et
2 0 0 u11

 .

(4.55)

Ω′
E (Ω′

O) are the effective Rabi frequency defined as Ω′
E =

√
α2
+ +Ω2

E (Ω′
O =

√
α2
− +Ω2

O).
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Figure 4.13: Rabi oscillations of the |00⟩ − |11⟩ two-photon transition. (a) chevron
pattern of Rabi oscillations at different drive frequency. The drive strength ΩB = 222 MHz.
The pattern is not symmetric with respect to the resonance frequency. (b) Rabi oscillation
on resonance. The plateau for a π pulse is 161 ns.

Interestingly, α+ (α−) serves as the detuning of the 00−11 (10−01) two-photon transition.
This originates from the fact that IZ +ZI does not commute with XX − Y Y or XY + Y X

and IZ − ZI does not commute with XX + Y Y . Because α+ is strongly dependent on
ac Stark shifts, the two-photon transition can drift significantly at different drive power, as
illustrated in Fig. 4.12. One needs to search for the on-resonance frequency whenever the
power is changed to make sure α+ = 0. Because the ac Stark shifts can also depend on the
drive frequency, the Rabi chevron pattern is not symmetric in Fig. 4.13 as in a typical Rabi
measurement. However, the oscillation contrast is still maximized on resonance. At this
frequency, the Rabi oscillation of 10− 01 is small due to the large detuning of α−.

An vital thing to notice is that, up to now, we are working in the rotating frame of O2

defined in Eq. 4.49. We still need to transform the unitary operator to the single-qubit gate
frame of

O1 =


−ω̃+/2 0 0 0

0 −ω̃−/2 0 0

0 0 ω̃−/2 0

0 0 0 ω̃+/2

 , (4.56)

and U1 = exp(−iO1t). For the sake of convenience, we only consider the bSWAP process in
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Eq. 4.53 and set ΩEt = π for a full SWAP between |00⟩ and |11⟩. The unitary operator in
the bSWAP gate frame is

UbSWAP
2 =


0 0 0 −iei(2φ3)

0 1 0 0

0 0 1 0

−ie−i(2φ3) 0 0 0

 . (4.57)

We can assume the bSWAP gate starts at t = t1 and ends at t = t2. Following a similar
frame transformation procedure mentioned earlier in Sec. 4.2.2 and illustrated in Fig. 4.14,
we have the unitary operator in the single-qubit gate frame

UbSWAP
1 = U †

1(t2)U2(t2)U
bSWAP
2 U †

2(t1)U1(t1). (4.58)

Of course, we need to consider the phase offset of the single-qubit control microwave φ1

and φ2, such that UbSWAP
1 → U †

φ1U
†
φ2U

bSWAP
1 Uφ2Uφ1 . Therefore in practice, the operator is

UbSWAP
1 =


0 0 0 −ieiφE

0 e−i∆(t1−t2) 0 0

0 0 ei∆(t1−t2) 0

−ie−iφE 0 0 0

 , (4.59)

where φE = δ(t1 + t2)−φ1 −φ2 +2φ3. The diagonal terms in Eq. 4.59 are trivial. They are
nothing but fixed single-qubit Z phases. However, the phase on the off-diagonal elements
are non-trivial because it depends on the position of the pulse in the sequence through
δ(t1 + t2)! It originates from the fact that a two-qubit system only has two degrees of
freedom on choosing the phase offset, therefore a third microwave drive at a different
frequency can not maintain a relatively fixed phase over the whole sequence.

To prove that φE changes with the pulse position, we performed a Ramsey-type of ex-
periment illustrated in Fig. 4.15. If the unitary operator of the bSWAP pulse takes the form
of

UbSWAP =


0 0 0 −ieiφE

0 1 0 0

0 0 1 0

−ie−iφE 0 0 0

 , (4.60)

the observable ⟨ZI⟩ = − sinφE = − sin(2πfϕt + ϕ0). By fitting the Ramsey data in
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Figure 4.14: Rotating frame transformation for bSWAP gate. U1(t) is the unitary trans-
formation between the bSWAP gate frame and the lab frame. U2(t) is the unitary transfor-
mation between the single-qubit gate frame and the lab frame. The goal is to obtain the
evolution operator in the single-qubit frame UbSWAP

1 from the bSWAP gate frame.
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Fig. 4.15b, we found |fϕ| = 158 MHz. We can cancel out this effect by assigning a position-
dependent phase on the bSWAP pulse such that φ3 = fpulset + φoffset

3 . The Ramsey fringes
disappear when fpulse = 79 MHz. These measurements are all consistent with the fact that
|δ/(2π)| = |fd − (f̃A + f̃B)/2| = 79 MHz in our setup.

What’s more, because we need to repeat the sequence for many times, φE is required to
be stable across different consecutive sequences, otherwise the off-diagonal terms will look
random over many repetitions and be eventually averaged out. Assume the total duration
of a sequence is T . This converts to the condition of (2ωd − ω̃A − ω̃B)T = 2nπ, where n
is an integer. If three independent RF sources are used for the single-qubit drives and the
two-photon drive, they need to be synchronized to the same clock and their relative phase
fluctuation should also be small. We monitored the phase difference fluctuations over 30
hours between two RF sources (Rohde&Schwarz SGS100A) in our lab. The relative phase
can drift on the order of 0.03, which can be translated into an error of 2e-4 by calculating
the fidelity of two unitaries [161]

F =
Tr
(
U †U

)
+
∣∣∣Tr(U †

expU
)∣∣∣2

20
. (4.61)

Unfortunately, we found a significant ZZ interaction (i.e. αZZ in Eq. 4.50) is induced
as we apply the two-photon drive which is on the same order of the pure bSWAP gate
rate. The associated ZZ term can undermine the entangling power of the whole unitary
[162]. We noticed that this issue can be addressed by constructing a composite gate as√
bSWAP − XπI −

√
bSWAP. This composite gate echos out the ZZ interaction and has

the same entangling power with a CNOT gate.

4.3.4 Cross-resonance gate

Similar to the transmon system, we can perform cross-resonance (CR) [115] gate on fluxo-
nium qubits as well [106]. The cross-resonance effect can be understood with the ZX terms
in Eq. 2.40. when the drive field applied on qubit A is on resonance with qubit B, the qubit
B feels a different drive phase based on the state of qubit A. In practice, we worked with
fluxoniums in a 3D architecture. The ZX and IX terms can be generated simultaneously.
Tuning the relative strength between these two terms can be done by leveraging the two
input ports of a 3D cavity. The microwave drive can be applied to the two ports simulta-
neously (at the same frequency). By adjusting the drive strength and the phase difference
of the two ports, one can achieve selective darkening of a transition in the computational
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a

b c

Figure 4.15: bSWAP Ramsey measurements. (a) Pulse sequence to measure the accu-
mulated phase due to different rotating frame. UbSWAP brings an additional phase that
depends on the position of the pulse in the sequence. (b) bSWAP Ramsey oscillation.
The measured oscillation at |fϕ| = 158 MHz is proportional to ⟨ZI⟩, which is related to
qubit A population. (c) bSWAP Ramsey oscillation rate |fϕ| at different pulse phase fre-
quency. The bSWAP pulse phase is changed depending on the position of the pulse cen-
ter ϕbSWAP = 2πfpulsetcenter to cancel out the additional phase from frame transforma-
tion. |fϕ| vanishes at fpulse = 79 MHz, which is consistent with the frequency difference
|fϕ|/2 = |fd − (f̃A + f̃B)/2|. The red region indicates the noise floor of |fϕ| from fitting due
to finite sequence length.
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Figure 4.16: Relative fluctuation between two different RF source. A Ramsey exper-
iment is carried out to monitor the phase difference ∆ϕ between two independent Ro-
hde&Schwarz SGS100A RF sources. ∆ϕ can have a drift of 0.03 rad over 30 hours, which
can contribute an error of 2e-4 estimated from Eq. 4.61.

space. For example, when ⟨00|Hdrive |01⟩ = 0 as demonstrated in Fig. 4.17, a CNOT gate
can be implemented.

