
ABSTRACT

Title of dissertation: Characterizing a Multi-Sensor System for
Terrestrial Freshwater Remote Sensing via an
Observing System Simulation Experiment (OSSE)

Lizhao Wang, Doctor of Philosophy, 2022

Dissertation directed by: Associate Professor Barton A. Forman
Department of Civil and Environmental Engineering

Terrestrial freshwater storage (TWS) is the vertically-integrated sum of snow, ice, soil

moisture, vegetation water content, surface water impoundments, and groundwater. Among these

components, snow, soil moisture, and vegetation are the most dynamic (i.e., shortest residence

time) as well as the most variable across space. However, accurately retrieving estimates of snow,

soil moisture, or vegetation using space-borne sensors often requires simultaneous knowledge

of one or more of the other components. In other words, reasonably characterizing terrestrial

freshwater requires careful consideration of the coupled snow-soil moisture-vegetation response

that is implicit in both TWS and the hydrologic cycle.

One challenge is to optimally determine the multi-variate, multi-sensor remote sensing

observations needed to best characterize the coupled snow-soil moisture-vegetation system. Different

types of sensors each have their own unique strengths and limitations. Meanwhile, remote sensing

data is inherently discontinuous across time and space, and that the revisit cycle of remote sensing

observations will dictate much of the efficacy in capturing the dynamics of the coupled snow-soil

moisture-vegetation response.



This study investigates different snow sensors and simulates the sensor coverage as a

function of different orbital configurations and sensor properties in order to quantify the discontinuous

nature of remotely-sensed observations across space and time. The information gleaned from

this analysis, coupled with a time-varying snow binary map, is used to evaluate the efficacy of

a single sensor (or constellation of sensors) to estimate terrestrial snow on a global scale. A

suite of different combinations, and permutations, of different sensors, including different orbital

characteristics, is explored with respect to 1-day, 3-day, and 30-day repeat intervals. The results

show what can, and what cannot, be observed by different sensors. The results suggest that no

single sensor can accurately measure all types of snow, but that a constellation composed of

different types of sensors could better compensate for the limitations of a single type of sensor.

Even though only snow is studied here, a similar procedure could be conducted for soil moisture

or vegetation.

To better investigate the coupled snow-soil moisture-vegetation system, an observing system

simulation experiment (OSSE) is designed in order to explore the value of coordinated observations

of these three separate, yet mutually dependent, state variables. In the experiment, a “synthetic

truth” of snow water equivalent, surface soil moisture, and/or vegetation biomass is generated

using the NoahMP-4.0.1 land surface model within the NASA Land Information System (LIS).

Afterwards, a series of hypothetical sensors with different orbital configurations is prescribed

in order to retrieve snow, soil moisture, and vegetation. The ground track and footprint of each

sensor is approximated using the Trade-space Analysis Tool for Constellations (TAT-C) simulator.

A space-time subsampler predicated on the output from TAT-C is then applied to the synthetic

truth. Furthermore, a hypothesized amount of observation error is injected into the synthetic truth

in order to yield a realistic synthetic retrieval for each of the hypothetical sensor configurations



considered as part of this dissertation.

The synthetic retrievals are then assimilated into the NoahMP-4.0.1 land surface model

using different boundary conditions from those used to generate the synthetic truth such that the

differences between the two sets of boundary conditions serve as a realistic proxy for real-world

boundary condition errors. A baseline Open Loop simulation where no retrievals are assimilated

is conducted in order to evaluate the added utility associated with assimilation of one (or more) of

the synthetic retrievals. The impact of the assimilation of a given suite of one or more retrievals

on land surface model estimates of snow, soil moisture, vegetation, and runoff serve as a numeric

laboratory in order to assess which sensor(s), either separate or in a coordinated fashion, yield

the most utility in terms of improved model performance.

The results from this OSSE show that the assimilation of a single type of retrieval (i.e.,

snow or soil moisture or vegetation) may only improve the estimation of a small part of the

snow-soil moisture-vegetation system, but may also degrade of other parts of that same system.

Alternatively, the assimilation of more than one type of retrieval may yield greater benefits to all

the components of the snow-soil moisture-vegetation system, because it yields a more complete,

holistic view of the coupled system. This OSSE framework could potentially serve as an aid to

mission planners in determining how to get the most observational “bang for the buck” based on

the myriad of different sensor types, orbital configurations, and error characteristics available in

the selection of a future terrestrial freshwater mission.
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Chapter 1: Introduction

1.1 Motivation

Freshwater is a fundamental resource required for human well-being [1–3]. Water scarcity

can lead to poor health, and has an especially adverse impact on poor people. More than 1.1

billion people live in areas of physical water scarcity [2]. Demand is increasing for this finite

resource as the world’s population continues to grow [1]. Furthermore, with existing climate

change, it is anticipated that almost half the world’s population will be living in areas of high

water stress by 2030 [3]. It is crucial for sustainable socio-economic development to monitor and

understand global and regional water resources [4].

Natural surface water distributions are dynamic [5]. Achieving a good understanding of

water resources dynamics requires knowledge and understanding based on models and observations.

In particular, information is needed on hydrological variables that constitute the hydrological

cycle on land and how they vary over time and space. Thus water management requires frequent

observations to detect its existence, extent, volume, and dynamics.

However, quantifying the amount of freshwater at a global scale is difficult and complex.

Terrestrial water storage (TWS) data is limited and often inaccessible in many parts of the world

due to geographic remoteness and/or closed data policies [6]. Spaceborne remote sensing is

one of the most feasible ways to monitor freshwater resources across the globe. Among TWS
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components, snow, soil moisture, and vegetation are among the most visible parts from space

[7–11]. Although snow, soil moisture, and vegetation only account for a relatively small part

of the TWS [12], the snow-soil moisture-vegetation system plays a key role in the hydrological

cycle, and serves as a first-order control on surface runoff, transpiration, and evapotranspiration,

and the prediction of weather and climate [13–15].

A perplexing problem while trying to quantify the components of the snow-soil moisture-

vegetation system is that they can at times shroud the measurement of one another such that

quantifying one of these components individually often requires knowledge of one or more of

the other components [7–11]. Many studies have been completed to estimate the individual parts

of the snow-soil moisture-vegetation system [16–18], but a true estimation of this system can be

made only by studying them as a cohesive whole rather than as the mere sum of its individual

parts.

1.2 Literature Review of Terrestrial Freshwater Storage Monitoring Techniques

1.2.1 Terrestrial Freshwater Storage Retrieved via Remote Sensing

Remote sensing is a viable way to monitor freshwater resources across the globe [19].

Many state variables within the hydrologic cycle can be remotely monitored by spaceborne

sensors. For example, NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) products

provide daily retrievals of vegetation leaf area index and snow cover extent [20, 21]. Imagery

from L-band and X-band radiometers such as the Soil Moisture and Ocean Salinity (SMOS) and

the Advanced Microwave Scanning Radiometer (AMSR-E) can be used to retrieve soil moisture

information [22]. However, it should be noted that these retrievals are not a direct measurement
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of the hydrologic variables, but rather a remotely-sensed estimate of these variables [16, 18, 23].

Each retrieval has its own specific footprint size, spatial resolution, inherent spatiotemporal

gaps, and unique error characteristics. It is important to consider the specifications of different

satellite retrieval methods because hydrologic variables are often coupled to one another [24].

Interaction between different state variables often demands that quantifying one of these variables

requires knowledge of one or more of the other variables. Therefore, the choice of an optimal,

concurrent sensor configuration in order to utilize the strengths of different sensors is a key

question for the next generation of terrestrial hydrology missions.

1.2.1.1 Snow Remote Sensing

Different snow variables, such as snow cover extent, snow depth, and snow water equivalent

(SWE; equal to the mass of water per unit area), can be obtained using remotely-sensed observations.

SWE is the main snow-related variable of interest because it best characterizes the snow mass.

Remote sensing of SWE is an important way to obtain global SWE estimates since in-situ

measurements are difficult to obtain given the harsh environment and the heterogeneous large-

scale snow distribution [9]. Based on the electromagnetic response of the snowpack, SWE can

be empirically derived as a function of the spectral difference between the bands of 18 GHz

and 36 GHz obtained from a passive microwave (PMW) radiometer, such as the Special Sensor

Microwave/Imager (SSM/I) or AMSR-E [25–27]. However, the effect of vegetation on PMW

radiometer observations is a factor that cannot be ignored while retrieving SWE. Studies show

that the presence of vegetation can lead to an underestimation of SWE of up to 50% [28, 29].

In the AMSR-E SWE product, vegetated and non-vegetated fractions are retrieved separately

3



[30] and assessed as a function of the forest cover fraction. Furthermore, the spatiotemporal

distribution of snow density is a dominant source of errors in the AMSR-E SWE retrievals, and

hence, must also be carefully considered [9].

The existing PMW SWE products are too coarse (> 10 km) in spatial resolution to provide

accurate information for snow studies in regions of complex terrain [9]. PMW SWE retrievals,

in general, also have poor agreement with reference data from ground-based measurements,

particularly in deep snow, wet snow, or snow with overlying vegetation [31].

Active microwave (AMW) synthetic aperture radar (SAR) is also a feasible technique

for global snow mass detection. Bernier et al. [32] estimated SWE using RADARSAT images

collected during the winter of 1998 and 1999 at La Grande River watershed in eastern Canada.

Zhu et al. [33] developed a SWE algorithm using SnowSAR (airborne X- and Ku-band) and tested

it over a mixed vegetation area as well as an open tundra landscape. These practices showed

SAR has the potential to retrieve SWE at a much finer spatial resolution (∼ 0.5 km) compared to

PMW sensors, but that SWE retrieval accuracy is limited by the difficulty in properly capturing

complex scattering processes over snow-covered [34]. The accuracy of AMW SWE retrievals

is also degraded over wet snow or snow with overlying forest cover terrain [34]. Ka-band and

Ku-band spaceborne SAR sensors are more sensitive to snow signals, and are expected to show

better performance in shallow snow [35, 36].

Airborne LiDAR has been successfully applied to retrieving both snow depth and SWE

at the watershed scale [37, 38]. Over non-mountainous terrain, airborne LiDAR systems exhibit

15-20 cm vertical accuracy [39, 40]. Spaceborne LiDAR applications to global SWE are limited

because the revisit period of existing spaceborne LiDARs is too long (several months) to catch the

seasonal variations of snow [41]. However, the fundamental features of LiDAR allows them to
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provide key information of snow depth in the presence of overlying vegetation, which is difficult

to obtain using microwave sensors [38].

1.2.1.2 Soil Moisture Remote Sensing

Due to the dynamic and heterogeneous nature of soil moisture, remotely-sensed soil moisture

products are a good supplement in order to fill in and augment the ground-based observational

network across regional and global scales [42]. Soil moisture can be retrieved from land surface

reflectance derived from optical remote sensing. The relationship between soil moisture and

vegetation (e.g., Normalized Difference Vegetation Index, NDVI) has been investigated in a

number of studies [43–45]. However, the accuracy of this method to retrieve soil moisture is

limited because soil reflectance observations are also strongly affected by the inherent (physical)

properties of the soil itself, which makes reflectance observation highly variable depending on

the ecological setting being monitored [46].

Another method to retrieve soil moisture from space involves using thermal infrared (TIR)

observations. The basic principle of TIR soil moisture remote sensing is that the temperature

of the land surface is sensitive to the soil moisture given that water has a relatively large heat

capacity. By measuring the amplitude of the diurnal temperature change, one can develop a

relationship between the temperature change and the corresponding soil moisture content. However,

this relationship is also a function of soil type. Further, this method is limited in the presence

of vegetated soil. As a result, TIR methods are difficult to apply to large-scale soil moisture

monitoring projects [46].

Early in the 1970s, researchers recognized that passive microwave sensor measurements are
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useful for estimating surface soil moisture content [47]. The brightness temperature (Tb) observed

by the radiometer is a function of the soil physical temperature and surface emissivity [48]. In

order to control the influence of overlying vegetation, a number of PMW algorithms have been

developed that employ a microwave polarization difference index (MPDI) as an indicator for

characterizing vegetation conditions. Existing spaceborne remote sensing soil moisture products,

such as AMSR-E, SMOS, and Soil Moisture Active Passive (SMAP), are widely used in hydro-

meteorological, climate, and agricultural applications [42]. Evaluations have shown that they

perform well in capturing the annual cycle and short-term variability of the surface soil moisture.

[49, 50]. The advantage of using PMW radiometers is that they are not limited by the presence

of clouds, weather, or glint. However, the coarse spatial resolution (on the order of tens of

kilometers) makes PMW soil moisture remote sensing products difficult to apply to basin- or

watershed-scale applications without first undergoing some form of spatial downscaling.

Backscatter observations from SARs are also sensitive to soil moisture. However, the

retrieval of soil moisture from SAR is confounded by the effects of soil surface roughness

and overlying vegetation [51]. Furthermore, the geometric properties of the soil surface and

vegetation have a significant effect on SAR observations [46]. As a result, there are a limited

number of applications using SAR as an operational source for soil moisture as applied to hydrology

despite the benefits of a high-resolution, distributed soil moisture product [52].

1.2.1.3 Vegetation Remote Sensing

Leaf Area Index (LAI) is an important land surface variable for monitoring the condition

of vegetation productivity, and is used as an input in a number of ecosystem process models [53].
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LAI retrievals are often produced using spaceborne optical sensors at a variety of different spatial

resolutions. LAI has been retrieved with the Landsat Thematic Mapper (TM) data at a 30-m

resolution over the boreal forest zone in Canada [54]. Global LAI estimates have been produced

using the MODIS data at 1-km resolution [55]. World Meteorological Organization (WMO)

reported a relative error less than 10% is required in the applications on weather prediction, global

climate-carbon modeling, and hydrologic modeling [56]. Studies show that MODIS, the most

popular global LAI product, is slightly worse than the accuracy requirement by WMO [57, 58]

in all species average. Species related bias is a major source of error that impacts LAI retrieval

uncertainty.

LiDAR is a relatively new form of remote sensing used in forest applications. Airborne

LiDAR has been widely used in retrieving LAI and monitoring forest density [17, 59]. However,

there are relatively few applications of spaceborne LiDAR given the limited availability of spaceborne

LiDAR systems specifically designed to study vegetation [60]. The Global Ecosystem Dynamics

Investigation (GEDI) mission is the first spaceborne LiDAR specifically optimized to measure

vegetation structure [61, 62]. It will form the basis of critical reference datasets for vegetation

biomass between 52° S and 52° N [61]. The GEDI instrument employs three laser transmitters,

beam-splitting optics, and an optical dithering device to produce 14 ground tracks spaced 500

m across-track to yield a total swath width of 6.5 km. The transmitted pulse shape and returned

waveform is recorded for each 25 m diameter footprint (Figure 1.1) [63]. The GEDI liner track

is then resampled to a 500m× 500m grid [64].

The launch of GEDI raises the prospect of researchers retrieving LAI with lower errors

using spaceborne LiDAR. Dubayah et al. [61] reported the accuracy of a single point of GEDI

observations should be better than 20%. Qi et al. [65] evaluated the 1-km GEDI biomass retrievals
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Figure 1.1: GEDI’s ground sampling pattern. The red-blue points refer to samples
of coverage laser, and the orange points refer to full power laser. (Image credit:
https://gedi.umd.edu/instrument/specifications/)
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Table 1.1: Orbital configurations of typical sensors used in SWE, soil moisture and LAI retrievals.

Geographical
Retrieval

Proxy
Sensor
Type Spatial

Resolution
Orbital
Height

Inclination
Angle

SWE
AMSR-E PMW 25 km 705 km 97°

Sentinel-1A SAR 0.04 km 693 km 98°
GEDI LiDAR 1 km 400 km 51°

Soil Moisture
SMOS PMW 30 km 765 km 98°
SMAP SAR 1 km 685 km 98°

LAI
MODIS Optical 0.25 km 705 km 98°
GEDI LiDAR 1 km 400 km 51°

Acronyms:
SWE = Snow Water Equavalent; LAI = Leaf Area Index;
PMW = Passive Microwave; SAR = Synthetic Aperture RADAR;
LiDAR = light detection and ranging

against ground-based measurements, and reported uncertainties ranging from 11%–20% across

the different sites.

