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This thesis is a collection of theoretical and numerical studies of the dynamics of quan-

tum information in quantum many-body systems, focused on characterizing the scrambling of

information and entanglement dynamics in generic dynamical setups.

In the first part of the thesis I study out-of-time-ordered correlators (OTOCs) as a probe

for quantum information scrambling. By computing OTOCs in disordered quantum spin systems

we find that disorder leads to distinct patterns of scrambling, and can arrest the information

propagation significantly for high enough values of disorder. I also study the generic features

of finite temperature OTOCs in gapped local systems, using a combination of numerical and

analytical approaches. We find that the role of the thermal regulator significantly affects the

behavior of OTOCs at finite temperature, which restricts the applicability of the temperature

bound on chaos.

In the second part of the thesis, I study analytically tractable models of measurement-

induced entanglement transition. Frequent measurements in a quantum circuit lead to distinct



entanglement phases of the prepared quantum state. Using these models, we find effective field

theories describing the entanglement patterns and the entanglement phase transitions. By consid-

ering generalizations of these models, we find that long-range interactions in the quantum circuit

lead to novel entanglement phases with efficient emergent error-correcting properties.

In the last part of the thesis, I study tensor network states defined on generic sparse graphs.

The underlying graphical structure leads to efficient tensor network representation of highly en-

tangled states even with modest classical resources. Using the intuition that generic graphs are

locally tree-like, I develop efficient numerical methods to access local information of such states.

These methods suggest a pathway for studying quantum many-body physics on sparse graphs

beyond lattices.
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1.7 The averaged log(C) is plotted against the fitting ansatz (x− vBt− x0)1+p/tp +
c/a log(t) for different disorders W = 0.2, 0.4, ..., 1.2, for the mixed field Ising
model with Gaussian disorder. The fitted parameters for the figure are given in
Table 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.8 The −10 contour of the averaged log(C) for 201 sized chain is extracted at dif-
ferent disorders, and t and x coordinates are obtained. log(t)/x is plotted against
t, for different disorders for the mixed field Ising model with Gaussian disorder.
At strong disorders, W & 3.4, the asymptotically flat plots provide evidence of a
logarithmic light cone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.9 a) The extracted butterfly velocity vB and broadening coefficient p are plotted for
different sized systems of the disordered Heisenberg model (box), versus disor-
der. Note, vB goes to zero and p has a peak at around disorder W ∼ 4. Errorbars
corresponding to the 95% confidence interval of fitting are shown for the largest
system size.b) The MBL transition disorder is shown to be Wc & 6.44, which
implies the shaded intermediate region which has powerlaw lightcones. . . . . . . 37

1.10 Results for the Mixed Field Ising model with box disorder. a) Extracted Butterfly
velocity and broadening coefficient. Errorbars corresponding to the 95% confi-
dence interval of fitting are shown for the largest system size. b) MBL transition
ascertained by small system exact diagonalization. . . . . . . . . . . . . . . . . . 38

1.11 Results for the Heisenberg model with Gaussian disorder. a) Extracted Butterfly
velocity and broadening coefficient.Errorbars corresponding to the 95% confi-
dence interval of fitting are shown for the largest system size. b) MBL transition
ascertained by small system exact diagonalization. . . . . . . . . . . . . . . . . . 39

2.1 Contour for the (a) regulated and (b) unregulated out of time ordered correlators.
The red points refer to the time evolved operators W0(t), and the blue points
refer to the probe operators Vx. The regulated and the unregulated correlators are
distributed in distinct ways along the thermal circle. . . . . . . . . . . . . . . . . 48

2.2 The contours of the logarithm of the regulated and unregulated squared commu-
tator at different temperatures - a) β = 0 (unregulated), b) β = 2 (unregulated),
c) β = 0 (regulated) and d) β = 2 (regulated) are shown. For the unregulated
case bond dimensions, χ = 8 and χ = 16, and for the regulated case bond di-
mensions, χ = 4 and χ = 8 are considered. The data shows convergence even at
low temperatures for low values of the squared commutator. We demonstrate in
the Sec. 2.2.5, in Fig. 2.7, that the data has converged with bond dimension for
logCr < −30, and for logCu < −15. . . . . . . . . . . . . . . . . . . . . . . . 53
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2.3 We extract the contours of logCr = −35 and −50 at different temperatures,
for the data with χ = 8. From the contours we extract δx, which is the spatial
distance between the two contours. The time dependence of δx is shown in the
inset; the fact that it is increasing with time demonstrates a broadening of the
wavefront. The broadening persists even at a) high temperature β = 0 and b) low
temperature β = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 a) We plot the extracted vB(β)/vB(0) for the unregulated case, as a function of
β. The data is for χ = 16 bond dimension. The butterfly velocity is practically
constant at all temperatures. b) For the regulated case, we plot the normalized
vB, (i.e. vB(β)/vB(0)), extracted from the χ = 8 data, as a function of β. In the
inset, in the log-log scale, we demonstrate that the low temperature behavior of
vB is consistent with β−1/2 (which is the slope of the red line plotted.). . . . . . 57

2.5 From the fitting of the obtained data of the regulated and unregulated squared
commutators, we obtain the ∂tCu,r from the near wavefront ansatz, along a ‘ray’
x = t and compare it against the ‘bound on chaos’ 2π/β. In the inset, we show
the ‘ray’ x = vt at v = 1, and compare that to the butterfly velocity vB = 0.68 at
β = 0 for Cu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 We demonstrate the convergence of our numerical method with exact diagonal-
ization for small systems. a) For the regulated case, the χ = 8 result has excellent
agreement with exact diagonalization for L = 10 spin chain at β = 1. b) For the
unregulated case, the same agreement is demonstrated for χ = 16 result at β = 1. 59

2.7 a, b) The log of the regulated squared commutator is plotted as a function of
time, for the case of an operator X20(t) and Zr, with r = 30, 40, .., 200, for bond
dimensions χ = 4 (dotted) and χ = 8. The left and the right figures correspond
to β = 0 (a) and β = 2 (b) respectively. Even at the low temperature, the data
is seen to be converged for the range −50 < logCr < −35. Note we are able
to access such small values accurately because we have expressed the regulated
squared commutator as a square of a norm, and the norm can be estimated upto
the numerical precision of MATLAB which is ∼ e−36, allowing us to push to
around e−60 in precision. c, d) The log of the unregulated squared commutator is
plotted as a function of time, for the case of an operator X20(t) and Zr, with r =
30, 40, .., 200, for bond dimensions χ = 8 (dotted) and χ = 16. The left and the
right figures correspond to β = 0 (c) and β = 2 (d) respectively. Even at the low
temperature, the data is seen to be converged for the range −50 < logCu < −15. 60

2.8 The collapse of the obtained regulated squared commutator for the data range
−50 < logCr < −35, 20 < x < 200 and 20 < t < 100, to the near wave-
front ansatz by least squared method. We have chosen this data range as we have
confirmed the convergence of our numerical procedure in this range. . . . . . . . 61

2.9 a) Broadening coefficient p obtained from the numerical fitting of regulated squared
commutator is plotted as a function of β. b) p from fitting of the unregulated
squared commutator is plotted as a function of β. The errorbars are from the
95% confidence intervals of the fit. To compare the regulated and the unregulated
cases we have fixed the y-axis scales to be the same in the two plots. . . . . . . . 62
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2.10 a) The data of the unregulated squared commutator for the data range −50 <
logCu < −15, is picked out along the ‘ray’ x = t. ∂tCu is evaluated in this
domain, and the averaged ∂tCu along x = t is plotted as a function of β in b).
Similarly data for the unregulated case can be picked up. b) The averaged ∂tCu,r
along x = t is plotted as a function of β. . . . . . . . . . . . . . . . . . . . . . . 63

2.11 a) The data of the unregulated squared commutator for the data range −50 <
logCu < −15, is picked up along different‘rays’ x = vt. This procedure can
be repeated for the regulated case. b) For different v-s, ∂t logCu is plotted as a
function of t (dots), and compared against the prediction from the near wavefront
ansatz (constant lines whose thickness signify the confidence interval from the
fitting to the ansatz). For lower v (i.e.) closer to the butterfly velocity vB, the
near wavefront behavior and the numerical result are the same, but they deviate
for high ray velocities. The constancy of ∂t logCu along rays allow us to study
their time averages as a function of β. . . . . . . . . . . . . . . . . . . . . . . . 64

2.12 a) Time average of ∂t logCu(t, vt) is plotted for β = 1.6 as a function of ray ve-
locity v (blue dots), and compared against the prediction from the near wavefront
ansatz (red dots). b) Same analysis is done for the regulated case. The yellow
line in both case refer to the chaos bound at β = 1.6. . . . . . . . . . . . . . . . 64

2.13 This is the critical phase diagram of the non-linearO(N) model. The blue shaded
region is controlled by the critical theory around the quantum critical point at
T = 0 and g = gc, while the dashed lines indicate a cross-over to the phases
controlled by the symmetry of the zero temperature phases away from the critical
point. We focus on the low temperature behavior of the symmetry unbroken
paramagnetic phase g > gc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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2.16 Bethe Saltpeter equation for the out of time ordered correlation function. In the

diagram, all horizontal lines are retarded propagators, while the vertical lines are
the Wightman propagators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.17 Scaled maximal eigenvalue of the Eq. 2.38 at k = 0, λL(k = 0)eβmβN , is plotted
as a function of inverse temperature β in the log-log scale (we rescaled factors of
N in the numerics , and N = 1 in the figure.). The errorbars are estimated from
the uncertainty of extrapolating the eigenvalues to the continuous limit dp → 0.
The behaviour is constant with temperature, confirming λL ∼ e−βm/βN . Also,
the result is same for both the regulated and unregulated cases showing that the
ladder method is contour-independent. . . . . . . . . . . . . . . . . . . . . . . . 77

2.18 Using the fitted λ0, λ2 and λi, the butterfly velocity vB is calculated from Eq.
2.45, and plotted against β in a log-log scale. The low temperature behavior of
vB is vB ≈ 0.83√

βm
- for both the regulated and the unregulated cases. . . . . . . . . 78
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3.1 Purification phase diagram for hybrid Brownian circuits. (a) Hybrid Brow-
nian circuits V composed of alternating layers of unitary Brownian dynamics
of strength J (green) and non-unitary weak-measurement Brownian dynamics
of strength γ (blue) exhibit a measurement-induced purification transition diag-
nosed by the purity ΠQ of qubits Q that are initially maximally entangled with
a reference system R. (b-c) Above the critical point γ > γc (i) bulk fields
(solid blue) traverse through a single saddle point (dotted black), leading to a
pure phase with purity ΠQ ∼ 1 (b, dotted purple). Below the critical point
γ < γc (ii) the bulk fields tunnel between two symmetry-broken saddle points
(dotted black) via a single-instanton configuration, leading to a mixed phase with
ΠQ ∼ T exp (−NI∗)� 1 for polynomially-long times T (b, solid red). At expo-
nentially long times the instantons proliferate and destroy the mixed phase (iii).
Dynamics at early times (grey boxes) are also accessible in these models but are
not the main focus of this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 Unnormalized purity for the hybrid Brownian circuit. The purityZ2 = Tr
[
ρ̃2
Q

]
of the unnormalized state ρ̃Q is equivalent to the expectation value of the SWAPQQ′

operator evaluated on two identical copies ρ̃, ρ̃′ of the system. Straightforward
rearrangement of the circuit yields pure-state dynamics on four replicas r =
1, 2, 3, 4 with nontrivial boundary conditions at t = 0, T . Because the Brownian
coefficients J,n are uncorrelated in time, the disorder averages 〈 · 〉J,n at each cir-
cuit layer (solid green, solid blue) can be computed independently. Arrows on the
t = T boundary condition indicate a ‘reversed’ singlet state |(32)〉 = − |(23)〉.
The corresponding circuit for the squared probability P 2 is identical except for
the SWAP-ed boundary condition at t = T . . . . . . . . . . . . . . . . . . . . . 109

3.3 Bulk two-level r-bit subspace |↑〉 , |↓〉. For S = 1/2, the SU(2) symmetry of
the problem kinematically constrains the dynamics to a single effective qubit or
r-bit |ψ(t)〉 (red) living in the STot = 0 subspace spanned by |↑〉 , |↓〉. The r-
bit’s trajectory |ψ(t)〉 must begin on the singlet-pair state |ψ+〉 = |(12)(34)〉, and
end on the same singlet-pair state for P 2 or on the SWAP-ed singlet-pair state
|ψ−〉 = |(14)(32)〉 for Z2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.4 Classical bulk action for the trivial and symmetry-broken saddles. For all
values of γ the bulk action Ibulk for the symmetry-broken saddles (purple) is al-
ways smaller than the trivial saddle (green), but above the critical point γ > γc
the symmetry-broken saddle points (dotted purple) are imaginary and do not
contribute to the path integral (see Fig. 3.5). The symmetry-broken saddle
points (solid purple) therefore dominate below the critical point γ < γc while
the trivial saddle point (solid green) dominates above γ > γc. This smooth ex-
change of saddle-point dominance at γ = γc is responsible for the second-order
measurement-induced purification transition in the (2, 1) model. . . . . . . . . . 127

xvii



3.5 Time-independent saddle-point analysis. With Bz fixed to its saddle-point
value, plots of Re[Ibulk] in the complex Bx plane reveal the Z2 symmetry break-
ing in the bulk responsible for the purification transition. Dotted blue and solid
red lines show contours of steepest descent. (a) Above the critical point γ > γc,
the trivial (i., green) and symmetry-broken (ii., purple) saddle-points lie on the
imaginary-Bx axis. Because the integration contour for Bx in the path integral
lies along the real axis (solid red), only the trivial saddle point contributes to the
effective bulk action Ibulk (iii). (b) Below the critical point γ < γc, all three sad-
dle points lie on the real-Bx axis (i,ii) and therefore all three contribute to the
bulk action (iii), where the symmetry-broken saddle-points (purple) minimize the
effective bulk action Ibulk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.6 Time-dependent classical field configurations ~B(t) from numerical gradient
descent. Optimal classical field configurations Bx(t) (blue), and Bz(t) (red) as
obtained by numerical gradient descent over Re I[ ~B] of the ‘magnetic-field’ ac-
tion Eq. (C.47). Gradient descent is performed by taking Jδt = 0.05, until the
threshold δI = 10−7 is reached for the action difference, requiring ∼ 104 itera-
tions for the parameters considered here. (a) Above the critical point γ > γc the
configurations are dominated by a single trivial time-independent saddle point
(dotted black), where the different boundary conditions in Z2, P 2 lead to nontriv-
ial boundary dynamics in the field Bx(t) near t = 0, T . (b) Below the critical
point γ < γc, the optimal configurations are dominated by a pair of symmetry-
broken saddle points (dotted black). The non-uniform boundary conditions in Z2

promote the formation of an instanton with action I∗ somewhere in the bulk that
traverses between the two saddle points. . . . . . . . . . . . . . . . . . . . . . . 134

3.7 Instanton configurations near criticality and critical exponent from gradient
descent numerics. (a) Bulk instanton configurations ~B(t) obtained from numer-
ical gradient descent for measurement rates γ = γc − ∆γ just below the critical
point. Gradient descent is performed by taking Jδt = 0.05, until the threshold
δI = 10−7 is reached for the action difference. For the close-to-critical γ con-
sidered, the analytically obtained instanton configuration in Eq. (3.46) are fixed
points of the gradient descent algorithm. (b) Critical scaling of the instanton ac-
tion I∗ shows a critical exponent ζ = 1.44 ± 0.07, which is consistent with the
theoretical expectation, ζ = 3/2. . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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3.8 Time dependence of Rényi-2 entropy, from saddle-point calculation and ex-
act diagonalization. (a) We plot the instanton action I∗ as a function of time at
different γ, obtained by performing gradient descent of the action in Eq. (C.47)
for field configurations at different time intervals. Note, γc = J/18 = 0.0556J .
For γ > γc (red), I∗ goes to zero, while for γ < γc (blue, purple), it approaches a
finite non-zero plateau at late times. Close to criticality (blue), this plateau value
is small, approaching zero, I∗ → 0 as γ → γc. This result is true for N = ∞,
where the saddle-point solution is exact. Inset shows estimated Rényi-2 entropy
of the system for γ < γc deep in the mixed phase accounting only for the instan-
ton action (green), and including the− lnT/N term forN = 6 (pink) to show the
logarithmic decay in entropy at late times. Gradient descent is performed by tak-
ing Jδt = 0.1, until the threshold δI = 10−6 is reached for the action difference.
(b) We probe the time dependence for finite N, for system size |Q| = |R| = 6, via
exact diagonalization. We note that for γ > γc (yellow), and for measurement-
only dynamics (J = 0) (gray), the entropy largely follows an exponential decay to
zero. However, for γ < γc, the time plots deviate from the exponential decay at
later times. In the inset, we find at the latest times, there is a logarithmic decay in
the entropy, − log2 ΠQ ∝ − log T . For exact diagonalization via Krylov method,
averaging is done over 50 disorder realizations, with Jδt = 0.01, Jt = 200 and
NK = 8 Krylov subspace dimension. . . . . . . . . . . . . . . . . . . . . . . . . 143

3.9 Purification dynamics for subsystems A ⊂ Q. (a) Subsets A,A of the system
Q are both initially maximally entangled with the reference R, but only the pu-
rity ΠA of the subsystem A is computed, while the remaining qubits A are traced
over. (b) The disorder-averaged purity Z2(k)/P 2 represented as a quantum cir-
cuit, where in the numerator the SWAPAA′ operator has been applied only to
qubits in subsystem A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.10 Subsystem purity phase diagram. (a) At times T ∼ poly(N), the subsystem
purity ΠA exhibits three distinct phases as a function of γ, k which are governed
by the corresponding classical field configurations ~B(t) (b). Above the critical
point γ > γc the bulk fields (solid blue) primarily occupy the trivial saddle point
Bx = 0 (dotted black), leading to a trivial (purified) phase for all k (i-ii). Below
the critical point γ < γc, the zero-instanton configuration (iii) dominates for small
k < kc(γ) while the single-instanton configuration (iv) with action I∗ is dominant
for large k > kc(γ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.11 Subsystem purity critical exponent µ from gradient descent numerics. The
critical subsystem fraction kc(γ) is identified for measurement rates γ < γc just
below the critical point by finding points in the k, γ plane (red) where the bound-
ary action ∆Ibdy is equal to the single-instanton action I∗ (see Fig. B.4 of Ap-
pendix B.5). A linear fit (blue) gives an estimate µ = 0.99±0.01, consistent with
µ = 1 from analytical arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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4.1 (a) Monitored large-N models with long-range interactions. (b) Entangled phases
for Brownian spin and SYK4 models as a function of measurement rate γ/J and
long-range exponent α. ŜA is the quasi-Rényi entropy of a contiguous subsystem
of volume A. (c) Dynamical critical exponent z and domain wall tension critical
exponent ν vs α. (d) Error-correcting properties of the measurement-induced
phases at large L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.2 (a) System Q is maximally entangled with reference R and evolves under moni-
tored dynamics V (t). (b) Quasi Rényi-2 entropy represented as a quantum circuit.
(c) Brownian qubit chain with L clusters, each composed of N qubits. (d) SYK4

model with two independent chains of length L coupled by measurement. . . . . 164
4.3 Domains and domain walls in the anisotropic Ising model corresponding to the

quasi-entropy Ŝ(2)
A of a small subregion A in the ferromagnetic phase (a, black

φ > 0 and white φ < 0 are symmetry-broken domains separated by a domain
wall), and the paramagnetic phase φ = 0 (b, light gray). The entropy of the
complement subregionAc corresponds to one of two possible competing domain-
wall configurations (c,d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.4 Phases of long-range monitored SYK2 model. . . . . . . . . . . . . . . . . . . . 172

5.1 Approximate ground state preparation for a mixed-field Ising model defined
on a random regular graph on 40 vertices [inset]. The parameters of the Hamilto-
nian for the local terms coupling the quantum spins on nearest neighbors on the
graph are Jzz = −1, and on-site terms hx = −2, hz = −0.5. The variational
algorithm is described in Sec. 5.5. Here we show that the ground state energy has
converged by increasing the bond dimension χ from 1− 3. . . . . . . . . . . . . 176

5.2 Approximate ground state preparation for a mixed-field Ising model defined
on a random regular graph on 10 vertices [inset]. The parameters of the Hamil-
tonian are same as Fig. 5.1. Here we show that the ground state energy of the
variational ground state χ = 2 has converged to the exact ground state energy
value, which is accessed by exact diagonalization. We also estimate the overlap
of the variationally prepared state with the exact ground state obtained from exact
diagonalization, | 〈ψvar|GS〉|2, which goes to 1 after a few steps of the variational
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.3 Tensor networks on generic graphs. The fundamental component is the on-site
tensor (a), with physical dimension d and virtual bond dimension χ. These can
be put on any underlying graph: 1-d lattice (b), a tree (c), 2-d lattice (d), and a
random regular graph(RRG) (e). We also show the scaling of the maximal en-
tanglement of the tensor network ansatz for a typical fraction of the graph (b-e).
On RRG, volume law states can be represented by finite χ tensor networks. In
(f) we compare the graph properties of a complete graph, random regular graph
(RRG) and a d-dimensional lattice. The properties being compared are: diame-
ter or maximal distance between any two vertices, expansion defined in Eq. 5.1,
number and type of cycles, and degree or number of neighbors of any vertex. . . . 181
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5.4 Belief propagation algorithm to contract tensor network on a graph. (a)
shows a patch of the tensor network state |ψ〉. Expectation value of any local
operator O can be computed by considering |ψ〉 and its conjugated copy and con-
tracting them. These can be equivalently computed using the message tensors,
as shown in (b). The reduced density matrix ρij of the state |ψ〉 for two nearest
neighbor sites in terms of the local message tensors is shown as well. (c) picto-
rially depicts the central BP equation Eq. 5.2, which is iterated (as in Eq.5.3) to
find fixed points of the message tensors. . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Expectation values of local operators of Ising model square root states, de-
fined in Eq. 5.7, on a random regular graph from the ensemble G100,3 [inset]. J
is set to be 1. In the top panel, absolute value of local Z operator averaged over
the vertices of the graph is plotted as a function of β. Since this is a classical
observable, it can be estimated by straight-forward Monte Carlo sampling (MC),
which is shown with the error bar estimate from the average. The BP result is
shown in red, which matches the MC estimate. In the bottom panel we show the
BP result of the site-averaged X operator and the edge-averaged entanglement
entropy of reduced density matrix of nearest neighbor sites. These expectation
values are inaccessible to simple MC sampling of the classical model. . . . . . . 190

5.6 Local expectation values of graph states defined on a G50,3 random regular
graph, as a function of the number of BP steps. The BP steps converge to the
correct expectation value for the 1-body and 2-body expectation values after 3
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.7 Quantum Ising model on a random regular graph. We variationally access
the local order parameters and the energy density for both N = 10 and N = 40
sized random regular graphs GN,r=3, with tensor network states with χ = 2. The
results are also compared with the N = 10 exact diagonalization data. . . . . . . 194

5.8 Quantum Ising model near criticality. We consider the transverse field quan-
tum Ising model on a random regular graph G40,3, and plot the local order param-
eter Za averaged over all sites, and the energy density as a function of the field hx.
The different traces are different runs of the variational algorithm, starting with
slightly different initial states, and running for a constant number of iterations
which converge away from the critical point. . . . . . . . . . . . . . . . . . . . . 196

5.9 Convergence of BP messages and local expectation values with BP for Square
root state with β = 0.4J−1 on a G20,3 random regular graph. . . . . . . . . . . . . 198

5.10 Convergence of BP messages and local expectation values with BP for a graph
state on a G20,3 random regular graph. . . . . . . . . . . . . . . . . . . . . . . . 198

5.11 Fidelity of variational state in transverse field Ising model on a random regular
graph G20,3. The overlap of the variational tensor network wavefunction ψvar with
χ = 2 and the two lowest energy states (which are accessed by exact diagonal-
ization) is shown as a function of the transverse field hx. . . . . . . . . . . . . . 200

A.1 The maximum eigenvalue λLeβmβ is determined by taking the linear extrapola-
tion of λLeβmβ at each grid interval dp to dp→ 0. The error is determined as the
uncertainty in the extrapolation from its 95% confidence interval. The graph here
is shown for the unregulated calculation at β = 2. . . . . . . . . . . . . . . . . . 219
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A.2 A sample fit of the numerically obtained λrL(u), at β = 10. m is chosen to be
1. The real part is fit to f(u) = λ0 − λ2u

2, while the imaginary part is fit to
f(u) = λiu, and the fit works very well even at quite large u. . . . . . . . . . . . 219

B.1 Experimental protocol to simulate the various averaged purities. The pro-
tocol is composed of two subroutines - ‘circuit’ (blue) and ‘measurement’ (red).
Sampling of circuit realizations is done in the blue subroutine, which calls the
sampling of measurement trajectories in the red subroutine. For each run of the
measurement subroutine, the measurement data is stored classically, and the re-
sulting quantum state is stored in a quantum memory depending on whether we
want to simulate the Born probability or post-selected trajectories (this choice
is represented by the diamond in the circuit). For each run of the circuit sub-
routine, purity can be estimated by doing SWAP tests on identical copies of the
stored quantum states and the corresponding probabilities can be estimated by
processing the classical data of measurement records. To estimate either of these
quantities, the typical number of runs of the measurement subroutine scales ex-
ponentially with the number of measurements, i.e. exponentially with the ‘vol-
ume’ of the circuit. All quantum processes in the protocol are denoted by ‘green’
rounded boxes and all classical processes are denoted by ‘pink’ boxes. Finally,
once enough statistics is collected, the ‘classical’ data of purity and the probabil-
ity for each circuit/measurement can be post-processed (as described in the text)
to give us (ΠQ)Born, ΠQ, 〈ΠQ〉 or any other simple averaged purity-like quantities. 221

B.2 Partition functionZn for the nth moment of the density matrix. The nth-order
Rényi entropy S(n)

Q = − ln Tr
[
ρnQ
]

is defined in terms of the nth moment of the
system density matrix ρQ. The associated circuit for computing the nth moment
Tr
[
ρ̃nQ
]

of the unnormalized density matrix ρ̃Q can be transformed into pure-state
dynamics on 2n replicas r = 1, 2, . . . , 2n with nontrivial boundary conditions at
times t = 0, T coming from the generalized n-system SWAP operator (orange). . 225

B.3 Brownian weak measurement protocol. The operator M(t) weakly measures
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Chapter 0: Introduction

Sometimes it’s good to head out with no idea where you’re going.

- Big Panda and Tiny Dragon, James Norbury.

0.1 Setting the stage and unveiling the actors

More is different

In the celebrated essay “More is different”, physicist P.W. Anderson persuades the reader

that the physics of a collection of objects can have emergent collective behavior which is not cap-

tured by the properties of the individual objects in isolation [7]. The idea of emergence also un-

derlies the modern perspective that our knowledge of the natural world itself, when seen through

the lens of renormalization group and emergence, is possible because of distinct collective behav-

ior at different scales. The laws at any scale can be derived from an underlying UV description

if we try very hard, but they are describable regardless by a theory of degrees of freedom only at

that scale. A flock of birds can be described as a collective entity with its own dynamics, which

is distinct from the description of the biological processes of an individual bird, which itself is

distinct from the laws underlying the behavior of the quantum fields whose excitations determine

the chemical composition of the molecules working in tandem in the bird’s brain guiding it to

flock with other birds.
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Phases and phase transition

The laws of collective behavior of objects lead naturally to the concept of phases, which

can be abstractly understood to be the universality classes of collective behavior of the physics

at a particular scale. The simplest example is that of water and ice - these are distinct collective

behaviors composed of individual water molecules, with vastly different physical properties. We

often think of phases of matter in terms to the nature of the phase transition between them -

water and ice are connected by the process of melting. Often phase transitions are laboratories

of exploring the concept of emergence, because they are governed by scale-free physics which

is described by an emergent universal physics unencumbered with the microscopic details of the

actual system under study.

We typically think of phases of matter in equilibrium. However dynamical ‘phases’ and

transitions between them occur in dynamics as well: consider, for example, the flow of a viscous

liquid. For a Reynold’s number below a critical value, the flow is laminar, which turns turbulent

when the critical value is breached. There are also typical instances of ‘driven’ phase transitions,

for example, a kicked classical rotor, which enters a chaotic phase when the ‘kicking’ strength is

larger than a critical value.

Enter quantum

Physical objects obeying quantum mechanics show a richer diversity of collective phenom-

ena and equilibrium and non-equilibrium phases. In this thesis we will explore these phenomena

using the language of quantum information, which has been shown recently to reveal deep con-

nections between physical phenomena at different scales, as well as provide an understanding of

the emergence of thermalization and statistical mechanics.

A quantum state |ψ〉 can have correlations beyond what is possible classically, which can
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be quantified by its entanglement. Consider the state |ψ〉 = (|00〉+ |11〉) /
√

2 on 2 qubits. When

we just look at one of them, the reduced density matrix is the identity matrix, i.e. if measured in

the computational basis, the state of one qubit will be |0〉 or |1〉 with equal probability. However,

once one of the qubits is measured, the state of the other qubit is deterministic. This correlation is

only possible because of the underlying principles of quantum mechanics, and can be expressed

in terms of the entanglement. For concreteness, given a quantum state on a bipartite system

|ψAB〉, the entanglement of subsystem A is given by the entropy of the reduced density matrix

on A, SA = −TrρA log ρA, where ρA = TrB |ψ〉 〈ψ|. The notion of entanglement codifies the

sentiment of Anderson’s claim that ‘more is different’: there are more exotic (by which I mean

more entangled) states in a composite Hilbert space HAB than just product of states defined on

subspaces HA and HB. Quantum entanglement has already emerged as an organizing principle

to study the behavior of ground states of quantum many-body systems, be it in the study of

topologically ordered states [8], or in theoretically understanding the behavior of correlation

functions in gapped phases of matter [9].

Entanglement dynamics and thermalization

Quantum systems undergoing time evolution |ψ(t)〉 = e−iHt |ψ〉 with its own Hamilto-

nian H generically evolve into states of higher complexity, with entanglement being generated

between different parts of the system. This observation already provides a remarkably simple

justification of thermodynamics and statistical mechanics [10].

Equilibrium statistical mechanics posits that time-averaged physical quantities behave as

ensemble-averaged quantities on average. However the state of a system under quantum (or even

classical) dynamics remains a well defined state in the corresponding Hilbert (or generalized con-

figuration space). Classically, the emergence of a description based on statistical mechanics is
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motivated by invoking either a separate bath or a coarse-grained knowledge of the evolution in

phase space, which requires a subjective lack of knowledge of the time evolution of the clas-

sical system. However, quantum systems have this feature built in: due to entanglement being

generated between different parts of the system under time evolution, any subsystem is not fully

specified by the information of the degrees of freedom in the subsystem itself; rather they develop

correlations with the rest of system. In other words, in isolated quantum systems subsystems can

appear to be thermalized with time because the rest of the system acts as its bath.

To be more precise, consider a system Q and a subsystem A ⊂ Q which undergoes a

quantum time evolution under a Hamiltonian, H = HA + HQ\A + H∂A, which has support on

the subsystem A, the rest of the system Q \ A, and the boundary ∂A. Let us assume that the

boundary term H∂A is small compared to the bulk term in the Hamiltonian HA. Now, an initial

product state evolves into a state whose reduced density matrix is approximately the thermal state

at late times, limt→∞ ρA(t) ≈ ρβ = e−βHA/Tre−βHA . The inverse temperature β corresponds to

the temperature of the initial state, defined via the equation, Tr [ρβHA] = e|A|, e being the energy

density.

Quantum information scrambling

A complimentary way of understanding the effect of quantum many-body dynamics on the

quantum state is through the propagation of quantum information. This is most conveniently

understood in the Heisenberg picture in terms of evolution of quantum operators. Consider a

qubit system, where we start with an initial operator localized on one site. This encodes local

information on that site. Under quantum time evolution, this information spreads to other sites

of the system. If the dynamics is sufficiently complex, the information may not be accessible to

any local probes, for example, by measuring any 1-body operator. This is the phenomenon of
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Figure 0.1: Entanglement and scrambling dynamics On the left panel I show the circuit cor-
responding to a generic many-body unitary evolution acting on an initially simple product state,
and the evolution of the entanglement entropy of a subregionA, which increases with time before
typically saturating. On the right panel I consider the partitioning of the initial and final states of a
system undergoing time evolution. Scrambling is captured by the negative of the tripartite mutual
information, which increases with time and typically approaches a maximal value corresponding
to maximal scrambling under generic scrambling unitaries.
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quantum information scrambling.

A conceptually simple way of quantifying scrambling in dynamics is through the tripartitie

mutual information [11]. Consider a unitary evolution Ut acting on a system. We bipartition the

initial state into two parts: A and B, and the final state into two parts C and D (see right panel

in Fig. 0.1). By the channel-state duality one can view Ut as a state, and consider the mutual

information between different parts of the initial and final partitions. Scrambling refers to how

localized information in the initial state, say A, will not be recoverable from individual parts of

the final state, C or D, but only from the whole system CD. Hence we consider the following

quantity, the negative of the tripartite mutual information,

−I3(A : C : D) = I(A : CD)− I(A : C)− I(A : D)

= SAC + SAD + SCD − SACD − SA − SC − SD.

If this quantity is large and negative, this implies that Ut has successfully scrambled the system.

OTOCs

The tripartite mutual information is a conceptually simple probe of scrambling, but it is a

complicated quantity to compute, or probe by experiments. Scrambling can also be quantified by

using some conveniently defined correlation functions, called out-of-time-ordered-correlators or

commutators (OTOCs) [12]. Consider an initial operator on site i,Wi, which under time evolution

U becomes Wi(t) = U †WiU . One can diagnose the spread of quantum information by consider-

ing its commutator with another operator Vj on a site j, [Wi(t), Vj]. The commutator starts out as

δi,j , but spreads out and becomes non-trivial at late times. A convenient measure of its complexity

is the squared operator, often evaluated on the identity density matrix, Tr[Wi(t), Vj]
†[Wi(t), Vj],
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Figure 0.2: OTOC and scrambling The OTOC FWV captures the overlap between states gen-
erated by two different quantum channels shown in the first two panels. Due to the spreading of
the operator W the states evolve differently, leading to a decay in FWV . The last panel shows a
typical evolution of FWV under a scrambling unitary.

called the squared commutator, CWiVj(t).

If we consider the operators W and V to be unitary, then the squared commutator can be

expanded,

CWiVj(t) = 2Tr [1]− 2ReTr
[
W †
i V
†
j WiVj

]
,

and the second term is called the out-of-time-ordered correlator, OTOC, FWiVj(t). Scrambling is

associated with the growth ofCWiVj(t), or equivalently, the decay ofFWiVj(t). Note that although

we have defined the squared commutator and the OTOC with respect to the maximally mixed state

or the Identity matrix, they can be easily defined as correlation functions for a particular quantum

state ρ, for example, Tr
[
ρ[Wi(t), Vj]

†[Wi(t), Vj]
]
.

The OTOC FWiVj codifies a notion of chaos in quantum dynamics. The OTOC FWiVj

captures how local perturbations in the past can lead to vastly different operators at late times.

FWiVj can be expressed as the overlap of two quantum states, with slightly different quantum
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Figure 0.3: Quantum information scrambling in local systems. I show a schematic of the
structure of a unitary evolution generated by local physics (Trotterized Hamiltonian evolution or
local quantum circuits). A local operator evolves with an effective light-cone structure specified
by a velocity, dubbed the ‘butterfly velocity’ (middle panel). The light-cone also generically
broadens with time (last panel).

channels with and without a perturbation with an operator. As a quantum version of the butterfly

effect, this perturbation can affect the subsequent time evolution, leading to vastly different states

at later times, and hence small overlaps (see Fig. 0.2). In fact in certain semi-classical systems, it

has been shown that [12],

FWiVj(t) ∼ Tr [1]
(
1−#eλLt + ...

)
,

at early times, mimicking the exponential divergence in classical chaos. The quantity λL is the

Lyapunov exponent associated with quantum information scrambling.

Locality and scrambling

Locality is a feature of much of the physics we observe around us. In the study of solid-state

crystalline materials and lattice regulations of quantum field theory, considering a local Hamil-

tonian on the underlying lattice is often the starting point of the analysis. How does scrambling

occur when the unitary evolution is generated by a geometrically local Hamiltonian?
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We find that the geometric local circuits (which may arise either as the Trotterized unitary

generated by a short-ranged Hamiltonian or as geometrically local quantum circuits) result in an

effective light-cone structure (see Fig. 0.3) and a velocity dubbed the ‘butterfly velocity’ [13].

This is related to the Lieb-Robinson velocity which is the emergent speed limit in non-relativistic

geometrically local systems [14]. However, while Lieb-Robinson velocity is a state-independent

velocity defined for the Hamiltonian under consideration, the ‘butterfly velocity’ vB is defined

with respect to the OTOCs or the squared commutator, which are two-time correlation functions

defined for a given state, and can be a state-dependent probe of the speed of the propagation of

local information.

A feature of the light-cone of scrambling under local dynamics which has been discovered

more recently is the phenomenon of the broadening of the operator wavefront with time (see the

third panel in Fig. 0.3) [15, 16]. This was first appreciated in the context of random quantum

circuits, but has been also demonstrated in Hamiltonian dynamics in quantum spin chains.

Questions addressed in this thesis

With this introduction it is now natural to pose some broad questions which I will address

in some specific contexts throughout this dissertation.

First, what are the patterns of scrambling in generic strongly interacting quantum systems?

How does scrambling depend on the temperature of the state, and the properties of the underlying

equilibrium phases at low temperatures? I address this question by identifying features of OTOCs

in local gapped quantum spin systems at low temperatures.

Second, can there be distinct dynamical phases of quantum systems, diagnosed by distinct

patterns of entanglement and scrambling? In the introduction, it has already been pointed out

that under generic quantum dynamics, systems are expected to thermalize, and typically at high
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temperatures this leads to a generic thermal state with few distinguishing features apart from

the long-lived hydrodynamic modes corresponding to the conserved charges of the dynamics.

However, I will explore in this thesis how disorder and quantum measurements can lead to distinct

dynamical phases, which do not follow this dictum.

Third, how do the patterns of entanglement in dynamically generated quantum states change

when we consider systems without geometric locality? I explore this by considering quantum cir-

cuit evolutions generated by all-to-all and long-range interacting terms in the underlying Hamil-

tonian, in our study of measurement-induced entanglement phases.

These explorations in turn lead us to questions such as, what are the properties of quantum

states associated with Hamiltonians which are not necessarily defined on an underlying Euclidean

manifolds, but generic graphs? Utilizing properties of the underlying graph, I will explore how

the entanglement patterns of these states may allow us to computationally simulate and probe the

equilibrium and non-equilibrium phases of such systems efficiently.

0.2 The main act in five scenes

In this section, I motivate and briefly summarize the subsequent chapters.

0.2.1 Disorder and scrambling

In this chapter we consider the question, can generic quantum evolution generated by a

class of Hamiltonians fail to thermalize? For non-interacting quantum models it was known for a

long time that disorder can completely arrest quantum motion in low dimensions: a phenomenon

known as Anderson localization [17]. This would suggest that generic states in disordered sys-
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tems will remain localized for indefinite times without the propagation of any quantum infor-

mation, leading to athermal behavior. More concretely, for a non-interacting quantum model in

d < 2, any amount of disorder leads to all eigenstates being exponentially localized, while for

higher dimensions, there is a ‘mobility edge’ i.e. an energy level below which all states are lo-

calized. Whether this phenomenon survives many-body interactions is a long-standing question.

Recently the phenomenon of many-body localization (MBL) has garnered a lot of attention, and

it has been claimed that for high enough disorders, the many-body eigenstates at the middle of

the spectrum are localized, and hence athermal [18]. The situation is different from the non-

interacting case, in the sense that the interaction terms lead to an inevitable spreading of quantum

information, which however remains exponentially slower than the typical thermal behavior.

More recently, doubts have been cast on these assertions [19], primarily because of the lim-

ited sizes (generically with≈ 20 qubits) for which the numerical experiments can be done for the

many-body interacting systems. Even if the phenomenon of MBL as a genuine ‘phase’, for which

it was claimed that the athermal behavior persists till ‘infinite’ times in the thermodynamic limit

(exponential in the system sizes for finite systems), does not hold true, it has been definitively

shown that high disorder does lead to very slow propagation of local information, at least as a

transient behavior.

In this chapter we study the behavior of quantum information scrambling in a disordered

interacting quantum spin chain. Using tensor network representation of the evolving operator,

we find that the early time behavior of OTOCs can be computed very efficiently classically for

very large systems (≈ 200 spins, for long times (t ∼ 100J−1)). It turns out that this early time

behavior is already enough to find features of localization and slow information scrambling when

the disorder is tuned higher. From the numerical data, we find that the speed of scrambling,
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Figure 0.4: Scrambling and disorder We show the averaged sub-linear power-law lightcone that
arises due to random disorders in a local interacting Hamiltonian. We further show a schematic
on the right panel with the vanishing of vB at a finite disorder h, which summarizes our findings
from Chapter 1.

or the ‘butterfly velocity’ (vB) actually goes to zero sharply at a finite disorder strength (see

Fig. 0.4). For disorders below this finite ‘critical’ value, there is an effective linear light-cone for

the evolving operator characterized by a positive vB. At higher disorders, the light cone becomes

a sub-linear power-law, which at even higher disorders becomes indistinguishable from the pur-

ported logarithmic lightcone for a genuine MBL phase (we are not able to resolve the presence

or absence of such an MBL transition from our data). However, the linear to sublinear transi-

tion shows that even without proper MBL, the speed of the propagation of quantum information

is severely restricted by the presence of disorder. We further find evidence that ‘rare-regions’

(small pockets of locally higher disordera) drive this transition, which occurs at much smaller

disorders than the putative MBL transition.
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0.2.2 OTOCs at finite temperatures

We found in our definition of the OTOCs and squared commutators that they are state-

dependent measures of scrambling. In particular, it is interesting to consider these quantities

with respect to the thermal density matrix, ρβ ∝ e−βH , to study the effect of temperature on

scrambling.

One straightforward finite temperature generalization of the squared commutator is the

following,

C = Tr
[
ρβ[Wi(t), Vj]

†[Wi(t), Vj]
]
, (0.1)

with the corresponding OTOC,

F = Tr
[
ρβW

†
i (t)V †j Wi(t)Vj

]
. (0.2)

However in computations of scrambling in field theories, this quantity is formally infinite

because of the fields being on the same space-time location on the corresponding Keldysh con-

tour. Instead, the computation is typically done with respect to the OTOC defined symmetrically

around the thermal circle,

Fsym = Tr
[
ρ

1/4
β W †

i (t)ρ
1/4
β V †j ρ

1/4
β Wi(t)ρ

1/4
β Vj

]
. (0.3)

This quantity can be obtained by analytic continuation of the regulated squared commuta-
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Figure 0.5: Thermal OTOCs corresponding to the unregulated (left panel) and symmetrically
regulated OTOC (right panel) involves operator evolution with distinct patterns of thermal damp-
ing.

tor,

Creg = Tr
[
ρ

1/2
β [Wi(t), Vj]

†ρ
1/2
β [Wi(t), Vj]

]
. (0.4)

The distinction between the OTOCs in Eq. 0.2 and Eq. 0.3 is shown in Fig. 0.5. In a seminal

work, it was shown that the Lyapunov exponent associated with scrambling is bounded by the

temperature [20],

λsym
L = ∂t logCsym ≤ 2π/β, (0.5)

the so-called bound on chaos. Crucially, the Lyapunov exponent considered in the proof was

obtained from the symmetrically regulated squared commutator as defined using the OTOC in

Eq. 0.3. However, although it may be expected that the same bound holds true for Lyapunov
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exponents obtained from other thermal squared commutators, such as the regulated or the un-

regulated squared commutator defined in Eq. 0.4 and Eq. 0.1 respectively, there are apriori no

reasons why the theorem should apply to these quantities.

In this work I explore the issue of regulator-dependence by simulating the regulated and un-

regulated squared commutators at low temperature (of the order of the gap) for a gapped quantum

spin chain in the paramagnetic phase. Using the same tensor network technology as in the first

chapter, we can perform this computation for large spin chains of size ∼ 100. We find that the

numerically obtained Lyapunov exponents from the regulated and unregulated squared commu-

tators violate the bound on chaos. This demonstrates that the bound on chaos applies exclusively

to OTOCs with the symmetric regulator dependence (for which the bound was proven), and does

not extend to other similarly defined physical quantities.

The second question I explore is that of the temperature dependence of the butterfly ve-

locity. We find from the numerical data that the unregulated squared commutator is not at all

affected by the lowering of temperature. On the other hand, the butterfly velocity obtained from

the regulated squared commutator slows down as a power-law with the lowering of temperature,

asymptotically approaching the scaling, vB ∼ β−1/2. This suggests that in the unregulated case,

high energy modes enter the computation even at low temperatures, which leads to an effectively

temperature independent behavior consistent with the β = 0 high temperature scrambling. On the

other hand, the regulated case is actually sensitive to the physics of the low-temperature modes.

Can we analytically understand the low temperature scaling of the butterfly velocity ob-

tained from the regulated commutator? To address this, I perform a field theoretic computation of

scrambling in the paramagnetic phase of an O(N) model in 2+1D. In this phase, we find that the

butterfly velocity has the same scaling as the speed of sound at low temperatures, vB ∼ β−1/2.
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However, the field theory computation does not capture the regulator dependence that we ob-

served from the numerical spin chain computations.

0.2.3 Measurement induced entanglement transition

Under a unitary evolution generated by generic interacting Hamiltonians, a quantum state

evolves to produce volume-law entanglement for contiguous subregions. As we discussed in

the introduction, this is also associated with the thermalization by quantum dynamics, where

subregions appear as thermal density matrices which are mixed states with thermal entropy.

Are there classes of many-body quantum dynamics where this does not hold true? In

particular, are there generic dynamically generated ‘phases’ which do not appear thermal? We

saw in a previous section that disordered systems lead to a slow scrambling phase which appears

athermal for arbitrarily long times. More recently, yet another mechanism has been identified to

give rise to restricted and tunable scrambling - repeated local measurements.

Quantum measurements involve collapsing the quantum state onto an eigenstate of the mea-

surement operator. If the eigenstate has area-law entanglement, then the state post-measurement

would have lost its long-range entanglement structure. In particular, measuring on-site operator

would destroy all entanglement between the site and the rest of the system.

Consider a quantum circuit where the unitary gates are interspersed by single body mea-

surement gates. We consider a parameter p which is the probability of measuring a particular

qubit at any time. In a circuit of depth D on N qubits, we therefore have pDN measurements on

average. It has been shown recently that tuning p leads to a dramatic change in the pattern of en-

tanglement in the generated state [21, 22]. In particular, for generic systems it has been observed,
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Figure 0.6: Measurement induced entanglement transition in quantum circuits. In the left
panel we consider a unitary circuit (blue rectangle) insterspersed by local on-site projective mea-
surements (red crosses). The circuit generates a steady state which has area law entanglement for
half of the system if the rate of measurement is high p > pc and volume law entanglement if the
rate of measurement is low p < pc. pc is the critical rate of measurement.

primarily using numerical tools, that for p > pc the obtained states have area law entanglement,

while for p < pc the states have volume law entanglement (see Fig. 0.8). Here pc is the critical

rate of measurement associated with phase transition.

Measurement induced phase transition (MIPT) has been largely a numerical observation,

and only recently attempts have been made to understand it analytically. Analytical understanding

is important to justify the presence of the phase transition (and identify its universality class) for

certain toy models, which builds more confidence in the numerical observations.

0.2.3.1 Purification transition in an all-to-all circuit

In Chapter 3, we make analytical progress towards the understanding of MIPT by con-

structing a toy model of hybrid dynamics (which refers to unitaries and measurement) for which
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Figure 0.7: Measurement induced purification transition in all-to-all connected quantum
circuits. The purification circuit is shown on the left panel, with the system qubits Q and the
reference qubits R. In the middle panel I show the toy model we consider - a cluster of qubits,
evolving with a random unitary generated by two qubit interaction of strength J and on-site weak
measurement of strength γ. The evolution of the Rényi-2 entropy of the system as a function of
time, for different strengths of measurement are shown in the right panel.

one can study the entanglement patterns of the final state using field theoretic computations. The

phenomenon we study is the measurement-induced purification transition [23], which is closely

related to the entanglement transition. In this setup, we start with a system and a reference, with

the system being maximally entangled with the reference. The system is now subjected to the hy-

brid dynamics. If at the end of the dynamics the reference remains mixed, then we call it a mixed

phase, while if the reference is purified then it is called the pure phase. This phase transition is

again driven by the rate of measurements in the hybrid dynamics p.

In this chapter we consider a cluster of qubits undergoing all-to-all connected time depen-

dent random Hamiltonian dynamics, interspersed with weak on-site measurements. Here weak

measurement refers to the system being coupled to an auxiliary system, on which a projective

measurement is performed. The strength of the measurement refers to the magnitude of the cou-

pling of the system with the auxiliary system. In this setup we can compute the Rényi-2 entropy

of the system and subsets of the system averaged over the randomness, by using replica field
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Figure 0.8: Measurement induced purification transition in long-range interacting quantum
circuits. We consider a lattice of large-N clusters of qubits, which undergo hybrid dynamics with
unitaries generated by long-range coupling terms decaying with distance as r−α, and on-site weak
measurement with strength γ. The entanglement phase diagram as a function of γ and α is shown
below.

theory at large-N, where N is the number of qubits in the cluster. We find that if the strength of

the measurement is tuned to be higher than an analytically obtained critical strength, the system

is purified in constant time-scale. On the other hand, if the measurement strength is low, then

the system remains mixed until exponentially long timescales (see Fig. 0.6). We are also able to

identify the critical field theory of the transition of the Rényi-2 entropy, which helps us to identify

critical exponents of the transition analytically.

0.2.3.2 Measurement and long-range unitary induced entanglement phases

What distinct patterns of entanglement are possible as the fixed points of such hybrid dy-

namics? Can we design the hybrid dynamics such that we get a richer phase diagram than just

the volume law to area law transition? In Chapter 4 we address this question by investigating the
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effect of long-range interactions in the unitary on the obtained entanglement pattern.

Building on the previous all-to-all connected model, we now consider a lattice of such

large-N clusters, with inter-cluster interactions. Furthermore, the inter-cluster interactions are

considered to follow a power-law form with the distance between the clusters, falling off as r−α.

In this setup, we again compute the Rényi-2 entropy of a contiguous collection of the clusters.

We find that distinct entanglement phases emerge as a function of the measurement strength and

the power-law exponent α, including fractional entangled phases where S ∼ A2−2α, and volume

law phases with power-law corrections, such as S ∼ A + A2−2α, where A is the size of the

contiguous sub-system (see Fig. 0.7).

0.2.4 Many-body physics beyond lattices

We often study quantum many-body physics on regular d-dimensional lattices, motivated

by naturally occurring crystalline solid state materials and lattice regularizations of quantum field

theories. However, there are interesting quantum phenomena beyond those feasible on lattices.

From a quantum information viewpoint, many-body sparse graphical models typically pos-

sess the feature of fast quantum information scrambling. The phenomena of fast scrambling was

demonstrated first in all-to-all connected graphical models such as the Sachdev-Ye-Kitaev (SYK)

model [12, 24], which are holographically dual to a quantum theory of gravity in one higher di-

mension [12, 24, 25]. In an SYK-like model on N sites, any local quantum information spreads

across the whole system in a short scrambling time, t∗ ∼ logN [26, 27]. On the other hand, in

generic local models on d-dimensional lattices, typical scrambling times are long t∗ ∼ N1/d.

However, having a complete (i.e. all-to-all connected) graph is not necessary for getting
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fast scrambling - generic sparse graphs can also scramble information quickly [28, 29]. Sparse

graphical models are also attractive platforms to be simulated on a quantum processor, since

the sparse connectivity of the graph can lead to efficient quantum simulation. In this context,

reliable classical algorithms to simulate quantum many-body models on sparse graphs are highly

desirable.