As we discussed in Sec. 4.2.3, the side effect of cross-resonance is the quantum cross-
talk as we perform single-qubit gates. This is more severe for the non-local input field of
a 3D cavity. One can apply the same trick in the CNOT gate and utilize the two input
ports. Likewise, ⟨00|Hdrive |01⟩ = ⟨10|Hdrive |11⟩ can be achieved by adjusting the drive
parameters on the two ports, leading to a full cancellation of a ZX term as we execute the
single-qubit gate on B.

4.4 Parameter Optimization

Here is the routine when we optimize the two-qubit gate. We start from optimizing the
single-qubit gates. We run Rabi and Ramsey experiments to find the single-qubit pulse du-
ration (amplitude) and frequency. We perform a parameter search optimizing the sequence
fidelity of fixed length RB, also known as ’Optimized Randomized Benchmarking for Im-
mediate Tune-up’ (ORBIT), with a numerical Nelder-Mead method. This is to fine tune the
pulse parameters including the DRAG coefficient.
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a

b

Figure 4.17: Gate principle for a cross-resonance gate. Two microwave drives are ap-
plied to the two qubits with different frequency ωA and ωB when (a) qubit A is at |0⟩ state
and (b) qubit A is at |1⟩ state. The drives have the same frequency but different amplitude
and phase. The drive at qubit A generates a ZX term. Combined with the IX term of
the drive at qubit B, one can achieve selective darkening of the |00⟩ − |01⟩ transition by
adjusting the relative amplitude and phase of the drives. Qubit B can only be driven when
qubit A is at |1⟩ state.
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Next we perform some basic experiments to determine the parameters of the two-qubit
gate. For example, we run Ramsey-type of measurements to measure the ZZ interaction and
the single-qubit ac Stark shifts of a CZ gate. Then we confirm the two-qubit unitary with
QPT and correct any erroneous Z rotations with virtual Z gates and adjust the controlled
phase with pulse duration. In the end, we execute ORBIT on the two-qubit gate to fine tune
the duration, DRAG coefficient and the virtual Z rotations. For non-Clifford gates, we used
the sequence fidelity of the XEB measurement instead.
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X & Y rotations only with Z rotations

I I

Xπ Xπ

Yπ Xπ

Yπ, Xπ Zπ

Xπ/2, Yπ/2 Yπ/2, Zπ/2

Xπ/2, Y−π/2 Y−π/2, Z−π/2

X−π/2, Yπ/2 Yπ/2, Z−π/2

X−π/2, Y−π/2 Y−π/2, Zπ/2

Yπ/2, Xπ/2 Xπ/2, Z−π/2

Yπ/2, X−π/2 X−π/2, Zπ/2

Y−π/2, Xπ/2 Xπ/2, Zπ/2

Y−π/2, X−π/2 X−π/2, Z−π/2

Xπ/2 Xπ/2

X−π/2 X−π/2

Yπ/2 Yπ/2

Y−π/2 Y−π/2

X−π/2, Yπ/2, Xπ/2 Z−π/2

X−π/2, Y−π/2, Xπ/2 Zπ/2

Xπ, Yπ/2 Zπ/2, Xπ/2, Zπ/2

Xπ, Y−π/2 Zπ/2, X−π/2, Zπ/2

Yπ, Xπ/2 Z−π/2, Yπ/2, Z−π/2

Yπ, X−π/2 Z−π/2, Y−π/2, Z−π/2

Xπ/2, Yπ/2, Xπ/2 Z−π/2, Xπ, Z−π

X−π/2, Yπ/2, X−π/2 Zπ/2, Xπ, Z−π

Table 4.2: Single-qubit Clifford gates. The Clifford gates can have different representa-
tions based on the pulse used in the experiment.

T1 (µs) TR
2 (µs) TE

2 (µs)

|00⟩ − |10⟩ 158− 207 10− 12 14− 15
|00⟩ − |01⟩ 116− 141 13 20− 25
|11⟩ − |21⟩ 4.9− 6.2 2.6− 2.8 3.3

Table 4.3: Energy relaxation time T1, Ramsey coherence time TR
2 , and spin echo

coherence time TE
2 . The ranges corresponds to time fluctuations during the experiment.
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Chapter 5

Summary

5.1 Fluorescence readout

We showed that a single macroscopic degree of freedom – the superconducting phase-
difference – can combine a highly coherent qubit and its QND readout via conditional
fluorescence, in full analogy with Dehmelt’s electron shelving scheme. This first imple-
mentation of conditional readout by fluorescence in superconducting circuits relies on the
high anharmonicity of the fluxonium circuit and does not require an additional degree of
freedom like other implementations of V and lamda-shaped artificial atoms in circuit-QED
[163]–[165]. The present experimental setup can be supplemented with quantum-limited
linear amplifiers [166] or recently developed microwave photon counters [167]–[169] for
a single-shot operation. Indeed, we measured readout histograms separated by a third
of the standard deviation, a quantity that can be increased by a factor 10 by adding a
quantum-limited amplifier, leading to measurement distributions overlapping by 1 %. With
the current experimental parameters and the fluorescence integration time τm = 500 ns, the
resulting single-shot measurement would see 5 % of population leaving the ground state
during readout. This amount can be reduced below the percent by a moderate increase of
the QND-fidelity. Moreover a further increase of the capacitive coupling of the circuit to the
waveguide will lead to larger readout coupling rates without affecting the qubit coherence
time, which is limited by dielectric loss. Such improvements would make readouts based on
conditional fluorescence comparable to state-of-the-art circuit-QED readouts using cavities.

Our approach offers the most direct interface between superconducting qubits and prop-
agating microwave photons while maintaining near state-of-the-art coherence times. These
properties make it a useful resource for quantum optics in the microwave range, with ap-
plications such as single photon emission and detection and photon routing controlled by
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superposition of states [170], [171]. The possibility to route photons in a superposed way
is particularly interesting and has not been demonstrated so far, as previous implemen-
tations rely on classical controls. From a waveguide QED point of view, the addition of
a long-coherence memory transition paves the way to the preparation of highly-entangled
state over a quantum network [172] and its use for quantum computation protocols such as
teleported gates [173]. Finally our approach is compatible with a 2D implementation and
offers high advantages over traditional cQED in terms of scalability, as readout resonators
takes the most space due to their mode structure.

5.2 Two-qubit gates

The demonstrated all-microwave control over the ZZ-interaction is technologically attrac-
tive for scaling-up superconducting quantum processors. Our scheme has the following
advantages. First, it does not require close arrangement of qubit frequencies, in contrast to
the case of the cross-resonance (CR) gate [152], [174] for transmons, which would miti-
gate the spectral crowding issues [152], [175], allows tolerance to fabrication variability,
and enables multiplexing of the qubit control. For example, here we used only one input
port for the entire experiment. The qubit frequency could be as low as 100 MHz, as in our
earlier demonstration of the CZ-gate [120], but it can also be around 200 − 500 MHz (the
main device here) or even 700 − 1300 MHz (the second device here). Second, fluxonium’s
highly anharmonic spectra allow great flexibility of choosing drive frequencies and to oper-
ate the gate in the far-detuned regime, in which higher states are almost unoccupied during
the gate operation, reducing leakage error and error due to decoherence of higher states.
The required drive power is also comparable to single-qubit rotations [175]. This makes
our method highly scalable. Third, our scheme does not require any additional circuitry as
in schemes to cancel ZZ coupling using tunable couplers.

Among the previously explored two-qubit gates with a high degree of flexibility, our
off-resonance CPhase gate scheme is reminiscent of the resonator-induced phase (RIP) gate
[176]–[178] for transmons. The RIP gate populates an auxiliary bus mode with off-resonant
photons to induce a differential Stark shift. In comparison, our CP gate requires no aux-
iliary modes or complex pulse-shaping, has closely-confined driven dynamics, and already
enables a higher fidelity in devices with very sub-optimal coherence, all thanks to the strong
anharmonicity of fluxoniums.

Dressing qubits with microwave drives to control their interaction opens up a new route
to implement on-demand interaction in a qubit register. Similar methods for transmon
qubits have been very recently reported by two groups [122], [123]. In both cases, the
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ZZ coupling is controlled by driving off-resonantly computational transitions of supercon-
ducting circuits. Moreover, Ref. [123] successfully applied this technique to a multiqubit
system, demonstrating the scalability of this approach.