In summary, remote sensing is an important tool to obtain information related to snow, soil

moisture, and vegetation. Various remote sensing sensors, such as PMW radiometers, RADARs,

passive optical imagers, and active LiDARs are widely used in hydrological applications. The

spatial resolution of each, in general, varies from tens of meters to tens of kilometers. The orbital

configurations of these sensors are typically designed to meet specific mission goals (Table 1.1).

However, differences in spatial resolution, revisit frequency, sensor error characteristics,

and swath widths complicate the unified coordination of these different sensors in order to

explore the terrestrial hydrologic cycle as a holistic system.

1.2.2 Land Surface Models

To meet the need of water resource monitoring and prediction, researchers have developed

land surface models (LSMs) as simplified representations of the conservation of mass and energy
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equation (Figure 1.2). It is an important and necessary tool for water and environment resource

management [66]. An LSM describes the interaction in the atmosphere-canopy-soil surface

system and helps quantify unobserved states related to the movement of heat and water in the

natural environment. Most LSMs contain representations of the atmosphere, hydrology, plant

physiology, and soil physics, which are interlinked [67].

Figure 1.2: Conceptual representative of the state variables and fluxes
in an example LSM (Community Earth System Model). Image credit:
http://www.cesm.ucar.edu/models/clm/hydrologic.html.

LSMs have become more comprehensive over time as they increasingly represent more

physical interactions at the land surface. For example, land-atmosphere models evolved from

the simple, single-layer model into two-layer and multi-layer models [68]. In the single-layer

(or “big-leaf”) model, the land surface is treated as one homogeneous surface [69]. The only
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resistance between the land surface and the atmosphere is assumed to be the atmospheric resistance

defined as the ability of the air to transport a given quantity away from the land surface. This

assumption has since been relaxed to define surface resistance as a function of vegetation and

soil moisture [70]. The single-layer model is shown to perform well over dense vegetation [71],

however, does not perform as well for the clustered vegetated surface. Furthermore, a single-

layer model does not allow for interactions between the soil surface and vegetation, which are

significant especially when the vegetation is sparse [72].

In the two-layer models, vegetation is viewed as a single layer located above the soil surface

[73]. To better describe the interaction between vegetation and soil, some models extend the

one vegetation layer to multiple layers [74]. Although the detailed models such as two-layer

and multi-layer models provide more realistic results, they require more detailed information

about the vegetation parameters, and therefore, are hard to apply outside the intensely observed

experimental areas. Compared to the detailed models, the single-layer models are widely used

because of their simplicity. Unfortunately, these simple models make the model parameters hard

to infer and highly dependent on calibration [68].

Even though the LSMs are evolving, large uncertainty still remains in our understanding

and modeling of the interactions in the atmosphere-canopy-soil surface system. First, most

of the processes in LSMs are simplified due to computational cost and input data availability

constraints. For example, many of LSMs classify plant species into plant functional types, within

which the parameters are undifferentiated. Simulations consisting of a limited number of plant

functional types may ignore biodiversity within a simulation grid [75]. Second, the inaccurate

initial conditions of state variables can introduce uncertainties into the simulations. It is difficult

to provide correct initial fields for state variables that have significant spatial heterogeneity [76].
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The third source of uncertainty comes from boundary conditions, such as precipitation and air

temperature. The uncertainty from boundary conditions could be considerable in some cases.

For example, studies show that large biases and uncertainties exist in precipitation products over

mountainous areas, where precipitation is heterogeneously distributed and the ground gauges are

relatively sparse [77, 78].

1.2.3 Data Assimilation

There are advantages and disadvantages of LSMs and remote sensing observations [75].

Data assimilation (DA) is a technique to leverage both remote sensing observations and LSMs

together to increase model (posterior) skill. The basic idea behind DA is to combine (in a

Bayesian sense) complementary information from observations and LSMs, and thus, optimally

estimate geophysical state variables.

DA algorithms first emerged from the Kalman filter with Bayesian estimation techniques

[79]. Then a series of algorithms were developed based on this theory, such as the [Extended

Kalman Filter (EKF) for nonlinear systems [80], and the Ensemble Kalman Filter (EnKF) using

a Monte Carlo implementation of Bayesian updating [81]. Another alternative algorithm based

on Monte Carlo methods is the Particle Filter (PF) [82]. Compared to classical Kalman Filtering

methods, PFs can handle the propagation of non-Gaussian distributions through nonlinear models.

In the area of hydrology, DA has been widely applied as a method of improving the

characterization of snow, soil moisture, or runoff estimates. For example, Durand et al. [83]

assimilated Special Sensor Microwave Imager (SSM/I) and AMSR-E PMW Tb observations into

the Simple Snow–Atmosphere– Soil (SAST) transfer model [84] to improve SWE estimation.
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The result showed SWE and snow melting timing improvements via data assimilation. Lievens

et al. [85] leveraged the soil moisture retrieved from Sentinel-1A/B into the Catchment Land

Surface Model (CLSM) and improved the estimate of soil moisture [85]. Kumar et al. [86]

used multisensor, multivariate data assimilation that included a suite of soil moisture, snow

depth, and snow cover data from Scanning Multi-channel Microwave Radiometer (SMMR),

the Advanced Scatterometer (ASCAT), the Advanced Microwave Scanning Radiometer (AMSR-

E/AMSR2), SSM/I, MODIS, SMOS mission, and SMAP mission [86]. The practice proved that

the assimilation of terrestrial land remote sensing products provided a high quality estimate of

land surface state variables.

1.3 The Problem

The complexity of the land surface system has resulted in complex sources of uncertainty

in LSMs. Assimilation of remote sensing observations helps to control the growth of uncertainty

in model simulations. However, remote sensing observations collected by spaceborne passive

optical (VIS/NIR) radiometers, passive microwave (MW) radiometers, RADAR, and LiDAR are

not snow or soil moisture or vegetation observations, per se, but rather information related to

snow or soil moisture or vegetation [87–89]. Further, these remote sensing data contain their own

unique characteristics (e.g., error structure, field of view, overpass time, spatial resolution) that

need to be carefully considered when integrating with a LSM. To optimally utilize the spaceborne

sensors collecting measurements relevant to snow, soil moisture, and vegetation retrievals from

space-based instrumentation, a robust framework is needed to explore the interplay (a.k.a., tradeoff

space) between the different sensor types, swath widths, geophysical retrievals, and error characteristics.

13



Another problem is determining how to optimally utilize the observations from multiple

sensors. For a single geophysical state variable assimilation, observations from multiple types

of sensors (i.e., passive optical, passive MW, active MW, LIDAR or any combination thereof)

can provide complementary information for each other, since measurements from each of these

instrument types have their own strengths and weaknesses. For the multiple state variables

assimilated into a coupled snow-soil moisture-vegetation system, multiple observations are essential

to capture the synergistic interplay among different variables. However, the optimal utilization of

multiple observations first requires that one quantify the individual contribution of each single

measurement type prior to quantifying the synergistic interplay between a suite of different

measurement types.

In order to solve the problems highlighted above, an observing system simulation experiment

(OSSE) is developed in this dissertation. In this OSSE, the “synthetic truth” is first generated

by the Nature Run (NR) using the NoahMP-4.0.1 land surface model within the NASA Land

Information System (LIS). Then, synthetic observations from a series of existing and hypothetical

sensors are simulated and assimilated into the NASA LIS. An Open Loop (OL) is set with

different model parameters and boundary conditions compared to the NR in order to represent

the model only performance without assimilation. Then, the assimilation results are evaluated

relative to the NR and OL, so that the scientific value of each sensor/constellation configuration

can be quantified. This OSSE quantifies the added value to the model from the synthetic observations,

and their combinations, to help answer the overarching science question: What is the optimal

sensor/constellation configuration choice with the goal of quantifying water in a coupled snow-

soil moisture-vegetation system?
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1.4 Dissertation Structure

In Chapter 2, analysis of the viewing extents of different sensors on-board hypothetical

satellites/constellations is conducted in the context of terrestrial snow, in order to evaluate the

additive value of new observations in terms of spatial coverage. In Chapter 3, synthetic observations

are assimilated into the Noah-MP 4.0.1 land surface model in order to evaluate the value of

different observations in terms of model accuracy. In Chapter 4, the findings from Chapter 2 and

Chapter 3 are discussed and summarized.

1.5 Original Contributions

1) This study linked the Trade-space Analysis Tool for Constellations (TAT-C) [90] and a

time-varying snow binary map to evaluate the efficiency of a single sensor (or constellation) to

observe terrestrial snow on a global scale. The study explores a range of snow researchers’

requirements (in term of temporal integration periods) for remote sensing snow observations.

Therefore, it could assist researchers and mission planners weighing the different trade-offs based

on sensor selection and orbital configurations in future snow missions.

2) This study built an integrated OSSE framework coupling TAT-C with LIS to quantify the

gains via assimilating synthetic retrievals from a range of feasible mission design options (e.g.,

orbital configuration, retrieval error characteristics, and mixes of sensor types). This framework

could quantify the scientific gains as a function of mission design. Therefore, it can serve as an

effective planning tool for the next generation hydrological missions with particular relevance

to snow, soil moisture, and vegetation.
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3) The OSSE built in this work is used to assimilate the snow, soil moisture, and vegetation

simultaneously. The synergistic interplay among components in the snow-soil moisture-vegetation

system is explored. It provides a more cohesive estimation of terrestrial hydrology, which

provides knowledge to the community about what sensors/constellations are needed to better

characterize the coupled snow-soil moisture-vegetation system.

4) This study developed a metric, i.e., integrated normalized information contribution (NIC)

to evaluate the multi-sensor, multi-variate assimilation cohesively. The integrated NIC can provide

an overall assessment of the impact of assimilating synthetic retrievals on their own or in combination

with others.
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Chapter 2: Exploring the Spatiotemporal Coverage of Terrestrial Snow Mass

using a Suite of Satellite Constellation Configurations

2.1 Introduction

2.1.1 Motivation and Objectives

Terrestrial snow is a vital freshwater resource for more than 1 billion people. Remotely-

sensed snow observations can be used to retrieve snow mass or integrated into a snow model

estimate; however, optimally leveraging remote sensing observations of snow is challenging.

One reason is that no single sensor can accurately measure all types of snow because each type

of sensor has its own unique limitations. Another reason is that remote sensing data is inherently

discontinuous across time and space, and that the revisit cycle of remote sensing observations

may not meet the requirements of a given snow applications. In order to quantify the feasible

availability of remotely-sensed observations across space and time, this study simulates the sensor

coverage for a suite of hypothetical snow sensors as a function of different orbital configurations

and sensor properties. The information gleaned from this analysis coupled with a time-varying

snow binary map is used to evaluate the efficiency of a single sensor (or constellation) to observe

terrestrial snow on a global scale.
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2.1.2 Literature Review

Snow is an important component of global freshwater storage. It provides freshwater

supply for more than 1 billion people [91–93]. Snow covered terrain serves as a natural reservoir

that slowly attenuates freshwater runoff during the snow ablation season [94]. Snow albedo

also plays an important role in energy balance and climate change. For example, atmospheric

warming could reduce the seasonal snow cover, and hence, increase shortwave absorption at the

land surface, which could introduce a positive feedback [95].

Snow storage estimation is increasingly important as the virtual reservoir of snow is threatened

by global warming and climate change [13,96,97]. Earlier snowmelt due to global warming could

exacerbate severe floods and droughts [31, 98, 99]. As a result, the vulnerability of snow storage

has attracted considerable interest from the hydrologic community to monitor the equivalent

amount of liquid water contained within the snowpack (a.k.a, snow water equivalent or SWE)

so that this vital resource may be better managed and preserved.

2.1.2.1 Limitations of Existing Spaceborne Snow Products

Spaceborne remote sensing is the only viable technique to detect SWE across the globe

in a timely manner [9] when considering the large spatial extent of snow and the difficulties

in collecting in-situ measurements over such large regions. Despite the extensive efforts of

researchers to provide accurate SWE retrievals, current SWE products using passive microwave

(PMW) remote sensing observations still do not meet the accuracy requirements (±15%) needed

to support operational decision-making at a continental or global scale [100, 101]. One main

reason is that the knowledge gap in coupling precise physical emission models (i.e., radiative
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transfer models [RTMs]) of snowpacks to remotely-sensed observations [9].

A general approach for using PMW observations is the spectral polarization difference

(SPD) [102] employing the Chang algorithm [103] and its modification for forested areas [104];

this approach uses PMW spectral difference, i.e., the difference in brightness temperature between

two microwave frequency channels. This technique is effective in some regions e.g., dry, shallow

snow on flat terrain, but is unable to detect thin snow due to a low signal-to-noise ratio, or

accurately retrieve deep snow due to signal saturation, or snow with overlying vegetation due

to vegetation attenuation [9, 105]. To help overcome the problems of PMW observations across

regional or continental scales, some studies have fused satellite data with ground-based snow

measurements to better estimate SWE [106, 107].

There has never been a dedicated satellite mission for snow mass (SWE) detection. Existing

spaceborne sensors used to estimate snow mass have typically been designed for a different

purpose [108]. With the above limitations, most operational, stand-alone passive microwave

SWE products produced using the spectral difference method are far from optimal. Typically,

these products are inconsistent with independent reanalysis data and ground-based measurements

from meteorological stations and snow courses [31, 109], particularly in deep snow, wet snow,

snow in complex terrain, or snow with overlying vegetation [31, 105, 110].

Analogously, the Moderate Resolution Imaging Spectroradiometer (MODIS), a passive

visible and thermal infrared radiometer, was designed to view the spatial extent of snow rather

than the mass of snow within that snow-covered extent. Thus, MODIS is limited in skill in

terms of snow mass estimation although it does a good job of viewing where snow is found on

the ground in the absence of dense forest [98, 111]. More recently, active microwave (AMW)

synthetic aperture radar (SAR) has been employed for global snow mass detection [112,113], but

19



two issues remain unsolved: one is the limited repeat overpass (relative to Advanced Microwave

Scanning Radiometer (AMSR) or MODIS, e.g.), the other is that C-band microwave radiation

on Sentinel-1, e.g., is less sensitive to snow volume scattering than X-band and less skilled than

Ku-band in the detection of shallow snow [35, 36], although recent studies showed its potential

at mapping snow mass in mountainous regions [114]. Suffice it to say that the development of

such sensors for purposes other than terrestrial snow mass limits the skill of these sensors in the

application to global SWE estimation. As a result, the snow science community is discussing

the prospect of a future, dedicated spaceborne snow mission which would be the first of its

kind [115, 116].

2.1.2.2 Limitations of Remote Sensing Snow Techniques

The complexity of snow further confounds the retrieval of snow properties using remotely-

sensed observations such that no single technique can work for all types of snow. One significant

source of uncertainty in retrieving snow mass comes from the sensitivity of remotely-sensed

observations to other variables such as snow microstructure (e.g., grain size), snow stratigraphy,

the amount of liquid water content coating the snow grains, overlying vegetation, complex topography,

and atmospheric and cloud conditions [105]. Microwave radiation, in general, is sensitive to the

snow liquid water content (SLWC) such that even a small amount of liquid water in the snowpack

greatly alters the dielectric constant, and hence the emissivity and absorptivity, of the snowpack.