In Chapter 5, we take the first steps towards the study of quantum many-body physics on

sparse graphs using tensor networks. Sparse graphs are ‘expander’ graphs with a high probability;

furthermore, they are locally tree-like. Using these two features, we show that tensor network

contraction, which is a difficult task on graphs with loops, can be approximately done using

the belief propagation (BP) algorithm for locally tree-like graphs [30, 31]. In this chapter we

use the BP algorithm and tensor networks to variationally access the ground state energies of

quantum spin models defined on ‘expander’ graphs. This paves the way for future exploration of

equilibrium and non-equilibrium quantum phenomena on sparse ‘expander’ graphs.
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Chapter 1: Scrambling dynamics in disordered quantum spin systems

“What are you doing?” asked Tiny Dragon.

“I’ve no idea,” said Big Panda, “but it’s great fun.”

- Big Panda and Tiny Dragon, James Norbury.

1.1 Introduction

It has long been known that disorder can slow or arrest quantum motion [17], leading to a

localized state. Recently it was understood that localization can survive even strong interactions,

a phenomenon dubbed many-body localization (MBL) [32, 33, 34]. More precisely, there is a

quantum phase transition in interacting systems from a thermalizing phase to a localized phase

with increasing disorder. The phase and phase transition have been intensely studied (e.g., [35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]), and there is a proof, given plausible

assumptions, of the existence of MBL in one-dimensional spin chains with local interactions

[51, 52].

In this work we are particularly concerned with the quantum phase transition (or transitions)

that take a one-dimensional disordered system from a thermalizing phase to a localized phase

[39, 42, 53, 54, 55, 56, 57, 58, 59]. It is natural to study this phase transition via dynamics

[36, 37, 38, 40], because eigenstate based numerics are difficult to scale to large system sizes and
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because dynamical properties are accessible in experiments [60, 61, 62]. We study a dynamical

quantity related to quantum information scrambling, the squared commutator [11, 63, 64, 65].

Consider two local operators, W and V , in a one-dimensional spin chain, separated by a

distance x. The squared commutator probes the extent to which V fails to commute with the time

evolved Heisenberg operator W (t) = eiHtWe−iHt. It is defined as the expectation value of the

absolute value squared of the commutator of the W (t) and V ,

C(x, t) = 〈[W (t), V ]†[W (t), V ]〉. (1.1)

It is closely related to the out of time ordered correlator (OTOC), F (t) = 〈W †(t)VW †(t)V 〉.

OTOCs are currently receiving attention as a diagnostic of quantum chaos [12, 20, 63, 66], in-

cluding experimental proposals [67, 68, 69, 70] and early experiments measuring OTOCs [71,

72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. In fact, [74] measured OTOCs to

detect localization in NMR spin systems.

The squared commutator starts at zero for initially separated W and V , and then grows as

the operatorW (t) spreads and overlaps with the location of V . In the absence of disorder, C(x, t)

typically grows ballistically, leading to an emergent linear light cone with butterfly velocity vB.

On the other hand, disorder can severely arrest the growth of C(x, t), a manifestation of local-

ization. It has been argued that MBL is characterized by an extensive number of local integrals

of motion [41, 42, 43, 44], leading to an emergent logarithmic light cone [88]. Similarly, it was

recently shown that the disorder averaged C(x, t) exhibits a logarithmic light cone with vB = 0

in the MBL phase [89, 90, 91, 92, 93, 94, 95].

In this chapter we study operator dynamics across the entire thermal-to-MBL phase dia-
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Figure 1.1: Phase diagram of operator spreading in disordered interacting spin systems with
different disorder models. The Heisenberg Hamiltonian is defined using Pauli operators instead
of spin-1/2 operators, so theW normalization is twice as large relative to the spin-1/2 convention.

gram, with a particular focus on the thermal side of the MBL eigenstate transition. This regime

has attracted interest in the context of rare region effects which can slow down transport well

before the MBL transition [45, 46, 96, 97]. One interesting question is whether the butterfly

velocity survives arbitrarily weak disorder [98, 99]. It is challenging, since, for example, strong

disorder RG [95] applies only in the MBL phase and state-of-the-art exact diagonalization is still

limited to small sizes [98]. We use a recent t-DMRG based matrix product operator method to

calculate dynamics of local Heisenberg operators [100] (see also [101, 102]) for larger system

sizes (≈ 200 spins) and longer times than previously possible.
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1.1.1 Summary of results

First, we observe a weak disorder phase with ballistic operator spreading (vB 6= 0) as well

as a sharp transition to a sub-ballistic phase (vB = 0), at a disorder strength well below the pu-

tative MBL transition (see Fig. 1.1). This transition is characterized by a continuous vanishing

of vB and an apparent divergence of the wavefront broadening. Second, we study the variability

of operator growth from one disorder realization to another, which also characterize the ballis-

tic to sub-ballistic transition independent of the fitting procedure. This is also a clear numerical

demonstration of rare regions which is only possible because of the large system size. Observa-

tions from the variability of the scrambling data motivate a simple phenomenological model of

rare regions, from which we analytically substantiate the presence of the ballistic phase. Together

these numerical observations reveal a rich dynamical phase diagram for disordered spin models

(Fig. 1.1). Comparing to previous studies, we find that the loss of ballistic operator spreading

occurs at a larger disorder strength than the diffusive to sub-diffusive transition in spin transport,

indicating at least four non-trivial dynamical regimes [45, 46, 96, 97, 99, 103].

1.2 Model

For concreteness, we consider two one-dimensional spin chain models:

1. Mixed field Ising model with σz disorder

H = −J
L−1∑
r=1

ZrZr+1 − hx
L∑
r=1

Xr −
L∑
r=1

hz,rZr (1.2)
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2. Heisenberg model with σz disorder,

H = −J
L−1∑
r=1

(XrXr+1 + YrYr+1 + ZrZr+1)−
L∑
r=1

hz,rZr. (1.3)

Here Xr, Yr, Zr are the local Pauli operators. For the mixed field Ising model, we choose the pa-

rameters J = 1, hx = 1.05 and hz,r = 0.5. For the Heisenberg model, we choose the parameters

J = 1 and hz,r = 0. For each spin chain we consider two different disorder probability distri-

butions, box and Gaussian. For the box disorder, we draw the hz,r fields uniformly at random

from the interval [−W,W ], with W being the disorder strength. For Gaussian disorder, the hz,r

fields are Gaussian random variables with standard deviation (SD) W . The parameters for the

mixed field Ising model have been chosen so that the W = 0 limit is strongly chaotic [100]. The

Heisenberg model with box disorder has been extensively studied for chains with L . 30 spins,

and it has been shown that the thermal-MBL transition occurs at W & 7 [47]. We consider all

these models to elucidate the robustness of the intermediate regime, and also to understand the

role of disorder distribution on rare region effects.

1.3 Numerical method

Our technique is a real-time tensor network method for operator dynamics [100]. Study-

ing real-time quantum dynamics using tensor network methods, such as state-based TEBD or

t-DMRG methods [37, 38, 104, 105, 106, 107], is typically limited to early times, because the

entanglement of the state is upper-bounded by log(χ), where χ is the bond dimension of the

matrix product state (MPS) [37]. However, in a recent paper [100], some of us have shown that
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Figure 1.2: Plot of the contours of the averaged log(C), for the Mixed Field Ising model with
Gaussian disorder. (averaged over ∼ 200 disorder realizations, for three disorders, W = 0.2
(ballistic), W = 1.0 (intermediate) and W = 3.8 (logarithmic). Bond dimension is 32. Conver-
gence with bond dimension is discussed in a later section. Fluctuations away from the disorder
averaging are discussed in Fig. 1.4 and in the corresponding section.)

by going to the Heisenberg picture, one can reliably access a much wider space-time region us-

ing dynamics of matrix product operators (MPO) because of the entanglement structure of the

Heisenberg operator. The complexity of the operator only builds up within the lightcone and

is not essential for studying the dynamical property of the wavefront. As a result, the butterfly

velocity and the broadening of the wavefront can be accurately extracted from TEBD simulation

on Heisenberg operators in the matrix product form with modest bond dimension.

We simulated the squared commutator in the infinite temperature Gibbs ensemble,

C(r − r′, t) =
1

2L
Tr [(] [Xr(t), Xr′ ]

†[Xr(t), Xr′ ]) (1.4)

for spin chains of length L = 201 with maximal time of order 50−100, in the units of J−1 = 1. A

small Trotter step of δt = 0.0025 is used to obtain high numerical precision. For each disorder, we

consider around 200−500 disorder realizations and average log(C) over the different realizations.
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This ensures that rare disorder realizations which could localize the operator growth are not

overwhelmed by the ballistic samples during the averaging process. Fig. 1.2 shows light cone

obtained from averaging C(x, t) for different disorders, representing each phase in Fig. 1.1. We

discuss convergence of the numerical procedure in a later section.

We detect the transition by extracting the butterfly velocity and the wavefront broadening

from the averaged squared commutator. We use the universal form for the squared commutator

ahead of the wavefront (where C(x, t) << 1), conjectured in [16, 100, 102],

C(x, t) ∼ exp
(
−λp (x− vBt)1+p /tp

)
(1.5)

Here, vB is the butterfly velocity, and p is the wavefront broadening coefficient, which is known

to be p = 1 for random unitary circuit models [15, 108], p = 0 for large-N holographic models

and p = 1
2

for non-interacting systems. The above form does not hold in the localized regime,

which has a logarithmic lightcone [89, 90, 91, 92, 93, 94, 95]. Additionally, the shape of lightcone

becomes power-law like before the MBL transition due to rare region effects [98, 99]. A general

form that captures all the scenarios is,

C(x, t) ∼ exp
(
−λp (x− vBt)1+p /tp + a log(t)

)
(1.6)

This form captures the cases where the lightcone is linear (vB 6= 0, a = 0), power-law (vB = 0,

p 6= 0, a = 0) or logarithmic (p = 0, vB = 0, a 6= 0), as the disorder strength increases.
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Figure 1.3: a) The extracted broadening coefficient p and butterfly velocity vB are plotted for
different sized systems, versus disorder. Note, vB goes to zero and p has a peak at around disorder
W ∼ 0.5 with small finite-size effect. Errorbars obtained from the 95% confidence interval of
fitting, are shown for the largest system size. b) Finite-size scaling on half-chain entanglement
entropy estimates that the localization transition occurs at Wc ∼ 2.21. The data collapse to the
degree 3 polynomial ansatz g[(W −Wc)L

1/n] with n ∼ 0.95 is shown in the inset. The shaded
region is the intermediate region.
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1.4 Numerical results

1.4.1 Mixed-field Ising model with Gaussian disorder

Here we use the mixed-field Ising model with Gaussian disorder as an example to demon-

strate the transitions in Fig. 1.1. The other three cases can be found in later parts of this section.

In Fig. 1.3, we plot the extracted vB and p versus disorder, for different lengths of the spin chain

by fitting the data to the growth form (1.5). The fitting procedure and the goodness of fit are

discussed in later parts.

The butterfly velocity decreases as the disorder strength increases and becomes zero at

W ∼ 0.5. On the other hand, p increases as W approaches the critical disorder, and decreases

when W passes beyond that. This disorder is below the MBL transition disorder extracted from

exact diagonalization study on the entanglement entropy scaling (Fig. 1.3(b)). The fact that vB

goes to zero and p peaks at the same disorder strength indicates a sharp transition before the

true MBL transition, consistent with the weak-link model describing the rare region effects in

disordered systems, studied recently [99].

Below the transition, the system is characterized by a finite vB and p, indicating a linear

lightcone with broadening front. Above the transition, the velocity becomes zero and the shape

of the lightcone becomes powerlaw like, x ∼ tp/(p+1). Our method captures the logarithmic

lightcone in the strong disorder limit (Fig.1.2 (c)), but it is difficult to ascertain the transition to

the logarithmic light cone from fitting the finite space-time data. This is discussed in S.M., Sec. II,

where we also provide more evidence of logarithmic light cones at high disorder strength beyond

the MBL transition. The transition identified here is different from the diffusive-subdiffusive
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Figure 1.4: a) The bold black lines are single realizations of −15 contour lines of log(C) at
disorder W = 0.8 for the mixed field Ising model with Gaussian disorder. Note the colored
patch is given by the SD of the x positions for 180 realizations at a given time. Note that the
two disorder realizations have distinct behaviors after t = 25, with one being significantly slower
because of a local bottleneck of large disorder. b) SD of x-cuts at times t = 25 and t = 50, for
180 realizations for different disorders are plotted, which peaks at W ∼ 0.5 and coincides with
the critical disorder where vB vanishes.

transition for dynamics of conserved quantities [96, 103]. In particular, we observe that in the

Heisenberg model with box disorder, the vB = 0 transition occurs at a higher disorder, W ∼ 4

than the spin transport diffusive-subdiffusive transition disorder,W ∼ 1.1 (from [96], in our Pauli

matrix convention). This implies a separation of information propagation and spin transport.

1.4.2 Shot to shot variability

We also study the variability of the contours of log(C) from one disorder realization to

another. In Fig. 1.4(a) a particular contour line of log(C) is plotted for two different disorder

realizations withW = 0.8, which differ significantly. To characterize the shot to shot fluctuations,

in Fig. 1.4(b), we plot the SD of x positions, and observe that at long time, the variability peaks

at the same disorder (W ∼ 0.5) where vB vanishes. The divergence of fluctuations, obtained
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without any numerical fitting, is remarkably consistent with the divergence of p in Fig. 1.3(a).

This substantiates the transition at W ∼ 0.5. Fig. 1.4(a) also demonstrates the microscopic

mechanism for vanishing vB before the MBL eigenstate transition. The contours for two different

realizations have bottlenecks at certain space regions, where scrambling is arrested. This is a

visualization of rare region effects - local stronger disorders in certain regions affecting average

dynamical properties.

1.4.3 Convergence with bond dimension

In this section we demonstrate convergence with bond dimension for the squared commuta-

tor data. In Ref. [100], it was rigorously proven that if C(x, t) is sufficiently small for all x > x0,

then the operator Renyi entropy with entanglement cut at x0 is also small. This result implies that

the MPO representation with a fixed finite bond dimension is faithful for operators of physical

importance. There is still a possibility that errors could build up after repeated truncations, but it

was also argued that these errors cannot propagate outside the emergent light cone.

In a many-body localized system, the light cone grows logarithmically instead of linearly

with time, and thus one hopes to access an even wider region of the space-time with this method.

In that sense, MBL is easier than chaos, as the spatial spread is less. In the chaotic case, the linear

light cone ensures that errors within the light cone are contained within, but in the logarithmic

case, the error containment is not so straight forward. Due to these two opposing factors, we

need to numerically study the convergence of the light-cones with increasing bond dimension.

We consider an L = 201 spin chain, and look at the overlap of Xr=101(t) with Xr as a function of

t. In Figs 1.5 and 1.6, we show convergence of both the single realization and the averaged data
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Figure 1.6: The contours of averaged log(C) (averaged over 500 disorder realizations) for two
different disorders a) W = 0.2 and b) W = 0.8 for the mixed field Ising model with Gaussian
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of log(C) with increasing bond dimension (χ = 24 and χ = 32) respectively. The data shown

here corresponds to the mixed field Ising model with Gaussian disorder, which was considered in

the main letter. Since the obtained data converges well (for system sizes and times considered)

the rest of the numerical results shown in this paper have been obtained from MPOs with bond

dimension χ = 32.

1.4.4 Extracting butterfly velocity and the logarithmic lightcone

To extract the physically relevant quantities from our numerical data, we employ a fitting

procedure, in which we fit the disorder averaged log(C(x, t)) to the fitting ansatz,

log(C(x, t)) ∼ a(x− vBt− x0)1+p/tp + c log(t)
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Figure 1.7: The averaged log(C) is plotted against the fitting ansatz (x − vBt − x0)1+p/tp +
c/a log(t) for different disorders W = 0.2, 0.4, ..., 1.2, for the mixed field Ising model with
Gaussian disorder. The fitted parameters for the figure are given in Table 1.1.
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W vB p a c x0

0.2 1.4357 1.3501 -1.1903 0.0452 0.1075
0.4 0.2227 3.9690 -0.0278 0.0000 -0.1005
0.6 0.0000 2.2058 -0.0867 0.0000 -0.1461
0.8 0.0000 1.1273 -0.2530 0.0000 0.3807
1.0 0.0000 0.8676 -0.3445 0.0000 1.8693
1.2 0.0000 0.8174 -0.3882 0.0000 1.8854

Table 1.1: Fitted parameters for Fig. 1.7

Note, the free parameters are a,c, the offset x0, butterfly velocity vB and the wavefront broadening

coefficient p. We fit the averaged data over a large domain, −30 < log(C) < −10, for which we

are certain that the numerical procedure converges, to this ansatz, with the physical constraints

vB ≥ 0 and p ≥ 0. The collapse of the data to this fitting form is demonstrated in Fig. 1.7. The

fitted parameters for the figure are given in Table 1.1.

The fitting ansatz that we employ has the merit of capturing various possible scenarios of

operator growth. From the chaotic growth considered in [100] and [16] we expect vB > 0 and

some finite p for the situation without disorder. In the presence of weak disorder, there could

be multiple possible options, one is that any weak disorder is enough to take vB to zero (as was

indicated in [98]), or, there could be a phase in the ergodic side which could have vB > 0, as was

argued in [99]. Furthermore, the behavior of the wavefront broadening in the presence of disorder

is also not well understood. From the result of our numerical fitting procedure, we definitely see

evidence of a ballistic phase in the presence of weak disorder, and furthermore, in the ergodic

phase preceding the MBL transition, we observe a sharp transition at which vB goes to zero and

the broadening coefficient p seemingly diverges. The result doesn’t change even if we remove

the log term from the fitting ansatz, as its coefficient in the ergodic side has been observed to be

vanishingly small.
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ders for the mixed field Ising model with Gaussian disorder. At strong disorders, W & 3.4, the
asymptotically flat plots provide evidence of a logarithmic light cone.

The fitting ansatz could also potentially capture the logarithmic lightcone in the MBL side.

One possible way in which that can be achieved in the fitting ansatz is where vB = 0, p = 0

and the coefficient of the log term is non zero. However we don’t observe a sharp transition for

the domain of disorders that we consider, possibly because the transition of a soft power law to

logarithm is a invisible to the numerical fitting procedure given the finite domain.

In Fig. 1.8, we show evidence of the logarithmic lightcone without using any numerical

fitting procedure. We consider a particular contour (−10 contour of logC), and extract its x and

t coordinates, and plot log(t)/x versus t for different disorders. If the contour is logarithmic,

the plot should approach a fixed value monotonically from below, and shouldn’t decrease at late

times. On the other hand, if the contour has a power law behavior, the plot will decrease with
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Figure 1.9: a) The extracted butterfly velocity vB and broadening coefficient p are plotted for
different sized systems of the disordered Heisenberg model (box), versus disorder. Note, vB
goes to zero and p has a peak at around disorder W ∼ 4. Errorbars corresponding to the 95%
confidence interval of fitting are shown for the largest system size.b) The MBL transition disorder
is shown to be Wc & 6.44, which implies the shaded intermediate region which has powerlaw
lightcones.

time. In Fig 1.8, we indeed see that for high disorders (W ' 3.4) the plot is aympotically flat

(note the long times considered, t = 100). This provides evidence that at those disorders, the

light cone is indeed logarithmic.

1.4.5 Heisenberg model and relation to diffusion

We consider the Heisenberg model with box disorder. The fitted vB and p are shown in Fig

1.9. This also shows vB going to zero and p diverging at a disorder W ∼ 4, which is lower than

the MBL transition disorder, which has been extensively studied, and is known to be & 7 [47].

A related but distinct question is to study the dynamics of conserved quantities in the ther-

mal regime in the presence of disorder. In [96], a transition between diffusive and subdiffusive

transport was observed numerically in the Heisenberg chain, in the thermal phase. Corrected for

the conventions used in the Hamiltonian we are considering, that transition occurs at W ≈ 1.1,
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Figure 1.10: Results for the Mixed Field Ising model with box disorder. a) Extracted Butterfly
velocity and broadening coefficient. Errorbars corresponding to the 95% confidence interval of
fitting are shown for the largest system size. b) MBL transition ascertained by small system exact
diagonalization.

which is not where we get the vB to go to zero. So this observation implies that there are two

distinct transitions in the thermal side of the disordered phases, one for diffusive to sub-diffusive

transport (which happens at smaller disorder), and the other between the ballistic and sub-ballistic

operator spreading.

1.4.6 Comparison between box and Gaussian disorder

In this section we show the results of our analysis for the other two disorder models that

we considered, which complete the phase diagram in our main paper.

These results (Figs. 1.10, 1.11) demonstrate the versatility of the numerical procedure

employed, and also indicates how rare regions affect the thermalization-localization transition.

Gaussian disorders allow for rare fluctuations more occasionally than box disorders, which results

in onset of sub-ballistic transport and localization at lower disorders for the Gaussian case than

the case with box disorder.
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Figure 1.11: Results for the Heisenberg model with Gaussian disorder. a) Extracted Butterfly
velocity and broadening coefficient.Errorbars corresponding to the 95% confidence interval of
fitting are shown for the largest system size. b) MBL transition ascertained by small system
exact diagonalization.

1.5 Rare region model

Motivated by above numerical results, we construct a simple model of rare regions which

explains the emergence of power law, broadening behavior, and the existence of a ballistic phase

at weak disorders. In a L sized spin chain with Gaussian random disorders N (0, σ2), the SD of

local disorder, might be different from σ. It might also exceed the MBL critical disorder εc, even

when σ < εc. Let ε be the disorder beyond which the operator growth has a logarithmic light

cone. Consider a continuous stretch of α log(L) spins, whose SD exceeds ε. The balance between

the exponentially slow transport and logarithmic size of such region leads to overall subballistic

information transport. Specifically, the time it takes for the information to propagate across the

chain with one such rare region is t ∼ L/vB + eζα logL, where ζ is treated as the averaged inverse

length scale associated with the logarithmic cone for the current purpose (It is defined carefully

in S.M. Sec. V). In the limit L → ∞, the average velocity L/t goes to zero for ζα > 1,
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indicating the subballistic scenario. This corresponds to the case where the rare region is long

enough that it dominates the time, t ∼ Lζα. As the ballistic transition is approached, we have

ζα → 1+. Comparing to the power-law lightcone x ∼ tp/(p+1) indicates that p → ∞, consistent

with the apparent divergence of p at the ballistic-subballistic transition in our numerical result.

A related but distinct approach was considered in [99], where the rare region effects on operator

spreading were quantified using a coarse grained quantity related to the entanglement spreading

across weak-links. Our model is directly in terms of the bare disorder and gives rise to consistent

predictions.

The existence of a ballistic phase in the low disorder limit is also borne out of the simple

model. Consider the probability of having no rare region of length α logL with SD larger than

ε in a disordered spin chain of length L with global SD σ, denoted as q(α;σ, ε). In general, q

decreases with σ and increases with α. Based on the above discussion, any α larger than 1/ζ leads

to subballistic slowing down of the information propagation. Therefore, a sufficient condition for

ballistic propagation is that no such disruptive rare regions occur, i.e., q(1/ζ;σ, ε) = 1.

The sample variance of normal random variables N (0, σ2) satisfy the Chi-squared distri-

bution. Hence for n normal random samples we have

(n− 1)
s2
n

σ2
∼ χ2

n−1 (1.7)

where χ2
n−1 is the Chi-squared distribution of (n− 1)-th order and the sample variance is defined

as,

s2
n =

n∑
i=1

(xi − x̄)2

n− 1
(1.8)
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We are interested in finding the probability that a n-sized region has locally larger variance

than the putative critical disorder. Hence, the probability of a sample of size n (in our picture,

a continuous region of n spins) having variance exceeding the subballistic-logarithmic critical

transition strength ε2 is obtained from the cumulative distribution function of the Chi-squared

distribution,

p(n;σ, ε) = Prob(σ2
n ≥ ε2)

= 1− χ2
(n−1)|CDF

(
nε2

σ2

)
= 1−

γ(n−1
2
, nε

2

2σ2 )

Γ(n−1
2

)

(1.9)

Here, Γ(s) =
∫∞

0
ts−1e−tdt, is the Gamma function and γ(s, x) =

∫ x
0
ts−1e−tdt is the incomplete

Gamma function. For the ‘bad bubbles’ considered in the paper, we have

p(α log(L);σ, ε) = 1−
γ
(
α log(L)−1

2
, α log(L)ε2

2σ2

)
Γ
(
α log(L)−1

2

)
≈ 1−

γ
(
α log(L)

2
, α log(L)ε2

2σ2

)
Γ
(
α log(L)

2

)
(1.10)

Using the Chernoff bound we can bound this probability as

p(α log(L);σ, ε) ≤ βα log(L), (1.11)

where β =

(
ε2

σ2 e
1− ε2

σ2

)1/2

. Hence, the probability q(α;σ, ε) that there is no ‘bad bubble’ in a
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length L chain satisfies,

q(α;σ, ε) ≥ lim
L→∞

(
1− βα log(L)

) L
α log(L)

log q(α;σ, ε) ≥ lim
L→∞

L

α log(L)
log
(
1− βα log(L)

) (1.12)

We have thus proven the following inequality for the probability q of ballistic information

transport (no ‘bad bubble’),

q(1/ζ;σ, ε) ≥
(
1− βlog(L)/ζ

) ζL
log(L) (1.13)

where β =

(
ε2

σ2 e
1− ε2

σ2

)1/2

, with the specific choice α = 1/ζ . Since q is a probability, log(q) ∈

(−∞, 0]. The above bound is thus tight when the right hand side is 0. The prefactorL/α log(L)→

∞ in the limit, so the right hand side can be zero only when (L/α log(L)) log
(
1− βα log(L)

)
→ 0.

Expanding the logarithm (which is justified as β < 1 for ε > σ), we obtain

1 + α log(β) < 0 (1.14)

i.e., β < e−
1
α .

We now explain the meaning of ζ in our discussion of the rare region model. In the discus-

sion so far, q(α;σ, ε) is the probability of having no α log(L) sized rare regions in our spin chain.

From the definition of rare region (any region whose local disorder exceeds ε), it is clear that q is

a cumulative probability, q =
∫∞
ε
dε′f(α;σ, ε′), where f(α;σ, ε′)dε′ is the probability that there

exist no α log(L) sized regions whose local disorder is exactly ε′. Corresponding to ε′, there will

be a logarithmic light cone, with an inverse length scale ζ ′(ε′). The averaged time for information
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propagation across a chain with one rare region then, is given by,

t ∼ (L− α log(L))/vB +

∫ ∞
ε

dε′f(α;σ, ε′)eζ
′α log(L)

∼ (L− α log(L))/vB + eζα log(L)

(1.15)

where we have defined ζ as an averaged length scale associated with a rare region. In the paper we

have argued that ζα < 1 corresponds to a ballistic phase, which, along with the earlier condition

with respect to α, gives,

ε2

σ2
e1− ε2

σ2 < e−2ζ . (1.16)

Since ζ is finite, there exists a finite σ∗, below which all σ satisfy the sufficient condition

for ballistic transport Eq. 1.16, leading to a finite window of a ballistic phase.

It is worth noting that the model only shows the existence of a ballistic phase for σ < σ∗.

The inequality is a sufficient, but not a necessary condition for ballistic transport; hence σ∗ should

not be mistaken with the critical ballistic-subballistic transition. Furthermore, in our numerics,

we can’t resolve ε, where sub-ballistic becomes logarithmic (in a finite system data, a soft power

law is difficult to resolve from a logarithm), or ζ which will be a complicated averaged scale.

Hence we can’t quantitatively verify Eq. 1.16. A more careful study of the difference between

the average time t and the typical time exp(log t) should be considered to further characterize the

ballistic to sub-ballistic transition.

44



1.6 Conclusions

We studied the ballistic to sub-ballistic crossover in operator spreading for large interacting

disordered spin systems using MPO dynamics, for different spin Hamiltonians and error models.

Our numerical results establish the existence of a ballistic phase and a sharp transition to a subbal-

listic phase. The numerical observation of fluctuations of the wavefront motivate a simple model

of rare regions which explains aspects of this transition. Natural extensions of the rare region

model would be to incorporate the effects of wavefront broadening into the analysis. Also our

work demonstrates a separation between information propagation and spin transport [96, 103],

which could be an interesting direction of future study.
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Chapter 2: Information scrambling at finite temperature in local gapped quan-

tum systems

“There is beauty everywhere,” said Big Panda, “but sometimes it’s difficult to see.”

- Big Panda and Tiny Dragon, James Norbury.

2.1 Introduction

Quantum information scrambling has emerged as an important dynamical feature of inter-

acting quantum systems ranging from tabletop atomic systems to toy models of black holes [11,

63, 64, 65, 109, 110, 111]. Scrambling refers to the way a closed chaotic quantum system delo-

calizes initially simple information such that it becomes inaccessible to all local measurements.

Scrambling can be identified as a quantum analogue of the classical butterfly effect, as first dis-

cussed in a condensed matter context [66], and more recently explored in the context of holo-

graphic field theories and many-body systems such as the SYK model [12, 24, 112, 113]. Scram-

bling can be studied for generic quantum systems by calculating out-of-time-ordered correlation

(OTOC) functions, which, for geometrically local systems, gives rise to a state dependent velocity

of information propagation—the butterfly velocity [13, 100, 114]. OTOC functions can be mea-

sured for engineered quantum many body systems in the lab, with many proposals [79, 115, 116,
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117, 118, 119, 120, 121, 122] and subsequent experiments [123, 124, 125, 126, 127, 128, 129].

For quantum systems at the semiclassical limit, the deviation of an OTOC function from its

initial value grows exponentially with time, with an exponent that can be viewed as a quantum

analogue of the classical Lyapunov exponent λL [12], although the connection to classical chaos

is subtle [130, 131]. Deforming the contour along which path integrals are evaluated is a general

technique one can use to regulate quantities in field theory and it leads to different choices of

OTOCs at finite temperature, based on the contour on the thermal circle used to define it. One

particular choice of contour leads to a well-behaved version of the OTOC that obeys a bound [20],

λL ≤ 2π/β, where β is the inverse temperature. This bound was later understood in the more

general context of the growth of operator complexity and thermalization [132, 133]. However,

exponents arising from other versions of OTOCs can have a strong dependence on the choice of

contour [134, 135].

In this chapter, we systematically study the temperature and contour dependence of OTOCs

in generic quantum systems with spatial locality and a mass gap. Our motivation for this study

comes from two directions. First, we want to understand possible contour dependence of OTOCs

in a non-perturbative calculation. Second, we want to understand the temperature dependence of

various characteristics of scrambling as a system is cooled below its mass gap. At high tempera-

ture, we indeed find contour dependence of the OTOC. At low temperature, where our expectation

is that the physics is that of a weakly interacting dilute gas of quasiparticle excitations, we find

that the rate of growth of scrambling is exponentially suppressed while the butterfly velocity is

of order the sound speed. Technically, these results are obtained by studying a gapped spin chain

at large size numerically and a field theory model analytically. The remainder of the introduction

provides neccessary background material for our study.
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2.1.1 Squared commutators

Consider a local quantum system, where the dynamical degrees of freedom are operators

supported on local subsystems labelled by their positions in real space, x. An operator W0 orig-

inally localized at position 0 can spread in real space under a Heisenberg time evolution that

generates W0(t). The extent of its physical spreading can be diagnosed by taking its commutator

with another local operator Vx, i.e. [W0(t), Vx]. The squared commutator, evaluated on a partic-

ular choice of initial state, can quantify the extent of operator growth, as it is a valid norm of the

commutator.

However, in a quantum system at a finite temperature, T, this norm can be evaluated in

several ways. Let us denote ρ = e−βH/Tr(e−βH) as the thermal density matrix (β = 1/T is the

inverse temperature). For any 0 ≤ α ≤ 1,

C(α)(t,x) = Tr
(
ρα[W0(t), Vx]†ρ(1−α)[W0(t), Vx]

)
, (2.1)

is a Frobenius norm of the thermally smeared commutator ρ(1−α)/2[W0(t), Vx]ρα/2, which en-

codes a notion of the size of operator spreading.

Two choices of the squared commutator which have been studied in the literature, are the

‘regulated’ squared commutator, Cr(t,x) = C1/2(t,x), and the ‘unregulated’ squared commuta-

tor, Cu(t,x) = C1(t,x). When the expressions of the regulated and unregulated squared com-

mutators are expanded, they contain terms which are thermally smeared versions of out of time

ordered four point correlators of the form W0(t)VxW0(t)Vx, evaluated on two distinct thermal

contours, as shown in Fig. 2.1 a and b. In this work, we study these two squared commutators,
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Figure 2.1: Contour for the (a) regulated and (b) unregulated out of time ordered correlators.
The red points refer to the time evolved operators W0(t), and the blue points refer to the probe
operators Vx. The regulated and the unregulated correlators are distributed in distinct ways along
the thermal circle.

and explore the difference in the physics that they capture [134, 135].

2.1.2 Lyapunov exponent, butterfly velocity, and wavefront broadening

The squared commutator in holographic models, or in quantum systems with a semiclas-

sical limit, grows exponentially at early times with a ‘Lyapunov exponent’ λL, C(t) ∼ eλLt. In

spatially local systems, the time argument can be replaced by the appropriate t → t − x/vB,

where vB is a velocity determining the speed of information scrambling, called the ‘Butterfly ve-

locity’ [13, 114, 136, 137]. The butterfly velocity is state dependent analogue of the microscopic

Lieb Robinson velocity [14].

However, interacting local quantum systems which are not in a semi-classical limit (that

is, the number of local degrees of freedom is finite, and not large as in the case for systems with

a semi-classical limit), show a qualitatively different behavior. As studies of random unitary

circuits [15, 108], stochastic local Hamiltonian spin models [138], and numerical studies on
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deterministic quantum spin models [2, 100, 139, 140] have shown, the near wave-front behavior

of the squared commutator is,

C(t,x) ∼ exp

(
−λ(x/vB − t)1+p

tp

)
, for x & vBt. (2.2)

This behavior satisfies a ballistically growing and a broadening operator wavefront, x ∼

vBt + #tp/(1+p), where vB is the Butterfly velocity and p is the broadening coefficient. For

p = 1, the broadening is diffusive, which is observed in the case of random unitary circuits

[15, 108]. This ballistic-diffusive form doesn’t exhibit an exponential ‘chaotic’ behavior. Until

now, most studies of broadening were done at infinite temperature. However, unlike the ‘Lieb

Robinson velocity’ of local quantum systems, the ‘Butterfly velocity’ is a state dependent infor-

mation spreading velocity. The Lieb Robinson bound is formulated in terms of the matrix norm

of the commutator, while the squared commutator is evaluated for a particular state. Since we

can choose the state to be a Gibbs state at a particular temperature, the butterfly velocity derived

from the squared commutator has a natural temperature dependence. Furthermore the Lyapunov

exponent and butterfly velocity could depend non-trivially on the choice of the contour. In this

paper we explore these questions through a combination of numerical studies on quantum spin

systems and analytical studies of tractable semi-classical field theory models.

2.1.3 Summary of the results

In this chapter we use a combination of numerical and analytical techniques to study the

temperature and contour dependence of squared commutator in strongly interacting, gapped, lo-

cal quantum systems. We do this firstly using a novel numerical technique based on matrix
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product operator (MPO) representation of Heisenberg operators to study scrambling in 1D quan-

tum spin chains. We can access both the regulated and unregulated squared commutators in the

early growth regime for a gapped, local Hamiltonian for large spin chains of ≈ 200 spins up to

long times t ∼ 100J−1, where J−1 is the interaction scale of the Hamiltonian. Next, we study

the low temperature behavior of the squared commutator in the paramagnetic phase of the 2+1D

non-linearO(N) model using perturbative calculation of the ladder-sum for the OTOC functions.

We first list out the important results and the structure of the paper,

1. In Sec. 2.2, we introduce the MPO numerical technique and apply it to calculate both

the regulated and unregulated squared commutators in 1D mixed field Ising Hamiltonian. We

observe a broadening of the expanding operator wave-front at all temperatures. This broadening

behavior had been previously observed for the infinite T ensemble [15, 100, 108, 139]; but here

we confirm the persistence of the broadening behavior even at low temperatures.

For the regulated squared commutator we notice a strong temperature dependence of the

broadening coefficient and butterfly velocity. We observe that at temperatures lower than the gap,

β > m−1, the butterfly velocity is consistent with a power-law ((βm)−a with a > 0) behavior.

For the unregulated squared commutator, on the other hand, we observe that the butterfly

velocity and the broadening coefficient have no observable temperature dependence, and in fact

remain constant even as the temperature is tuned from β = 0 to β > m−1. This confirms a

strong contour dependence of the OTOC [134, 135]. We also numerically study the contour

dependence of ∂tC(α)(t,x) and make a comparison with the chaos bound to demonstrate that the

bound doesn’t apply to these squared commutators.

2. While the MPO technique can access temperatures below the gap, it is challenging to

access very low temperatures. In order to calculate the temperature dependence at low tempera-
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tures, in Sec. 2.3, we calculate the behavior of the regulated and unregulated squared commutator

in the paramagnetic phase of the 2 + 1D non-linear O(N) model. This is a gapped strongly in-

teracting theory for which we can analytically calculate the scrambling behavior at large N using

a diagrammatic ladder technique. We find that the Lyapunov exponent is λL ∼ e−βm/β, and

the butterfly velocity is vB ∼ (βm)−1/2 at low temperatures such that β >> m−1. This shows

that the butterfly velocity has the same scaling as the speed of sound of semiclassical massive

particles. The field theory calculation can’t, however, reproduce the broadening behavior or the

contour dependence, indicating that finite N corrections need to be taken into account for those

features.

3. In Sec. 3.5, we summarize our results and compare the numerical and analytical ap-

proaches. We discuss the relation between the temperature dependence of butterfly velocity ob-

tained in this paper with a recently derived temperature dependent bound on butterfly velocity

[140]. The bound is not sensitive to the contour dependence, and we show that it is consistent

with temperature dependence of the butterfly velocities observed in Sec. 2.2 and 2.3.

2.2 Matrix product operator method for numerical calculation of scrambling

We now numerically study scrambling in a spatially local quantum system, consisting of

tensor product of finite dimensional local Hilbert spaces, like spins on a lattice. The Hamiltonian

is assumed to be a sum of geometrically local terms, and the lattice has a well defined position

label.

Operators acting on vectors in a Hilbert space H can be viewed as vectors on a ‘doubled’

Hilbert space HL ⊗ HR. Here the tensor product structure refers to the two copies - ‘left’ and
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‘right’ - of the state Hilbert spaces. We introduce the notation |..) to denote the operator as a

vector. A local operator acting on the 0 position in the lattice, |W0), can be time evolved in the

Heisenberg picture,

|W0(t)) = |UtW0U
†
t ) = eit(HL⊗I−I⊗H

∗
R)|W0). (2.3)

One can now probe the evolved operator using a second local operator at a position x by con-

structing its commutator,

|O(x, t)) = |[W0(t), Vx]) = (1⊗ V T
x − Vx ⊗ I)|W0(t)), (2.4)

The squared commutator can be obtained by squaring this operator which measures the ex-

tent of quantum information scrambling in the system. The α dependent squared commutator de-

fined in Eq. 2.1 can be expressed as a norm of an operator state, C(α) = (Oα(x, t, β)|Oα(x, t, β)),

where,

|Oα(x, t, β)) = |ρ(1−α)/2O(x, t)ρα/2). (2.5)

2.2.1 Model and numerical method

We consider the mixed field quantum Ising model,

H = − 1

E0

(
J

L−1∑
i=1

ZiZi+1 + hx

L∑
i=1

Xi + hz

L∑
i=1

Zi

)
(2.6)

with E0 =
√

4J2 + 2h2
x + 2h2

z, on a one dimensional lattice. TheX and Z matrices are the usual

Pauli matrices. The parameters chosen are, J = 1, hx = 1.05, hz = 0.5. Time is measured in the

units of J−1 = 1. This is a gapped system, and the spectral gap between the ground state and the
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Figure 2.2: The contours of the logarithm of the regulated and unregulated squared commutator
at different temperatures - a) β = 0 (unregulated), b) β = 2 (unregulated), c) β = 0 (regulated)
and d) β = 2 (regulated) are shown. For the unregulated case bond dimensions, χ = 8 and
χ = 16, and for the regulated case bond dimensions, χ = 4 and χ = 8 are considered. The
data shows convergence even at low temperatures for low values of the squared commutator. We
demonstrate in the Sec. 2.2.5, in Fig. 2.7, that the data has converged with bond dimension for
logCr < −30, and for logCu < −15.

first excited state is ∼ 1.13 as extracted from small size exact diagonalization.

We want to calculate Cu,r(t, x) for large system sizes and upto long times, and we employ

the Matrix product operators (MPO) based technique to time evolve operator states which extends

the time dependent density matrix renormalization group (t-DMRG) technique [104, 105, 106,

107] to super-operators [100]. We first time evolve the local operator W by doing time evolution

using super-operator H⊗ I − I ⊗H∗ on the operator state, following Eq. 2.3. We also obtain |ρ)

by evolving the identity |I) operator state in imaginary time. Now, we can construct the operator

state |Oα(t,x, β)) as defined in Eq. 2.5, for α = 1/2(1), and its norm squared is the required

(un)regulated squared commutator.

In the MPO based method, at each Trotter step, we must truncate the MPO to a fixed

bond dimension, thereby introducing errors. However, we will demonstrate that our numerical

procedure converges (for small values of the squared commutator) at large system sizes (L ∼ 200)

and upto long times t ∼ 100, even at low temperatures, which makes it a powerful method to

study the temperature and contour dependence of quantum information scrambling.
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We consider a L = 200 spin chain with the mixed field Ising Hamiltonian as in Eq. 2.6. We

start with an operator X20, a Pauli X operator localized at the site 20, and construct the squared

commutator with Z operators at all sites of the chain. We perform the MPO-TEBD method with

Trotter steps, δt = 0.005 for time evolution (to generate X(t)) and δβ = 0.05 for imaginary

time evolution (to generate ρ), for bond dimensions χ = 4, 8 (regulated) and χ = 8, 16 (unregu-

lated). To calculate the regulated and unregulated squared commutators, we need to construct the

MPOs |O1/2(t, x, β)) and |O1(t, x, β)), as defined in Eq. 2.5, respectively. For |O1/2) we need

to perform two MPO multiplications, ρ1/4 → [X20(t), Zx]ρ
1/4 → ρ1/4[X20(t), Zx]ρ

1/4, while for

|O1), we need to perform one MPO multiplication, ρ1/2 → [X20(t), Zx]ρ
1/2. The details of the

numerical implementation, which include a comparison to exact diagonalization, discussions on

convergence with bond dimension, and the fitting procedure, are provided in a later section, 2.2.5.

A heuristic justification of why the MPO approximation works is as follows - it was shown

in [100] that the commutator [X(t), Zx] has a small operator entanglement outside the light-

cone. It is also well understood that the thermal density matrix ρ satisfies an area law in mutual

information [141], and hence is expected to be reliably approximated by a low bond dimension

matrix product operator. These two arguments imply that the operator |Oα(t,x, β)) as defined in

Eq. 2.5, which is an MPO multiplication of powers of ρ and the commutator [X(t), Zx], should

have a small operator entanglement outside the light-cone (i.e. when the squared commutator is

small), and hence can be well approximated by a low bond dimension MPO.

As has been pointed out previously, in [2, 100, 142], the MPO-TEBD method can cap-

ture the qualitative features of scrambling only if the scrambling data has converged with bond

dimension. We ensure that all our further analysis is done on scrambling data only in the spatio-

temporal domain where it has converged with bond dimension. We plot the contours of the
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Figure 2.3: We extract the contours of logCr = −35 and −50 at different temperatures, for the
data with χ = 8. From the contours we extract δx, which is the spatial distance between the two
contours. The time dependence of δx is shown in the inset; the fact that it is increasing with time
demonstrates a broadening of the wavefront. The broadening persists even at a) high temperature
β = 0 and b) low temperature β = 2.

squared commutator in Fig. 2.2, and demonstrate that the contours converge very well for small

values of the squared commutator. The shape of the contours, where the data has converged,

show that the wavefront propagates ballistically with a velocity.

2.2.2 Broadening of the wavefront

Without any numerical fitting, we demonstrate the broadening behavior of the operator

wavefront even at low temperatures in the Fig. 2.3. We extract the spatial separation δx between

two chosen contours of the logCr, and plot its time dependence in the insets of Fig. 2.3. A

positive (and an increasing) slope implies a broadening behavior. In Fig. 2.3, we show data for

the regulated case, but a similar study for the unregulated squared commutator also demonstrates

a broadening behavior. Thus, the Figs. 2.2 and 2.3 together show that the early time (before the

light-cone is reached) behavior of the squared commutator has a ballistic growth and a broadening

wavefront.
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Figure 2.4: a) We plot the extracted vB(β)/vB(0) for the unregulated case, as a function of β.
The data is for χ = 16 bond dimension. The butterfly velocity is practically constant at all
temperatures. b) For the regulated case, we plot the normalized vB, (i.e. vB(β)/vB(0)), extracted
from the χ = 8 data, as a function of β. In the inset, in the log-log scale, we demonstrate that
the low temperature behavior of vB is consistent with β−1/2 (which is the slope of the red line
plotted.).

In [100, 102, 138], it was argued that the squared commutator, near the wavefront, when

C(x, t) << 1, can be captured by the following ansatz,

C(x, t) ∼ exp

(
−λp

((x− x0)/vB − t)1+p

tp

)
. (2.7)

One can identify the broadening coefficient p as,

δ log δx

δt
∼ p

p+ 1
. (2.8)

We now fit our data to the ansatz in Eq. 2.7 to extract the Lyapunov exponent, butterfly velocity

and broadening coefficient.
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2.2.3 Temperature dependence of butterfly velocity

We extract the butterfly velocity, velocity dependent Lyapunov exponent and the broaden-

ing coefficient from the obtained numerical data by fitting them to the near wave-front ansatz in

Eq. 2.7. In Fig. 2.4a, we plot fitted vB(β)/vB(0) as a function of β for the unregulated case,

and see that the fitted butterfly velocity has almost no discernible temperature dependence. In

Fig. 2.4b, we plot the same for the regulated case, and notice a strong temperature dependence.

The low temperature behavior is consistent with a power law decrease in the butterfly velocity

as a function of β, as is shown in the inset of Fig. 2.4b. In Sec. 2.3, we show that at the low

temperature limit of an analytically tractable field theory model with a mass gap m, the butterfly

velocity has a temperature scaling which is the same as the equipartition behavior -
√

1/βm. The

asymptotic low temperature behavior in the MPO calculation (even though the temperatures we

access here are not very low compared to the spectral gap) is close to the
√

1/βm behavior, as is

demonstrated in Fig. 2.4b.

In a later section, 2.2.5, we also study the temperature dependence of the broadening co-

efficient p. In Fig. 2.9, we show that p for the unregulated case has a very weak dependence on

temperature and remains practically constant as the temperature is lowered. The regulated case,

however, has an increasing trend for p with decreasing temperature.

2.2.4 Contour dependence and chaos bound

For a symmetrically defined out of time ordered correlation function, there exists the

Maldacena-Shenker-Stanford (MSS) chaos bound λL ≤ 2π/β [20]. The symmetric OTOC is
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Figure 2.5: From the fitting of the obtained data of the regulated and unregulated squared com-
mutators, we obtain the ∂tCu,r from the near wavefront ansatz, along a ‘ray’ x = t and compare it
against the ‘bound on chaos’ 2π/β. In the inset, we show the ‘ray’ x = vt at v = 1, and compare
that to the butterfly velocity vB = 0.68 at β = 0 for Cu.

defined as,

F (t,x) = Tr
(
ρ1/4Vxρ

1/4W0(t)ρ1/4Vxρ
1/4W0(t)

)
. (2.9)

This is related to the regulated squared commutator, as the Cr(t,x), when expanded,

Cr(t,x) = 2
(
Tr
(
ρ1/2VxW0(t)ρ1/2W0(t)Vx

)
−ReF (t+ iβ/4,x)

)
. (2.10)

Let’s introduce a related quantity Fd(t,x) = Tr
(
ρ1/2Vxρ

1/2Vx

)
Tr
(
ρ1/2W0(tρ1/2W0(t

)
. In [20],

it was proven that the following bound exists,

∂ log (Fd(t,x)− F (t,x))

∂t
≤ 2π

β
. (2.11)
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Figure 2.6: We demonstrate the convergence of our numerical method with exact diagonalization
for small systems. a) For the regulated case, the χ = 8 result has excellent agreement with exact
diagonalization for L = 10 spin chain at β = 1. b) For the unregulated case, the same agreement
is demonstrated for χ = 16 result at β = 1.

Given this result, one might conjecture that the related quantity ∂t logCr(t,x) also satisfies

the same bound. To study this, we can calculate ∂t logCr(t,x) along different ‘rays’ x = vt

[139]; if the near wavefront scrambling ansatz (Eq. 2.7) is satisfied, then ∂t logCu,r along a ray

of velocity v is given by λp(v/vB − 1)p(1 + pv/vB). At sufficiently large v, this will violate the

chaos bound. In Fig. 2.5, we plot the ∂t logCr,u(t,x), for a fixed ‘ray’ x = t, obtained from

fitting of the unregulated and regulated cases to the ansatz, as a function of β and notice that the

unregulated case is practically constant, and can violate the bound at lower temperatures. We

confirm this without numerical fitting, in Sec. 2.2.5.1, Fig. 2.10. In Sec. 2.2.5.1 we also study

∂t logCr,u(t, x = vt), as a function of ‘ray’ velocity v. We find that at high ray velocities v, both

∂t logCr(t, vt) and ∂t logCu(t, vt) violate the bound. This shows that the MSS bound doesn’t

hold for the squared commutators we considered.
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Figure 2.7: a, b) The log of the regulated squared commutator is plotted as a function of time,
for the case of an operator X20(t) and Zr, with r = 30, 40, .., 200, for bond dimensions χ =
4 (dotted) and χ = 8. The left and the right figures correspond to β = 0 (a) and β = 2
(b) respectively. Even at the low temperature, the data is seen to be converged for the range
−50 < logCr < −35. Note we are able to access such small values accurately because we
have expressed the regulated squared commutator as a square of a norm, and the norm can be
estimated upto the numerical precision of MATLAB which is ∼ e−36, allowing us to push to
around e−60 in precision. c, d) The log of the unregulated squared commutator is plotted as a
function of time, for the case of an operator X20(t) and Zr, with r = 30, 40, .., 200, for bond
dimensions χ = 8 (dotted) and χ = 16. The left and the right figures correspond to β = 0 (c)
and β = 2 (d) respectively. Even at the low temperature, the data is seen to be converged for the
range −50 < logCu < −15.

2.2.5 Details of MPO numerics

In this section we provide some details of the numerical results shown in the previous

sections. We first check the MPO TEBD numerical technique against exact diagonalization. In

Fig. 2.6, we show the comparison of the MPO method to the results of exact diagonalization

for a L = 10 sized spin chain. The machine precision of MATLAB being ∼ e−36, accuracy

of logC from exact diagonalization is ∼ −30. However, in our MPO numerical method, we

express the squared commutator as the square of a norm, hence the precision is squared, with

reliable numerical data of C down to ∼ e−60.

In order to demonstrate the convergence of the obtained squared commutator with bond

dimension, we plot the log of the regulated and unregulated squared commutators as a function
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Figure 2.8: The collapse of the obtained regulated squared commutator for the data range −50 <
logCr < −35, 20 < x < 200 and 20 < t < 100, to the near wave-front ansatz by least squared
method. We have chosen this data range as we have confirmed the convergence of our numerical
procedure in this range.

of time for different spatial differences in Fig. 2.7. Even without numerical fitting, it is clear from

Fig. 2.7 that the regulated squared commutator has a strong temperature dependence, while the

unregulated squared commutator is much less sensitive to temperature even when the temperature

is tuned from β = 0 to β = 2 > m−1, where the mass is the spectral gap ∼ 1.13.