Although the benchmarked fidelity of the two-qubit gates is already high in the experi-
ments involving the high energy transition, the current experimental setup contains a num-
ber of imperfections, most of which can be eliminated in the next generation experiments.
Let us start the discussion by briefly summarising these imperfections.

From the error estimation taking into account the Ramsey coherence times of transitions
|10⟩− |20⟩ and |11⟩− |21⟩, they contribute to a significant portion both for the off-resonance
CPhase gate and the near-resonance CZ gate. Even though the off-resonance CPhase gate
can mitigate the decoherence from the higher levels by reducing the drive strength or in-
creasing the detuning, such that the Stark-shifted dressed states have less high level com-
ponents, this is at the cost of a longer gate time. We believe that the limited coherence
time of transitions involving the second excited state is resulted from the relatively short
T1 due to suboptimal fabrication conditions. Importantly, fluxonium’s |1⟩ − |2⟩ transition is
very similar in term of decoherence mechanisms to a transmon qubit transition [50] and we
therefore expect no fundamental obstacles in reaching coherence times around 50− 100 µs
in the future work.

In the computational subspace, coherence times can potentially exceed 500 µs, given the
reported coherece times in Ref. [50]. However, here the qubit coherence time is only several
tens of microseconds, even at their flux sweet-spots, which can be explained by the presence
of about 5 × 10−3 thermal photons, on average, in the readout resonator. This dephasing
source is generic to superconducting circuit experiments and it can be mitigated in the
future with improved cryogenic filtering of the measurement lines [179], [180]. Currently
the qubit coherence is also susceptible to the first order sensitivity to external flux noise
caused by the sweet spot misalignment. The flux difference in the loop of two fluxoniums
mainly originates from the magnetic defects in the environment and the magnetic field
inhomogeneity of the coil. The sweet spot misalignment should be close to 0.1 % of the flux
quanta in order to achieve optimal coherence simultaneously on the two qubits. For the 3D
cavity architecture in our experiment, this problem can be solved by tilting the cavity, such
that the flux difference coming from the coil can be adjusted to cancel out that from the
defects. Another better solution would be to design the two-qubit closer to each other in
space. It can be more robust in different magnetic environments. Of course, in the presence
of the individual on-chip flux bias line for each qubit, this problem will disappear naturally.
With improved qubit coherence, the two-qubit gates only relying on computational states
should have much better performance. Our simulation shows that coherent gate errors
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in the low 10−4-range are possible for our device parameters and without sophisticated
pulse optimization. Because a large drive strength is required for these type of gates, more
investigation is needed to confirm whether the coherence could be degraded by the strong
drive. Once we achieve such low gate errors, it is nor far from the large scale universal
quantum computation.

Turning to our microwave packaging choice, we used a 3D cavity to perform all the gates
for the sake of technical simplicity. However, it also generates significant classical cross-talk.
The ground-shielding technique in the 2D architecture can enable selective addressing of
each qubit and hence improve significantly the single qubit gates fidelity. We believe that
scaling of our gate scheme can be done by moving to the 2D-circuit designs, in complete
analogy with processors based on capacitively-coupled transmons [6], [181], [182]. Note,
our experiment does not benefit from the usually high quality factors of 3D-resonators, and
hence it is compatible with a traditional 2D-circuit technology without conceptual modifi-
cations.

The single-shot readout in our two-qubit gate experiment with 3D cavities has noticeable

non-QND effect, which has not been fully understood yet. Evidence has shown that it

is related to the high energy states in the system. Readout error is not less important

than the gate error for a logical qubit in QEC. There has been studies [183] carried out

to demonstrate that it is possible to perform QND readout with high fidelity on fluxonium

qubits. Fully understanding the non-QND mechanism in the fluxonium-cavity system is

necessary to achieve a fast and accurate readout operation.



114

Appendices



115

Appendix A

Simulation

A.1 Transmission simulation

We use Ansys HFSS to simulate transmission and reflection for a 3D enclosure (cavity,
waveguide, etc.) using the driven modal solution. For example, Fig. A.1 shows the design
of a waveguide. We set up a vacuum region with perfect conductor boundary condition.
We assign wave port excitation conditions at the bottom of the ports, which have a ring
shape interface. The S parameters are then simulated by calculating the electromagnetic
field inside the box with finite element methods. The simulated S parameters at GHz range
are given in Fig. A.2 for the waveguide. In our simulation, we optimize the reflection over
various box dimensions and the launcher dimensions to make sure that S11 can be below
-20 dB over the desired frequency range.

Similar simulation was carried out in a bandpass filter project. We call it a domino
bandpass filter because it has many post-shape resonators sitting inside a tunnel (Fig. A.3).
These resonators share similar resonant frequencies such that the modes can hybridize to
form an energy band to let photons pass through. There are similar launchers at the en-
trance/exit to couple the travelling photons in the transmission line with the collective
modes in the tunnel. The posts are not identical and their dimensions are optimized with
a numerical algorithm. The external python script runs the simulation file, acquires the S
parameters, and iterates the model dimensions. The optimal design can have GHz range
flat pass-band. We machine the filter with the optimized parameters and measure the trans-
mission and reflection with a VNA, as presented in Fig. A.4. The simulation agrees well with
the measurements, demonstrating the accuracy of HFSS microwave simulation.

The purpose of this domino bandpass filter is to build a cryogenic broad band Purcell
filter made of pure copper for good thermalization. On the other hand, the posts and the
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Figure A.1: Waveguide model in HFSS. Wave port excitation conditions are assigned at
the bottom of the two ports. The other boundaries and the launchers (the yellow parts) are
set to be perfect conductors.

a b

Figure A.2: S parameters simulation of a waveguide. (a) The reflection coefficient |S11|.
By optimizing the waveguide and the launcher dimensions, it can have a 5 GHz passband
where the reflection is below -20 dB. (b) The transmission coefficient |S12|. The transmis-
sion is flat and approaches 1 within the passband.
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a b

Figure A.3: Domino bandpass filter model in HFSS. (a) Side-view of the filter. Each
post is a resonator and coupled to its neighbor. Together they form collective modes and
a energy band. Within the band, the photon can travel freely from one post to the next
just like dominoes. (b) Top-view of the filter. The launchers are designed to increase the
coupling between the post and the transmission line. The dimensions of each post are the
parameters to optimize the filter performance. They can be slightly different in order to
have a flat passband.

a b

Figure A.4: Domino bandpass filter S parameters. (a) The reflection coefficients. Most
resonances can be predicted by the simulation. The parameters are optimized such that
the first energy band (around 7 GHz) has a large density of states. Within this passband,
the measurements show low reflection coefficients from both ports. (b) Transmission coef-
ficients. The transmission can be flat in GHz range and the simulation agrees well with the
measurements.
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meandering tunnel are expected to block possible high energy photons in the transmission
line that can break the cooper pair and create quasiparticles on the device. However, this
component still need more tests and we has not install it in any serious fluxonium experi-
ments yet.

A.2 Coupling simulation

Besides, HFSS can simulate the capacitance and coupling between a lumped element and a
resonant mode or the transmission line. For this purpose, we use the eigenmode solution.
The qubit is treated as a harmonic oscillator by a lumped inductance connected with a pair
of metallic pads (3D objects) as illustrated in Fig. A.5. The lumped inductance is a 2D square
sheet assigned with a boundary condition with a specified L. Because the qubit structure is
much smaller than the whole box, the mesh needs to be finer around the qubit area for a
more accurate solution. The simulation gives the resonant modes in the system, including
the 3D modes of the box and the qubit mode. The simulated mode is a complex number
with the real part representing the resonant frequency and the imaginary part representing
the decay rate. For a perfect conductor boundary condition, the imaginary part is zero. A
resistive boundary condition can be assigned to simulate the quality factor of the box mode
or the radiative decay rate of the qubit mode. The mode frequencies can be calculated with
different lumped inductance L (see Fig. A.6). The mode that changes with L is the qubit
mode and can be used to calculate the capacitance of the qubit antenna which gives the EC

in the qubit circuit. The qubit anti-crosses with the box mode that does not change with L.
By subtracting the two mode frequencies, one can find the coupling strength between the
qubit mode and the box mode.