SLWC, which is relatively large during the melting season, often introduces large uncertainties

into SWE retrievals from both PMW and AMW retrievals [117]. Snow density, snow grain

size, and snow grain shape are other variables that influence the snow emissivity and scattering
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characteristics, and as a result, the corresponding electromagnetic response of the snowpack

[9]. The variability in these snow characteristics can result in a strong correlation between

the PMW signals and snow mass for some years, but not for other years. Additionally, the

complex microstructure of a snowpack due to variations in depth hoar, internal ice layering, and

vertical heterogeneity increase the spatial and temporal variability of the snowpack [9]. Overlying

vegetation further complicates snow remote sensing by attenuating microwave emission from

the snowpack while simultaneously contributing its own signal as measured by the spaceborne

radiometer. Findings have shown that PMW SWE retrievals tend to underestimate SWE in

forested areas [29]. Complex terrain such as in mountains, where much of the global snow is

located, also reduces the efficacy of coarse-resolution sensors such as PMW radiometers or AMW

scatterometers [105, 118, 119]. All of these uncertainties are exacerbated by the coarse-scale

resolution of these measurements that cannot adequately capture the true spatial variability of

SWE [120,121]. To overcome this problem, recent studies improved large-scale patterns of snow

mass estimation by merging PMW observations with ground-based measurements [107, 114].

In the context of spaceborne LiDAR, which is another option for retrieving snow depth and

snow mass, a major limitation is the relatively narrow swath width of LiDAR [41] (∼ 10 km)

compared to SAR (∼ 100 km) or PMW radiometry (∼ 1000 km). The individual LiDAR beams

typically obtain tracks with widths of 100 meters or less. Using multiple LiDAR beams as part

of a sampling strategy, the swath width of a spaceborne LiDAR retrieval is typically around 6

km [61, 122]. Furthermore, the optical signal used by a snow LiDAR cannot penetrate optically

thick clouds [123], hence, the snow under the clouds remains unobserved. LiDAR is an effective

tool for retrieving snow depth, but that effectiveness is severely curtailed when considering swath

width limitations and cloud attenuation.
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In short, no single spaceborne sensor will adequately measure all types of snow under all

conditions required for global snow monitoring. Rather, a mixture of observations from different

sensors, each with its own strengths and weaknesses, is needed to yield the best estimate of global

snow mass [41].

2.1.2.3 Snow Mass Mission Trade-offs

To make global snow mass estimation even more complicated, a future snow mission will

face a trade-off between sensor design, spatial resolution, and revisit frequency. For example,

a different orbital configuration (largely as a function of inclination angle and satellite altitude)

changes the nadir track, which directly influences which portions of the globe are, or are not,

observed. Similarly, a wider swath width for a given sensor increases the revisit frequency but

likely results in larger errors along the swath periphery due to slant range geometry effects or

significant reductions in backscatter, e.g., associated with changes in forward scattering characteristics

as the sensor looks increasingly off-nadir [124]. An increase in satellite altitude or changes in

orbital parameters could impact the spatial resolution as well as the frequency with which the

globe is viewed. However, both the fine spatial resolution and short revisit interval are of interest

in SWE estimation considering the strong spatiotemporal dynamics of the snow [125, 126].

Additional concerns about this trade-off include non-uniform distribution of snow cover and

diversity of snow types or snow features. The majority of snow occurrence is distributed in

the high-latitude or high-altitude regions. Consideration of the different suitable remote sensing

techniques to capture the different types of snow such as tundra, taiga, or ephemeral snow, adds

even more complexity to the task of global snow mass estimation.

22



2.1.3 Objectives

Given the difficulties listed above, along with the general lack of uptake of PMW estimates

of SWE into hydro-meteorology and hydro-climatology applications [120], the research presented

here aims to study the efficacy of different orbital configurations and sensor characteristics on

snow mass detection from the perspective of maximizing the global snow coverage to be viewed.

The goal of this exercise is to facilitate the mission planning process and enhance the future

potential of snow remote sensing, e.g., PMW, LiDAR, and SAR.

The first challenge is to link and combine the prediction ability of different satellite orbits

and estimation of snow dynamic extent. The sensor’s viewing extent is estimated under various

orbital configurations coupled with a snow cover climatology as a function of different snow

classes. The goal is not to quantify global snow mass (which is to be pursued in a follow-

on study), but rather to explore the different options to quantify snow mass, and how best to

maximize global coverage (in space and time) en route to estimating global snow mass.

2.2 Methodology

The snow mass detection capability of sensors (and sensor constellations by construct) is

limited by the sensors’ viewing extent, the distribution of snow in space and time, and the sensors’

efficacy to specific snow conditions (e.g., ability to retrieve deep snow, wet snow, snow overlain

by vegetation). This section introduces the methods to analyze these three factors, including

the methodology used to simulate the sensor viewing extent, different scenarios for simulations,

application of a time-varying snow mask, and metrics for use in evaluating observation efficacy.
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2.2.1 Simulation of Sensor Viewing Extent

In order to simulate the viewing extent of the single sensor, the Trade-space Analysis Tool

for Constellations (TAT-C) simulator is used to explore the ground track of the sensor orbit under

different orbital configurations. The module for simulating the sensor orbits in TAT-C has been

employed to investigate the nadir position track of a variety of different satellite sensors [127].

The second step in simulating the viewing extent of a single sensor is to adjust the sensor

swath width to enhance the hypothetical sensor coverage for this study. Specifically, the satellite

viewing extent is generated by extending the ground track in the cross-track direction to a given

swath width of interest. The viewing extent simulation is ultimately expressed as a binary map

marking the global surface as viewed (or not) in the absence of clouds. The viewing extent

simulation is conducted at a 0.01° spatial resolution in this study, and subsequently aggregated

in space to match relatively coarse-scale geophysical retrievals in the following analysis. Finally,

a realistic cloud mask is convolved with the viewing extent to explore the effects of cloud

attenuation on terrestrial snow observability.

2.2.2 Orbital Configuration and Sensor Type

In short, the orbital configuration mainly depends on satellite altitude and inclination angle.

Orbital configuration and swath width determine the repeat cycle of the sensor viewing extent.

To represent typical (i.e., polar-orbiting, sun-synchronous) configurations, six different sensors

are selected here to represent a range of hypothetical instruments including PMW radiometers,

SARs, and LiDARs.
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2.2.2.1 Passive Microwave Radiometer

The first evaluated sensor is an AMSR2-like PMW radiometer [128]. It has a wide swath

and relatively high revisit frequency, but typically has a coarse spatial resolution (∼10 km). PMW

radiometers have served as stalwarts for snow mass estimation over the last 30+ years [9] and have

demonstrated considerable skill in estimating relatively dry, shallow snow mass in relatively flat

terrain and in the absence of dense vegetation [31].

2.2.2.2 Synthetic Aparture RADAR

The second hypothetical sensor is a Ku/Ka dual-band SAR similar to the Terrestrial Snow

Mass Mission (TSMM) that is currently under consideration by the Canadian Space Agency

(CSA) [108]. A Ku/Ka dual-band SAR is expected to have a better response to snow mass than

other existing spaceborne SARs. The third evaluated sensor is a Sentinel1-like C-band SAR

[129]. It represents an existing SAR instrument that is currently used for snow mass detection

even though the scattering characteristics of C-band radiation in dry or shallow snow can be of

limited value [35]. However, given that Sentinel-1 is operational now and into the future, it is

considered here as a viable snow information source that should be included in this study. Two

C-band SAR instruments are included here to mimic the Sentinel-1 A/B constellation. The two

C-band SARs share the same orbital plane, but with a 180° phase difference.

2.2.2.3 LiDAR Altimetry

The fourth hypothetical sensor is a wide-swath (imaging) LiDAR with a 20 km swath

width. This specific configuration (and the assumed instrument errors) for use in space may
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Table 2.1: Orbital configurations of the tested sensors.

ID
Sensor
Type

Orbit
Altitude [km]

Inclination
Angle [°]

Swath
Width [km]

Prototype
(status)

1
PMW

Radiometer 510 97 1450
AMSR-2
(Existing)

2
Ku-band

SAR 705 98 500
TSMM

(Hypothetical)

3
C-band
SAR 705 98 250

Sentinel-1 A/B
(Existing)

4
Wide

LiDAR 481 92 20
ICESat-2

(Hypothetical)

5
Narrow
LiDAR 481 92 6

ICESat-2
(Existing)

6
Low-inclination

LiDAR 415 51.6 6.5
GEDI

(Existing)
PMW = passive microwave; SAR = synthetic aperture RADAR;
LiDAR = light detection and ranging;
AMSR-2 = Advanced Microwave Scanning Radiometer 2 (AMSR2);
TSMM = Terrestrial Snow Mass Mission;
ICESat-2 = Ice, Cloud and land Elevation Satellite-2;
GEDI = Global Ecosystem Dynamics Investigation

not be achievable given the engineering requirements of today, but this aspirational sensor is

considered here as a feasible part of a future, hypothetical snow constellation configuration, and

as such, is explored in this study. The fifth evaluated sensor is an ICESat-2-like narrow-swath

LiDAR [130]. It has a similar orbit as ICESat-2, but with better spatial coverage assuming the

use of a hypothetical 6 km continuous swath width to replace the original ICESat-2 observations

that are sampled by six laser beams each with a 10-meter footprint across a 6 km field of view.

The sixth evaluated sensor is a GEDI-like (Global Ecosystem Dynamics Investigation onboard

the International Space Station) low-inclination angle LiDAR [61]. As a low-inclination angle

platform, it only views regions within ±51.6° latitude. While losing the ability to monitor snow

over high latitudes, it yields a higher revisit frequency in low latitude areas of snow. The orbital

configurations for each of these sensors are provided in Table 2.1.

Among the existing spaceborne altimetry and LiDAR instruments, ICESat-2 has a 6-km
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total swath width [131] and GEDI has a total swath width of 6.5 km [132]. Therefore, the assigned

swath width of the hypothetical LiDAR is set to 6 km in order to appropriately represent the

current, state-of-the-art technology. The swath width of the hypothetical wide-swath LiDAR is

assigned as 20 km. Even though such a spaceborne LiDAR does not currently exist, it is worth

conducting this experiment to consider the added value associated with a hypothetical increase

in swath width relative to that which is currently operational.

2.2.2.4 Orbital Parameters

Sensor IDs 1-3 (Table 2.1) have orbital configurations that are polar and sun-synchronous,

which means the local overpass time at the equator will be similar from one day to the next. A

consistent overpass time is critical for microwave-based remote sensing, be it active or passive

in nature, because the presence (or absence) of liquid water can drastically change the snow

dielectric constant that could in turn affect the observed signals, and therefore introduce additional

errors or uncertainties in the snow retrievals. To further reduce the diurnal variations of the

observations in sensor IDs 1-3, only one overpass direction representing the nighttime overpass

is used here in order to minimize wet snow effects. By contrast, both ascending and descending

observations are used for sensor IDs 4, 5, and 6 since the snow depth measured by LiDAR is less

impacted (related to microwave sensors) by snow wetness or snow temperature.

2.2.2.5 Constellations

In addition, the performance of four hypothetical constellations (i.e., mixtures of different

sensors) is also considered. Four specific constellations were selected from a near-infinite number
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Table 2.2: Sensor makeup of hypothetical snow constellation configurations.

Constellation ID Sensor Marks Sensor Mixture
C1 ✠★★ ❘ PMW & two C-band SARs & narrow LiDAR
C2 ✠✮ ❘ PMW & Ku-band SAR & narrow LiDAR
C3 ✠✮ ❚ PMW & Ku-band SAR & wide LiDAR
C4 ✠★★✮ ❘ ❚ PMW & two C-band SARs & Ku-band SAR &

narrow LiDAR & wide LiDAR
✠ = PMW sensor; ★ = C-band SAR; ✮ = Ku-band SAR;
❘ = narrow LiDAR; ❚ = wide LiDAR.

of possible configurations as the focus of the paper to make the analysis tractable. The combinations

explored here include (Table 2.2):

(a) PMW radiometer, two C-band SARs, Narrow LiDAR;

(b) PMW radiometer, Ku-band SAR, narrow-swath LiDAR;

(c) PMW radiometer, Ku-band SAR, wide-swath LiDAR;

and (d) PMW radiometer, Ku-band SAR, two C-band SARs, wide-swath LiDAR, narrow-

swath LiDAR.

The different constellations represent: (a) currently available techniques for snow remote

sensing [C1], e.g., the two C-band SARs represents the Sentinel-1 A/B constellation; (b) proxies

of sensors feasibly applied in the near future [C2]; (c) incorporate the additive value of a wide

swath LiDAR [C3]; and (d) represent what could be achieved if all sensors are simultaneously

spaceborne [C4]. The selection of these different sensors within each constellation does not

consider a likely cost cap to sensor deployment. Rather, the selection of these different sensors

aims to explore what could be viewed assuming the financial resources were available to deploy

such a configuration.
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2.2.3 Time-varying Snow Mask

To help investigate the space-time coverage of terrestrial snow, the Interactive Multisensor

Snow and Ice Mapping System (IMS) snow cover [133] is used for the years 2001 - 2020 to

serve as a reasonable proxy for binary (yes or no) snow coverage, and a determinant for a time-

varying snow mask. Since the vast majority of the terrestrial snow cover is located in the northern

hemisphere – about 40 million km2 [134] compared to less than 1 million km2 in the southern

hemisphere [135] – only terrestrial snow over the northern hemisphere is explored here in order

to minimize computational expense.

The IMS snow mask is leveraged here to empirically describe the snow coverage extent.

The daily snow-covered probability through statistics of snow occurrence is computed within

each 0.04-degree grid from historical data to estimate the probability of snow cover. A pixel with

a probability larger than 0.5 is marked as snow. Otherwise, it is considered as snow-free. Then

the snow mask is interpolated to 0.01-degree grid using the nearest-neighbor algorithm. The

binary snow map is computed as,


snow-covered pixel if

∑2020
i=2001 IMS(x⃗,doy,i)

N
≥ 0.5

snow free pixel if
∑2020

i=2001 IMS(x⃗,doy,i)

N
< 0.5

(2.1)

where x⃗ refers to the pixel location in space, doy refers to the day of year, and N = 20 represents

the total number of years used during the analysis.

This snow cover extent approximates the climatological space-time occurrence of snow

as prior knowledge for simulation. It is eventually convolved with the sensor viewing area
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(see 2.2.1) to estimate the viewed snow cover extent, which is a necessary precursor to study

remotely-sensed snow mass. This chapter focuses on the viewed snow extent as a means of

further exploring the snow mass in the next chapter.

2.2.4 Time-varying Cloud Mask

In order to consider the impacts of clouds on the snow retrievals observations obtained

via LiDAR, a daily cloud mask is employed to simulate the cloud cover distribution. The cloud

mask is extracted from the quality flag (i.e., Coarse Resolution Internal Cloud Mask) of the

0.05-degree MODIS Aqua daily reflectance collection 6 product (MYD09CMG, https://

ladsweb.modaps.eosdis.nasa.gov/filespec/MODIS/6/MYD09CMG) [136]. The

0.05-degree cloud mask is then interpolated to 0.01-degree grid using the nearest-neighbor algorithm.

The cloud mask is not available during the nighttime-only polar winter given the passive (optical)

nature of the MODIS sensor. Therefore, a gap filling strategy is adopted to simulate the cloud

distribution when the data is missing. A set of gap-free cloud masks collected during the polar

summer (i.e., from March 22 to September 20) is employed. When cloud retrievals are missing

during the polar winter (i.e., from September 22 to March 21) the gap-free cloud masks from the

summer are used as a reasonable surrogate to estimate the impact of cloud attenuation on optical

sensor retrievals collected from space. Even though this method does not exactly reproduce the

cloud conditions that existed, the filled cloud map serves as a reasonable proxy to represent the

true cloud variability across space and time.
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2.2.5 Evaluation Metrics

This section defines and describes three different metrics employed to evaluate the sensors’

viewability of terrestrial snow: 1) viewed snow coverage percentage, 2) viewed snow classification

coverage percentage, and 3) viewing repeat interval for each terrestrial snow class. These metrics

help to quantitatively assess the sensor/constellation efficacy in observing snow across space and

time while also considering differences in regional snow climatology.