It is also seen that the early time data converges well with bond dimension. As has been

noted before in [142], the qualitative lightcone behavior of the unconverged data obtained from

the MPO method can be qualitatively different; hence for all our analysis and fitting we only use

numerical data which are shown to converge.

We fit the converged data using least squared error method to the near wave-front ansatz of

Eq. 2.7. The goodness of fit is studied in Fig. 2.8, where the data collapse to the fitted model is
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Figure 2.9: a) Broadening coefficient p obtained from the numerical fitting of regulated squared
commutator is plotted as a function of β. b) p from fitting of the unregulated squared commutator
is plotted as a function of β. The errorbars are from the 95% confidence intervals of the fit. To
compare the regulated and the unregulated cases we have fixed the y-axis scales to be the same
in the two plots.

shown at different temperatures.

The unregulated squared commutator was studied using a similar numerical technique in

[140]. Our results indicate that the butterfly velocity obtained from the unregulated squared

commutator is constant as function of temperature, even at temperatures lower than the gap, in

contradiction with the indicated result from [140]. We checked the case for the [Z(t), Z] type

squared commutators as well, and our results are the same for both cases. In [140], the fitting

was done for a much smaller spatio-temporal region 20 < x < 45 and 1 < t < 5 (in our units),

and for a much smaller range logCu > −22, as compared to the situation considered here.

We also study the temperature dependence of the broadening coefficient obtained from the

fitting in Fig. 2.9a (regulated) and Fig. 2.9b(unregulated). For the unregulated case, we see a

fairly constant p which is insensitive to decreasing temperature. The regulated case shows an

increasing trend with decreasing temperature.
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Figure 2.10: a) The data of the unregulated squared commutator for the data range −50 <
logCu < −15, is picked out along the ‘ray’ x = t. ∂tCu is evaluated in this domain, and the
averaged ∂tCu along x = t is plotted as a function of β in b). Similarly data for the unregulated
case can be picked up. b) The averaged ∂tCu,r along x = t is plotted as a function of β.

2.2.5.1 Contour dependence and chaos bound

We analyse in detail the contour dependence of ∂tCu,r, as was done in Sec. 2.2.4. In Fig.

2.10, we sketch how ∂tCu,r is found without numerical fitting. We first pick out data along a ‘ray’

x = t, wherever the squared commutator has converged, and study ∂tCu,r numerically. In Fig.

2.10b the averaged ∂t logCu,r along this ray is plotted as a function of β, and compared against

the bound on chaos. The result is similar to Fig. 2.5, which was obtained by fitting to the near

wavefront ansatz. Given the constancy of the unregulated case, the chaos bound could be violated

at lower temperatures. These results are for a particular ray x = t, and as a function of β. We can

also study ∂t logCu,r as function of the ray velocity v, where x = vt, for a particular β. If the

near wavefront scrambling ansatz (Eq. 2.7) is satisfied, then ∂t logCu,r along a ray of velocity

v is given by λp(v/vB − 1)p(1 + pv/vB). As v is increased beyond the vB, the near wavefront

ansatz predicts that the chaos bound can be violated. We test this numerically in Fig. 2.11, and

we see that indeed ∂t logCu,r(t, vt) deviates from its near ansatz prediction at higher v.
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Figure 2.11: a) The data of the unregulated squared commutator for the data range −50 <
logCu < −15, is picked up along different‘rays’ x = vt. This procedure can be repeated for the
regulated case. b) For different v-s, ∂t logCu is plotted as a function of t (dots), and compared
against the prediction from the near wavefront ansatz (constant lines whose thickness signify the
confidence interval from the fitting to the ansatz). For lower v (i.e.) closer to the butterfly velocity
vB, the near wavefront behavior and the numerical result are the same, but they deviate for high
ray velocities. The constancy of ∂t logCu along rays allow us to study their time averages as a
function of β.

We also compare ∂t logCu,r(t, vt) against the chaos bound as a function of ray velocity v

in Fig. 2.12, and see that for high ray velocities, the bound is violated for both the regulated and

unregulated cases. Note however that the analysis on the data is done only on the domain where

the data has converged and also lies along the rays - severely restricting the domain on which

numerical differentiation can be reliably done to obtain ∂t logCu,r(t, vt).

2.2.6 Summary of findings from the MPO numerics

By studying squared commutators for large-sized, gapped spin chain which is spatially

local, and has finite dimensional local Hilbert spaces, we got three distinctive features. First,

the spatial locality leads to a ballistic wavefront propagating at the butterfly velocity, which has

distinct temperature scaling for the regulated and unregulated cases. In the unregulated case

the velocity is constant, while for the regulated case, the velocity decreases with temperature.
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Figure 2.12: a) Time average of ∂t logCu(t, vt) is plotted for β = 1.6 as a function of ray velocity
v (blue dots), and compared against the prediction from the near wavefront ansatz (red dots). b)
Same analysis is done for the regulated case. The yellow line in both case refer to the chaos
bound at β = 1.6.

Second, the wavefront broadens with time for both contours, and thus the squared commutator

doesn’t have pure exponential growth. Third, there are numerical indications that the chaos bound

is not satisfied for these squared commutators.

In our numerical study we are limited by computational constraints and can’t hope to access

the true asymptotic scrambling behavior exactly. However, by restricting the analysis to only

converged data, we have sufficient reasons to believe that the qualitative lessons hold true even

asymptotically. As an example, the insets in Fig. 2.3 show that there is a drift in the broadening

coefficient at longer times. But crucially, the drift is towards higher p, thus providing evidence

that the phenomenon of broadening of wavefront persists even at the largest scales. Similarly, the

qualitative evidences of temperature independence of scrambling for the unregulated case and

the distinct temperature dependence for the regulated case are not dependent on the details of the

numerical data, but are visible in Fig. 2.2 (see Fig.2.7 for another clarifying evidence).

Can we explain these behaviors using an analytically tractable model? In particular, can

we understand the low temperature limit which is not accessible in the spin chain numerics? We
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Figure 2.13: This is the critical phase diagram of the non-linear O(N) model. The blue shaded
region is controlled by the critical theory around the quantum critical point at T = 0 and g = gc,
while the dashed lines indicate a cross-over to the phases controlled by the symmetry of the zero
temperature phases away from the critical point. We focus on the low temperature behavior of
the symmetry unbroken paramagnetic phase g > gc.

explore that in the next section, where we consider a non-linear O(N) model in 2 + 1D, which

is spatially local, and solvable at large N . We study the scrambling behavior at low temperatures

for the gapped phase of the model, and find that the butterfly velocity indeed varies as
√
T/m at

low temperatures. However, we will find that the field theory calculation doesn’t show contour

dependence or wavefront broadening.

2.3 Scrambling in the paramagnetic phase of the non-linear O(N) model

The non-linear O(N) model is a spatially local field theory of an O(N) symmetric vector

field φa, with a = 1, .., N . The theory is solvable at large N , and in this limit this model differs
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from the spin chain in the fact that the local Hilbert space is not finite. Furthermore, to avoid

complications in the field theory at 1 + 1D due to scattering, we study this model at 2 + 1D, and

we expect that dimensionality will not affect qualitative features of the temperature and contour

dependence. The critical phase diagram [143] of this model is shown in Fig. 2.13. We analyse

this model using Ladder sum techniques developed in [114, 144] (see also [145, 146, 147, 148]),

and study both the temperature and contour dependence of the squared commutators.

The real time lagrangian for this theory is given by,

L =
1

2

[∑
a

(∂φa)
2 − v

2N

(
φ2
a −

N

g

)2
]

(2.12)

The action is given by
∫
x
L, where the space-time integration

∫
x

is over 2 + 1D. We have set the

speed of light c and ~ to 1. The parameter g (which determines the bare mass) can be tuned across

a quantum critical point that occurs at g = gc, and v is the self-interaction coupling constant. We

consider the strong coupling (large v) and large-N limit. In [114], scrambling behavior was stud-

ied at the critical point gc, by evaluating the regulated squared commutator using a perturbative

ladder sum calculation with 1/N as the small parameter [114, 144]. Following the diagrammatic

techniques used in these studies, we study scrambling on the paramagnetic phase of the model

at g > gc, where there are quasiparticle-like excitations with finite bare mass m. We study the

temperature dependence of the scrambling in the low temperature limit βm >> 1.

The main goal of this section is to analytically obtain temperature dependence of the but-

terfly velocity at low temperatures. We didn’t have access to very low temperatures in Sec. 2.2,

and we intend to explore the regime βm >> 1 using this field theory model.
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The generalized squared commutator in different contours given in Fig. 2.1 is given by,

Cα(t,x) = − 1

N2

∑
ab

Tr
(
ρα[φa(t,0), φb(0,x)]ρ1−α[φa(t,0), φb(0,x)]

)
. (2.13)

The regulated and the unregulated squared commutators are given by Cr = C1/2, and Cu = C1,

respectively.

We summarize the results of this section before showing the explicit calculations. Using

the ladder-sum calculation, we find that both the regulated and unregulated squared commutators

have the following early time behavior,

Cr,u(t,x) ∼ 1

N
e
λ0
(
t− x2

vBt

)
, (2.14)

where the ‘Lyapunov’ exponent, λ0 ∼ e−βm/βN , and the butterfly velocity, vB ∼ (βm)−1/2.

This implies that at low temperatures, the butterfly velocity has the same temperature scaling as

the speed of sound (which also scales as (βm)−1/2) of the semi-classical gas of dilute quasiparti-

cle excitations of the paramagnetic phase of the O(N) model at low temperature.

2.3.1 Basic diagrammatics and low temperature relaxation rate

In this section we set up the basic computation of the squared commutator in the language

of field theory. Much of the details have been moved to Appendix A for brevity.

We introduce auxiliary Hubbard Stratonovich (HS) field λ to solve the interacting problem.
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The Euclidean Lagrangian we consider is

LE =
1

2

[∑
a

(∂φa)
2 − λ√

N

(∑
a

φ2
a −

N

g

)
− λ2

4v

]
(2.15)

The HS field λ is chosen so that it generates a zero temperature mass, m, such that, −〈λ〉√
N

= m2.

The HS field also acts as a Lagrange multiplier, fixing (at large N), 〈
∑
φ2
a〉 = N

g
. At finite

temperature T , the constraint imposed by the HS field is

NT
∑
iωn

∫ Λ

k

1

ω2
n + ε2k

=
N

g
, where εk =

√
k2 +m2. (2.16)

Here, and in the rest of the paper,
∫

p
stands for

∫
d2p

(2π)2
. At β = 1

T
= ∞, this fixes g in terms of

m and Λ,

1

4π
(Λ−m) =

1

g
(2.17)

At finite temperature, the mass will be modified, as a function m(β). We restrict ourselves to low

temperature, assuming the hierarchy of scales Λ >> m >> β−1. This implies m(β) ≈ m, i.e.,

the thermal mass is approximately the same as the bare mass.

The perturbative calculation of the squared commutator can be set up using the basic in-

gredients - the real time retarded and Wightman propagators of the fields φa and the HS field λ.

The retarded propagators are identified as horizontal lines, while the Wightman propagators are

denoted as the vertical lines in the diagrams (in momentum space).

For the φ field, bare Euclidean propagator in imaginary time τ is G(τ,x) = Tr (ρφa(τ,x)φb(0,0)),

where, ρ is the thermal density matrix, ρ = e−βH/(Z = Tr(e−βH)). The retarded propagator is

defined as GR(t,x)δab = −iT r (ρ[φa(t,x), φb(0,0)]) θ(t). In the Fourier space, they are related
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by analytic continuation of the Matsubara frequencies, GR(ω,k) = −G(iωn → ω,k). We can

calculate and denote the retarded bare propagator as,

(2.18)

The spectral function is defined as A(ω,k) = −2Im[GR(ω,k)]. The bare φ spectral function is

given by,

A(0)(ω,k) =
π

εk
[δ(ω − εk)− δ(ω + εk)]. (2.19)

The generalized Wightman function is defined as,

G(α)
W (t,x)δab := Tr

(
ραφa(t,x)ρ1−αφb(0,0)

)
. (2.20)

By going to the spectral representation, we show in App. A.1,

G(α)
W (ω,k) =

A(ω,k)

2 sinh βω
2

e(α−1/2)βω. (2.21)

For the λ field, the bare Euclidean propagator is G(0)
λ (iωn,k) = −4v. At infinite v, one can dress

the λ propagators as shown in Fig. 2.14. In that case,

Gλ(iωn,k) =
G0
λ

1− ΠG0
λ

−→︸︷︷︸
v→∞

− 1

Π(iωn,k)
, (2.22)
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Figure 2.14: The resummed λ propagator

where Π is the one loop φ bubble,

Π(iνn,k) =
T

2

∑
iωn

∫ Λ

q

1

(ωn + νn)2 + ε2q+k

1

ω2
n + ε2q

. (2.23)

The retarded polarization bubble is given by analytic continuation, ΠR(ω,k) = Π(iωn → ω,k).

The resummed retarded λ propagator is then denoted as,

(2.24)

From the λ spectral function, Aλ(ω,k) = −2Im[GR(ω,k)], we can define the generalized λ

Wightman function,

G(α)
W,λ(ω,k) =

Aλ(ω,k)

2 sinh βω
2

e(α−1/2)βω. (2.25)

We need to dress the bare φ propagator, for which we need to calculate the self energy as given

in Fig. 2.15, from which one can obtain the retarded self energy by analytic continuation. The
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Figure 2.15: The φ self energy

resummed retarded propagator is denoted by a thick line,

(2.26)

where ΣR is the retarded self energy. In App. A.2 and App. A.3 we calculate the polarization

bubble (Fig. 2.14) and the self energy (Fig. 2.15) respectively, in the low temperature regime,

βm >> 1.

From the self energy, we can obtain the relaxation rate of φ quasiparticles at momentum q,

which is defined as,

Γq =
Im[ΣR(εq,q)]

2εq
. (2.27)

In App. A.3, we demonstrate that at q = 0, the inverse lifetime τ−1
φ = Γq=0 [149], can be

evaluated at low temperature,

Γ0 =
1

τφ
≈ 2π

Nβ
e−βm. (2.28)
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Figure 2.16: Bethe Saltpeter equation for the out of time ordered correlation function. In the
diagram, all horizontal lines are retarded propagators, while the vertical lines are the Wightman
propagators.

For general q, we have,

Γq ≈
1

2N
eβεq/2

∫
k

e−βεk/2R(1/2)
1+ (k,q), (2.29)

where,R(1/2)
1+ (k,q) is given in Eq. A.15 in App. A.3.

2.3.2 Ladder sum calculation

We finally calculate the regulated squared commutator, given in Eq. 2.13 perturbatively in

1/N , using the ladder-sum rules described in [114], which we will extensively use. The calcu-

lation boils down to solving a Bethe Saltpeter equation in momentum space for the out of time

ordered 4 point function, as shown in Fig. 2.16. There are two sides of the ladder, which are

connected by ‘rungs’ - which are the Wightman functions. The first diagram on the RHS of Fig.

2.16 is the ‘free’ term 1
N

[GR(t,x)]2, which doesn’t have any exponential in time behavior, hence

is not important for diagnosing chaos. There are two types of rungs - the Type I and Type II rungs
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correspond to the second and third diagram on the RHS of the top line in Fig. 2.16 respectively.

The expressions for the two rung contributions can be easily written down from the diagram; for

example, the Type I rung can be expressed as,

Cα,Type I(ν,k) =
1

N

∫
dω

2π

∫
p

∫
dω′

2π

∫
p′
GR(ν − ω,k− p)GR(ω,p)

G(α)
W,λ(ω

′ − ω,p′ − p)GR(ν − ω′,k− p′)GR(ω,p′).

(2.30)

The result for the Type II rung is very similar, with the replacement G(α)
W,λ(ω

′ − ω,p′ − p) →

G(α)
eff (ω′, ω,p′,p), where,

G(α)
eff (ω′, ω,p′,p) =

∫
dω′′

2π

∫
p′′
G(α)
W (ω′′ − ω,p′′ − p)G(α)

W (ω′ − ω′′,p′ − p′′)

GR,λ(ν − ω′′,−p′′)GR,λ(ω′′,p′′).

(2.31)

We set up the Bethe Saltpeter equation by defining a function f(ν,k;ω,p), such that,

C(α)(ν,k) =
1

N

∫
dω

2π

∫
p

f (α)(ν,k;ω,p). (2.32)

As was shown in [114], it is convenient to consider the “on-shell” ansatz for f(ν,k;ω,p),

f (α)(ν,k;ω,p) =
f

(α)
+ (ν,k; p)

2εp
δ(ω − εp) +

f
(α)
− (ν,k; p)

2εp
δ(ω + εp). (2.33)
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We can approximate the product of the retarded Green functions by their most singular (in ν)

terms (for small k, such that Γk−p ≈ Γp),

GR(ν − ω,k− p)GR(ω,p)→ πi

2εpεk−p

[
δ(ω − εp)

ν − (εp − εk−p) + 2iΓp

+
δ(ω + εp)

ν + (εp − εk−p) + 2iΓp

]
.

(2.34)

Further, we have, εp − εk−p ≈ k.∇pεp, and for small p, ∇pεp ≈ p/m. The Bethe Saltpeter

equation can now be written as [114],

(−iν ± ik.p
m

)f
(α)
± (ν,k; p) =

1

N

∫
p′

ˆK(α)(p′,p)f
(α)
± (ν,k; p′), (2.35)

where,

ˆK(α)(p′,p) = R(α)
1 (p′,p) +R(α)

2 (−p′,p)− 2NΓp(2π)2δ(2)(p′ − p), and,

R(α)
1,2 (p′,p) := R(α)

1,2+(p′,p) +R(α)
1,2−(p′,p), where,

R(α)
1± (p′,p) :=

1

4εp′εp
G(α)
W,λ(±εp′ − εp,p

′ − p) andR(α)
2± (p′,p) :=

1

4εp′εp
G(α)

eff (±εp′ , εp,p′,p).

(2.36)

The inverse life-time Γp was defined in Eq. 2.29. Recall α = 1/2 refers to the regulated case,

while, α = 1 refers to the unregulated case. Because of the spectral relation in Eq. 2.21, we have,

G(1)
W (ω) = eβω/2G(1/2)

W (ω). Thus, the kernel functions are also related simply as, R(1)
1,2(p′,p) =

eβ(εp′−εp)/2R(1/2)
1,2 (p′,p). We calculate the kernel functions from the Type I and Type II rungs,

R(1/2)
1,2± , at low temperature, in App. A.5.
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2.3.2.1 Kernel functions at low temperature

From the expressions for the kernel functions R(1/2)
1,2 (p′,p), obtained in Eqs. A.15, A.22,

A.26 and A.27 in App. A.5, it becomes clear that the kernel functions are exponentially sup-

pressed as exp (−β(εp′ − εp)/2). Expanding in terms of the small parameter |p′ − p| in the

kernel functions, we get the following low temperature approximation,

R(1/2)
1 (p′,p) = R(1/2)

2 (p′,p) = e−βm
8π
√

2π√
βm|p′ − p|m2

e−β(|p′−p|2/8m). (2.37)

We can extract the temperature scaling of the kernel integration, by rescaling p,p′ →

p
√
m/
√
β,p′
√
m/
√
β. Furthermore, to solve the Bethe Saltpeter equation numerically, we need

to create a discrete 2D grid of momenta, with momentum spacing ∆p. We can thus replace the

integral in Eq. 2.35 with a discrete sum,

(−iν ± ik.p√
βm

)f
(α)
± (ν,k; p) =

(∆p)2

4π2N

e−βm

β

∑
p′

K̂
(α)
p′pf

(α)
± (ν,k; p′), (2.38)

with the kernel matrix defined as,

K̂
(α)
p′p =

[
R̂

(α)
1

]
p′p

+
[
R̂

(α)
2

]
p′p
− 2Γ̂pδp′p and, Γ̂p =

1

2
e(p2−p′2)/4(∆p)2

[
R̂

(1/2)
1

]
p′p

where,[
R̂

(α)
1

]
p′p

=
[
R̂

(α)
2

]
p′p

=
8π
√

2π

|p′ − p|
e−(|p′−p|2/8)e(α−1/2)(p′2−p2)/2.

(2.39)

We create a discrete 2D grid of rescaled non-dimensionalized momenta, with a hard cutoff

of Λ = 1. This is justified as the kernel matrix is exponentially suppressed in |p′ − p|2.
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Figure 2.17: Scaled maximal eigenvalue of the Eq. 2.38 at k = 0, λL(k = 0)eβmβN , is plotted as
a function of inverse temperature β in the log-log scale (we rescaled factors of N in the numerics
, and N = 1 in the figure.). The errorbars are estimated from the uncertainty of extrapolating
the eigenvalues to the continuous limit dp → 0. The behaviour is constant with temperature,
confirming λL ∼ e−βm/βN . Also, the result is same for both the regulated and unregulated cases
showing that the ladder method is contour-independent.

We want to find the temporal behavior of Cr,u(t,x). We can thus replace −iν → ∂t in Eq.

2.38 and solve the matrix equation for its eigenvalues. If there are real positive eigenvalues, we

can infer that there is an exponential growth in the regulated squared commutator. We denote the

leading eigenvalue as λr,uL (k).

2.3.2.2 Temperature scaling of the butterfly velocity

First, let us restrict to k = 0. From Eq. 2.38, we have, λr,uL (k = 0) ∼ e−βm/βN . By numer-

ically finding the largest eigenvalue of the matrix equation we assert that the leading eigenvalue is

always real and positive, leading to an exponential growth in the squared commutator. The details

of the numerical computation are given in Appendix A.6, and the results for both the regulated

and the unregulated cases are demonstrated in Fig. 2.17. Furthermore, the relevant inverse time-

scale is also given by Γ0 = e−βm/βN , (Eq. 2.28). Hence, we can rescale the Bethe Saltpeter

equation by this scale, and introduce a rescaled external momentum, u = k/
(√

βmΓ0

)
, and a
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Figure 2.18: Using the fitted λ0, λ2 and λi, the butterfly velocity vB is calculated from Eq. 2.45,
and plotted against β in a log-log scale. The low temperature behavior of vB is vB ≈ 0.83√

βm
- for

both the regulated and the unregulated cases.

rescaled time t̃ = Γ0t.

The matrix equation can be now recast as,

(∂t̃ ± iu.p) f
(α)
± (ν,k; p) ∼

∑
p′

K̂p′pf
(α)
± (ν,k; p′). (2.40)

For small u, the eigenvalues of this matrix equation can be approximated by

λ̃L(u) ≈ λ̃0 − λ̃2u
2 ± iλ̃iu, (2.41)

because of the spherical symmetry of the leading eigenvector at k = 0. Here, λ̃0,2,i ∼ O(1), and

by rescaling back, λ0,2,i ∼ e−βm/βN . The quadratic form of the real part and the linear form for

the imaginary part have been verified numerically in Fig. A.2 in App. A.6. Now, the regulated
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and unregulated squared commutator can be evaluated as,

Cr,u(t,x) =
1

N

∫
ν

∫
k

∫
p

eik.x−iνt
(
f r,u+ (ν,k; p)

2εp
+
f r,u− (ν,k; p)

2εp

)
=

1

N

∫
k

eik.x+λ0t−λ2u2t
(
eiλiutχr,u,+k + e−iλiutχr,u,−k

)
,

(2.42)

where, χr,u,±k is the eigenvector of the matrix eigenvalue in Eq. 2.38. If there are no singularities

in χr,u,±k , we can assume the two terms in the integral depends only on the saddle points of the

exponents. Recalling u = k/
(√

βmΓ0

)
, the two saddle points are given by,

k∗± = (βmΓ2
o)
i
(
x± λit√

βmΓ0

)
2λ2t

. (2.43)

When Cr,u(t,x) is evaluated, one of the terms will be exponentially suppressed in x compared to

the other. Keeping only the leading term, we get,

Cr,u(t,x) ∼ 1

N
exp

λ0t−
βmΓ2

0

(
x− λit√

βmΓ0

)2

4λ2t

 . (2.44)

The first term comes from the pure exponential growth that was present for the u = 0 case, and

the second term is reminiscent of the broadening form of the squared commutator in Eq. 2.7. By

finding the level sets of the exponential for the ballistic condition x ∼ vBt, we have the following

expression for the butterfly velocity vB,

vr,uB =

√
4λ0λ2

βmΓ2
0

+
λi√
βmΓ2

0

. (2.45)
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Since λ0,2,i ∼ Γ0, we get the following temperature dependence of the butterfly velocity,

vr,uB ∼
√

1

βm
. (2.46)

Note that this is the same scale as the speed of sound of the ideal classical gas at finite tem-

perature. Hence the butterfly velocity from the regulated squared commutator of this essentially

classical gas has the same temperature scaling as the speed of sound. Furthermore, the particu-

lar temperature scaling
√

1/βm of the butterfly velocity arises because the thermal scale is the

appropriate scale to non-dimensionalize the momenta, and doesn’t depend on the exact form of

λ̃L(u).

From the numerically obtained eigenvalues, we can see from Fig. 2.18, that the butterfly

velocity from regulated and unregulated squared commutators are the same at low temperatures,

vB ≈
0.83√
βm

. (2.47)

This shows that the ladder calculation is insensitive to contour dependence.

At fixed t, for a fixed difference of Cr,u(t,x), one finds from Eq. 2.44 that the spread

ε = x − vBt ∼ constant. This implies that this form of the squared commutator doesn’t have a

broadening behavior. A similar exercise for the spin chain result in Eq. 2.7, would show a time

dependent spread, ε ∼ tp/(p+1), implying broadening.

In deriving these results, we assumed that the integral expression of the squared commuta-

tor in Eq. 2.42 is dominated by the saddle point contribution. In [148], it was noted that OTOCs

obtained from ladder sum calculations generically have a pole in momentum space wherever
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λL(k) = 2π/β,

C(t,x) ∼ 1

N

∫
k

eik.x+λL(k)t

cos λL(k)β
4

. (2.48)

However, in the O(N) theory, the chaos exponent λL(k) ∼ 1/N is N suppressed, hence these

poles occur at parametrically large values of the momentum. Provided that x/t isN -independent,

the saddle point momentum is always closer to the real axis than the pole and hence controls the

integral. For example, as we have seen from the k dependence of λL(k) in Fig. A.1 in Appendix.

A.6, if λL(k = i|k|) ∼ λ0β|k|2/m at large imaginary k, then the closest pole in the upper half

plane would be at |k| ∼
√

m
β
Nλmax
λ0

. This momentum is very large due to large N and the large

ratio λmax/λ0.

2.3.3 Summary of findings from the field theory calculation

In this section, we studied the temperature and contour dependence of squared commutator

in a solvable large N local model using the ladder technique. We find that our analysis can

describe the temperature scaling of the butterfly velocity. However, it is insensitive to the contour

of thermal ordering. This is not unexpected, as the ladder method is not expected to exhibit

contour dependence [150]. It also doesn’t capture the broadening behavior that was observed in

Sec. 2.2.

The field theory model differs from the spin chain numerics in two ways - the number of

spatial dimensions, and in the fact that the spin chain has finite local Hilbert space unlike the field

theory model, which is solvable at large N - an effectively classical description. It is thus likely

that the broadening and the contour dependence are sourced by quantum fluctuations due to the

finiteness of the local Hilbert space [138], which is not captured in this calculation.
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2.4 Bounds on temperature dependence of butterfly velocity

Locality in gapped quantum spin chains can lead to microcausality and short ranged corre-

lation [9]. Can we use similar techniques to bound the behavior of butterfly velocity?

In this section we discuss state dependent bounds on butterfly velocity in local gapped

systems which were introduced in [140]. The general definition of squared commutator in Eq.

2.1 can be rewritten as Cα(t,x, ρ) = −Tr (ραOρ1−αO), where, O = i [W0(t), Vx]. By restricting

to x = vt, one can define the velocity dependent Lyapunov exponents,

λ(v, ρ) = lim
t→∞

1

t
lnC(vt, t, ρ). (2.49)

The butterfly velocity can be defined as the largest velocity for which the Lyapunov exponent is

positive,

vB(ρ) = sup {v : λ(v, ρ) ≥ 0} . (2.50)

We define the support of the commutator, O as a region S of diameter 2R(v, t), around a point 0.

The scrambling velocity is defined as the rate of increase of this support,

vS(ρ) = lim
t→∞

R(v, t)

t
. (2.51)

We consider the Hamiltonian H to be defined on a lattice, composed of geometrically

local terms, and such that it has a finite gap. We introduce the shifted zero expectation-value

Hamiltonian, H̃ = H − Tr(ρH). We can divide the shifted Hamiltonian into terms supported
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inside and outside S,

H̃ =
∑
i∈S

h̃i +
∑
j∈Λ−S

h̃j. (2.52)

Let us consider the near wavefront ansatz,

λ(v, ρ) = −λ
(
v

vB
− 1

)1+p

. (2.53)

In [140], it was shown that for the unregulated squared commutator, the rate of change of butterfly

velocity with temperature, ∂βvB can be bounded,

λ(∆v)p(∆v + 1)|∂β ln vB| ≤ 2h (vS(ρ)− ξλ(v, ρ)) , (2.54)

where ∆v = v/vB − 1, ξ > 0 is the finite correlation length, and h is given by,

h = supi

∣∣∣Tr (√ρh̃i√ρOO)∣∣∣
Tr (ρOO)

. (2.55)

At low temperature, β → ∞, ρ ∼ |0〉〈0|. From Eq. 2.55, h ∝ 〈0|h̃i|0〉, and hence 0, which

implies,

∂β ln vB → 0 as β →∞. (2.56)

We first review the proof for the unregulated case due to [140] and then also extend the bound to

the butterfly velocity obtained from the regulated squared commutator, and show that the same

low temperature behavior as in Eq. 2.56 holds in that case as well. However, we note that the

bound can’t differentiate between a power-law vanishing butterfly velocity at low temperature and

a constant butterfly velocity. Low temperature behaviors of both the regulated and unregulated
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cases which were obtained in Sec. 2.2, i.e., vB ∼ β−1/2 and vB ∼ constant respectively, are

consistent with Eq. 2.56.

We first discuss the bound on butterfly velocity obtained from the unregulated squared

commutator as given in [140]. We differentiate Cu with respect to the inverse temperature β to

obtain,

∂βCu = −Tr
(
H̃ρOO)

)
. (2.57)

We want to upper bound |∂βCu|. By separating out the contributing terms to two parts -

inside and outside a ball of radius R + δ around the point x0 (a region we call S ′), we have,

|∂βCu| ≤
∑
i∈S′

∣∣∣Tr (ρOOh̃i)∣∣∣+
∑

j∈Λ−S′

∣∣∣Tr (ρOOh̃j)∣∣∣ . (2.58)

For the terms outside the ball S ′, we invoke the Exponential Clustering Theorem, which states,

for two operators W1 and W2 supported on non-overlapping regions A and B on a lattice system

with a gapped Hamiltonian, there exist, ξ and N , such that,

|Tr (ρW1W2)− Tr (ρW1)Tr (ρW2)| ≤ Nmin{|∂A|, |∂B|}‖W1‖‖W2‖e−|A−B|/ξ, (2.59)

where, |A−B| is the minimum distance between the regions A and B. Here, ξ is the correlation

length, which is finite because of the presence of the gap. The Exponential Clustering Theorem

can be proved using Lieb Robinson bound techniques [9]. Now, Tr
(
ρh̃i

)
= 0. Thus the sum of
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‘outside’ terms in the RHS of Eq. 2.58, can bounded in the following way -

∑
j

... ≤ 2Nmin{|∂A|, |∂B|}‖O‖2

∞∑
j=δ

e−j/ξ

=M
∫ ∞
δ

dxe−x/ξ whereM is suitably defined,

=Mξe−δ/ξ.

(2.60)

The ‘inside’ terms in the RHS of Eq. 2.58, can be bounded in the following way,

∑
i

... ≤ h
∑
i∈S′
|Tr (ρOO) |

= VR+δCu(t, vt, ρ),

(2.61)

where, h is a maximum over the different terms of the shifted Hamiltonian, and Vr is the size of

the region of radius r, i.e., Vr = 2r + 1. Two convenient choices of h are,

h = 2 supi‖hi‖ or, (2.62)

h = supi

∣∣∣Tr (√ρh̃i√ρOO)∣∣∣
Tr (ρOO)

. (2.63)

Combining both the contributions, we get,

|∂βCu| ≤ VR+δhCu(t, vt, ρ) +Mξe−δ/ξ (2.64)

Usually at late times, C(t → ∞) = eλ(v,ρ)t. For v > vB, λ(v, ρ) < 0. We can choose δ =

(−ξλ(v, ρ) + ε)t for some positive ε, which makes the second term in Eq. 2.64 subleading

compared to the first term, and hence can be dropped. Essentially, the contribution to the bound
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from sufficiently outside the support of the operator O can be dropped.

Now, using the ansatz Cu = eλ(v,ρ)t, we obtain the following bound for the rate of change

of the Lyapunov exponent,

|∂βλ| ≤ h lim
t→∞

VR−ξλ(v,ρ)t

t

= 2h

(
lim
t→∞

R

t
− ξλ(v, ρ)

)
= 2h (vS(ρ)− ξλ(v, ρ)) from the definition of the scrambling velocity from Eq. 2.51.

(2.65)

We can further analyze this scrambling bound by using the near wavefront ansatz,

λ(v, ρ) = −λ
(
v

vB
− 1

)1+p

. (2.66)

Let’s introduce the short hand ∆v = v/vB − 1. For this ansatz, we have,

∂βλ(v, ρ) = λ(∆v)1+p

[
∂β lnλ+ ln(∆v)∂βp− (1 + p)

v/vB
∆v

∂β ln vB

]
(2.67)

Close to the Butterfly velocity, i.e., when v & vB, the last term is the leading term. Thus for

∆v = 0+, we have the bound on rate of change of butterfly velocity,

λ(∆v)p(∆v + 1)|∂β ln vB| ≤ 2h (vS(ρ)− ξλ(v, ρ)) (2.68)

Now, say β →∞. For the gapped system, ρ = |0〉〈0|. We can estimate h using the definition, in
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Eq. 2.55. For this ρ, h ∝ 〈0|h̃i|0〉, and hence 0, which implies,

∂β ln vB → 0 as β →∞ (2.69)

Note, however, unlike the assertion in [140], this doesn’t imply a freezing out of the Butterfly

Velocity at temperatures below the gap. In fact, even power-law ansatz, vB ∼ β−a for a > 0,

satisfies the above bound, and our observation vB ∼ β−1/2 is certainly admissable.

2.5 Scrambling bounds for regulated squared commutator

We can extend the bounds to the butterfly velocity from regulated squared commutator,

Cr = −Tr
(√

ρO
√
ρO
)
, as well. Differentiating with β, we obtain,

∂βCr = −Tr
(
H̃
√
ρO
√
ρO
)

= −Tr
(
H̃ρOρ1/2Oρ−1/2

)
.

(2.70)

Now, we invoke the Araki bound [151], which states, in 1 dimensional quantum lattice systems

with a gap, for any finitely supported operator A with support R, the operator ρsAρ−s is also

supported, upto exponential correction, on a ball of support R + l(βs), where l(x) is an en-

tire function not larger than exponential in x. Thus, the support of ρ1/2Oρ−1/2, and hence of

Oρ1/2Oρ−1/2 has radius ∼ R+AeBβ , for appropriately defined numbersA,B. Hence, the entire

argument of the previous section follows by replacing R → R + l(β/2), and we can bound the

rate of change of Lyapunov exponent and Butterfly velocity obtained from the regulated squared

commutator as well. In particular, in deriving these bounds, the effect of this thermal broadening
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can be ignored, since, l(β)/t → 0, as t → ∞. Hence, all the scrambling bounds derived for the

unregulated case also follow naturally for the regulated case.

2.6 Discussions

In this paper we have studied the temperature and contour dependence of quantum infor-

mation scrambling for local gapped interacting systems in two different models and for a wide

range of temperatures.

We first introduced a tensor network based technique to calculate both regulated and unreg-

ulated squared commutators in quantum spin chains at temperatures ranging across the spectral

gap. For the regulated case, the butterfly velocity decreases with lowering temperature, and is

consistent with a power law vB ∼ β−a for a > 0 at intermediate-to-large β. We also observe

a strong contour dependence, and point out that the butterfly velocity obtained from the unreg-

ulated squared commutator remains insensitive to the temperature variation. In fact, a careful

study of ∂tC(t,x) shows that the chaos bound cannot be generalized away from the special con-

tour ordering used to prove it.

To get an analytical handle on local gapped systems at temperatures lower than what can be

accessed in the spin chain numerics, we use a perturbative field theoretic ladder sum technique,

and calculate the temperature dependence of the squared commutator in the paramagnetic phase

of the O(N) model. There we confirmed that the characteristic speed of information scrambling

at low temperature is proportional to the speed of sound of a classical gas, i.e. vB ∼ β−1/2,

confirming the intuition that the low temperature state can be accurately modeled as a weakly

interacting dilute gas of massive quasiparticles. However, the scrambling in this model is insen-

89



sitive to the contour, and also doesn’t have the broadening feature.

The strong contour dependence we observe in our spin-chain numerics is in the spirit of

the results from previous Schwinger-Keldysh calculations in [134, 135], which showed similar

contour dependence. Our result for the strongly interacting quantum spin chain compliments their

perturbative arguments. These results taken together suggest that the unregulated case accesses

high energy modes even at low temperatures, thereby remaining insensitive to the effects of

temperature. Although we did not find such behavior in theO(N) model at leading order in 1/N ,

we expect higher order corrections will modify this conclusion since there are multiple energy

scales in the problem in addition to temperature.

The numerical study also reveals the existence of a wave-front broadening effect that per-

sists even at low temperatures. This feature is not captured in the field theory calculations, and

remains an interesting theoretical challenge for the future. As was suggested in [138], quantum

fluctuations due to the finiteness of the local Hilbert spaces will play a significant role in the

broadening behavior.

Using Lieb Robinson [14] bounds, it has recently been demonstrated [140] that locality and

short ranged correlations imply temperature dependent bounds on the butterfly velocity defined

from the unregulated squared commutator. In App. 2.4, we review the derivation of this bound

and extend it to the regulated case. In particular, it can be shown that the butterfly velocity

(obtained from either unregulated or regulated cases) obeys the bound,

∂βvB → 0, as β →∞. (2.71)

These bounds are consistent with a constant butterfly velocity at low temperatures vB ∼ constant
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(unregulated case from spin chain numerics) and with a butterfly velocity proportional to a power

of temperature vB ∼ β−a for a > 0 (regulated case from the spin chain dynamics and field theory

calculation, with a = 1/2). The existing bounds are contour independent and hence cannot

constrain the contour dependence.

The strong contour dependence that we observe has non-trivial implications for temperature

dependent scrambling studies in future experiments. Our work shows that the regulated and the

unregulated cases capture different physics, thus enriching the large set of phenomena falling

under the umbrella of scrambling.
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Chapter 3: Measurement-induced purification in large-N hybrid Brownian cir-

cuits

“A new day and a new beginning,” said Tiny Dragon.

“What shall we do with it?”

- Big Panda and Tiny Dragon, James Norbury.

3.1 Introduction

As a quantum many-body system evolves in time, its state vector follows a trajectory in

Hilbert space guided by unitary dynamics and measurements. Unitary evolution is generated by

a system’s Hamiltonian, while measurements are generated by coupling the system to a macro-

scopic apparatus that records the value of some observable and simultaneously collapses the state

vector. If a quantum system is composed of many parts and if the interactions and measure-

ments involve only a few of these parts at a time, then the operator which updates the quantum

state has the general structure of a network composed of many elementary pieces glued together.

When the number of elementary pieces is large and the time is long, the evaluation of such a

network is akin to evaluating the partition function of a generalized statistical mechanics prob-

lem, analogous to an Ising model where one allows more local degrees of freedom and all kinds
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of few-body interactions with coupling parameters that may be complex or even random. This

point of view has a long tradition in theoretical physics, with recently studied examples includ-

ing [152, 153, 154, 155, 156, 157].

From this point of view, computing the dynamics of quantum many-body observables is

part of a very general class of problems that also includes evaluating partition functions of clas-

sical statistical models and studying imaginary time evolution of local quantum systems. Given

this overarching framework, one goal is to classify and understand all possible distinct classes of

behaviors (phases) and the transitions between them (phase transitions). Many of these problems

directly relate to experimentally realizable observables; even in cases where direct experimental

access is challenging, a general understanding of the space of possible behaviors can shed indirect

light on measurable observables.

In this chapter, we consider a recently discovered class of such phases and phase tran-

sitions which involve the interplay of unitary scrambling dynamics and single-body measure-

ments [21, 22, 158]. The phenomena of interest arise from a competition between the unitary

part, which tends to move the state away from a product form by generating entanglement, and

the measurement part, which tends to move the state towards a product form by decreasing en-

tanglement. We make progress towards an effective field theory description of this physics by

defining and solving a mean-field-like model that exhibits a similar phase transition.

In more detail, the competition between scrambling dynamics and measurements in hybrid

local quantum circuits composed of 2-body unitary scrambling gates interspersed with local pro-

jective measurements leads to a measurement-induced phase transition (MIPT) from a volume-

law entangled phase to an area-law entangled phase above a critical measurement rate [21, 22,

158, 159, 160]. These phenomena are also related to dramatic phase transitions that can occur
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in the entanglement structures of final states in noisy quantum computers [161]. The hybrid

circuit discoveries were followed by a series of works studying related transitions in a variety

of models, exploring the critical properties, and studying relations to quantum error correct-

ing codes [162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173]. More recently, some

papers have considered all-to-all models and again found analogous phases and phase transi-

tions [174, 175]. Similar transitions have also been observed recently in fermionic chains of

coupled Sachdev-Ye-Kitaev (SYK) models with imaginary damping terms [176]. Related dy-

namics in free-fermion systems have also been studied [177, 178].

Distinct from but related to the entanglement transition in local systems, it was found that

measurements in quantum circuits can also drive a purification transition, where an initial mixed

state is dynamically purified in constant time by repeated measurements occurring above a critical

rate, while remaining mixed until exponential times for measurement rates below this critical

rate [23, 179]. From a quantum information processing point of view, the volume-law phase

or the mixed phase can be identified as a randomly-generated quantum error correcting code

[163, 164, 166, 173], where the scrambling dynamics effectively ‘hides’ the quantum information

from local measurements.

The interplay between unitary dynamics and measurement in quantum mechanics is an

old and rich subject [161, 180, 181, 182]. In particular, weak continuous measurements of the

type studied here have a long history stemming largely from quantum optics and cold atoms

[183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194]. In fact the monitored dynamics

we consider here – in which the quantum state evolution is conditioned upon obtaining particular

measurement results – is most naturally described in terms of the quantum trajectories formalism,

a standard tool in the analysis of open quantum systems [181]. Continuous weak measurements
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Figure 3.1: Purification phase diagram for hybrid Brownian circuits. (a) Hybrid Brownian
circuits V composed of alternating layers of unitary Brownian dynamics of strength J (green) and
non-unitary weak-measurement Brownian dynamics of strength γ (blue) exhibit a measurement-
induced purification transition diagnosed by the purity ΠQ of qubitsQ that are initially maximally
entangled with a reference system R. (b-c) Above the critical point γ > γc (i) bulk fields (solid
blue) traverse through a single saddle point (dotted black), leading to a pure phase with purity
ΠQ ∼ 1 (b, dotted purple). Below the critical point γ < γc (ii) the bulk fields tunnel between two
symmetry-broken saddle points (dotted black) via a single-instanton configuration, leading to a
mixed phase with ΠQ ∼ T exp (−NI∗) � 1 for polynomially-long times T (b, solid red). At
exponentially long times the instantons proliferate and destroy the mixed phase (iii). Dynamics
at early times (grey boxes) are also accessible in these models but are not the main focus of this
work.
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of this kind have recently been used in experiments to engineer quantum Zeno dynamics capable

of producing metrologically useful entanglement [188, 190] as well as to drive phase transitions

in ensembles of cold atoms [194].

The novelty of our current interest is in the interplay of these weak measurements with

the many-body scrambling dynamics of a strongly-interacting system, where the competition

between these two forces drives a phase transition in the structure of the many-body entangled

state [23, 162, 174] that is underpinned by a dynamically-generated error-correcting code [163,

164, 166]. Whereas existing theoretical and experimental work on weak measurements, quantum

feedback, and quantum control has focused largely on single- or few-body dynamics, the hybrid

dynamics we consider here is strongly chaotic and many-body. In these many-body systems

the quantum state follows an increasingly complex trajectory that can rapidly explore arbitrary

regions of the exponentially-large Hilbert space. For this reason, new techniques and approaches

are required to characterize and understand hybrid entanglement dynamics in the many-body

context.

Due to the inherently many-body nature of these entanglement transitions, the earliest work

on measurement-induced phase transitions was driven by numerical simulations of Clifford cir-

cuits, in which a restricted subgroup of quantum operations can be simulated efficiently on a

classical computer. Subsequently, Refs. [162, 163] showed that Haar-random hybrid circuits

in 1 + 1d could be mapped exactly onto effective replica statistical mechanics problems in 2d.

In these replica Potts models, the volume-law phase can be identified as the ‘low-temperature’

replica permutation symmetry-broken phase of the Potts model, while the area-law phase is as-

sociated with replica-symmetric ‘paramagnetic’ phase. Moreover, as we emphasize below, there

are actually families of observables and phase transitions related to different kinds of averaging
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procedures which translate to different kinds of replica limits. These and other mappings are gen-

eral, but analytical progress has been hampered by the presence of non-positive weights in the

generalized partition function; in certain cases the problem can be ameliorated by considering

the limit of large local Hilbert space dimension or restricting to special classes of circuits. One

also has to take a delicate replica limit to access entanglement observables averaged with respect

to Born probabilities.

Throughout this body of work, a still outstanding goal is the construction of effective field

theories which capture the universal physics of these various transitions. Here we make progress

towards that goal by introducing new analytical tools for directly accessing measurement-induced

entanglement transitions. In particular, we introduce a broad family of microscopic all-to-all hy-

brid Brownian circuit models exhibiting measurement-induced phase transition (MIPT) that also

feature solvable large-N (mean-field) solutions. We focus on a particularly simple member of this

family featuring Brownian 2-body unitary dynamics [27] and Brownian 1-body weak measure-

ments [181, 192] and characterize the MIPT in this model in terms of the purification dynamics

of a system of spins in a cluster Q that are initially maximally-entangled with a reference system

R as shown in Fig. 3.1a. We write down and analyze a path integral representation for an average

ΠQ of the purity Tr
[
ρ2
Q

]
of the system which is controlled in the large-N limit. The technology

can be readily generalized to higher moments Tr
[
ρnQ
]

of the system density matrix as we show

in Appendix B.2.

The path integral representation of the purity involves four replicas which are coupled by

various collective fields and N copies of an auxiliary few-spin path integral that depends on the

collective fields. We analyze this path integral using a saddle-point approach. At large N and

time polynomial in N , the leading saddle point gives two distinct phases as a function of the
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measurement-to-scrambling ratio γ/J as shown in Fig. 3.1b-c. Sufficiently strong measurements

γ > γc yield a paramagnetic (replica symmetry unbroken) phase with a single dominant saddle

point (Fig. 3.1c.i) for all circuit depths T � O(1). As the measurement strength γ decreases

through the critical point γc, this saddle point continuously splits into a pair of degenerate sad-

dle points, leading to a spontaneous breaking of the replica symmetry (Fig. 3.1c.ii). Non-equal

boundary conditions at times t = 0, T promote the formation of instanton configurations in the

bulk with action I∗ that traverse between the two saddle points. At exponentially long times

T ∼ exp (NI∗), we must include subleading approximate saddles involving multi-instanton con-

figurations. The instantons proliferate at long time and the replica symmetry is restored (Fig.

3.1c.iii).

These hybrid Brownian circuit models are motivated from several points of view. First,

we wanted to consider continuous-time models for the more direct access they provide to path-

integral and field-theory representations of the physics. Second, we wanted to consider models

with all-to-all interactions which typically have simpler statistical properties, and we do observe

that various distinct methods of averaging the purity are nearly identical for experimentally-

accessible systems of modest size. Third, we wanted to analytically study the entanglement of

subsystems to reveal how information about the reference is hidden from small subsystems, a

key property of quantum codes. Fourth, we wanted to study models in which higher-body unitary

dynamics and higher-body measurements could be seamlessly incorporated. Finally, while mean-

field scrambling dynamics is also analytically accessible in random all-to-all fermion models,

here we wanted to study models consisting of spins which are more directly related to potential

near-term experimental realizations in cold-atom platforms. In the following we discuss each of

these motivations in more detail and survey some of the main results.
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First, the continuous-time path integral representation of our hybrid Brownian circuits

makes it particularly easy to derive a field-theory representation of the purification phase tran-

sition. In particular, at low measurement rates close to but below the critical rate γc, we find

in section 3.3.3 that the system entropy has critical exponent 3/2, i.e., − ln ΠQ ∼ N(γc − γ)ζ ,

with ζ = 3/2. The corresponding field theory is particularly simple, an effective 0 + 1d Ising

field theory, which hosts a phase transition in the limit of infinite N for finite T . Moreover, by

including subleading saddles at finite N , we show in section 3.3.5 that instantons destabilize the

mixed (symmetry broken) phase leading to asymptotic purification of the system at exponentially

long time.

Second, a crucial aspect of the MIPT phenomena is that they are visible only in entanglement-

sensitive observables like the purity that are non-linear in the density matrix. Since measurement

outcomes are fundamentally random in quantum physics, one must carry out a large number of

experimental trials (exponential in the number of measurements) to generate even a few copies of

a particular state associated to a fixed set of measurement outcomes, which would be necessary to

estimate these observables. These include so-called ‘forced’ transitions where one post-selects on

a particular measurement outcome and the quantum state evolves according to a fixed non-unitary

transformation [174, 195, 196, 197, 198] (our measurement setup is of this kind). It is also inter-

esting to attempt to circumvent the experimental overheard by considering special hybrid circuits

[199, 200].

Given this exponential post-selection cost, we are justified in considering MIPTs in fam-

ilies of observables with comparable experimental accessibility, no harder than simulating the

Born averaged observable. The above phase diagram applies to a simple kind of averaged purity

in which we average the unnormalized purity and probability separately and then divide. This cir-

99



cumvents the theoretical difficulty associated with averaging the purity with respect to the Born

probability. We show in section 3.2.2 and in Appendix B.1 that this analytically-tractable aver-

aging procedure actually corresponds to an experimentally-accessible observable which requires

comparable experimental effort to the Born-averaged quantity. Moreover, we offer evidence from

exact diagonalization that these two distinct averages are actually nearly identical in the mixed

phase at modest system size.

Third, we can also directly access the purity ΠA of subsystems A ⊂ Q in our path integral

representation by modifying the boundary conditions on the path integral. In particular, this

allows us to make contact between our path integral representation and the dynamically-generated

quantum error correcting codes generated in the mixed phase. We show in section 3.4 that the

subsystem purities are consistent with this code property and identify a critical subsystem fraction

kc above which the subsystems of Q with more than kcN qubits are entangled with the reference

R for any time T polynomial in N . Within our model, we can also access the critical exponent

of kc analytically, and we find kc − 1/2 ∼ (γc − γ)µ, with µ = 1.