One can assign a lumped 50 Ω resistance boundary at the ports which is equivalent to
a infinitely long transmission line. The imaginary part suggests the radiative decay rate
of the qubit. We simulate this in the waveguide experiment and find that it is consistent
with the pass-band simulation from the S parameters. In addition, if the waveguide is a
reflectional setup (i.e. with only one port open), standing waves are formed inside the box
and at certain frequency the electromagnetic field vanishes near the qubit region (indicating
a node at the qubit). In this case, the qubit radiation is suppressed (Fig. A.7).
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Figure A.5: Lumped inductance in HFSS. A lumped inductance boundary condition is
assigned to the surface connecting two metallic antenna in the HFSS model to simulate the
qubit. The mesh need to be finer here due to the small dimension compared to the copper
box.

a b

Figure A.6: Simulation of qubit capacitance and coupling strength to the cavity. (a)
Simulated mode frequency versus the lumped inductance. A resonant qubit mode is formed
with the capacitance from the antenna and the lumped inductance. This mode anti-crosses
with the cavity mode which does not change with the lumped inductance. The antenna ca-
pacitance can be calculated with the qubit mode frequency away from the anti-crossing. (b)
Frequency difference of the simulated two modes. At the anti-crossing point, the frequency
difference is at its minimal and can be used to calculate the coupling strength g.
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Figure A.7: Simulation of radiative decay rate of a qubit inside a waveguide. The
radiative decay rate can be simulated by assigning a 50 Ω lumped resistance boundary
condition at the port which is equivalent to a infinitely long transmission line. The simulated
modes are complex numbers. The real part is the mode frequency and the imaginary part
is the decay rate.
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A.3 Fluxonium simulation

We use Qutip python package to simulate fluxonium spectrum and dynamics. We start by
constructing the basic quantum operator. The phase and charge operators are expressed as
the position and momentum operator in the harmonic oscillator basis. We first diagonalize
the single-fluxonium Hamiltonian using a relatively large Hilbert space and use part of the
eigenstates with low energy for the coupling Hamiltonian. We use the sesolve method to
simulate the unitary evolution for the four computational states in a two-qubit system.
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Appendix B

Experiment techniques

B.1 Fabrication

The fabrication process starts from dicing the wafer. We use the high resistivity silicon wafer
or sapphire wafer for the device. For silicon samples, we dip in inside the water-ammonium
fluoride-hydrofluoric acid solution (Buffer HF Improved from Transene, Inc.) for 2 min to
remove the native oxide layer on the surface. The silicon chip treated with this buffer oxide
etch (BOE) is expected to have lower dielectric loss tangents. Then we rinse the silicon chip
with DI water.

Before spin coating the ebeam resists, we sonicate the chip inside acetone and IPA for 3
min each and blow dry it with nitrogen gas. We apply a layer of MMA EL 13 by spinning
at 5000 rpm for 1 min and bake the chip on a hot plate at 180 ◦C for 1 min. We then
apply a layer of 950 PMMA A3 by spinning at 4000 rpm for 1 min and bake it at the same
temperature for 30 min.

The fluxoniums are fabricated with the Dolan bridge technique. We do ebeam lithog-
raphy to write patterns on the resists. For sapphire wafer, this requires an anti-charging
layer to remove the accumulated charge during the ebeam writing because sapphire is an
insulator. The anti-charging layer is a 11 nm aluminum layer deposited in Plassys. After
writing, it is removed by etching the aluminium in potassium hydroxide (KOH) solution.
We use Elionix to expose the resist with 100 kV electron beam. Most of the structures are
exposed with 1 nA current, except that the long couplers are exposed with 20 nA or 100 nA
current.

We develop the mask with a IPA and DI water solution which has 3:1 (IPA:water) volume
ratio. The developer is daily kept inside a thermostat at 6 ◦C. When developing, we create
a simple water bath environment for the beaker by adding ice to 200 mL water to keep it
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around 6 ◦C. The chip is dipped inside the developer for 2 min and then visually checked
under the microscope.

Then we put the chip into Plassys for deposition and oxidation. The first layer is 20
nm Al deposited at 1 nm/s at an angle of 23.83 ◦C. Next, oxygen flows into the chamber
and the Al layer gets oxidized at 100 mbar for 10 min. After that, oxygen is pumped out.
A second layer of Al with 40 nm is deposited at 1 nm/s at an angle of -23.83 ◦C. Finally
we take out the device and start the liftoff process. The chip is submerged in acetone and
baked at 60 ◦C for 3 hr.

Because the optimal ebeam doses change with the machine status or device design. We
perform dose tests when necessary. This can be done with different sizes of junctions and
doses of the critical region. We also find that the plasma frequency of our junction can drift
by a factor of two throughout the year. It is suspected this is related to the change of the
ambient humidity. After a device is fabricated, it can age at the atmosphere. The plasma
frequency goes down and 0−1 transition frequency at half flux quanta goes up. It is possible
that qubit frequency increase by 10 % in a month. To target the qubit frequency within the
desirable range, apart from carefully controlling the fabrication condition to reach consis-
tency, the laser annealing technique attracts more interests recently [184], [185].

B.2 3D cavity

We run HFSS simulation introduced in Appendix A to determine the dimension of the 3D
cavity. The cavity is manufactured with CNC machining using copper 101. The cavity is
polished with sand paper and Dremel tool. We also tried electropolishing but did not see
significant improvement on qubit coherence yet. We typically use non-magnetic connectors
at the input and output ports if available. A thin copper wire is soldered with the pin
of the connector. It reaches inside the box to couple to the cavity mode. By adjusting
the length of the wire, we can approximately have the wanted external quality factor by
fitting the reflection with Eq. 3.1. Because we use indium wire to seal the connectors, the
measured external quality factor can change with or without the indium seal due to 1 mm
level of change on the length of the wire inside the box. Therefore, it is better to seal the
connectors first and adjusting the length of the wire by cutting it if it is too long. The input
port and output port are on different parts of the cavity. When we measure the external
quality factor of one port on one part, we use the other part from a spare cavity without
ports to prevent the cavity mode from being modified by a long pin. After preparing the
ports, we mount the chip in the cavity by sandwiching small pieces of indium wire for better
thermal contact and also securing the chip in place. Finally the cavity is sealed with indium
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and clamped with a vice to make sure the indium has a tight contact with other surfaces.

B.3 Cryogenic setup

The wiring diagram for the two-qubit experiment is presented in Fig. B.1. The experiment
was carried out in Bluefors LD 250 cryogen-free dilution refrigerator (DR). As explained
in Sec. 3.3, we need multi-stage amplification on the readout line and multiple cryogenic
circulators are installed to prevent the noise propagating in the reverse direction. Ideally,
the attenuators on the driving line should be all placed at the base plate for minimum added
noise. But due to the cooling power of each plate, the attenuators are also distributed on
multiple stages. We can simulate the thermal photon numbers of the setup depicted in
Fig. B.1 with the formalism introduced in Sec. 3.3. The dashed curves with different color
in Fig. B.2a show the attenuated thermal photons coming from the attenuators at different
temperature. Even though the thermal photons from room temperature and 3 K plate
are attenuated heavily, they are still the dominant contributors of the noise. At 7.5 GHz,
which is the typical cavity frequency, the total photon number is 1.7e-3, corresponding to
an effective temperature of 56 mK. However, this is only the ideal case because the real
temperature of the attenuators should be higher than that of the fridge plates. Additional
attenuation at base temperature is required for lower thermal photon number and hence
higher qubit coherence. At the same time, one also need to make sure the attenuators are
well thermalized and driving power will not heat up the fridge.

We use homemade Eccosorb filters (see Fig. B.3) on the driving line to absorb high
energy photons that can leads to quasiparticle loss on the qubit. Eccosorb CR 110 has low
loss at GHz range and starts heavy attenuation above 100 GHz [186]. The 4.8 mm diameter
through-hole of the copper body is designed to match the 50 Ω impedance based on the
relative permittivity of Eccosorb CR 110 [187]. The connectors are sealed with indium.
We pot Eccosorb in the through-hole and bake it at around 100 ◦C for lower viscosity and
shorter cure time.