2.2.5.1 Viewed Snow Coverage Percent

The first metric is the snow coverage percent within a certain interval of time, i.e. 1-

day, 3-day, and 30-day periods. The three different periods represent time to respond to the

daily, synoptic scale, and seasonal variations, respectively [137]. To investigate the viewing

effectiveness, as a single sensor or part of a sensor constellation, the normalized snow coverage

percentage that is viewed (Psnow) over the northern hemisphere terrestrial environment is calculated

as:

Psnow =

⋃n
i=1[A(x⃗, t)viewed,i ∩ Asnow(x⃗, t)]∫

Asnow(x⃗, t)dx⃗
× 100% (2.2)

where Asnow(x⃗, t) refers to the dynamic snow-covered terrestrial area during the study period

(defined by IMS), A(x⃗, t)viewed,i is the terrestrial area that is viewed by the sensor i, and
∫
Asnow(x⃗, t)dx⃗

is the total snow-covered area for a given day in space (x⃗) and time (t). The symbol
⋃n

i=1 denotes

the union of areas viewed by satellites from 1 to n that compose a given constellation. The symbol

∩ represents the intersection.

31



2.2.5.2 Viewing of Snow Classification Coverage Percentage

In addition to the total viewed snow coverage, the second metric explores the efficacy of

each sensor configuration to view a specific snow classification as:

Pj =

⋃n
i=1(A(x⃗, t)viewed,i ×Wi,j) ∩ Asnow(x⃗, t) ∩ Aj(x⃗, t)∫

Aj(x⃗, t)dx⃗
× 100% (2.3)

where Aj(x⃗, t) refers the area of snow class j, and Pj is the percentage of the viewed snow-

covered area of the j-th class. Wi,j represents the weight of the efficacy of a given sensor i

on the snow class j. The snow classification system proposed by [138] is employed here (see

Figure 2.1). Snow is categorized into six different classes based on the physical properties: 1)

tundra, 2) taiga, 3) alpine, 4) maritime, 5) ephemeral, and 6) prairie classes. Ice is not discussed

in this dissertation. Table 2.3 shows the assigned weight matrix Wi,j used in this study. It

provides a first-order estimate of the sensor efficacy on specific snow classification according

to the assumptions as follows: 1) PMW sensors do not work well for snow under dense forest

(taiga), deep snow (maritime), and snow over complex terrain (alpine) [9, 105]; 2) SAR sensors

do not work effectively for snow under dense forest (taiga); and 3) LiDAR sensors are affected

by cloud attenuation [123]. The situation in the real world is complex, hence, the weight applied

here is somewhat subjective over large areas for each class. However, these values are useful in

specifying a reasonable estimation of each sensor’s efficacy and allows for a relatively transparent

understanding of the assumptions made.
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Figure 2.1: Map of snow cover classification based on [138].

Table 2.3: Assumed weight of sensor efficacy ,Wi,j , for snow mass estimation in each snow
class, j. Individual weights are subjective, but serve as an effective skill estimate for each sensor
relative to one another.

Tundra Taiga Maritime Ephemeral Prairie Alpine
Radiometer 1 0 0 1 1 0

SAR 1 0 1 1 1 1
LiDAR (cloud-free) 1 1 1 1 1 1

LiDAR (cloud-covered) 0 0 0 0 0 0
0 = contains no skill; 1 = contains skill;
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2.2.5.3 Temporal Repeat Interval

The third metric employed here is the temporal repeat interval for each terrestrial snow

class. Compared to the snow coverage percentage, the temporal repeat interval better reflects the

orbital overlap, which is a strong function of latitude when using a polar-orbiting sensor. The

repeat interval, I(x⃗), is calculated as:

I(x⃗) =
T

F (x⃗)
(2.4)

where x⃗ is space; T refers to a certain period (365 days in this study) in units of days; F (x⃗) is the

number of repeat times during period T considering the sensor efficacy weight shown in Table

2.3; and I(x⃗) refers to the repeat interval in units of days since last viewed.

2.3 Results

2.3.1 Sensor Simulation of Viewing Extent

Figure 2.2 illustrates the viewing extent simulation steps described in section 2.2.1. Figure

2.2(a) shows the nadir points of a single sensor, e.g., Ku-band SAR in Table 2.1, as simulated by

TAT-C tool for a 1-day period of integration. These nadir points are then extended to the swath

width coverage as shown in Figure 2.2(b).

Similarly, Figure 2.3 shows the sensor ground track from TAT-C and 1-day set of results of

viewing extent for each of the sensors introduced in Section 2.2.1.

The viewed area depends on the sensor’s swath width as well as the orbital configuration.
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Figure 2.2: Satellite viewing extent simulation of the hypothetical Ku-band SAR in Table 2.1 for
(a) nadir points for the ascending pass during a 1-day integration period; and (b) viewing extent
for the ascending pass during a 1-day integration period

Figure 2.3: Example of daily viewing extent of sensors listed in Table 2.1.

35



The narrow swath sensors have larger gaps in coverage across space and time, in general, and

hence, longer revisit intervals relative to the wide swath sensors.

2.3.2 Time-varying Snow Mask Estimation

Figure 2.4 shows a viewing example for a C-band SAR along with the coincident snow-

covered area (based on the IMS snow product) for a single day near peak snow accumulation.

The overlap between the blue and the green represents the snow-covered terrain as viewed by the

sensor. Since both the snow-covered terrain and viewing area are a function of space and time,

the variation of the overlay distribution is complex. This process is repeated over multiple snow

seasons for each individual sensor type (section 2.3.3) as well as for a mixture of different sensors

(section 2.3.4). The goal of this exercise is to determine the spatiotemporal viewing capability of

each sensor on its own as well as in coordination with other sensors. In addition, the use of the

weights of each sensor can help discern how best to coordinate these hypothetical sensors in a

follow-on study with direct applicability to global snow mass estimation.

Figure 2.4: Viewing example for a single day using a C-band SAR (No.3 in Table 2.1) overlying
the snow-covered area via IMS; blue is sensor coverage; green is snow-covered terrian according
to Section 2.2.3.
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2.3.3 Evaluation of Single Sensor

2.3.3.1 Viewed snow coverage percentage analysis

To quantitatively assess the seasonal variation of the viewed snow area, the total snow area

and viewed snow area by each individual sensor over different periods is illustrated in Figure 2.5.

The total snow cover area in the northern hemisphere varies as a function of season and reaches

a peak of about 5.4 × 107 km2 during February with a minimum value of about 0.2 × 107 km2

during August. As a result, the spatial coverage for snow varies correspondingly, and yields

the largest difference between different sensors during peak snow accumulation. For example,

a single PMW sensor could observe more than 80% of the snow-covered terrain in a single day

in February while a single SAR sensor could observe between 20% and 40% depending on the

swath width. A single LiDAR sensor views less than 5% of the snow-covered terrain area in a

single day.

When the integration time increases to three days, a PMW radiometer can view all of the

terrestrial snow across the northern hemisphere. However, a single LiDAR sensor coverage is still

limited to less than 15%. For a 30-day integration period, the wide-swath LiDAR could cover

more than 50% of terrestrial snow in the northern hemisphere while the narrow-swath LiDAR

views approximately 38%. In short, a single PMW sensor views most of the northern hemisphere

snow-covered terrain in a 1-day period; a single SAR sensor views most of the snow-covered area

in a 3-day period; and a 20 km swath width LiDAR sensor cannot view most of the snow-covered

terrain even in a 30-day period.

The differences among the sensors’ coverage mainly result from swath width configurations.
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Figure 2.5: Seasonal variation in viewed terrestrial snow area for different types of existing and
hypothetical sensors. Subplot (a) shows coverage based on a 1-day integration period; (b) shows
a 3-day integration period; (c) shows a 30-day integration period.
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Figure 2.6 highlights the viewed snow percentage as a function of swath width. This result is

computed as a function of swath widths ranging from 50 km to 1500 km, using an inclination

angle of 97° and a 510 km altitude. The increase in viewed snow cover percentage during a

1-day integration period is nearly linear as the swath width increased. The growth rate of percent

coverage is asymptotic when the swath width is large for a 3-day or 30-day integration period

due to the successive overlaps between different days. When arbitrarily drawing a line of 80%

of snow-covered percentage, the swath width required is about 1100 km, 550 km, and 200 km

for a 1-day, 3-day, and 30-day integration period, respectively. This result provides a useful

benchmark of snow mission demands when considering daily, synoptic, and seasonal variations

of snow. This analysis assumes a peak snow period. For other days of the year, the extent of

low-latitude snow decreases.

Figure 2.6: Viewed snow coverage percentage as a function of orbit swath width for 1-day, 3-day,
and 30-day integration periods during the month of February near peak accumulation of snow in
the northern hemisphere. The dot-dashed line represents 80% viewed snow coverage.

The effective coverage as presented in section 2.2.5.2 is employed to reflect the effect of
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sensor efficacy on different snow classes along with consideration of cloud attenuation. The

effective coverage not only indicates the snow extent viewed by the sensor(s), but also shows the

skill of each sensor to detect the snow in different snow classes.

The simulated results for effective snow coverage percentage are shown in Table 2.4.

It shows poor percent coverage for all sensors over taiga since only LiDAR sensors, whose

swath widths are limited, are assumed to work well for this class. The PMW sensor provides

considerable viewing for the tundra, ephemeral, and prairie classes within one day. The SAR

sensors cover most areas of these classes when the integration period is increased to three days,

which helps mitigate the PMW sensor’s limitations in areas such as maritime and alpine snow.

The LiDAR sensors represent the smallest viewing percentage. Even over a 30-day period, the

viewed percentage can not meet a near-global requirement, per se, but does view relatively large

amounts of most snow classes. These results suggest a wider swath width is likely required for

LiDAR sensors or that more than one LiDAR will be required in the assessment of northern

hemisphere snow.

The assumed weight of sensor efficacy listed in Table 2.3 is to be improved. For example,

defining the PMW sensor’s efficacy as zero over taiga regions is arguable [9,29,139]. Alternatively,

Pulliainen et al. [107] showed there could be a significant correlation between PMW-observed

SPD and SWE in a typical boreal forest region. In order to account for a range of feasible

efficacies, values ranging from 0.1 to 0.5, with an increment of 0.1, are applied. The results

shown in Table 2.5 highlight how the effective coverage of PMW radiometry within taiga snow

regions increases with increasing efficacy. During a 1-day integration period, the percentage

increases linearly from 9.8% to 49%. During a 3-day or 30-day integration period, the effective

coverage is similar to the 1-day integration period because of the relatively large swath width
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Table 2.4: Effective coverage of sensors (in units of percent) for different snow classes with
integration periods of 1-day, 3-days, and 30-days. Values greater than 80% are in boldface.

Snow Class
Sensor ID Tundra Taiga Maritime Ephemeral Prairie Alpine

1-day

PMW 98.8 0.00 0.00 67.1 77.0 0.00
Ku-band SAR 55.2 0.00 34.5 22.1 25.2 33.5
C-band SAR 29.3 0.00 17.5 10.2 12.5 17.9
Wide LiDAR 1.88 1.83 0.795 0.802 0.768 1.61

Narrow LiDAR 0.686 0.374 0.316 0.344 0.346 0.447
Low-inclination

LiDAR 0.0901 0.105 0.211 0.522 0.158 0.163

3-day

PMW 100 0.00 0.00 93.7 95.8 0.00
Ku-band SAR 93.8 0.00 80.5 58.5 63.7 75.8
C-band SAR 68.6 0.00 47.4 30.6 35.7 46.1
Wide LiDAR 5.20 3.71 2.08 2.44 2.07 2.73

Narrow LiDAR 1.92 1.14 0.832 1.04 0.911 0.913
Low-inclination

LiDAR 0.269 0.303 0.597 1.17 1.23 0.519

30-day

PMW 100 0.00 0.00 98.2 97.8 0.00
Ku-band SAR 97.7 0.00 96.0 93.3 90.3 94.3
C-band SAR 94.9 0.00 91.5 87.7 82.2 88.9
Wide LiDAR 18.3 13.8 8.84 11.4 9.22 9.70

Narrow LiDAR 10.6 7.80 5.18 7.00 5.32 5.18
Low-inclination

LiDAR 2.00 2.12 3.60 8.20 7.30 3.01
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Table 2.5: Percent effective viewing coverage in taiga snow regions using a PMW radiometers
in conjunction with efficacies ranging from 0.1 to 0.5. The different rows represent different
integration periods.

Integration
period

Efficacy
0.1 0.2 0.3 0.4 0.5

1-day 9.8 20 29 39 49
3-day 9.9 20 30 40 50

30-day 10 20 30 40 50

of the PMW radiometer. However, the efficacy of PMW varies in time and space considerably

due to the variation of snow properties, such as snow depth, snow wetness, snow density, and

snow grain size. This paper only provides a first-order estimate of the approximated efficacy; a

dynamic efficacy (in space and time) is likely required in a follow-on study in order to improve

model performance.

2.3.3.2 Repeat interval analysis

The results of the repeat interval analysis are presented in Table 2.6. The repeat interval

represents an averaged viewing of sensors across space and time as computed from a simulation

of an entire year and averaged across the northern hemisphere by each individual snow class.

The repeat interval reflects how frequently an observation could be obtained for each sensor.

In addition to the taiga snow class, the ephemeral snow class is relatively difficult to view

given the lower-latitude position of these snow classes when viewed using polar-orbiting sensor

configuration. Even with a 500 km wide swath, the Ku-band SAR does not fully view the

ephemeral snow class at a synoptic scale (i.e., approximately 3-day period). The narrow-swath

LiDAR takes a long time to revisit a given location, especially for locations at low latitudes.

Compared to a polar-orbiting LiDAR, the low inclination LiDAR views the snow classes at low
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Table 2.6: Domain-average repeat intervals (in units of days) for different snow sensors as a
function of snow class and sensor efficacy (see Table 2.3).

Snow Class
Sensor ID Tundra Taiga Maritime Ephemeral Prairie Alpine

PMW 1.03 - - 1.54 1.31 -
Ku-band SAR 2.12 - 3.40 4.61 3.92 3.07
C-band SAR 4.15 - 6.76 9.11 7.77 6.08
Wide LiDAR 64.1 61.3 179 75.1 93.1 85.0

Narrow LiDAR 172 159 450 172 221 210
Low-inclination LiDAR 390 400 332 136 138 292

latitudes (e.g., ephemeral snow) more frequently, but less so for snow classes at high latitudes

(e.g., tundra snow). The wide-swath LiDAR requires over 50 days to revisit the same location

depending on the latitude and cloud conditions. This suggests a LiDAR with a swath width

larger than 20 km or a constellation with several LiDARs would be required in order to achieve

a monthly (or less) repeat interval across the northern hemisphere. All variations of LiDAR

explored here have a longer interval to revisit maritime snow compared to other snow classes

because cloud attenuation is more prevalent over maritime snow.

2.3.4 Evaluation of Constellations

The results from the individual sensor experiments illustrate how no single sensor can

adequately measure all types of snow at all locations across the hemisphere. That is, it is clear

that a constellation of different sensors is required to achieve this goal. Table 2.7, therefore,

illustrates the effective coverage of the tested constellation cases.

The shortcomings of any single sensor are compensated for by the other sensors in the

constellation. For example, the PMW sensor obtains a regular, short duration repeat of observations

of the tundra, prairie, and ephemeral snow classes, while the SAR sensors can collect information
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Table 2.7: Effective viewing coverage (in units of percent) of constellations for different snow
classes with 1-day, 3-day, and 30-day integration periods. Values greater than 80% are in
boldface.

