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Efficient operation of traffic networks via management strategies can guarantee overall

societal benefits for both the humans and the environment. As the number of vehicles and

the need for transportation grows, dynamic traffic management aims to increase the safety

and efficiency of the traffic networks without the need to change the infrastructure of the

existing roads. Since the highway networks are considered permanent investments that are

expensive to build and maintain, the main scope of this dissertation is to propose traffic

flow models and methods to improve the efficiency of the current highway systems without

the need to change their infrastructure.

When all vehicles in a network are Human-Driven Vehicles (HDVs), and changing the

infrastructure is either so expensive or impossible, then one reasonable approach to improve

the efficiency of traffic networks is through the control of traffic signal lights specially be-

cause the behavior of the human drivers cannot be directly controlled. A literature review

of highway traffic control demonstrate that Ramp Metering (RM) is one of the most com-

monly used approaches as it improves the network performance in regards to travel time,

travel distance, throughput, etc and cost-wise, it is a very economical approach. As such,



in this research, the ultimate goal focus is to extend the current literature on traffic man-

agements of highway networks by offering new models and algorithms to improve this

field.

To reach this goal, the first step is to focus on improving and extending the current traffic

flow models. There are two categories of traffic flow models in the literature: First-order

models, and Second-order models. Many different extensions of the famous first-order

model called the Cell-Transmission Model (CTM) have been proposed throughout the past

decades, each one proposed based on different criteria and the specific needs of different

applications. In the first part of this dissertation, a performance assessment of the most im-

portant extensions of CTM will be performed. Then, based on this evaluation, an extended

version of the CTM, called the Piece-Wise Affine Approximation-CTM (PWA-CTM), will

be offered which will be proven to have better performance regarding the evolution of traf-

fic flow and computation time comparing to the previous versions of this model.

In the next step, the focus will be shifted to second-order models as they have better

capabilities of modeling the behavior of traffic flow comparing to the first-order models.

However, any optimization scheme for highway traffic control based on these models is

highly nonlinear and computationally intensive. As such, in this part of the research, a lin-

earization of the famous second-order model called the METANET will be offered which

is based on PWA approximations and also synthetic data generation techniques. With ex-

tensive simulations, it will be shown that this linearized approximation can greatly impact

the computational complexity of any optimization-based traffic control framework based

on this second-order traffic flow model.

Moreover, to have significant traffic management improvements, not only the underly-

ing traffic models, but also the control strategies should be enhanced. The availability of

increasing computational power and sensing and communication capabilities, as well as ad-

vances in the field of machine learning, has developed learning-based control approaches



which can address constraint satisfaction and closed-loop performance optimization. In this

chapter, Reinforcement Learning (RL) algorithms will be investigated to solve the optimal

control problem of RM. In the case of RM, RL-based techniques offer a potentially appeal-

ing alternative method to solve the problem at hand, since they are data-based and make no

assumptions on the underlying model parameters. Towards this direction, it is convenient

to study the road model as a multi-agent system of non-homogeneous networked agents.

In the following, a novel formulation of the RM problem as an optimal control problem

based on a first-order multi-agent dynamical system will be offered. Then, applying policy

gradient RL algorithms, a probabilistic policy will be found that solves the ramp-metering

problem. The performance of the optimal policy learnt will be investigated under different

scenarios to evaluate its efficiency.
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Chapter 1: Introduction

1.1 Dynamic Traffic Management

As the number of vehicles and the need for transportation grow, cities around the world

face serious traffic congestion problems: almost every weekday morning and evening dur-

ing rush hours the capacity of many main roads is exceeded. Traffic jams do not only

cause considerable costs due to lost time; they also raise the probability of accidents and

have negative impacts on the environment (air pollution, lost fuel) and on the quality of life

(health problems, noise, stress).

One possible approach to the ever growing traffic congestion problem is to extend the

road network. Adding lanes and creating alternative new highway connections is possible

but rather expensive. Dynamic Traffic Management (DTM) is an alternative approach that

aims to increase the safety and efficiency of the existing traffic networks without the need

to change the infrastructure of the network.

Road-based traffic control systems are nowadays the most commonly utilised approach

to DTM. Such systems allow regulation of the traffic flow in a highway system by con-

trolling all the vehicles together, i.e. by acting at a macroscopic level. These systems for

1



dynamic traffic control intervene in traffic in order to improve the performance of the traffic

networks, i.e. to increase safety, to improve traffic flows, to reduce travel times, to make

travel times more reliable, or to reduce emissions and noise production.

Any dynamic traffic control has two main ingredients:

1. A traffic flow model, and

2. A control technique.

This dissertation has the goal of contributing to the literature in both of these two cate-

gories.

1.2 Traffic Flow Models

The development of models to describe the dynamics of vehicles and their interaction

(including the traffic behaviors and impact noted above) is fundamental for the design,

prediction and control of traffic systems. Since the first traffic model developed by Lighthill

and Whitham in 1955 [8], there has been a growing interest in the scientific community in

modelling the dynamic behaviour of traffic systems. This has led to development of a

large traffic models over the years, with different levels of detail, that are now available

to scientists and traffic managers. Of course, in this huge variety of models, the most

appropriate to be chosen for a given real case basically depends on the type and scope of

the considered application.

A possible classification of traffic models is made according to their level of detail,

2



corresponding to the following cases [9]:

• microscopic models, in which the dynamics of all vehicles and their interactions are

represented in detail. Normally each vehicle is described with a dynamic model,

with different parameters (representing, for instance, the desired speed or accelera-

tion capabilities of the vehicle, as well as the aggressiveness and reaction times of

the driver). These types of models are very detailed and, consequently, can be com-

putationally demanding for representing large road networks. Microscopic models

are often embedded in simulation software tools;

• macroscopic models, in which the traffic dynamics is represented at an aggregate

level. Specifically, the flow of vehicles is seen as a unique stream, in analogy with

the flow of fluids or gases, and its dynamics is described by means of aggregate vari-

ables, such as density, mean speed and flow. These models are less computationally

intensive than microscopic models and can allow fast simulations also for large-scale

traffic networks. Macroscopic models are further classified according to the number

of state variables, in first-order, second-order or higher-order models, and according

to the number of represented vehicle types, in one-class or multi-class models;

• mesoscopic models, which present an intermediate level of detail. They do not dis-

tinguish individual vehicles but represent the heterogeneity of the drivers’ choices in

probabilistic terms.

It is important to emphasize that macroscopic models require a lower computational ef-

3



fort compared to microscopic models. In addition, it is normally easier to calibrate macro-

scopic models than microscopic models, since the former are characterised by fewer pa-

rameters. For these reasons, macroscopic models are surely the most suitable choice when

they are used for control purposes, especially if the control law must be computed in real

time, as, for instance, in optimal control schemes [9]. For this reason, this category of

traffic flow models is chosen as the target models to focus on in this dissertation.

1.2.1 The Importance of Linear Traffic Flow Models

As aforementioned, one reason that macroscopic models are widely used for traffic

management schemes is that they are less computationally intensive than microscopic mod-

els and can allow fast simulations also for large-scale traffic networks. However, available

first-order and second-order traffic flow models in the literature are mainly nonlinear mod-

els and this causes computational complexities especially when it comes to optimization-

based control methods. Nonlinear traffic flow models will highly affect the computation

time of the simulation and also, for large-scale traffic networks, having nonlinear models

will even make the problem difficult to solve. But why does simulation speed matter?

• Real-Time Decision Making: When using optimization to facilitate (or even auto-

mate) real-time decision making, the speed of the simulation and solving optimiza-

tion problems really matters – as system operators can’t afford to wait for their ap-

plications to generate solutions to their pressing, day-to-day business problems.

• Disruption Management: Another reason why having a high-speed simulations is so
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pivotal is that it enables researchers and engineers to more effectively handle disrup-

tions.

• Robust Scenario Analysis: Mathematical optimization technologies enable users to

generate numerous what-if scenarios, evaluate and compare their potential impact on

operations and objectives, and determine the best courses of action. Simply put, a

faster simulations gives users the capability to run more scenarios in a shorter amount

of time – and this has tremendous value.

As such, in this dissertation, after an analysis over the most famous first-order traffic flow

models in chapters 2, in chapters 3 and 4 linear approximations of the most important

first-order and second-order traffic flow models are offered.

1.3 Network-Oriented Traffic Control

The fact that the length, duration and the number of traffic jams is increasing has certain

consequences for dynamic traffic control. When there are more congested locations, the

available control measures have to solve more problems, which implies a higher complex-

ity. Since nowadays the chances are higher that a vehicle encounters more than one traffic

jam on its route, the traffic control measures influencing a vehicle in one traffic jam will

also influence the other jam(s) that it encounters. Therefore, the spatial interrelations be-

tween traffic situations at different locations in the network get stronger, and consequently

the interrelations between the traffic control measures at different locations in the network

also get stronger. Coordinated control strategies are required in these cases, to make sure
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that all available control measures serve the same objective.

One important ingredient of network-oriented traffic control is coordination. Since in

a dense network the effect of a local control measure could also influence the traffic flows

in more distant sections of the network, the control measures should be coordinated such

that they serve the same objectives. Determining the effects of control measures on distant

sections of the network also involves prediction, since the effect of the control measure has

a delay that is at least the travel time between the two control measures in the downstream

direction, and the propagation time of shock waves in the upstream direction.

Network-oriented traffic control has several advantages compared to local control. For

example, solving a local traffic jam only can have as consequence that the vehicles more

quickly enter another (downstream) traffic, while the same number of vehicles have to pass

the downstream bottleneck (with a given capacity). In such a case, the average travel time

on the network level will still be the same. A global approach would take into account and,

if possible, ameliorate both traffic jams.

Figure 1.1: Schematic representation of the dynamic traffic management control loop
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Dynamic traffic management systems operate according to the feedback control loop

concept known from control systems theory (see Fig. 1.1). The traffic sensors provide in-

formation about the current traffic state, such as speed, flow, density, or occupancy . The

controller determines appropriate control signals that are sent to the actuators. The reaction

of the traffic system is measured by the sensors again, which closes the control loop. If

new measurements show a deviation from the desired traffic system behavior (caused by

unforeseen disturbances), the new control signals are adapted accordingly. Another prob-

lem is when the parameters of the traffic system change, e.g., when an incident occurs, or

the weather conditions significantly change the system behavior. In that case the parame-

ters of the model need to be adapted to the new situation. This is called adaptivity and is a

very important feature for traffic control systems.

The control measures that are normally employed in highway networks are ramp man-

agement (in particular Ramp Metering (RM), applied using traffic lights at the on-ramps),

mainstream control (including variable speed limits (VSL), lane control, congestion warn-

ing, keep-lane instructions, and so on), and route guidance (RG) (normally displaying spe-

cific indications at intersections). Amongst all these methods, coordination and adaptivity

are two main factors that can make a traffic control algorithm to be more successful.

In this study, ramp metering (RM) has been chosen as the main control approach to

focus on. Ramp metering uses traffic signals to regulate vehicle flows from on-ramps to

the mainline of the highway. This technique can alleviate the negative impacts of “capacity

drop” resulting from massive merging behaviors and reduce the average total time spent in
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the traffic system. Several field tests have demonstrated the effectiveness of ramp meter-

ing in terms of throughput, vehicle- miles-traveled, vehicle-hours-traveled, and travel time

reliability [9–13].

1.3.1 The Need for Learning-based Ramp Metering Algorithms

Ramp metering dynamically adjusts ramp flow of traffic merging into a highway main-

line according to real-time traffic conditions to improve traffic operation. The main objec-

tive is to minimize the negative impact of ramp flow disturbance on mainline traffic to pre-

vent the occurrences of traffic breakdown and capacity drop. Early RM studies and practice

used the fixed-time control strategies, which decide the metering rate by setting the control

cycle, green light phase and red-light phase [14]. Such strategies are easy to implement, but

the major drawback is that the fixed parameters fail in responding to the changing traffic

states, which can greatly reduce the strategy performances. Later, the feedback-based RM

algorithms were proposed, which were traffic responsive in nature, adjusting the bottleneck

occupancy at the expected value to maintain the maximum flow and prevent traffic break-

down [15–17]. However, the feedback-based RM adjusts the metering rate according to the

traffic conditions. The performance is greatly limited by the feedback nature especially in

the fast-changing traffic environments. In addition, setting control parameters in the feed-

back controller rely on human prior knowledge about the capacity drop and the breakdown

probabilities.