We wind long superconducting (SC) wires T48B-SW-M using a drill around a brass cylin-
der body to make the coil. The wire diameter is 0.102 mm and the total room temperature
resistance is 7.85 kΩ. The incoming wire and the outgoing wire are anchored onto the coil
body with stycast 2850 and are twisted together where they leave the coil to cancel out
stray magnetic field. We use manganin wire as the guiding wire because manganin wire is
thicker and more visible while the SC wire is very fragile. The wires are thermalized onto
the posts (screws) at the 100 mK and 4K plates using GE varnish. Above the 4 K plate, the
wires are soldered to a connector which connects to normal wires. On our setup, we notice
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Figure B.1: Low temperature wiring diagram of the two qubit experiment. The thermal
photons are attenuated by multi-stage attenuators. The readout signal is amplified by multi-
stage amplifiers. The circulators are necessary to keep out the amplifier back amplification
and the thermal noise.
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a b

Figure B.2: Thermal photon number simulation. (a) Thermal photon numbers from dif-
ferent stages. Each stage attenuates the thermal photons from the upper stages and also
radiates the photons at its own temperature. The thermal photon number (black line) seen
by the cavity is a summation of all the stages. The dotted vertical line indicates the cav-
ity frequency at 7.5 GHz and the photon number at this frequency is 1.7e-3. (b) Effective
temperature calculated from the total thermal photon numbers. Even though the effective
temperature is higher at the high frequency, the actual photon number is lower. The effec-
tive temperature at 7.5 GHz is 56 mK.

Figure B.3: Homemade Eccosorb filter. The homemade Eccosorb filter is assembled with
a copper body, two stainless steel SMA connectors on each side and a stainless steel center
pin. After mounting one connector and the center pin, Eccosorb CR110 is potted around
the pin. When fully cured, the other connector can be installed. There are four free-fit 4-40
screw holes on the copper body for being mounted onto the cold fingers and thermalized.
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the fridge temperature will have noticeable increase when the coil current is above 30 mA.

B.4 Room temperature setup

We used two different room temperature heterodyne setups as described in Fig. B.4. In
Fig. B.4a, we use a single-sideband-mixer (SSB) to mix down the RF source frequency fLO
to fr = fLO − fmod before the signal goes into the fridge. On the other hand, the same
RF source acts as the local oscillator and mixes with the readout signal coming from the
fridge at the IQ mixer. Both I and Q channels are demodulated and their combination can
cancel out the noise at fr = fLO + fmod. To prove this, we can assume the signal coming
out of the RF source is SLO = ALO cos(2πfLOt+ φ1), where φ1 is an arbitrary phase offset.
The readout signal coming out of the fridge is Sout = Aout cos(2πfrt + φ1 + ∆φ), where
∆φ is dependent on the measurement line and the device. Then let’s consider the noise
components at frequency fLO ± fmod, as they will go into the demodulated signal. So we
write the total signal as

Sout = Aout cos(2πfrt+ φ1 +∆φ) +N− cos(2π(fLO − fmod)t+ φ−)

+N+ cos(2π(fLO + fmod)t+ φ+). (B.1)

After the IQ mixer, the I and Q channels can be written, without loss of generality, as

SI = Bout cos(2πfmodt−∆φ) +M− cos(2πfmodt+ φ1 − φ−)

+M+ cos(−2πfmodt+ φ1 − φ+), (B.2)

SQ = Bout sin(2πfmodt−∆φ) +M− sin(2πfmodt+ φ1 − φ−)

+M+ sin(−2πfmodt+ φ1 − φ+). (B.3)

We can demodulated the signal after digitizing the data and use phasor to represent the
terms on the IQ plane.

sI = boute
−i∆φ +m−e

i(φ1−φ−) +m+e
−i(φ1−φ+), (B.4)

sQ = iboute
−i∆φ + im−e

i(φ1−φ−) − im+e
−i(φ1−φ+). (B.5)

Therefore we can keep s = sI − isQ = 2boute
−i∆φ + 2m−e

i(φ1−φ−) to cancel out the noise
component at fLO ± fmod.

The other setup in Fig. B.4b, however, have two separate RF sources, one as the LO and
the other as the readout tone. The readout RF source itself is connected to an AWG and is
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Figure B.4: Room temperature readout signal demodulation schemes. (a) The first
scheme. The output signal from the RF source is cavity frequency plus the modulation
frequency. It gets splitted with the SMA T-adapter. One way goes to the single-sideband
(SSB) mixer and gets down-converted to the cavity frequency. The other way goes to the
LO port of the IQ mixer and is used to mix down the signal from the fridge. (b) The second
scheme. The left RF source is at cavity frequency. It gets splitted with a power splitter
(Minicircuits ZFRSC-183-s+). One way directly goes to the fridge. The other way gets
mixed with the LO as the phase reference channel.

IQ (and pulse) modulated. The two channels of the acquisition card are assigned as a signal
channel and a reference channel to cancel out the relative phase fluctuation between the
two RF sources. Compared to the setup above, this setup has more phase stability on the
final demodulated value because the relative phase fluctuation on the AWG can be cancelled
as well. This setup requires more RF sources but because we use the built-in IQ modulation
on the readout RF, the output power can be much larger than the first setup.

Because we need to combine multiple microwave tones with large power in the fluxo-
nium experiment, we used different microwave components to combine the signals. Mini-
circuits ZFRSC-183-S+ is a two-port power combiner and the total loss is about 7 dB.
ZN4PD1-63HP-S+ is a four-port combiner with a similar loss. The SMA T adapter can be
also used as a two-port power combiner with lower loss but the isolation is worse than the
minicircuits one. The directional coupler is used as a combiner when one port can tolerate
high attenuation (20 dB). In this way, the other port can send the signal almost without
loss.
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Appendix C

Derivations

C.1 Signal Gain for JPA

In this section, we are going to derive the signal gain for a JPA presented in Sec. 3.3.2 in a
classical way. A quantum mechanical description can be found in Ref. [59]. The first step
is to find the equation of motion (EOM) for the phase difference δ in Fig. 3.9. The total
current is the sum of the current in the two branches I = IC + IJ . Using the Josephson
equations, we have

IC =
d(CV )

dt
= Cϕ0

d2δ

dt2
, (C.1)

IJ = I0 sin δ. (C.2)

On the other hand, for the propagating waves in a transmission line, the voltage and the
current satisfy the following relation

I = Iin − Iout, (C.3)

V = Vin + Vout = (Iin + Iout)Zc. (C.4)

Combining Eq. C.3 and Eq. C.4,

I = 2Iin − V/Zc = 2Iin −
ϕ0
Zc

dδ

dt
. (C.5)
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Substituting Eq. C.1 and Eq. C.2 in to Eq. C.5, we have the EOM of the phase δ

Cϕ0
d2δ(t)

dt2
+
ϕ0
Zc

dδ(t)

dt
+ I0 sin δ = 2Iin(t). (C.6)

Let’s keep the lowest non-linear term sin δ ≈ δ − δ3/6 and define ω2
0 = I0/(Cϕ0), γ =

1/(2ZcC). The EOM can be simplified as

d2δ(t)

dt2
+ 2γ

dδ(t)

dt
+ ω2

0(δ(t)−
δ3(t)

6
) =

2Iin(t)

Cϕ0
(C.7)

The incoming field can be separated into two parts – a large pump and a weak signal.
Iin = Ipump+ Isignal. We can first neglect the signal and solve for the phase amplitude in the
presence of the pump. Assuming Iin = Ipump = Ip cos(ωpt+ φ) and δ = δpump = δa cosωpt,
Eq. C.7 will lead to Eq. 3.25 in the main text(

(ω2
0 − ω2

p)δa −
ω2
0

8
δ3a

)2

+ (2γωpδa)
2 =

(
2Ip
Cϕ0

)2

. (C.8)

Here we neglect the fast rotating term and simplify δ3 as

δ3 = δ3a cos
3 ωpt =

δ3a
4
(3 cosωpt+ cos 3ωpt) ≈

δ3a
4
3 cosωpt (C.9)

Next we can deal with the weak signal part assuming it does not affect the pump. We can
write

Iin = Ip cos(ωpt+ φ) + Isignal, (C.10)

δ = δa cosωpt+ δsignal. (C.11)

Similarly from Eq. C.7, the EOM for the signal tone is

d2δsignal(t)

dt2
+ 2γ

dδsignal(t)

dt
+ ω2

1(t)δsignal(t) =
2

Cϕ0
Isignal(t). (C.12)

ω1(t) is defined as

ω2
1(t) = ω2

0

(
1− δ2a

4
+
δ2a
4
cos(2ωpt− 2φ)

)
(C.13)
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The coefficient of the differential equation Eq. C.12 is time dependent. We can solve it in
the frequency domain, or equivalently, by introducing the field operators.