Snow Class
Constellation

ID Tundra Taiga Maritime Ephemeral Prairie Alpine

1-day

(a) 97.8 0.710 34.5 77.1 90.9 25.6
(b) 98.8 0.710 29.0 72.7 91.4 32.1
(c) 98.7 1.83 29.6 72.9 91.4 33.8
(d) 98.7 2.54 47.6 78.3 93.4 42.0

3-day

(a) 100 2.00 68.9 98.0 99.0 67.4
(b) 100 2.00 74.2 98.0 99.2 81.4
(c) 100 5.19 74.7 98.1 99.2 81.8
(d) 100 7.14 87.3 98.4 99.3 87.0

30-day

(a) 100 19.7 95.9 98.9 99.0 98.4
(b) 100 19.7 96.8 98.8 99.1 99.0
(c) 100 44.5 96.9 98.9 99.1 99.0
(d) 100 49.2 97.8 99.2 99.2 99.2

regarding maritime and alpine snow. Further, the LiDAR sensors help provide important information

about snow with overlying vegetation. Although the viewable area is limited, the LiDAR information

could potentially help cross-calibrate other sensor retrievals in other areas. The comparison

between constellation (C1) and (C2) shows the impact on viewing coverage by replacing two

C-band SARs with one Ku-band SAR. The constellation (C1) achieves more coverage within a

1-day integration period, but less coverage within 3-day and 30-day integration periods compared

to the constellation (C2). The difference in viewing coverage between the constellations are not

significant, but the higher quality and relatively fine-resolution observations from the Ku-band

SAR could potentially improve the snow retrieval quality of the tundra, prairie, and ephemeral

snow classes. With a wide-swath LiDAR, constellation (C3) viewed a larger portion of snow in

the taiga regions relative to constellation (C2). In constellation (C4), all candidate sensors are

introduced, and hence, the viewing coverage is maximized.
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2.4 Discussions and Conclusions

What observations are needed to study terrestrial snow across the northern hemisphere?

Mission planners want to maximize the scientific value given a fixed budget. However, the exact

approach to maximize the benefits to snow science remains an open question. This research

is designed to assist researchers and mission planners weighing the different trade-offs based

on sensor selection and orbital configurations. In addition, this study explores a range of snow

researchers’ requirements (in terms of temporal integration periods) for remote sensing snow

observations.

This study also provides key information relevant to a future observing system simulation

experiments (OSSE) to be conducted in a follow-on study. An OSSE serves to mimic nature and

help quantitatively explore the impact of different hypothetical observing systems (such as the

snow sensors explored here) on conditional (a.k.a. updated) snow model results. Furthermore,

this study provides a slew of sensor coverage simulations with various sensor swath widths

and orbital configurations. The results from this study will be applied in a data assimilation

experiment in a similar manner as [140], which was only applied to LiDAR remote sensing of

snow. For the researchers who are interested in similar topics, the simulated sensor viewing

coverage of the hypothetical sensors in this study are published on DRUM at the University

of Maryland (https://drum.lib.umd.edu/handle/1903/27610) and available for

public access.

This study has several aspects that should be refined in the future regarding the simulation

method and the metrics for the use of coverage evaluation. First, snow that is viewed does not

necessarily mean that it can be retrieved accurately. There is a complex, nonlinear calculation
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going from the sensor observations to snow retrievals. The increase of viewing extent only

represents the upper-bound on the quantity of observations, not what the retrievals will actually

see. Meanwhile, the increase in the number of observations does not guarantee an improvement

in snow retrieval quality. To avoid introducing more noise due to information related to something

other than snow mass (e.g., snow grain size, snow wetness), efficacy weights are used to reflect

the sensor skill as a function of different snow classes. As mentioned in the Results section,

the efficacy weights can be improved to reflect the actual performance of sensors under different

conditions. Another limitation is that snow is assumed to be uniform within a given snow class.

The weight matrix in Table 2.3 is used to describe sensor efficacy as a first-order estimate.

However, sensor efficacy depends on the specific snow conditions (e.g., dry versus wet snow,

shallow versus deep snow). Besides, the skill of LiDAR to retrieve snow depth is adversely

impacted by clouds in a complex, nonlinear manner. When LiDAR’s efficacy over cloudy regions

is set to zero in Table 2.3, it is a first-order estimate without direct consideration of the cloud

optical thickness. That is, even though cloud cover may be present, optically thin clouds (e.g.,

cirrus clouds) may still allow for snow retrieved using LiDAR.

Additionally, the geophysical retrievals from each sensor are assumed to be mutually unbiased.

As a result, constellation case (a) yields an overly optimistic view of snow-covered terrain.

This particular constellation scenario represents a constellation composed of existing sensors.

However, there are relatively few studies investigating the conjoined use of these sensors because

the observations from each sensor are inherently uncertain and posses their own unique error

characteristics. It is difficult to first merge these disparate information sources prior to evaluating

their additive value relative to one another. Another factor is then needed to carefully consider

each sensor’s spatial resolution. Before jointly using the different sensor observations, they must

46



be first integrated into a unified product via data assimilation or some other merging strategy.

This study explores a suite of existing and hypothetical sensors in the viewing of snow-

covered terrain as a function of sensor orbital configuration and sensor efficacy. The research

explores the viewing of a series of sensors, and constellations of sensors, with distribution of

coincident terrestrial snow. The results help quantify the demands on sensor swath width and

orbital configuration for the requirement of 1-day, 3-day, and 30-day integration periods.

Viewing extent simulations show that sensors with swath widths of 1100 km, 550 km,

and 200 km could meet the demands of 1-day, 3-day, and 30-day repeat intervals, respectively.

However, the effective coverage when considering sensor efficacy and cloud attenuation suggests

a single sensor cannot observe all snow classes at all locations in the northern hemisphere during

all times of the year. Constellations composed of different sensors could better compensate for

the shortcomings of a single sensor in a specific snow class. The combination of the PMW and

SAR sensors could perform well for all the snow cover classes except taiga, while the LiDAR

sensors could potentially provide some key information of snow with overlying vegetation.

To quantify the expected model improvements as a function of orbital configuration and

sensor type the results of this chapter are applied in a follow-on snow OSSE study. The results of

the snow OSSE combined with a cost analysis could help mission planners decide how to get the

most snow-related scientific bang for the scientific buck.
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Chapter 3: Impact of multi-variate, multi-sensor assimilation on terrestrial freshwater

estimation within a coupled snow-vegetation-soil moisture observing

system simulation experiment

3.1 Introduction

Terrestrial freshwater storage (TWS) is the vertically-integrated sum of snow, soil moisture,

vegetation canopy storage, surface water impoundments, and groundwater [141]. Among these

components, snow, soil moisture, and vegetation are the most temporally-dynamic as well as the

most spatially-variable [142, 143]. Although snow, soil moisture, and vegetation only account

for a relatively small part of the TWS [12], the snow-soil moisture-vegetation system plays a key

role in the hydrological cycle, and serves as a first-order control on surface runoff, transpiration,

and evapotranspiration as well as the prediction of weather and climate [13–15]. Previous studies

have quantified the snow-soil moisture-vegetation system using land surface models (LSMs) [67,

84, 144], remote sensing retrievals [16–18], or fusing model and remote sensing observations

within a data assimilation framework [80, 86, 145–147]. However, the characterization of these

highly-dynamic hydrologic state variables in space and time is complex, and inherently uncertain

because it is impossible to measure all components of TWS at all times and all locations in space.

An additionally perplexing problem is that one component of the snow-soil moisture-vegetation
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system can, at times, shroud the measurement of another component such that quantifying one

of these components individually requires knowledge of one or more of the other components

within the same system [7–11]. Therefore, a true representation of terrestrial freshwater (and its

integrated response as it travels through a given watershed) is best studied as a cohesive whole

rather than as the mere sum of its individual components.

Observations collected by spaceborne passive optical (visible/near-infrared) radiometers,

passive microwave (MW) radiometers, Radio Detection and Ranging (RADAR) sensors, or Light

Detection and Ranging (LiDAR) sensors are not snow or soil moisture or vegetation observations,

per se, but rather information related to snow or soil moisture or vegetation [87–89]. These

disparate data streams contain their own unique characteristics (e.g., error structure, field of view,

overpass time) that are often integrated with a land surface model in order to provide estimates

of geophysical variables that scientists care most about (e.g., snow mass, soil moisture content,

vegetation biomass, runoff) [9, 57, 58, 148]. One major challenge in maximizing the utility of

spaceborne sensors collecting measurements relevant to snow, soil moisture, and vegetation

retrievals from space-based instrumentation is the lack of a robust framework to explore the

interplay between the different sensor types, swath widths, geophysical retrievals, and error

characteristics [148,149]. To derive the most utility from a multitude of observations (i.e., passive

optical, passive MW, active MW, LiDAR or any combination thereof), one must explore the

marginal contribution of each measurement type towards achieving a scientific benchmark while

also exploring the synergistic interplay between different measurement types and how they add

to, or detract from, the goal of achieving that desired scientific benchmark.

While prior work has demonstrated the utility of each of these measurement types [16–

18], there is much debate in the science community as to what the optimal, concurrent sensor
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configuration choice should be for a next-generation terrestrial hydrology mission [150–152].

The measurements from each of these instrument types have their own strengths and weaknesses,

and they differ in their spatial and temporal coverage, scales, and extents. During a typical

mission development process, an assessment of the utility of the measurements is often limited

to the immediate physical variables of interest. The impacts on downstream applications is

often assumed and not always quantified [153–155]. For example, snow conditions during

peak winter significantly impacts the snowmelt processes during the spring time, which are

the primary drivers of stream flow in rivers. Similarly, antecedent soil moisture conditions

dictate the partitioning of precipitation at the land surface, which in turn affects downstream

river discharge. Approaching the debate from the vantage point of a cohesive whole accounts for

these nuances whereas considering only one component at a time cannot capture explicitly these

coupled nuances.

In order to solve the problems highlighted above, an observing system simulation experiment

(OSSE) is developed. In this OSSE, synthetic observations from a series of real-world and

hypothetical sensors are simulated and subsequently assimilated into the NASA Land Information

System (LIS, version 7.2.0). The OSSE evaluated a suite of alternative observing strategies of

snow-soil moisture-vegetation and quantifies the scientific utility, both in terms of a single sensor

as well as a coordinated constellation of two or more sensors.

This chapter is structured as follows. In Section 2, the study area is briefly introduced. In

Section 3, the methodology is introduced to build the OSSE, setup the experiments, and generate

the synthetic retrievals using a variety of different orbital configurations. The evaluation metrics

are also introduced in Section 3. Results are presented in Section 4. Sections 5 and 6 provide

detailed discussion of the results and a summarized conclusion of the findings, respectively.
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3.2 Study Area

The study domain is Western Colorado (37.5°N ∼ 40.7°N, 108.6°W ∼ 106°W, Figure 3.1)

located in the United States. The landscape varies from flat grass-covered plains to forest-covered

mountains and semi-arid plateaus [156, 157]. Coniferous forest is the dominant vegetation type

across this mountainous region. Annual meteorological characteristics of this area suggest a

relatively wet season during the summer with winter storms at high elevations occurring from

November to early-May [157]. The complex terrain coupled with a variety of different land

cover types make this region an interesting study area with regards to the coupled snow-soil

moisture-vegetation system and the remote sensing thereof.

Figure 3.1: Elevation map of study domain. The red “×” marks the location of the example point
used in Figure 3.6.

51



3.3 Methodology

3.3.1 OSSE Framework

The observing system simulation experiment (OSSE) presented here is designed to analyze

added values associated with assimilation of remote sensing retrievals into an advanced land

surface model. This OSSE includes six distinct parts (Figure 3.2): a) Nature Run (NR), b) Trade-

space Analysis Tool for Constellations (TAT-C) space-time subsampler, c) realistic observation

error estimate, d) Open Loop (OL) experiment, e) Data assimilation (DA) routines, and f) a

method for systematic evaluation of the OL and DA relative to the NR. The state variables and

fluxes produced from the NR in Figure 3.2a) are viewed as a proxy for the real-world (a.k.a.

synthetic “truth”). Synthetic retrievals are then generated from the NR by applying the TAT-C

space-time subsampler (Figure 3.2b) with corresponding error approximation (Figure 3.2c) to the

corresponding NR-derived state variables.

The OL experiment illustrated in Figure 3.2d) provides a benchmark for evaluating the

added value via assimilation of the synthetic retrievals. The results of the OL and DA experiments

are evaluated relative the NR in Figure 3.2e). Each of the framework’s six parts is discussed in

detail in the following sections.

3.3.2 Experimental Setup

The NASA Land Information System (LIS) is employed during the production of the NR,

OL, and DA experiments. LIS is a software framework developed at the NASA Goddard Space

Flight Center that integrates a suite of LSMs, satellite observations, ground-based measurements,
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Figure 3.2: Conceptual framework of OSSE. (BCs = boundary conditions; LIS=NASA Land
Information System; LSM = land surface model; MERRA2 = Modern-Era Retrospective
Analysis for research and applications (v2); NLDAS2 = North American Land Data Assimilation
System (v2); Noah-MP = Noah multi-physics parameterization; SWE=snow water equivalent;
TAT-C = Tradespace Analysis Tool for Constellations.)

and DA routines in order to obtain a conditioned (posterior) estimate of the hydrologic cycle

states and fluxes [86,158]. The LIS framework is designed with flexibility and high-performance

computing capabilities, including advanced software techniques that enable computational tractability

in integrating and assimilating observations across regional and global scales [158, 159].

The Noah-MP 4.0.1 land surface model [144] within LIS was employed to generate relevant

hydrologic state variables and fluxes such as snow water equivalent (SWE), snow depth, leaf area

index (LAI), soil moisture, and runoff. Noah-MP 4.0.1 is a land surface model that includes a one-

layer vegetation canopy, a three-layer snowpack, and a four-layer soil moisture profile, thereby

allowing for multiple options in terms of key land-atmosphere interaction processes [144]. It is

an appropriate model for this study because of its ability to couple snow-soil moisture-vegetation

processes in a physically-based manner [160, 161, 161, 162].

A portion of the model parameters in NR were calibrated against the University of Arizona
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SWE product [163] using the methodology of [164] in order to reduce the potential bias between

the model estimates and the real-world. The NR is able to reflect the true system variability, i.e.

hydrologic phenomena during both extreme and non-extreme events, in the real-world [164].

The NR is forced with hourly radiation and precipitation meteorology provided by the

North American Land Data Assimilation System (NLDAS2), which is an advanced reanalysis

product derived from daily gauge-based precipitation analysis, bias-corrected shortwave radiation,

and surface meteorology reanalysis data [165]. Initial conditions were generated via model

spinup starting with a uniform soil moisture and groundwater conditions and running.

Compared to the NR, the OL simulation in NoahMP-4.0.1 uses a different set of parameters

rather than the calibrated parameters as used in the NR. The differences between the calibrated

and uncalibrated versions of the model serves to, in part, represent a reasonable proxy for model

structure error. Further, the OL is forced by hourly meteorological data from the Modern-Era

Retrospective analysis for Research and Applications, Version 2 (MERRA2) [166], in conjunction

with hourly precipitation from the Tropical Rainfall Measuring Mission (TRMM) [167]. To

reduce the system bias between the forcing of OL and NR, the TRMM precipitation is corrected

using a ratio of monthly domain-averaged NLDAS2 precipitation to monthly domain-averaged

TRMM precipitation. The differences between NLDAS2 used as boundary conditions in the NR

and MERRA2 + TRMM used as boundary conditions in the OL reflect a reasonable approximation

for the boundary condition error encountered by most operational assimilation systems.

Another difference between the OL and the NR is that the OL uses a probabilistic (ensemble)

approach whereas the NR is deterministic. In this study, the OL uses an ensemble of 20 members

to implicitly represent the system error in the modeled estimate of hydrologic variables [141].

The forcing of precipitation and downward shortwave radiation is perturbed with multiplicative
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perturbations with a mean of 1 and standard deviations of 0.5 and 0.5, respectively. Additive

perturbations with a standard deviation of 50 Wm−2 are applied to the downward longwave

radiation fields.

The initial conditions are also different between the NR and OL experiments. The NR

initial condition spun up from 1979 to 2009 with single replicate. Model results from 2009 was

used to reinitialize the model again from 1979, and then further running the simulation forward

in the beginning in September 2009. The OL initial conditions spun up from 1979 to 2008 with

single replicate only once. Then model results from September 2008 then continued to run with

20 replicates to allow the ensemble inflation prior to running the OL.

The experimental configurations of the DA experiments are as same as the OL, except

that synthetic retrievals are assimilated whereas in the OL no assimilation takes place. The

different DA experiments include assimilation of synthetic retrievals for single variables as well

as combinations of different variables.

The NR, OL, and DA experiment are then conducted from September 2009 to September

2011 at a 0.01° spatial resolution grid. These two years are typical water year with an average

precipitation status.