Online optimization methods were used to calculate the metering rate by solving on-
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line optimal control problems [18–20]. However, this approach requires accurate models

to predict the traffic dynamics and contain large online computing workload which is con-

sidered not feasible for large-scale applications.

In this study, we investigate reinforcement learning algorithms to solve the optimal con-

trol problem of ramp-metering. Reinforcement learning methods are adaptive algorithms

that approximate the solution to infinite-horizon optimal control problems [21]. In our

case, they offer a potentially appealing alternative method to solve the problem at hand,

since they are data-based and make no assumptions on the underlying model parameters.

1.4 Contributions and Outline of Dissertation

In Chap. 2, we analyze the performance of different first-order traffic flow models to

provide a base model for the next chapters. To perform this assessment, different finite

horizon optimal control problems (FHOCPs) with a linear combinations of multiple cost

functions are formulated where each have different CTM versions as the underlying traffic

flow model. For all FHOCPS, the PI-ALINEA RM metering control will be applied as

the control approach. The performance of all FHOCPs will be investigated regarding the

convergence of flow rates to the theoretical equilibrium flow vector, and the evolution of

the metering rate of on-ramps w.r.t the changes of the exogenous demands profiles. This

chapter concludes with some takeaways about the advantages and disadvantages of each

CTM considered. This results will constitute the foundation of the next chapter.

In Chap. 3, a class of the Cell-Transmission Model (CTM) as the main first-order
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traffic flow model is proposed which include the advantages of the previously offered CTM

versions in the literature and at the same time, addresses their weakness. These extensions

are based on a piecewise affine approximation (PWA) of the fundamental diagram (FD),

and as they are linear models, it will be suitable to be used as the underling model of any

optimal traffic control problem. To propose these models, a two-step identification methods

will be used and then, different FHOCPs will be offered to evaluate the performance of

these models. It will be shown that these models are superior to other extensions of the

CTM as they can impose: 1) lower travel times in the mainline, 2) shorter vehicle queues

at the on-ramp, and 3) higher traffic flows downstream of the merging area.

In Chap. 4, the focus shifts to second-order models as they have better capabilities of

modeling the behavior of traffic flow comparing to the first-order models. However, op-

timization schemes for highway traffic control based on these models tend to be highly

nonlinear and computationally intensive. As such, in this part of the research, a lineariza-

tion of the famous model called the METANET will be offered which is based on piece-wise

affine approximations and synthetic data generation techniques. With multiple FHOCPs, it

will be shown that this linearized approximation can significantly reduce the computational

complexity of any optimization-based traffic control framework based on this second-order

traffic flow model while it shows an acceptable behavior regarding the accuracy and con-

vergence to the equilibrium metrics.

In Chap. 5, Reinforcement Learning (RL) algorithms are offered to solve the optimal

control problem of ramp metering (RM). In the case of RM, the RL approach enables the
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agents to obtain optimal strategy in an unfamiliar environment without prior knowledge on

traffic flow, reducing the need for human knowledge. Towards this direction, it is conve-

nient to study the CTM traffic flow model as a multi-agent system of non-homogeneous

networked agents. Next, a novel formulation of the RM problem as an optimal control

problem based on a first-order multi-agent dynamical system is offered. Then, applying

policy gradient RL algorithms, a probabilistic policy will be found that solves the ramp-

metering problem.

Chap. 6 concludes remarks and discusses possible future work to the dissertation.
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Chapter 2: Performance Assessment of Cell-Transmission Models for Ramp-

Metered Highway Networks

Traffic flow models have been developed over the years and this field is still an ongoing

research topic. Traffic flow models can be categorized into first order and second order

models. The most frequently used models are first order models, such as the LWR model

proposed in [22], which is a continuous model, and the cell-transmission model (CTM)

proposed in [23, 24] which is a discretized version of the LWR model. The focus of this

study is on first order models as the obvious disadvantage to second order models is that

they lead to more complex optimization problems [25].

The CTM was first developed in [23] and then, through out the following years, many

extensions of the original CTM have been proposed in the literature based on the applica-

tions and the purposes of researchers. The CTM for a freeway network ([26]), the lagged

CTM ([27, 28]), the switched interpretation of the CTM ([29]), the asymmetric CTM

([25]), the link-node CTM ([30]), the CTM including capacity drop phenomena ([31, 32]),

the graph constrained CTM ([33]), the CTM in a mixed-integer linear form ([34]), the

variable-length CTM ([35]), width-based CTM for heterogeneous and undisciplined traffic

streams ([36]), CTM for mixed traffic flow with connected and autonomous vehicles ([37]),
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the CTM for heterogeneous disordered traffic ([38]), and multi-class CTM different traffic

flow parameters ([39]) are some of these extended versions. Although these models have

been proposed in different years and are suitable for different networks and applications,

but still the original CTM [23], and most specifically the Asymmetric CTM (ACTM) [25]

is the underlying model in all of them. This study aims at the comparison of the most

commonly-used versions of the CTM.

In this section, first different versions of the CTM will be introduced. Then, after

reviewing the PI-ALINEA RM control strategy, the formulation of multiple finite horizon

optimal control problems (FHOCPs) will be explained. Last, the simulation results provide

a thorough analysis of these models in details.

2.1 Preliminaries

2.1.1 The Fundamental Diagram

The fundamental diagram of traffic flow is a diagram that gives a relation between

road traffic flux (vehicles/hour) and the traffic density (vehicles/km). A macroscopic traffic

model involving traffic flux, traffic density and velocity forms the basis of the fundamental

diagram. It can be used to predict the capability of a road system, or its behaviour when

applying inflow regulation or speed limits [1].
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Figure 2.1: Fundamental diagram of traffic flow [1]
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There is a connection between traffic density and vehicle velocity:

• The more vehicles are on a road, the slower their velocity will be.

• To prevent congestion and to keep traffic flow stable, the number of vehicles entering

the control zone has to be less than or equal to the number of vehicles leaving the

zone in the same time.

• At a critical traffic density and a corresponding critical velocity the state of flow will

change from stable to unstable.

• If one of the vehicles brakes in unstable flow regime the flow will collapse.

The primary tool for graphically displaying information in the study traffic flow is

the fundamental diagram. Fundamental diagrams consist of three different graphs: flow-

density, speed-flow, and speed-density. The graphs are two dimensional graphs. All the

graphs are related by the equation “flow = speed * density”; this equation is the essential

equation in traffic flow. The fundamental diagrams were derived by the plotting of field

data points and giving these data points a best fit curve. With the fundamental diagrams

researchers can explore the relationship between speed, flow, and density of traffic [1].

Speed-density

The speed-density relationship is linear with a negative slope; therefore, as the density

increases the speed of the roadway decreases. The line crosses the speed axis, y, at the

free flow speed, and the line crosses the density axis, x, at the jam density. Here the speed

approaches free flow speed as the density approaches zero. As the density increases, the
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speed of the vehicles on the roadway decreases. The speed reaches approximately zero

when the density equals the jam density [1].

Flow-density

In the study of traffic flow theory, the flow-density diagram is used to determine the

traffic state of a roadway. Currently, there are two types of flow density graphs: parabolic

and triangular. Academia views the triangular flow-density curve as more the accurate

representation of real world events. The triangular curve consists of two vectors. The first

vector is the free-flow side of the curve. This vector is created by placing the free-flow

velocity vector of a roadway at the origin of the flow-density graph. The second vector is

the congested branch, which is created by placing the vector of the shock wave speed at

zero flow and jam density. The congested branch has a negative slope, which implies that

the higher the density on the congested branch the lower the flow; therefore, even though

there are more cars on the road, the number of cars passing a single point is less than if

there were fewer cars on the road. The intersection of free-flow and congested vectors is

the apex of the curve and is considered the capacity of the roadway, which is the traffic

condition at which the maximum number of vehicles can pass by a point in a given time

period. The flow and capacity at which this point occurs is the optimum flow and optimum

density, respectively. The flow density diagram is used to give the traffic condition of a

roadway. With the traffic conditions, time-space diagrams can be created to give travel

time, delay, and queue lengths of a road segment [1].

Speed-flow
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Speed – flow diagrams are used to determine the speed at which the optimum flow

occurs. There are currently two shapes of the speed-flow curve. The speed-flow curve

also consists of two branches, the free flow and congested branches. The diagram is not

a function, allowing the flow variable to exist at two different speeds. The flow variable

existing at two different speeds occurs when the speed is higher and the density is lower or

when the speed is lower and the density is higher, which allows for the same flow rate. In

the first speed-flow diagram, the free flow branch is a horizontal line, which shows that the

roadway is at free flow speed until the optimum flow is reached. Once the optimum flow

is reached, the diagram switches to the congested branch, which is a parabolic shape. The

second speed flow diagram is a parabola. The parabola suggests that the only time there

is free flow speed is when the density approaches zero; it also suggests that as the flow

increases the speed decreases. This parabolic graph also contains an optimum flow. The

optimum flow also divides the free flow and congested branches on the parabolic graph [1].

2.2 The CTM and its extensions

In this section, first, a famous variant of the CTM, called the Asymmetric CTM (ACTM)

is presented. This variant of CTM was proposed in [25]. Then, two of the most commonly-

used extensions of the ACTM is introduced which are called the linear relaxation of ACTM

([25]) and the extended ACTM ([9]). As ACTM is the core of the other extensions, it won’t

be evaluated separately and the focus of this study, from now on, is on performance assess-

ment of the two latter versions of the ACTM. Fig. 2.2 shows a stretch of a freeway with
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queue length dynamics borrowed from [2]. The variables and parameters of cell i during

time interval [kT,(k+1)T ) are described in the List of Symbols.

Figure 2.2: Sketch of a freeway stretch in the CTM ([2])

2.2.1 Version 1: The Asymmetric CTM (ACTM)

The ACTM proposed in [25], is a modification of the standard CTM proposed by [23].

Based on [25], the relevant difference between the two models is the treatment of traffic

merges. More specifically, merges in the ACTM are considered as asymmetric connections,

such as the junctions of the on-ramps into the mainstream. According to the logic of the

standard CTM, the merge is oriented to move as much of the demand as possible from the

two merging cells into the receiving cell. The ACTM, instead, makes separate allocations of

supply for each merging flow. The flows can then be computed separately as the minimum

among the demand, the allocated supply, and the capacity. Moreover, it is proved that the

ACTM, as the CTM, ensures not to predict unrealistic behaviours such as backward moving

traffic, negative densities and densities exceeding the jam density.

The ACTM is characterised by the following equations:
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ρi(k+1) = ρi(k)+
T
L
(Φ+

i (k)−Φ
−
i (k)) (2.1)

Φ
+
i (k) = φi(k)+ ri(k) (2.2)

Φ
−
i (k) = φi+1(k)+ si(k) (2.3)

si(k) =
βi(k)

1−βi(k)
φi+1(k) (2.4)

li(k+1) = li(k)+T (di(k)− ri(k)) (2.5)

φi(k) = min{(1−βi−1(k))vi−1(ρi−1(k)+ ri−1(k)),

wi(ρ
max
i −ρi(k)− ri(k)),qmax

i }
(2.6)

For uncontrolled on-ramps:

ri(k) = min{ li(k)
T

+di(k),ρmax
i −ρi(k)} (2.7)

For controlled on-ramps:

ri(k) = min{ li(k)
T

+di(k),ρmax
i −ρi(k),r

C,max
i } (2.8)
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0≤ ρi(k)≤ ρ
max
i (k) (2.9)

0≤ φi(k)≤ qmax
i (k) (2.10)

0≤ ri(k)≤ rC,max
i (2.11)

0≤ li(k)≤ lmax
i (2.12)

Equations (2.1) through (2.12) describe the ACTM. Any optimization formulation based

on this model will be non-concave and non-convex due to the min function in the mainline

and on-ramp flow equations in (2.6)-(2.8).

2.2.2 Version 2: Linear Relaxation of ACTM

Gomes et a. in [25] offered this linear relaxed version of ACTM where (2.6)-(2.8) are

replaced with linear equality and inequality equations and also upper bounds.