Fourth, while we focus most of our attention in this work on a single model, we emphasize

that the tools we develop in sections 3.2 and 3.3 are quite general. In particular, in Appendix B.2

we provide explicit path integral representations for a family of models indexed by (p, q) featuring

p-body unitary interactions and q-body weak measurements. Such models could be relevant for

studying measurement-only transitions [201, 202, 203, 204, 205, 206] and we conjecture they

will have an even higher degree of self-averaging for larger p, q. Furthermore, these all-to-all

clusters can readily be placed on different geometries, such as chains and trees, and also with

various kinds of experimentally-realizable long-range interactions. We reserve detailed study of

these more general models to future work.
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Finally, we emphasize that hybrid Brownian dynamics similar to the type we study here

could in principle be probed in experiments with optically-trapped cold neutral atoms coupled to

a single-mode cavity. All-to-all interactions between atomic qubits mediated by photons in the

optical cavity mode can be engineered to generate strong scrambling dynamics [207, 208, 209].

Single-site measurements in principle could be performed using state-of-the-art single-site reso-

lution imaging techniques [210, 211]. Alternatively, weak continuous measurements of collective

spin observables could be performed by monitoring photons escaping from the rear port of the

cavity [188, 212] (see Appendix B.7). To probe the purity ΠQ one could prepare two identical

copies of the state within a pair of atomic subensembles and interfere them [213]. To guarantee

identical measurement results in the two copies one would need to perform an exponentially large

number of experimental trials and post-select on matching measurement records as noted above

[179]. While we acknowledge that these are daunting experimental challenges, in principle the

analytical results we derive here provide precise predictions for the outcomes of real experiments

that could be performed in the laboratory.

In the rest of the introduction we provide an outline for the rest of the paper. Section

3.2 introduces the hybrid Brownian circuit models and describes how they may be converted

into a large-N path integral description. In section 3.2.1 we introduce the minimal (2, 1) hybrid

Brownian circuit model, followed by a description the averaged purity ΠQ that serves as our

order parameter in section 3.2.2. We also explain the experimental interpretation of the averaged

quantity in this section. In section 3.2.3 we derive the path integral representation for the purity

ΠQ and derive a simplification for spin-1/2 systems in section 3.2.4. We discuss the discrete

replica permutation symmetry group and its representation in path integral language in section

3.2.5.
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In section 3.3 we study the purification transition in the (2, 1) hybrid Brownian model via

large-N methods and obtain the phase diagram shown in Fig. 3.1. In section 3.3.1.1 we consider

time-independent saddle-point solutions of the path integral and show that the MIPT transition is

driven by a spontaneously-broken Z2 symmetry in the bulk. In section 3.3.1.2 we consider the

role of non-uniform boundary conditions and show that these drive instanton transitions between

the two degenerate saddle points. In section 3.3.2 we show that these ingredients lead to the three

phases shown in Fig. 3.1b-c and compute analytical estimates for the purity ΠQ in each of these

phases. In section 3.3.3 we derive a field theory for the model near criticality and show that the

critical exponent for the entropy − ln ΠQ is ζ = 3/2. We also study the path integral numerically

using gradient descent methods and find a critical exponent ζ = 1.44 ± 0.07 consistent with the

analytical prediction. In section 3.3.4, we show that the saddle-point approach can also capture

the time-dependence of the purity at early times, and compare these predictions with results from

numerical exact diagonalization in small systems. In section 3.3.5 we study the disintegration of

the phase at exponentially long times due to the proliferation of instantons.

In section 3.4 we consider the purity ΠA of subsystems A ⊂ Q as a function of subsystem

fraction k = |A| / |Q|. In section 3.4.1 we show that measuring the purity of subsystems is

equivalent to a straightforward modification of the boundary conditions in the path integral. In

section 3.4.2 we use our field theory for the transition to find a critical exponent for subsystem

fraction µ = 1. In section 3.4.3 we interpret these results in terms of a dynamically-generated

quantum error correcting code in the mixed phase. In section 3.5 we review our results and

discuss directions for future work.
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3.2 Hybrid Brownian circuits

In this section we define the microscopic model, a hybrid Brownian circuit combining time-

dependent all-to-all 2-spin interactions and post-selected local weak measurements, and show

how to express the purity ΠQ as a path integral expression with a large-N limit. This model can

be generalized to allow for p-spin interactions and post-selected weak measurements of q-spin

operators as described in Appendix B.2, but in the main text we focus on the simplest case with

p = 2, q = 1. The system Q consists of N spins initialized in a maximally-entangled state with

N additional reference spins R. The system Q is then evolved with the hybrid Brownian circuit

V while the reference R is left untouched as shown in Fig. 3.1a.

In the large-N limit, we expect this model to exhibit at least two hybrid dynamical phases

and a measurement-induced phase transition between them as a function of the effective mea-

surement rate. As discussed in the introduction, the physics of these phases is only visible in

non-linear functions of the quantum state. We therefore construct path integral representations of

the squared probability P 2 to obtain the post-selected state and of the unnormalized purity Z2 of

the system qubits. These are the simplest observables that both access the measurement-induced

phase transition and are analytically calculable. Both integrals P 2, Z2 can be analyzed in the

large-N limit by saddle-point analysis, yielding a mean-field description of the measurement-

induced phase transition. In section 3.3 we analyze the physics of the (p, q) = (2, 1) model at

large N and demonstrate the phase structure illustrated in Fig. 3.1.
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3.2.1 Model

Consider a system of N spin-S SU(2) degrees of freedom Sαi , i = 1, . . . , N , α = x, y, z

subject to an alternating sequence of unitary and non-unitary Brownian dynamics as illustrated in

Fig. 3.1a. For the moment we leave the spin length S unspecified, but we specialize to S = 1/2

in section 3.2.2.

On even timesteps t = m∆t, with m an integer, the spins evolve under a Brownian unitary

matrix U(t) = exp [−iH(t)∆t/2] with Hamiltonian

H(t) =
∑
i<j
α,β

Jαβij (t)Sαi S
β
j (3.1)

with time-dependent all-to-all couplings J = Jαβij (t) [27]. These couplings are independent

white-noise-correlated Gaussian random variables with zero mean and covariance

〈
Jαβij (t)Jα

′β′

i′j′ (t′)
〉

J

=
J

N(S + 1)4

δtt′

∆t/2
δii′δjj′δ

αα′δββ
′
. (3.2)

The scale of the fluctuations of the coupling is set by the coupling parameter J ≥ 0. The nor-

malization 1/N(S + 1)4 ensures that the Hamiltonian (4.1) is extensive in N and intensive in S,

and the factor δtt′(∆t/2)−1 is a regularization of the Dirac delta function δ(t− t′) for white-noise

random variables.

On odd timesteps t = (2m + 1)∆t/2 the spins are subjected to single-site weak measure-

ments along random spin directions. To perform each measurement we introduce an auxiliary
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qubit initialized in |ψ〉aux = |0〉aux and couple it to the system via a unitary interaction,

exp

[
−i∆t

2
O(t)σxaux

]
|Ψ〉 |0〉aux , (3.3)

where |Ψ〉 is the state of the many-body system prior to the weak measurement, σxaux is the Pauli-

x operator acting on the auxiliary qubit, and O(t) =
∑

i,α n
α
i (t)Sαi is the random spin operator

to be measured. We then perform a projective measurement of the auxiliary qubit in the σyaux

eigenbasis and post-select for +1 results. The many-body state |Ψ〉 is thereby transformed to

|Ψ〉 →M(t) |Ψ〉

=

(
1− 1

2
O∆t− 1

8
O2∆t2 + · · ·

)
|Ψ〉 (3.4)

to lowest order in ∆t/2 (note that M(t) 6= exp [−O(t)∆t/2]). Note that under this measurement

setup, the state evolves non-unitarily, and also deterministically, without any inherent measure-

ment randomness. Similar to the unitary Brownian dynamics above, we take the coefficients

n = nαi (t) to be independent white-noise-correlated Gaussian random variables with zero mean

and covariance 〈
nαi (t)nα

′

i′ (t
′)
〉

n
=

γ

(S + 1)2

δtt′

∆t/2
δii′δ

αα′ . (3.5)

The fluctuations in n are controlled by the parameter γ ≥ 0. Due to the post-selection step the

operatorM(t) does not conserve probabilities, and the resulting stateM(t) |Ψ〉 is not normalized.

The full time evolution of the system is constructed by stacking alternating layers of U(t)
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and M(t) gates

V ≡
T∏
t=0

M(t)U(t) (3.6)

as shown in Fig. 3.1a. Given an initial state ρ0 and a fixed disorder realization J,n this hybrid cir-

cuit produces the unnormalized output state ρ̃(V ) = V ρ0V
† with probability P = Tr [ρ̃(V )] ≤ 1.

The relative strength of measurement and scrambling in this circuit is controlled by the dimen-

sionless ratio γ/J .

3.2.2 Phase structure and observables

When γ = 0 the weak measurement layers have no effect and we recover a unitary Brow-

nian circuit that strongly scrambles quantum information [27]. For a system Q maximally entan-

gled with a reference R at time t = 0 (Fig. 3.1a), the purely unitary dynamics obtained at γ = 0

preserves the entanglement between Q,R for all time. Specifically, if we measure the 2nd Rényi

entropy of the system as a function of a time, it will remain at its maximal value S(2)
Q = N ln 2

for all time. This is analogous to a ‘volume-law’ phase for the Rényi entropy of the system. We

can also equivalently consider the purity ΠQ = exp
(
−S(2)

Q

)
.

Once we consider a non-zero rate γ of weak measurements, the purely unitary dynamics

is modified to include processes that degrade entanglement. In particular, for sufficiently large γ

the measurements will dominate and all the entanglement between the system and the reference

will be destroyed, thus purifying the system. In this case, S(2)
Q = 0 and ΠQ = 1 (Fig. 3.1b, dotted

purple) [23].

The Rényi entropy S(2)
Q or the purity ΠQ therefore serve as order parameters for the purifi-

cation transition. Our goal in the remainder of this section is to derive a path integral expression
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for the purity ΠQ, computed for a particular analytically-tractable disorder average. We begin by

specifying in more detail the quantity of interest.

Consider a single realization of the circuit V = V (J,n) which produces a pure unnormal-

ized quantum state ρ̃(V ) of the system and reference. To calculate the purity Tr
[
ρ̃2
Q(V )

]
of the

system’s reduced density matrix ρ̃Q(V ) = TrR [ρ̃(V )] for this trajectory, we introduce a second

identical copy ρ̃′(V ) = ρ̃(V ) of the system and reference with the same post-selected measure-

ment results and identical dynamics and compute the expectation value of the SWAPQQ′ operator

[213, 214, 215, 216],

Z2(V ) ≡ Tr
[
ρ̃2
Q(V )

]
= Tr [(ρ̃⊗ ρ̃′)SWAPQQ′ ] , (3.7)

which gives the purity of the unnormalized state ρ̃Q(V ). The purity ΠQ = Tr
[
ρ2
Q

]
= Z2/P

2 of

the normalized state ρQ = ρ̃Q/Tr [ρ̃Q] is obtained simply by dividing Z2 by the squared proba-

bility for this trajectory,

P 2(V ) ≡ Tr [ρ̃Q(V )]2 = Tr [ρ̃⊗ ρ̃′] . (3.8)

From Eqs. (3.7) and (3.8) it is clear that the quantity Z2 differs from P 2 only in the presence

of the SWAPQQ′ operator. As we shall see, this SWAP operator modifies the initial and final

boundary conditions of the system, leading to fundamentally different physics in Z2 and P 2.

The normalized purity ΠQ = Z2/P
2 is in principle an experimentally-accessible observ-

able and can be measured in the following way, which we discuss in more detail in Appendix

B.1. The experimentalist first fixes the parameters J,n and then applies the Brownian circuit dy-

namics V (J,n), repeatedly performing the necessary projective measurements until the desired
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measurement record is obtained (i.e. +1 for all σyaux measurements). If the σyaux outcomes are

close to equally likely, this will require a number of experimental runs scaling like 2Naux , where

Naux is the total number of auxiliary measurement qubits used over the whole circuit. Each suc-

cessful run is stored as a quantum state ρ̃(V ), and then once enough copies of the state have

been obtained, the experimentalist can perform SWAP tests to estimate the value of the purity

ΠQ(V ) = Z2(V )/P 2(V ) for this circuit realization V . If the purity is expected to be small, this

estimate will require many samples to gather sufficient statistics. The total number of experi-

ments required in this brute force approach is thus no more than 2aNt+bN , where the 2aNt piece

represents the 2Naux experimental runs required for post-selection and the 2bN piece represents

extra copies needed to estimate the purity from SWAP tests.

Next, we can consider sampling the normalized purity ΠQ(V ) over different circuit real-

izations V = V (J,n). The average of these samples then defines the circuit-averaged purity

ΠQ. The circuit-averaged purity can be estimated experimentally by simply repeating the above

procedure for each sample J,n, yielding

ΠQ =
∑
V

π(V )
Z2(V )

P 2(V )
, (3.9)

where π(V ) = π(V (J,n)) is the probability for a particular circuit realization J,n. While the

experimental protocol for computing this disorder-averaged quantity is clear, this kind of average

is difficult to calculate with, since the random variables J,n appear in numerator and denominator

of Eq. (3.9).

In this work we make analytical progress by sampling trajectories differently. A particularly
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convenient choice is to consider

〈ΠQ〉 =
〈Z2〉
〈P 2〉

, (3.10)

where both 〈Z2〉 =
∑

V π(V )Z2(V ) and 〈P 2〉 =
∑

V π(V )P 2(V ) are individually averaged

over circuit realizations V = V (J,n). While one might reasonably protest that the disorder-

averaged quantity 〈ΠQ〉 is not as physical as the quantity ΠQ, we show in Appendix B.1 that

measuring 〈ΠQ〉 just corresponds to sampling the purity ΠQ(V ) over trajectories with a different

probability distribution π′(V ) from the usual circuit probability distribution π(V ). Moreover, we

demonstrate that the disorder-averaged quantity 〈ΠQ〉 requires only classical post-processing and

no more quantum resources than simulating ΠQ.

In the rest of the paper, we consider the deterministic weak measurement setup for qubits

S = 1/2, and suppress the 〈. . .〉 notation for ΠQ, Z2 and P 2, always referring to the particular

averaged quantity whenever ΠQ, Z2 and P 2 are considered. Also, we will make statements about

the Rényi-2 entropy-like quantity − ln 〈ΠQ〉 derived from the averaged purity 〈ΠQ〉. This is

obviously not the same as the averaged Rényi-2 entropy of the system, since we are averaging

the purity and then taking the logarithm. In the rest of the paper, when referring to the entropy of

the system we always refer to the quantity − ln 〈ΠQ〉, which is what we can access analytically.

3.2.3 Path integral representation

We have expressed the unnormalized purity Z2 and squared probability P 2 in Eqs. (3.7)

and (3.8) using two identical copies ρ̃′ = ρ̃ of the unnormalized state. To express these quantities

in path-integral language, we first use the Choi-Jamiołkowski isomorphism to convert the mixed-

state dynamics on two copies of the system into pure-state dynamics on four copies [217, 218]. In
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Figure 3.2: Unnormalized purity for the hybrid Brownian circuit. The purity Z2 = Tr
[
ρ̃2
Q

]
of

the unnormalized state ρ̃Q is equivalent to the expectation value of the SWAPQQ′ operator eval-
uated on two identical copies ρ̃, ρ̃′ of the system. Straightforward rearrangement of the circuit
yields pure-state dynamics on four replicas r = 1, 2, 3, 4 with nontrivial boundary conditions at
t = 0, T . Because the Brownian coefficients J,n are uncorrelated in time, the disorder averages
〈 · 〉J,n at each circuit layer (solid green, solid blue) can be computed independently. Arrows
on the t = T boundary condition indicate a ‘reversed’ singlet state |(32)〉 = − |(23)〉. The cor-
responding circuit for the squared probability P 2 is identical except for the SWAP-ed boundary
condition at t = T .
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its simplest form, this isomorphism just maps the two-copy density matrix |ψ〉 〈ψ| ⊗ |ψ′〉 〈ψ′| to

the four-replica pure state |ψ〉 |ψ〉 |ψ′〉 |ψ′〉. More generally, this isomorphism provides a mapping

between quantum operatorsO acting on a Hilbert spaceH and pure quantum states |O〉 living in

a doubled Hilbert spaceH⊗H.

In our calculation this conversion from mixed-state dynamics to doubled pure-state dy-

namics is easiest to see when the quantities Z2, P
2 are represented graphically using a tensor-

network representation as shown in Fig. 3.2a, where downward-facing external legs repre-

sent bras 〈ψ| and upward-facing legs represent kets |ψ〉. The two copies of the system Q,Q′

are initially maximally entangled with their respective reference systems R,R′ via EPR pairs

|EPR〉 =
⊗

N(|00〉 + |11〉)/
√

2. Hybrid Brownian dynamics V are then applied to the system

qubits Q,Q′, and the SWAPQQ′ operator (orange) exchanges qubits in the two systems to yield

the purity Z2. Each instance of the time-evolution matrix V has been labeled by a replica index

r = 1, 2, 3, 4.

Evaluating the trace and using the identity

〈EPR| (V † ⊗ I) = 〈EPR| (I⊗ V ∗) (3.11)

we can bring the purity into the form shown in Fig. 3.2b. In this form the dynamics may be

interpreted as pure-state dynamics on four replicas of the system, where replicas r = 1, 3 are

subject to time-evolution V while replicas r = 2, 4 are subject to complex-conjugated time-

evolution V ∗. The EPR pairs and SWAPQQ′ operator yield nontrivial boundary conditions on the

initial and final quantum states as shown in Fig. 3.2c. These boundary conditions are analogous

to those imposed at the input and output states of Haar-random tensor network models exhibiting
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a MIPT [166].

Complex conjugation V ∗ is naturally related to time-reversal symmetry in quantum me-

chanics [219]. For spin-1/2 degrees of freedom, the conventional definition of time reversal also

includes conjugation by iσy, since complex conjugation alone only reverses the y component of

spin,

(σx, σy, σz)∗ = (σx,−σy, σz). (3.12)

In replicas r = 2, 4 we therefore reflect all spin components in the σx, σz spin plane via the

operator iY = i
∏

i σ
y
i , such that

V ∗ = (−iY )(iY )V ∗(−iY )(iY )

= (−iY )VT (iY ) (3.13)

where VT = (iY )V ∗(−iY ) is the properly time-reversed version of the time evolution operator

V [219]. With this additional coordinate change the spin-1/2 Pauli matrices transform correctly

as ~σ → ~σT = −~σ as required for angular momentum vectors under time-reversal T . We regard

this additional rotation as a convenient parameterization that makes the SU(2) invariance of the

problem manifest in the resulting path integral.

The remaining factors of ±iY introduced into the four-replica circuit by this change of
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coordinates serve to convert the initial and final EPR pairs into spin singlets:

∓ 1√
2

(I⊗ iσy) (|00〉+ |11〉)rs = ± 1√
2

(|01〉 − |10〉)

= ± |(rs)〉 (3.14)

where |(rs)〉 denotes a spin-singlet state between replicas r, s. The spin-singlet is antisymmetric

under replica exchange |(rs)〉 = − |(sr)〉, but because the four-replica circuit features pairs

of identical singlet states at t = 0, T these overall negative signs cancel such that Z2, P
2 are

always positive. The unnormalized purity Z2 is initialized with spin-singlet pairs |(12)(34)〉

entangling replicas 1-2 and 3-4 as shown in Fig. 3.2c, while the final state |(14)(32)〉 has spin

singlets entangling replicas 1-4 and 3-2 due to the SWAPQQ′ operator. These non-equal boundary

conditions in Z2 lead to most of the interesting physical consequences explored in this work. By

contrast, without the SWAPQQ′ operator the squared probability P 2 has identical singlet-pair

states |(12)(34)〉 at both initial and final times.

With the unnormalized purity Z2 and squared probability P 2 expressed in terms of pure-

state dynamics on four replicas r = 1, 2, 3, 4, we now perform the disorder average over the

Brownian coefficients J,n and show that this leads to path-integral expressions for Z2, P
2. Be-

cause the disorder J,n is uncorrelated in time due to the delta function δtt′ , we may compute the

disorder average for each circuit layer U(t),M(t) separately as shown in Fig. 3.2c. Expanding

each U(t) = exp [−iH(t)∆t/2] to lowest order in ∆t, the disorder average over a single unitary
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layer yields

〈U ⊗ UT ⊗ U ⊗ UT 〉J = 1− ∆t2

4

∑
r<s

(−1)r+s 〈HrHs〉J −
1

2

∆t2

4

∑
r

〈HrHr〉J +O(∆t4)

〈HrHs〉J =
J

∆t

N

(S + 1)4

(
1

N

∑
i

Sri · Ssi

)2

. (3.15)

where terms linear in ∆t vanish because J has zero mean and where Sri ·Ssi ≡
∑

α S
α,r
i Sα,si is the

standard dot product. The second line holds as an operator equation, where Hr,s denote copies

of the Hamiltonian (4.1) acting on replicas r, s = 1, 2, 3, 4. The factor of ∆t in the denominator

comes from the regularization of the white-noise random variables Eq. (3.2), while the overall

factor of N comes from the sum
∑

i over spins and is ultimately responsible for large-N control.

The replica-dependent factor (−1)r+s is a consequence of the time-reversed dynamics in replicas

r = 2, 4, and is a crucial feature of the field theory governing the MIPT.

We can therefore express each disorder-averaged unitary circuit layer as a propagator IJ [Sri ]

over 4N spins Sri :

〈U ⊗ UT ⊗ U ⊗ UT 〉J = e−NIJ [Sri ]∆t,

IJ [Sri ] ≡
J

4(S + 1)4

∑
r<s

(−1)r+s

(
1

N

∑
i

Sri · Ssi

)2

+
JS2

2(S + 1)2
(3.16)

which holds as an operator equation to lowest order in ∆t. Similar manipulations for the non-
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unitary circuit layers yield a propagator Iγ[Sri ]

〈M ⊗MT ⊗M ⊗MT 〉n = e−NIγ [Sri ]∆t,

Iγ[S
r
i ] ≡

−γ
2(S + 1)2

∑
r<s

(−1)r+s

(
1

N

∑
i

Sri · Ssi

)

+
γS

(S + 1)
(3.17)

where there is a relative minus sign in the first term compared to Eq. (3.16). In terms of the

propagators IJ , Iγ , the disorder-averaged unnormalized purity Z2 (or squared probability P 2) is

given by a stack of alternating unitary and non-unitary propagators with appropriate boundary

conditions, i.e.

〈
Z2 or P 2

〉
J,n

= 〈ψT |
∏
t

e−NIγ∆te−NIJ∆t |ψ0〉 (3.18)

where the initial and final states

|ψ0〉 , |ψT 〉 = {|(12)(34)〉 , |(14)(32)〉} (3.19)

are the singlet-pair states enforcing the non-uniform boundary conditions that distinguish Z2

from P 2. Notice that both the unitary and non-unitary propagators in Eq. (3.18) are preceded by

a factor N which allows for analytical control over fluctuations in the thermodynamic limit.

In performing the disorder average we have exchanged inter-site couplings Sαi S
β
j in the

original Hamiltonian (4.1) for inter-replica couplings Sri · Ssi in the propagator (3.18). As a
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consequence, the propagators IJ , Iγ are functions only of the mean-field variables

Grs =

(
1

N

∑
i

Sri · Ssi

)
/(S + 1)2 (3.20)

with r < s, which mediate all spin-spin interactions. Because these mean fields consist of a large

number of independent and identical degrees of freedom, their dynamics is highly classical with

fluctuations controlled by the system size N . These simplifying features are typical of disorder-

average calculations performed in the context of mean-field spin glass theory [220, 221] and the

SYK model [12, 25, 222], where the high amount of connectivity between degrees of freedom

naturally leads to mean-field behavior. Because our Brownian interactions are all-to-all, a similar

phenomenon occurs in our hybrid model and the physics can be captured by the mean fields Grs.

Formally, we convert the propagator (3.18) to a path integral by introducing an over-

complete basis of coherent spin states |Ω〉ri parameterized by SO(3) unit vectors Ω and satisfying

the eigenvalue equation Ω · Sri |Ω〉
r
i = S |Ω〉ri for each spin Sri [223, 224]. Using this basis we

insert resolutions of the identity

I =

∫
2S + 1

4π
d2Ωr

i |Ωr
i 〉 〈Ωr

i | (3.21)

at each timestep ∆t following the usual rules of path integration. This effectively converts the

spin operators in the propagators IJ , Iγ into classical SO(3) vectors Sri → (S + 1)Ωr
i . The

standard path integral derivation also generates ‘kinetic’ or Berry phase terms ∼ Ω∂tΩ in the

path integral coming from overlaps 〈Ωr
i (t)|Ωr

i (t+ ∆t)〉 of the coherent spin states at consecutive

time steps [224] (see Appendix B.2.0.3 for more details).
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Next, to enforce the identification (3.20) we introduce six time-dependent mean fields

Grs(t) and six Lagrange multiplier fields Frs(t) into the path integral via the identity

1 =

∫ ∏
r<s

DFrsDGrs (3.22)

exp

[∫
dt
∑
r<s

iFrs

(
Grs −

1

N

∑
i

Ωr
i ·Ωs

i

)]

With this delta-function constraint now explicit in the path integral, we may simply substitute the

mean fieldsGrs for any mean-field Heisenberg terms
∑

i Ω
r
i ·Ωs

i/N that appear in the propagators

IJ , Iγ . In particular, the unitary part IJ of the path integral Eq. (3.16) contributes quadratic terms

∝ JG2
rs while the non-unitary part Iγ Eq. (3.17) contributes linear terms ∝ γGrs. After making

this replacement the only spins Ωr
i explicitly remaining in the path integral are those coupled to

the Lagrange multiplier fields iFrs coming from the delta-function constraint Eq. (3.22).

Thus in the limit ∆t→ 0 at fixed T we finally arrive at

Z2 or P 2 =

∫ (∏
r<s

DFrsDGrs

)
exp [−NI [Frs, Grs]]

I[Frs, Grs] =

∫ T

0

dt

[
J

4

∑
r<s

(−1)r+sG2
rs −

γ

2

∑
r<s

(−1)r+sGrs − i
∑
r<s

FrsGrs

]
− lnK[Frs, ψ0, ψT ]

K[Frs, ψ0, ψT ] = 〈ψT | exp

[
−
∫ T

0

dt
∑
r<s

iFrs
Sr · Ss

(S + 1)2

]
|ψ0〉 . (3.23)

where we have expressed the path integral over spins Sr as a time-ordered exponential propagator

K[Frs, ψ0, ψT ] and the choice of boundary states |ψ0〉 , |ψT 〉 determines whether the expression

corresponds to Z2 or P 2. The path integral expression (3.23) is the main technical result of this

section. Here the quadratic terms in the action ∝ JG2
rs correspond to the unitary part of the dy-
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namics while the linear terms ∝ γGrs correspond to the non-Hermitian weak measurement part.

The competition between these two terms as a function of γ/J is what drives the measurement-

induced phase transition in this model.

Due to the overall factor of N preceding the action I[Frs, Grs] in Eq. (3.23), we can

evaluate the path integral via steepest-descent when N is large. In this limit, the action I may be

viewed as a classical Lagrangian where the first two terms describe effective potential energies for

the mean fieldsGrs and the third term is a coupling between theGrs and the Lagrange multipliers

Frs. The propagator K evolves an initial state |ψ0〉 of four spin-1/2 degrees of freedom Sr to a

final state |ψT 〉 under the influence of time-dependent external fields iFrs(t). We perform this

steepest-descent analysis for time-independent fields Frs, Grs in section 3.3.1.1, and consider

time-dependent fields leading to instanton transitions in section 3.3.1.2. This large-N analysis

yields an analytically tractable description of the system over a large portion of the phase diagram

shown in Fig. 3.1.

Although our focus in this work is on the simplest mean-field model (3.23) featuring bilin-

ear spin interactions (p = 2), single-spin weak measurements (q = 1), and probed by the purity

Tr
[
ρ̃nQ
]

with n = 2, we show in Appendix B.2 how this (2, 1) model can be easily generalized

to arbitrary (p, q) hybrid Brownian models featuring higher-order interaction and measurement

terms and probed by nth-order moments Tr
[
ρ̃nQ
]

of the density matrix. From this more general

derivation we find that the choice of p, q only affects theGrs-dependent part of the action I , while

the propagator K is unaffected by the order of the unitary interactions or weak measurements.

By contrast, the parameter n changes the number of replicas r, s but otherwise leaves the path

integral (3.23) unchanged. We reserve the study of these more general models for future work.
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3.2.4 Simplification of spin-1/2 propagator K

Before performing a saddle-point analysis of the action (3.23) at large-N , however, it is

convenient to first simplify the four-replica propagator K[Frs, ψ0, ψT ] for the special case S =

1/2. This case is particularly easy to calculate because the Heisenberg coupling terms Sr · Ss in

the propagator as well as the initial and final singlet-pair states are all manifestly SU(2) invariant.

In fact, because the initial and final states |(12)(34)〉, |(14)(32)〉 are pairs of SU(2) spin singlets,

the four-replica system is constrained at all times to live in the subspace of total spin STot = 0,

in which the total spin operators STot =
∑

r Sr, summed over all four replicas, act trivially and

the Casimir operator STot · STot = S(S + 1) has eigenvalue S = 0. For four spin-1/2 degrees

of freedom Sr with r = 1, 2, 3, 4 this subspace is two-dimensional and is spanned by the basis

vectors

|↑〉 =
1

2
√

3
(2 |1010〉+ 2 |0101〉 − |0011〉 − |1100〉

− |1001〉 − |0110〉)

|↓〉 =
1

2
(|0011〉+ |1100〉 − |1001〉 − |0110〉) (3.24)

which transform trivially under global SU(2) rotations generated by the total spin operators STot.

We view this two-dimensional subspace of the replica space as encoding an effective two-level

system |ψ(t)〉 = ψ↑(t) |↑〉+ψ↓(t) |↓〉which we refer to as a replica-bit or r-bit. The instantaneous

state of the r-bit may be drawn on a Bloch sphere as shown in Fig. 3.3.

In the two-dimensional basis |↑〉 , |↓〉 the initial and final boundary conditions may be sim-
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Figure 3.3: Bulk two-level r-bit subspace |↑〉 , |↓〉. For S = 1/2, the SU(2) symmetry of the
problem kinematically constrains the dynamics to a single effective qubit or r-bit |ψ(t)〉 (red)
living in the STot = 0 subspace spanned by |↑〉 , |↓〉. The r-bit’s trajectory |ψ(t)〉 must begin on
the singlet-pair state |ψ+〉 = |(12)(34)〉, and end on the same singlet-pair state for P 2 or on the
SWAP-ed singlet-pair state |ψ−〉 = |(14)(32)〉 for Z2.

ply written in terms of the states

|ψ±〉 =

√
3

2
|↑〉 ± 1

2
|↓〉 , (3.25)

where the initial and final states |ψ0〉 , |ψT 〉 take the values:

t = 0
t =

T

Z2 |ψ+〉 |ψ−〉

P 2 |ψ+〉 |ψ+〉

(3.26)

such that Z2, P
2 differ only in the final boundary conditions at t = T . The difference between

the non-uniform boundary conditions for Z2 compared to the uniform boundary conditions for

P 2 will be crucial in distinguishing between the mixed and purified phases.

120



The propagator in the two-dimensional r-bit subspace simplifies to

K[ ~B, ψ0, ψT ] =

〈ψT | exp

[
1

2

∫ T

0

dt ~B(t) · ~σ
]
|ψ0〉 eB0T/2 (3.27)

where ~σ are the 2 × 2 Pauli matrices acting on the r-bit |↑〉 , |↓〉 subspace and ~B(t) is a time-

dependent ‘magnetic field’ with components

Bx =
2

3
√

3
(iF12 + iF34 − iF14 − iF23)

By = 0

Bz =
2

9

∑
r<s

iFrs −
2

3
(iF13 + iF24) (3.28)

and where terms proportional to the identity within the r-bit subspace have been collected into

the term

B0 =
2

9

∑
r<s

iFrs. (3.29)

The time-dependent bulk fields Bx(t), Bz(t) encode the relevant mean-field dynamics of the r-bit

ψ(t), and in general must execute nontrivial motions in the bulk in order to satisfy the non-equal

boundary conditions |ψ0〉 , |ψT 〉. By contrast, the remaining fields in the action I appear simply

as quadratic Gaussian fields and may therefore be trivially integrated out of the path integral,

121



leading to the effective action

Z2 or P 2 =

∫
DBxDBz exp

[
−NI[ ~B]

]
I[ ~B] =

∫ T

0

dt

[
27B2

x

4J
− 81B2

z

4J
+Bz(1 + 18γ)− J

72
− 4γ2

J
− γ

2

]
− lnK[ ~B, ψ0, ψT ]

K[ ~B, ψ0, ψT ] = 〈ψT | exp

[
1

2

∫ T

0

dt (Bxσx +Bzσz)

]
|ψ0〉 . (3.30)

which is a simplification of the general path integral (3.23) for the special case S = 1/2.

In this form, one can view the magnetic field variables ~B(t) as ‘guiding fields’ for the bulk

r-bit, in the sense that the propagator− lnK in (C.47) is minimized when the r-bit |ψ(t)〉 is in the

instantaneous ground state of the effective ‘magnetic-field’ Hamiltonian H( ~B) = − ~B(t) · ~σ/2

appearing in the propagator K. As a result of this coupling between the magnetic field variables

~B(t) and the bulk r-bit |ψ(t)〉, we expect the fields ~B(t) to be strongly time-dependent near

t = 0, T in order to guide the r-bit |ψ(t)〉 to its appropriate boundary conditions |ψ0,T 〉. We see

these expectations borne out in gradient-descent numerics in section 3.3.

A crucial ingredient in the path integral representation of Z2 or P 2 in Eq. (C.47) is the

contour of integration of the Bx and Bz fields. Due to the minus sign preceding the B2
z term

in Eq. (C.47) we conclude that for the path integral to be well defined, Bx must be integrated

along the real axis, while Bz must be integrated along the imaginary axis. We shall discuss this

issue of contour integration more fully in section 3.3.1.1. Note also that until now we have not

made any assumptions about the time-dependence of the fields ~B(t). The simplified expression

(C.47) for the path integral over the fields Bx, Bz follows solely from the SU(2) symmetry of the

four-replica propagator K and the fact that the boundary states |ψ0〉 , |ψT 〉 belong to a particular
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spin sector.

For the rest of the paper we will focus on the properties of the path integral (C.47), which

we shall discuss in terms of classical field configurations ~B(t). But it should always be borne

in mind that this is only a particular example of the more general path integral expression (3.23)

and further higher-body generalizations.

3.2.5 Replica symmetry

The pure-state dynamics on four replicas shown in Fig. 3.2c possesses a number of discrete

symmetries. The microscopic bulk dynamics V = V (1) ⊗ V
(2)
T ⊗ V (3) ⊗ V

(4)
T on replicas r =

1, 2, 3, 4 is manifestly invariant under the replica symmetry group

G = (S2 × S2) o Z2, (3.31)

where the inner S2
∼= Z2 denote symmetric groups permuting the time-reversed or non-time-

reversed replicas amongst themselves with generators σ : 1↔ 3 and σ′ : 2↔ 4 [174]. The outer

Z2 in the semidirect product is generated by an operation τ corresponding to time-reversal T on

all four replicas followed by exchange of even and odd replicas 1↔ 2, 3↔ 4, where σ′ = τστ .

Crucially, the generator τ is antiunitary; as we discuss in Appendix B.3, this fact constrains the

spectrum of V to be real or for for its eigenvalues to come in complex-conjugate pairs. This is

the same mechanism that guarantees the reality of the spectrum in non-Hermitian PT-symmetric

quantum mechanics [225, 226, 227, 228].

To be explicit we can express the symmetry generators σ, τ directly in terms of their effects

on the path integral expressions (3.23) and (C.47). In Eq. (3.23) the generator σ simply exchanges
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spins S1
i ↔ S3

i in the propagator K, while the generator τ exchanges even and odd replicas and

flips the sign of all spins S1
i ↔ −S2

i , S3
i ↔ −S4

i . If we ignore the boundary conditions |ψ0,T 〉,

each of these transformations can be undone by an appropriate redefinition of the fields Frs, Grs,

leaving the bulk action I invariant. In the reduced spin-1/2 action Eq. (C.47), σ generates a

reflection about σz in the r-bit subspace:

σ : ~σ → σz~σσz (3.32)

Ignoring the boundary conditions, this transformation can be undone by a redefinition of the

x-component of the magnetic field Bx → −Bx, which leaves (C.47) invariant. The action is

trivially invariant under τ as this generator acts trivially in the r-bit space |↑〉 , |↓〉.

The boundary conditions |ψ±〉 = |(12)(34)〉 , |(14)(32)〉 break the replica symmetry group

down to a subgroup H ⊂ G generated by the mutually-commuting generators τ, c, where

c ≡ στσ (3.33)

corresponds to performing time-reversal T on all four replicas followed by a ‘reflection’ in replica

space 1234↔ 4321. The generators τ, c leave the boundary states |(12)(34)〉 , |(14)(32)〉 invari-

ant, while the generator σ transforms these two states into one another:

σ |(12)(34)〉 = |(14)(32)〉 (3.34)

The generator σ therefore represents a Z2 symmetry generator of the bulk symmetry groupG that

is explicitly broken by the boundary states.
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We shall find in the next section that this same Z2 symmetry is also spontaneously broken in

the bulk of the four-replica system below the critical point γ < γc, leading to two ordered phases

that transform into one another via the generator σ. By imposing non-equal boundary conditions

|(12)(34)〉 , |(13)(24)〉 at times t = 0, T that explicitly break the σ-symmetry, we force the sys-

tem in the ordered phase to transition somewhere in the bulk between the two symmetry-broken

ordered phases via a domain wall or ‘kink’. This is entirely analogous to imposing non-equal

boundary conditions on either end of a conventional Ising chain (in dimension d > 1) in thermal

equilibrium [162]. In both cases, the bulk systems undergo spontaneous Z2 symmetry break-

ing transitions as a function of measurement rate or temperature, respectively, with an ordered

phase below the critical point. In the ordered phase, the non-equal boundary conditions force

the creation of domain walls or ‘kinks’ in the bulk where the system rapidly transitions from one

symmetry-broken phase to the other in order to satisfy the boundary conditions. We shall see this

picture emerge explicitly for the hybrid Brownian model in the next section, where we study the

path integral Eq. (C.47) in the large-N limit.

3.3 Measurement-induced purification at large N in the (2, 1) hybrid Brownian

circuit

The path integral (3.23), along with its simplification (C.47) for spin-1/2 degrees of free-

dom, expresses the disorder-averaged purity Z2 for hybrid Brownian dynamics in terms of mean-

field variables Frs, Grs (or ~B) whose fluctuations are controlled by the large parameter N . In

the thermodynamic limit N → ∞, the factor of N preceding the action I in the path integral

(3.23),(C.47) allows for analysis via steepest-descent methods (also known as saddle-point or
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stationary phase methods [229]). At infinite N , the leading contribution to the path integral

comes from the dominant saddle point (or saddle point manifold). This section primarily focuses

on this regime of the path integral, meaning large N at fixed T . We will also focus on the regime

where T > J−1, γ−1 is larger than the various microscopic time-scales in the problem, which is

a quasi-steady-state regime in which early time transients have died away.

At finite N , there are two kinds of corrections to the leading saddle point answer, fluctua-

tions around the saddle point, which are perturbative in 1/N , and additional subleading saddles,

which are non-perturbative in 1/N , e.g. e−N = e−1/(1/N). We leave the study of perturbative

corrections from fluctuations to future work. We do, however, consider contributions from sub-

leading saddles in section 3.3.5. These give rise to important new effects in the long-time limit at

fixed N , leading to the disintegration of the mixed phase.

Our main purpose in this section is to analyze the path integrals for Z2 and P 2 in the saddle-

point approximation using a combination of analytical and numerical tools. We will show that

the model exhibits two phases separated by a continuous phase transition as a function of the

measurement strength γ. The boundary conditions at t = 0, T deserve special attention as they

are a departure from typical large-N or saddle-point analyses. Typically, such calculations are

concerned with the equilibrium physics of a Hamiltonian H at inverse temperature β with the

path integral constructed to compute the partition function Z = Tr
[
e−βH . . .

]
. Because of the

trace, such a path integral naturally has time-translation symmetry, and the relevant saddle points

may usually be taken to be time independent. In our case, however, the propagator K[ ~B, ψ0, ψT ]

explicitly breaks time translation invariance, and we are forced to consider time-dependent saddle

points in the analysis. Nevertheless, when T is large compared to microscopic scales, the relevant

saddle-point configurations will be approximately time-independent for a majority of the time
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domain.

The plan for the remainder of this section is as follows. In sections 3.3.1.1 and 3.3.1.2

we outline the different components that are used to construct saddle-point solutions. These

components include ‘bulk’ configurations which are time-independent, instanton-like configura-

tions that are localized in time, and boundary effects which are concentrated near the boundaries

t = 0, T . In section 3.3.2 we use these components to show the existence of and analyze two

distinct phases in the purity. In section 3.3.3 we consider the critical point between these two

phases and analyze the resulting effective field theory of the transition. In section 3.3.4 we con-

sider the dynamics of the purity at early times from the perspective of numerical gradient descent

and exact diagonalization. Finally, in section 3.3.5 we comment on late times at fixed N , which

we analyze by summing over subleading saddles with multi-instanton configurations.

3.3.1 Components of saddle-point configurations

3.3.1.1 Bulk (time-independent) configurations

While we expect general field configurations ~B(t) to be time-dependent, especially near

the boundaries t = 0, T , we first consider the physics of the path integral (C.47) deep in the bulk,

i.e. dynamics occurring at times 1/J � t� T very far from either the initial or final boundary.

Because the propagator K is local in time, fields ~B(t) deep in the bulk are largely unaffected by

the faraway t = 0, T boundary conditions. Moreover, time-dependent variations |∂t ~B| > 0 are

penalized in the action (C.47) via kinetic-energy terms in the propagator K. We therefore expect

fields deep within the bulk to be time-independent.

For a time-independent magnetic field ~B(t) = ~B, the propagator (C.47) is easy to evaluate
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Figure 3.4: Classical bulk action for the trivial and symmetry-broken saddles. For all values
of γ the bulk action Ibulk for the symmetry-broken saddles (purple) is always smaller than the
trivial saddle (green), but above the critical point γ > γc the symmetry-broken saddle points
(dotted purple) are imaginary and do not contribute to the path integral (see Fig. 3.5). The
symmetry-broken saddle points (solid purple) therefore dominate below the critical point γ < γc
while the trivial saddle point (solid green) dominates above γ > γc. This smooth exchange
of saddle-point dominance at γ = γc is responsible for the second-order measurement-induced
purification transition in the (2, 1) model.

and one obtains

K ≈ exp

(
TB

2

)
+ exp

(
−TB

2

)
, (3.35)

where B ≡
√
B2
x +B2

z and where we have dropped the contributions from the boundary states

|ψ0〉 , |ψT 〉, which are subdominant in the limit of large T (and have not been treated properly by

our assumption of time-independence anyway). Assuming real and positive B and large T , we

may simply replace lnK → BT/2 in the action I[ ~B] (C.47).
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Figure 3.5: Time-independent saddle-point analysis. With Bz fixed to its saddle-point value,
plots of Re[Ibulk] in the complex Bx plane reveal the Z2 symmetry breaking in the bulk respon-
sible for the purification transition. Dotted blue and solid red lines show contours of steepest
descent. (a) Above the critical point γ > γc, the trivial (i., green) and symmetry-broken (ii.,
purple) saddle-points lie on the imaginary-Bx axis. Because the integration contour for Bx in
the path integral lies along the real axis (solid red), only the trivial saddle point contributes to
the effective bulk action Ibulk (iii). (b) Below the critical point γ < γc, all three saddle points
lie on the real-Bx axis (i,ii) and therefore all three contribute to the bulk action (iii), where the
symmetry-broken saddle-points (purple) minimize the effective bulk action Ibulk.
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With this replacement, one can now easily determine the time-independent saddle points

of the action I[ ~B] (C.47) in the large-N limit by solving the Euler-Lagrange equations ∂BxI =

∂BzI = 0. We find one symmetric saddle point,

Bx = 0

Bz =
4

9

(
γ +

1

2
γc

)
, (3.36)

and a pair of degenerate symmetry-broken saddle points

Bx = ±1

3

√
(γc − γ) (γ + 3γc)

Bz =
1

3
(γ + γc), (3.37)

where γc ≡ J/18 is the critical point where all three saddle-point solutions coincide. The sym-

metric saddle is invariant under the replica permutation symmetry Bx → −Bx, while the second

pair of saddle points explicitly break this replica symmetry.

The bulk action Ibulk for these saddle points are plotted in Fig. 3.4 as a function of the

measurement rate γ. Note that the symmetry-broken saddle points (purple) always have lower

action than the trivial saddle point (green); the dominant saddle point, however, depends on the

direction of the integration contour. In the region γ < γc, the symmetry-broken saddles are

indeed dominant, but for γ > γc, the trivial saddle controls the path integral. We now explain

these points.

In Fig. 3.5, we plot the contours of the real part of the action in Eq. (C.47) in the complex

plane of Bx with Bz set to its saddle-point value. The original contour of integration is along the
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real Bx axis. For γ < γc the replica symmetry broken saddles (Fig. 3.5b, purple dots) lie along

the contour of integration, and are the minimum-action saddles as confirmed in Fig. 3.5b(iii).

However, for γ > γc, the corresponding symmetry broken saddles lie along the imaginary axis

(Fig. 3.5a). The contour of integration cannot be deformed to pass through these saddles while

maintaining a valid estimate of the integral using only the saddle point value.

In order for the saddle-point value to make the only important contribution to the integral,

the contour of integration must pass though the saddle point in such a way that the saddle is

a local minimum. However, for γ > γc, the desired integration contour hits a branch cut that

leads off to infinity in a direction for which the value of the integrand diverges. This means that

the symmetric saddle (Fig. 3.5a(iii), green dot) is actually the relevant saddle to estimate the

integral when γ > γc. Hence, there is a bulk phase transition at γ = γc across which the replica

permutation symmetry is spontaneously broken.

This symmetry breaking appears explicitly in the problem if we plot the real part of the

action I as a function of Bx above and below the transition point (Fig. 3.5a,b(iii)), which reveals

a straightforward double-well potential with spontaneously-broken Z2 symmetry Bx ↔ −Bx

below the transition γ < γc.

3.3.1.2 Time-dependent configurations

The time-independent analysis of the previous section revealed the key Z2 symmetry-

breaking physics that is responsible for the purification transition in the (2, 1) hybrid model.

But the time-independent bulk solutions alone cannot be the whole story: indeed, as the bulk

action I is identical for Z2 and P 2, the time-independent bulk solutions alone appear to predict
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a purity Z2/P
2 = 1 for all γ, which is clearly incorrect. Neglected in this time-independent

analysis are the non-equal boundary conditions at times t = 0, T which explicitly break time

translation symmetry in the problem.

To correctly evaluate the path integral expressions (C.47) in the large-N limit (or (3.23)

and its generalizations in Appendix B.2), we must expand the action I around ‘classical’ time-

dependent configurations of the fields ~B(t) (Grs(t), Frs(t)) that properly account for boundary

effects at t = 0, T . Quantum fluctuations around these classical configurations are controlled

by the factor of N preceding the action I , analogous to the role played by 1/~ in semiclassical

(WKB) expansions [229]. By definition the classical field configurations ~B(t) obey the time-

dependent Euler-Lagrange equations that extremize the action I , including time-derivatives terms

∂tBx,z coming from the path-integral expansion of the propagator K as well as boundary terms

associated with the boundary states t = 0, T .

These full time-dependent Euler-Lagrange equations can be solved numerically in the gen-

eral case, and analytically in some special cases, including with time-independent configurations

and near the critical point. In the discussion below, we focus on the regime where T is much

larger than any microscopic scale, so we are not considering transients associated with times of

order γ−1 or J−1. We will return to consider dynamics on these short timescales in section 3.3.4.

There are two kinds of time-dependent configurations that will be important. The first

are edge configurations in which, under the influence of the boundary states |ψ0〉 , |ψT 〉 in the

propagator K, the ~B(t) fields near t = 0, T are deformed away from their time-independent

values deep in the bulk. These boundary contributions are relevant for any value of γ. The

second are instanton-like configurations in which the ~B(t) fields traverse from one symmetry-

broken saddle to another. These are only relevant for γ < γc.
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We first discuss the edge configurations, focusing on the regime γ > γc as illustrated in

Fig. 3.6a. These configurations are found using a numerical gradient descent algorithm which

takes the action (C.47), discretizes the time direction to approximate the kernel K, and then

searches through classical configuration space ~B(t) to find the time-dependent fields Bx(t) and

Bz(t) that extremize the action; for further details of the gradient-descent numerics, see Ap-

pendix B.5. Deep in the bulk the fields Bx(t), Bx(t) take their trivial saddle-point values Bx =

0, Bz = 2γc/3 as expected (Fig. 3.6a). Near the boundaries, however, the fields Bx(t), Bz(t)

differ considerably from their bulk value due to the influence of the boundary states in the defini-

tion of K. Crucially, since the initial and final states |ψ0〉 , |ψT 〉 are symmetric about the Bx = 0

saddle-point, the action evaluated on the time-dependent configurations are identical for P 2 and

Z2 up to corrections that are exponentially small in T . As a result, these contributions cancel in

the ratio ΠQ = Z2/P
2, yielding ΠQ ≈ 1.

Similar edge configurations are also relevant for γ < γc, but instanton configurations now

also play a role. For γ < γc, there are two symmetry-broken bulk saddle configurations B±x

(dotted black in Fig. 3.6b). An important new ingredient is that the bulk saddles are distinguished

by the boundary conditions. The boundary state at t = 0 in the definition of P 2 and Z2 favors

the B+
x saddle (upper dashed black line), while the boundary state at t = T in the definition

of Z2 favors the B−x saddle (lower dashed black line). The identical boundary conditions in P 2

favor a configuration shown in the left panel of Fig. 3.6b in which the bulk saddle is B+
x and

there are identical edge configurations near t = 0 and t = T . By contrast the non-equal boundary

conditions in Z2 favor a configuration that traverses fromB+
x toB−x over a localized time window.

This single-instanton configuration is shown in the right panel of Fig. 3.6b. Due to the reflection

symmetry Bx ↔ −Bx of the propagator K under the generator σ, the overlap between |ψ0〉
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and the ground state of the B+
x saddle Hamiltonian is equal to the overlap between |ψT 〉 and the

ground state of the B−x saddle Hamiltonian. As a result, the edge contributions to the action are

approximately the same in the left and right panels of Fig. 3.6b, and these contributions therefore

cancel from the ratio ΠQ = Z2/P
2.

The time-translation symmetry of the bulk implies that the instanton is approximately free

to move in time, giving rise to a zero mode in the path integral as is typical for instanton physics.

This means that for γ < γc, we do not have just an isolated saddle point but a continuous family of

nearly-degenerate saddle points. For this reason, the instanton contributes an additional ‘entropic’

factor ∝ (T − T0) to the purity Z2 with T0 some short-time regulator that arises because the

instanton cannot get too close to the t = 0, T boundaries without changing its action.

We note that there are other possible time-dependent configurations that could be relevant

for Z2. In particular, one might try to avoid the action cost of the instanton by considering a

configuration that adheres closely to the B+
x saddle until times of order T . Then around t = T ,

the ~B(t) fields could bend towards the B−x saddle to some degree. Such a configuration might be

viewed as a partial instanton ‘bound’ to the t = T boundary. One can find approximate solutions

of roughly this form, but at least when T is large, the unbound instanton configuration always has

lower action than such a bound configuration in every calculation we have done.

3.3.2 Phases of the path integral

With the above ingredients in hand, we can now obtain the structure of the purity ΠQ as a

function of γ. The bulk phase transition at γ = γc drives the transition in ΠQ, but to correctly

compute this quantity we must include edge and instanton effects as discussed above.