3.3.3 EnKF Algorithm

3.3.3.1 Univariate Assimilation

A one-dimensional ensemble Kalman filter (EnKF) is used as the assimilation algorithm

[168]. The error covariances used in the assimilation updates is estimated from the distributions

of the ensemble members [168]. Small perturbations are applied to the assimilated synthetic
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observations and state variables at each grid point as part of the stochastic filter in a manner

consistent with Brugers et al. [81]. The EnKF algorithm is defined as,

y+j = y−j + Cyz[Czz + Cvv]
−1[zj −M(y−j )] (3.1)

Where, y+j represents the posterior variable of the ensemble j, y−j represents the prior variable

of the ensemble j. M represents the observation model, which projects the state variable y

to the observation z. C represents covariance operator. Among them, Cyz represents the cross

covariance between the state variable and the observation error. Czz represents the error covariance

of the model estimated observation M(y−j ). Cvv represents the covariance of the observation

model M . zj represents the observation of the ensemble j. zj is perturbed by injecting a random

error (see Table 3.2) to the original observation value [81].

In this study, the observation model M is linear, and therefore could be expressed as a

linear observation operator H . The EnKF update equation is then simplified as,

y+j = y−j + C−
yyH

T [HTC−
yyH

T + Cvv]
−1[zj −Hy−j ] (3.2)

H represents the observation operator. T represent the transpose operator. C−
yy represents

the state error covariance, which could be estimated from the spread of the ensembles of the prior

state variables.
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3.3.3.2 Multivariate Assimilation

In the multi-variate assimilation, the state variables are updated sequentially, which is the

feasible method to update multiple variables in the LIS 7.2.0 version. For example, a triple

assimilation is described as,

y+j,1 = y−j + C−
yyH

T
1 [H

T
1 C

−
yyH

T
1 + Cvv,1]

−1[zj,1 −H1y
−
j ] (3.3)

y+j,2 = y+j,1 + C−
yyH

T
2 [H

T
2 C

−
yyH

T
2 + Cvv,2]

−1[zj,2 −H2y
+
j,1] (3.4)

y+j,3 = y+j,2 + C−
yyH

T
3 [H

T
3 C

−
yyH

T
3 + Cvv,3]

−1[zj,3 −H3y
+
j,2] (3.5)

The y+j,1, y
+
j,2, and y+j,3 represent the posteriors after the first, second, and third updates. Similarly,

H1, H2, and H3 are the observation operators for the first, second, and third observations (z1,

z2, and z3). C−
yy is calculated from ensemble spread before each updates. For consistency, the

assimilation order of the retrievals is decided according to the corresponding spatial resolution

and swath width, i.e., the retrievals with a coarser resolution and wider swath width are updated

prior to the retrievals with a finer resolution and narrower swath width.

3.3.4 Synthetic Retrievals Generation

3.3.4.1 Work Flow

The synthetic retrievals used in the OSSE are produced in an effort to mimic real-world

retrievals as highlighted in Table 3.1. SWE, soil moisture, and LAI retrievals from eight sensors

with different orbital configurations are generated in this study. The sensor types include L-band
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PMW radiometry (herein referred to as PMW soil moisture), X-/K-/Ka-band PMW radiometry

(herein referred to as PMW SWE), C-band SAR (herein referred to as SAR SWE or SAR LAI),

and optical LiDAR (herein referred to as LiDAR snow depth or LiDAR LAI).

Figure 3.3 illustrates the work flow to generate a synthetic retrieval. First, state variables

and fluxes from the NR are employed as the synthetic truth. Next, a space-time subsampler

generated by TAT-C is used as an approximation of what each sensor can “see” at any point of

time on Earth given a particular orbital configuration. For the sensor aligned in a sun-synchronous

orbit (i.e. PMW and SAR as applied in this experiment), only observations from a single track

(i.e. ascending or descending only) are used. For example, only nighttime overpasses are used

for PMW snow and SAR snow in order to minimize wet snow effect [29, 169]. Similarly, only

a single overpass is used with L-band soil moisture retrievals because soil moisture retrievals

from different overpasses (i.e. ascending and descending) show a different error structure [170].

Observations from both ascending and descending tracks of LiDAR are used because LiDAR

observations are less sensitive to overpass time than the microwave instruments (i.e., PMW

radiometers and SARs). The subsampled image is then upscaled (if needed) into the corresponding

resolution of the desired geophysical retrieval. Further, a frozen soil mask (based on NR modeled

soil temperature) and cloud attenuation mask (based on optical imagery from MODIS) are applied

to the soil moisture or LiDAR retrievals (see Table 3.1) in order to yield a more realistic geophysical

retrieval. For the sensors whose proxy has a finer resolution than 1 km, the resolution of their

retrievals is assumed to be upscale to 1 km as a means of reducing noise and error within those

retrievals. Once the NR has been subsampled and mapped into geophysical space, a realistic

amount of error is injected into the retrieval as a proxy of the real-world uncertainty. The

processed data then undergo a series of quality control checks. The resulting product is a synthetic
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Table 3.1: List of synthetic retrievals explored in this study (blue = snow; orange = soil moisture;
green = vegetation).

Geophysical
retrieval symbol

Sensor information

Sensor proxy
Sensor
type

Orbital
type

Sensor swath
width [km]

Spatial
resolution [km]

SWE or
snow depth

◦ AMSR2 PMW PS 1450 25
× Sentinel1 SAR PS 250 1
+ ICESat2 LiDAR PS 6 1
⋄ ICESat2 LiDAR PS 20 1

Soil moisture ◦ SMAP PMW PS 1000 36

Vegetation
LAI

× Sentinel1 SAR PS 250 1
+ GEDI LiDAR LI 6.5 1
⋄ GEDI LiDAR LI 20 1

PMW = passive microwave; SAR = synthetic aperture RADAR; LiDAR = light detection and ranging.
◦ = PMW; × = SAR; + = narrow swath LiDAR; ⋄ = wide swath LiDAR.
PS = polar and Sun-synchronous orbit; LI = low inclination orbit;
AMSR2 = Advanced Microwave Scanning Radiometer 2;
GEDI = Global Ecosystem Dynamics Investigation;
ICESat2 = Ice, Cloud and land Elevation Satellite-2;
Sentinel1 = Sentinel-1 A/B by European Space Agency; SMAP = Soil Moisture Active Passive

retrieval (Figure 3.3).

Figure 3.3: Flow chart for synthetic retrieval generation.

3.3.4.2 Space-time Subsampler

TAT-C is employed to simulate the viewing extent of a given sensor [127]. The module

for simulating the sensor orbits in TAT-C is used to compute the nadir track of a variety of

different satellite sensors (Figure 3.4). Next, the space-time subsampler is generated by extending

the ground track in the cross-track direction to yield the desired swath width of interest. The
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subsampler is ultimately expressed as a binary map marking the global surface as viewed (or

not) in the absence of clouds. The subsampler applied here is produced at a 0.01° spatial

resolution grid co-located with the NR. The space-time subsamplers are ultimately upscaled to

the sensor resolution if the sensor resolution is coarser than 0.01° (e.g., soil moisture retrievals at

approximately 36 km resolution).

Figure 3.4: Nadir track of ascending overpasses during a 1-day integration period for a satellite
platform with an altitude of 693-km and an inclination angle of 98°.

3.3.4.3 Frozen Soil Mask and Cloud Mask

The frozen soil mask is only applied to the L-band synthetic soil moisture retrievals because

most L-band PMW radiative transfer models are not applicable to partially-frozen or completely-

frozen soils [171]. Frozen soil is identified (via the land surface model) as when the soil temperature
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is less than 0°C or when the soil is completely covered by snow (according to the NR simulation).

When upscaling the fine-scale Nature Run into the coarse-scale L-band retrieval space, as needed,

a coarse pixel with more than 50% frozen soil is demarcated as frozen.

A daily cloud mask is used to approximate cloud attenuation on the LiDAR sensors listed

in Table 3.1 because of the large extinction coefficient in the presence of clouds [123]. MODIS

cloud mask information [136,172] is employed in this study. The 0.05-degree cloud mask is then

resampled to 0.01-degree grid using the nearest-neighbor algorithm.

3.3.4.4 Retrieval Error

Retrieval error represents the uncertainty in remote sensing retrievals. The random error

is assumed to be Gaussian in space. Two types of error models – additive and multiplicative –

are adopted for different retrievals, i.e., multiplicative error model is applied for synthetic PMW

SWE whereas an additive model is used for SAR SWE, LiDAR snow depth, SAR/LiDAR LAI,

and PMW soil moisture (Table 3.2).

The additive error model (mean zero) maintains unbiasedness in the synthetic retrievals,

and therefore, does not violate the unbiased assumption of EnKF algorithm. The multiplicative

error model (mean one) also maintains unbiasedness in the synthetic retrievals. The multiplicative

error model is useful for representing PMW signal saturation errors in deep snow [9] whereas the

additive error model is more useful for random errors such as LiDAR-based pointing errors [173].

The additive error model is defined as:

Ŷ (x⃗, t) = Y (x⃗, t) + ε, where ε ∼ N(0, σ2) (3.6)
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Table 3.2: Assumed synthetic retrieval error models and error distribution parameters.

Geophysical
retrieval Symbol Error model Error mean

Error standard deviation
Small Medium Large

SWE or
snow depth

◦ Multiplicative 1 0.1 0.5 0.9
× Additive 0 [m] 0.1 [m] 0.5 [m] 0.9 [m]
+ Additive 0 [m] 0.1 [m] 0.5 [m] 0.9 [m]
⋄ Additive 0 [m] 0.1 [m] 0.5 [m] 0.9 [m]

Soil moisture ◦ Additive 0 [cm3cm−3] 0.02 [cm3cm−3] - 0.04 [cm3cm−3]

LAI
× Additive 0 [m2m−2] 0.1 [m2m−2] - 0.5 [m2m−2]
+ Additive 0 [m2m−2] 0.1 [m2m−2] - 0.5 [m2m−2]
⋄ Additive 0 [m2m−2] 0.1 [m2m−2] - 0.5 [m2m−2]

where Ŷ (x⃗, t) represents a realistic retrieval where Y (x⃗, t) represents the corresponding subsampled

NR in space and time. ε is the error assuming a Gaussian distribution with a zero mean and a

variance, σ2, ε ∼ N(0, σ2). The multiplicative error model is defined in Equation 3.7 as:

Ŷ (x⃗, t) = Y (x⃗, t) · ϵ, where ϵ ∼ LN(µ, ς2) (3.7)

where, ε follows a log normal distribution, with parameters of µ, and ς2. They can be calculated

from log normal distribution’s mean m = 1 and variance v2 as:

µ = log(m2/
√
v2 +m2)

ς2 = log(v2/m2 + 1)

(3.8)

The exact structure of real-world errors is unknown. Therefore, in an effort to encapsulate

the true errors, a series of experiments is conducted using different amounts of σ or v (see Table

3.2), i.e. 0.1, 0.5, 0.9 for SWE and snow depth; 0.1, 0.5 for LAI; and 0.02, 0.04 for soil moisture.

Values of assumed observation error are taken from literature where available [31, 50, 174, 175].

Hypothesized errors for non-existent sensors are assumed across a reasonable range in an effort
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Table 3.3: Matrix of multi-sensor, multi-variate assimilation experiments (blue = snow; orange =
soil moisture; green = vegetation).

Retrieval marks Description Motivation

×◦ SAR SWE + PMW soil moisture
Examine synergistic effect on

snow and soil moisture assimilation

× ⋄ SAR SWE + Wide swath LiDAR LAI
Examine synergistic effect on

snow and vegetation assimilation

⋄ ◦ Wide swath LiDAR LAI + PMW soil moisture
Examine synergistic effect on

vegetation and soil moisture assimilation

×⋄◦ SAR SWE + Wide swath LiDAR LAI + PMW SM
Examine synergistic effect on

the snow-soil] moisture-vegetation system
PMW = passive microwave radiometer; SAR = synthetic aperture RADAR; LiDAR = light detection and ranging.
SWE = snow water equivalent; LAI = leaf area index. ◦ = PMW; × = SAR; + = narrow Lidar; and ⋄ = wide swath LiDAR.

to bound the “true” errors, and thereby help define a necessary threshold error limit for future

retrieval developments. The assimilation results are then evaluated to quantify the value of these

synthetic retrievals as a function of σ or v.

3.3.5 Evaluation Metrics

In this study, the NR state variables serve as the reference for evaluation of estimated SWE,

soil moisture, vegetation, and runoff from the OL and DA experiments. Normalized information

contribution (NIC) of root-mean-square error (RMSE) is calculated as the evaluation metric in

this study. NICRMSE is defined in Equation 3.9 as:

NICRMSE =
RMSEOL −RMSEDA

RMSEOL

RMSEOL =

√
Σn

i=1(yOL(i)− yNR(i))2

n

RMSEDA =

√
Σn

i=1(yDA(i)− yNR(i))2

n

(3.9)

where, NICRMSE represents NIC of RMSE. RMSEOL, and RMSEDA refer to RMSE of the

Open Loop, and data assimilation, respectively. yNR, yOL, and yNR represent the state variable

or fluxes from NR, OL, and DA respectively. n refers to the sample size.
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Considering that the DA results need to be assessed across multiple states (e.g. SWE, soil

moisture, LAI), an integrated NIC is developed as a cohesive evaluation metric. This integrated

NIC is a weighted mean of the NIC of individual variables defined in the Equation 3.10) as,

NICRMSE,weighted =

∑n
i α(i) ·NICRMSE,var(i)∑n

i α(i)
(3.10)

where, NICRMSE,weighted represents the weighted NIC; NICRMSE,var(i) refers to the NIC of

each variable; α(i) is the weights for each variable; and n is the number of variables. For this

specific study, the NIC of SWE, soil moisture, and LAI is used as the components to be weighted.

The weights of each component (i.e., NICRMSE,SWE ,NICRMSE,soil moisture, NICRMSE,LAI) are

set to 1 equally.

3.4 Results

3.4.1 NR, OL, and Synthetic Retrievals

The NR, OL, and synthetic retrievals are presented to demonstrate how they are similar

to one another, yet differ in clear and distinct fashions. For example, the NR and OL (Figure

3.5) both capture seasonal variability, but to different magnitudes given differences in boundary

conditions and model parameters. Analogously, the NR and synthetic retrievals (Figure 3.3 and

Figure 3.6) are initially identical, but the synthetic retrievals progressively deviate from the NR

due to subsampling (i.e., space and time) along with the introduction of retrieval errors. In the

NR experiment, there is more snow accumulated, and therefore more runoff responding to the

snow melting. The NR experiment also exhibits wetter soil and more vigorous vegetation growth
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at the start of the spring season. Considerable runoff difference exists between the NR and OL,

especially during the snow ablation season.

A domain-averaged comparison between the NR and synthetic retrievals is not appropriate

because often the two represent very different regions of space. Therefore, a single location is

selected (38.725°N, 107.245°W, Figure 3.1) in the domain to show an example of how synthetic

retrievals fluctuate about the NR. Figure 3.6 shows the time series of NR, OL, and the synthetic

retrievals from this selected point. Three types of synthetic retrievals, i.e., SAR SWE, PMW soil

moisture, and wide swath LiDAR, are shown in Figure 3.6(a), 3.6(b), and 3.6(c) of Figure 3.6 as

examples in order to illustrate the features of synthetic retrievals obtained via SAR, PMW, and

LiDAR. The results show that sensors with wider swath widths have more frequent observations,

which is intuitive. The PMW sensor observes the point nearly daily; the C-band SAR sensor

observes approximately every three days. The LiDAR sensor’s revisit period is irregular since

they are strongly affected by cloud attenuation. There is a gap in the L-band PMW sensor

observations of soil moisture during the winter because the L-band PMW sensor retrieval algorithm

does not function during frozen soil conditions.