Isignal(t) =

√
ℏ

2Zc

∫ ∞

0

dω

2π

√
ωain(ω)e

−iωt + h.c., (C.14)

δsignal(t) =

∫ ∞

0

dω

2π
δs(ω)e

−iωt + h.c.. (C.15)

In this way, Eq. C.12 becomes

(ω2
0(1− ϵ)− ω2 − i2γω)δs(ω)−

ω2
0ϵ

2
e2iφδ†s(2ωp − ω) =

4γ
√
Zc

ϕ0

√
ℏω
2
ain(ω), (C.16)

where ϵ = δ2a/4. We can define ω′ = ω − ωp as the detuning between the signal mode and
the pump tone. The operator of the internal field in the JPA circuit is

c(ω′) =

√
2EJ

ℏω0
δs(ωp + ω′). (C.17)

The field operators of the input and output signal are cin(out)(ω′) = ain(out)(ωp + ω′). With
the new field operators, Eq. C.16 yields

(ω0 − ωp − ω′ − ω0ϵ

2
− iγ)c(ω′)− ω0ϵ

4
e2iφc†(−ω′) =

√
2γcin(ω

′). (C.18)

From the input-output theory (or the boundary condition Eq. C.4 equivalently), we have
cout(ω

′)+cin(ω
′) = −i√2γc(ω′). Then we can get rid of the internal field operator c(ω′) and

express cout in terms of cin

cout(ω
′) =

(
−1 +

2γ(−iω′ − i(ω0 − ωp) + γ − iω0ϵ/2)

(−iω′ + λ0)(−iω′ + λ1)

)
cin(ω

′) (C.19)

+
γe2iφω0ϵ/2

(−iω′ + λ0)(−iω′ + λ1)
c†in(−ω′), (C.20)

=G(ω′)cin(ω
′) +M(ω′)c†in(−ω′), (C.21)

which is Eq. C.19 in the main text. The parameter λ0/1 is

λ0/1 = γ ∓
√
ω2
0ϵ

2

16
−
(
ω0 − ωp −

ω0ϵ

2

)2
. (C.22)
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C.2 Schrieffer-Wolf Transformation

Imagine a Hamiltonian with a low-energy manifold and a high-energy manifold. If there is
an inter-manifold coupling, we can apply Schrieffer-Wolf transformation to find an effective
intra-manifold coupling. To clarify this point, we take the 00 − 11 two-photon transition
introduced in Sec. 4.3.3 for an example. We denote the unperturbed Hamiltonian by H0

H0 =


ϵ00 0 0 0

0 ϵ01 0 0

0 0 ϵ10 0

0 0 0 ϵ11

 . (C.23)

Inside the bSWAP gate frame (see Eq. 4.49), |00⟩ and |11⟩ become almost degenerate
(|δ| << |∆|)

H0 =


δ 0 0 0

0 ∆ 0 0

0 0 −∆ 0

0 0 0 −δ

 . (C.24)

We can rearrange the order of the basis

H0 =


δ 0 0 0

0 −δ 0 0

0 0 ∆ 0

0 0 0 −∆

 , (C.25)

such that the upper left block is the low-energy manifold and the lower right block is the
high-energy manifold. Therefore, we can write the total Hamiltonian in the form of

H = H0 + V =

(
H0l 0

0 H0h

)
+

(
0 Vlh

Vhl Vhh

)
, (C.26)

where V is the driving term. Because V = V †, we can know Vhl = V †
lh. The drive near the

two-photon transition frequency (∼ (ω̃A + ω̃B)/2) provides a coupling term connecting the
two manifolds. It can not exchange population between them because of large detuning.
However, this coupling effectively links |00⟩ and |11⟩ in the low-energy manifold. The dy-
namics can be solved by treating the driving term as a perturbation and block-diagonalizing
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H. We can assume

Heff = exp(iS)(H0 + V ) exp(−iS) =
(
Heff

l 0

0 Heff
h

)
, (C.27)

and S = S(1) + S(2) + O(V 3). Similarly, Heff = H0 +H
(1)
eff +H

(2)
eff + O(V 3). Neglecting the

high order terms,

Heff = [1 + iS(1) + iS(2) − 1

2

(
S(1)

)2
](H0 + V )[1− iS(1) − iS(2) − 1

2

(
S(1)

)2
] + · · · .

(C.28)

Therefore

H
(1)
eff = i[S(1), H0] + V (C.29)

H
(2)
eff = i[S(2), H0]−

1

2

(
S(1)

)2
H0 −

1

2
H0

(
S(1)

)2
+ S(1)H0S

(1) + i[S(1), V ]. (C.30)

We assume S(1) takes the form of

S(1) =

(
0 S

(1)
lh

S
(1)
hl 0

)
. (C.31)

The first order term of the effective Hamiltonian is

H
(1)
eff =

(
0 i(S

(1)
lh H0h −H0lS

(1)
lh ) + Vlh

i(S
(1)
hl H0l −H0hS

(1)
hl ) + Vhl Vhh

)
. (C.32)

Block-diagonalization requires

i
(
S
(1)
lh H0h −H0lS

(1)
lh

)
+ Vlh = 0, (C.33)

i
(
S
(1)
hl H0l −H0hS

(1)
hl

)
+ Vhl = 0. (C.34)

These conditions can be used to determine S(1)
lh and S(1)

hl . In our example, S(1)
lh and S(1)

hl are
2×2 matrices. Assume |p⟩ and |q⟩ are the low and high energy eigenstates of H0 in Eq. C.25
with energy Ep and Eq. The matrix elements of S(1)

lh can be calculated with

⟨p|S(1)
lh |q⟩ = −i⟨p|Vlh |q⟩

Ep − Eq
, (C.35)
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and S
(1)
hl =

(
S
(1)
lh

)†
. After obtaining S(1), we can check the second order term H

(2)
eff . Here

we list all the terms in Eq. C.30 explicitly.

i[S(2), H0] =

 0 i
(
S
(2)
lh H0h −H0lS

(2)
lh

)
i
(
S
(2)
hl H0l −H0hS

(2)
hl

)
0

 ,

(C.36)

−1

2

(
S(1)

)2
H0 −

1

2
H0

(
S(1)

)2
=

−1

2

(
S
(1)
lh S

(1)
hl H0l +H0lS

(1)
lh S

(1)
hl 0

0 S
(1)
hl S

(1)
lh H0h +H0hS

(1)
hl S

(1)
lh

)
,

(C.37)

S(1)H0S
(1) =

1

2

(
S
(1)
lh H0hS

(1)
hl 0

0 S
(1)
hl H0lS

(1)
lh

)
, (C.38)

i[S(1), V ] =

i(S(1)
lh Vhl − VlhS

(1)
hl

)
iS

(1)
lh Vhh

−iVhhS(1)
hl i

(
S
(1)
hl Vlh − VhlS

(1)
lh

) . (C.39)

Similarly, block-diagonalization requires

i
(
S
(2)
lh H0h −H0lS

(2)
lh

)
+ iS

(1)
lh Vhh = 0, (C.40)

i
(
S
(2)
hl H0l −H0hS

(2)
hl

)
− iVhhS

(1)
hl = 0. (C.41)

S(2) can be determined from the above equations. Fortunately we don’t need to solve them
in our case because the diagonal terms does not depend on S(2). Additionally, Vhh = 0 in
our example. This makes the problem simpler and we have

H
(2)
eff = −1

2

(
S(1)

)2
H0 −

1

2
H0

(
S(1)

)2
+ S(1)H0S

(1) + i[S(1), V ]. (C.42)

The last step is to change the basis order back and we can arrive at Eq. 4.50 in Sec. 4.3.3.
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Fink, “Geometric Superinductance Qubits: Controlling Phase Delocalization across

a Single Josephson Junction,” PRX Quantum, vol. 2, no. 4, p. 1, 2021, ISSN: 26913399.