Equation (2.6) is replaced with:

φi(k)≤ (1−βi−1(k))vi−1(ρi−1(k)+ ri−1(k)) (2.13)
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φi(k)≤ wi(ρ
max
i −ρi(k)− ri(k)) (2.14)

φi(k)≤ qmax
i−1 (2.15)

For uncontrolled on-ramps, (7) is replaced with:

ri(k) = di(k), 0≤ ri(k) (2.16)

And, for controlled on-ramps, (8) is replaced with::

ri(k)≤ li(k)+di(k), 0≤ ri(k)≤ rC,max
i (2.17)

In summary, (2.1)-(2.5), and (2.9)–(2.17) describe the second version of ACTM.

2.2.3 Version 3: The Extended ACTM

The difference between this version presented in [9] and the original ACTM version

presented in ([25]), named version 1 here, is how this version handles the merge between

the on-ramp and mainstream cells. This version distinguishes between the flow rate equa-

tions of the free flow and congested case when on-ramp flow is merging to the mainstream

flow. To do so, let’s first introduce the demand and supply functions. The mainstream cell

demand Di−1(k) is the flow that cell i−1 could send to the next cell i and the mainstream
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cell supply Si(k) is the flow that cell i could receive from cell i−1.

Di−1(k) = min{(1−βi−1(k))vi−1ρi−1(k),qmax
i−1} (2.18)

Si(k) = min{wi(ρ
max
i −ρi(k)),qmax

i } (2.19)

Also, the on-ramp demand Dramp
i (k) is the flow that can be sent from the on-ramp into cell

i.

For uncontrolled on-ramps:

Dramp
i (k) = min{di(k)+

li(k)
T

,rmax
i } (2.20)

For controlled on-ramps:

Dramp
i (k) = min{di(k)+

li(k)
T

,rC
i (k),r

max
i } (2.21)

The merge between the on-ramp and the mainstream is analogous to the merge of two

generic cells. Two cases must be distinguished, corresponding, respectively, to free-flow

and congested conditions:
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If Di−1(k)+Dramp
i (k)≤ Si(k) (free-flow case), then

φi(k) = Di−1(k)

ri(k) = Dramp
i (k)

(2.22)

If Di−1(k)+Dramp
i (k)≥ Si(k) (congested Case), then

φi(k) = mid{Di−1(k),Si(k)−Dramp
i (k), piSi(k)}

ri(k) = mid{Dramp
i (k),Si(k)−Di−1(k), pramp

i Si(k)}
(2.23)

where the function mid returns the middle value. The parameters pi and pramp
i model,

respectively, the priority of the mainstream flow and the on-ramp flow in the merge and

pramp
i + pi = 1.

In summary, (2.1)-(2.5), (2.9)-(2.12), and (2.18)-(2.23) describe the third version of the

ACTM. Note that, the split ratios, i.e. βi(k), the demand in the cell before the first one, i.e.

D0(k), and the supply of the cell after the last one, i.e. SN+1(k), and the flows accessing

the on-ramp queues, i.e. di(k) are the boundary conditions in this version.

It should be added here that all the three versions explained up to this point represent

the necessary equations to model a freeway stretch. In order to model a freeway network, it

is necessary to also add the merge and diverge models. Detailed explanations can be found

in [9]. Since, these models are the same for all the versions stated above, and having them

here would not affect the goal of this study, their details are not provided and interested

readers are motivated to study the main reference.
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2.3 Ramp Metering Control

Ramp metering is achieved by placing traffic signals at on-ramps to control the flow rate

at which vehicles enter the freeway. The ramp metering controller computes the metering

rate to be applied. This study applies the feedback local RM strategy PI-ALINEA proposed

by [40] which is an extension of ALINEA developed by [15]. According to the stability

analysis of the closed-loop RM system reported by [40], it can be stated that PI-ALINEA

is able to guarantee a better control performance than ALINEA. PI-ALINEA is basically a

PI-type controller in which the metering rate is given by

rC
i (k) = rC

i (k−1)+KR[ρ
∗
i −ρi(k)]−KP[ρi(k)−ρi(k−1)] (2.24)

where the flow that can enter section i of a freeway from the on-ramp of cell i during time

interval [kT,(k+1)T ) is shown by rC
i (k). In case, the main objective of the traffic controller

is to reduce congestion and to maximize the throughput, a good choice for the set-point is

ρ∗i = ρcr
i .

2.4 Finite horizon optimal control problems (FHOCPs)

The main objective of traffic control is to improve the network performance. How-

ever, network performance can be interpreted in many ways, and for every interpretation a

different optimization problem can be formulated. To achieve the goal of this study, four

FHOCPs will be proposed in this section and the above-mentioned ACTM versions will
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play the role of the underlying model in these optimization control problems. In section

2.4.1, the cost functions considered for these problems will be explained and in section

2.4.2, the formulation of these FHOCPs will be presented in a compact form.

2.4.1 Cost functions

In this section, the definitions of several cost functions will be provided. In the formu-

lation of FHOCPs presented in this section, a linear combination of these cost functions

will make the final objective of each problem.

The most frequently used objective is to minimize the total time that all vehicles spend

in the network (i.e., the Total Time Spent or T T S). Another advantage of the T T S is that

it can easily be calculated for macroscopic models. Basically, the T T S is the time spent

by all vehicles in the network (i.e., the total travel time or T T T ), including the waiting

time experienced at origins (i.e., the total waiting time or TWT ). In other words, T T S =

T T T +TWT .

J1 = JT T S = T
K−1

∑
k=0

[
N

∑
i=1

ρi(k)Liλi +
N

∑
i=1

li(k)] (2.25)

The second objective function applied here is to maximize the sum of the traffic flows going

through all sections and on-ramps. This objective function is also called the Total Travel

Distance (TTD) since it is the total distance (veh mi) covered by all the vehicles in the

considered time horizon.

J2 = JT T D = T
K−1

∑
k=0

[
N

∑
i=1

φi(k)Li +
N

∑
i=1

ri(k)Li] (2.26)
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Another term that is often used in the objective function of traffic management problems

is a term that penalizes control signal variations. This terms helps to suppress the high-

frequency oscillations of the control trajectories. Since here RM provides the control vari-

able, the following term is penalizing the RM control variable:

J3 = JrC
i
= T

K−1

∑
k=0

N

∑
i=1

[rC
i (k)− rC

i (k−1)]2 (2.27)

Also, the maximum ramp queue constraints may be taken into account via the introduc-

tion of a penalty term in the cost criterion penalizing queue lengths larger than lmax, the

maximum admissible queue for origin i.

J4 = Jli = T
K−1

∑
k=0

N

∑
i=1

[max{0, li(k)− lmax}]2 (2.28)

Optimizing T T S and T T D are the main objective of this study and the contribution of

the two penalty terms to the total cost criterion is very small as these two only penalize

control signal variations. Therefore, they are not used as separate costs functions. For a

traffic problem, a trade-off has to be made between the partial objective functions Ji(k), i =

{1,2,3,4}, which can be expressed by combining the objective functions into one objective

function:

Jtotal = ∑
i

αiJi(k) (2.29)

where αi are appropriately chosen weights to express the trade-off between the several

partial objective functions and in each problem ∑i αi = 1.
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2.4.2 Problem Formulation of FHOCPs

In this section, four FHOCPs is presented where the control strategy in all of them is the

PI-ALINEA RM control. The difference between these problems is on the cost function and

the version of the ACTM used as the model. For two of the problems a linear combination

of T T S and T T D is used and for the other two problems, the two penalty terms are also

considered. Regarding the ACTM version used, version 1 of the ACTM has the underlying

equations used in the other two versions. As a result, it will not be used as a separate model

for the simulation phase of this study. For FHOPC 1 and 2, the extended ACTM and for

FHOPC 3 and 4, the linear approximation of ACTM is used. The formulation of the four

FHOCPs proposed in this study is provided in a compact form as follows:

FHOCP 1:

Cost function:

min
rC

i

α1J1−α2J2 (2.30)

Subject to:

Equations (2.1)-(2.5), (2.9)-(2.12), and (2.18)-(2.24).

FHOCP 2:

Cost function:

min
rC

i

α1J1−α2J2 +α3J3 +α4J4 (2.31)

Subject to:

Equations (2.1)-(2.5), (2.9)-(2.12), and (2.18)-(2.24).
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FHOCP 3:

Cost function:

min
rC

i

α1J1−α2J2 (2.32)

Subject to:

Equations (2.1)-(2.5), (2.9)-(2.12), (2.13)-(2.17), and (2.24).

FHOCP 4:

Cost function:

min
rC

i

α1J1−α2J2 +α3J3 +α4J4 (2.33)

Subject to:

Equations (2.1)-(2.5), (2.9)-(2.12), (2.13)-(2.17), and (2.24).

In the total cost function of each problem, every partial function with a positive sign

will be minimized and every other one with a negative sign will be maximized.
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2.5 Simulation Results and Analysis

2.5.1 Case study and model parameters

Figure 2.3: The hypothetical network under consideration

Simulation is performed for the network shown in Fig. 2.3 with two origins (o1 and

o2), two controlled on-ramps (o3 and o4), 12 mainline links (m1 through m12) and two

destinations (d1 and d2). One assumption about the network is that the proportion of turns

at every junction, i.e. the split ratios βi(k), are fixed and known in advance. Also, it is

assumed that the behavior of all the links can be described by a pre-known fundamental

diagram with the parameters shown in Table 2.1 adopted from [41]:

Table 2.1: Model Parameters
Symbol Value Unit/Range
Period T 0.5 min
Length Li 1 km
v f

i 1 length/period
wi 0.33 length/period
ρmax

i 180 veh/length
ρcr

i 50 veh/length
qmax

i 50 veh/period
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2.5.2 The Demand Profiles

The simulation horizon of 5 hours is considered by choosing the time horizon of K =

600 time steps and the simulation period of T = 0.5 minute (K ∗T = 300 minute). For the

origin links, two different types of demand profiles are applied: 1) the stationary, and 2) the

time varying. Also, in order to approximate an empty final condition ([25]), a imaginary

”cool down” period is considered at K = 450 till the end of the time horizon, in which all

demands are set to zero. The demand profiles are shown in Fig. 2.4. It is important to

notice that although the time-varying demand is changing at different time steps, however,

the max values for each of the four demand functions are chosen to be fixed to the values of

demand in the stationary demand profile. For example, the demand of origin 2 is equal to

9 veh/0.5 min in the stationary demand case between k = 0 to k = 450. On the other hand,

in the time-varying case, this function also has the max value of 9 veh/0.5 min between

k = 100 to k = 400. Also, all demand values has the min value of zero in the cool-down

period. This holds true for all the four demand functions. The reason behind these choices

is due to the fact that similar max and min values makes it easier to compare and analyze

the solutions based on these two different demand patterns.

30



Figure 2.4: The demand profiles (Left: The stationary demand profile, Right: The time-varying

demand profile)

2.5.3 Equilibrium State of the Network

According to [41], for each stationary demand vector d(k) = (d0, ...,dM), there exists

a unique equilibrium flow rate q(k) = (q0, ...,qN) and density vector ρ(k) = (ρ0, ...,ρN).

Detailed explanation on the calculation of these vectors is concisely explained in [41]. Ta-

ble 2.2 shows the theoretical equilibrium flow vector for the mainline links of this network

based on the stationary demand vector shown in Fig. 2.4. Knowing this theoretical flow

vector provides an insight on what should be expected to be seen in the simulation results.

Although based on [41], the equilibrium state of the network can only be computed for
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the case of having stationary demand profiles, however, this information, if available, will

help to analyze the behavior of models even for the case of applying time-varying demand

profile. It can be assumed that at each time step, the values of the demand functions are

kept constant between the time interval [kT,(k+1)T ). Based on this assumption, the equi-

librium flow vector for the time-varying case was also computed with the same method

applied before. However, in this case, this vector cannot be simply showed in a compact

form like table 2.2 as the flow values are time-varying through the whole simulation hori-

zon. Still, this information could help to analyze the performance of the FHOCPs in the

time varying case. Further explanations are provided in section 2.5.4.