3.4.2 Impact of Univariate Assimilation

The DA performance for each single-sensor, univariate experiment is examined relative to

the OL performance using the NR as reference. This examination illustrates how the assimilation

of a single variable on the same geophysical variable, along with other relative states and fluxes, in

the land surface model. For each type of geophysical retrievals, the DA results of these synthetic

retrievals from the most interesting sensor type (i.e., SAR for SWE, PMW for soil moisture, and
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Figure 3.5: Time-series of domain-averaged SWE, soil moisture, and LAI, along with monthly
runoff from the Nature Run(NR) and the Open Loop (OL). Black lines/columns represent the
NR where the green lines/columns represent the OL.
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Figure 3.6: Time-series of SWE, soil moisture, and LAI from the NR, OL, and synthetic
retrievals at a selected point. Black lines represent the NR, green lines/columns represent the
OL, and red circles represent synthetic retrievals. Subplots include synthetic retrievals from: (a)
C-band SAR SWE (retrieval error: σ=0.1 [m]), (b) soil moisture via PMW radiometry (retrieval
error: σ=0.02 [cm3cm−3]), and (c) LAI via optical LiDAR (retrieval error: σ=0.1 [m2m−2]).
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wide-swath LiDAR for LAI) are illustrated. Only synthetic retrievals with relatively low retrieval

errors (i.e., σ=0.1 [m] for SAR SWE, σ=0.02 [cm3cm−3] for PMW soil moisture, and σ=0.1

[m2m−2]) for wide-swath LiDAR LAI) are used to better illustrate the impact of assimilation.

Figure 3.7 shows time-series of domain-averaged daily SWE, soil moisture, LAI along with

monthly runoff of the NR, OL, and DA using SAR SWE during assimilation. The SAR SWE

has a finer spatial resolution (relative to the PMW radiometry), thus, provide more information

content for assimilation. Figure 3.7 shows that SWE estimation is improved considerably via

the DA compared to SWE in the OL, especially in the second year, when the NR and OL SWE

yield large differences. In the DA, snow mass is added during snow accumulation season such

that SWE is closer to the NR SWE. Snow melt timing also matches better with that in the NR.

Compared to SWE, soil moisture does not significantly change. Soil moisture receives only

minor improvements between May and July. Wetter soil moisture is associated with increased

snowmelt during the ablation season. However, LAI estimation gets worse via the DA compared

to that in the OL. Slower vegetation growth in the DA experiment is likely due to the prolonged

snow-cover. Monthly runoff is overestimated in the DA in contrast to the underestimation in the

OL.

Similarly, Figure 3.8 shows the time-series of daily-averaged, domain-averaged SWE,

soil moisture and LAI along with monthly-averaged runoff of the NR, OL, and DA using the

synthetic PMW soil moisture. Assimilation helps the model better represent the soil moisture

variations except during frozen soil conditions. Soil moisture via the DA, in general, increases

to better match the NR. Compared to soil moisture, SWE is rarely changed by soil moisture

assimilation. The wetter soil moisture leads to denser vegetation, but this trend sometimes makes

LAI estimation deviated from the “Truth” (LAI in the NR). Wetter soil moisture also leads to
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Figure 3.7: Domain-averaged time-series of SWE, soil moisture, and LAI along with monthly
runoff from the NR, OL, and DA using SAR SWE. Black lines/columns represent the NR, green
lines/columns represent for OL, and red lines/columns represent the DA.
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more runoff yield, which causes the overestimation of runoff except in the snow ablation season.

In the snow ablation season, the runoff gets less biased due to assimilation but still does not match

with the runoff timing in NR.

Figure 3.8: Domain-averaged time-series of SWE, soil moisture, and LAI along with monthly
runoff from the NR, OL, and DA using PMW soil moisture. Black lines/columns represent the
NR, green lines/columns represent the OL, and red lines/columns represent DA.

Figure 3.9 shows the time-series of daily-averaged, domain-averaged SWE, soil moisture

and LAI along with monthly-averaged runoff of the NR, OL, and DA via wide-swath (20 km,

hypothetical) LiDAR LAI. The wide-swath LiDAR LAI is observed from a low-inclination

orbit, which would provide more information about vegetation that is not at high latitudes. The

wide-swath LiDAR observes more of the terrestrial environment than the narrow-swath LiDAR

(6.5 km). In the Figure 3.9, LAI via the DA is closer to the NR, especially from June to October.

The LAI DA impact on SWE, and soil moisture is negligible. The monthly runoff is slightly
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reduced via the LAI DA.

Figure 3.9: Domain-averaged time-series of SWE, soil moisture, and LAI along with monthly
runoff from the NR, OL, and DA using wide-swath LiDAR LAI. Black lines/columns represent
for NR, green lines/columns represent for OL, and red lines/columns represent for DA.

In summary, the univariate assimilation based on relatively low retrieval assumptions improves

the model performance of the observed state variable, but does not necessarily improve the

estimation of other variables or fluxes. Rather, some state variables and/or fluxes are degraded

via assimilation when only one part of the snow-soil moisture-vegetation system is explicitly

observed.

3.4.3 Impact of Multi-Variate Assimilation

Univariate assimilation is, in general, insufficient to properly update all the components

in the coupled snow-soil moisture-vegetation system. Theoretically, multi-variate assimilation

71



should improve overall performance. Therefore, different combinations of synthetic retrievals

(i.e., SAR SWE, PMW soil moisture, and wide-swath LiDAR LAI) are explored in assimilation

experiments in the following section in order to examine the impact of multi-variate versus

univariate assimilation, quantify the potential synergistic interplay between variables, and explore

an optimal combination of different sensors.

Beginning with the univariate experiments presented above, one additional type observation

is added to the univariate assimilation. Compared against the univariate assimilation results,

the dual-variate assimilation shows better performance to both observed variables with various

degrees of the synergistic interplay. Most notably, the DA using SAR SWE and PMW soil

moisture provides apparent improvement to soil moisture estimation (Figure 3.10). The soil

moisture output from the univariate soil moisture assimilation experiment [Figure 3.8(b)] can

generally recover the NR during most seasons, but is generally underestimated during the snow

ablation season. After the SWE retrievals are assimilated, the soil moisture during the snow

ablation season increases and moves to the NR [Figure 3.10(b)]. However, there is no positive

impact on SWE estimation via soil moisture retrieval assimilation [Figure 3.7(a) and Figure

3.10(a)].

The combination of SAR SWE and wide-swath LiDAR LAI retrievals (Figure 3.11) improves

the estimation of LAI. In univariate LAI assimilation experiment, LAI estimation is improved

near peak vegetation [from August to September, Figure 3.9(c)]. However, with SWE and LAI

dual-variate assimilation, LAI improvements are extended in time [from March to July, Figure

3.11(c)]. The combination of PMW soil moisture and wide-swath LiDAR LAI yields only a small

improvement for both state variables (Figure 3.12).

The unobserved variables might be still not improved via the dual-variate assimilation
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Figure 3.10: Domain-averaged time-series of SWE, soil moisture, and LAI along with monthly
runoff from the NR, OL, and DA using SAR SWE, and PMW soil moisture. Black
lines/columns represent the NR, green lines/columns represent the OL, and red lines/columns
represent the DA.

73



Figure 3.11: Domain-averaged time-series of SWE, soil moisture, and LAI along with monthly
runoff from the NR, OL, and DA using SAR SWE, and wide-swath LiDAR LAI. Black
lines/columns represent the NR, green lines/columns represent the OL, and red lines/columns
represent the DA.
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Figure 3.12: Domain-averaged time-series of SWE, soil moisture, and LAI along with runoff
from the NR, OL, and DA using PMW soil moisture, and wide-swath LiDAR LAI. Black
lines/columns represent the NR, green lines/columns represent the OL, and red lines/columns
represent the DA.
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experiment. For example, Figure 3.10(c) shows the assimilation of SAR SWE and PMW soil

moisture avoids the negative impact on LAI witnessed in the univariate experiments. The impact

of the SAR SWE plus wide-swath LiDAR LAI DA does not alter the soil moisture estimation

compared to the univariate SWE DA. The assimilation using PMW soil moisture plus wide-swath

LiDAR LAI similarly does not improve SWE estimation compared to either of the univariate

assimilation equivalents.

The triple-variate (i.e. SAR SWE plus PMW soil moisture plus wide-swath LiDAR LAI)

assimilation performs an overall best result compared to the dual-variate assimilation and univariate

assimilation. All the three variables (i.e, SWE, soil moisture, and LAI) are observed and then

improved via the triple-variate assimilation. However, dual-variate assimilation can reach a better

performance in some of the observed variables. For instance, the triple-variate DA obtains an

equivalent improvement on SWE compared to the dual-variate assimilation using SAR SWE and

PMW soil moisture [Figure 3.13(a) and Figure 3.10(a)]. It also obtains an equivalent improvement

on soil moisture compared to the dual-variate assimilation using SAR SWE and PMW soil

moisture [Figure 3.13(b) and Figure 3.10(b)]. However, a less improvement is obtained from

triple-variate assimilation on LAI than the dual-variate assimilation using SAR SWE and wide-

swath LiDAR LAI [Figure 3.13(c) and Figure 3.12(c)].

It is observed that the phase of the domain-averaged, monthly-averaged runoff for the

OL is different from the NR. The OL also yields a lower magnitude runoff than the NR. Via

data assimilation, the peak time of runoff is closer to the NR result. However, the runoff is

considerably overestimated during the snow ablation season in the univariate snow DA, because

the large amount of snow mass added via DA (relative to the OL) ultimately results in the

overestimation of runoff from the resulting snow melt. Set the selected point as example, Figure
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Figure 3.13: Domain-averaged time-series of SWE, soil moisture, and LAI along with monthly
runoff from the NR, OL, and DA using SAR SWE, PMW soil moisture, and wide-swath
LiDAR LAI. Black lines/columns represent the NR, green lines/columns represent the OL, and
red lines/columns represent the DA.
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3.14(c) shows an overestimation of runoff in DA during May 2010 while significant amounts of

snow ablation occur as shown in Figure 3.14(a). The large amount of runoff resulted from snow

melt. During May 2010, the daily-averaged temperature of OL and DA is mostly greater than 0

°C. As a result, DA SWE reduced sharply at the same time, which indicates the snow melting

due to the warm weather, which is warmer than as modeled in the NR (results not shown). The

earlier snowmelt in DA causes an earlier DA runoff peak in May compared with the NR runoff

peak in June. Although the update to snow makes DA SWE better match with the NR SWE, the

large mass added in DA is ultimately converted to runoff, and therefore, the runoff in the DA

simulation yields more runoff earlier in the ablation season as produced by the NR.

In terms of univariate soil moisture DA, the runoff is slightly less underestimated, but the

runoff peak timing remains unchanged. The LAI DA has a relatively negligible impact on runoff.

In the multi-variate assimilation experiments, updates due to SWE retrieval assimilation dominate

changes in model runoff. Secondary to SWE assimilation, updates due to soil moisture retrieval

assimilation also alter changes in model runoff.

3.4.4 Integrated Evaluation

Considering the need to cohesively quantify the full suite of experimental scenarios, a

simple time-series analysis is necessary but not sufficient. Therefore, an integrated (weighted)

NIC is employed here to provide an overall assessment of the impact of assimilating synthetic

retrievals on their own or in combination with others (Figure 3.15). The NIC for each single

variable (i.e., SWE, soil moisture, or LAI) is also shown to assess the impact of assimilation

experiments on the single variable. Positive NIC values indicate improvement via DA, whereas
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Figure 3.14: Time-series of SWE and runoff from the NR, OL, and DA, along with the
MERRA2 (used in OL and DA) daily-averaged temperature at the selected point. The box
highlights when the air temperature start going over the freezing point in 2010.

negative values indicate degradation via DA. A larger NIC indicates better performance on a

relative scale. Figure 3.15 shows the NIC values of a suite of scenarios assimilating synthetic

retrievals from different sensors/constellations (Table 3.1 and Table 3.3) with different retrieval

error assumptions (Table 3.2).

Figure 3.15(a) shows the integrated NIC of 25 DA scenarios. The best integrated NIC

scenario is the triple-variate assimilation using SAR SWE, PMW soil moisture and wide-

swath LiDAR LAI with small retrieval error assumptions. The second and third integrated NIC

scenarios are the dual-variate assimilation using SAR SWE and wide-swath LiDAR LAI, as

well as dual-variate assimilation using SAR SWE and PMW soil moisture. The result that the

multi-variate assimilation overcomes univariate assimilation is identical with what observed in

time-series figures. What comes next in integrated NIC scenarios are the univariate assimilation

using SAR SWE and using SAR LAI with small retrieval error assumptions. These two scenarios

reach top improvements among univariate assimilation scenarios because the retrievals have
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high revisit frequency, fine spatial resolution, and low retrieval errors. Compared to them, the

univariate assimilation using PMW soil moisture has a relatively low NIC because the PMW soil

moisture retrievals have a coarse spatial resolution (36 km), which makes it difficult to catch

the spatial variation of soil moisture in complex terrain. Besides, the existence of frozen soil

conditions during winter also hinders the performance of soil moisture assimilation. Compared

to the PMW soil moisture, the univariate assimilation using PMW SWE, whose spatial resolution

is also coarse (25km), performs better. One obvious reason is that the integrated NIC of SWE

assimilation benefits from synergistic interplay, because SWE assimilation has positive effect on

soil moisture and negligible effect on LAI, but soil moisture assimilation has negligible effect on

SWE and negative effect on LAI (Figure 3.15(b), Figure 3.15(c), and Figure 3.15(d)).

Figure 3.15(a) also shows that model performance may become worse resulting from high

retrieval errors. For example, SAR SWE with a 0.9 m (additive) retrieval error has an obvious

negative effect on SWE assimilation, but PMW SWE with a 0.9 (multiplicative) retrieval error

only has a marginal negative effect. In the study domain, the large additive error (0.9 m) is

generally more noisy than the large multiplicative error (0.9), which is smaller than 0.9 m additive

error unless the SWE is larger than 1 m. The narrow swath width could be another factor that

limits the performance of assimilation. For example, assimilation of LiDAR sensors (for both

snow depth and LAI) results in a relatively low NIC since LiDAR sensors have narrow swath

widths compared to PMW and SAR sensors. Besides, LiDAR observations are further reduced

due to cloud contamination.

Figure 3.15(b), (c), and (d) present the NIC of each single variable (i.e., SWE, soil moisture,

and LAI). The NIC indicates the impact of assimilation from each scenario on a specific variable.

For example, Figure 3.15(b) shows that the assimilation of soil moisture and/or LAI retrievals
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does not affect modelled SWE. Figure 3.15(c) shows that the assimilation of SWE has a positive

effect on modelled soil moisture, whereas, the impact of LAI assimilation is negligible. Figure

3.15(d) indicates that the assimilation of synthetic SWE with low retrieval error has a negligible

effect on modelled LAI, but produces a negative impact when the retrieval error increases. The

soil moisture assimilation has a slightly negative impact on modelled LAI. Figure 3.15(d) exhibits

an instance of synergistic interplay between SWE DA and LAI DA. The dual-assimilation using

SAR SWE and wide-swath LiDAR has a larger NIC than the summed NIC of univariate assimilation

using SAR SWE and using wide-LiDAR LAI. The main difference between LAI time-series

shown in Figure 3.9(c) and Figure 3.11(c) is during the growing season in 2011. The wetter

soil moisture associated with snow melting in multi-variate assimilation leads to more vigorous

vegetation, which is closer to the NR compared to the univariate LAI assimilation.

3.5 Conclusion and Discussion

This study sets up an advanced OSSE to evaluate the impact of assimilation on the coupled

snow-soil moisture-vegetation system modelling. 25 scenarios are assimilated including synthetic

retrievals for single variables as well as combinations of different variables coupled with different

amount of retrieval errors. The results of DA are evaluated against the NR and OL using time-

series and NIC.