134



Figure 3.6: Time-dependent classical field configurations ~B(t) from numerical gradient de-
scent. Optimal classical field configurations Bx(t) (blue), and Bz(t) (red) as obtained by numer-
ical gradient descent over Re I[ ~B] of the ‘magnetic-field’ action Eq. (C.47). Gradient descent is
performed by taking Jδt = 0.05, until the threshold δI = 10−7 is reached for the action differ-
ence, requiring ∼ 104 iterations for the parameters considered here. (a) Above the critical point
γ > γc the configurations are dominated by a single trivial time-independent saddle point (dotted
black), where the different boundary conditions in Z2, P 2 lead to nontrivial boundary dynamics
in the field Bx(t) near t = 0, T . (b) Below the critical point γ < γc, the optimal configura-
tions are dominated by a pair of symmetry-broken saddle points (dotted black). The non-uniform
boundary conditions in Z2 promote the formation of an instanton with action I∗ somewhere in
the bulk that traverses between the two saddle points.
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For γ > γc, there is only a single symmetric bulk saddle and the edge contributions to

the action are identical for Z2 and P 2 (Fig. 3.6a). Again, this follows from the important fact

that the boundary states at t = 0 and t = T as well as the trivial bulk saddle are symmetric

with respect to the reflection symmetry Bx ↔ −Bx. For this reason, the classical actions for Z2

and P 2 are identical, up to corrections that decay exponentially with T and we therefore expect

Z2/P
2 ≈ 1. Moreover, although we do not explicitly consider 1/N fluctuations in this work, we

note that it seems plausible that the 1/N corrections are also equal order-by-order in Z2 and P 2

up to corrections that decay exponentially with T .

For γ < γc, there are two symmetry-broken bulk saddles (Fig. 3.6b), and the instanton

configuration with action I∗ and ‘entropy’ ∝ (T − T0) controls the Z2 path integral. Once again,

due to the symmetry under Bx ↔ −Bx we expect the edge contributions to the action for P 2 and

Z2 to be identical and the only difference arises from the extra instanton in Z2.

Combining these results together, we find that at large N and fixed T > J−1, γ−1 (with T

large compared to microscopic scales), the purity exhibits two phases,

ΠQ =
Z2

P 2
=


T−T0
a(T )

exp (−NI∗(γ)) γ < γc

1 γ ≥ γc,

(3.38)

where (T − T0)/a(T ) is the ratio of the functional determinants entering Z2 and P 2 (and we

are only really interested in the explicit T dependence, although a(T ) may have some weak T

dependece as well). Note that for γ > γc we expect the Z2 and P 2 functional determinants to be

approximately equal (it would be good to check this expectation explicitly). Finally, we remind

the reader that this result concerns large N and fixed T ; we discuss late-time dynamics at fixed
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N in section 3.3.5.

3.3.3 Phase transition

From the above analysis, which yields the large-N estimate (3.38) for the purity ΠQ, we

find that the value of the purity in the mixed phase γ < γc is governed almost entirely by the

instanton action I∗. For γ � γc, this depends on the details of the spin propagator K. However,

in the vicinity of the critical point γ = γc, it is possible to analytically determine the instanton

action as a function of γ. In this section, we outline the effective field theory of the transition and

compute the instanton action. This allows us to determine various critical exponents which have

an expected mean-field character arising from the large-N limit.

Near the critical point, the symmetry breaking field Bx has magnitude Bx ∝
√
J(γc − γ)

which vanishes at the critical point, while the field Bz remains finite and of the order of J by

Eqs. (3.36) and (3.37). Thus, near the critical point, one can find the time-dependence of the

instanton configuration analytically by expanding the action in terms of the small field Bx. For

the instanton configurations, the Bz field in the action can be set to be a constant value set by the

bulk saddle point, in agreement with our observations from gradient descent numerics (Fig. 3.6).

Keeping in mind that the σx, σz terms in the ‘magnetic-field’ Hamiltonian H( ~B) = − ~B(t) · ~σ/2

in the propagator K[ ~B, ψ0, ψT ] (Eq. (C.47)) do not commute at different times t, one can expand

the term − lnK in orders of Bx ∝
√
J(γc − γ) which is the small parameter, while keeping

the time-dependence explicit. Keeping terms up to second order in Bx(t) (and dropping constant
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terms) the action in Eq. (C.47) can be rewritten as

I[ ~B] ≈
∫
dt

27

4J
B2
x(t)−

1

8J

∫
dt1dt2Bx(t1)Bx(t2)f(t1, t2) +O(B4

x)

with the kernel f(t1, t2) =
coshα(T − 2|t1 − t2|)

coshαT
, α =

γ + γc
6J

(3.39)

where we have fixed the field Bz = (γ + γc)/3 to its time-independent saddle-point value.

One can take T → ∞ in the integration kernel safely, since most of the instantons occur

far from the boundary, thereby simplifying the kernel to f(t1, t2) = e−2α|t1−t2|. Since the kernel

is tightly-peaked near t2 = t1, one can expand in t2 near t1 and obtain the time-dependence of

the field Bx(t). The lowest order of time dependence occurs at quadratic order B2
x, and all higher

orders of time-dependence are suppressed at least to quartic order B4
x. Thus, keeping only the

lowest order of time dependence, we can just consider the time-independent part of the B4
x term

in the action. This can be easily obtained from the bulk saddle solutions Eq. (3.37) and expanding

the time-independent action to order B4
x, which gives a contribution

∫
dtB4

x/(128α3J3). Com-

bining these results, and also extracting the time-independent part of the kernel in Eq. (3.39) for

simplicity, the action I[ ~B] can be approximated as,

I[ ~B] ≈
∫
dt Bx(t)

(
27

4J
Bx(t) +

1

128α3J3
B3
x(t)

− 1

8J

∫
dsBx(s)e

−2α|t−s|
)
, (3.40)

where the first two terms correspond to the time-independent contributions and the final term

captures the time dependence of Bx(t).

One can easily check that there exist static solutions Bx(t) = Bx satisfying the time-
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Figure 3.7: Instanton configurations near criticality and critical exponent from gradient
descent numerics. (a) Bulk instanton configurations ~B(t) obtained from numerical gradient de-
scent for measurement rates γ = γc − ∆γ just below the critical point. Gradient descent is
performed by taking Jδt = 0.05, until the threshold δI = 10−7 is reached for the action differ-
ence. For the close-to-critical γ considered, the analytically obtained instanton configuration in
Eq. (3.46) are fixed points of the gradient descent algorithm. (b) Critical scaling of the instanton
action I∗ shows a critical exponent ζ = 1.44 ± 0.07, which is consistent with the theoretical
expectation, ζ = 3/2.

independent equations of motion for the action (3.40). These time-independent equations of

motion are

27Bx

2J
+

B3
x

32α3J3
− Bx

4J

∫ +∞

−∞
dse−2α|t−s| = 0. (3.41)

Evaluating the integral this simplifies to

B3
x = 32α3J3

(
1

4Jα
− 27

2J

)
Bx = δBx (3.42)

which has static solutions

Bx = 0,±
√
δ (3.43)

where we have introduced the parameter δ ≡ 2(γ+γc)
2(γc−γ)/J . Close to criticality, this static

solution for Bx is consistent with the earlier time-independent results, approximately the same as

139



the Eq. (3.37), differing only at order O(γc − γ)3/2 for γ . γc.

One can also easily find time-dependent solutions ~B(t) to the action (3.40). Since the

kernel e−2α|t−s| is tightly peaked near s = t, we can Taylor-expand the field as Bx(s) = Bx(t) +

(s− t)B′x(t) + (s− t)2B′′x(t)/2 + ... in the equation of motion. After some algebra we obtain the

time-dependent equation of motion for the field Bx(t) with a second-order time derivative,

B′′x(t) = −δBx(t) +B3
x(t). (3.44)

Eq. (3.44) is exactly the equation of motion of a scalar field in a φ4 potential with a mass set by

δ, which vanishes at criticality, δ → 0. This is the correct theory near criticality, as any higher

order time derivatives are suppressed either by factors of 1/α or δ. The bulk field theory model

close to criticality δ → 0 is thus given by,

I[ ~B] =

∫
dt

(
1

2
(∂tBx)

2 + V (Bx)

)
,

V (Bx) = −δB
2
x

2
+
B4
x

4
(3.45)

which is just the action for a scalar φ4 theory, where Bx is the scalar field and δ is the mass. The

purification transition in the (2, 1) hybrid Brownian circuit model is therefore captured by the

same universal physics as a 0+1d Ising model.

In the mixed phase δ > 0, we expect time-dependent instanton transitions between the

static solutions Bx = ±
√
δ just as in section 3.3.2. The instanton configuration has a field profile

that asymptotes from Bx =
√
δ in the far past to Bx = −

√
δ in the far future. The equation of
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motion in Eq. (3.44) has instanton solutions of the required form, with

B∗x(t) = −
√
δf∗(t),

f∗(t) = tanh t
√
δ/2. (3.46)

We can plug this solution back into the action (3.40) to compute the action cost of the instanton

I∗, relative to a background that stays in one saddle for all time. This calculation yields

I∗ = δ3/2

∫
dy√

2

(
(f ′∗)

2 − f 2
∗
2

+
f 4
∗
4

+
1

4

)
. (3.47)

The integral is just a numerical constant independent of δ, so the instanton action contribution

goes like I∗ ∼ δ3/2.

We confirm that this instanton configuration is correct for the full action in Eq. (C.47)

by feeding the instanton solution (3.46) into the action and checking if there are nearby con-

figurations with smaller action. In Fig. 3.7, we find time-dependent configurations of the field

Bx(t) from numerical gradient descent that are indistinguishable from the analytically-obtained

solution in Eq. (3.46) within the threshold for gradient descent. Furthermore, by numerically

computing the action cost of these optimal configurations as a function of measurement rate γ

we find a critical exponent ζ = 1.44 ± 0.07 consistent with the analytically-obtained ζ = 3/2.

Hence, as the purity undergoes a transition at γ = γc, the entropy − ln ΠQ has a scaling form

− ln ΠQ ∼ N(γc − γ)ζ . (3.48)
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with critical exponent ζ = 3/2.

3.3.4 Time-dependence of purity

The statements made so far have been for the purity of the system at long times T >

J−1, γ−1 after some initial early-time transients controlled by the microscopic parameters. In

this section we study these early-time dynamics for times T ∼ J−1, γ−1, accessing the purity on

O(1) time-scales using the saddle-point approach as well as exact diagonalization numerics. In

Fig. 3.8a, we plot the Rényi-2 entropy − log2 ΠQ or S(2)
Q (t), as a function of time for different

γ, by finding minimal action configurations of the fields at different time intervals. To access

this numerically, we perform gradient descent with the action in Eq. (C.47), and interpret the

results using the formula, S(2)
Q /N ∼ I∗− ln(T )/N , from Eq. (3.38). For γ > γc, we find that the

instanton action I∗ goes to zero (equivalently, the system is purified) atO(1) timescales, preceded

by an exponential decay. For γ < γc, I∗ exponentially decays to a finite non-zero values (this is

most clearly evident in the numerics for low γ, deep in the mixed phase). For the entropy, this

plateau region ultimately gives in to a logarithmic decay with time (see Eq.(3.38)), which is not

captured using gradient descent to estimate I∗. Directly using S(2)
Q /N ∼ I∗ − ln(T )/N , we can

visualize the actual time dependence of the entropy, even for a modest choice N = 6 for γ deep

in the mixed phase, in the inset of Fig. 3.8a. The lnT term becomes more and more important

when we fix a finite N and increase T .

To access the dynamics at finite N , we resort to exact diagonalization using Krylov sub-

space methods [230, 231, 232]. The unitary layers (4.1) of the Brownian circuit are computed

via the conventional Krylov subspace technique with subspace dimension NK = 8 and timestep
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δt = 0.01 in dimensionless units where J = 1. The non-unitary measurement layers (C.13) are

computed by using the identity

M(t) =

(
1

2
− i

2

)
exp [−iO(t)δt/2]

+

(
1

2
+
i

2

)
exp [iO(t)δt/2]. (3.49)

In our numerical simulations we compute the exponentiations exp [±iO(t)δt/2] |Ψ〉 separately

using the conventional Krylov subspace technique and sum the results with appropriate complex

coefficients to give M(t) |Ψ〉. At each timestep t = mδt we independently sample coefficients

Jαβij (t), nαi (t) from normal distributions with zero mean and variance given by Eqs (2),(5) respec-

tively. Using this disorder realization we then construct the Brownian generators H(t),O(t), and

compute the time-evolved unnormalized state |Ψ(t+ δt)〉 = U(t)M(t) |Ψ(t)〉. For each disor-

der realization we compute both the purity Tr
[
ρ̃2
Q(t)

]
and squared probability Tr [ρ̃Q(t)]2 of the

reduced unnormalized state ρ̃Q(t) = TrR [|Ψ(t)〉 〈Ψ(t)|] as a function of time.

These methods allow us to simulate hybrid Brownian dynamics for modest system sizes,

N = |Q| = |R| = 6 and for times as long as Jt = 200. In Fig. 3.8b we plot the resulting Rényi

entropy − log2 ΠQ at different rates of measurement γ. We find that for γ > γc, the behavior

is qualitatively similar to measurement only dynamics (without the unitary part of the circuit),

for which the entropy exponentially decays to 0 (although very small values of the entropy are

inaccessible in the exact diagonalization numerics). For γ < γc, it is difficult to distinguish

the plateau region (since here N ∼ 1), and the eventual decay due to the entropic factor lnT .

However, the plots here already show that the late time behavior qualitatively deviates from the

exponential decay, instead showing a much slower decay at late times. We identify in the inset
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Figure 3.8: Time dependence of Rényi-2 entropy, from saddle-point calculation and exact
diagonalization. (a) We plot the instanton action I∗ as a function of time at different γ, obtained
by performing gradient descent of the action in Eq. (C.47) for field configurations at different
time intervals. Note, γc = J/18 = 0.0556J . For γ > γc (red), I∗ goes to zero, while for γ < γc
(blue, purple), it approaches a finite non-zero plateau at late times. Close to criticality (blue), this
plateau value is small, approaching zero, I∗ → 0 as γ → γc. This result is true for N = ∞,
where the saddle-point solution is exact. Inset shows estimated Rényi-2 entropy of the system for
γ < γc deep in the mixed phase accounting only for the instanton action (green), and including the
− lnT/N term for N = 6 (pink) to show the logarithmic decay in entropy at late times. Gradient
descent is performed by taking Jδt = 0.1, until the threshold δI = 10−6 is reached for the action
difference. (b) We probe the time dependence for finite N, for system size |Q| = |R| = 6, via
exact diagonalization. We note that for γ > γc (yellow), and for measurement-only dynamics (J =
0) (gray), the entropy largely follows an exponential decay to zero. However, for γ < γc, the time
plots deviate from the exponential decay at later times. In the inset, we find at the latest times,
there is a logarithmic decay in the entropy, − log2 ΠQ ∝ − log T . For exact diagonalization via
Krylov method, averaging is done over 50 disorder realizations, with Jδt = 0.01, Jt = 200 and
NK = 8 Krylov subspace dimension.

of Fig. 3.8b that this late time behavior is consistent with the factor of lnT in − ln ΠQ, which

comes from the entropic freedom of the instanton in Eq. (3.38). In the next section, we discuss

the role of the entropic enhancement of the purity in the eventual late time disintegration of the

mixed phase.
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3.3.5 Phase disintegration at late times

Although the mixed phase γ < γc is robust to repeated single-qubit measurements over

extensive timescales T ∼ poly(N), at very long times T exponential in the system size, the

measurements ultimately destroy entanglement between R,Q and the mixed phase disintegrates

[23, 173]. In the path integral representation (C.47) this disintegration occurs due to the pro-

liferation of instantons, which are heavily favored in the path integral at long times due to the

‘entropic’ factor (T − T0)/a(T ) found in section 3.3.2. At large N these multi-instanton con-

figurations are subleading saddle-point configurations in the path integral and therefore do not

contribute to the result at strictly N → ∞. For very large but finite N , however, we must sum

over these additional subleading saddles in the path integral.

To see the breakdown of the mixed phase explicitly, first consider the contribution z` to

the path integral (C.47) coming from a configuration ~B`(t) consisting of ` instantons. Due to

the boundary conditions, the full instanton contribution is a sum over all odd ` for Z2 or over

all even ` for P 2. For sufficiently large T , we may apply the dilute-gas approximation in which

the ` instantons are assumed to be widely separated in time and non-interacting [233]. In this

limit, each instanton independently contributes an action penalty e−NI∗ and an ‘entropic’ factor

∝ (T −T0)/a(T ) coming from integration over the zero-mode [233, 234]. In this approximation,

and ignoring the contribution of the boundary conditions at t = 0, T the `-instanton configuration
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has amplitude

z` ≡
∫
Dη exp

[
−N

∫ T

0

dt I[ ~B`(t) + η(t)]

]
≈ 1

`!
e−`NI∗ (T/a)` z0 =

1

`!
R`z0 (3.50)

whereR ≡ z1/z0 = e−NI∗(T−T0)/a(T ), and the ‘entropic’ term (T−T0)/a(T ) comes from the

functional determinant capturing the quantum fluctuations η(t) around the classical configuration

~B`(t) as discussed in section 3.3.1.2 [233]. We have to divide by `! because instantons must

always precede anti-instantons. The numerical value of the O(1) constant a(T ) depends on the

details of the action I[ ~B] and can be found by computing a functional determinant in the path

integral after removing the zero-mode fluctuations of the instanton [233, 234].

Summing over even (or odd) ` we find

∑
` even

z` = z0 coshR

∑
` odd

z` = z0 sinhR (3.51)

which gives a disorder-averaged purity

Z2/P
2 = tanhR. (3.52)

At intermediate times T ∼ poly(N) the exponential penalty e−NI∗ dominates and instantons

are disfavored R � 1 such that Z2/P
2 ≈ R as found in section 3.3.2. At exponentially long

times T ∼ exp (I∗N), however, instantons become much more attractive R → 1 due to the
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‘entropic’ factor (T − T0)/a(T ). We therefore find that instantons proliferate at late times with

Z2/P
2 → 1 as T → ∞, corresponding to purification of the state and the disappearance of

the mixed phase. We note that the instanton action I∗, along with the functional determinant

(T − T0)/a(T ), determines the crossover point T ∼ exp (I∗N). This late-time destruction of

the phase is similar to that found in phenomonological studies of MIPTs in 1+1d using capillary-

wave theory [173].

3.4 Purification dynamics for subsystems

In the previous section we considered the purity ΠQ of the full system consisting of all

|Q| = N qubits as an order parameter for the transition in the (2, 1) model. It is also interesting

to ask whether the transition can be probed using only a fraction k = |A| / |Q| of the system’s

qubits, withA ⊂ Q [179]. In section 3.4.1, we study the disorder-averaged purity ΠA for variable-

size subsystems A and show that the purification transition is only visible for sufficiently large

k > kc(γ) ≥ 1/2, leading to the phase diagram shown in Fig. 3.10. Using a modified version of

the bulk field theory (3.45) we identify the critical point k = kc in this diagram as a second-order

phase transition in section 3.4.2 and compute its critical exponent µ = 1 using analytical and

numerical methods. Finally, we show in section 3.4.3 that these results can be interpreted in the

language of quantum error correcting codes.

3.4.1 Subsystem purity

Consider a modified circuit setup shown in Fig. 3.9a where we compute the purity ΠA =

Tr [ρ2
A] of a portion |A| = kN of the system qubits using a SWAPAA′ operator while the re-
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Figure 3.9: Purification dynamics for subsystems A ⊂ Q. (a) Subsets A,A of the system Q are
both initially maximally entangled with the reference R, but only the purity ΠA of the subsystem
A is computed, while the remaining qubits A are traced over. (b) The disorder-averaged purity
Z2(k)/P 2 represented as a quantum circuit, where in the numerator the SWAPAA′ operator has
been applied only to qubits in subsystem A.

maining
∣∣A∣∣ = (1− k)N qubits are traced over. Similar to section 3.2 we compute the disorder-

averaged purity Z2(k) and probability P 2 of the unnormalized state ρ̃A = TrR,A [ρ̃(V )] as shown

in Fig. 3.9b, where the SWAPAA′ operator in this case leads to nontrivial boundary conditions

only between the A,A′ subsystems. Converting this to a path integral expression leads to an

action identical to (C.47) except for the replacement

lnK → k lnKA + (1− k) lnKA

KA = K[ ~B, ψ+, ψ−]

KA = K[ ~B, ψ+, ψ+] (3.53)

in the unnormalized purity Z2(k); the probability P 2 is left unchanged by the k-dependence.

Here K[ ~B, ψ0, ψT ] is the propagator from Eq. (C.47) and the boundary states |ψ±〉 have been

defined in Eq. (3.25). An analogous replacement can be made to compute subsystem purities
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Figure 3.10: Subsystem purity phase diagram. (a) At times T ∼ poly(N), the subsystem purity
ΠA exhibits three distinct phases as a function of γ, k which are governed by the corresponding
classical field configurations ~B(t) (b). Above the critical point γ > γc the bulk fields (solid blue)
primarily occupy the trivial saddle point Bx = 0 (dotted black), leading to a trivial (purified)
phase for all k (i-ii). Below the critical point γ < γc, the zero-instanton configuration (iii)
dominates for small k < kc(γ) while the single-instanton configuration (iv) with action I∗ is
dominant for large k > kc(γ).

in the general path integral (3.23). For k = 1 these path-integral expressions reduce to their

original forms (C.47),(3.23) as required. We therefore find that the bulk physics remains entirely

unchanged by varying k and inherits the same set of time-independent saddle points as discussed

in section 3.3.1.1. Dependence on the subsystem fraction k enters only through the boundary

effects in the propagators KA,A.

The interplay of bulk physics and boundary effects in Z2(k), P 2 leads to a nontrivial phase

diagram as a function of γ, k as shown in Fig. 3.10a. We can argue through the major features of

this phase diagram by comparing the action costs I[ ~B(t)] of various time-dependent classical field

configurations ~B(t), which dominate the path integral at large N . Eqs. (C.47) and (3.53) indicate

that this action cost near the t = 0 boundary will be the same for Z2(k) and P 2 regardless of the

value of k, and hence will cancel out in the purity Z2(k)/P 2. It is the future boundary condition
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at time t = T , generated by the SWAPAA′ operator acting on subsystemsA,A′, that distinguishes

between the different phases.

Let us first discuss the relevant time-dependent configurations of the ~B(t) fields. In Fig.

3.10b, we consider classical configurations of the field Bx(t) at different values of k and γ at

intermediate times T ∼ poly(N). As shown in Fig. 3.10b(i-ii), for γ > γc the classical path

(solid blue) begins in a configurationBx > 0, Bz < 0 that is bent towards the |ψ+〉 state, traverses

through the single trivial saddle point Bx = 0 (dotted black) and either returns to Bx > 0 for

k < 1/2 (Fig. 3.10b(i)) or continues on to Bx < 0 for k > 1/2 (Fig. 3.10b(ii)). The action

cost associated with the future boundary deflection is identical for k and 1 − k because of the

symmetry Bx → −Bx and k → 1− k.

For γ < γc, the situation is more complicated as shown in Fig. 3.10b(iii-iv) due to the

presence of the two symmetry-broken saddle points B±x (dotted black), which can host instanton

transitions between them. For small k < 1/2 (Fig. 3.10b(iii)) the purity Z2(k) is dominated by

the |ψ+〉 future boundary condition, so Bx spends most of its time on the nearest bulk saddle

point B+
x with the deflection at the future boundary similar to (but not identical to) that of the

past boundary. As the fraction k increases, however, the |ψ−〉 contribution begins to significantly

affect the future boundary condition and Bx field is pulled towards Bx < 0 in order for the r-

bit |ψ(t)〉 to have higher overlap with |ψ−〉 at t = T . For sufficiently large k > kc, the future

boundary condition forces an instanton to appear somewhere in the bulk (Fig. 3.10b(iv)).

Because of the extra action cost I∗(γ) of the instanton, the transition point between the

zero- and single-instanton configurations Fig. 3.10b(iii-iv) in the mixed phase γ < γc always

occurs at a critical fraction k = kc(γ) > 1/2 larger than half the system size. By the same

reasoning, we also expect kc → 1/2 as γ → γc due to vanishing instanton cost I∗ → 0 as the
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symmetry-broken saddle-points B±x rejoin at the critical point. Together, these arguments allow

us to map out the major features of the k, γ phase diagram Fig. 3.10 for subsystem purity at times

T ∼ poly(N).

Similar to section 3.3.2, we can estimate the purity Z2(k)/P 2 in each of these phases

by computing the action cost I[ ~B(t)] of the classical time-dependent field configurations ~B(t)

discussed above. Above the critical point γ > γc, the action gets contributions from the trivial

bulk saddle point Bx = 0 as well as the boundary contributions near t = 0, T as illustrated in

Fig 3.10b(i-ii). Similar to what we found in section 3.3.2, the bulk contribution and the t = 0

boundary contributions cancel in the ratio Z2(k)/P 2, so the purity in this phase is controlled

entirely by the difference of future boundary contributions ∆I0
bdy(k, γ). Note that ∆I0

bdy(1 −

k, γ) = ∆I0
bdy(k, γ) from the k ↔ 1− k symmetry present for γ > γc.

Below the critical point γ < γc and for small subsystems k < kc, the zero-instanton

configuration Fig. 3.10b(iii) dominates and we obtain nontrivial contributions I0,T to the action

from the boundary dynamics near t = 0, T and from the bulk saddle point B+
x . As with γ > γc,

the bulk contribution and the t = 0 boundary contribution I0 are common to both Z2(k) and

P 2, so the purity is controlled by the difference of the t = T boundary contributions denoted

∆I+
bdy(k, γ). For larger subsystems k ≥ kc the single-instanton configuration Fig. 3.10b(iv)

dominates and we obtain nontrivial contributions in the action from the boundary dynamics I0,T ,

from the bulk saddle value, and from the bulk instanton with action I∗. Again, the bulk saddle

contribution and t = 0 boundary contribution are common to Z2(k) and P 2, so the ratio is

controlled by I∗+ ∆I−bdy where ∆I−bdy denotes the difference of future boundary contributions in

the presence of an instanton.

Combining these results, we find estimates for the subsystem purity Z2(k)/P 2 in all three
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regions of the phase diagram Fig. 3.10:

Z2(k)

P 2
=



T−T0
a′(T )

exp
[
−N

(
I∗(γ) + ∆I−bdy(k, γ)

)]
γ < γc, k ≥ kc

exp
[
−N∆I+

bdy(k, γ)
]

γ < γc, k < kc

exp
[
−N∆I0

bdy(k, γ)
]

γ ≥ γc

(3.54)

where we have included the ‘entropic’ term (T − T0)/a′(T ) (with a possibly different prefactor

a′(T )) in the single-instanton configuration coming from the zero-mode motion of the instanton.

These k-dependent purity estimates are a generalization of the k = 1 purity estimates in Eq.

(3.38).

The expressions (3.54) are similar to those obtained using capillary-wave theory as a phe-

nomenological description of measurement-induced transitions in 1 + 1d systems [173]. In this

picture, the bulk of the circuit is viewed as a two-dimensional statistical mechanics system sup-

porting a collection of domains separated by domain walls. In the mixed phase, small subsystems

A with nontrivial boundary conditions at the late-time boundary are unable to force most of the

bulk to transition between phases and the system therefore has a domain wall pinned near the

subsystem A. This is analogous to the case γ < γc, k < kc in Eq. (3.54), where the boundary

action ∆I+
bdy is analogous to the energy cost of the pinned domain wall.

Sufficiently large subsystems A at the late-time boundary, by contrast, can force the entire

bulk to transition, leading to a ‘domain-wall decoupling’ effect where it is entropically favorable

for the system to support two decoupled domain walls: one in the bulk that is free to move in

time, and another that is pinned near the small subsystem A. This situation is analogous to the

case γ < γc, k ≥ kc in Eq. (3.54) where the instanton action I∗ corresponds to the energy cost
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Figure 3.11: Subsystem purity critical exponent µ from gradient descent numerics. The
critical subsystem fraction kc(γ) is identified for measurement rates γ < γc just below the critical
point by finding points in the k, γ plane (red) where the boundary action ∆Ibdy is equal to the
single-instanton action I∗ (see Fig. B.4 of Appendix B.5). A linear fit (blue) gives an estimate
µ = 0.99± 0.01, consistent with µ = 1 from analytical arguments.

of the bulk domain wall and the boundary action ∆I−bdy corresponds to the energy cost of the

pinned domain wall. In particular, the entropic prefactor (T − T0)/a′(T ) coming from the zero-

mode motion of the instanton corresponds to the entropy of the decoupled domain wall in the

bulk; in both cases, this additional entropy is the reason why the single-instanton (or decoupled

domain-wall) configuration is favorable despite the additional cost I∗ of creating the instanton

(or domain wall) [173]. While the capillary-wave theory is phenomenological and specifically

tailored for 1 + 1d systems, in Eq. (3.54) we have obtained similar expressions for the same

physical phenomena starting from an exactly-solvable all-to-all microscopic model.
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3.4.2 Critical scaling of kc near γc

We can also study the behavior of kc(γ) close to the bulk phase transition γ = γc, in

the symmetry broken phase. For this, we can numerically compare the action penalty for the

boundary ∆Ibdy ≡ ∆I+
bdy − ∆I−bdy with the instanton action I∗. We perform an optimization of

the fields with the initial configurations corresponding to the two cases in Fig. 3.10b(iii-iv), to

locally minimize the action in Eq. (3.53) for γ . γc. We identify the critical fraction kc & 1/2

by interpolating to find the value of k above which ∆Ibdy > I∗, such that the single-instanton

configuration is dominant (see Appendix B.5 for more details). We find numerically in Fig. 3.11

that kc scales with γc − γ as

kc −
1

2
∼ (γc − γ)µ, for γ close to γc. (3.55)

A linear fit yields an estimate µ = 0.99± 0.01 for the critical exponent.

Close to the bulk critical point, we can also adopt the previously described critical field

theory model, now embellished with a boundary term, to analytically argue that µ = 1. We

showed earlier that the bulk field theory close to criticality is given by the action (3.45). We now

model the boundary effect at t = T with a delta function pinning field with action

I[ ~B]→ I[ ~B] +

∫
dt hBxδ(t− T ). (3.56)

where h is an additional field controlling the strength of the pinning effect.

The delta function is regulated by setting δ(t−T )→ δ(t−T+ε) and takingBx(t) = Bx,bdy
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(a constant) for t ∈ [T − ε, T ]. The equation of motion then implies that ∂tBx jumps across

t = T−ε,−∂tBx(T )+∂tBx(T−ε)+h = 0. Since ∂tBx(T ) = 0, we find that ∂tBx(T−ε) = −h.

In other words, −h is the slope of the Bx(t) configuration at t = T−. Close to criticality, we

expect the following scaling,

h ∝ (k − 1/2). (3.57)

This is because, for k > 1/2, the SWAP-ed boundary condition should dominate, and theBx field

at the future boundary should go lower than the Bx ≈ 0 bulk saddle point, leading to −h < 0 i.e.

h > 0. On the other hand, for k < 1/2, the trivial boundary condition should dominate, and the

Bx field at the future boundary should go higher than the Bx ≈ 0 bulk saddle point, leading to

h < 0. Close to k ∼ 1/2, the linear scaling of h ∝ (k − 1/2) can thus be justified and we expect

our simplified model of the boundary condition to capture the universal physics.

The value of Bx,bdy is determined by appealing to a conservation law. For t < T − ε, the

quantity

H[ ~B] =
1

2
(∂tBx)

2 − V (Bx) (3.58)

is conserved – in the language of classical mechanics this is the statement that the classical Hamil-

tonian H[ ~B] corresponding to the Lagrangian I[ ~B] is conserved. If we consider solutions that

asymptote to a saddle point in the far past, then we know that H = −V (
√
δ) = δ2/4. Now, we

can consider the two different cases as before – firstly where the Bx field configuration asymp-

totes to B+
x =
√
δ, and secondly to B−x = −

√
δ, in the far past. Consider Bx,bdy = Bx(−∞) +a,

where for the two cases, Bx(−∞) = ±
√
δ. Because of the conservation law, we can solve for a

close to criticality where |a/
√
δ| � 1 and we obtain a ∝ −h/

√
2δ. Note, we have selected the

correct sign of a consistent with the fact that higher h should lower the boundary field compared
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to the bulk saddle.

Finally, we read off the excess boundary actions ∆I±bdy for both cases from Eq. (3.56). To

leading order in a we find

∆I±bdy = ±h
√
δ + h O(a)

=⇒ ∆Ibdy = 2h
√
δ. (3.59)

Recall that in section 3.3.3 we found that I∗ ∝ δ3/2. Thus the condition for the zero-instanton

and single-instanton configurations exchanging dominance ∆Ibdy > I∗ occurs when h ∝ δ.

Combined with Eq. (3.57), we find that kc scales as (kc − 1/2) ∝ δ, and thus µ = 1.

3.4.3 Mutual information and error-correction

We can also understand the mixed phase at low measurement rate in this model through the

lens of quantum error correction. Consider γ . γc, and k & kc(γ). For this case, the dominant

saddle-point configuration for the field Bx(t) will be the single-instanton configuration shown in

Fig. 3.10b(iv). On the other hand, for a subsystem fraction k′ = (1−k), the dominant saddle point

will be the zero-instanton configuration shown in Fig. 3.10b(iii). Since the boundary conditions

are symmetric with respect to the saddle points (i.e. the overlap between |ψ+〉 and the r-bit state

favored by B+
x is equal to the overlap between |ψ−〉 and the B−x state), we can deduce a strong

relation between the purities for k and (1− k).

In particular, this symmetry dictates that ∆I+
bdy(1 − k) = ∆I−bdy(k). For the Rényi-2 en-
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tropies at γ . γc and k & kc(γ), we therefore have

S
(2)
k = ∆I−bdy(k) + I∗,

S
(2)
1−k = ∆I+

bdy(1− k),

S
(2)
1 = I∗. (3.60)

From these relations, and the identity relating the two boundary effects, we may deduce

S
(2)
k = S

(2)
1−k + S

(2)
1 (3.61)

at γ . γc and k & kc(γ).

Because we may interpret the SWAPAA′ operator shown in Fig. 3.9 as acting either at

the t = 0 boundary or at the t = T boundary (this is equivalent to cyclically permuting the

SWAP operator in the trace), the entropy S(2)
k can be identified as the Rényi-2 entropy of either

a subsystem of fraction k of the system Q or of the reference R. As a result, Eq. (3.61) can be

understood as the statement that for sufficiently large k > kc, the mutual information between

the (1− k)N qubits in the subsystem A and the N qubits in the reference R vanishes identically,

when measured by the disorder-averaged Rényi-2 entropy. That is,

I(2)
(
A : R

)
= S(2)

(
A
)

+ S(2) (R)− S(2)
(
A,R

)
= S(2)

(
A
)

+ S(2) (R)− S(2) (A)

= S
(2)
1−k + S

(2)
1 − S

(2)
k = 0. (3.62)
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where in the second line we have used the fact that S(2)(A,R) = S(2)(A) because the state ρ̃(V )

is pure.

This result is consistent with the system forming a quantum error correcting code. The

physical interpretation of the result (3.62) is that small parts of the system A contain no infor-

mation about the reference R, after some of the system-reference entanglement is destroyed by

the measurements. To be explicit, consider using the entire remaining system purity to encode

information. We have S(2)
1 logical qubits encoded withinN qubits and a reference entangled with

those S(2)
1 logical qubits. Eq. (3.62) states that any subsystem A of size less than 1 − kc < 1/2

has zero Rényi mutual information with the reference R. If these statements also held for the

mutual information I(A : R) computed from the von Neumann entropies, then the existence of a

recovery channel would be guaranteed which could undo the erasure of the subsystem A.

Of course, these statements are only established here for the 2nd Rényi mutual informa-

tion defined via a certain averaging procedure. More work is therefore needed to establish the

existence of a recovery map since the mutual information can depend on the Rényi index n, and

also on the averaging procedure. In order to make the connection to quantum error correction

rigorous, we would also in principle need to include 1/N corrections and carefully work with ap-

proximate recovery maps. These are interesting topics to pursue in future work; here we content

ourselves with describing the analogous phenomenon at the level of the 2nd Rényi entropy.

3.5 Discussion

In this work we introduced new tools for analyzing measurement-induced purification tran-

sitions in the large-N limit. Specifically, the (2, 1) hybrid Brownian circuit introduced in section
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3.2 exhibits a purification transition described by a relatively simple mean field theory that is

analytically tractable at large N . We represented a particular disorder average over the purity as a

path integral coupling four replicas, and derived the critical properties of the replica permutation

breaking in the system, which is manifested as the purification transition for the system. Since

the model is all-to-all, and the saddle-point point analysis depends on taking the large N limit,

the resulting field theory can be viewed as a minimal mean field description for the purification

transition. Furthermore, since the resulting theory is a simple Ising field theory in 0 + 1 dimen-

sions, the critical exponents can be analytically understood, and also sheds light on the late time

purification in the mixed phase through the mechanism of instanton proliferation. We also de-

rived an entropic relation between subsystem and the reference, which allows us to identify the

mixed phase as being a dynamically generated quantum error correcting code.

This work adds to the growing paradigm of interpreting entanglement dynamics in quantum

circuits through statistical mechanical models in the replica space in the context of hybrid circuits

[157, 162, 163, 164, 166, 176, 228] and more broadly in random circuits [152, 153, 154, 155,

156]. However, this model differs from the earlier works in considering the large-N limit that

allows us to make progress in interpreting entropy-like quantities as path integrals dominated by

their saddle points. This is distinct from the large local Hilbert space dimension which is often

necessary to make analytical progress in the random and hybrid circuits, and these two limits

can lead to distinct physics. Our analysis here focused on contributions to lowest order in 1/N .

However, one can also study the subleading 1/N effects, which we reserve for future studies.

We emphasize that the (p, q) = (2, 1) model studied here using the purity (n = 2) is only

one example of a large family of hybrid Brownian circuit models with measurement-induced

transitions. Straightforward generalizations of the Brownian circuit layers introduced in sec-
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tion 3.2 can generate p-body unitary interaction terms and q-body non-unitary measurement

terms. Further, by introducing additional copies of the state ρ̃ one can probe the phase transi-

tion using higher moments of the density matrix n > 2. We show in Appendix B.2 that each

of these models leads to a distinct (p, q)n path integral representation with a large-N limit.

In particular, for reasonably small n = 3, 4, 5, . . . we expect that the combination of SU(2)

and replica symmetry will kinematically constrain the system to subspaces of small dimen-

sion similar to what we found in section 3.2.4 for n = 2, allowing for analytical access to

the purification transition at large N for higher-order Rényi entropies n > 2. Furthermore,

this setup can be extended to a combination of different q-body measurements, without the uni-

tary part, allowing for exploration of measurement-only dynamics within the hybrid Brownian

setup. Such measurement-only circuits have recently been shown to harbor symmetry-protected-

measurement-only phases [201, 202, 203, 204, 205, 206] and phase transitions, which could be

investigated in these Brownian setups as well.

Other straightforward generalizations include studying the (p, q) models at higher spin S

or for more general degrees of freedom such as SU(Q) spins or fermions. We expect many of

these models to also show measurement-induced transitions governed by boundary conditions

and instanton effects similar to the story presented here for the (2, 1)2 path integral, although

of course the details will differ considerably depending on the specifics of the model. Another

exciting direction is to consider chains or lattices of (p, q) models, with nearest-neighbor Brow-

nian spin-spin interactions between individual clusters. This would allow for direct connection

to measurement-induced phase transitions in 1 + 1d models, including analytical estimates of the

spatial critical exponent. We reserve study of these more general models for future work.
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Chapter 4: Entanglement Phases in large-N hybrid Brownian circuits with long-

range couplings

Sometimes, you just have to be silly.

- Big Panda and Tiny Dragon, James Norbury.

4.1 Introduction

Modern quantum technologies facilitate increasingly detailed access to quantum phases of

matter with complex patterns of many-body entanglement [235]. In particular, long-range inter-

actions decaying with distance as r−α, available in state-of-the-art experiments featuring Rydberg

atoms, trapped ions, and neutral atoms in optical cavities, are capable of dramatically altering the

dynamics of quantum information [236, 237, 238, 239, 240, 241, 242, 243] and rapidly generat-

ing complex many-body entanglement [244, 245, 246, 247, 248, 249, 250]. Our understanding

of entanglement dynamics in generic strongly-interacting many-body systems is still under rapid

development. A prime example is the recent discovery of robust phases of many-body entan-

glement which survive for exponentially long times in hybrid quantum circuits consisting of

scrambling unitary evolution interspersed with repeated local measurements [4, 21, 22, 23, 158,

159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 170, 171, 174, 175, 179, 197, 200, 201, 202,
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203, 205, 206, 251, 252]. At low measurement rates initially local information is dynamically

encoded in many-body entangled states which are robust to subsequent measurements, resulting

in a volume-law-entangled phase stabilized by a dynamically-generated quantum error-correcting

code (QECC) [162, 164, 166, 173, 253]. At higher measurement rates, the many-body entangle-

ment is destroyed, leading to an area-law-entangled phase.

It is highly desirable to develop theoretical tools to easily estimate entanglement properties

of many-body states generated by strongly-interacting quantum dynamics. In this work we de-

velop exactly solvable models composed of large-N clusters of qubits or fermions in a 1D chain

[Fig. 4.1(a)], for which entanglement properties can be computed using path-integral techniques.

In particular, these methods provide simple pen-and-paper calculations for the dynamics of many-

body entanglement that can be immediately applied to problems of experimental interest. We

understand the entanglement phases in these models in terms of a replica-symmetry-breaking

transition of a corresponding statistical mechanical system, and derive analytical expressions for

entanglement entropies, code properties of the QECC phase, and critical properties of the phase

transition. We summarize our primary findings in Figs. 4.1(b-d), including a phase diagram,

critical properties at the phase transition, and the error-correcting properties as a function of the

measurement rate and the long-range exponent α.

Our analysis of these large-N models leads to several new results and insights. First, our

models go beyond the standard set of tools – Clifford circuits, matrix product states, and ex-

act diagonalization – typically used to study entanglement dynamics, and are able to provide

an analytical mean-field understanding of entanglement phases and measurement-induced phase

transitions. Second, the analytical control afforded by our models allows us to derive new results,

namely that long-range interactions generate novel sub-region entanglement structure, leading to
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Figure 4.1: (a) Monitored large-N models with long-range interactions. (b) Entangled phases for
Brownian spin and SYK4 models as a function of measurement rate γ/J and long-range exponent
α. ŜA is the quasi-Rényi entropy of a contiguous subsystem of volume A. (c) Dynamical critical
exponent z and domain wall tension critical exponent ν vs α. (d) Error-correcting properties of
the measurement-induced phases at large L.
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a non-trivial QECC phase with a tunable sub-extensive code distance L2−2α for α < 1, where

L is the number of clusters in the chain. The entanglement phase diagram we find is thus even

richer than previously known [254, 255, 256], and suggests a recipe for constructing QECCs

with enhanced code distance. Third, the models we study are experimentally relevant as large-N

clusters naturally occur in cold atom experiments, including ensembles of atomic spins coupled

uniformly to optical cavities [257, 258, 259, 260] and ensembles of Rydberg atoms clustered

within a single blockade radius [261, 262]. Fourth, our results highlight the crucial role played

by interactions in stabilizing the volume-law phase. We demonstrate this point explicitly by

studying a non-interacting circuit on fermions with long-range hopping and find two distinct

fractal entangled phases [256], but no QECC phases. Lastly, although we focus here on the more

easily computable Rényi entropies, we also expect similar calculations to allow for analytical

calculations of von-Neumann entropies using an appropriate replica limit [263].

4.2 Setup

Here we consider a system Q of particles (qubits or fermions) arranged into a 1D chain of

L clusters, each containing a large number N of particles as shown in Fig. 4.2. The particles

are subjected to two competing dynamics: long-range Brownian unitary interactions U(t) that

rapidly generate entanglement leading to a volume-law phase, and continuous weak monitoring

M(t) that tends to destroy entanglement leading to an area-law phase. To probe the transition

between these two phases, we maximally entangle the system Q with a reference S [Fig. 4.2(a)],

and compute entanglement Renyi entropies Ŝ(n)
A of system subregions A ⊂ Q. We shall show

that these entropies can be readily computed using path-integral techniques, leading to straight-
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Figure 4.2: (a) System Q is maximally entangled with reference R and evolves under monitored
dynamics V (t). (b) Quasi Rényi-2 entropy represented as a quantum circuit. (c) Brownian qubit
chain with L clusters, each composed of N qubits. (d) SYK4 model with two independent chains
of length L coupled by measurement.

forward pen-and-paper estimates for salient physical quantities including code properties and

critical exponents.

For an analytical treatment, we focus on the quasi Rényi entropy [264] of the reduced den-

sity matrix ρA of a contiguous subsystem A of Q, Ŝ(n)
A = − log

ETr[ρnA(t)]
ETr[ρA(t)]n

, where E is a disorder

average over measurement outcomes and circuit realizations 1. The denominator is necessary for

normalizing the state generated by the non-unitary evolution, and the ratio of averages is consid-

ered for ease of calculation over the averaged Rényi entropy which involves averaging the ratio

of two multi-replica quantities.

1The relation between Rényi entropy, quasi Rényi entropy and the von Neumann entropy is explained in Ap-
pendix C.1.
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Ŝ
(2)
A involves tracing over two copies of density matrix Tr [ρ2(t)] with ρ(t) = V (t)ρV †(t),

which we can interpret in terms of time evolution V(t) = V (1) ⊗ V (2)∗ ⊗ V (3) ⊗ V (4)∗ on

four replicas r = 1, 2, 3, 4 [4, 265]. Here, 1, 2 (3, 4) denote the first (second) Rényi replica,

and 1, 3 (2, 4) denote forward (backward) time-evolution. In the replicated Hilbert space, the

quasi Rènyi entropy can be expressed as a ratio of propagators, exp
(
−Ŝ(2)

A

)
= 〈〈SA|EV(t)|I〉〉

〈〈I|EV(t)|I〉〉 ,

for appropriately defined initial and final states |I〉〉, |SA〉〉 in the replicated Hilbert space (see

Appendix C.1). The numerator has twisted boundary conditions |SA〉〉 which swap replicas 1, 3

at the final time t = T [Fig. 4.2(b)], reflecting the SWAP test in the trace Tr [ρ2
A] [266].

We will construct analytically-tractable models for qubits and fermions for which the

propagator EV(t) can be expressed as a large-N path integral with classical action NI that is

amenable to saddle point analysis. Consequently, the quasi Rényi entropy is simply proportional

to the difference between the large-N saddle-point actions with and without the SWAP boundary

condition [4, 265, 267], Ŝ(2)
A ∝ N (ISWAP − I) .

4.3 Hybrid Brownian circuit on qubits

We first consider a system of qubits Sr,i,α residing in clusters r and labeled by an intra-

cluster index i and spin component α = x, y, z. During each time step ∆t, the qubits evolve

under a two-body scrambling unitary matrix U(t) = exp [−iH(t)∆t/2] for half the duration, and

under one-body weak measurement for the rest of the time. The unitary is generated by

H(t) =
∑

r,i<j,αβ Jijαβ(t)SriαSrjβ

+
∑

r′ 6=r,ijαβ J̃
rr′

ijαβ(t)SriαSr′jβ, (4.1)
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with intra-cluster coupling Jijuv, and inter-cluster coupling J̃rr
′

ijαβ between spins at site r with

spins at r′ [Fig. 4.2(c)]. For the weak measurement, a random one-body operator at the given

time, O(t) =
∑

i,α n
α
i (t)Siα is coupled to an auxiliary qubit, which is then projectively mea-

sured followed by post-selection (see Appendix C.2). This results in a deterministic evolu-

tion of the state with a non-unitary operator M(t) ∼
(
1− 1

2
O∆t− 1

8
O2∆t2 + · · ·

)
. The sys-

tem evolves under a circuit constructed by stacking alternating layers of U(t) and M(t) gates,

V (t) ≡
∏T

t=0M(t)U(t).

We consider Brownian Gaussian couplings and measurements with zero mean and vari-

ance, E [n(t)n(t′)] ∼ δtt′/∆t, E [J(t)J(t′)] ∼ δtt′/(N∆t) and E
[
J̃(t)J̃(t′)

]
∼ gJ |r1−r2|−2αδtt′/(N∆t)

(Appendix C.2). Here we have suppressed the indices of n, J, J̃ which should be considered to

be independent and random, and the factor of N is introduced for a meaningful large-N limit.

We also take the continuum time limit ∆t→ 0. This model allows us to make analytical progress

in accessing the quasi-Rényi entropies.

We now introduce multiple replicas u, v ∈ {1, 2, 3, 4} of the system, and use SWAP tests

between the replicas to measure Rényi entropies [213, 216]. Averaging over the random cou-

plings J, J̃ , n introduces inter-replica interaction, which in the large-N limit are mean-field cou-

plings Guv
r ∼ 1/N

∑
i Suri · Svri between replicas u, v. We decouple the G fields by introducing

Hubbard-Stratonovich replica-fields iF uv
r . The averaged circuit EV(t) can now be expressed

as a path integral in these fields (Appendix C.2), EV(t) =
∫
D [iF uv

r ] exp (−I [iF uv
r ]) with the

action,

I[iFuvr ]
N

=
∑

r

[∑
u<v

∫
t

(
(−1)u+v+1

∑
r′ Jrr′ (iF uv

r ) (iF uv
r′ )

−Γ (iF uv
r )
)
− logKr

]
. (4.2)
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Kr = Tr
[
exp

(∫
t

∑
u<v

−iFuvr
(S+1)2

(Sur · Svr )
)]

is the spin propagator which determines the bulk the-

ory. The renormalized interaction between different sites is long-range, Jrr′ ∼ |r − r′|−2α (Ap-

pendix C.2), For specific matrix elements like 〈〈SA|EV(t) |I〉〉, the spin propagatorKr has to be

evaluated with fixed boundary condition instead of the trace.

4.4 Replica permutation symmetry breaking

The action (4.2) is invariant under the replica symmetry group G = (S2× S2)oZ2, where

the two inner S2
∼= Z2 denote permutations of the forward and backward replicas 1 ↔ 3 and

2 ↔ 4 [4, 174]. The outer Z2 in the semidirect product is generated by time-reversal T on four

replicas followed by exchange of even and odd replicas 1 ↔ 2, 3 ↔ 4. The boundary states for

the entropy Ŝ(2)
A explicitly break 1↔ 3 (or equivalently 2↔ 4) symmetry.

Saddle point analysis [4] of the bulk action in the mean field limit reveals a phase transi-

tion at γc = J
9

(1 + 2gζ(2α)) with the Riemann Zeta function ζ(α) ≡
∑∞

r=1
1
rα

, and an order

parameter field φ ∼ 2
3
√

3
(iF12 + iF34 − iF14 − iF23). For γ > γc the saddle point is φ = 0,

while for γ < γc, φ is non-zero and comes in a pair, φ ∝ ±
√
γc − γ. The replica permutation

1 ↔ 3 is equivalent to φ ↔ −φ symmetry, which is spontaneously broken for γ < γc. The

Landau-Ginzburg field theory is given by (see Appendix C.3)

Ieff
N

=
∫
t,r

[−φ∂2
t φ− b

∫ ′
s

φrφs
|r−s|2α − φ∂

2
rφ− δ

2
φ2 + φ4

4
], (4.3)

which for 2α > 1 has a phase transition effected by the mass term δ ∝ γc − γ, with δ > (<)0

being the symmetry-broken (symmetric) phase, and the Z2 phase transition occurring at δ → 0.