DOI: 10.1103/PRXQuantum.2.040341.

[48] A. Somoroff, “Quantum Computing with Fluxonium: Digital and Analog Direc-

tions,” Ph.D. dissertation, 2022.

[49] H. Zhang, S. Chakram, T. Roy, N. Earnest, Y. Lu, Z. Huang, D. K. Weiss, J. Koch, and

D. I. Schuster, “Universal Fast-Flux Control of a Coherent, Low-Frequency Qubit,”

Physical Review X, vol. 11, no. 1, p. 011 010, Jan. 2021, ISSN: 2160-3308. DOI:

10.1103/PhysRevX.11.011010.

[50] L. B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N. Grabon, and V. E. Manucharyan,

“High-Coherence Fluxonium Qubit,” Physical Review X, vol. 9, no. 4, p. 041 041,

Nov. 2019, ISSN: 2160-3308. DOI: 10.1103/PhysRevX.9.041041.

[51] A. Somoroff, Q. Ficheux, R. A. Mencia, H. Xiong, R. V. Kuzmin, and V. E. Manucharyan,

“Millisecond coherence in a superconducting qubit,” arXiv, vol. 1, Mar. 2021.

https://doi.org/10.1038/s41567-019-0553-1
https://doi.org/10.1038/s41567-019-0553-1
https://doi.org/10.1038/s41534-019-0134-2
https://doi.org/10.1038/s41563-019-0350-3
https://doi.org/10.1038/s41563-019-0350-3
https://doi.org/10.1103/PRXQuantum.2.040341
https://doi.org/10.1103/PhysRevX.11.011010
https://doi.org/10.1103/PhysRevX.9.041041


142

[52] S. M. Girvin, Circuit QED: superconducting qubits coupled to microwave photons,

2014.

[53] D. I. Schuster, A. A. Houck, J. A. Schreier, et al., “Resolving photon number states

in a superconducting circuit,” Nature, vol. 445, no. 7127, pp. 515–518, Feb. 2007,

ISSN: 0028-0836. DOI: 10.1038/nature05461.

[54] L. B. Nguyen, “Toward the Fluxonium Quantum Processor,” Ph.D. dissertation, 2020.

[55] N. A. Masluk, “Reducing the losses of the fluxonium artificial atom,” Ph.D. disserta-

tion, 2012, p. 186.

[56] K. N. Nesterov, I. V. Pechenezhskiy, C. Wang, V. E. Manucharyan, and M. G. Vav-

ilov, “Microwave-activated controlled- Z gate for fixed-frequency fluxonium qubits,”

Physical Review A, vol. 98, no. 3, p. 30 301, 2018, ISSN: 24699934. DOI: 10.1103/

PhysRevA.98.030301.

[57] K. N. Nesterov, C. Wang, V. E. Manucharyan, and M. G. Vavilov, “Controlled-NOT

gates for fluxonium qubits via selective darkening of transitions,” arXiv, pp. 1–12,

Feb. 2022.

[58] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, 1. Oxford

University Press, Jan. 2007, vol. 4, pp. 1–23, ISBN: 9780199213900. DOI: 10.1093/

acprof:oso/9780199213900.001.0001.

[59] Q. Ficheus, “Quantum Trajectories with Incompatible Decoherence Channels,” Ph.D.

dissertation, 2016.

[60] I. M. Pop, K. Geerlings, G. Catelani, R. J. Schoelkopf, L. I. Glazman, and M. H. De-

voret, “Coherent suppression of electromagnetic dissipation due to superconducting

quasiparticles,” Nature, vol. 508, no. 7496, pp. 369–372, 2014, ISSN: 14764687.

DOI: 10.1038/nature13017.

https://doi.org/10.1038/nature05461
https://doi.org/10.1103/PhysRevA.98.030301
https://doi.org/10.1103/PhysRevA.98.030301
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1038/nature13017


143

[61] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y.

Nakamura, J. S. Tsai, and W. D. Oliver, “Noise spectroscopy through dynamical de-

coupling with a superconducting flux qubit,” Nature Physics, vol. 7, no. 7, pp. 565–

570, 2011, ISSN: 17452481. DOI: 10.1038/nphys1994.

[62] P. J. O’Malley, J. Kelly, R. Barends, et al., “Qubit Metrology of Ultralow Phase Noise

Using Randomized Benchmarking,” Physical Review Applied, vol. 3, no. 4, pp. 1–11,

2015, ISSN: 23317019. DOI: 10.1103/PhysRevApplied.3.044009.

[63] Y. V. Nazarov, Ed., Quantum Noise in Mesoscopic Physics. Dordrecht: Springer Nether-

lands, 2003, ISBN: 978-1-4020-1240-2. DOI: 10.1007/978-94-010-0089-5.

[64] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “In-

troduction to quantum noise, measurement, and amplification,” Reviews of Modern

Physics, vol. 82, no. 2, pp. 1155–1208, Apr. 2010, ISSN: 0034-6861. DOI: 10.1103/

RevModPhys.82.1155.

[65] C. Wang, C. Axline, Y. Y. Gao, T. Brecht, Y. Chu, L. Frunzio, M. H. Devoret, and R. J.

Schoelkopf, “Surface participation and dielectric loss in superconducting qubits,”

Applied Physics Letters, vol. 107, no. 16, 2015, ISSN: 00036951. DOI: 10.1063/1.

4934486.

[66] P. V. Klimov, J. Kelly, Z. Chen, et al., “Fluctuations of Energy-Relaxation Times in

Superconducting Qubits,” Physical Review Letters, vol. 121, no. 9, p. 90 502, 2018,

ISSN: 10797114. DOI: 10.1103/PhysRevLett.121.090502.

[67] E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” in Physi-

cal Review, vol. 69, 1995, pp. 681–681. DOI: 10.1007/978-1-4615-1963-8{\ }40.

[68] A. A. Houck, J. A. Schreier, B. R. Johnson, et al., “Controlling the spontaneous

emission of a superconducting transmon qubit,” Physical Review Letters, vol. 101,

no. 8, pp. 1–4, 2008, ISSN: 00319007. DOI: 10.1103/PhysRevLett.101.080502.

https://doi.org/10.1038/nphys1994
https://doi.org/10.1103/PhysRevApplied.3.044009
https://doi.org/10.1007/978-94-010-0089-5
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1063/1.4934486
https://doi.org/10.1063/1.4934486
https://doi.org/10.1103/PhysRevLett.121.090502
https://doi.org/10.1007/978-1-4615-1963-8{\_}40
https://doi.org/10.1103/PhysRevLett.101.080502


144

[69] P. Kumar, S. Sendelbach, M. A. Beck, J. W. Freeland, Z. Wang, H. Wang, C. C. Yu,

R. Q. Wu, D. P. Pappas, and R. McDermott, “Origin and Reduction of 1 /f Magnetic

Flux Noise in Superconducting Devices,” Physical Review Applied, vol. 6, no. 4, pp. 1–

5, 2016, ISSN: 23317019. DOI: 10.1103/PhysRevApplied.6.041001.

[70] C. M. Quintana, Y. Chen, D. Sank, et al., “Observation of Classical-Quantum Crossover

of 1 /f Flux Noise and Its Paramagnetic Temperature Dependence,” Physical Review

Letters, vol. 118, no. 5, pp. 1–6, 2017, ISSN: 10797114. DOI: 10.1103/PhysRevLett.

118.057702.