Table 2.2: Theoretical equilibrium flow rate (veh/0.5 min) vector
Link Number 1 2 3 4 5 6
Flow rate 4.8 11.8 15.46 9.27 9 12.2
Link Number 7 8 9 10 11 12
Flow rate 8.54 11.54 17.72 3.2 3.66 6.18

2.5.4 Simulation Results

The results of the simulation for the demand profiles of section 2.5.2 and the FHOCPs

of section 2.4.2 are provided in this section. The FHOCPs were solved with Yalmip, the

modeling and optimization language offered by [42], and the GUROBI non-commercial

optimization solver via the interface of MATLAB. The simulations were performed on a

device with 2.9 GHz Dual-core Intel Core i5 CPU with 8GB RAM.

Figures 2.5 and 2.6 show the boxplot of the mainline link flow rates (veh/0.5 min) with
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the stationary and time-varying demand profiles, respectively. With a general glance, it

can be seen that in both figures, all four problems are showing similar behaviors for the

evaluation of the mainline flow rates. In Fig. 2.5, the top edge and the central mark of each

box are in the same position and it is fixed at the value equal to theoretical flow of that link

based on table 2.2. In other words, all four FHOCPs are able to reach the equilibrium state

of the network in case of the stationary demand. In Fig. 2.6, the top edge is at the same

position as the top edge in Fig. 2.5, however, the central mark is at a lower level. This

matches the expectations in the sense that as the demand is changing, the flow rate values

can not converge to a constant value. However, the top and bottom edge of each box are at

the same position between these two figures for all the links.

Figure 2.5: Boxplot of the mainline link flow rates (veh/0.5 min) with the stationary demand profile
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Figure 2.6: Boxplot of the mainline link flow rates (veh/0.5 min) with the time-varying demand

profile

A method to compare the evolution of flow rates in these optimal problems, under the

two defined demand profiles, is to compute the root-mean-square error (RMSE) of the

flow rate values comparing to their theoretical equilibrium values. Basically, RMSE is a

frequently used measure of the differences between values (sample or population values)

predicted by a model and the values observed. Table 2.3 summarizes the RMSE values

for each problem with the two demand profiles applied. As it can be seen, overall, the

FHOCPs show less error if the demand pattern is stationary, indicating that the optimal

control problems demonstrated higher accuracy in converging to the equilibrium state of

the network. However, the mean value of the RMSE of the second case has also a fairly
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low value, proving that even with the time-varying demand profiles applied, the FHOCPs

can provide an acceptable performance. Also comparing performance of FHOCPs with

different underlying ACTM versions, on average, the problems with the extended ACTM

version are showing slightly better efficiencies.

Table 2.3: Comparison of the RMSE of the flow rate values

Problem RMSE
Stationary Time-varying

FHOCP 1 1.7224 2.5344
FHOCP 2 2.3112 2.2070
FHOCP 3 2.2949 2.9585
FHOCP 4 2.0179 2.8940

The analysis continues by providing the evolution of flow rate values of the network

by simply adding the flow rate of all the mainline links, as shown in Fig. 2.7. Based on

table 2.2, the total sum of the link flow rates at the steady state is expected to be equal to

113.37 veh/0.5 min. This matches perfectly with the experimental maximum value of the

network flow rate as seen in Fig. 2.7 in both cases. A very considerable point to mention

is the difference between the fluctuations of the flow rate in each problem. FHOCP 1 (blue

color) is showing much more fluctuations comparing to FHOCP 2 (red color) as the cost

function of FHOCP 2 has the two penalty terms explained in section 2.4.1 and they are

successfully suppressing the high-frequency oscillations of the control trajectories. Same

can be seen between the performance of FHOCP 3 and 4 where less oscillations are seen in

the performance of FHOCP 4 due to the presence of the penalty terms in its cost function.
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Figure 2.7: Network flow rates (veh/0.5 min) (Left: The stationary demand profile, Right: The

time-varying demand profile)

The evolution of the ramp metering variables is also investigated here. Basically, the

expectation is that the control applied to the on-ramps can satisfy the requirements of the

network while considering the external demand of the on-ramps by not imposing too much

waiting time to the vehicles on the on-ramps. As a result, a proper RM variable basically

should replicate the overall demand pattern of that on-ramp. As an example, Fig. 2.8 and

2.9 show the RM variable of on-ramp o4. It can be easily seen that in both figures, all

four problems are showing a behavior similar to the demand function of this on-ramp as

seen in Fig. 2.4 (in green color with triangle marker). The interesting point is the reduction

of oscillations between FHOCP 1 and 2 and also between FHOCP 3 and 4 which clearly
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represent the impacts of the RM penalty terms in the cost function of FHOCP 2 and 4.

Figure 2.8: Metering rate of on-ramp o4 (veh/0.5 min) with the stationary demand profile
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Figure 2.9: Metering rate of on-ramp o4 (veh/0.5 min) with the time-varying demand profile

2.5.5 Analysis of the Computation Times

To complete the analysis, computation time was also considered as an additional per-

formance index. Table 2.4 provides the computation time of all problems under the two

demand patterns applied. FHOCPs 1 and 2 had considerable higher computation times

comparing to FHOCPs 3 and 4 with respect to both demand patterns. The reason is the

complexity of extended ACTM, and to be more precise, due to the presence of min func-

tion in its equations. Also, FHOCPs 2 and 4 also had higher computation times in compar-

ison with FHOCPs 1 and 3 because of the presence of the two penalty terms in their cost

functions. To summarize, the extended CTM and the cost functions with penalty terms can
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significantly increase the computation times.

Table 2.4: Comparison of the computation times

Problem Computation Time (sec)
Stationary Time-varying

FHOCP 1 165.3497 78.6285
FHOCP 2 324.0605 89.8481
FHOCP 3 11.4909 12.9580
FHOCP 4 28.0055 34.4486

2.6 Conclusion

This chapter provides a thorough analysis over the performance of different ACTM ver-

sions used as the underlying traffic flow models for the proposed FHOCPs. The FHOCPs

had different cost functions, but for all of them, the PI-ALINEA RM metering control was

applied. All 4 FHOCPs had promising performances regarding the convergence of flow

rates to the theoretical equilibrium flow vector, and the metering rate of on-ramps and how

they can follow the changes of origin demands. Simulation results have shown that us-

ing the linear relaxed version of the ACTM is motivated by computational consequences.

The extended ACTM can show better capabilities in modeling the traffic flow variables

and responding to the traffic control applied. However, it is complicated, and therefore it

decreases the computational efficiency of the optimization scheme.
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Chapter 3: PWA-CTM: An Extended Cell-Transmission Model based on

Piecewise Affine Approximation of the Fundamental Diagram

3.1 Motivation

Throughout the past decades, many different versions of the widely used first-order

Cell-Transmission Model (CTM) have been proposed for optimal traffic control. Highway

traffic management techniques such as Ramp Metering (RM) are typically designed based

on an optimization problem with nonlinear constraints originating in the flow-density rela-

tion of the Fundamental Diagram (FD). Most of the extended CTM models are based on the

trapezoidal approximation of the flow-density relation of the Fundamental Diagram (FD)

in an attempt to simplify the optimization problem. However, this relation is naturally non-

linear, and crude approximations can greatly impact the efficiency of the optimization solu-

tion. In this study, we propose a class of extended CTMs that are based on piecewise affine

approximations of the flow-density relation such that (a) the integrated squared error with

respect to the true relation is greatly reduced in comparison to the trapezoidal approxima-

tion, and (b) the optimization problem remains tractable for real-time application of ramp

metering optimal controllers. A two-step identification method is used to approximate the

40



FD with piecewise affine functions resulting in what we refer to as PWA-CTMs. The pro-

posed models are evaluated by the performance of the optimal ramp metering controllers,

e.g. using the widely used PI-ALINEA approach, in complex highway traffic networks.

Simulation results show that the optimization problems based on the PWA-CTMs require

less computation time compared to other CTM extensions while achieving higher accuracy

of the flow and density evolution. Hence, the proposed PWA-CTMs constitute one of the

best approximation approaches for first-order traffic flow models that can be used in more

general and challenging modeling and control applications.

3.2 Introduction

Optimal traffic control has been extensively studied since the beginning of the twentieth

century, and is still a topic of ongoing research. Towards this direction, numerous traffic

flow models have been developed and used to understand, describe, and predict traffic flow

in different real-life scenarios, ranging from bi-directional roads to multi-lane highways

with on-ramps [43–45].

Traffic flow models constitute dynamical models that can be classified as micro-, meso-

or macroscopic models, depending on whether the model distinguishes the behavior of each

individual vehicle or makes use of mean-field limit metrics [46]. In particular, the main ad-

vantage of macroscopic traffic models over microscopic models is the significantly lower

computational costs due to lower complexity [47]. These models are typically described by

the traffic density (average number of vehicles per unit length of road) and flow (average
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number of vehicles per time unit) and can be further categorized with respect to the under-

lying model dynamics into first order or second order models. The most frequently used

macroscopic traffic flow models are first order models, such as the Lighthill-Whitham-

Richards (LWR) model [22], which is a continuous model, and the Cell-Transmission

Model (CTM) [23] which is a discretized version of the LWR model. The simplicity and

computational benefits of the CTM model has given rise to many CTM extensions, each

one proposed based on different criteria and the specific needs of different applications. A

review of the different CTM extensions and versions proposed over the years can be found

in [9]. In [48], two of the mostly used CTM versions, namely the linear relaxation of CTM

[25] and the extended CTM [9] are thoroughly evaluated. Throughout the manuscript, we

will refer to these models as the Relaxed and the Extended CTM versions, respectively.

Many highway traffic management techniques, such as autonomous traffic signal con-

trol (Ramp Metering) [43, 44], are formulated as optimization problems with constraints

originating in this flow-density relation of the fundamental diagram. However, in order to

reduce the complexity of such methods, most of the CTM versions are based on triangular

[24] or trapezoidal approximation [4] of the flow-density relation of the fundamental dia-

gram. The trapezoidal FD is more commonly used in the literature and is shown in Fig. 3.1.

Due to the fact that the flow-density relation is naturally a nonlinear relation (Fig. 3.1),

crude approximations of the fundamental diagram can greatly impact the efficiency of the

optimization solution, and, as a result, the performance of the traffic control methodology.

On the other hand, control algorithms that take into account the original non-linear FD,
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Figure 3.1: The original (non-linear) Fundamental Diagram (FD) [3] (top) and its trapezoidal ap-
proximation [4] (bottom).

are computationally expensive and typically not suited for real-time application. In [48], it

was shown that optimization problems based on the Relaxed CTM did indeed have com-

putational advantages, while finite horizon optimal control problems (FHOCPs) based on

the more complicated Extended CTM model showed better traffic control performance but

reduced computational efficiency. In other words, there exists a trade-off between perfor-

mance and complexity for the CTM-based traffic control algorithms, which has its roots on

the approximation accuracy of the fundamental diagram.

In this work, we propose a class of extended CTMs that are based on piecewise affine

approximations of the flow-density relation of the fundamental diagram (FD) such that:

(i) the integrated squared error with respect to the true relation is greatly reduced in
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comparison to the trapezoidal approximation, and

(ii) the optimization problem remains tractable for real-time application of ramp meter-

ing optimal controllers.

A two-step identification method is used to approximate the FD with piecewise affine

functions resulting in new extensions of the CTM that we will refer to as PWA-CTM traffic

flow models. The proposed models are evaluated in the framework of finite horizon opti-

mal control problems using ramp metering controllers, e.g. the widely used PI-ALINEA

approach, in complex highway traffic networks. Hence, the proposed PWA-CTM mod-

els constitute one of the best approximation approaches for first-order traffic flow models

that can be used in any finite horizon optimal control problem to enhance its performance

regarding the computational time and the convergence to the equilibrium state.

The chapter is organized as follows: The CTM traffic flow model, different flow-density

relations of the FD, and the ramp metering control scheme used in this study are briefly

defined in Section 3.3. In Section 3.4, a two-step piecewise affine identification of nonlinear

systems is described and applied to the nonlinear flow-density relation of the FD to find its

PWA approximation. Also, the new CTM extensions based on this approximation of the

FD are proposed in this section. The formulation of the FHOCPs are explained in Section

3.5 and in Section 3.6 the simulation results are reported and analysed in detail. Finally,

some conclusive remarks are drawn in Section 3.7.
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3.3 Preliminaries

In this section, we briefly introduce the Cell-Transmission Model (CTM), illustrate the

importance of the fundamental relation between flow and density that constitutes the Fun-

damental Diagram (FD), and define a broadly used Ramp Metering (RM) control method

to be used in our experiments.