Multi-variate assimilation better improves the estimation of the coupled snow-soil moisture-

vegetation system compared to univariate assimilation. In the univariate assimilation, the improvement

of the unobserved variable is not guaranteed even when the synthetic retrieval is of good quality

(i.e., high revisit frequency, fine spatial resolution, and low retrieval error, and no cloud attenuation).
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Figure 3.15: NICRMSE of DA experiments with different kinds of retrievals. Markers represents
to sensor types (×=SAR sensors; ◦=PMW sensors; +=narrow LiDARs; and ⋄=wide LiDARs).
The small, medium, and large size of symbols represents the different amount of injected
retrieval errors (Table 3.2). The color of symbols refers to synthetic retrievals types (blue=snow;
orange=soil moisture; and green=LAI).
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For example, the model LAI degrades in the soil moisture assimilation. The multi-variate assimilation

assimilated more observed variable(s) and better improved the model in this coupled system,

when the synthetic retrievals were of good quality. According to the NIC, the triple-variate

assimilation perform best overall.

Synergistic interplay exists in the coupled snow-soil moisture-vegetation system. First, the

assimilation of the observed variable(s) can impact the estimation of the unobserved variables

(e.g. soil moisture estimation is improved by SAR SWE univariate assimilation). Second, on the

observed variable, the multi-assimilation shows better performance compared to the univariate

assimilation, e.g., dual-variate assimilation using SAR SWE and PMW soil moisture vs. univariate

assimilation using PMW soil moisture on improving soil moisture; dual-variate assimilation

using SAR SWE and wide-LiDAR LAI vs. univariate assimilation using wide-LiDAR LAI on

improving LAI.

The NIC analysis also indicates the maximum acceptable retrieval error for each type of

retrievals in order to get a marginal improvement. The retrieval error larger than the indicated

maximum can lead to degradation of model performance.

The impact on runoff is complex. As shown in result, the runoff in the SWE assimilation

better matches the peak timing of the NR, but overestimates the runoff magnitude. The soil

moisture assimilation reduces the magnitude of underestimation in the OL but does not alter the

runoff peak timing.

There are several limitations to this study. First, this study does not include hydraulic

routing. Therefore, a monthly-averaged runoff is used in order to reduce the impact of runoff

timing errors. Future OSSEs could include a routing model such as HYMAP [176] in order to

reduce these errors. Hydraulic routing, however, was avoided to reduce computational costs in
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this study. Runoff from a hydraulic model could provide a better understanding of the impacts of

assimilation, e.g., understanding the question of how snow mass updates during the snow ablation

season impact estimates of peak flow magnitude and timing.

Second, the assumed error characteristics (Table 3.2) have identical independent distribution

across time and space. However, the true error varies across space and time due to different land

surface conditions. For example, SWE retrieval error from PMW sensors would be considerably

affected by the type of overlying vegetation, the relative depth (e.g., shallow vs. deep), and snow

wetness (dry vs. wet) [29, 177]. Therefore the observation error of SWE should be modeled as a

function of forest density, snow depth, and snow wetness. Such a spatiotemporal variation in the

observation error would be more accurate. Improvements to assumed error characteristics would

likely lead to a more robust OSSE framework.

In summary, an advanced OSSE is developed in this paper in order to quantify the added

value of synthetic retrievals for improving the estimation of the geophysical variables in the

coupled snow-soil moisture-vegetation system. The synthetic retrievals of SWE, snow depth,

soil moisture, and LAI from a group of sensors and constellations are assimilated and evaluated

in the OSSE framework. The results suggest that in univariate assimilation, retrievals with good

quality ((i.e., high revisit frequency, fine spatial resolution, and low retrieval error, and no cloud

attenuation) better improve the model performance than retrievals with bad quality do. The

multi-variate assimilation achieved a better overall performance as additional data containing

more information and further the synergistic interplay between different types of observations is

contained. The multi-variate assimilation with all the three variables best represents the whole

snow-soil moisture-vegetation system.
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Chapter 4: Overall Conclusions and Discussions

4.1 Conclusions

This dissertation explores different sensor combinations to observe the snow-soil moisture-

vegetation system from space. The science question addressed is which sensor or constellation

of sensors is most effective at quantifying and characterizing the hydrologic cycle?

In Chapter 2, this dissertation simulated the snow viewing extent of a set of representative

orbit configurations, in order to investigate which kind of sensor or constellation is able to view

the most snow covered terrain not only in the terms of total spatial coverage percentage, but also

in the terms of coverage percentage as a function of different snow classifications. The results

suggest that 1100 km, 550 km, and 200 km are the minimum required swath widths for a polar-

orbiting sensor to meet snow-related applications demanding a 1-day, 3-day, and 30-day repeat

cycle, without considering cloud attenuation and sensor limitation on detecting specific types of

snow. Alternatively, simulations including cloud attenuation and sensor efficiency suggests that

no single sensor can observe all snow classes at all locations. Instead, a combination of PMW,

SAR, and LiDAR sensors works best for snow detection.

Although the viewed coverage percentage simulation in Chapter 2 can evaluate the observation

coverage of each sensor/constellation, the simulation cannot tell us the value of the observation

coverage in terms of land surface model improvement. In Chapter 3, an advanced OSSE is

85



developed in order to quantitatively define the value of observations in improving the geophysical

variables estimation in the coupled snow-soil moisture-vegetation system. The synthetic retrievals

of SWE, snow depth, soil moisture, and LAI from a group of sensor/constellation are assimilated

and evaluated in the OSSE framework. The results show that the univariate assimilation for

snow/soil moisture/LAI with high quality retrievals is able to improve the model performance of

the corresponding observed geophysical variable, however, not necessarily to improve the model

estimation of the other geophysical variables. The univariate assimilation does not guarantee

model improvement because focusing on one variable may lead to a worse estimation of other

variables.

The integrated NIC, which is used to evaluate the synthetic retrievals comprehensively,

suggests that the multi-variate assimilation with more assimilated variables better represents the

whole system. There is obvious synergistic interplay between snow and soil moisture as well

as snow and vegetation observed in dual-variate assimilation. The triple-variate assimilation

with high quality retrievals of SWE, soil moisture, LAI performs best overall in estimating the

hydrological components of snow-soil moisture-vegetation system. Chapter 3 not only extends

the study of Chapter 2 from snow to the coupled snow-soil moisture-vegetation system, but also

provides a method to evaluate the synthetic retrievals in terms of improving land surface model

performance instead of only reporting the observed coverage percentage. Chapter 3 provides a

quantitative solution to the overarching goal: finding the optimal mix of the synthetic retrievals

in snow-soil moisture-vegetation hydrologic system.

The OSSE developed in this dissertation could serve as a valuable tool for hydrological

mission planners. Synthetic retrievals observed from eight orbital configurations and 25 scenarios

with various retrieval errors are simulated in this dissertation, however, there could be an infinite
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number of combinations and permutations for the synthetic retrieval simulation for hydrological

applications. This OSSE is able to help mission planners to evaluate their ideas and decide where

(e.g., polar-orbiting versus low-inclination versus geostationary), when (e.g., single sensor versus

constellation), and what (active RADAR versus passive microwave radiometer versus LiDAR)

sensors to employ given their specific goals. For example, this OSSE has been applied in another

study to evaluate the synthetic snow retrievals from a snow LiDAR with an agile viewing strategy

[178]. The agile viewing has the potential to provide 50% more observations of snow during the

snow seasons for the sensors with around 20 km swath width, while sacrificing the observations

on the snow-free area. According to the evaluation by this OSSE, the extra observations provided

by agile viewing strategy helps the model better estimate snow mass with lower RMSE. The NIC

score of RMSE for SWE increases from 1.6% (fixed viewing strategy) to 5.0% (agile viewing

strategy) when all other sensor and orbit configurations are the same. The evaluation shows that

the agile viewing strategy successfully improves the efficiency of narrow-swath-width sensors,

such as LiDAR for detecting a specific target. This example shows the OSSE as a “soup to nuts”

approach to hydrological mission planning of a satellite (or constellation). Further, the OSSE

framework could integrate with the modules of mission cost estimation, and risk analysis, so that

it can help mission planners to make a scientific bang for the certain scientific buck.

The advanced OSSE also provides a more cohesive view of the coupled snow-soil moisture-

vegetation system. It is proved that synergistic interplay among the different components in

this system can be significant. The state variables without assimilation might get improved,

or even degraded, from the assimilated components in this system. Further, the multi-variate

assimilation approach often yields a better constrained system, and hence, can overcome some of

the deficiencies of univariate assimilation. A well-constructed, multi-variate assimilation system
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can benefit applications related to the snow-soil moisture-vegetation system, such as agriculture

yield production estimates, drought index assessments, and reservoir operations and storage

estimation. Applying multi-variate assimilation in such applications would provide better results

related to snow, soil moisture, and vegetation.

4.2 Limitations

This dissertation still has many limitations. First, as discussed in Chapter 3, the runoff

model used in this study is a rough approximation from the sum of the surface flow and base

flow. To reduce the approximation error, the runoff is temporally integrated into a coarse temporal

scale, e.g., monthly. To yield a more accurate and physically-realistic daily runoff estimation, a

runoff routing model, such as Hydrological Modeling and Analysis Platform (HYMAP) [176] is

needed. The runoff from a routing model would allow the OSSE to better analyze the impacts of

assimilation on river discharge.

Second, the distribution of error injected in Chapter 3 is assumed identical across time

and space. However, the true error varies across space and time due to different land surface

conditions. For example, the snow mass retrievals from PMW sensors would be considerably

affected by the type of overlying vegetation, the relative depth (e.g., shallow vs. deep), and snow

wetness (dry vs. wet), which matches with the knowledge obtained in Chapter 2. Therefore the

observation error of SWE should be modeled as a function of dense/sparse forest, deep/shallow

snow, dry/wet snow, and topography. The spatiotemporal observation errors would be more

realistic. It will also allow the OSSE to ingest the retrievals from sensors and constellations more

accurately.
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Third, the error used in this study is assumed to be uncorrelated in space in order to reduce

computational expense. However, the errors could be spatially correlated in the real world. When

the errors are spatially correlated but assumed as independent and identically distributed, the

error covariances are generally underestimated. With the inclusion of correlated errors, the

error covariances would better represent the real world errors while also inflating the model

ensemble to better represent the true magnitude of the model uncertainties. Therefore, The use

of spatially-correlated errors is desired in a follow-on study. To apply spatially-correlated error

to the model or the observations, a turning bands algorithm [179] could be used to generate the

spatially-correlated error fields. Then the one-dimensional EnKF algorithm used in this study

could be replaced with a two-dimensional EnKF algorithm in order to allow the updates from the

neighboring pixels to harness a spatially-correlated error structure that surrounds those pixels.

4.3 Future Work

The aim of this study is to find the optimal design of sensors and constellations configurations

to minimize the cost while providing the most scientific utility. Thus, coupling the OSSE with a

tool kit to estimate the cost and risk of designs would be an essential input for mission planners

to make better decisions with better science gains and reasonable cost estimates than current

solutions.
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Petri Kärnä, Jarkko Koskinen, and Bojan Bojkov. Estimating northern hemisphere snow
water equivalent for climate research through assimilation of space-borne radiometer data
and ground-based measurements. Remote Sensing of Environment, 115(12):3517–3529,
2011.

[122] R Kwok, G Cunningham, T Markus, D Hancock, JH Morison, SP Palm, SL Farrell, and
A Ivanoff. ATLAS/ICESat-2 L3A sea ice freeboard, version 3. Boulder, Colorado USA:
NSIDC: National Snow and Ice Data Center., 10:5067, 2020.

[123] Shunlin Liang. Comprehensive Remote Sensing. Elsevier, 2017.

[124] AM Sayer, NC Hsu, and C Bettenhausen. Implications of MODIS bow-tie distortion on
aerosol optical depth retrievals, and techniques for mitigation. Atmospheric Measurement
Techniques, 8(12):5277–5288, 2015.

[125] Kathryn J Bormann, Seth Westra, Jason P Evans, and Matthew F McCabe. Spatial and
temporal variability in seasonal snow density. Journal of Hydrology, 484:63–73, 2013.

[126] Matthew Sturm and Carl Benson. Scales of spatial heterogeneity for perennial and seasonal
snow layers. Annals of Glaciology, 38:253–260, 2004.

[127] Sreeja Nag, Steven P. Hughes, and Jacqueline Le Moigne. Streamlining the design
tradespace for Earth imaging constellations. In AIAA SPACE 2016. 2016.

[128] Taikan Oki, Keiji Imaoka, and Misako Kachi. AMSR instruments on GCOM-W1/2:
Concepts and applications. In 2010 IEEE International Geoscience and Remote Sensing
Symposium, pages 1363–1366. IEEE, 2010.

100



[129] Evert Attema, Pierre Bargellini, Peter Edwards, Guido Levrini, Svein Lokas, Ludwig
Moeller, Betlem Rosich-Tell, Patrizia Secchi, Ramon Torres, Malcolm Davidson, et al.
Sentinel-1 - the RADAR mission for GMES operational land and sea services. ESA
Bulletin, 131:10–17, 2007.

[130] Waleed Abdalati, H Jay Zwally, Robert Bindschadler, Bea Csatho, Sinead Louise Farrell,
Helen Amanda Fricker, David Harding, Ronald Kwok, Michael Lefsky, Thorsten Markus,
et al. The ICESat-2 laser altimetry mission. Proceedings of the IEEE, 98(5):735–751,
2010.

[131] Kelly M Brunt, Thomas A Neumann, Kaitlin M Walsh, and Thorsten Markus.
Determination of local slope on the Greenland Ice Sheet using a multibeam photon-
counting LiDAR in preparation for the ICESat-2 mission. IEEE Geoscience and Remote
Sensing Letters, 11(5):935–939, 2013.

[132] Wenlu Qi and Ralph O Dubayah. Combining TanDEM-X InSAR and simulated GEDI
LiDAR observations for forest structure mapping. Remote sensing of Environment,
187:253–266, 2016.

[133] Sean R Helfrich, Donna McNamara, Bruce H Ramsay, Thomas Baldwin, and Tim Kasheta.
Enhancements to, and forthcoming developments in the Interactive Multisensor Snow
and Ice Mapping System (IMS). Hydrological Processes: An International Journal,
21(12):1576–1586, 2007.

[134] David A Robinson and Allan Frei. Seasonal variability of Northern Hemisphere snow
extent using visible satellite data. The Professional Geographer, 52(2):307–315, 2000.

[135] JL Foster, DK Hall, REJ Kelly, and L Chiu. Seasonal snow extent and snow mass in South
America using SMMR and SSM/I passive microwave data (1979–2006). Remote Sensing
of Environment, 113(2):291–305, 2009.

[136] EF Vermote, SY Kotchenova, and JP Ray. MODIS surface reflectance user’s guide.
MODIS Land Surface Reflectance Science Computing Facility, version, 1, 2011.

[137] Ngar-Cheung Lau and Mark W Crane. Comparing satellite and surface observations
of cloud patterns in synoptic-scale circulation systems. Monthly Weather Review,
125(12):3172–3189, 1997.

[138] Matthew Sturm, Brian Taras, Glen E Liston, Chris Derksen, Tobias Jonas, and Jon Lea.
Estimating snow water equivalent using snow depth data and climate classes. Journal of
Hydrometeorology, 11(6):1380–1394, 2010.

[139] Liu Jiuliang and Li Zhen. Temporal series analysis of snow water equivalent of satellite
passive microwave data in northern seasonal snow classes (1978–2010). In 2013 IEEE
International Geoscience and Remote Sensing Symposium-IGARSS, pages 3606–3609.
IEEE, 2013.

101



[140] Yonghwan Kwon, Yeosang Yoon, Barton A Forman, Sujay Kumar, and Lizhao Wang.
Synthetic study of spaceborne LiDAR snow depth retrieval assimilation within the nasa
land information system. In AGU Fall Meeting Abstracts, 2018.

[141] Barton A. Forman and Steven A. Margulis. Assimilation of multiresolution radiation
products into a downwelling surface radiation model: 1. prior ensemble implementation.
Journal of Geophysical Research: Atmospheres, 115(D22), 2010.

[142] R Schmidt, Svetozar Petrovic, Andreas Güntner, Franz Barthelmes, J Wünsch, and
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