The long-range term appears with a regulated integral:
∫ ′
s

to be read as
∫
R\(r−ε,r+ε) ds, with an
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Figure 4.3: Domains and domain walls in the anisotropic Ising model corresponding to the quasi-
entropy Ŝ(2)

A of a small subregion A in the ferromagnetic phase (a, black φ > 0 and white φ < 0
are symmetry-broken domains separated by a domain wall), and the paramagnetic phase φ = 0
(b, light gray). The entropy of the complement subregion Ac corresponds to one of two possible
competing domain-wall configurations (c,d).

ultraviolet cut-off ε. For b 6= 0, this is the long wavelength theory of an anisotropic long range

Ising model [268, 269, 270] in 2D, where the interaction is long-range along space and short-

range along time. For 2α < 1 the power law contribution diverges, so J must be scaled with L

to take the thermodynamic limit: the system behaves as a single all-to-all cluster with NL qubits

without any volume to area-law transition. There is however a phase transition in the purification

times for the system and its parts [4].

For 2α > 3 the long-range term is irrelevant and the transition is governed by the short-

ranged fixed point. For 2α < 3, the underlying Ising model is anisotropic with a non-trivial

dynamical critical exponent,

z =


1 2α > 3

2α−1
2

1 < 2α < 3.

(4.4)

In this regime we have two distinct correlation lengths ξt ∼ δ−
1
2 and ξr ∼ δ−

1
2z corresponding to

the time-like and space-like directions, respectively.
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4.5 Entanglement phases

Using the effective action (4.3) we now calculate the quasi entropy of ρA(t) for a contigu-

ous region A ⊂ Q. The twisted boundary condition in ISWAP corresponds to pinning φ > 0

within the subregion A at the future time boundary t = T , and pinning φ < 0 on all other

boundaries [Fig. 4.3(a,b)]. In the symmetry-broken phase δ > 0 the bulk organizes into domains

separated by a domain wall [Fig. 4.3(a)] such that the bulk field is positive φ > 0 (black) within a

temporal correlation length ξt of the final time-boundary of the subregion A and negative φ < 0

(white) throughout the remainder of the bulk. In the symmetric phase δ < 0 only the trivial bulk

saddle point φ = 0 [Fig. 4.3(b), light gray] contributes, and therefore this pinning effect is only

relevant very close to the final time boundary . For A � L the excess energy ISWAP − I of this

configuration compared to the configuration without the twisted boundary condition is simply

given by the energy cost of the power-law interaction acting along a spatial slice of height ξt:

Jξt

∫ ′
r∈A,s∈Ac

drds
1

|r − s|2α
∼ JξtA

2−2α + const. (4.5)

In the symmetry broken phase δ > 0 (see Appendix C.4), the twisted boundary condition at

t = T supports a bulk domain wall with spatial extent A and time-like height ξt. The space-like

part of the domain wall with spatial extent A has a domain wall tension σr ∼ ξt (φ/ξt)
2 ∝ δ

3
2 .

The time-like part of the domain wall also contributes an energetic term (sub-extensive in A)
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arising from the power-law just like (4.5). Combining these results together we have 2,

Ŝ
(2)
A

N
∼


cJξtA

2−2α for γ > γc

J (σrA+ cξtA
2−2α) for γ < γc.

(4.6)

We emphasize that the power-law correction to the entropy in the volume-law (symmetry-broken)

phase is a novel result, which leads to enhanced error-correcting properties for long-range hybrid

circuits.

4.6 Error correcting properties

Ŝ
(2)
R in the volume-law phase γ < γc can be understood to be the ‘rate’ of the QECC, which

refers to the amount of logical information of R that is encoded in Q and protected from ‘errors’

due to measurements with a Code Rate ∼ Ŝ
(2)
R ∼ σNL. The mutual information Î(2)(A : R) =

Ŝ
(2)
A + Ŝ

(2)
R − Ŝ

(2)
Ac between a subregion A and the reference R is related to the contiguous ‘code

distance’, which refers to the size of the largest contiguous subsystem ofQ whose deletion would

not spoil the encoded information of R [173]3. From (4.6) we have Ŝ(2)
A ∼ N (σA+ cξtA

υ) +

O (1) and Ŝ(2)
R ∼ NσL+O (1), where υ ≡ 2− 2α. The quasi entropy Ŝ(2)(Ac) is the minimum

of two configurations in Fig. 4.3(c,d) [173, 253],

Ŝ
(2)
Ac ∼ min

{
Ŝ

(2)
A + Ŝ

(2)
R , N (σ(L− A) + cξt(L− A)υ)

}
.

2In the absence of power-law terms, we obtain 1/N logarithmic corrections to the entropy in the symmetry-
broken phase for the local model, which arise from the fluctuations of the domain wall [173].

3This statement comes with two important caveats. First, the theorem proved in [173] rigorously applies only
to Clifford circuits (stabilizer states), whereas here our Brownian circuit elements clearly take the quantum state
outside the Clifford group. Second, to make meaningful information-theoretic arguments one must ultimately work
with the disorder-averaged von Neumann entropy −E[Tr [ρA log ρA]]
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The cross-over between the two occurs for a critical subregion size A∗ ∼ 1
2σ
Lυ +O(N−1). Thus,

for A < A∗ we have Î(2)(A : R) ≈ 0, and NA∗ can be identified as a power-law code distance,

‘Code Distance’ ∼ NLυ for γ < γc. (4.7)

The distance can be tuned with the long-range exponent α, and is sub-linear but scales favorably

with L for 2α < 2. For 2α > 2, the code distance is 1/N suppressed and scales as logL in our

model (see Appendix C.5).

4.7 Monitored SYK chain

We now turn to the study of the effects of long-range couplings on the fermionic mon-

itored Brownian Sachdev-Ye-Kitaev (SYK) chain circuit introduced in [265]. This allows us

to separately consider the effects of the long-range coupling and the interactions, which high-

light the role of interactions on the entanglement properties of the states generated by hybrid

circuits. The setup contains a left (L) and a right (R) chain with L clusters of N Majorana

fermions each [265, 271, 272] [Fig. 4.2(d)], with chain undergoing intermittent unitary evolution

and monitoring. The unitary evolution is generated by inter-cluster long-range two-fermion of

strength Jrr′ij ∼ |r − r′|−α and on-site four-fermion interaction of strength U r
ijkl, which are both

independent Brownian variables for each chain. We study the free-fermion limit U → 0 which

allows us to consider the effects of long-range hopping and an on-site interaction separately. The

L andR chains are coupled by a inter-chain parity measurement for each site, described by Kraus

operators, {M r,i
1 ,M r,i

2 }=
{
π−r,i +

√
1− s2π+

r,i, sπ
+
r,i

}
, where π±x,i = 1

2
(1 ∓ i2ψr,L,iψr,R,i). s de-

notes the measurement strength, chosen as [273] s =
√
γ∆t, with ∆t→ 1 keeping γ fixed. It is
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Figure 4.4: Phases of long-range monitored SYK2 model.

convenient to define Ĵ = Jζ(2α) and γ̃ = γ/Ĵ and Ũ = U/Ĵ .

4.8 Landau-Ginzburg theory

The theory for quasi-Rényi entropy for the free-fermionic case (U = 0) is invariant under

the replica symmetry group (O(2)×O(2))oZ2 (see Appendix C.5), where the twoO(2) transfor-

mations rotate the 1, 3 and 2, 4 contours, respectively. This continuous symmetry (in contrast to

the discrete symmetry for the qubits) is spontaneously broken for γ<Ĵ , resulting in a Goldstone

mode θr [274] corresponding to the relative O(2) rotation angle at site r. The effective theory of

the Goldstone mode can be derived,

Ieff

N
=
ρ

2

∑
k

∫
Ω

(
Ω2

γ2
+ (1− εk)

)
|θk(Ω)|2, (4.8)

where θk = 1√
L

∑
r θre

−ikr and εk ≡ 1
ζ(2α)

∑∞
r=1

cos kr
r2α

results from the power-law hopping,

similar to [267], and the stiffness ρ = Ĵ(1− γ̃2) vanishes at γ̃ = 1, indicating a phase transition

at γ = Ĵ . The long-range couplings lead to a nontrivial dynamical exponent as before (4.4).

In the symmetry-broken phase (γ/Ĵ < 1), the boundary condition pins the angle θ = π/2
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in subsystem A, and θ = 0 in Ac [267], equivalent to creating half-vortices at the left and right

boundaries of A. Ŝ(2)
A /N can be mapped to the correlation function of a vortex creation operator

and scales as logA for α > 3/2 (long-range coupling is irrelevant and we get logarithmic free

energy for vertices), and as A3/2−α for 1/2 < α < 3/2 (Appendix C.5). In the symmetric

phase same analysis as (4.5) leads to a distinct fractal phase when α < 1 [Fig. 4.4]. The

free energy of vortices is proportional to the stiffness and its critical exponent is simply ν = 1

for all α > 1/2. When we turn on interactions U > 0, the replica symmetry is reduced to a

discrete group (C4×C4)oZ2. There is consequently a Z4 symmetry-breaking transition which

reproduces the same entanglement and error-correcting phase diagram as the spin model as shown

in Fig. 4.1(b).

4.9 Concluding remarks

The phase diagram in Fig. 4.1 can be readily generalized to Brownian chains in higher

dimensions, and demonstrates an entanglement transition for all 2α > d, with non-trivial dynam-

ical exponent z = (2α−d)/2 for d < 2α < d+2. The subextensive correction arising from (4.5)

is A2d−2α. It will be interesting for future studies to study the Rényi entropy for general n and

the entanglement entropy at n→ 1, and quantify the 1/N effects on the phase diagram.
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Chapter 5: Efficient tensor network simulation of quantum many-body physics

on sparse graphs

“You don’t do much,” said Tiny Dragon.

“I’m full of potential,” said Big Panda with a yawn.

- Big Panda and Tiny Dragon, James Norbury.

5.1 Introduction

Quantum many-body physics is generally studied on regular d-dimensional lattices since

the underlying graph is motivated by naturally occurring crystalline solid state materials and

lattice regularizations of quantum field theories. However, there are interesting quantum phe-

nomena beyond those feasible on lattices. On one hand, properties of most topological phases

of matter do not depend on the exact triangulation of the underlying manifold. In the other ex-

treme, one can study interacting quantum many-body systems on underlying graphs which do

not have any smooth manifold structure. The corresponding classical problem was first studied

by Bethe [275] in the context of alloys, and since then in the context of spin glasses on random

graphs [276]. Previous studies of quantum many-body systems focusing on Bethe lattices and

generic sparse graphs have identified several interesting phenomena including approximate solv-
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ability leading to mean-field numerical methods [277], quantum spin glass states [278], and the

absence of Goldstone bosons on ‘expander’ graphs [279].

From a modern quantum information perspective, many-body sparse graphical models typ-

ically possess the feature of fast quantum information scrambling, which was demonstrated first

in all-to-all connected graphical models such as the Sachdev-Ye-Kitaev (SYK) model [12, 24].

These models are holographically dual to a quantum theory of gravity in one higher dimen-

sion [12, 24, 25]. In a SYK-like model on N sites, any local quantum information spreads across

the whole system in a short scrambling time, t∗ ∼ logN [26, 27]. On the other hand, in generic

local models on d-dimensional lattices, typical scrambling times are long t∗ ∼ N1/d. In fact,

having a complete (i.e. all-to-all connected) graph is not necessary for getting fast scrambling

- generic sparse graphs can also scramble information quickly while retaining the feature of

approximate solvability [28, 29]. Sparse graaphical models are also attractive platforms to be

simulated on a quantum processor, since the sparse connectivity of the graph can lead to effi-

cient quantum simulation. There have already been efforts to realize non-trivial graphs as the

platform for many-body physics in quantum simulation architectures [280]. In this context, re-

liable classical algorithms to simulate quantum many-body models on sparse graphs are highly

desirable.

Tensor network states are useful classical ansätze for representing and manipulating entan-

gled quantum states [281, 282]. They have been used to study quantum many-body systems,

most successfully in 1 spatial dimension, where tensor networks are routinely used to study

ground state properties of gapped Hamiltonians [283, 284], and simulate short-time quantum

time evolution [285].

Tensor network states, more specifically matrix product states, can be readily generalized to
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Figure 5.1: Approximate ground state preparation for a mixed-field Ising model defined on
a random regular graph on 40 vertices [inset]. The parameters of the Hamiltonian for the local
terms coupling the quantum spins on nearest neighbors on the graph are Jzz = −1, and on-site
terms hx = −2, hz = −0.5. The variational algorithm is described in Sec. 5.5. Here we show
that the ground state energy has converged by increasing the bond dimension χ from 1− 3.

Figure 5.2: Approximate ground state preparation for a mixed-field Ising model defined on
a random regular graph on 10 vertices [inset]. The parameters of the Hamiltonian are same as
Fig. 5.1. Here we show that the ground state energy of the variational ground state χ = 2 has
converged to the exact ground state energy value, which is accessed by exact diagonalization. We
also estimate the overlap of the variationally prepared state with the exact ground state obtained
from exact diagonalization, | 〈ψvar|GS〉|2, which goes to 1 after a few steps of the variational
algorithm. 177



higher dimensions [286]. In higher dimensions the representation of such states is still efficient,

i.e. the numerical resources required to represent the state scales polynomially with the number of

sites of the underlying graph. However the computation of expectation values of local operators

is prohibitively hard; one dimension is special because there exists an efficient way to contract

tensor networks that fails in higher dimensions. In fact, contraction of generic tensor network

states in a 2-d lattice or Projected Entangled Pair States (PEPS) is #P complete [287], so any

NP hard problem can be encoded in such tensor networks. However, approximate methods of

contracting classes of 2-d tensor networks (for example, [286, 288, 289]) or efficient manipulation

methods for a restricted class of 2-d tensor networks (for example, [290, 291]) are still very useful.

In this work, we demonstrate that approximate local properties of certain class of tensor

network states defined on sparse graphs can be efficiently computed using message passing or

Belief Propagation (BP) algorithms [292]. Efficient classical simulation of generic sparse graph-

ical models are severely restricted by the presence of cycles or loops in the graph. However, we

show in this work that the locally tree-like property of generic sparse graphs allows us to effi-

ciently study the properties of quantum states on such graphs using tensor network contraction

by belief propagation. Before describing the details, we first demonstrate the usefulness of such

a method. In Fig. 5.1, we variationally access the ground state properties of strongly interact-

ing mixed-field quantum Ising model defined on a sparse random regular graph with 40 vertices.

These system sizes are inaccessible to exact diagonalization, and traditional tensor network meth-

ods also do not work well for such graphs, as tensor network contraction is severely affected by

the presence of cycles in the graph. However, we show in this work that the BP algorithm can

efficiently compute local energy functionals for tensor network states defined on such graphs,

which allows us to systematically access the ground state energy in a standard laptop in a few
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minutes. In Fig. 5.2 we show by comparison to an exact computation in a graph with 10 vertices

that the prepared tensor network state is indeed the ground state of the Hamiltonian considered.

In later sections we will describe the method and demonstrate careful numerical benchmarks.

A typical class of problems where BP can be employed is in extracting marginal distribu-

tions from Gibbs distribution of classical spin models. Consider a classical spin model defined

on a graph G, with the Hamiltonian H = −
∑

a,b∈Na hab(sa, sb) where Na refers to the graph

neighborhood of the site a, and hab refers to the local energy on an edge ab. The Gibbs distribu-

tion P ({si}) ∝ e−βH({si}) is efficiently represented by specifying the edge energy functionals hab

for all edge ab ∈ G that connect the vertices a and b. However, accessing marginal probability

distributions of one (or few spins) requires one to contract the Gibbs distribution over the graph

G, which can be hard, and BP algorithms can provide an approximate solution to this problem. A

generic theory for the success of BP is still an area of active research, however, it has been shown

that the results obtained from BP algorithms are equivalent to the Bethe Peierls approximation

(where the underlying graph is assumed to be an infinite tree Bethe lattice) [293]. On a tree graph

(which by definition lacks cycles), the BP algorithm is exact, while on a graph with cycles there

is no guarantee that the algorithm will converge or provide the correct answer. However, these

algorithms are routinely used even for graphs with cycles, and empirically provide correct an-

swers when the underlying graph is locally tree-like [31, 294]. In fact, BP has been instrumental

in decoding classical low-density parity-check (LDPC) error correcting codes [31].

Tensor network states can be mapped to the graphical models described above [295], where

the amplitude corresponding to the tensor network state is analogous to the Gibbs distribution

over a classical graphical model, and accessing the local reduced density matrices is analogous

to marginalizing the Gibbs distribution. Based on this understanding, it was shown by Leifer and
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Poulin that tensor network contraction can be done using BP [30]. More recently, Alkabetz and

Arad [296] showed that BP algorithms can be used to access local observables in PEPS defined

over 2-d lattices, and provide the same answer as other widely used approximate PEPS con-

traction methods [289]. Led by the intuition of BP being more successful when the underlying

graph is locally tree-like, we employ BP to study tensor network states on sparse locally tree-like

graphs, and develop variational methods to prepare tensor network states that are approximate

ground states of local Hamiltonians defined on such graphs. This also allows us to study inter-

esting physics questions such as the phase diagram of a transverse field Ising model across the

symmetry-breaking quantum phase transition.

Local properties of thermal states of sparse graphical Hamiltonians have been previously

studied using the quantum cavity and quantum belief propagation methods [297, 298, 299, 300,

301], which are quantum formulations of the BP-inspired classical cavity algorithms [302]. The

idea in those works is to represent the quantum partition function as a classical probability distri-

bution and find its marginals using belief propagation. Our work builds a bridge between those

methods and the problem of tensor network contraction on generic graphs, which can lead to

future cross fertilization of these fields.

Let us briefly comment on the layout of the rest of the paper. We first introduce notation

and brief definitions for graphs and sparse graph tensor network states in Sec. 5.2. In Sec. 5.3

we describe the BP algorithm for contracting tensors and explain the intuition why the method

is expected to work for accessing local expectation values for sparse tensor network states. In

Sec. 5.4 we demonstrate the viability of this method by computing local operator expectation

values for a variety of graph-like quantum states on random regular graphs. Finally, in Sec. 5.5

we use the BP contraction method to variationally prepare ground states of local Hamiltonians
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defined on sparse graphs. This allows us to study the phase diagram of a transverse field Ising

model on a random regular graph across the usual Z2 symmetry-breaking transition. We end by

commenting on the prospects of the BP contraction methods in tensor networks, and studying

many-body physics on sparse graphs.

5.2 Tensor networks on graphs

A graph G(V,E) is specified by its set of vertices V , and the set of edges E connecting any

two vertices. G is r−regular if the degree, or the number of neighbors of each site, is constant

and equals to r. If any subgraph of G forms a closed chain, we call that a cycle; tree graphs are

graphs which have no cycle. A complete graph on N vertices is one where every vertex has an

edge connecting it to every other vertex, i.e. it is the unique (N −1)-regular graph on N vertices.

Given an underlying graphG, we can define a class of tensor network states, by assigning a

set of tensors located on each vertex, where the virtual bonds correspond to the edges connecting

that site (see Fig. 5.3a-f). A tensor network state with uniform bond dimension (i.e. the dimension

of the virtual space) χ and physical dimension d on r-regular graph is specified by a set of r + 1

rank tensors with dχr entries.

Matrix product states form a class of these general tensor network states when the under-

lying graph is a 1-dimensional lattice (Fig. 5.3b). Accessing local operators on such 1-d tensor

network states is efficient because there is an efficient algorithm to contract it, which depends

on the fact that any connected subgraph can be separated from the lattice by cutting only 1 or 2

edges; hence any matrix manipulation during the contraction procedure scales linearly with the

number of verticesN of the graph. This feature works not just for 1-d, but for any tree-like geom-
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Figure 5.3: Tensor networks on generic graphs. The fundamental component is the on-site
tensor (a), with physical dimension d and virtual bond dimension χ. These can be put on any
underlying graph: 1-d lattice (b), a tree (c), 2-d lattice (d), and a random regular graph(RRG) (e).
We also show the scaling of the maximal entanglement of the tensor network ansatz for a typical
fraction of the graph (b-e). On RRG, volume law states can be represented by finite χ tensor
networks. In (f) we compare the graph properties of a complete graph, random regular graph
(RRG) and a d-dimensional lattice. The properties being compared are: diameter or maximal
distance between any two vertices, expansion defined in Eq. 5.1, number and type of cycles, and
degree or number of neighbors of any vertex.
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etry, which is why tree tensor networks (Fig. 5.3c) are efficient ansatz for any tree-like quantum

model [303, 304]. However this does not hold true for 2-d lattices on N vertices (Fig. 5.3d). The

number of dangling edges of any connected subgraph (or the “surface area”) for such lattices can

be upto ∼
√
N , which implies that the slowest step for tensor contraction will require manipulat-

ing an array of size χ
√
N which has an unfavorable exponential scaling. Another way of seeing

why contracting 2-d lattices is difficult is by noting that 2-d lattice has cycles at all scales, while

tree tensor networks are acyclic, and 1-d lattice has either no cycle (open boundary condition) or

one very long cycle (periodic boundary condition).

Lattices are atypical graphs - which can be understood by considering the expansion prop-

erty of typical graphs. For any subset of vertices S ⊂ V , we define E(S) to count the number of

dangling edges in G with one extremity in S and the other in V \ S (E(S) captures the notion

of “surface area” of S). One can formally define an expansion coefficient, which is the minimal

ratio of the “surface area” to the volume for any subgraph of G,

h(G) = min
S
{E(S)/|S| for ϕ 6= S ⊂ V and |S| ≤ N/2}. (5.1)

For lattices, h(G)→ 0 asN →∞, i.e. the volume scales faster than the “surface area”. However,

generic graphs have positive “expansion”, which can be formalized by considering a probabilis-

tic scheme to construct generic graphs, namely random regular graphs [305]. A random regular

graph is a graph drawn from a probability space GN,r, which are all r-regular graphs on N ver-

tices. It can be shown that a random regular graph is an expander graph for large N with high

probability, i.e. they have positive expansion, h(G) = c > 0 [305]. Note, these graphs are sparse

and the number of edges only scales linearly with N , since the graph is r−regular.
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From this general definition, it would seem that manipulations of tensor networks defined

on such expander graphs would be prohibitively inefficient, as a naive contraction will now have

to deal with matrix multiplication over an index that scales as badly as χO(N). At the same

time, because of the underlying graph structure, a tensor network defined on such a graph can

represent a volume law entangled state with even a finite bond dimension χ. The entanglement

of a subregion of the tensor network satisfies, S ≤ cN logχ, where c is the expansion, and hence

the maximal entanglement scales as a volume-law. For χ > elog 2/c, the above tensor network

bound exceeds the universal bound S(A) ≤ |A| log 2. This suggests that with χ ∼ elog 2/c but

independent of N one can already represent nearly maximally entangled state on asymptotically

large contiguous subsystems. Hence, we expect that highly entangled states on such graphs can

be represented with very modest bond dimension.

However, generic expander graphs are also locally tree-like, which arises due to their spar-

sity. Typical graphs of GN,r have a small number of short cycles. In fact, asymptoticallyN →∞,

the number of cycles of length i behaves as independent Poisson random variable with mean

(r − 1)i/(2i). Note, however that the diameter of an expander graph is ∼ logN , so for a given

sized graph, the cycles of size logN must exist. Still, starting from any vertex, at large N one

has to go farther and farther to see any cycles at all, which makes these graphs ‘locally’ tree-like.

This locally tree-like feature is special to expander graphs, which is not present for d-

dimensional lattices. We find that this property actually allows us to contract tensor networks

defined on such graphs efficiently.
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Figure 5.4: Belief propagation algorithm to contract tensor network on a graph. (a) shows a
patch of the tensor network state |ψ〉. Expectation value of any local operator O can be computed
by considering |ψ〉 and its conjugated copy and contracting them. These can be equivalently
computed using the message tensors, as shown in (b). The reduced density matrix ρij of the state
|ψ〉 for two nearest neighbor sites in terms of the local message tensors is shown as well. (c)
pictorially depicts the central BP equation Eq. 5.2, which is iterated (as in Eq.5.3) to find fixed
points of the message tensors.
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5.3 Belief propagation method to contract tensors

We now describe the belief propagation algorithm for contracting tensor networks, follow-

ing the method introduced in [296]. Suppose we are given a tensor network state |ψ〉 defined on an

underlying graphG. Computing the norm 〈ψ|ψ〉 or expectation value of an operator 〈ψ| O |ψ〉 re-

quires us to take two copies of the tensor network (one with a complex conjugate), stack them and

introduce the operatorO if necessary, and trace over the physical legs (see Fig. 5.4a). The result-

ing network is a double-edged factor graph [296], and we will use BP to compute its marginals,

which in our case corresponds to the local reduced density matrices.

We define a ‘message’ tensor ma→b corresponding to each directed edge connecting two

vertices a, b ∈ G, with an added direction a → b. ma→b(x, x
′) is a χ × χ dimensional tensor

which corresponds to the contraction of the tensor and its conjugate for all sites in G which are

connected to b via a. Inma→b(x, x
′), (x, x′) refer to the indices corresponding to the virtual bonds

along ab of the tensor |ψ〉 and its conjugate, which also makes the matrix ma→b positive semi-

definite. By this definition, one can set up a recursive self-consistency relation that relates the

message tensor to their nearest neighbor state tensor ψi and the next-nearest neighbor message

tensors,

mi→j = Tr

ψiψ∗i ∏
k∈Ni\j

mk→i

 . (5.2)

Here,Ni \ j refers to the neighboring vertices of i apart from j. The self consistency Eq. 5.2 can

be pictorially represented as shown in Fig. 5.4c.

Note, the definition ofma→b as the result of the contraction of the tensor network connected

to b ‘via’ a only makes sense when the underlying graph has no closed chain connecting a and
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b, i.e. the graph is a tree. However, the recursive definition Eq. 5.2 is a consistent definition for

a positive definite message tensor that works for any graph. Our goal is to access self-consistent

message tensors that satisfy the recursive equation Eq. 5.2 by the Belief Propagation algorithm,

and then identify that as the result of an actual contraction of the tensor network. In order to do

that, we simply iterate the self consistency equation, starting from some initial choice of positive

semi-definite message tensors for each directed edge of the graph at t = 0. At any subsequent

time-step, we get message tensors,

m
[t+1]
i→j = Tr

ψiψ∗i ∏
k∈Ni\j

m
[t]
k→i

 . (5.3)

We look for fixed points of this iterative algorithm. Note that this can be an uncontrolled step, and

in general we are neither guaranteed that a fixed point exists, nor that the fixed point corresponds

to the correct marginal contraction. Furthermore, there is a ‘gauge’ freedom in the definition of

the message tensor, as many message tensors can correspond to the contraction of the same tensor

network state. However, for tree-like graphs, this is guaranteed to converge to the result from the

contracted tensor. As was pointed by [296], even on a 2-d lattice where there is a proliferation of

short cycles, this algorithm can return good approximate answers.

Extracting local reduced density matrices is straightforward once we have the self-consistent

message tensors, and only requires local contraction of the state tensor with the message tensor,

as shown for a neighboring 2-site reduced density matrix in Fig. 5.4b.

The central BP equation for tensor network contraction Eq. 5.3, for an underlying graph

with cycles is a version of the loopy-BP algorithm. As mentioned in the introduction, while

loopy-BP is not guaranteed to succeed, it has been shown to work extremely well in many practi-
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cal scenario. Perhaps its most useful application lies in the decoding of low-density-parity-check

(LDPC) codes [306]. Importantly, LDPC codes are asymptotically locally-tree like, hence the

effective ‘Bethe’ or tree-approximation inherent in the BP algorithm works well there.

Motivated by this observation, we employ the BP algorithm to access local expectation

values for tensor networks defined on random regular graphs. The intuition is as follows: consider

a state on the graphG with correlation length ξ. Typical lengths of cycles on random regular (and

in general sparse expander) graphs is ∼ logN . Hence, if ξ < logN , the state is expected to look

tree-like, and the BP algorithm should converge to the right answer. Crucially, in sparse expander

graphs the typical cycle length diverges in the thermodynamic limit, so one can expect successful

contraction of a wide scale of states which are not just short-range correlated.

5.4 Graph states and square root states

In this section we demonstrate the usefulness of this method to extract local information

from a class of tensor network states defined on sparse graphs. We introduce a class of tensor net-

work states for qudits with local Hilbert space dimension d which can be efficiently represented

as a tensor network with bond dimension χ = d on any underlying graph G,

|ψ〉 ∼
∑
{s}

 ∏
ab∈EdgeG

M(sa, sb)

 |{s}〉 , (5.4)

where sa is a basis of the d-dimensional local qudit Hilbert space. These states can be called

generalized graph states. We consider the following decomposition of the d × d dimensional

matrix M = AAT . Now, the state in Eq. 5.4 can be constructed out of the A matrices explicitly

and locally. Consider a vertex a ∈ G, with degree r. Consider the generalized identity tensor

188



Is,α1,..,αr = δsα1δ2...δsαr , where the s index refers to the physical qudit index and αi refer to the r

virtual indices. Now we can multiply the A matrices to I to get the local tensors T corresponding

to the state in Eq. 5.4,

(5.5)

5.4.1 Square root states of classical models

Consider a classical Ising model on any generic graph,

Hc = −J
∑
i,j∈Ni

sisj, (5.6)

with the partition function Z(β) =
∑
{s} e

−βHc .

We consider the square root state associated with it [67],

|ψ〉 =
1√
Z(β)

∑
{s}

e+βJ
2

∑
i,j∈Ni

sisj |{s}〉 . (5.7)

We denote the Pauli spin operators as X, Y, Z and the identity operator as 1. These states are

called square root states, since these can be understood to be the square root of the Ising model

partition function; in fact if we consider the unnormalized state, ˜|ψ〉 =
∑
{s} e

+βJ
2

∑
i,j∈Ni

sisj |{s}〉,
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the classical partition function is equal to its norm Z(β) = ˜〈ψ|ψ̃〉. Expectation value of any clas-

sical operator (i.e. an operator constructed out of Zi operators) in the state |ψ〉 is equal to an

averaged classical statistical quantity,

〈ψ|Za |ψ〉 = 〈Za〉Hc =
Tr{si}Zie

−βHc({si})

Tr{si}e−βHc({si})
. (5.8)

The latter can be estimated by classical Monte Carlo methods, so we can access the expectation

value of classical operators easily. However, accessing quantum operators, for example 〈Xa〉 is

not possible using a naive Monte Carlo approach.

The square root state in Eq. 5.7 can be shown to be the ground state of a parent quantum

Hamiltonian defined on the graph,

H =
∑
a

[
−Xa + e−βJZa

∑
b∈Na Zb

]
. (5.9)

It also corresponds to a general graph state defined in Eq. 5.4, with χ = d = 2,

M(sa, sb) =

 exp βJ/2 exp−βJ/2

exp−βJ/2 exp βJ/2

 (5.10)

and the correspondingA defined byAAT = M can be computed straight-forwardly. We study the

expectation values of ‘classical’ Z and the ‘quantum’ X operators averaged over all sites of the

graph using the BP contraction method. The results are shown in Fig. 5.5, where the underlying

graph is taken to be an instance of random regular graph GN=100,r=3.

We plot |Za|, which is the absolute value of the expectation of Za operators averaged over
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Figure 5.5: Expectation values of local operators of Ising model square root states, defined
in Eq. 5.7, on a random regular graph from the ensemble G100,3 [inset]. J is set to be 1. In the
top panel, absolute value of local Z operator averaged over the vertices of the graph is plotted
as a function of β. Since this is a classical observable, it can be estimated by straight-forward
Monte Carlo sampling (MC), which is shown with the error bar estimate from the average. The
BP result is shown in red, which matches the MC estimate. In the bottom panel we show the BP
result of the site-averaged X operator and the edge-averaged entanglement entropy of reduced
density matrix of nearest neighbor sites. These expectation values are inaccessible to simple MC
sampling of the classical model.
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all vertices of the graph, as a function of the inverse temperature β that is a parameter in the theory.

Since this quantity can be directly computed using Monte-Carlo sampling on the original Ising

model, we get an independent check for the BP method. We find that |Za| is an order parameter

for the phase transition in the classical model that occurs from the paramagnetic phase at low β to

an ordered ferromagnetic phase at high β, and the results are consistent between the BP and the

MC answers across all β. However, using the BP messages, we can also compute the averagedXa

expectation values, and the averaged entanglement of 2-site reduced density matrices on all edges

ab ∈ G. Note, these quantities are not easily accessible via naive Monte Carlo sampling of the

classical model, which shows an application of the BP method of tensor network contraction. We

discuss the convergence issues and the ‘gauge’ freedom of the BP message tensors in Sec. 5.6.1.

5.4.2 Graph states on sparse graphs

Graph states in quantum computing [307] are generalizations of cluster states which are

resources for measurement-based quantum computing [308]. Importantly for this work, graph

states are a kind of generalized graph state as defined in Eq. 5.4.

Graph state |G〉 is pure state on N qubits for a graph G on N vertices. We start with the

product state (|0〉+ |1〉)⊗N /2N/2, and apply the controlled phase gate U = |0〉 〈0|⊗I+|1〉 〈1|⊗Z

to any pair of qubits on vertices connected by the edges in G. It can be easily shown that in our

definition of generalized graph states in Eq. 5.4, |G〉 corresponds to,

|G〉 ≡M(sa, sb) =

1 1

1 −1

 . (5.11)
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Figure 5.6: Local expectation values of graph states defined on a G50,3 random regular graph,
as a function of the number of BP steps. The BP steps converge to the correct expectation value
for the 1-body and 2-body expectation values after 3 steps.

Hence |G〉 is efficiently represented by a χ = 2 bond dimension tensor network state defined on

any graph G. Graph states form an important class of multi-party entangled states.

We can estimate the local expectation values of |G〉 defined on random regular graphs using

the BP algorithm. On a 3-regular graph, the expectation value of any of the local Pauli operators

X, Y, Z is 0, and the entanglement of any reduced density matrix on an edge is 2 log 2, which is

confirmed as the fixed point after ∼ 3 BP steps, as shown in Fig. 5.6.

These results demonstrate the utility of the BP algorithm in accessing local expectation

values of a class of entangled states defined on graphs. Next, we introduce a variational algorithm

which uses the BP algorithm as a subroutine, to approximately determine the ground state energy

and prepare an approximate ground state of a quantum model defined on a sparse graph.
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5.5 Variational preparation of ground states of sparse graph Hamiltonians

Suppose we are given a graph G and a Hamiltonian defined on it, H = −
∑

a,b∈Na hab.

Our goal is access the ground state |ψGS〉 of this H , and estimate its energy, EGS . Note, given a

tensor network state |ψ〉, the estimation of its energy can be achieved by computing energy func-

tionals over 2-body local reduced density matrices along the edges, 〈ψ|H |ψ〉 =
∑

ab 〈ψ|hab |ψ〉,

which can be estimated using the BP algorithm. This suggests a variational method to prepare an

approximate ground state.

We first start with an initial state |ψin〉. At each variational step, we perform a fixed num-

ber of BP iterations to access the approximate message tensors. Next, we fix the message tensors

{m}, and locally update the state tensor |ψ〉 by gradient descent to minimize the energy func-

tional, |ψ〉 → |ψ〉 − α∇H (|ψ〉 , {m}), where the gradient of the energy functional is computed

using fixed messages {m} obtained beforehand. These two steps are repeated until the energy of

the state reaches a steady value. The pseudocode is provided here,

Algorithm 1 Variational TN ground state preparation

Initialize state |ψ〉 = |ψin〉
while t < tvar do

while τ < tbp do
BP on |ψ〉: messages {m[τ + 1]} = BP|ψ〉({m[τ ]})

end while
while n < ngd do

Gradient descent: |ψ〉 → |ψ〉 − γ∇H (|ψ〉 , {m[tbp]})
end while

end while

A comment on the variational method: it does not guarantee physically realistic local ex-

pectation values during the variational steps. The quantum states are always tensor network states

and hence physical, however the BP steps are iterated for a prefixed finite time and not until they
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Figure 5.7: Quantum Ising model on a random regular graph. We variationally access the
local order parameters and the energy density for both N = 10 and N = 40 sized random regular
graphs GN,r=3, with tensor network states with χ = 2. The results are also compared with the
N = 10 exact diagonalization data.

have converged on to the messages corresponding to the tensor network states.

As a demonstration we consider a random regular graph drawn from GN,r=3, and define

a nearest neighbor mixed-field Ising Hamiltonian, with edge terms, hab = ZaZb and vertex

terms, ha = 2Xa + 0.5Za. We consider the following parameters for the variational proce-

dure, tbp = 5, ngd = 10, γ = 0.01, and the initial states are chosen to be either product states or

high temperature square root states of the classical Ising Hamiltonian Eq. 5.7.

The results are shown in Fig. 5.2 in Sec. 5.1, which is a benchmark study for N = 10

for which the exact ground state can obtained by exact diagonalization. We plot the estimated

ground state energy, and the fidelity of the obtained state with the exact ground state for two

different bond dimensions χ = 1, 2. We find that with χ = 2 the energy of the variational state

is indistinguishable from the exact ground state energy, and the overlap with the exact ground

state also is significantly higher than any random state. This suggests that we have variationally

prepared a χ = 2 tensor network state which is very close to the exact ground state of the

Hamiltonian. This method can be readily generalized to N = 40 which takes < 20 minutes on

a standard 16 GB laptop to run (see results in Fig. 5.1); however these sizes are inaccessible to
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exact diagonalization.

Variational ground state preparation on quantum graphical models using quantum belief

propagation has been studied before [309, 310]. On the other hand, variational tensor network

ground states have also been studied on tree lattices [311, 312], where the tensor network con-

traction is simple because of the lack of cycles or loops. Using the formulation of BP for tensor

network states, our method leads to approximate tensor network representation of the whole

ground state, from which correlation functions may be estimated.

As another demonstration, we consider the quantum Ising model with transverse field,

H = −
∑
ab

(ZaZb + hxXa) , (5.12)

and access local expectation values of ZaZb, Xa, and the energy density, as a function of hx,

shown in Fig. 5.7. This model undergoes the standard Z2 symmetry breaking quantum phase

transition. We find that the variational method works well in the gapped ferromagnetic (hx � 1)

and the paramagnetic (hx � 1) phases, but deviates from the finite size exact diagonalization

data near the transition. Interestingly, the local order parameters and the energy density accessed

using the BP method show the same results for both the N = 10 and N = 40 sized graphs

return similar values. This indicates that the BP method is able to access the local properties

of the large-N graph even with the small finite sized numerics. The results indicate there is a

phase transition at 2 ≤ hx ≤ 3. In the ferromagnetic phase of the transverse field Ising model

the variational method produces a state in the ‘degenerate’ ground space, which is in general an

uncontrolled superposition of the two lowest lying states; however the local order parameters do

not distinguish between the states (see discussion in Sec. 5.6.2).
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Figure 5.8: Quantum Ising model near criticality. We consider the transverse field quantum
Ising model on a random regular graph G40,3, and plot the local order parameter Za averaged over
all sites, and the energy density as a function of the field hx. The different traces are different
runs of the variational algorithm, starting with slightly different initial states, and running for a
constant number of iterations which converge away from the critical point.
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In Fig. 5.8 we zoom into the critical region, and access the local order parameter Za (av-

eraged over all sites) and the energy density. In [311], this model was studied on Bethe lattices

using imaginary time evolution, and the phase transition was characterized to be mean-field like.

In the random regular case, we find that the variational method slows down considerably near the

critical point, and we are not able to access consistent results after a finite number of iterations

(tvar = 15) when we start with distinct initial states. Fig. 5.8 indicates that the phase transition

occurs at 2.25 ≤ hx ≤ 2.45, but we are not able to characterize the critical properties of the

transition using the variational method for tensor networks with χ = 2.

In a Bethe lattice with degree 3, which is locally similar to the random regular graph GN,3

at large N , bond dimension 2 is enough to asymptotically represent maximally entangled states

on large enough subregions. However, the variational method we have studied is a local update

method, which is presumably why it fails to approximate the long-range correlated state near the

critical point. The sparse graph model is mean-field like, which implies that the physics near

the critical point is governed by the uniform spatial zero-mode. One can consider a uniform

ansatz for the variational update which will work better for accessing the critical properties of the

transition. Also, one can use better variational methods to tackle the issue of small gaps and slow

convergence, such as stochastic versions of gradient descent or simulated annealing.

5.6 Details of the numerical implementation

In this section we provide details of some of the numerical observations behind the results

in the main paper. We will also discuss convergence and related issues.
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Figure 5.9: Convergence of BP messages and local expectation values with BP for Square root
state with β = 0.4J−1 on a G20,3 random regular graph.

Figure 5.10: Convergence of BP messages and local expectation values with BP for a graph state
on a G20,3 random regular graph.
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5.6.1 Graph states and Square root states

Here we show the convergence results for the message tensors and local expectation values

of the square root states of classical Ising model (Eq. 5.7) and the graph states (Eq. 5.11), both of

which are exact tensor network states with χ = 2.

In Fig. 5.9 we study the square root state at β = 0.4J−1. In the top panel of Fig. 5.9 we plot

the message tensors ma→b (we show only the real part) of a particular directed edge in the graph,

with the iterations of the BP algorithm. It is evident that the entries of the message tensors settle

into a limit cycle after a few rounds of BP. In the middle panel of Fig. 5.9, we plot the expectation

value of local operators (Xa and Zb, on the site connected by the edge under consideration),

and the entanglement entropy Sab of the edge. In the lower panel of Fig. 5.9, we plot the the

trace distance between subsequent BP iterations of the reduced density matrices of any 2 and 3

body continuous subregions. For the 2-body reduced density matrix we consider the maximal

value of the trace distance over all edges, while for the 3-body reduced density matrix we only

consider a particular set of 3 connected neighbors). The middle and lower panels show that the

local expectation values have converged, and the reduced density matrices have converged in

trace distance. The limit cycle of the message tensor indicates that there exist a notion of ‘gauge’

equivalence between different message tensors which lead to the same expectation values.

Similar feature can be seen in the convergence study for graph states on a random regular

graph G40,3, as shown in Fig. 5.10. Here also the entries of the message tensor show a limit cycle

behavior which also coincides with a convergence of reduced density matrices.
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Figure 5.11: Fidelity of variational state in transverse field Ising model on a random regular graph
G20,3. The overlap of the variational tensor network wavefunction ψvar with χ = 2 and the two
lowest energy states (which are accessed by exact diagonalization) is shown as a function of the
transverse field hx.

5.6.2 Variational ground state of the transverse field Ising model

Here we show details of the fidelity of variational ground state preparation for the transverse

field quantum Ising model on a random regular graph. In Fig. 5.11 we plot the overlap of the

variational wavefunction ψvar with the two lowest energy states (which are accessed by exact

diagonalization) is shown as a function of the transverse field hx. The reason we choose the

first two low energy states is because in the ferromagnetic phase they are separated by a very

small gap, and the variational method in general creates an uncontrolled superposition of the two

‘degenerate’ ground states. We find that the variational method projects to the ground space very

effectively in the ferromagnetic and asymptotically in the paramagnetic phase, while showing a

cusp near the transition. This also indicates that the χ = 2 ansatz is not sufficient near the critical

point, which is associated with long-range critical correlations.
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5.7 Discussion

In this work we have demonstrated that tensor networks on generic graphs can be contracted

using the belief propagation algorithm, and these work very well for studying quantum systems

defined on locally tree-like graphs. We demonstrated the usefulness of such a method by using

it extract local information of tensor network states defined on such graphs, such as graph states

and square root state of classical Ising model. We also developed a variational method to prepare

an approximate ground state of a gapped quantum spin model defined on random regular graphs.

We then used this method to also study the phase diagram of the quantum Ising model with

transverse fields.

These results open up several new avenues of research. Firstly, there may be application

of more developed BP algorithms [313, 314] to study tensor network states on graphs with short

loops and 2-d tensor network states with short correlation length. In particular, these modified

BP algorithms can tackle short loops efficiently: in gapped local systems one can systematically

increase the maximal short loop size until it crosses the correlation length, and obtain accurate

contraction of PEPS tensor network states. Systematic study of the limitation of the BP algorithm

in contracting tensor network states might also shed light on the exotic nature of the states, for

e.g. spin glass order.

Another direction of study would be to study time evolution of sparse graph tensor network

states under a Hamiltonian defined on the graph, by using BP in tandem with algorithms such

as the density matrix renormalization group (DMRG). These will be useful for studying both

dynamics as well as accessing the ground state via imaginary time evolution. One restriction

to this is the process of mid-circuit truncation of the graph tensor network states, which is not
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guaranteed to be an appropriate truncation of entanglement when there are loops. One direction

of approach would be to use the BP algorithm for efficient truncation of graph tensor network

states [315], which would be an essential step towards accurate DMRG on such graphs. At

the same time, even naive truncation of the tensor network may already be sufficient for sparse

graphical models, as they are locally-tree like. On a related note, studying quantum many-body

systems on such expander graphs may lead to new physical insights about the nature of the

nature of the many-body groundstates and its associated quantum error correction, inspired by

novel quantum error-correcting LDPC codes which are under intense recent study in the quantum

information community [316].

Simulating real time evolution using tensor networks on lattice systems is generally limited

by the entanglement and the bond dimension. However, as mentioned in Sec. 5.2, the graph

structure of ‘expander’ graphs allow for an efficient representation of highly entangled states

with only modest bond dimensions. Hence, one should in principle be able to track entanglement

build-up for long times with only polynomial resources. This is also a promising direction of

future studies.

Another interesting question would be to explore tensor network states associated with

multi-body spin and fermionic Hamiltonians on graphs. The variational method for accessing the

ground state lends itself naturally to Hamiltonians with multi-body terms. On the other hand, one

can also set up a fermionic tensor network states by using parity symmetric tensors and fermionic

SWAP gates [317]. This suggests a pathway towards simulating interacting fermionic models on

sparse graphs.
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Chapter 6: Conclusions

“Are we nearly there yet?” asked Tiny Dragon.

Big Panda smiled. “I hope not.”

- Big Panda and Tiny Dragon, James Norbury.

6.1 What have we learned?

In this thesis we have uncovered a number of results at the intersection of quantum many-

body physics and quantum information. The core results include:

• A tensor-network based numerical method to access OTOCs in quantum spin chains.

• Evidence of disorder-induced transition in the speed of quantum information propagation

in quantum spin systems.

• A thorough study of the thermal regulator dependence of information scrambling, with a

new understanding of the limitations of the thermal bound on chaos.

• A solvable model of measurement-induced entanglement transition, with a simple effective

field theory for the transition.

• Novel entanglement phases in quantum circuits with measurements and long-range inter-
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actions.

• A novel numerical method to study tensor network states on sparse graphs beyond lattices.

In conjunction with a number of recent works on these topics, these results have helped

clarify a number of existing questions, and have posed several new questions in the field.

6.2 Where do we go from here?

The most exciting part of any scientific exercise is to dream of newer vistas which open up.

In this last section, I take the opportunity to lay out a path for future research along the directions

pursued in this dissertation.

• Is the dramatic transition in the speed of quantum information a finite size and finite time

effect? More generally, it is an important outstanding question to determine if many-body

localization is a genuine phase of matter separated from the ergodic phase by a quantum

phase transition.

• Can the effective field theories for Rényi entropy in the hybrid models generalized to von

Neumann entropies? While many-body localization and measurement-induced phase tran-

sition can both be understood under the broad umbrella of dynamically generated entan-

glement phases, they are distinguished by the presence of a simple effective theory for

the measurement-induced phase transition (MIPT), and a much less established theoretical

understanding of many-body localization (MBL). The theoretical understanding of MIPT

provides much confidence for the presence of the phase transition, which has been a con-

tentious topic for MBL, as the numerical experiments are limited to small system sizes. It
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remains an outstanding question to explore whether a theory of the von Neumann entropy

changes our understanding of the measurement-induced phases and phase transitions.

• Can we classify the different entanglement phases possible under generic quantum chan-

nels? Much of quantum and classical many-body physics have been about the classification

of equilibrium phases of matter. A similar classification of states prepared by generic quan-

tum channels will be an overarching and ambitious question to explore in the future.

• Do the entanglement phases in measurement-induced dynamics survive noise and deco-

herence? This question is relevant beyond the whimsy of the theorist: it is an important

question to address given the very real possibility that such physics may soon be simu-

lated in the laboratory. Furthermore, this physics is intimately related to questions of error

thresholds and fault tolerance in quantum computation.

• In the age of quantum simulation, we are not restricted to quantum many-body physics on

lattices. What phenomena can we uncover when we go beyond lattices, into the realm of

generic graphs? What does quantum many-body physics on sparse graphs tell us about the

physics of error correction on these graphical models?

• Many of the problems addressed in this thesis have been posed using the lens of entangle-

ment and information scrambling. More recently, attempts have been made to understand

the complexity of states and phases in many-body physics. In this regard, it remains an

exciting direction to consider how notions of complexity may be able to shed light on our

understanding of quantum many-body phenomena.

The twentieth century had two revolutions in our understanding of the world, through the
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development of quantum mechanics, and information and computation theory. It is perhaps no

surprise that our efforts to unify the two have led us to the unknown territories in our understand-

ing of nature. Much still remains to be explored and enjoyed!
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Appendix A: Chapter 2:

A.1 Spectral representation and the generalized Wightman function

From the definition of the generalized Wightman function in Eq. 2.20, we go to the Fourier

space, and expand in terms of many body eigenstates |n〉 with energy En and momentum Pn,

GαW (ω,k) =
1

(2π)3

∫
dteiωt

∫
d2x

∑
mn

〈n|ραφ(t,x)|m〉〈m|ρ1−αφ(0,0)|n〉. (A.1)

In Heisenberg representation, φ(t,x) = e−iPxeiHtφ(0,0)eiPxe−iHt. This allows us to write the

spectral representation of the generalized Wightman function,

GαW (ω,k) =
1

Z

∑
mn

|〈n|φ|m〉|2δ (ω − (Em − En)) δ (k− (Pm − Pn)) e−β(αEn+(1−α)Em). (A.2)

The spectral function can be similarly expanded in the spectral representation,

A(ω,k) =
1

Z

∑
mn

|〈n|φ|m〉|2δ (ω − (Em − En)) δ (k− (Pm − Pn)) e−βEn
(
1− e−βω

)
. (A.3)
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Comparing the two spectral representations, we get the following relation,

GαW (ω,k) =
A(ω,k)

2 sinh βω
2

e(α−
1
2)βω. (A.4)

A.2 Polarization bubble calculation

T=0

At T = 0, the polarization bubble can be evaluated exactly, by changing the Matsubara

sum to an integral,

ΠT=0 (iνn,q) =
1

2

∫
k

∫
R−(−ε,ε)

dω

2π

1

(ω + νn)2 + (k + q)2 +m2

1

ω2 + k2 +m2
. (A.5)

The retarded Polarization bubble is obtained by analytically continuing to real frequencies, Π(q, iνn →

ν + i0+). The integral can be exactly evaluated, and we obtain,

ΠT=0
R (ν,q) =

1

8π

1√
q2 − ν2

arctan

√
q2 − ν2

2m
. (A.6)

For ν2 ≥ q2 + 4m2,

Im[ΠT=0
R (ν + i0+,q, )] = − 1

16
√
ν2 − q2

Re[ΠT=0
R (ν + i0+,q)] =

1

16π
√
ν2 − q2

log

(√
ν2 − q2 + 2m√
ν2 − q2 − 2m

)
.

(A.7)
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For ν2 < q2 + 4m2,

Im[ΠT=0
R (ν + i0+,q)] = 0

Re[ΠT=0
R (ν + i0+,q)] =

1

8π

1√
q2 − ν2

arctan

√
q2 − ν2

2
.