3.3.1 The CTM model

The Cell Transmission Model (CTM) is a popular numerical method originally pro-

posed by Carlos Daganzo [23, 24] to solve the kinematic wave equation. CTM models can

be used to predict the macroscopic traffic behavior on a given road lane, by evaluating the

traffic flow φi and density ρi at a finite number of intermediate points that result from divid-

ing the lane into homogeneous sections i ∈ [1,2, . . . ,N] (hereafter called cells), as shown in

Fig. 2.2. All notations used in this work, including all the model variables and parameters,

are explained in the List of Symbols and the schematic of Fig. 2.2. Detailed explanation

about the notation can be found in [9] and [48].

Initial and boundary conditions are appropriately defined to iteratively evaluate the val-

ues of the quantities at each cell. The flow across the cells is determined based on φi and

ρi, which are the two monotonic functions that uniquely define the fundamental diagram

(FD) as shown in Fig. 3.1. The update equations are given by:
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ρi(k+1) = ρi(k)+
T
L
(Φ+

i (k)−Φ
−
i (k)) (3.1)

Φ
+
i (k) = φi(k)+ ri(k) (3.2)

Φ
−
i (k) = φi+1(k)+ si(k) (3.3)

si(k) =
βi(k)

1−βi(k)
φi+1(k) (3.4)

li(k+1) = li(k)+T (di(k)− ri(k)) (3.5)

For uncontrolled on-ramps:

ri(k) = di(k), 0≤ ri(k) (3.6)

and, for controlled on-ramps:

ri(k)≤ li(k)+di(k), 0≤ ri(k)≤ rC,max
i (3.7)
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The boundary conditions are given by:

0≤ ρi(k)≤ ρ
max
i (k) (3.8)

0≤ φi(k)≤ qmax
i (k) (3.9)

0≤ li(k)≤ lmax
i (3.10)

The flow variable φi = f (ρi) is given by the fundamental diagram (FD) which will be

described in the next section. For a detailed overview of the model, the readers are referred

to [9].

Table 3.1: Model Variables and Parameters
Symbol Description/Unit (Range)
v f

i Free-flow velocity of cell i / (km/h)
ai A parameter to be estimated from empirical data
KR Integral regulator gain
KP Proportional regulator gain

3.3.2 Fundamental Diagram and the Trapezoidal Approximation

A key feature of the CTM is the assumption that there is some fundamental relation

between the density and the flow variables, i.e.,

φi = f (ρi) (3.11)
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This relation is known as the Fundamental Diagram (FD). Three families of this functional

form have been proposed in the past decades: 1) Linear forms first proposed by Green-

shields [49], 2) Nonlinear forms using logarithmic [50] or exponential form [3, 51], and 3)

Multi-regime forms which use rather simple functional forms, e.g. linear or quadratic func-

tions, for intervals of density [52], [53]. The interested reader can find a precise review of

FDs in [4] and [54]. Equation (3.12) reads the exponential flow-density relation (Fig. 3.1).

φi(k) = ρi(k)∗ v f
i exp[− 1

ai
(
ρi(k)
ρcr

i
)ai] (3.12)

In some models, a different steady-state relation is considered for each cell i. The trape-

zoidal FD (Fig. 3.1) belongs to the third family of FD models and is described by eq. (3.13).

φi(k) = min{v f
i−1(ρi−1(k)+ ri−1(k)),qmax

i−1 ,wi(ρ
max
i −ρi(k)− ri(k))} (3.13)

In this study, the goal is to find a linear approximation of the FD which would have

closer behavior to the nonlinear relation (3.12) but would make the constraints of optimization-

based problems linear as the trapezoidal approximation (3.13) does.

3.3.3 Ramp Metering Control

Ramp metering (RM) is achieved by placing traffic signals at on-ramps to control the

flow rate at which vehicles enter the freeway. The ramp metering controller computes

the metering rate to be applied. For the purposes of this chapter, we are going to use the
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feedback local ramp metering strategy PI-ALINEA, proposed by [40]. PI-ALINEA is a

proportional-integral feedback control algorithm, in which the metering rate is given by

rC
i (k) = rC

i (k−1)+KR[ρ
∗
i −ρi(k)]−KP[ρi(k)−ρi(k−1)] (3.14)

where the flow that can enter section i of a freeway from the on-ramp of cell i during time

interval [kT,(k + 1)T ) is represented by rC
i (k). In case the main objective of the traffic

controller is to reduce congestion and to maximize the throughput (see Section 3.5), a good

choice for the set-point is ρ∗i = ρcr
i .

3.4 Two-Step Piece-wise Affine Identification of Nonlinear Systems

In this section we consider a nonlinear function f : Ω −→ R, Ω ⊆ R, and describe a

two-step optimization-based approach to find a piece-wise affine (PWA) function:

f̃ =
M

∑
i=1

1[x∈Ri](aix+ ci) (3.15)

such that the approximation error e = ∥ f − f̃∥2 is minimized. Here, the regions {Ri}M
i=1 de-

fine a partition of Ω, 1[·] represents the indicator function, and ∥ f∥2=
∫

Ω
| f (x)|2dx denotes

the L2 norm. The optimal parameters {ai}M
i=1, {ci}M

i=1, and {Ri}M
i=1, are the output of the

optimization process that minimize the approximation error e.

Following the two-step identification process described in [55], we split the search for

the PWA function f̃ into two steps. In the first stage we will approximate the function f
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with an analytic function f̂ : Ω−→ R of known form and lower complexity, by minimizing

the error ê = ∥ f − f̂∥2. In the second step, an optimization-based procedure will be applied

to derive an optimal PWA approximation f̃ such that the approximation error ẽ = ∥ f̂ − f̃∥2

is minimized. Assuming that Ω = [k, k̄], the partition {Ri}M
i=1 of M non-overlapping parts

is described by the regions R1 = [k,r1], R2 = [r1,r2], . . ., RM = [rM−1, k̄], with
⋃

i Ri = [k, k̄].

Then, the problem reduces to finding the slopes ai ∈ R, offsets ci ∈ R and breakpoints

ri ∈ R such that the approximation error ẽ is minimized, i.e.

min
{ai,ci,ri}

M

∑
i=1

(∫ ri

ri−1
( f (x)− (aix+ ci))

2dx
)

(3.16)

s.t.

k ≤ r1 ≤ . . .≤ rM−1 ≤ k̄ (3.17)

airi + ci = ai+1ri+1 + ci+1, i = 1, . . . ,M−1 (3.18)

To implement the first step, the exponential flow-density function φi = f (ρi) is ap-

proximated by a polynomial function of different degrees n ∈ {3, . . . ,6}. Considering the

trade-off between the complexity of the resulting polynomials and the mean squared error

(MSE) of the approximation, the optimal polynomial degree was chosen as n = 5 for this

step. For reproducibility and future reference, we provide the coefficients of the polynomial
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approximation in eq. (3.19) below:

φi(k) = f̂p5(ρi(k)) = ∑
5
j=0 c jρi(k) j (3.19)

where
{

c j
}5

j=0 = {373.77,1249.24,1110.26,95.83,436.69,118.43}. The approximation

function f̂ is compared against the flow-density relation f in Fig. 3.2, as well, where we

have set Ω = [0,180].

Figure 3.2: 5th-degree polynomial approximation of the FD.

For the second step, the optimization problem in (3.16), (3.17), (3.18) was solved, and

the optimal, in terms of MSE, number of pieces M ∈ {5,6,7} was chosen. The MSE of

the approximations of the flow-density function are provided in table 3.2. Interestingly, in

this problem, increasing the number of pieces does not necessarily translate to a similar

decrease in the MSE (see table 3.2). The approximation with M = 6 pieces showed higher

MSE. As a result, for this phase, the approximations with M = 5 and M = 7 pieces will
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be considered in the experimental section that follows to develop new CTMs. Figure 3.3

shows the comparison between these PWA functions and the true fundamental diagram.

Also, for reproducibility, the coefficients {ai}M
i=1, {ci}M

i=1, and {ri}M−1
i=1 of the functions

φi = f̃5(ρi), and φi = f̃7(ρi) are provided in equations (3.20) and (3.21), respectively.

Figure 3.3: 5- and 7-Piece PWA approximation of the FD.

Table 3.2: MSE of different PWA approximations.
Piece Number MSE

M=5 6433.14
M=6 7007.30
M=7 4375.17
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f̃5(ρi) =



85.00∗ρi, 0≤ ρi ≤ 23.00

19.78∗ρi +1499.98, 23.00≤ ρi ≤ 35.45

−36.66∗ρi +3501.06, 35.45≤ ρi ≤ 87.12

−13.12∗ρi +1450.00, 87.12≤ ρi ≤ 110.50

0, otherwise

(3.20)

f̃7(ρi) =



84.99∗ρi, 0≤ ρi ≤ 23.00

19.99∗ρi +1490.00, 23.00≤ ρi ≤ 35.00

−20.00∗ρi +2890.00, 35.00≤ ρi ≤ 45.00

−37.99∗ρi +3700.00, 45.00≤ ρi ≤ 93.57

−13.90∗ρi +1450.00, 93.57≤ ρi ≤ 100.00

−2.40∗ρi +300.00, 100.00≤ ρi ≤ 124.00

0, otherwise

(3.21)

In the first step, the exponential flow-density function φi(k) can be approximated by any

smooth regression function, e.g. a polynomial function or a feed-forward neural network.

It is important to note that this step can be implemented as a data-based optimization algo-

rithm, where actual traffic flow data are used to estimate the optimal fundamental diagram

for the road and application at hand. This leads to learning-based traffic control approaches,

which lie beyond the scope of this study.
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3.4.1 The Piecewise Affine Cell-Transmission Models (PWA-CTMs)

Depending on the PWA approximation of the FD used, the CTM described in Section

3.3.1 can be extended to the models PWA5-CTM and PWA7-CTM, each using a PWA ap-

proximation with M = 5 and M = 7 pieces, respectively. The fundamental flow-rate relation

φi = f (ρi), is now approximated by eq. (3.20) for the PWA5-CTM, and by eq. (3.21) for

the PWA7-CTM model.

3.5 Finite Horizon Optimal Control Formulation

In this section, four Finite Horizon Optimal Control Problems (FHOCPs) with different

underlying traffic flow models are formulated to investigate the evolution of traffic flow in

each case. The traffic flow models used here define four different versions of the CTM. Two

of the versions used are the Extended CTM [9] and the Relaxed CTM [25]. A thorough

assessment on these two models is presented in [48]. The other two CTM versions are

the PWA-CTMs proposed in the previous section. The traffic control strategy applied here

is the PI-ALINEA ramp metering controller, and the analysis is performed by simulation

for a hypothetical network of freeways with stationary demand patterns using the unique

equilibrium state of each pattern.

Before developing the formulations of the FHOCPs, first the definitions of two objective

functions will be provided. In the formulation of FHOCPs presented in this section, a linear

combination of these cost functions will make the final objective of each problem. The most

54



widely used objective in traffic management is to minimize the total time that all vehicles

spend in the network (i.e., the Total Time Spent or T T S). Basically, the T T S is the time

spent by all vehicles in the network (i.e., the total travel time or T T T ), including the waiting

time experienced at origins (i.e., the total waiting time or TWT ).

J1 = JT T S = T
K−1

∑
k=0

[
N

∑
i=1

ρi(k)Liλi +
N

∑
i=1

li(k)] (3.22)

The second objective function applied here is to maximize the sum of the traffic flows going

through all sections and on-ramps. This objective function is also called the Total Travel

Distance (TTD) since it is the total distance (veh mi) covered by all the vehicles in the

considered time horizon.