[71] G. Catelani, R. J. Schoelkopf, M. H. Devoret, and L. I. Glazman, “Relaxation and fre-

quency shifts induced by quasiparticles in superconducting qubits,” Physical Review

B - Condensed Matter and Materials Physics, vol. 84, no. 6, pp. 1–25, 2011, ISSN:

10980121. DOI: 10.1103/PhysRevB.84.064517.

[72] G. Catelani, J. Koch, L. Frunzio, R. J. Schoelkopf, M. H. Devoret, and L. I. Glazman,

“Quasiparticle relaxation of superconducting qubits in the presence of flux,” Physical

Review Letters, vol. 106, no. 7, pp. 4–7, 2011, ISSN: 00319007. DOI: 10 . 1103 /

PhysRevLett.106.077002.

[73] L. Glazman and G. Catelani, “Bogoliubov quasiparticles in superconducting qubits,”

SciPost Physics Lecture Notes, pp. 1–42, 2021, ISSN: 2590-1990. DOI: 10 .21468/

scipostphyslectnotes.31.

[74] S. Gustavsson, F. Yan, G. Catelani, et al., “Suppressing relaxation in superconducting

qubits by quasiparticle pumping,” Science, vol. 354, no. 6319, pp. 1573–1577, 2016,

ISSN: 10959203. DOI: 10.1126/science.aah5844.

[75] C. Wang, Y. Y. Gao, I. M. Pop, et al., “Measurement and control of quasiparticle dy-

namics in a superconducting qubit,” Nature Communications, vol. 5, pp. 1–7, 2014,

ISSN: 20411723. DOI: 10.1038/ncomms6836.

https://doi.org/10.1103/PhysRevApplied.6.041001
https://doi.org/10.1103/PhysRevLett.118.057702
https://doi.org/10.1103/PhysRevLett.118.057702
https://doi.org/10.1103/PhysRevB.84.064517
https://doi.org/10.1103/PhysRevLett.106.077002
https://doi.org/10.1103/PhysRevLett.106.077002
https://doi.org/10.21468/scipostphyslectnotes.31
https://doi.org/10.21468/scipostphyslectnotes.31
https://doi.org/10.1126/science.aah5844
https://doi.org/10.1038/ncomms6836


145
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[115] J. M. Chow, A. D. Córcoles, J. M. Gambetta, et al., “Simple all-microwave entangling

gate for fixed-frequency superconducting qubits,” Physical Review Letters, vol. 107,

no. 8, pp. 1–5, 2011, ISSN: 00319007. DOI: 10.1103/PhysRevLett.107.080502.

[116] J. M. Chow, J. M. Gambetta, A. W. Cross, S. T. Merkel, C. Rigetti, and M. Stef-

fen, “Microwave-activated conditional-phase gate for superconducting qubits,” New

Journal of Physics, vol. 15, 2013, ISSN: 13672630. DOI: 10.1088/1367-2630/15/

11/115012.

[117] A. Noguchi, A. Osada, S. Masuda, S. Kono, K. Heya, S. P. Wolski, H. Takahashi,

T. Sugiyama, D. Lachance-Quirion, and Y. Nakamura, “Fast parametric two-qubit

gates with suppressed residual interaction using a parity-violated superconducting

qubit,” arXiv, May 2020. DOI: 10.1103/PhysRevA.102.062408.

[118] D. M. Abrams, N. Didier, B. R. Johnson, M. P. d. Silva, and C. A. Ryan, “Imple-

mentation of XY entangling gates with a single calibrated pulse,” Nature Electronics,

vol. 3, no. 12, pp. 744–750, Dec. 2020, ISSN: 2520-1131. DOI: 10.1038/s41928-

020-00498-1.

[119] S. Krinner, P. Kurpiers, B. Royer, P. Magnard, I. Tsitsilin, J.-C. Besse, A. Remm, A.

Blais, and A. Wallraff, “Demonstration of an All-Microwave Controlled-Phase Gate

between Far-Detuned Qubits,” Physical Review Applied, vol. 14, no. 4, pp. 1–10,

2020, ISSN: 23317019. DOI: 10.1103/physrevapplied.14.044039.

https://doi.org/10.1103/PhysRevApplied.14.024070
https://doi.org/10.1103/PhysRevApplied.14.024070
https://doi.org/10.1103/PhysRevLett.125.240503
https://doi.org/10.1103/PhysRevLett.107.080502
https://doi.org/10.1088/1367-2630/15/11/115012
https://doi.org/10.1088/1367-2630/15/11/115012
https://doi.org/10.1103/PhysRevA.102.062408
https://doi.org/10.1038/s41928-020-00498-1
https://doi.org/10.1038/s41928-020-00498-1
https://doi.org/10.1103/physrevapplied.14.044039


151

[120] Q. Ficheux, L. B. Nguyen, A. Somoroff, H. Xiong, K. N. Nesterov, M. G. Vavilov, and

V. E. Manucharyan, “Fast Logic with Slow Qubits: Microwave-Activated Controlled-

Z Gate on Low-Frequency Fluxoniums,” Physical Review X, vol. 11, no. 2, p. 021 026,

May 2021, ISSN: 2160-3308. DOI: 10.1103/PhysRevX.11.021026.

[121] H. Xiong, Q. Ficheux, A. Somoroff, L. B. Nguyen, E. Dogan, D. Rosenstock, C.

Wang, K. N. Nesterov, M. G. Vavilov, and V. E. Manucharyan, “Arbitrary controlled-

phase gate on fluxonium qubits using differential ac Stark shifts,” Physical Review

Research, vol. 4, no. 2, p. 023 040, Apr. 2022, ISSN: 2643-1564. DOI: 10 .1103/

PhysRevResearch.4.023040.

[122] B. K. Mitchell, R. K. Naik, A. Morvan, A. Hashim, J. M. Kreikebaum, B. Marinelli, W.

Lavrijsen, K. Nowrouzi, D. I. Santiago, and I. Siddiqi, “Hardware-Efficient Microwave-

Activated Tunable Coupling Between Superconducting Qubits,” arXiv, no. 1, May

2021. DOI: 10.1103/PhysRevLett.127.200502.

[123] K. X. Wei, E. Magesan, I. Lauer, et al., “Quantum crosstalk cancellation for fast

entangling gates and improved multi-qubit performance,” arXiv, Jun. 2021.

[124] A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. A. Keefe, D.

Klaus, O. Dial, and D. C. McKay, “Demonstration of a High-Fidelity cnot Gate for

Fixed-Frequency Transmons with Engineered ZZ Suppression,” Physical Review Let-

ters, vol. 127, no. 13, p. 130 501, Sep. 2021, ISSN: 0031-9007. DOI: 10 . 1103 /

PhysRevLett.127.130501.

[125] Z. Chen, “Metrology of Quantum Control and Measurement in Superconducting

Qubits A,” Ph.D. dissertation, 2018, pp. 227–249.

[126] I. N. Moskalenko, I. S. Besedin, I. A. Simakov, and A. V. Ustinov, “Tunable coupling

scheme for implementing two-qubit gates on fluxonium qubits,” Applied Physics Let-

ters, vol. 119, no. 19, p. 194 001, Nov. 2021, ISSN: 0003-6951. DOI: 10.1063/5.

0064800.

https://doi.org/10.1103/PhysRevX.11.021026
https://doi.org/10.1103/PhysRevResearch.4.023040
https://doi.org/10.1103/PhysRevResearch.4.023040
https://doi.org/10.1103/PhysRevLett.127.200502
https://doi.org/10.1103/PhysRevLett.127.130501
https://doi.org/10.1103/PhysRevLett.127.130501
https://doi.org/10.1063/5.0064800
https://doi.org/10.1063/5.0064800


152

[127] Y. Chen, K. N. Nesterov, V. E. Manucharyan, and M. G. Vavilov, “Fast Flux Entangling

Gate for Fluxonium Circuits,” arXiv, pp. 1–10, Oct. 2021.

[128] I. N. Moskalenko, I. A. Simakov, N. N. Abramov, A. A. Grigorev, D. O. Moskalev,

A. A. Pishchimova, N. S. Smirnov, E. V. Zikiy, I. A. Rodionov, and I. S. Besedin,

“High fidelity two-qubit gates on fluxoniums using a tunable coupler,” pp. 1–18,

Mar. 2022.

[129] D. A. Lidar and T. A. Brun, Eds., Quantum Error Correction. Cambridge: Cambridge

University Press, 2013, ISBN: 9781139034807. DOI: 10.1017/CBO9781139034807.
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