(A.8)

Finite T

Here, we obtain the low temperature correction to the T = 0 polarization. At finite T, we

introduce the function b(z) = (eβz − 1)−1 and the φ polarization bubble can be calculated,

Π(iνn,q) =
T

2

∑
iωn

∫ Λ

k

1

(ωn + νn)2 + ε2k+q

1

ω2
n + ε2k

=
1

2

∫ Λ

k

∮
dz

2πi
b(z)

1

(z + iωn)2 − ε2k+q

1

z2 − ε2k

= −1

2

∫ Λ

k

1

4εkεk+q

[
b(εk)− b(εk+q)

εk − εk+q + iνn
− b(εk) + b(εk+q)

εk + εk+q + iνn

−b(−εk) + b(εk+q)

εk + εk+q − iνn
− b(εk)− b(εk+q)

εk+q − εk + iνn

]
(A.9)

Using b(−z) = −b(z)− 1 and for our hierarchy of scales, b(εk) ≈ e−βεk << 1 for any k, we can

replace b(−z) → −1. The retarded polarization bubble is obtained by analytically continuing

from the imaginary Matsubara frequency to real frequency, Π(iνn,q)→ ΠR(ν + i0+,q). Using

Cauchy imaginary value theorem, the imaginary part can be obtained to be (restricting to ν > 0)

Im[ΠR(ν+i0+,q)] =
1

2

∫ Λ

k

π

4εkεk+q

[
δ(εk + εk+q − ν) + 2

(
e−βεk+q − e−βεk

)
δ(εk+q − εk + ν)

]
.

(A.10)
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The first term is the T = 0 result, which was also obtained in the previous paragraph. At finite

T , the only modification is the second term, which we now evaluate.

In order to evaluate this integral, we need to impose the delta function condition. First

we shift the k integral to k + q/2. We also change notation ε± = εk±q/2. The delta function

conditions are then, ε+ + sε− = sν, for s = −1. Imposing the delta function condition, we get,

k∗ = ν
2

√
ν2−q2−4m2

ν2−q2 cos2 θ
, and ε∗± = ∓ν/2 − k∗q cos θ/ν. For this to be consistent with the positivity

of ε±, θ ∈ (π − cos−1 ν/q, π + cos−1 ν/q).

Now, by change of variable in the delta function,

δ (ν + ε+ − ε−) = |∇f(k)|−1
k=k∗ δ(k − k

∗) where,

f(k) =
√

(k + q/2)2 +m2 −
√

(k− q/2)2 +m2 + ν.

We then do the radial k integral, by setting k → k∗. In order to do the θ integral, we can employ

the Laplace method, as the integrand has the exponential factor, e
βq cos θ

√
q2−ν2+4m2

2
√
q2 cos2 θ−ν2 , and βm >> 1.

The exponent has a maxima at θ = π, which lies in the allowed domain of θ. Doing the integral,

we get the full correction, for ν < q,

ImΠR(ν,q) =
1

8π

√
4π

β
sinh

(
βν

2

)(
1

q2 (4m2 − ν2 + q2) (q2 − ν2)

)1/4

e
−βq

2

√
4m2−ν2+q2

q2−ν2

(A.11)

A.3 Self Energy calculation

To study the temperature dependent relaxation time of the bosonic quasiparticles, we need

to evaluate the self energy of φ. The relevant diagrams are shown in Fig. 2.15. The imaginary part
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of the self energy has contribution only from the first diagram in Fig. 2.15, and can be evaluated

to give,

Im[ΣR(ω + i0+,q)] = − 1

N

∫
k

sinh βω/2

4εk sinh βεk/2
×[

Im[Π−1
R (εk − ω,k− q)]

sinh[β(εk − ω)/2]
+
Im[Π−1

R (−εk − ω,k− q)]

sinh[−β(εk + ω)/2]

]
.

(A.12)

Note, at low temperature, the second term in the imaginary part of the self-energy can be ignored.

Recalling the definition of the Wightman function, we have,

Im[ΣR(ω + i0+,q)] ≈ 1

N

∫
k

sinh βω/2

4εk sinh βεk/2
G

(1/2)
W,λ (εk − ω,k− q) . (A.13)

The inverse lifetime, or the relaxation rate of φ can be written in terms of the imaginary part of

the self energy,

Γq =
Im[ΣR(εq,q)]

2εq
=

1

2N

∫ Λ

k

sinh (βεq/2)

sinh (βεk/2)
R(1/2)

1+ (k,q), where we have defined,

R(1/2)
1+ (k,q) =

G
(1/2)
W,λ (εk − εq,k− q)

4εkεq
.

(A.14)

Note, |εk − εq| < |k− q|. The Wightman function G(1/2)
W,λ (εk − εq,k− q) can be expressed as

−Im[GR((εk − εq,k− q)]

sinh β(εk − εq)/2
,

where, Im[GR] is given by Im[Π−1
R ] = − Im[ΠR]

Re[ΠR]2+Im[ΠR]2
. From the calculations in Sec. A.2,

one can read off the expression for Im[ΠR] which is exponentially suppressed in βm. In the

denominator, any temperature dependence can be ignored, because of the leading T = 0 behavior
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of Re[ΠR]. Thus, we have the following approximation forR1(k,q),

R(1/2)
1+ (k,q) ≈ 1

8π

√
4π

βm

1

4εkεq
exp

−β|k− q|
√

(k− q)2 − (εk − εq)2 + 4m2

2
√

(k− q)2 − (εk − εq)2

×
( (

|k− q|2 − (εk − εq)2
)3/4

|k− q|1/2
(
4m2 − (εk − εq)2 + |k− q|2

)1/4

)
64π2

arctan2

√
(|k−q|2−(εk−εq)2)

2

.

(A.15)

At low temperature, the relaxation rate can be approximated by the Laplace method, since

the integrand has a factor exponential in βm (arising from both the prefactor sinh and R1 func-

tions in Eq. A.14).

We define the phase coherence inverse time scale as, τ−1
φ = Γq=0 [149], which can be

evaluated,

Γ0 =
1

τφ
≈ 2π

Nβ
e−βm. (A.16)

The momentum dependent Γq can be evaluated numerically,

Γq ≈
1

2N
eβεq/2

∫
k

e−βεk/2R(1/2)
1+ (k,q). (A.17)

A.4 Ladder calculation in different contours

The ladder calculation sets up a diagrammatic calculation of the squared commutator in

terms of retarded Green functions and Wightman functions of the fields φ and λ. Here we give

a sketch of how it works, following [114], while also extending their results to the unregulated

squared commutator.
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Consider the generalized squared commutator,

C(α)(t,x) = − 1

N2

∑
ab

Tr
(
ρα[φa,0(t,x), φb,0(0,0)]ρ(1−α)[φa,0(t,x), φb,0(0,0)]

)
. (A.18)

To go to the interaction representation for the φ fields, we introduce time evolution operators in

the interaction picture,

UI = T exp

(
i

2
√
N

∑
a

∫ t

0

ds

∫
x

λ0(s,x)φ2
0(s,x)

)
, (A.19)

where the subscript 0 indicates that the fields time evolve under the non-interacting part of the

Hamiltonian. We further drop the factors of N and the index structure to obtain,

C(α)(t,x) ∼ −Tr
(
ρα[U †Iφ0(t,x)UI , φ0(0,0)]ρ(1−α)[U †Iφ0(t,x)UI , φ0(0,0)]

)
. (A.20)

By expanding up to second order of λ, we get,

U †Iφ0(t)UI ≈ φ0(t) +
i

2

∫ t

0

ds
[
φ0(t), λ0(s)φ2

0(s)
]

+(
i

2

)2 ∫ t

0

ds1

∫ s1

0

ds2

[[
φ0(t), λ0(s1)φ2

0(s1)
]
, φ0(t), λ0(s2)φ2

0(s2)
]

+ ...,

(A.21)

where we have suppressed the spatial dimension.

By combining fields from both ‘sides of the ladder’ in the expanded expression Eq. A.20,

we get the two distinct types of rungs - the contributions which are called the Type I and Type II

rungs in Sec. 2.3.2. The contour dependence appears in the form of the contour dependence of the

Wightman functions. For example, the Type I rung is a contour dependent λ-Wightman function,
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Tr (ραλ0(s)ρ1−αλ0(s′)), or, G(α)
W,λ(s−s′). Similarly, for Type II, we get the corresponding contour

dependent Wightman functions.

A.5 Kernel functions at low temperature

A.5.0.1 R(1/2)
1 kernel

We already calculated theR(1/2)
1+ kernel in Sec. A.3, as given in Eq. A.15. We now calculate

R(1/2)
1− at low temperatures,

R(1/2)
1− (p′,p) :=

G(1/2)
W,λ (−εp′ − εp)

4εp′εp

≈ 1

2εp′εp
e−

β(εp+εp′)
2

ImΠT=0
R (εp′ + εp,p′ − p)

|ΠR(εp′ + εp,p′ − p)|2

=
1

32εp′εp
e−

β(εp+εp′)
2

1√
(εp + εp′)2 − (p′ − p)2

1

|ΠT=0
R (εp′ + εp,p′ − p)|2

.

(A.22)

R(1/2)
1− (p′,p) is exponentially suppressed unless p, p′ << 1, while R(1/2)

1+ (p′,p) is exponen-

tially suppressed unless |p′ − p| << 1. Furthermore, even in the domain where both the expo-

nents are comparable, it can be numerically verified that R(1/2)
1− (p′,p) is negligible compared to

R(1/2)
1+ (p′,p). Hence for the ladder calculation, we ignoreR1−.

A.5.0.2 R(1/2)
2 kernel

In order to evaluate the R(1/2)
2 integration, we first need an expression for G(1/2)

eff that was

defined in Eq. 2.31. For results correct to the required order of 1/N , it is enough to consider

G(1/2)
W (ω) ∼ Q(ω)A(0)(ω), where A(0) is the bare φ spectral function, given in Eq. 2.19. We
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have also defined the function, Q(ω) = [2 sinh(βω/2)]−1. Inserting the spectral function in the

expression for G(1/2)
W (ω′′−ω,p′′−p)GW (ω′−ω′′,p′−p′′) in Eq. 2.31, allows us to integrate over

ω′′. We introduce notation x = p′−p, y = p′+p
2

and ω = ω′−ω. We also denote εx/2±p′′ =: ε±.

We now have the following expression for G(1/2)
eff ,

G(1/2)
eff (ω′, ω,p′,p) =

1

2N

∫
p′′

π

ε+ε−

(
Q(ε+)Q(ω − ε+)GR,λ(−ω − ε+,−p′′ − y)GR,λ(ω + ε+,p

′′ + y)

[δ(ω − ε+ − ε−)− δ(ω − ε+ + ε−)]

− Q(−ε+)Q(ω + ε+)GR,λ(−ω + ε+,−p′′ − y)GR,λ(ω − ε+,p′′ + y)

[δ(ω + ε+ − ε−)− δ(ω + ε+ + ε−)]

)
.

(A.23)

In this expression, because of the delta functions, one can replace the arguments of Q by ±ε±.

Note, at low temperature, Q(ε±) ≈ e−βε±/2, and Q(−ε±) ≈ −e−βε±/2. We can also use the fact

that GR,λ(ω,−q) = GR,λ(ω,q), and that the real and imaginary parts of GR,λ(ω,q) are even and

odd functions of ω respectively. This allows for the following simplification,

GR,λ(−ω + ε+,−p′′ − y)GR,λ(ω − ε+,p′′ + y)

=
1

Re[ΠR(ω − ε+,p′′ + y)]2 + Im[ΠR(ω − ε+,p′′ + y)]2

≈ 1

|ΠT=0
R (ω − ε+,p′′ + y)|2

.

(A.24)
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We finally arrive at a simple expression for G(1/2)
eff ,

G(1/2)
eff (ω′, ω,p′,p) =

1

2N

∫
p′′

πe−
β(ε++ε−)

2

ε+ε−( ∣∣ΠT=0
R (ω + ε+,p

′′ + y)
∣∣−2

[δ(ω − ε+ − ε−) + δ(ω − ε+ + ε−)]

∣∣ΠT=0
R (ω − ε+,p′′ + y)

∣∣−2
[δ(ω + ε+ − ε−) + δ(ω + ε+ + ε−)]

)
.

(A.25)

A.5.0.3 R(1/2)
2+ kernel

ForR(1/2)
2+ , the relevant function is G(1/2)

eff (εp′ , εp,p
′,p), where ω = εp′−εp, and x = p′−p.

The only delta functions in the equation above that can be satisfied are δ(ω + ε+ − ε−) and

δ(ω− ε+ + ε−). We can impose the delta function to do the p′′ radial integration, which fixes the

radial component at p′′∗(θ) = ω
2

√
ω2−x2−4m2

ω2−x2 cos2 θ
, where θ is the angle with x. This can be followed by

the angular integration approximated by the Laplace method, since there is an exponential factor

with large βm in the exponent. The calculation closely follows the evaluation of ImΠR at finite
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T in Appendix A.2. The final expression forR(1/2)
2+ is,

R(1/2)
2+ (p′,p) ≈ 1

8π

√
4π

βm

1

4εp′εp
exp

−β|p′ − p|
√

(p′ − p)2 − (εp′ − εp)2 + 4m2

2
√

(p′ − p)2 − (εp′ − εp)2

×
(

1

|p′ − p|1/2
(
4m2 − (εp′ − εp)2 + |p′ − p|2

)1/4 (|p′ − p|2 − (εp′ − εp)2
)1/4

)
×(∣∣∣∣ΠT=0

R

(
εp′ + εp

2
− xp′′∗(θ = π)

ω
,
p′ + p

2
+ p′′∗(θ = π)

)∣∣∣∣−2

+

∣∣∣∣ΠT=0
R

(
εp′ + εp

2
+
xp′′∗(θ = 0)

ω
,
p′ + p

2
+ p′′∗(θ = 0)

)∣∣∣∣−2
)
.

(A.26)

A.5.0.4 R(1/2)
2− kernel

We can similarly evaluate theR(1/2)
2− , for which the relevant function is Geff(−εp′ , εp,p′,p).

We further define, ω = εp′+εp, and x = p′−p. The only delta function in the equation above that

can be satisfied is δ(ω−ε+−ε−). We can impose the delta function to do the p′′ radial integration,

which fixes the radial component at p′′∗(θ) = ω
2

√
ω2−x2−4m2

ω2−x2 cos2 θ
. This brings an exponential factor of

e−
β(εp′+εp)

2 to the expression forR(1/2)
2− , and henceR(1/2)

2− (p′,p) is substantial only at p, p′ << 1.

The approximate expression (after the angular integration) is,

R(1/2)
2− (p′,p) ≈ 1

8εp′εp
e−

β(εp′+εp)

2

√
ω2 − 4m2

ω2

∣∣∣∣∣ΠT=0
R

(
εp − εp′

2
,

√
ω2 − 4m2

2

)∣∣∣∣∣
−2

. (A.27)
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Numerically, it can be verified thatR(1/2)
2− (p′,p) can always be ignored with respect toR(1/2)

2+ (p′,p),

for similar reasons asR1. Hence, for the ladder calculation, we can ignoreR2−(p′,p).

A.6 Details of numerics of ladder calculation

Here we provide some details of the numerical computation of the ladder sum. We fix the

mass as m = 1, and do all the calculation in these units. Having determined the approximate

values of the kernel functions R1,2, we need to discretize the 2D momentum space to set up the

matrix form of the kernel integration. For that purpose, we set up a hard momentum cut-off of

|px|, |py| ≤ 1. The choice is justified for the kernel in rescaled momenta, which is exponentially

suppressed - exp (−|p− p′|2/8). Next, we create 2D grid of momenta, with the momentum in-

terval dp determined by the number of points that we consider - 40 by 40, 50 by 50 and 60 by

60 grids. Next, we set up the matrix form of the kernel, K̂p′p = dp2K̂(p′,p), given in Eq. 2.38.

The matrices are of sizes, 1600 by 1600, 2500 by 2500, and 3600 by 3600, respectively. In con-

structing the matrix, we need to evaluate Γp by performing a 2D integration (in Eq. 2.29) within

the grid area (|px|, |py| ≤ 1). We find the maximum magnitude eigenvalue of the matrix, and

find that the largest magnitude eigenvalue has a positive real part, thereby resulting in exponen-

tial growth. The eigenvalues are then extrapolated to the dp → 0 limit by a linear extrapolation.

Errors in the estimation are denoted as the errorbars for this eigenvalue (see Fig. A.1).

In Fig. A.2, we study the external momentum dependence of the largest magnitude eigen-

value of the kernel equation λL(u) at non zero external momentum u. The real part of λL(u)

shows a quadratically decreasing behavior, λ0 − λ2u
2 even at significantly high u, while the the

imaginary part shows a linear behavior, λiu. At u = 0, the eigenvalue is real and positive.
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Figure A.1: The maximum eigenvalue λLeβmβ is determined by taking the linear extrapolation
of λLeβmβ at each grid interval dp to dp → 0. The error is determined as the uncertainty in
the extrapolation from its 95% confidence interval. The graph here is shown for the unregulated
calculation at β = 2.
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Figure A.2: A sample fit of the numerically obtained λrL(u), at β = 10. m is chosen to be 1. The
real part is fit to f(u) = λ0 − λ2u

2, while the imaginary part is fit to f(u) = λiu, and the fit
works very well even at quite large u.
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Appendix B: Chapter 3:

B.1 Physical interpretation of the different averaged observables

Here we discuss the issue of extracting the averaged purities ΠQ, 〈ΠQ〉 from experiments.

A flowchart describing the experimental protocol is provided in Fig. B.1.

To measure the purity ΠQ, the experimenter first fixes the unitary circuit elements (1),

and the measurement bases σyaux (3), yielding a single circuit realization with disorder coeffi-

cients J,n. The experimenter then prepares the initial maximally-entangled state ρ0 = |Ψ0〉 〈Ψ0|

and applies an alternating sequence of unitary and weak-measurement layers to the system Q

as described in Sec. IIA. As discussed in the main text, weak measurements on the system are

performed by coupling the system to auxiliary qubits and projectively measuring the auxiliary

system. In principle, the experimenter can record the measurement results on a classical mem-

ory, and the resulting quantum states can be stored in a quantum memory. At this point the

experimentalist keeps all resulting quantum states, even if the measurement results are not all

+1.

Due to the unpredictability of these measurement outcomes, for each given realization J,n

of the circuit, there will be a collection of quantum trajectories, which we label T = T(J,n,m),

where m is the record of measurement outcomes. Each trajectory performs a non-unitary op-

eration on the state, |ΨQR〉 = T |Ψ0〉 which is an unnormalized pure state, and each trajectory
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Figure B.1: Experimental protocol to simulate the various averaged purities. The protocol
is composed of two subroutines - ‘circuit’ (blue) and ‘measurement’ (red). Sampling of circuit
realizations is done in the blue subroutine, which calls the sampling of measurement trajectories
in the red subroutine. For each run of the measurement subroutine, the measurement data is
stored classically, and the resulting quantum state is stored in a quantum memory depending
on whether we want to simulate the Born probability or post-selected trajectories (this choice
is represented by the diamond in the circuit). For each run of the circuit subroutine, purity
can be estimated by doing SWAP tests on identical copies of the stored quantum states and the
corresponding probabilities can be estimated by processing the classical data of measurement
records. To estimate either of these quantities, the typical number of runs of the measurement
subroutine scales exponentially with the number of measurements, i.e. exponentially with the
‘volume’ of the circuit. All quantum processes in the protocol are denoted by ‘green’ rounded
boxes and all classical processes are denoted by ‘pink’ boxes. Finally, once enough statistics
is collected, the ‘classical’ data of purity and the probability for each circuit/measurement can
be post-processed (as described in the text) to give us (ΠQ)Born, ΠQ, 〈ΠQ〉 or any other simple
averaged purity-like quantities.
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occurs with the Born probability P [T] = 〈ΨQR |ΨQR〉. Now, given a sample set of classical

data (collection of measurement records), one can estimate the Born probability P [T]. For a sys-

tem in an initially mixed state, one would start with a prior of 1/2 for each measurement, which

would be updated based on the actual outcomes corresponding to the circuit realization and the

measurement randomness.

Using the quantum memory which stores the obtained quantum states, the experimenter can

access the purity of the state. Once enough copies of each state are obtained, the experimenter

can perform SWAP tests on the copies of the states to obtain the purity. The purity for each

trajectory is given by

ΠQ [T] =
Z2 [T]

P 2 [T]
, (B.1)

whereZ2 = Tr
[
ρ̃2
Q

]
, for the unnormalized reduced density matrix on the system, ρ̃Q = TrR [|ΨQR〉 〈ΨQR|].

The estimate from experiments improves with the number of copies, but these copies are hard to

obtain, requiring a typical number of trials that scales exponentially with the number of measure-

ments as discussed in section IIB of the main text. In the simplified setup we consider for our

analytical calculation, we require the state to be stored only for specific measurement records m,

where the auxiliary qubit measurement only gives the result +1.

Now the experimenter can repeat the whole sub-routine, by sampling different circuit re-

alizations, V = V (J,n), with an underlying probability distribution, π(V (J,n)). For our an-

alytical computation, we considered an analytically-tractable Gaussian probability distributions

over the coefficients J,n as described in Sec. IIA. While repeating the experiment to collect

data, there can be some simplifications due to symmetries in the circuit: for example, applying

a weak-measurement layer with the disorder coefficient n and obtaining a +1 outcome on the
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auxiliary qubit is equivalent to using a disorder coefficient −n with an overall negative sign and

obtaining the result −1.

Armed with the probability distribution of states and the purities, one can estimate a family

of observables, related to different kinds of averages of the purity. Firstly, the Born probability

averaged purity is given by,

(ΠQ)Born =
∑
V,T

π(V )P [T] ΠQ [T] (B.2)

In our setup with post-selection, one can avoid averaging with the Born probability P [T],

by averaging the purity ΠQ only over post-selected trajectories with the desired measurement

record m = +1. In this case, there is a single post-selected trajectory for each choice of circuit

realization, with a single value of ΠQ(V ), Z2(V ) and P 2(V ). In this case, the circuit-averaged

purity for the post-selected trajectories is given by,

ΠQ =
∑
V

π(V )ΠQ(V ). (B.3)

Both the Born and post-selected averaged purity considered above are difficult to access

analytically, as one needs to average the ratio of two multi-replica quantities. In principle one

could access the disorder-averaged ratio Z2/P 2 by studying the path-integral representation of

Z2P 2n analytically continued to n = −1. This can be difficult because one would typically need

to access the expression over the entire domain of n in order to take the analytic continuation.

However, by classical post-processing of the probability data, we can access the analytically-
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tractable re-weighted purity 〈Z2〉/〈P 2〉 studied in this work. To do so, we first define a re-

weighted probability,

N (V ) =
π(V )× P 2(V )

N0

, (B.4)

withN0 =
∑

V π(V )P 2(V ) to ensure that the probabilities sum to 1. In an experiment,N (V ) can

be estimated with just the classical information of the measurement records. Now we consider

the purity averaged over this re-weighted probability,

〈ΠQ〉 =
∑
V

N (V )ΠQ(V ) =

∑
V π(V )Z2(V )∑
V π(V )P 2(V )

=
〈Z2〉
〈P 2〉

, (B.5)

which being an average of ratios is analytically accessible, and is the quantity we compute in

this work. From an experimental point of view, although this estimation requires classical post-

processing, it doesn’t require any more quantum resources than the other two averages (in fact

it requires fewer quantum resources than the Born-averaged quantity due to post-selection and

selective storage of quantum states).

B.2 Derivation of general (p, q) path integral

Here we derive a path integral representation for general (p, q) hybrid Brownian circuits

probed by the nth moment of the unnormalized density matrix Zn = 〈Tr
[
ρ̃nQ
]
〉. To compute this

object, we introduce n copies of the system Q and reference R, and calculate the expectation

value of the generalized n-system SWAP operator as shown in Fig. B.2a. Using the circuit

identities in Fig. 3.2 and introducing factors of iY as in section IIC of the main text, we can
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Figure B.2: Partition function Zn for the nth moment of the density matrix. The nth-order
Rényi entropy S(n)

Q = − ln Tr
[
ρnQ
]

is defined in terms of the nth moment of the system density
matrix ρQ. The associated circuit for computing the nth moment Tr

[
ρ̃nQ
]

of the unnormalized
density matrix ρ̃Q can be transformed into pure-state dynamics on 2n replicas r = 1, 2, . . . , 2n
with nontrivial boundary conditions at times t = 0, T coming from the generalized n-system
SWAP operator (orange).

bring this circuit to the form shown in Fig. B.2c describing pure-state dynamics on 2n replicas

r = 1, 2, . . . , 2n with evolution operator

V = V ⊗ VT ⊗ · · · ⊗ V ⊗ VT . (B.6)

and generalized SWAP boundary condition at t = T which cyclically permutes the n odd replicas

r = 1, 3, . . . , 2n−1. The associated probability P n = 〈Tr [ρ̃Q]n〉 is described by the same circuit

but with trivial boundary condition at t = T .

The operators V can be constructed by stacking any sequence of unitary Brownian layers

or weak-measurement Brownian layers to give a variety of interaction and damping terms in the

final action. Regardless of the particular choice of unitary and weak measurement dynamics,
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we always choose Brownian coefficients Jαβij (t), nαi (t), . . . for these layers that are statistically

uncorrelated in time. As a result, the disorder average factorizes over the different timesteps ∆t

and we may compute the disorder average over each layer independently as shown in Fig. 3.2c.

We therefore first consider contributions to the effective action from unitary p-body Brownian

circuit layers in Sec. B.2.0.1. We then consider contributions from non-unitary q-body Brownian

circuit layers in Sec. B.2.0.2. Finally, we combine these results in Sec. B.2.0.3 to give a path

integral expression in Eq. (B.31) for Zn for general (p, q) hybrid Brownian models.

B.2.0.1 p-body Brownian interactions

Unitary Brownian dynamics are generated by p-body spin interactionsU(t) = exp[−iH(t)∆t/2]

with time-dependent Hamiltonian

H(t) =
∑

i1<...<ip
α1...αp

J
α1...αp
i1...ip

(t) Sα1
i1
Sα2
i2
· · ·Sαpip (B.7)

where the Sαi are SU(2) spin-S degrees of freedom on sites i = 1, . . . , N and the Brownian

coefficients Jα1...αp
i1...ip

(t) are white-noise-correlated Gaussian random variables

〈
J
α1...αp
i1...ip

(t)J
α′1...α

′
p

i′1...i
′
p

(t′)
〉

J

=
J

Np−1(S + 1)2p
δ(t− t′)δi1i′1 · · · δ

α1α′1 · · · (B.8)

where the normalization 1/Np−1(S+ 1)2p ensures that the Hamiltonian H(t) is extensive and in-

dependent of spin size. We regulate the delta function via the replacement δ(t−t′) ≈ δtt′(∆t/2)−1

and consider the limit ∆t → 0. Note that under the time-reversal operation T the Hamiltonian
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and unitary operator transform as

HT (t) = (−1)pH(t)

UT (t) = exp [i(−1)pH(t)∆t/2] . (B.9)

Expanding this layer to second order in ∆t and performing the disorder average over the Brown-

ian coefficients Jα1...αp
i1...ip

(t) we find

〈U ⊗ UT ⊗ · · · ⊗ U ⊗ UT 〉J ≈
〈(

1− iH∆t

2
− 1

2
H2 ∆t2

4

)
⊗
(

1 + iHT
∆t

2
− 1

2
H2
T

∆t2

4

)
⊗ · · ·

〉
J

=

〈(
1− iH∆t

2
− 1

2
H2 ∆t2

4

)
⊗
(

1 + i(−1)pH
∆t

2
− 1

2
H2 ∆t2

4

)
⊗ · · ·

〉
J

= 1− ∆t2

4

∑
r<s

µprs 〈HrHs〉J −
1

2

∆t2

4

∑
r

〈
(Hr)2〉

J
(B.10)

where Hr,s denote copies of the Hamiltonian (B.7) acting on replicas r, s = 1, . . . , 2n, and we

have defined

µprs ≡


(−1)r+s p even

1 p odd.

(B.11)
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Evaluating the disorder average, we find

〈HrHs〉J
∆t2

4
=

J∆t

Np−1(S + 1)2p

1

2p!

×
∑
i1...ip
α1...αp

(
Sα1,r
i1

Sα1,s
i1

)
· · ·
(
S
αp,r
ip

S
αp,s
ip

)

=
J∆t

Np−1(S + 1)2p

Np

2p!

(
1

N

∑
i

Sri · Ssi

)p

(B.12)

as an operator equation, where the additional factor of 1/p! comes from converting the ordered

sum in Eq. (B.7) to an unordered sum. The disorder-averaged Brownian circuit layer can there-

fore be written as a propagator:

〈U ⊗ UT ⊗ · · · ⊗ U ⊗ UT 〉J ≈ e−NIp(t)∆t

Ip(t) ≡ n
JSp

2p!(S + 1)p

+
∑
r<s

µprs
J

2p!(S + 1)2p

(
1

N

∑
i

Sri · Ssi

)p

(B.13)

to lowest order in ∆t, which holds as an operator equation.

B.2.0.2 q-body Brownian measurements

Consider making a weak measurement of a Hermitian q-body operator

O(t) =
∑

i1<...<iq
α1...αq

Oα1...αq
i1...iq

(t) Sα1
i1
· · ·Sαqiq (B.14)

229



Figure B.3: Brownian weak measurement protocol. The operator M(t) weakly measures the
Brownian operator O(t) by coupling it to an auxiliary qubit |ψ〉aux for a time ∆t/2 (blue) and
projectively measuring the auxiliary qubit in the σyaux basis, post-selecting for +1 results (orange).
Due to the coupling between the system |Ψ〉 and auxiliary qubit |ψ〉aux this projective measure-
ment alters the many-body state |Ψ〉 →M(t) |Ψ〉.

at some time t during the circuit evolution. For the moment we leave the coefficients Oα1...αq
i1...iq

(t)

of this operator unspecified. This q-body operator is the analogue of the 1-body spin operators

O(t) =
∑

i,α n
α
i (t)Sαi weakly measured in the (2, 1) model described in section II of the main

text. To measure this operator we introduce an auxiliary qubit initialized in |ψ〉aux = |0〉aux and

couple it to O via a unitary interaction

exp [−iO(t)σxaux∆t/2] |Ψ〉 |0〉aux (B.15)

for a short time ∆t/2, where |Ψ〉 is the state of the system prior to the weak measurement and σxaux

is the Pauli-x operator acting on the auxiliary qubit. By projectively measuring the auxiliary qubit

in the eigenbasis of σyaux and post-selecting only for +1 results, the original state is transformed

to

|Ψ〉 →M(t) |Ψ〉 ≡
(

1−O∆t

2
− 1

2
O2 ∆t2

4
+ · · ·

)
|Ψ〉 (B.16)

to lowest order in ∆t. The circuit diagram for this measurement protocol is shown in Fig. B.3.

The strength of the measurement is controlled by the magnitude of the operator |O(t)| in units of
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the timestep ∆t/2. Under the time-reversal operation T the operators O(t) and M(t) transform

as

OT (t) = (−1)qO(t)

MT (t) =

(
1− (−1)qO∆t

2
− 1

2
O2 ∆t2

4
+ · · ·

)
. (B.17)

We now apply weak-measurement operators M(t) in the circuit at each odd timestep t =

(2m + 1)∆t/2 and take the operator coefficients to be white-noise-correlated Gaussian random

variables

〈
Oα1...αq
i1...iq

(t)Oα
′
1...α

′
q

i′1...i
′
q

(t′)
〉

O

=
γ

N q−1(S + 1)2q
δ(t− t′)δi1i′1 · · · δ

α1α′1 · · · (B.18)

whose strength is controlled by the parameter γ. As before, the delta function can be regulated by

the replacement δ(t − t′) ≈ δtt′(∆t/2)−1. Performing the disorder average over the coefficients

Oα1...αp
i1...ip

(t) in the 2n-replica system we find

〈M ⊗MT ⊗ · · · ⊗M ⊗MT 〉O ≈
〈(

1−O∆t

2
− 1

2
O2 ∆t2

4

)
⊗
(

1−OT
∆t

2
− 1

2
O2
T

∆t2

4

)
⊗ · · ·

〉
O

=

〈(
1−O∆t

2
− 1

2
O2 ∆t2

4

)
⊗
(

1− (−1)qO∆t

2
− 1

2
O2 ∆t2

4

)
⊗ · · ·

〉
O

= 1 +
∆t2

4

∑
r<s

χqrs 〈OrOs〉O −
1

2

∆t2

4

∑
r

〈
(Or)2〉

O
(B.19)
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where we have defined

χqrs ≡ µq+1
rs =


1 q even

(−1)r+s q odd

(B.20)

similar to Eq. (B.11). Evaluating the disorder average, we find

〈OrOs〉O
∆t2

4
=

γ∆t

N q−1(S + 1)2q

1

2q!

∑
i1...iq
α1...αq

(
Sα1,r
i1

Sα1,s
i1

)
· · ·
(
S
αq ,r
iq

S
αq ,s
iq

)

=
γ∆t

N q−1(S + 1)2q

N q

2q!

(
1

N

∑
i

Sri · Ssi

)q

(B.21)

as an operator equation. The disorder-averaged Brownian-measurement circuit layer can there-

fore be written as a propagator:

〈M ⊗MT ⊗ · · · ⊗M ⊗MT 〉O ≈ e−NIq(t)∆t

Iq(t) ≡ n
γSq

2q!(S + 1)q
−
∑
r<s

χqrs
γ

2q!(S + 1)2q

(
1

N

∑
i

Sri · Ssi

)q

(B.22)

to lowest order in ∆t, which holds as an operator equation. Comparing Eqs. (B.13) and (B.22),

we conclude that the q-body Brownian measurement propagator is nearly identical to the unitary

p-body propagator – the only differences are in the numerical coefficients µprs, χ
q
rs and in the

overall sign of the interaction term.
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B.2.0.3 Coherent spin state path integral

We now stack a repeating sequence of p-body Brownian interactions and q-body Brownian

measurements, insert resolutions of the identity between each layer, and take the limit ∆t → 0

with T fixed to express the dynamics as a path integral over 2nN unit-norm SO(3) spins Sri ,

using spin coherent states as the basis. The completeness relation for the coherent states for a

single spin is given by,

I =

∫
2S + 1

4π
dΩi |Ωi〉 〈Ωi| . (B.23)

To turn the spins into coherent states, we use the upper symbols for single spin-S Pauli operators

[318],

Sαi =

∫
2S + 1

4π
dΩi |Ωi〉 〈Ωi| (S + 1)Ωα

i (B.24)

(Sαi )2 =

∫
2S + 1

4π
dΩi |Ωi〉 〈Ωi|

[
(S + 1)

(
S +

3

2

)
(Ωα

i )2

−S + 1

2

]
. (B.25)

We introduce a measure for the coherent spin states in the path integral,

DΩr
i =

∏
tn

2S + 1

4π
dΩr

i,tn〈Ω
r
i,tn+1
|Ωr

i,tn〉, (B.26)

such that it includes the overlap of spin coherent states at discrete times tn and tn+1. (Explicit

evaluation of these overlap terms leads to ‘kinetic energy’ or Berry-phase terms ∼ Ω∂tΩ in

the path integral [224]; the above choice of integration measure allows us to keep these time-

dependent terms implicit, but the reader should keep in mind that these terms are always present.)
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In terms of the coherent states, the action for 2n copies, combining both scrambling and

measurement can be defined as follows,

〈V ⊗ VT ⊗ · · · ⊗ V ⊗ VT 〉J,O = e−NI[Ω](t)∆t

I[Ω] =

∫ T

0

dt

[
nJSp

2p!(S + 1)p
+

nγSq

2q!(S + 1)q
+

J

2p!

∑
r<s

µprs

(
1

N

∑
i

Ωr
i ·Ωs

i

)p

− γ

2q!

∑
r<s

χqrs

(
1

N

∑
i

Ωr
i ·Ωs

i

)q]
. (B.27)

To deal with the non-linear interactions in Ωr
i · Ωs

i , we introduce decoupling fields Frs(t) and

Grs(t) with the following operator identity,

I =

∫
DFrsDGrs exp

[
iN

∫ T

0

dt Frs

(
Grs −

1

N

∑
i

Ωr
i ·Ωs

i

)]
(B.28)

We can now treat Frs andGrs as the dynamical fields for the problem which couple different

replicas r, s, and integrate out the spins, which gives us a propagator for spin problem. Note, we

actually have a N -spin propagator when we evaluate the Ω path integral. However, since all

the sites i are identical and have been decoupled by the disorder average, we can rewrite the

2nN -spin problem as the N -th power of a 2n-spin problem,

∫ ∏
i,r

DΩr
i exp

(
−
∑
r<s

iFrs
∑
i

Ωr
i ·Ωs

i

)
=

∫ ∏
r

(DΩr)N exp

(
−N

∑
r<s

iFrsΩ
r ·Ωs

)
.

(B.29)

where the new single-site integration measure is

DΩr =
∏
tn

2S + 1

4π
dΩr

tn

〈
Ωr
tn+1
|Ωr

tn

〉
(B.30)
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Putting it all together, along with the boundary conditions for the spin propagator, we get

the action density

I[Frs, Grs] = I0 + I1 − lnK(ψ0, ψT , T ) where

I0 ≡ JT
nSp

2p!(S + 1)p
+ γT

nSq

2q!(S + 1)q

I1 ≡
∫ T

0

dt

[
J

2p!

∑
r<s

µprsG
p
rs −

∑ γ

2q!

∑
r<s

χqrsG
q
rs − i

∑
r<s

FrsGrs

]

K(ψ0, ψT , T ) ≡ 〈ψT | exp

[
−
∫ T

0

dt
∑
r<s

iFrs
(S + 1)2

Sr · Ss
]
|ψ0〉 (B.31)

Since the propagator K is composed of SU(2)-symmetric Heisenberg couplings, the dy-

namics of the propagator are highly constrained. For S = 1/2 and n = 2 we showed in the main

text that these constraints reduce the dynamics to a two-dimensional subspace; we expect similar

constraints to simplify the problem for more general cases, but this remains a problem for future

work.

B.3 Replica symmetry

As discussed in the main text, the microscopic bulk dynamics V = V (1)⊗V (2)
T ⊗V (3)⊗V (4)

T

on replicas r = 1, 2, 3, 4 for n = 2 is manifestly invariant under the replica symmetry group

G = (S2 × S2) o Z2 (B.32)
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where the inner S2
∼= Z2 groups denote the permutation groups on replicas 1, 3 and 2, 4 with

generators σ = (13), σ′ = (24), respectively, where we use standard cycle notation in this

section to represent permutations of replicas. The outer Z2 in the semidirect product is generated

by τ = T (12)(34), where the operation T represents time-reversal V ↔ VT on all four replicas.

Under the semidirect product, the generator τ simply exchanges the generators σ, σ′:

σ′ = τστ. (B.33)

Explicitly, these generators act on the bulk dynamics as

σ
(
V (1) ⊗ V (2)

T ⊗ V
(3) ⊗ V (4)

T

)
= V (3) ⊗ V (2)

T ⊗ V
(1) ⊗ V (4)

T

σ′
(
V (1) ⊗ V (2)

T ⊗ V
(3) ⊗ V (4)

T

)
= V (1) ⊗ V (4)

T ⊗ V
(3) ⊗ V (2)

T

τ
(
V (1) ⊗ V (2)

T ⊗ V
(3) ⊗ V (4)

T

)
= V (2) ⊗ V (1)

T ⊗ V
(4) ⊗ V (3)

T (B.34)

where superscripts denote replica indices r = 1, 2, 3, 4. The replica symmetry group G for n = 2

is isomorphic to the dihedral group D4 = Dih4 (the group of symmetries of the geometrical

square) via the representation

G =
〈
a, b|a4 = b2 = 1, bab = a−1

〉
(B.35)

with the identification a = τσ and b = σ.

While the bulk dynamics V are invariant under the full groupG, the boundary conditions at

t = 0, T break this down to a subgroup H ⊂ G generated by the mutually-commuting operators
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τ, c, where

c = στσ = ba = T (14)(23) (B.36)

corresponds to a ‘reflection’ 1234 ↔ 4321 in replica space followed by time-reversal T on all

replicas. This subgroup is isomorphic to the Klein four-group H ∼= Z2 × Z2 composed of the

four elements {e, τ, c, τc} with e the identity element. Left-multiplication by σ = b yields the

left coset σH = {σ, στ, σc, στc}, and together the left cosets H, σH generate the full group G.

In this sense, the generator σ = b represents the Z2 symmetry that is explicitly broken by the

boundary conditions and spontaneously broken in the bulk.

For n > 2 the replica symmetry group is

G = (Sn × S ′n) o Z2 (B.37)

where Sn = S135..., S
′
n = S246... are the order-n! symmetric groups on replicas r = 1, 3, 5, . . . and

r = 2, 4, 6, . . . with generators σ, σ′, respectively. Similar to above, the outer Z2 is generated by

an element τ = T (12)(34) · · · (2n−1 2n) that exchanges the generators σ′ = τστ . The boundary

conditions at t = 0, T break this bulk symmetry down to a subgroup H ⊂ G that depends on the

details of the boundary states.

Because they contain the time-reversal operation T , which itself contains the complex con-

jugation operation ∗, the operators τ, c are antilinear operators on the Hilbert space of quantum

states, in contrast to the generators σ, σ′ which are conventional linear operators [219]. Whereas

conventional linear operators (as their name suggests) are linear in their arguments:

σ (α |ψ〉+ β |ψ′〉) = ασ |ψ〉+ βσ |ψ′〉 (B.38)
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antilinear operators are antilinear in their arguments:

τ (α |ψ〉+ β |ψ′〉) = α∗τ |ψ〉+ β∗τ |ψ′〉 (B.39)

where complex conjugation of the c-numbers α, β arises due to the complex conjugation in the

definition of time-reversal T . The antilinearity of τ, c leads to restrictions on the spectrum of

the operator V via the same mechanism that guarantees the reality of eigenvalues of certain non-

Hermitian Hamiltonians in PT-symmetric quantum mechanics [225, 226].

Here we show that an operator V with unbroken PT symmetry has a real spectrum, while

an operator with broken PT symmetry has a spectrum consisting of complex-conjugate pairs.

Assume that there is an antilinear operator τ that commutes with the operator V:

[τ,V] = 0 (B.40)

and suppose |Ψ〉 is an eigenstate of V with eigenvalue V :

V |Ψ〉 = V |Ψ〉 . (B.41)

Multiplying this eigenvalue equation on the left by τ and using the fact that τV = V ∗τ by

antilinearity of τ , along with the commutativity of τ,V, we find that |Ψ′〉 = τ |Ψ〉 is also an

eigenstate of V with eigenvalue V ∗:

V |Ψ′〉 = V ∗ |Ψ′〉 . (B.42)
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Hence any eigenstate |Ψ〉 of V with eigenvalue V is always accompanied by a second eigenstate

τ |Ψ〉 with eigenvalue V ∗.

This shows that the spectrum of any PT-symmetric operator V always consists of complex-

conjugate pairs V, V ∗, but there is no guarantee that these eigenvalues lie on the real line. To

guarantee reality of the spectrum one requires the additional assumption that the eigenstate |Ψ〉

is simultaneously also an eigenstate of τ :

τ |Ψ〉 = λ |Ψ〉 . (B.43)

If τ were a conventional linear operator, this would follow immediately from the commutativity

of τ,V (B.40); but when τ is antilinear this is an additional independent assumption. Because τ

is antilinear the eigenvalue λ can be any pure phase λ = eiφ but we may always appropriately

redefine the eigenstate |Ψ〉 such that λ = 1 [219, 225, 226]. In this case we have |Ψ′〉 = τ |Ψ〉 =

|Ψ〉 and therefore by combining Eqs. (B.41) and (B.42) we immediately obtain V = V ∗. Thus,

if |Ψ〉 is a simultaneous eigenstate of both τ and V, then its eigenvalue V is real.

If all of the eigenstates of V are also eigenstates of the antilinear operator τ then the spec-

trum is guaranteed to be real by the above arguments and we say that the PT symmetry of V is

unbroken. Conversely, if there are eigenstates of V that are not eigenstates of τ , then the spectrum

consists of complex-conjugate pairs and we say that the PT symmetry of V is broken.

B.4 Simplification of the path integral at saddle point

We introduce symmetric and anti-symmetric fields defined as
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F±a =
2

9
(iF12 ± iF34), G±a =

9

2
(G12 ±G34)

F±b =
2

9
(iF14 ± iF23), G±b =

9

2
(G14 ±G23)

F±c =
2

9
(iF13 ± iF24), G±c =

9

2
(G13 ±G24).

This re-definition simplifies the 4-replica propagator, as the only fields appearing in the

propagator are the symmetric combinations, F+
a,b,c. This implies that the saddle-point equations

of motion for the anti-symmetric fields F−a,b,c set G−a,b,c = 0, which reduces the number of fields

to consider down from 12 to 6. Since all the anti-symmetric fields are thus integrated away, we

drop the ± superscript and define Ga,b,c = G+
a,b,c (and similarly for the F fields).

In terms of these fields, the action density can be rewritten as,

I =

∫ T

0

dt

[
J

162

(
−G2

a −G2
b +G2

c

)
− γ

9
(−Ga −Gb +Gc)

−FaGa − FbGb − FcGc]− lnK. (B.44)

The saddle-point equations of motion corresponding to this action are given by,

− J

81
Ga,b +

γ

9
= Fa,b

J

81
Gc −

γ

9
= Fc, Ga,b,c = −d lnK

dFa,b,c
(B.45)

The G fields can thus be integrated out by replacing them with the saddle-point solutions. We

can also rewrite the action in terms of the magnetic field variables ~B. The B0 field can also be
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integrated out since it appears in a quadratic form.

Finally we have a path integral over just two fields, with the action,

I =

∫ T

0

dt

[
27B2

x

4J
− 81B2

z

4J
+Bz(1 + 18γ)− J

72

−4γ2

J
− γ

2

]
− lnK

K = 〈ψT | exp

[
1

2

∫ T

0

dt (Bxσx +Bzσz)

]
|ψ0〉 . (B.46)

We need to determine the integral contour such that the integral is converged. This implies

that Bx is to be integrated from−∞→∞, while Bz is to be integrated along the imaginary axis,

−i∞→ i∞.

Note that until now we have not made any assumptions about the time dependence of the

fields. This simplified expression for the path integral over just 2 fields follows naturally from the

symmetry of the 4-spin Hamiltonian and the fact that the boundary states belong to a particular

spin sector.

B.5 Numerical gradient descent

We can estimate the time dependent solutions to Eq. (C.47) by performing numerical

gradient descent on discretized field configurations of Bx and Bz. For this section in order to

perform gradient descent over real valued Bx and Bz fields we change the definition of Bz to an

imaginary ‘magnetic field’, iBz. The action is given by,
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I =

∫ T

0

dt

[
27B2

x

4J
+

81B2
z

4J
+ iBz(1 + 18γ)− J

72

−4γ2

J
− γ

2

]
− lnK

K = 〈ψT | exp

[
1

2

∫ T

0

dt (Bxσx + iBzσz)

]
|ψ0〉 . (B.47)

For the gradient descent, we consider units where Jdt = 0.05. In Figs. 6 and 7 we consider

total times of 2430Jt and 3240Jt respectively. Starting from the bulk saddle-point configurations

we perform the gradient descent with the action given in Eq. (B.47) until the difference in action

is below a threshold of δI ∼ 10−7. Each of the configurations in Fig. 3.6 require ∼ 10000

iterations of the gradient descent to reach the required threshold. For Fig. 3.7a, we initialize the

configuration of the fields to correspond to the instanton configuration in Eq. (3.46) and find that

the action is already below the threshold for gradient descent.

To explore the subsystem purity phase diagram Fig. 3.10, we perform numerical gradient

with the k dependent action with the propagator given by Eq. (3.53). For γ < γc but close to

criticality, we consider the two configurations in Fig. 3.10b(iii-iv) and perform gradient descent

to find local minima near these solutions, for a range of k ∈ 0.50, 0.501, .., 0.51 as shown in Fig.

B.4. We then interpolate to find the value of k for which the two configurations exchange in total

action, which is the numerical estimation of kc, used to plot Fig. 3.11. The error bars are the

errors due to the resolution of the k values considered for the numerics.
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Figure B.4: Subsystem purity critical exponent µ from gradient descent numerics. The
critical subsystem fraction kc(γ) is identified for measurement rates γ < γc just below the critical
point by finding points in the k, γ plane where the boundary action ∆Ibdy is equal to the single-
instanton action I∗.

B.6 Exact diagonalization

Numerical simulations of the hybrid dynamics for small system sizes N confirm the pres-

ence of a long-lived mixed phase as shown in Fig. 3.8 of the main text. These data were obtained

by numerically simulating the (2, 1) hybrid Brownian model on N = |Q| = 6 qubits maximally

entangled with |R| = 6 reference qubits using the Krylov subspace method [230, 231, 232].

We plot the results of these numerical simulations in Fig. B.5, which shows the entropy

− ln ΠQ = − lnZ2/P
2 as a function of time, averaged over 50 circuit realizations. We perform

the disorder average in two different ways: the ‘physical’ disorder average 〈Z2/P
2〉 that one

obtains from the Born rule (purple); and the ‘tractable’ disorder average 〈Z2〉 / 〈P 2〉 studied in

this work (green). At low measurement rates γ we find that these two ways of doing the disorder
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Figure B.5: Disorder averaging in exact diagonalization numerics. (a) Far below the critical
point, the two averaging protocols (purple, green) yield nearly identical results in numerical
simulations with N = 6 qubits averaged over 50 circuit realizations. (b) Closer to the critical
point the two estimates begin to diverge, while above the critical point (c) they disagree sharply.
Nevertheless, both disorder averages appear to faithfully diagnose the transition when compared
to the respective disorder averages performed in circuits featuring measurements only (dotted
grey, solid grey).

average give nearly identical answers (Fig. B.5a), while they disagree for higher values of γ

(Figs. B.5b-c). Both disorder averages, however, deviate substantially from the corresponding

curves computed in measurement-only circuits (dotted black, solid black), indicating that both

disorder averages are sensitive to the purification transition.

Our exact diagonalization calculations are limited to short simulation times and values of

γ/J that are not too small. At small γ one must distinguish the phase from the initial exponential

decay, necessitating simulation times longer than t > 1/γ; accessing these long timescales is

challenging for exact diagonalization due to the propagation of successive errors in the Krylov

approximation. Specifically, numerical accuracy of the Krylov algorithm requires ε =
√
Jδt� 1

(the square root comes from the fact that J controls the variance of the couplings in Eq. (3.2),

not the standard deviation). Together with the requirement t > 1/γ this gives a lower bound

t

δt
>

1

ε2
J

γ
(B.48)
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on the number of timesteps t/δt required to access the mixed phase given fixed numerical pre-

cision ε and phase parameter γ/J . Our simulation for γ = 0.0044J above, for example, has

ε ≈ 0.16 and J/γ = 225, requiring on the order of t/δt ≈ 104 timesteps or more to access the

mixed phase.

B.7 Continuous Monitoring of Disordered Spin Observables with Optical Cav-

ities

While the projective qubit model introduced in Appendix B.2.0.2 is conceptually useful for

deriving the effective weak measurement operator M(t), high-fidelity single-site projective mea-

surements are challenging to implement experimentally. Fortunately, such high-fidelity single-

qubit projective measurements are not strictly necessary for our scheme to work. Instead, one can

generate equivalent weak measurement dynamics by continuously monitoring the collective spin

operator O =
∑

i,α n
α
i S

α
i directly. Such collective spin variables can be monitored naturally in

state-of-the-art cavity quantum electrodynamics setups by coupling a quasi-one-dimensional cold

atomic ensemble to the optical mode of an all-to-all optical cavity [188, 212, 319, 320, 321, 322].

In such a cavity setup, each spin Si is encoded into the electronic states of the ith atom,

which resides at position zi along the longitudinal cavity axis. The atoms act like a spin-dependent

refractive index for the cavity mode, which causes the cavity resonance to shift by an amount pro-

portional to the total magnetization SzTot =
∑

i S
z
i [319, 320, 321]. By probing the cavity with

near-resonant light we can therefore continuously monitor the total spin projection SzTot. If the

atoms are coupled unequally to the cavity mode, the shift in cavity resonance is instead propor-

tional to the disordered magnetization S̃zTot =
∑

i niS
z
i , where the weights ni are determined by
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the coupling between the ith atom and the cavity mode. These couplings can be modified by shift-

ing the physical locations of the atoms relative to the cavity mode, or by applying nonuniform

local ac Stark shifts to the ensemble. Further, one can couple different spin components Sαi to the

cavity mode by applying additional non-uniform magnetic fields or optical drive fields to rotate

the local coordinate frame at each atomic site zi. The combination of these tools in principle al-

lows for continuous monitoring of disordered spin-linear operators of the form O =
∑

i,α n
α
i S

α
i

without requiring single-site projective measurements of single qubits.
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Appendix C: Chapter 4:

C.1 Setup of the Rényi entropy calculation

In the main part of the paper we focus on a 1-dimensional lattice of size L with periodic

boundary conditions, however the results can be readily extended to higher dimensions. For the

spin model, each spin operator is labeled as Sriα, with i and α denoting the intra-cluster label and

spin direction respectively, while r refers to the position label of the cluster in the chain, and a

similar labeling applies to the fermions.