J2 = JT T D = T
K−1

∑
k=0

[
N

∑
i=1

φi(k)Li +
N

∑
i=1

ri(k)Li] (3.23)

A linear combination of these two objective functions is used as the objective function

to express their priorities, i.e.

min
rC

i

α1J1−α2J2 (3.24)

Here, α1 > α2 as minimizing the travel time is the main objective. Also, the αi values are

the same for all four problems.

The different FHOCP problems are defined by optimization problem (3.24), the con-

troller (3.14), the constraints (3.1)-(3.10), and different flow-density relationship
{

φi = f j(ρi)
}4

j=1

given by:
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FHOCP 1: φi = f1(ρi)∼ Extended CTM [9, 48];

FHOCP 2: φi = f2(ρi)∼ Relaxed CTM [25, 48];

FHOCP 3: φi = f3(ρi)∼ (3.20); and

FHOCP 4: φi = f4(ρi)∼ (3.21).

3.6 Simulation Results

In this section, we evaluate the performance and complexity of the proposed methodol-

ogy on a complex simulation environment.

3.6.1 Case study and model parameters

Simulation is performed for the network shown in Fig. 2.3 with two origins (o1 and

o2), two controlled on-ramps (o3 and o4), 12 mainline links (m1 through m12) and two

destinations (d1 and d2). One assumption about the network is that the proportion of turns

at every junction, i.e. the split ratios βi(k), are fixed and known in advance. Also, it is

assumed that the behavior of all the links can be described by parameters shown in table

3.3 adopted from [41, 48] and converted to SI units for this study:
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Table 3.3: Model Parameters.
Symbol Value Unit/Range
Period T 0.5 min
Length Li 1 km
v f

i 1 length/period
wi 0.33 length/period
ρmax

i 180 veh/length
ρcr

i 50 veh/length
qmax

i 50 veh/period

3.6.2 Simulation and Numerical Results

The results of the simulation of the four FHOCPs proposed in section 3.5 are pro-

vided in this section. The FHOCPs were solved with Yalmip, the modeling and optimiza-

tion language offered by [42], and the GUROBI non-commercial optimization solver via

the interface of MATLAB. The simulation horizon of 1 hour is considered by choosing

the time horizon of K = 120 time steps and the simulation period of T = 0.5 minute

(K ∗ T = 60 minute). For the simulation phase of this study, the following stationary

demand vector was applied for origin links o1 and o2 and also on-ramp links o3 and

o4: d(k) = (8,9,7,3) veh/0.5 min. According to [41], for each stationary demand vec-

tor d(k) = (d0, ...,dM), there exists a unique equilibrium flow rate φ(k) = (q0, ...,qN) and

density vector ρ(k) = (ρ0, ...,ρN). Detailed explanation on the calculation of these vectors

is explained in [41]. Table 2.2 shows the theoretical equilibrium flow vector for the main-

line links of this network based on the chosen stationary demand. Adding all these values

together, the network flow rate at the equilibrium state should be equal to 113.37 veh/0.5
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min. Knowing this theoretical flow vector and having the overall value of the network flow

rate provide an insight on what is expected to see in the simulation phase.

Figure 3.4 shows the comparison of the network flow rate, i.e. the summation of the

flow rate of all the links, in all four FHOCPs during the 1-hour simulation horizon. In

all problems, the network flow rate is showing convergence to the value of the theoretical

equilibrium equal to 113.37 veh/0.5 min. However, the FHOCPs based on the PWA-CTM

are showing faster convergence with much less error at the beginning of the simulation.

The interesting result is that the network flow rate of the last two problems look to be the

completely the same. To have a closer look at this comparison, the boxplot of the difference

between the network flow rate of these two problems is provided in Fig. 3.5. It is clear that

this difference is so small that can be neglected without any loss of generality.

Figure 3.4: Comparison of the network flow rate in all four problems.
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Figure 3.5: Boxplot comparison of the network flow rate in problems based on the PWA-CTMs.

Table 3.4: Comparison of the Computation Times and Iteration Numbers.
Problem Computation Time (sec) Iterations
FHOCP 1 245.88 618713
FHOCP 2 1.53 4212
FHOCP 3 1.62 746
FHOCP 4 1.64 749

Another factors used to evaluate the performance of these problems is the computation

time and the number of iterations needed to solve each of the four problems. Table 3.4

shows the numerical value of these two factors. The value of these factor for the problem

based on the Extended CTM is highly greater than those of the other problems. The rea-

son is the large number of the nonlinear min function constraints in this model [48]. Also,

considering the computation time of the other three problems, it can be seen that they al-

most have similar values, however, still the number of iterations needed to find a solution
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for the problems based on the PWA-CTM is much less and indicates that these optimiza-

tion problems remain more tractable for real-time application of ramp metering optimal

controllers.

The evolution of the ramp metering variables are also investigated here. Fundamentally,

the expectation is that the control applied to the on-ramps can satisfy the requirements of

the network while considering the external demand of the on-ramps by not imposing too

much waiting time to the vehicles on the on-ramps. As a result, a proper RM variable

basically should replicate the overall demand pattern of that on-ramp. As an example,

Fig. 3.6 shows the RM variable of on-ramp o3. In all four problems, the control variable

is trying to converge to the value of the external demand applied (a constant demand of 7

veh/0.5 min). However, the RM variable in problems based on PWA-CTM have smoother

and faster convergence with much less fluctuations while the control variable in the problem

based on the Extended CTM never actually converges and in the problem based on the

Relaxed CTM, a big overshoot happens before it starts to converge.
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Figure 3.6: Evolution of the RM control variable of on-ramp o3.

Last but not least, the MSE between the network flow rate and density of the problems

is compared with that of the equilibrium state. The results are provided in Fig. 3.7. The

problem based on the Relaxed CTM has the highest MSE for both the flow rate and density

of the network. It is because of the crude simplifications made in this version of the CTM

[48]. Comparing the MSE of the problem based on the Extended CTM and the perfor-

mance of the problems based on the PWA-CTM, the results show less MSE for the last two

FHOCPs. It indicate the FHOCPs based on the PWA-CTM have less error comparing to

the equilibrium values of the flow rate and density.
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Figure 3.7: Bar plot comparison of the MSE of the network flow rate and density.

3.7 Conclusion

In this chapter, two enhanced CTM versions are proposed which constitute the PWA ap-

proximations of the flow-density relation of the FD. Most of the other extensions of CTM

are based on the trapezoidal approximation of this relation in order to simplify optimiza-

tion problems based on them. However, the flow-density relation is naturally nonlinear,

and primitive approximations highly affect the efficiency of the optimization solution. The

PWA approximation proposed here is computed based on a two-step identification method

to minimize the integrated squared error with respect to the true relation. The so-called

PWA-CTM versions are evaluated in the framework of FHOCPs for a hypothetical highway

network using the PI-ALINEA RM strategy. Also, for better evaluation, the performance of

these models are compared with that of two other widely used versions of the CTM in the
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same optimization framework. Simulation results of these FHOCPs show that the problems

based on the PWA-CTM models require less computation time and less iteration numbers

compared to other problems. In addition, the problems based on the PWA-CTM models in-

dicate higher accuracy of the flow and density evolution in comparison with the theoretical

equilibrium state of the network. Also, the optimization problems based on the PWA-CTMs

remains tractable for real-time application of ramp metering optimal controllers. Hence, the

proposed PWA-CTMs constitute one of the best approximation approaches for first-order

traffic flow models suitable for more challenging modeling and control applications.
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Chapter 4: A Linear Approximation of the METANET model based on
Piecewise Affine Approximation and Synthetic Data Genera-
tion of a Highway Network

4.1 Motivation and Related Work

For model-based optimal control of traffic networks one needs both a model that tracks

the traffic states (flow, velocity, etc.) and an optimization approach that computes con-

trol variables yielding an optimal traffic performance. In the literature, the optimization

schemes for highway traffic control which are based on the second-order traffic flow model

METANET are highly nonlinear, computationally intensive and the solutions obtained are

generally local optima. Such a model is commonly used as it has shown to provide good

accuracy while it does not require as much computation time as microscopic models that

take individual vehicles into account [56].

In this part of the study, as an alternative to the nonlinear METANET model in an

optimization control framework, a linear approximation of the model will be proposed.

The METANET model has different sources on nonlinearities. In contrast to what was

discussed as the linearization approach for PWA-CTM, here, PWA approximations will

not be able to address all the sources of nonlinearities by itself. As such, synthetic data

generation method has been proposed to accompany the two-step identification method
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to fully handle the nonlinearities of this model. For the purpose of traffic control, the

linear approximation of the METANET model can be used in an optimization framework

as the underlying traffic flow model. For a case study network, the accuracy of various

approximations will be compared to the original nonlinear formulation of METANET.

4.2 The Standard METANET Model

The METANET model presented here is an improved version [57] of its original one

first presented in [58]. However, the notation has been adopted from [9] in order to agree

with the other notations of this dissertation. Detailed explanations of the variables and

parameters of this model is provided in the List of Symbols.

Mainline Links

By the conservation law of vehicles we have,

ρi(k+1) = ρi(k)+
T

Liλi
[φi−1(k)−φi(k)+ ri(k)− si(k)] (4.1)

and the velocity equation is

vi(k+1) = vi(k)+
T
τ
[V (ρi(k))− vi(k)]+

T
Li

vi(k)[vi−1(k)− vi(k)]−
νT [ρi+1(k)−ρi(k)]

τLi[ρi(k)+χ]

(4.2)

where i = 1, ...,N, k = 0, ...,K−1.

The relaxation term,i.e. T
τ
[V (ρi(k))− vi(k)], models the fact that vehicles tend to reach

the steady-state velocity depending on the experienced density ρi(k), according to a param-
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eter τ , which represents the swiftness of drivers. Hence, vehicles accelerate if their actual

velocity is lower than the steady-state value, and they decelerate otherwise.

The convection term, i.e. T
Li

vi(k)[vi−1(k)− vi(k)] , represents the fact that vehicles

arriving in section i from section i−1 cannot adapt immediately their velocity. If vehicles

travel in section i−1 at a higher velocity than in section i , they decelerate when they reach

section i but this change of velocity is not instantaneous. A similar argument applies in

case of acceleration from section i−1 to section i.

The anticipation term, i.e. −νT [ρi+1(k)−ρi(k)]
τLi[ρi(k)+χ] , takes into account that drivers adjust their

velocity also on the basis of the situation they see downstream, hence there is a deceleration

if a higher density is seen ahead, and an acceleration in the opposite case.

Also, the traffic flow is given by

φi(k) = ρi(k)vi(k)λi (4.3)

and the steady-state velocity–density relation is given by

V (ρi(k)) = v f
i exp[− 1

ai
(
ρi(k)
ρcr

i
)ai] (4.4)

Origin Links

The dynamic equation of the on-ramp queue length of section i at time kT is

li(k+1) = li(k)+T [di(k)− ri(k)] (4.5)

Also , for the flow ri(k) entering the mainstream from the on-ramp, we have two cases:
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For uncontrolled on-ramps:

ri(k) = min{di(k)+
li(k)

T
,rmax

i ,rmax
i

ρmax
i −ρm,1(k)
ρmax

i −ρcr
i
} (4.6)

For controlled on-ramps:

ri(k) = min{di(k)+
li(k)

T
,rmax

i ,rmax
i

ρmax
i −ρm,1(k)
ρmax

i −ρcr
i

,rC
i (k)} (4.7)

where rC
i (k) comes from the RM control law.

4.3 The Linear Approximation of the METANET model

Given this nonlinear non convex model (METANET), any optimization problem based

on this model will be difficult to solve quickly to optimality. For this reason the choice of

a piecewise-affine (PWA) approximation of the nonlinear functions is made, which results

in an optimization problem that can be more easily solved. Constructing a PWA formu-

lation of the METANET model to be used in an optimization framework will make any

optimization-based control problem formulations linear and this will greatly impact the

computation time and efficiency of the optimal problems.

The METANET model explained in section 4.2 is a nonlinear model due to the follow-

ing equations:

1. The traffic flow equation in eq. 4.3, where its non-linearity arises from the multipli-

cation of mean velocity and density which makes the famous fundamental diagram

as shown in Fig. 4.1 (bottom diagram). An extensive discussion about this diagram

and a 5-piece and 7-piece PWA approximation of it was offered in equations 3.20
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and 3.21 and shown in Fig. 3.3 in Chap. 3. As such, for this equation, the results

offered before will be used accordingly.

2. The mean velocity equation in eq. 4.2 which has the following issues:

(a) The relaxation term: the density variable arising in an exponential factor in

eq. 4.4 (top figure in Fig. 4.1),

(b) The convection term: multiplication of velocity variables,

(c) The anticipation term: division of density variables by another density.

Figure 4.1: Nonlinear Fundamental Diagram.

In the remaining part of this chapter, further efforts will be made to resolve the remain-

ing nonlinearity issues of the mean velocity equation. Then, in the framework of FHOCPs,

this new linearized version of the METANET will be applied as the traffic flow model and

the optimal problems will be solved to evaluate the performance of the proposed linear
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METANET model.

4.4 Addressing the Nonlinearity of the Relaxation Term

In this part, the PWA approximation method mentioned in section 3.4 will be applied

to approximate the nonlinear steady-state velocity relation V (ρi(k)) = g(ρi(k)) of the FD.

This relation is shown in the top diagram in Fig. 4.1 and also stated in eq. 4.4). The

nonlinearity source of this relation is due to the exponential function. The goal is to offer a

3-piece and 4-piece approximation of this exponential equation.

In [5], a 3-piece PWA approximation of the steady-state velocity has been offered. This

approximation is provided in eq. 4.8. This will be used as a benchmark of comparison

using the MSE with the original nonlinear equation.

g̃Groot(ρi) =



−1.55∗ρi(k)+112.17, 0≤ ρi(k)≤ 65.5

−0.25∗ρi(k)+26.61, 65.5≤ ρi(k)≤ 107.5

0, otherwise

(4.8)

This approximation is also shown in Fig. 4.2.

To implement the first step of the PWA identification method, the exponential velocity-

density function was approximated by polynomial functions of degrees n = {3,4,5}. In

this case, the MSE of polynomials of degree 4 and 5 did not show much lower value and

using them would result in unnecessary complexity for step two. As such, the polynomial

n = 3 was chosen for the result of step one. For reproducibility and future reference, we
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Figure 4.2: 3-piece PWA approximation of the velocity-density equation offered in [5].

provide the coefficients of the polynomial approximation in eq. 4.9 below:

ĝp3(ρi(k)) = ∑
3
j=0 c jρi(k) j (4.9)

where
{

c j
}3

j=0 = {5.78,−23.22,20.39,−4.66}. The 3rd degree polynomial approxi-

mation function ĝ is compared against the velocity-density relation g in Fig. 4.3, as well.

For the second step, the optimization problem in 3.16, 3.17, 3.18 was solved again

for the velocity-density function gi, and the optimal, in terms of MSE, number of pieces

M ∈ {3,4} was chosen. The MSE of the approximations of the velocity-density function

are provided in table 4.1. It can be easily seen that the MSE of the approximations proposed

here are much lower than that proposed in [5]. Also, Fig. 4.4 shows the comparison between

these PWA functions and the true fundamental diagram.
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Figure 4.3: 3rd degree polynomial approximation of the velocity-density equation.

Table 4.1: MSE of different PWA approximations.
Number of Pieces MSE
M=3 [5] 16.26
M=3 5.95
M=4 2.56

For reproducibility, the coefficients {ai}M
i=1, {ci}M

i=1, and {ri}M−1
i=1 of the functions

g̃3(ρi), and g̃4(ρi) are provided in equations 4.10 and 4.11, respectively.

g̃3(ρi) =



−1.53∗ρi(k)+116.00, 0≤ ρi(k)≤ 70

0.12∗ρi(k)+28.00, 70≤ ρi(k)≤ 101.00

0, otherwise

(4.10)
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Figure 4.4: 3- and 4-Piece PWA approximation of the velocity-density equation.

g̃4(ρi) =



−0.70∗ρi(k)+112.00, 0≤ ρi(k)≤ 9.64

−1.63∗ρi(k)+121.01, 9.64≤ ρi(k)≤ 61.98

−0.54∗ρi(k)+53.13, 61.98≤ ρi(k)≤ 97.98

−0.02∗ρi(k)+2.63, otherwise

(4.11)

The equations 4.10 and 4.11 are the proposed PWA approximation of the exponential

velocity-density equation in this section and using them, the nonlinearity of the relaxation

term will be resolved. As the MSE of the 4-piece approximation is lower, from this point

on, this approximation will be used as the PWA approximation of eq. 4.4. At this point,

we will move on to the next section to address the remaining nonlinearities of the mean
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velocity equation.

4.5 Addressing the Nonlinearities of the Convection and Anticipation Terms

The convection term, i.e. T
Li

vi(k)[vi−1(k)−vi(k)] , and the anticipation term, i.e. −νT [ρi+1(k)−ρi(k)]
τLi[ρi(k)+χ]

are the two nonlinearity sources left in the METANET model. In this section, a method will

be offered to address these issues. Both of these terms are bivariate functions depending on

two state variables. In the convection term, we have the multiplication of the mean velocity

of cells i− 1 and i variables. In the anticipation term, we have the division of the density

variables of cells i+1 and i.

To address these types of nonlinearties, PWA approximation alone could not do the

job of approximation as these two functions are bivariate functions and the mean velocity

depends on more than one variable in these terms. As such, to handle this problem, we

needed to take care of the extra variable present in each of these two terms. In the con-

vection term, for vi(k+ 1), the variable vi−1(k) causes the trouble and in the anticipation

term, for vi(k)+ 1, the variable ρi+1(k) is the source of difficulty. The goal is to find a

way to take care of these variables. Then, the convection and the anticipation become one-

variable functions and the PWA approximation method would give a linear approximation

for these terms. To tackle this problem, the method of approximation by piecewise constant

functions will be used which is explained in the next section.
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4.5.1 Synthetic Data Generation

To handle the nonlinearity of the convection and anticipation terms, the method used

in [5] is to simply keep the velocity term vi−1(k) and the density term in the denominator

ρi(k) constant at a value determined by historical data. However, in this study, we would to

find a better approximation for these terms. Here, synthetic data will be generated for the

network under consideration. Then, for each time step of the simulation, the convection and

anticipation functions will be computed based on this data. Then, polynomial curve fitting

method will be adapted to approximate these bivariate nonlinear functions with polynomial

single-variable functions. After this step, the previously-introduced PWA approximation

method will be used to find linear/affine functions for these two terms.

The following notations will be used for the convection term and anticipation term for

the rest of this chapter: From the mean velocity equation vi(k+1) in eq. 4.2, and the part

called the convection term, we define:

p(vi(k)) := vi(k)[vi−1(k)− vi(k)] (4.12)

which is dependent on vi−1(k) and vi(k). And from the anticipation term, we define:

q(ρi(k)) :=
[ρi+1(k)−ρi(k)]

[ρi(k)+χ]
(4.13)

which is dependent on ρi+1(k) and ρi(k).

In order to find linear approximations of p(vi(k)), we take the following two steps:

• Approximate p(vi(k)) with a polynomial curve , called p̂(vi(k)), fitted to function
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resulted from synthetic data in a way that this function is only dependent only on one

variable vi(k) such that the curve fitting error p̂ = ∥p− p̂∥2 has the minimum value.

• Find the PWA approximation p̃(vi(k)) based on the least squared method described

in Chap. 3, such that ẽ = ∥p̂− p̃∥2 is minimized.

The same process will be repeated for q(ρi(k)), by finding the q̂(ρi(k)) and q̃(ρi(k))

The process of the synthetic data generation, polynimial curve fitting of functions

p(vi(k)) and q(ρi(k)) and their PWA approximations is explained in the next section.

Eclipse SUMO traffic simulator

In this section, the process of generating synthetic data for the hypothetical network

of this dissertation (Fig. 2.3) will be explained. For this process, Eclipse SUMO traffic

simulator [59] will be used. SUMO is a free and open source traffic simulation suite. It is

available since 2001 and allows modelling of intermodal traffic systems - including road

vehicles, public transport and pedestrians. Included with SUMO is a wealth of supporting

tools which automate core tasks for the creation, the execution and evaluation of traffic

simulations, such as network import, route calculations, visualization and emission calcu-

lation. SUMO can be enhanced with custom models and provides various APIs to remotely

control the simulation. SUMO is highly portable, microscopic and continuous multi-modal

traffic simulation package designed to handle large networks.

To run a simulation with SUMO, three input files in the following order are needed:

• Road Network: For a simulation, a SUMO Road Network must be given using the
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option –net-file. The network is normally built using netconvert or netgenerate.

• Traffic Demand (Routes): The vehicles to simulate must be given. Their description

normally includes vehicle types, vehicles, and vehicle routes. Routes are normally

given to the simulation modules using the option –route-files.

• Additional Files: All additional structures/definitions are given to the simulation us-

ing the –additional-files. Each file is read completely into memory and the list of

files is processed from left to right. One or more additional-file(s) are used to load

additional entities:

– infrastructure related things: traffic light programs, induction loops and bus

stops

– additional visualization: POIs and polygons (i.e. rivers and houses)

– dynamic simulation control structures: variable speed signs and rerouters

– demand related entities: vehicle types and routes

Vehicles, Routes and Flows

Initially, we will define a vehicle with a route that belongs to it. A vehicle may be

defined using the different attributes. Some of these attributes are:

• id: The name of the vehicle

• type: The id of the vehicle type to use for this vehicle

• route: The id of the route the vehicle shall drive along
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• depart: The time step at which the vehicle shall enter the network

• departLane: The lane on which the vehicle shall be inserted

• etc.

It is possible to define repeated vehicle emissions (”flow”s), which have the same param-

eters as the vehicle or trip definitions except for the departure time. They are distributed

either equally or randomly in the given interval. The following additional parameters are

known:

• begin: first vehicle departure time

• end: end of departure interval (if undefined, defaults to 24 hours)

• vehsPerHour: number of vehicles per hour, equally spaced (not together with period

or probability)

• etc.

Also, the attributes of a route are:

• edges: The edges the vehicle shall drive along, given as their ids, separated using

spaces

• color: This route’s color

• cycleTime: When defining a repeating route with stops and those stops use the until

attribute, the times will be shifted forward by ’cycleTime’ on each repeat
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• etc.

A vehicle is defined using the vType-element. Some of the available vType attributes are:

• accel: The acceleration ability of vehicles of this type (2.6m/s2)

• decel: The deceleration ability of vehicles of this type (4.5m/s2)

• sigma: Car-following model parameter (0.5)

• length: The vehicle’s netto-length (length) (5.0m)

• maxSpeed: The vehicle’s maximum velocity (55.55 (200km/h) for vehicles, 1.39(5km/h)

for pedestrians)

• etc.

There are different car-following models currently implemented in SUMO. The ”carFollowing-

Krauss” model is the default model. The default model says: Let vehicles drive as fast as

possibly while maintaining perfect safety (always being able to avoid a collision if the

leader starts braking within leader and follower maximum acceleration bounds).

Detectors

Sumo has the following detectors:

• Inductive loop detectors (E1): simulated induction loops

• Instant induction loops: simulated unaggregated induction loops
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• Lane area detectors (E2): detectors that capture a lane segment (i.e. simulated vehicle

tracking cameras)

• Multi-Entry-Exit detectors (E3): simulators that track traffic in an area by detecting

entry and exit events at defined locations

• Route Detectors: detector for sampling route distributions

Lane Area Detector (E2)

For the SUMO simulation of this study, E2 detectors have been chosen. A laneAreaD-

etector is used to capture traffic on an area along a lane or lanes. In reality this would be

similar to a vehicle tracking cameras. In contrast to an induction loop, a lane-area detector

has a certain length which is specified by the length attribute or by the attributes pos, end-

Pos. The outputs of an E2 Detector are tailored for measuring queues of standing/jammed

vehicles and it keeps track of all vehicles which currently are on its area The following

generated outputs from the E2 detectors were used for this study:

• nVehSeen: (num vehicles) The number of vehicles that were on the detector in the

corresponding interval (were ”seen” by the detector).

• meanSpeed: (m/s) The mean velocity over all collected data samples.