The dofs in Q (vectors in the Hilbert space H) undergo a non-unitary random evolution

V (t). The randomness comes from the Brownian nature of the unitary evolution that we consider

in our setup. Under this evolution, a density matrix (when viewed as vector in the doubled Hilbert

space |ρ〉〉) evolves as, |ρ〉〉 → V (t)⊗V ∗(t) |ρ〉〉, which generates an unnormalized state because

of the non-unitary evolution. We want to study the entanglement properties of the subsystem A

for this state, a particular diagnostic of which is the Rényi-n entropy of the normalized reduced

density matrix ρA,

S
(n)
A =

1

1− n
E log

Tr [ρnA(t)]

Tr [ρA(t)]n
, (C.1)
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where E refers to the averaging over the realizations of the random circuit V (t).

Estimating the actual Rényi-2 entropy averaged over the randomness requires taking a non-

trivial replica limit since this is an average of a ratio of two multi-replica quantities. Instead, we

will calculate the quasi Rényi-2 entropy [264], which is the ratio of the averages,

Ŝ
(n)
A =

1

1− n
log

ETr [ρnA(t)]

ETr [ρA(t)]n
(C.2)

This quantity, while distinct from the disorder averaged Rényi-n entropy, is easier to calculate. In

this work we focus on estimating Ŝ(2)
A , for which it is convenient to consider the dynamics in 4

replicas of the Hilbert spaceH(4). We use a 1, 2, 3, 4 notation: 1, 2 (3, 4) denote the first (second)

replica, and 1, 3 (2, 4) denote the forward (backward) evolution. In H(4) the time evolution is

given by V(t) = V (1)(t) ⊗ V (2)∗(t) ⊗ V (3)(t) ⊗ V (4)∗(t), and the normalization factor is given

by N (ρ) =
√
〈〈I|V(t) |ρ〉〉 |ρ〉〉. To define |I〉〉 ∈ H(4), we first define two normalized states,

|+〉〉 ∼
∑
ab=0,1

|aabb〉〉 (C.3)

|−〉〉 ∼
∑
ab=0,1

|abba〉〉, (C.4)

which leads to the definition, |I〉〉 =
⊗

i,r |+〉〉. This definition ensures that the normalization

factor is the usual norm of a state. In our setup, the system dofs in Q are initially maximally

entangled with NL qubits in a reference R. The corresponding initial state for Q in H(4) is

|ρ〉〉 ⊗ |ρ〉〉 = |I〉〉.
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We further define a SWAP state inH(4) as,

|SA〉〉 =
⊗
i,r∈A

|−〉〉
⊗

i,r∈Ac=Q−A

|+〉〉, (C.5)

and the quasi Rényi-2 entropy is given by,

exp
(
−Ŝ(2)

A

)
=
〈〈SA|EV(t) |I〉〉
〈〈I|EV(t) |I〉〉

. (C.6)

The quasi-entropy can be simulated in a quntum experiment with extra classical post-

processing and no extra quantum resources over estimating the usual Rényi entropy [4].

C.1.1 Relation between the quasi Rényi, Rényi, and von Neumann entropies

One can show that the Rényi entropy and the quasi Rényi entropy can be treated as a part

of the same family of generalized entropic quantities. Consider the generalized function,

χ
(nm)
A =

1

m(1− n)
log

E (Tr [ρnA])m

E (Tr [ρA])nm
(C.7)

One can show,

χ
(nm)
A

∣∣
m→0

= S
(n)
A (C.8)

χ
(nm)
A

∣∣
m→1

= Ŝ
(n)
A . (C.9)

Intriguingly, one can also extract the von Neumann entropy directly from the quasi Rényi

entropy. First let us define the normalized density matrix, ρ̃A = ρA/Tr [ρA]. The probability of
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each trajectory is given by Tr [ρA]. The trajectory averaged von-Neumann entropy is given by,

SA = −E
[
Tr [ρA] Tr [ρ̃A log ρ̃A]

]
. (C.10)

We find that the trajectory averaged von-Neumann entropy is the n→ 1 limit of the quasi-Renyi

entropy,

Ŝ
(n→1)
A = SA. (C.11)

Let us sketch this proof.

SA = −E
[
Tr [ρA log ρA]− Tr [ρA] log Tr [ρA]

]
= −∂nE

[
Tr [ρnA]− (Tr [ρA])n

]∣∣∣∣
n→1

= −∂n
[

ETr [ρn]

E (Tr [ρA])n

] ∣∣∣∣
n→1

(using ETr [ρA] = 1)

=
1

1− n
log

ETr [ρn]

E (Tr [ρA])n

∣∣∣∣
n→1

= Ŝ
(n→1)
A .

Hence we find that although the quasi Rényi and the averaged Rényi entropies are different replica

limits of a generalized entropy function, a particular replica limit of the quasi Rényi entropy can

access the physical von Neumann entropy of the state generated by the hybrid circuit.

C.2 Path integral representation of the replicated dynamics

In this section of the Appendix we show how to derive the spin path integral for the repli-

cated dynamics and derive Eqs. 4,5 and 6 in the main text.
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C.2.1 Measurement model in the Brownian spin model

A random 1-body operator at a given time,O(t) =
∑

i,α n
α
i (t)Siα is coupled to an auxiliary

qubit via the interaction,

exp

[
−i∆t

2
O(t)σxaux

]
|Ψ〉 |0〉aux , (C.12)

with |Ψ〉 being the state of the system. After this coupling, the auxiliary qubit is measured in the

σyaux basis, and only +1 results are post-selected. Under this dynamics, the system deterministi-

cally evolves with a non-unitary evolution operator M(t),

|Ψ〉 →M(t) |Ψ〉 =

(
1− 1

2
O∆t− 1

8
O2∆t2 + · · ·

)
|Ψ〉 . (C.13)

C.2.2 Integrating out disorder and spin path integral

The Brownian disorders are explicitly given by,

E
[
nαi (t)nβj (t′)

]
=

γ

(S + 1)2

δtt′

∆t/2
δijδ

αβ,

E [Jijαβ(t)Jklµρ(t
′)] =

J

N(S + 1)4

δtt′

∆t/2
δikδjlδαµδβρ,

E
[
J̃r1r2ijαβ(t)J̃

r′1r
′
2

klµρ(t
′)
]

=
gJr1r2

N(S + 1)4

δtt′

∆t/2
δr1r′1δr2r′2δikδjlδαµδβρ.

We want to write down a path integral expression for the averaged circuit evolution in n

replicated copies of the physical system, which includes 2n copies of the circuit (counting the
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time-reversed copies). This quantity,

V(t) = E
[
V (1)(t)⊗ V (2)∗(t)⊗ . . . V (2n−1)(t)⊗ V (2n)∗(t)

]
, (C.14)

can give us access to the n-th Rényi entropies, and in particular, the n = 2 result corre-

sponds to the Rényi-2 entropy that we consider in this paper. Let u, v denote the replica index.

The time evolution operator in any given copy is generated by an interaction Hamiltonian and a

non-unitary evolution generated by a weak measurement followed by post-selection, as described

in the main text. Schematically this can be expressed as,

V (u)(∆t) ∼ exp

[
−i∆t

2

(
H(u)(t)− iO(u)(t)

)]
, (C.15)

where the H(u) and O(u) are the Hamiltonian and the measured operator (in replica u) respec-

tively. These operators are taken to be Brownian in our model, which implies that the time

evolution is uncorrelated in the time direction. However the randomness is same for each replica,

which implies that in V different replicas become correlated when the disorder is integrated away,

using the Gaussian nature of the Brownian variables defined in Eq. 3 of the main text. One way

to derive this is by expanding the evolution in each time step in the product in (C.15) to second

order in ∆t, and collecting terms like E
[
H(u)H(v)

]
, E
[
H(u)H(u)

]
or E

[
O(u)O(v)

]
together. This

procedure is discussed in detail in the Appendix B of [4]. Exponentiating back, one obtains that

V(∆t) ∼ exp (−NIn(t)∆t). The variances of the random terms have been scaled in a way that

the exponential comes with a prefactor of N . Dropping some constant terms (which arise from

the intra-replica terms) In(t) is given by,
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In(t) =

[∑
r

u<v

(−1)u+v J

4(S + 1)4

(
1

N

∑
i

Suri · Svri

)2

+
∑
r 6=r′
u<v

(−1)u+v gJrr′

2(S + 1)4

(
1

N

∑
i

Suri · Svri

)(
1

N

∑
i

Sur′i · Svr′i

)

−
∑
r

u<v

(−1)u+v γ

2(S + 1)2

(
1

N

∑
i

Suri · Svri

)]
. (C.16)

In this expression the spin operator S refers to the spin operator at time t.

We can now stack Vu(∆t) at different times by repeating sequence of the Brownian in-

teractions and measurements, insert resolutions of the identity between each layer, and take the

limit ∆t → 0 with T fixed to express V(t) as a path integral over 2nN unit-norm SO(3) spins

Suri, using spin coherent states as the basis. The completeness relation for the coherent states for

a single spin is given by,

I =

∫
2S + 1

4π
dΩi |Ωi〉 〈Ωi| . (C.17)

To turn the spins into coherent states, we use the upper symbols for single spin-S Pauli operators

[318],

Siα =

∫
2S + 1

4π
dΩi |Ωi〉 〈Ωi| (S + 1)Ωiα (C.18)

(Siα)2 =

∫
2S + 1

4π
dΩi |Ωi〉 〈Ωi|

[
(S + 1)

(
S +

3

2

)
(Ωiα)2 − S + 1

2

]
, (C.19)
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and introduce a measure for the coherent spin states in the path integral,

DΩu
ri =

∏
tn

2S + 1

4π
dΩu

r,i,tn〈Ω
u
r,i,tn+1

|Ωu
r,i,tn〉, (C.20)

with implicit time dependent terms.

In terms of the coherent states V(t) is given by a path integral,

V(t) = E [V ⊗ VT ⊗ · · · ⊗ V ⊗ VT ] = e−NI[Ω]

I[Ω] =

∫ T

0

dt

[
J

4

∑
r

u<v

(−1)u+v

(
1

N

∑
i

Ωu
ri ·Ωv

ri

)2

+
∑
r 6=r′
u<v

(−1)u+v gJrr′

2

(
1

N

∑
i

Ωu
ri ·Ωv

ri

)(
1

N

∑
i

Ωu
r′i ·Ωv

r′i

)

−
∑
r

u<v

(−1)u+v γ

2(S + 1)2

(
1

N

∑
i

Ωu
ri ·Ωv

ri

)]
(C.21)

To decouple the non-linear interactions in Ωu
ri · Ωv

ri, we introduce Hubbard Stratonovich

type fields which couple different replicas F (r)
uv and G(r)

uv , satisfying the operator identity,

1 =

(∏
r,u<v

∫
DF uv

r DGuv
r

)
exp

[
iN

∫ T

0

dtF uv
r

(
Guv
r −

1

N

∑
i

Ωu
ri ·Ωv

ri

)]
. (C.22)
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The action can thus be re-written as,

I[F,G,Ω] =

∫
dt

[∑
r

u<v

(−1)u+vJ

4
(Guv

r )2 +
∑
r 6=r′
u<v

(−1)u+vgJrr′

2
(Guv

r ) (Guv
r′ )−

∑
r

u<v

(−1)u+vγ

2
(Guv

r )

−
∑
r

u<v

(iF uv
r Guv

r ) +
∑
r

u<v

iF uv
r

(
1

N

∑
i

Ωu
ri ·Ωv

ri

)]
(C.23)

Note that (C.23) is applicable in any general dimensions, where the position label r ∈ Zd

can be identified as a d dimensional vector, with L being the linear size along each dimension.

C.2.3 Field theory with periodic boundary condition

We can further simplify (C.23) by assuming periodic boundary condition and going to

momentum space. We also assume that the interaction Jrr′ is translationally invariant and even,

i.e. Jrr′ ∼ J|r−r′|.

We consider discrete d-dimensional cubic lattice in the space Zd with L being the linear

extent of the cube. In the limit L� 1, the momentum space domain is k ∈ {0, 2π}d. We use the

following schematic definitions,

Gk =
∑
r∈Zd

e−ik·rGr

Gr =
1

(2π)d

∫ 2π

0

· · ·
∫ 2π

0

dk1 · · · dkdeik·rGk ≡
∫
d̄dkeik·rGk

1

(2π)d

∑
r∈Zd

eik·r = δ(k) ,

∫
d̄dkeikr = δr,0. (C.24)
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We also introduce the notation,

Ωuv
r =

1

N

∑
i

Ωu
ri ·Ωv

ri. (C.25)

In momentum space, we can rewrite Eq. C.23 can be rewritten as (dropping the constant terms),

I[F,G,Ω] =

∫
dt

∫
d̄dk

∑
u<v

[
(−1)u+v

4

(
ĴkG

uv
k G

uv
−k − 4πγGuv

k δ(k)
)
− iF uv

k Guv
−k + iF uv

k Ωuv
−k

]
,

where, Ĵk = J +
∑
r∈Zd

e−ik·rJ|r| (C.26)

Note that all the Guv
k fields can be integrated out, by satisfying the equations of motion,

Guv
k = (−1)u+v 2iF uv

k

Ĵk
for k 6= 0,

Guv
0 =

2πγ

Ĵ0

+ (−1)u+v 2iF uv
0

Ĵ0

for k = 0. (C.27)

Integrating out the G fields, we get (again dropping constant terms),

I[F,Ω] =

∫
dt

∫
d̄dk

∑
u<v

[
− (−1)u+v

Ĵk
(iF uv

k )
(
iF uv
−k
)
− 2πγ

Ĵ0

(iF uv
k ) δ(k) + iF uv

k Ωuv
−k

]
.

(C.28)

Going back to real space, we get,

I[F,Ω] =

∫
dt
∑
r

u<v

[
− (−1)u+v

∑
r′

Jrr′ (iF uv
r ) (iF uv

r′ )− γ

Ĵ0

(iF uv
r ) + (iF uv

r ) Ωuv
r

]
, (C.29)
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with an effective real space interaction Jrr′ given by,

Jrr′ =

∫
d̄dk

eik·(r−r
′)

Ĵk
. (C.30)

By identifying the last term in (C.29) as a partition function for the spins with external

fields iF , one gets the Eq. 4 in the main text.

C.2.4 Effective real space interaction

(C.29) holds for any general number of dimensions. The microscopic interaction between

the spins i.e. Jrr′ can be Fourier transformed to give the momentum space interaction Ĵk between

theG fields. This can then be transformed to an interaction Jrr′ between the iF fields via (C.30).

Here we consider two forms of the interaction, nearest neighbor (NN) or power-law inter-

acting (PL). In the main text results are used for the PL case. Including the on-site term, the real

space interaction between spins in a d-dimensional lattice is defined as follows,

Jrr′ =


J (δr,r′ + g

∑
i (δr,r′+ei + δr,r′−ei)) (NN)

J
(
δr,r′ + g (1− δr,r′) 1

|r−r′|2α

)
(PL).

(C.31)

Here ei is a d-dimensional vector {0, 0, .., i, .., 0} with 1 in the i-th position.

The momentum space interaction is given by its discrete-time Fourier transform,
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Ĵk =


J (1 + 2g

∑
i cos ki) (NN)

J
(

1 + g
∑

s 6=0
e−ik·s

|s|2α

)
(PL).

(C.32)

To get the effective real space interaction J between the replica fields iF , one has to take

the Fourier transform of Ĵ−1
k . This can be done exactly for d = 1.

C.2.4.1 d=1

In d = 1 we have,

Ĵk =


J (1 + 2g cos k) (NN)

J
(
1 + g

(
Li2α

(
e−ik

)
+ Li2α

(
eik
)))

(PL),

(C.33)

where Lin (z) is the Polylogarithm function. For large α, Li2α(z) → z, and Ĵk reduces to the

Nearest Neighbor case.

In the NN case, the real space interaction between the replica fields is given by,

J NN
rr′ =

∫ 2π

0

dk

2π

eik(r−r′)

1 + 2g cos k
. (C.34)

Changing the variables to z = eik, we get contour integral defined along the unit circle in the

complex z-plane, with two isolated poles along the negative real axis. Performing the contour
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integral picks up the pole within the unit circle and one obtains,

J NN
rr′ =

(−1)r−r
′√

1− 4g2
e−acosh 1

2g
|r−r′|. (C.35)

In the PL case, with the same change of variables, the real space interaction is given by the

following contour integral defined along the unit circle,

J PL
rr′ =

∫
C

dz

2πi

zr−r
′−1

1 + g (Li2α(z) + Li2α(1/z))
. (C.36)

For large enough g (including g = 1) there is an isolated pole along the negative real axis within

the unit circle, and a branch cut due to the Li2α(1/z) term along the positive real axis z ∈ (0,∞).

The pole gives an exponential decay like the NN case, while we will show that the branch cut

contribution leads to a power law interaction.

Deforming the contour to hug the branch cut, the integral is proportional to the disconti-

nuity along the branch cut (
∫ 1+iε

0+iε
−
∫ 1−iε

0−iε ), which for the function Li2α(1/z) is proportional to

log2α−1(1/z). Thus we get,

J PL
rr′ = Pole contribution−

∫ 1

0

dzzr−r
′−1 log2α−1(z)g(z), (C.37)

where g(z) is a smooth function. For large |r− r′| the integrand is heavily suppressed away from

z = 1, so we can change variables z ∼ e−w, and after dropping the regular terms, we have an
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integral,

∫ ∞
0

dwe−w|r−r
′|w2α−1 ∼ |r − r′|−2α, for |r − r′| � 1.

Along with the pole contribution we thus get the effective real space interaction,

J PL
rr′ ∼ (−1)r−r

′
e−µ|r−r

′| − (1− δrr′)
1

|r − r′|2α
. (C.38)

At large |r − r′|, Jrr′ ∼ |r − r′|−2α, as was noted in the main text.

C.2.4.2 General d

In this section we will derive the effective real space interaction in any general dimension,

d.

For the NN case, we have,

J NN
rr′ =

∫
d̄dk

eik·(r−r
′)

1 + 2g
∑

i cos ki
, (C.39)

which can be expanded around ki = π. Furthermore, we can consider r − r′ to be along a
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particular dimension, say 1. With these manipulations we get,

J NN
rr′ ∼

∫ +π

−π
d̄dk

eik1(r−r′)

1 + g̃
∑

i k
2
i

∼
∫ ∞

0

dkkd−2

∫
d̄k1

eik1(r−r′)

1 + k2
1 + k2

∼
∫ ∞

0

kd−2

√
1 + k2

e−
√

1+k2|r−r′| ∼ e−µ|r−r
′|. (C.40)

For the PL case, one needs to evaluate,

J PL
rr′ ∼

∫
d̄dk

eik·s

1 + g
∑

u6=0
e−ik·u

|u|2α
. (C.41)

Firstly we have,

∑
u6=0

e−ik·u

|u|2α
∼
∫ ′

d̄du
e−ik·u

|u|2α
∼ k2α−d. (C.42)

With this, we can expand the function to be Fourier Transformed at small k,

J PL
rr′ ∼

∫
d̄dkeik·s

(
1− gk2α−d) ∼ δ(s)− g|s|−2α. (C.43)

These results generalize C.38 for any general dimension.

C.3 Saddle point analysis of the mean field
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C.3.1 Effective Bulk Action and saddle points

The mean-field action in Eq. (C.29) (equivalent to Eq. 4 in the main text), describes the

dynamics of 4L spins Sur interacting via Heisenberg couplings Sur · Svr . Because these coupling

terms are manifestly symmetric under global SU(2) rotations, the action I = I[iF uv
r ] is also

SU(2) invariant. In fact, because the interaction terms are separable
∑

r lnKr in the space co-

ordinate r, the action I is invariant under all local SU(2) rotations generated by the total spin

operators STot
r =

∑
u Sur within each cluster r. At the same time, the boundary conditions gener-

ated by the EPR pairs and SWAP operator force the system to form SU(2) spin singlets at times

t = 0, T . Together, these facts constrain the dynamics within each cluster r to live entirely in

the spin-singlet subspace STot
r = 0 for each r = 1, . . . , L. Thus, each cluster r supports a single

replica qubit or r-bit spanned by the states |↑〉r , |↓〉r.

The underlying SU(2) symmetry significantly simplifies the problem. For n = 2 the prop-

agator Kr in each two-dimensional r-bit subspace simplifies to

Kr = 〈ψT | exp

[
1

2

∫ T

0

dt
(
φr(t)σ

x
r + Θr(t)σ

z
r

)]
|ψ0〉 eBT/2 (C.44)

where σx,zr are the 2 × 2 Pauli matrices acting on the r-bit |↑〉r , |↓〉r subspace. The fields

φr(t),Θr(t) are linear combinations of the mean fields

φr =
2

3
√

3

(
iF 12

r + iF 34
r − iF 14

r − iF 23
r

)
Θr =

2

9

∑
u<v

iF uv
r −

2

3

(
iF 13

r + iF 24
r

)
(C.45)
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and where terms proportional to the identity within the r-bit subspace have been collected into

the term

B =
2

9L

∑
r,u<v

iF uv
r . (C.46)

The time- and space-dependent bulk fields φr(t),Θr(t) encode the relevant mean-field dynamics

of the r-bits in each cluster r. In general these fields must execute nontrivial motions in the bulk in

order to satisfy the non-equal boundary conditions |ψ0〉 , |ψT 〉. By contrast, the remaining fields

in the action appear simply as quadratic Gaussian fields and may therefore be trivially integrated

out of the path integral, leading to the effective action

ETr
[
ρ2
A(t)

]
or ETr [ρA(t)]2 =

∫
DφDΘ exp [−NI[φ,Θ]]

I[φ,Θ] =
∑
r

∫ T

0

dt

[∑
r′

27Jrr′
16

(φrφr′ − 3ΘrΘr′) + Θr

(
1 +

9γ

Ĵ0

)]
−
∑
r

lnKr.

(C.47)

with the propagator Kr given in Eq. (C.44), and where we have dropped additive constant terms.

To understand the saddle points of the action I[φ,Θ] we first consider the bulk mean-field

limit in which the fields are independent of space and time: φr(t) = φ,Θr(t) = Θ. In this case

the propagatorKr is dominated at long times by the ground state of the r-bit effective Hamiltonian

φσxr + Θσzr , which yields

∑
r

lnKr =
LT

2

√
φ2 + Θ2 +

BLT

2
. (C.48)

By substituting this into Eq. (C.47) (and again dropping additive constant terms) we obtain the

time- and space-independent effective bulk action,
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Figure C.1: Action cost for symmetric and symmetry-broken phases. Below the critical point
Γ < Γc, the action cost Re[IMF ] is minimized by the symmetry-broken saddle points (solid
orange) relative to the symmetric saddle point (dashed purple). Above the critical point Γ > Γc
the path integral is dominated by the symmetric saddle point (solid purple) because the symmetry-
broken saddles (dashed orange) are imaginary and therefore do not contribute to the integral (see
Fig. C.2).

IMF[φ,Θ] = NTL

[
J
(
φ2 − 3Θ2

)
− 9

(
Γ +

1

9

)
Θ− 1

2

√
φ2 + Θ2

]
, (C.49)

where we have defined Γ ≡ γ

Ĵ0
and J ≡ 27/16

∑
s∈Z Jr(r+s).

Saddle point analysis of this action [4] reveals a phase transition at Γc = 1/9. For Γ > Γc

the action is dominated by the symmetric saddle point with φ∗ = 0 and Θ∗ = −3(Γc + 2Γ)/4J .

By contrast, for Γ < Γc, the action is dominated by the symmetry-broken saddle-point where the

field φ∗ is non-zero and comes in a pair, φ∗ ∝ ±
√

Γc − Γ, while Θ∗ = −9(Γc + Γ)/8J . The

replica permutation 1 ↔ 3 is equivalent to φ ↔ −φ symmetry, which is spontaneously broken

for Γ < Γc.

Note, γc is given by ΓcĴ0 ∼ Γc

(
1 + g

∑
s 6=0 |s|−2α

)
≈ Γc

(
1 + g

∫ ′
dds|s|−2α

)
. Thus γc

diverges when 2α < d, when the system effectively becomes all-to-all.
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Figure C.2: Saddle-point integration contours. (a) Below the critical point, both the symmetry-
broken saddle points (i., orange dots) and the symmetric saddle point (ii., purple dot) lie along the
real axis of integration (solid black). In this case all three saddle points contribute to the integral,
but the symmetry-broken saddle points dominate because they minimize the action Re[IMF]. (b)
Above the critical point, the symmetry-broken saddle points (i., orange dots) lie on the imaginary
axis and therefore do not contribute to the integral. Therefore the integral is dominated by the
symmetric saddle point (ii., purple dot). Dotted blue lines show contours of steepest ascent /
descent.
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C.3.2 Effective Field Theory Near Criticality

In the previous analysis we understood the bulk mean-field physics of the model by ig-

noring the space- and time- dependence of the fields φr(t),Θr(t). Here we restore the space-

and time-dependence and study the model near the critical point. In this limit we can transform

the effective r-bit action Eq. (C.47) into a φ4 field theory with long-range interactions. In par-

ticular, near the critical point the dynamics is governed entirely by the small fluctuations of the

symmetry-breaking field φr(t). In the following we expand the action I[φ,Θ] in fluctuations of

this small parameter to obtain an effective long-range φ4 field theory for the system.

First we evaluate the leading term of the effective action I[φ,Θ] in Eq. (C.47), correspond-

ing to the long-range power-law interactions. Substituting Jrr′ = J PL
rr′ from Eq. (C.38), we

obtain

∑
r′

(−1)r−r
′
e−µ|r−r

′|φrφr′ ≈
∑
q∈Z

(−1)qe−µ|q|φ2
r +

∑
q∈Z

(−1)q
q2

2
e−µ|q|φr∂

2
rφr +O(φr∂

4
rφr)

≈ (1− e−µ)

(1 + e−µ)
φ2
r −

e−2µ (1− e−µ)

(1 + e−µ)3 φr∂
2
rφr (C.50)

and

∑
r′

(1− δrr′)
1

|r − r′|2α
φrφr′ →

∫ ′
s

1

|r − s|2α
φrφs (C.51)

in the continuum limit, where the delta-function term 1 − δrr′ is responsible for the UV cut-off

in the continuum integral
∫ ′
s

=
∫
R\(r−ε,r+ε) ds. Here we have assumed that the parameter µ is

large such that the exponential e−µ|q| decays rapidly and suppresses higher derivative terms e.g.
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φr∂
4
rφr. Next, we fix Θr(t) = Θ = −3(Γc + 2Γ)/4J to its saddle-point value and expand the

propagators lnKr in the small parameter φr(t) [4]:

lnKr = ln 2 cosh
ΘT

2
+

1

8

∫
dt1dt2φr(t1)φr(t2)e−|Θ||t1−t2| −

∫
dt

φ4
r

16 |Θ|3
+O(φ6

r)

≈
∫
dt

[
φr∂

2
t φr

4 |Θ|3
+

φ2
r

4 |Θ|
− φ4

r

16 |Θ|3

]
+ const. (C.52)

Finally, summing the results, taking the continuum limit, and ignoring additive constants, we find

the near-critical Landau-Ginzburg effective field theory

Ieff[φ]

N
=

1

4 |Θ|3
∫
t,r

dtdr

[
− φr

(
∂2
t + β∂2

r

)
φr − b

∫ ′
s

φrφs
|r − s|2α

− δ

2
φ2
r +

φ4
r

4

]
, (C.53)

for small fluctuations φr(t) around the critical point. Here we have introduced the numerical

coefficients

β = 4 |Θ|3 27J

16

e−2µ (1− e−µ)

(1 + e−µ)3

b = 4 |Θ|3 27J

16

δ = 8 |Θ|3
(

1

4 |Θ|
− 27J

16

(1− e−µ)

(1 + e−µ)

)
. (C.54)

By rescaling space and b we can get rid of the β parameter, and end up with the Landau-Ginzburg

theory in Eq. 6 in the main text.

C.4 Scaling of entanglement entropy in the symmetry broken phase

In this section we derive results for d = 1.
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C.4.1 Nearest Neighbor model

For the NN case, the power law term in the action is absent and we will be working with

the short-range action,

I[φ] =

∫
dt

∫
dr

[
−φ
(
∂2
t + β∂2

r

)
φ− δ

2
φ2 +

φ4

4

]
, (C.55)

C.4.1.1 Entropy of a maximally mixed initial state

The SWAP action acts on the whole spatial slice, and we need to only solve for the equa-

tions of motion with the time derivative,

∂2
t φ = −δφ+ φ3. (C.56)

For δ < 0, we have an instanton-like solution,

φ∗(r, t) =
√
δ tanh

[√
δ

2
(t− t0)

]
. (C.57)

Hence for δ > 0, we have the following scaling of the quasi-entropy of the full system,

Ŝ
(2)
Q ∼ N

(
I[φ∗]− I[

√
δ]
)
∼ NLδ3/2 + ... (C.58)

The correction to this term will be given by the fluctuations of the domain wall within

periodic boundary condition, which was estimated using Capillary Wave Theory in [173]. For
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T �
√
L, this will be given by,

− log
T√
L
− log

√
βNδ3/2

12π
∼ − log

T√
L

+ const. (C.59)

C.4.1.2 Sub-system entropy

For a subsystem between the region r1 and r2, the domain wall must be pinned to the future

time boundary at r1 and r2. We assume the solution of the fields is of the form,

φ∗(r, t) =
√
δ tanh

[√
δ

2
(t− y(r))

]
, (C.60)

where y(r) is the ‘height’ of the domain wall (or equivalently the position of the instanton). Due

to the boundary pinning effect, y(r) must be ε → 0 at r = r1 and r = r2. The action for the

quasi-entropy is given by a functional of y(r),

I[y(r)] = I[φ∗]− I[
√
δ]

=

∫
dt

∫
drδ2

[ (
1 + βy′(r)2

)
sech2

√
δ

2
(t− y)− 1

4

(
3 + 4βy′(r)2

)
sech4

√
δ

2
(t− y)

+
β√
2δ
y′′(r)sech2

√
δ

2
(t− y)tanh

√
δ

2
(t− y)

]

Rescale the time variable,

z =

√
δ

2
(t− y(r)).
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The limits for z integration are approximately 0→∞. The action for quasi-entropy is thus given

by,

I[y(r)] ∼ δ3/2

∫
dr

∫
dz

[(
1 + βy′(r)2

)
sech2z − 1

4

(
3 + 4βy′(r)2

)
sech4z +O(y′′(r))

]
∼ δ3/2

∫
dr

(
1 +

β

6
y′(r)2 +O(y′′(r)

)
. (C.61)

We can ignore the O(y′′(r)) term as it is irrelevant under RG flow, since [y] = 1 and [y′′] = −1.

Thus, the quasi-entropy is thus given by,

Ŝ(2)(A) = − ln

∫
D(y(r)) exp

[
−Nδ3/2

∫
A

dr

(
1 +

β

6
y′(r)2

)]
(C.62)

= Nδ3/2|A| − ln

∫
D(y(r)) exp

[
−βNδ

3/2

6

∫
A

dr
(
y′(r)2

)]
(C.63)

This is exactly the action conjectured by Li and Fisher and solved using Capillary Wave Theory

in [173]. Using their result, the quasi-entropy is given by,

Ŝ
(2)
A ≈ Nδ3/2|A|+ 3

2
ln |A| − ln

[√
2

π
ε2
(
βNδ3/2

6

)3/2
]

(C.64)

= Nδ3/2|A|+ 3

2
ln |A|+ const... (C.65)

The approximations a la Li and Fisher [173] behind this are |A| � L,
√
A � T , and for

a spatial lattice cut-off, ε, such that, ε �
√
|A|/(βNδ3/2). Note, we further have our large N

approximation, T . poly(N). These can all be satisfied in the regime,
√
A � T . poly(N).

The logarithmic correction term is 1/N suppressed in our model.
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C.4.2 Power Law model

In the symmetry broken phase, the field theory is given by,

I[φ] =

∫
dtdr

[
− φ

(
a ∂2

t + β ∂2
r

)
φ− b

∫ ′
ds

φrφs
|r − s|2α

− δ φ2

2
+
u φ4

4

]
, (C.66)

for δ > 0.

By appropriate rescaling of the fields, we can rewrite the field theory as,

I[φ] =

∫
dtdr

[
− φ

(
∂2
t + β ∂2

r

)
φ− b

∫ ′
ds

φrφs
|r − s|2α

− δ φ2

2
+
φ4

4

]
, (C.67)

The φ equation of motion is given by,

∂2
t φr + β∂2

rφr = −δφr + φ3
r −

∫ ′
dsφs

1

|r − s|2α
. (C.68)

C.4.2.1 Total Entropy of the maximally mixed initial state

In this case, the saddle point configuration will be independent of space, and the equation

of motion can be simplified to be,

∂2
t φ = −δαφ+ φ3, (C.69)

where, δα = δ +

∫ ′
ds

1

|r − s|2α
. (C.70)

271



The phase transition is effected by taking δα → 0. The static solutions of this equation is,

φ = ±
√
δα, (C.71)

and the instanton solution is,

φ∗ =
√
δα tanh

√
δα
2

(t− t0). (C.72)

As before, the entropy of the whole system will be given by,

Ŝ
(2)
Q ∼ NLδ3/2

α − log
T√
L

+ const. (C.73)

C.4.2.2 Subsystem entropy

For general long-range interactions, there can’t be a simple capillary wave picture, as the

gradient expansion doesn’t converge for 2α < 3. For the effectively short-ranged case 2α > 3,

the story is the same as for the nearest neighbor model.

In absence of a controlled analytical calculation, we can make reasonable estimates of the

energy of a domain wall pinned to the future boundary at a subsystem A. First we estimate the

energy of a flat domain wall of length A and width w, for a microscopic model with the same

low-energy action as the long range φ4 model. One such model is a classical Ising model in 2D,

with long range interaction along one direction (space) and short range interaction along the other

272



direction (time), with a Hamiltonian,

H = −
∑
t

∑
r

JSr,tSr,t+1 −
∑
t

∑
r 6=s

K

|r − s|2α
Sr,tSs,t with J,K > 0. (C.74)

The energy of a flat domain wall of length |A| and width w is given by,

Edw = |A|J + wK

( ∑
r∈L,s∈L

−
∑

r∈A,s∈A

−
∑

r∈Ac,s∈Ac
+2

∑
r∈A,s∈Ac

)
1

|r − s|2α
(C.75)

We can change the sums into integrals with a regulator ε, and this is given by,

Edw = |A|J + wK

∫ ′
r∈A,s∈Ac

drds
1

|r − s|2α
+ const. ∼ |A|J + wK

(
|A|2−2α − ε2−2α

)
+ const.

(C.76)

Here we have assumed L >> |A| >> ε.

In this simple estimate we can’t estimate the optimal width of the domain wall, w. However

this already suggests that w will not scale with |A|, and should instead be given by the time-like

correlation length in this model, w ∼ ξt. Hence for 2α ≤ 2, we get a power-law correction to the

volume law entropy, which is distinct from the logarithmic correction that one obtained for the

nearest neighbor / short-ranged case. In the large-N model, the interactions J,K scale with N .

The entropy of a small subregion is hence given by,

Ŝ
(2)
A ∼ N |A|δ3/2

α + ξtN |A|2−2α +O(1/N). (C.77)

Any corrections due to the fluctuations of the domain wall will be 1/N suppressed as in the
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local case.

C.5 Brownian SYK details

In this section we derive the Landau-Ginzburg effective action for the monitored Brownian

SYK model. The Brownian Gaussian random couplings in the unitary part is defined by the

parameters,

E
[
Jr1r2a,ij (t1)J

r′1r
′
2

a′,ij (t2)
]

=
Jrr′

2N

δt1t2
∆t

δaa′δ
r1,r′1δr2,r

′
2 ,

E
[
U r
a,j1...jq

(t1)U r′

a′,j1...jq(t2)
]

=
2q−2(q − 1)!U

N q−1

δt1t2
∆t

δaa′δ
r,r′ .

.

The measurement part for the flavor i at the site x can be cast into,

2∑
ν=1

Mx,i
ν ⊗Mx,i†

ν ⊗Mx,i
ν ⊗Mx,i†

ν =

(
1− s2

2

4∑
u=1

π+,u
x,i + s4 ⊗4

u=1 π
+,u
x,i

)

≈ exp

(
−s

2

2

∑
u

π+,u
x,i

)

= exp
δtγ

2

∑
u

iψux,L,iψ
u
x,R,i,

(C.78)

where we have used the relation π+
x,a,j + π−x,a,j = 1 and also introduced u = 1, ..., 4 to denote

the four copies of the tensor product. To derive the above equation, we assume s � 1 and keep

orders up to O(s2). In the last line we introduce γ = s2/δt, and when the continuum limit is

taken, γ is kept fixed. All the constants are neglected because they will not affect the dynamics.

The effect of monitoring every Majorana species i at every site x is described by

exp

(
γ

2

∫
dt
∑
x,α,i

iψαx,L,iψ
α
x,R,i

)
, (C.79)
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where we implicitly sum over all infinitesimal time steps to arrive at the time integral for a time

evolution.

Due to the large-N structure in both Hamiltonian in Eq. 10 in the main text and monitoring

part (C.79), we can introduce the bilocal field,

Guv
ab,r(t, t

′) =
1

N

∑
j

ψur,a,j(t)ψ
v
r,b,j(t

′), (C.80)

to rewrite the Majorana field with the help of the following identity

1 =

∫
dΣ exp

∫
dt1dt2

[
− N

2
Σuv
r (t1, t2)

(
Guv
r (t1, t2)− 1

N

∑
i

ψur,i(t1)ψvr,i(t2)
)]
, (C.81)

where Σuv
ab,r(t, t

′) is the self-energy. It is a standard approach for the SYK model [25], which is

then generalized to the four contours with monitoring part [265]. With a slight modification that

replace the nearest-neighbor hopping to a power-law hopping, the large-N action in the replica

space reads

− I

N
=

∑
r

[1

2
Tr log

(
(−1)u+1∂t − Σr

)
− 1

2

∫
t,t′

Σuv
ab,rG

uv
ab,r

+

∫
t,t′
δ(t− t′)

[(−1)u+v+1

4
δab

(∑
r′

Jrr
′
Guv
ab,rG

uv
ab,r′ +

U

2q
(2Guv

ab,r)
q
)

+
iγ

2
Guu
LR,r

]]
,(C.82)

where u, v = 1, ..., 4 denote the four contours, and
∫
t,t′
≡
∫
dtdt′. The summations over a, b and

u, v are implicit. Note that the model can be generalized to arbitrary graph with a modification

on the hopping term in the second line of (C.82).

Saddle-point analysis can be straightforwardly applied to the large-N action. The Schwinger-
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Dyson equation resulted from (C.82) reads

[G−1
r ]uvab = (−1)u+1δuvδab∂t − Σuv

ab,r,

Σuv
ab,r = δ(t− t′)

[(−1)u+v+1δab
2

(∑
r′

Jrr′2G
uv
ab,r′ + U(2Guv

ab,r)
q−1
)

+ iγδuv
δaLδbR − δaRδbL

2

]
.

(C.83)

For a homogeneous solution in real space, i.e., Guv
ab,r = Ḡuv

ab and Σuv
ab,r = Σ̄uv

ab , the Schwinger-

Dyson equation is simplified to be

[Ḡ−1]uvab = (−1)α+1δuvδab∂t − Σ̄uv
ab ,

Σ̄uv
ab = δ(t− t′)

[(−1)u+v+1δab
2

(
Ĵ2Ḡuv

ab + U(2Ḡuv
ab )

q−1
)

+ iγδuv
δaLδbR − δaRδbL

2

]
,

(C.84)

where Ĵ = Jζ(2α), and ζ(α) ≡
∑∞

r=1
1
rα

.

To get the solution, we focus on two contours, u, v = 1, 2, because the boundary condition

in Tr(ρ)2 is to connect 1 to 2 and connect 3 to 4 separately. According to Ref. [265], the saddle

point solution can be obtained by replacing J to Ĵ ,

Ḡ(t1, t2) =



e−
Ĵ+Uλq−2

2 |t12|

2

[
sgn(t12)σz − λiσy + γ̃τy

1+Ũλq−2

]
, γ̃ < 1,

e−
γ|t12|

2

2
(sgn(t12)σz + τ y) γ̃ ≥ 1

, (C.85)

where t12 ≡ t1 − t2 is the time difference, γ̃ ≡ γ/Ĵ , Ũ ≡ U/Ĵ and Pauli matrix σ (τ ) acts on 1

and 2 contours (L and R chains). The parameter λ is given by

(1− λ2)(1 + Ũλq−2)2 = γ̃2. (C.86)
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The solution on 3, 4 contours is the same, consistent with the boundary condition without twist

operators. We will discuss the saddle-point solution in more details in the next section.

C.5.1 Landau-Ginzburg effective action and Rényi entropy

The symmetry of the theory is not affected by the power-law hopping. In the following,

we discuss the O(2) symmetry and the C4 symmetry of the noninteracting and interacting SYK

models, separately.

C.5.2 Noninteracting SYK2 model

For Brownian randomness Eq. 11 in the main text, it is legitimate to assume the Green

functions are strictly local Guv
ab,r(t, t) ≡ Guv

ab,r(t) and antisymmetric Guv
ab,r(t) = −Gvu

ba,r(t) [323],

so for U = 0 the action can be written as

− I

N
=

1

2
Tr log (S∂t + Σr) +

∫
1

2
Tr
[
Σab,xGba,x +

∑
r′

Jrr′

4
Gab,rSGba,r′S + i

γ

2
GLR,r

]
,(C.87)

where Suv = (−1)uδuv and the trace in the second line is over the contour indices. The

theory is invariant under O(2)×O(2) transformation, i.e.,

Gab,x → O−1Gab,xO, OTO = 1, OTSO = S, (C.88)

where O acts identically on the left and right chains. (Without the coupling between the left

and the right chains, µ = 0 , the action is invariant under two O(2) × O(2) for the left and the

right chains, respectively, Gab,x → O−1
a Gab,xOb, where OT

aOa = 1, OT
a SOa = 1.) The rotational
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symmetry is generated by γ(13) and γ(24), γuv(ij) = δiuδjv − δjuδiv, i.e.,

O = eθ13γ(13)+θ24γ(24) , (C.89)

where θ13 denotes the rotation angle between the contour 1 and 3, and θ24 denotes the rotation

angle between the contour 2 and 4.

The saddle point solution (C.85) for U = 0 and γ̃ < 1 spontaneously breaks the relative

rotational symmetry. For the noninteracting case, U = 0, λ =
√

1− γ̃2. There is one Goldstone

mode generated by applying the broken-symmetry generator γ− ≡ γ(13) − γ(24), i.e.,

δGaa,r(t) = e−θr(t)γ−Ḡaa(t, t)e
θr(t)γ− − Ḡaa(t, t) ≈

√
1− γ̃2θr(t)(γ(14) + γ(23)),(C.90)

where θr(t) denotes the Goldstone mode. In contrast, when γ̃ > 1, this O(2) symmetry is

unbroken and the replicated theory is in the gapped phase.

Again, with a slight modification the effective theory for the Goldstone mode reads [265],

Ieff

N
=
ρ

2

∑
k

∫
Ω

(
Ω2

γ2
+ (1− εk)

)
|θk(Ω)|2, (C.91)

where θk = 1√
L

∑
r θre

−ikr is the Fourier transform of the lattice site, and

εk ≡
1

ζ(2α)

∞∑
r=1

cos kr

r2α
, (C.92)

resulted from the power-law hopping. Similar results have been obtained in Ref. [267]. Notice

that εk=0 = 1 consistent with θk(Ω) being a Goldstone mode. The stiffness ρ = Ĵ(1 − γ̃2)
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vanishes at γ̃ = 1, indicating that the transition occurs at γ = Ĵ .

C.5.3 Interacting SYK4 model

Now we discuss the interacting case Ũ > 0. The parameter λ is determined by (C.86). For

small Ũ , λ =
√

1− γ̃2[1+ γ̃2(1− γ̃2)q/2−2Ũ +O(Ũ2)] is well defined when γ̃ < 1, and vanishes

continuous as γ̃ → 1. In the following we will focus on q = 4, while our results are true for

generic q. At the critical point,

λ2
(
(2Ũ − 1) + (Ũ2 − 2Ũ)λ2 − Ũ2λ4

)
= 0, (C.93)

which shows that for Ũ > 1/2 there are two degenerate distinct physical solutions indicating a

discontinuous jump. Thus, the condition for a continuous transition is 2U < Ĵ . On the other

hand, when γ ≥ Ĵ , the solution is same as the noninteracting case (C.85) at γ̃ ≥ 1.

What symmetry out of O(2) × O(2) is preserved for Ũ > 0? It is easy to show that the

symmetry reduces to C4 × C4, satisfying the condition ((O−1)uu
′
)q/2Su

′v′(Ov′v)q/2 = Suv. The

generator is still given by γ(13) and γ(24) but the rotation angle is restricted to multiples of π/2.

The relative rotation symmetry is spontaneously broken by nonzero λ in (C.85) when γ < J .

Namely, λ serves as an order parameter of the C4 symmetry breaking transition. With a slight

modification that replaces cos k to εk and J to Ĵ , the Landau-Ginzburg effective theory reads

Ieff

N
=

1

2

∑
i=1,2;k

∫
Ω

(
Ω2

γ
+ Ĵ(1− εk)

)
|φi,k(Ω)|2 +

∑
r

∫
t

(
γ − Ĵ

2
~φ2
r +

γ

8
~φ4
r −

U

4
(φ4

1,r + φ4
2,r)

)
,(C.94)

where φ1 = δG12 + δG34 and φ2 = δG14 + δG23 transform like a vector under the relative
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C4 rotation. (In this case we have δG12
RR = δG12

LL, δG34
RR = δG34

LL, δG14
RR = δG14

LL, δG23
RR =

δG23
LL. So we omit the subscript of the left and right chains.) This theory features a second order

transition if 2U < γ, and a first order one if 2U > γ, consistent with the analysis (C.93) of the

saddle-point solution at the transition γ = Ĵ .
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[96] Marko Žnidarič, Antonello Scardicchio, and Vipin Kerala Varma. Diffusive and Subdiffu-
sive Spin Transport in the Ergodic Phase of a Many-Body Localizable System. Phys. Rev.
Lett., 117(4):1–6, 2016.

[97] Ilia Khait, Snir Gazit, Norman Y. Yao, and Assa Auerbach. Spin transport of weakly
disordered Heisenberg chain at infinite temperature. Phys. Rev. B, 93(22):224205, jun
2016.

[98] David J. Luitz and Yevgeny Bar Lev. Information propagation in isolated quantum sys-
tems. Phys. Rev. B, 96(2):1–6, 2017.

[99] Adam Nahum, Jonathan Ruhman, and David A. Huse. Dynamics of entanglement and
transport in 1D systems with quenched randomness. Phys. Rev. B, 98:035118, Jul 2018.

[100] Shenglong Xu and Brian Swingle. Accessing scrambling using matrix product operators.
arXiv:1802.00801, 2018.

[101] Cheng Ju Lin and Olexei I. Motrunich. Out-of-time-ordered correlators in a quantum Ising
chain. Phys. Rev. B, 97(14):1–17, 2018.

[102] Vedika Khemani, David A. Huse, and Adam Nahum. Velocity-dependent Lyapunov ex-
ponents in many-body quantum, semi-classical, and classical chaos. arXiv:1803.05902,
2018.

287



[103] Juan Jose Mendoza-Arenas, Marko Znidaric, Vipin Kerala Varma, John Goold, Stephen R.
Clark, and Antonello Scardicchio. Asymmetry in energy versus spin transport in certain
interacting, disordered systems. arXiv:1803.11555, 2018.
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flight: Light cones in chaotic long-range interacting systems. Phys. Rev. Lett., 124:180601,
May 2020.

[240] Chi-Fang Chen and Andrew Lucas. Finite speed of quantum scrambling with long range
interactions. Physical Review Letters, 123(25), Dec 2019.

[241] Tomotaka Kuwahara and Keiji Saito. Strictly linear light cones in long-range interacting
systems of arbitrary dimensions. Physical Review X, 10(3), Jul 2020.

[242] Minh C. Tran, Andrew Y. Guo, Abhinav Deshpande, Andrew Lucas, and Alexey V. Gor-
shkov. Optimal state transfer and entanglement generation in power-law interacting sys-
tems. Physical Review X, 11(3), Jul 2021.

[243] Minh C. Tran, Andrew Y. Guo, Christopher L. Baldwin, Adam Ehrenberg, Alexey V.
Gorshkov, and Andrew Lucas, 2021.

[244] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino. Bose-
einstein condensation of erbium. Phys. Rev. Lett., 108:210401, May 2012.

[245] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with rydberg atoms.
Rev. Mod. Phys., 82:2313–2363, Aug 2010.

[246] Joseph W. Britton, Brian C. Sawyer, Adam C. Keith, C.-C. Joseph Wang, James K.
Freericks, Hermann Uys, Michael J. Biercuk, and John J. Bollinger. Engineered two-
dimensional ising interactions in a trapped-ion quantum simulator with hundreds of spins.
Nature, 484(7395):489–492, Apr 2012.

[247] Bo Yan, Steven A. Moses, Bryce Gadway, Jacob P. Covey, Kaden R. A. Hazzard,
Ana Maria Rey, Deborah S. Jin, and Jun Ye. Observation of dipolar spin-exchange in-
teractions with lattice-confined polar molecules. Nature, 501(7468):521–525, Sep 2013.

[248] N.Y. Yao, L. Jiang, A.V. Gorshkov, P.C. Maurer, G. Giedke, J.I. Cirac, and M.D. Lukin.
Scalable architecture for a room temperature solid-state quantum information processor.
Nature Communications, 3(1), Jan 2012.

297



[249] J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang.
Quantum many-body models with cold atoms coupled to photonic crystals. Nature Pho-
tonics 2015 9:5, 9(5):326–331, apr 2015.

[250] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. W. Hess, R. Is-
lam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao. Pro-
grammable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys.,
93:025001, Apr 2021.

[251] M Buchhold, Y Minoguchi, A Altland, and S Diehl. Effective theory for the measurement-
induced phase transition of dirac fermions. arXiv preprint arXiv:2102.08381, 2021.

[252] 2021.

[253] Yaodong Li, Sagar Vijay, and Matthew Fisher. Entanglement domain walls in moni-
tored quantum circuits and the directed polymer in a random environment. arXiv preprint
arXiv:2105.13352, 2021.

[254] Maxwell Block, Yimu Bao, Soonwon Choi, Ehud Altman, and Norman Yao, 2021.

[255] Takaaki Minato, Koudai Sugimoto, Tomotaka Kuwahara, and Keiji Saito, 2021.

[256] Thomas Müller, Sebastian Diehl, and Michael Buchhold, 2021.

[257] Anders Søndberg Sørensen and Klaus Mølmer. Entangling atoms in bad cavities. Phys.
Rev. A, 66:022314, Aug 2002.

[258] Kristian Baumann, Christine Guerlin, Ferdinand Brennecke, and Tilman Esslinger.
Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature,
464(7293):1301–1306, Apr 2010.

[259] Ian D. Leroux, Monika H. Schleier-Smith, and Vladan Vuletić. Implementation of cavity
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