SUMO Simulation

Running SUMO simulation for 5 hours and uploading the detector outputs every T =

0.5min = 30sec, the simulation time horizon was set to 18000 steps through TraCi. TraCI
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is the short term for ”Traffic Control Interface”. TraCI uses a TCP based client/server ar-

chitecture to provide access to sumo. Thereby, sumo acts as server that is started with

additional command-line options. In other words, Traci is a programming language inter-

face between SUMO and Python. The package ”tools/traci” allows to interact with sumo

using Python. Having these settings, for each detector, 600 (=18000/30) rows of data were

recorded. Max Speed of vehicles was chosen to be equal to 20.

Following figures are some snapshots from the network simulated in SUMO.

Figure 4.5: Simulated Network in SUMO

Figure 4.6: Movements of different flows of vehicle at the junction of on-ramp o3 and link 2
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Figure 4.7: Movements of different flows of vehicle at the junction of on-ramp o4 and link 8

Figure 4.8: Flow of vehicles at a node with two outgoing links

4.5.2 Polynomial Curve Fitting

After the data generation process was finished, as the next step, the functions p(vi(k))

and q(ρi(k)) were computed for all the links of the network. Then, to find the best poly-

nomial curve fitting these functions, MATLAB polyfit function was used. Function poly-

fit(x,y,n) returns the coefficients for the polynomial m(x) of degree n that is a best fit (in a

least-squares sense) for the data in y. The coefficients in m are in descending powers, and

the length of m is n+1.

m(x) = m1 ∗ xn +m2 ∗ xn−1 + ...+mn ∗ x+mn+1.
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Then, the polyval(p,x) function was used which evaluates the polynomial p at each

point in x. In other words, Polyval generates a curve to fit the data based on the coefficients

found using polyfit.

Fit Polynomials for the Convection Term:

Figure 4.9 shows the result of fittig a curve to the function p(vi(k)) for two links of the

network. Blue points are the true functions values and red points are the polynomial curve

fitted to the data.

Figure 4.9: The convention term and its polynomial curve fitting of Link 3 (top) and link 6 (bottom)

The polynomial curves fitted to the p(vi(k)) function of 6 links are shown in Fig. 4.10.
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Figure 4.10: The polynomial curve fitting of 6 different links

Also, the MSE of fitting a curve to the true function of these 6 links are presented in

Table 4.2.

Table 4.2: Comparison of the MSE of curve fitting for different links
Link Curve Fitting MSE

1 0.2169
3 7.8208
4 8.2128
6 4.0640
7 5.0108
9 8.6864

At this point, the goal is to extract an approximate function which, with some reasonable

error, would play the role of the p(vi(k)) for all the links. We do not want to offer a model

which is compatible with the behavior of only one link. As such, a curve should be chosen
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that approximately can represent the behavior of all links to a good extent. Therefore,

looking at Fig. 4.10 and considering the MSE errors of Table 4.2, the curve fitted to the

p(vi(k)) function of link 1 was chosen to move forward to the next step. The polynomial

of the curve fitted for the p(vi(k)) of link 1 is:

p̂(vi(k)) =−2.7277∗ vi(k)2−2.5606∗ vi(k)−0.0570 (4.14)

As expected, the p̂(vi(k)) is a 2-nd order polynomial. Having this function, we would

like to find a PWA approximation for it based on method explained in Chap. 3. Details of

this process are skipped here and only the results are shown. Figure 4.11 shows the PWA

approximation of the p(vi(k)) in equ. 4.14. It has been approximated with 3 pieces and

the function is provided in equ. 4.15. Also, the MSE of this approximation was equal to

0.0354 which is a very small error.
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Figure 4.11: The PWA approximation of the convection term

p̃(vi(k)) =



−7.39∗ vi(k)+0.78, 0≤ vi(k)≤ 0.32

−14.94∗ vi(k)+3.20, 0.32≤ vi(k)≤ 0.65

−20.53∗ vi(k)+6.83, 0.65≤ vi(k)≤ 1

0, otherwise

(4.15)

Fit Polynomials for the Anticipation Term

The same process of the previous section is repeated for the q(ρi(k)) function. Figure

4.12 shows the true q(ρi(k)) function and the polynomial fitted to it for links 3 and 6 of the

network.
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Figure 4.12: The anticipation term and the its polynomial curve fitting of Link 3 (top) and link 6
(bottom)

Figure 4.13 shows the polynomial curve fitted to the q(ρi(k)) function of 6 links and

the MSE of this curve fitting are summarized in Table 4.3.
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Figure 4.13: The polynomial curve fitting of 6 different links

Table 4.3: Comparison of the MSE of curve fitting for different links
Link Curve Fitting MSE

1 7.79e-04
3 0.0027
4 1.71e-05
6 0.0013
7 0.0010
9 1.78e-05

At this point, the polynomial fitted for the q(ρi(k)) function of link 6 is chosen for the

next step. This polynomial is provided in the following equation.

q̂(ρi(k)) =−0.037∗ρi(k)−0.06 (4.16)

As expected, this polynomial is linear function, and it does not require any further PWA
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approximations. As such, q̃(ρi(k)) = q̂(ρi(k)).

4.6 The Piecewise Affine METANET Model (PWA-METANET)

The fully linearized METANET model will be called the PWA-METANET model and

it constitute the following equations:

Density equation is similar with eq. 4.1 as it was a linear equation by itself.

As for the PWA velocity equation, using equations 4.11 for the PWA steady-state Veloc-

ity g̃3(ρi) in the relaxation term, eq. 4.15 for the PWA p̃(vi(k)) function of the convection

term, and eq. 4.16 for the PWA q̃(ρi(k)) function of the anticipation, we have:

vi(k+1) = vi(k)+
T
τ
∗ [g̃4(ρi)− vi(k)]+

T
Li
∗ p̃(vi(k))−

νT
τLi
∗ q̃(ρi(k)) (4.17)

Also, the traffic flow is given by its PWA approximation found in Chap. 3, eq. 3.21.

The queue length equation in eq. 4.5 will be used here as well as it was a linear equation

too. As for the on-ramp control variable stated by equations 4.6 and 4.7, the min functions

will be broken into 3 and 4 inequality (less than or equal) constraints, respectively, to also

take care of the nonlinearity of the min function.

4.7 Finite Horizon Optimal Control Problem Formulation

For the performance evaluation of the PWA-METANET, four FHOCP problems are

defined where in each of them, one of the nonlinear relations is replaced with its PWA

approximation. All the FHOCP problems are defined by the cost function of eq. 3.24,
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the RM controller of eq. 3.14, the density equation of eq. 4.1, the queue length equation

in eq. 4.5, and the RM control variable in equations 4.6 and 4.7. The difference between

these problems are in the steady-state velocity, mean velocity and traffic flow equation. The

first is based on the original nonlinear METANET model. As we move on, we replace the

three nonlinear equation with its PWA approximation one by one and define the rest of the

problems. Definitions of the four problems formulated for this chapter are summarized in

Table 4.4.

Table 4.4: Definitions of the FHOCPs and their problem type
Steady-state Velocity

V (ρi(k))
Flow Rate

φi(k)
Mean Velocity

vi(k)
Problem Type

FHOCP 1 Nonlinear Nonlinear Nonlinear Nonlinear
FHOCP 2 PWA Nonlinear Nonlinear Nonlinear
FHOCP 3 PWA PWA Nonlinear Nonlinear
FHOCP 4 PWA PWA PWA Linear

4.8 Simulation and Numerical Results

In this section, we aim to evaluate the performance and complexity of the proposed

model on a complex simulation environment. The first step is to solve the optimization

problems defined in Sec. 4.7.

4.8.1 Solvers and Algorithm for Nonlinear Programming Problems

A general optimization problem is to select n decision variables x1,x2, ...,xn from a

given feasible region in such a way as to optimize (minimize or maximize) a given objec-

tive function f (x1,x2, ...,xn) of the decision variables. The problem is called a nonlinear
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programming problem (NLP) if the objective function is nonlinear and/or the feasible re-

gion is determined by nonlinear constraints.

In this study, several of the FHOCPs are NLP due to having nonlinear constraints and

only the problem based on the fully linearized approximation METANET was a linear

programming problem.

General nonlinear programming solvers available are [60] BARON, FMINCON, IPOPT,

KNITRO, and a few more. Amongst these solvers, the following solvers were tried:

• BARON: BARON full version was not free and its demo mode could only handle up

to 10 constraints and variables and up to 50 nonlinear operations.

• IPOPT: It was not able to solve the large scale problem of this study.

• KNITRO: KNITRO full version was not free and its one-month full trial could solve

a limited problem size (300 constraints and 300 variables).

As such, Fmincon solver (available with MATLAB academic license) was chosen as the

solver for the nonlinear programming problems of this study.

Fmincon for Nonlinear Problems

Fmincon is the nonlinear programming solver function which finds the minimum of

constrained nonlinear multi-variable functions. Fmincon has five algorithm options:

• ’interior-point’ (default)

• ’trust-region-reflective’
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• ’sqp’

• ’sqp-legacy’

• ’active-set’

The recommendations regarding the choice of algorithms are as follows:

Use the ’interior-point’ algorithm first. ”To run an optimization again to obtain more

velocity on small- to medium-sized problems, try ’sqp’ next, and ’active-set’ last. Use

’trust-region-reflective’ when applicable. Your problem must have: objective function in-

cludes gradient, only bounds, or only linear equality constraints (but not both)”.

The reasoning behind these recommendations are:

’interior-point’ handles large, sparse problems, as well as small dense problems. The

algorithm satisfies bounds at all iterations, and can recover from NaN or Inf results. It is a

large-scale algorithm; see Large-Scale vs. Medium-Scale Algorithms. The algorithm can

use special techniques for large-scale problems. For details, see Interior-Point Algorithm

in fmincon options. ’sqp’ satisfies bounds at all iterations. The algorithm can recover from

NaN or Inf results. It is not a large-scale algorithm; see Large-Scale vs. Medium-Scale

Algorithms. ’sqp-legacy’ is similar to ’sqp’, but usually is slower and uses more memory.

’active-set’ can take large steps, which adds velocity. The algorithm is effective on some

problems with nonsmooth constraints. It is not a large-scale algorithm; see Large-Scale vs.

Medium-Scale Algorithms. ’trust-region-reflective’ requires you to provide a gradient, and

allows only bounds or linear equality constraints, but not both. Within these limitations,

the algorithm handles both large sparse problems and small dense problems efficiently. It
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is a large-scale algorithm; see Large-Scale vs. Medium-Scale Algorithms. The algorithm

can use special techniques to save memory usage, such as a Hessian multiply function.

Interior-Point Algorithm

Interior-point methods (also referred to as barrier methods or IPMs) are a certain class

of algorithms that solve linear and nonlinear convex optimization problems. An interior

point method was discovered by Soviet mathematician I. I. Dikin in 1967 and reinvented

in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear

programming called Karmarkar’s algorithm, which runs in provably polynomial time and

is also very efficient in practice. It enabled solutions of linear programming problems that

were beyond the capabilities of the simplex method. Contrary to the simplex method, it

reaches a best solution by traversing the interior of the feasible region. The method can be

generalized to convex programming based on a self-concordant barrier function used to en-

code the convex set. Any convex optimization problem can be transformed into minimizing

(or maximizing) a linear function over a convex set by converting to the epigraph form. The

idea of encoding the feasible set using a barrier and designing barrier methods was studied

by Anthony V. Fiacco, Garth P. McCormick, and others in the early 1960s. These ideas

were mainly developed for general nonlinear programming, but they were later abandoned

due to the presence of more competitive methods for this class of problems (e.g. sequential

quadratic programming). Yurii Nesterov, and Arkadi Nemirovski came up with a special

class of such barriers that can be used to encode any convex set. They guarantee that the

number of iterations of the algorithm is bounded by a polynomial in the dimension and
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accuracy of the solution. Karmarkar’s breakthrough revitalized the study of interior-point

methods and barrier problems, showing that it was possible to create an algorithm for linear

programming characterized by polynomial complexity and, moreover, that was competitive

with the simplex method. Already Khachiyan’s ellipsoid method was a polynomial-time

algorithm; however, it was too slow to be of practical interest. The class of primal-dual

path-following interior-point methods is considered the most successful. Mehrotra’s pre-

dictor–corrector algorithm provides the basis for most implementations of this class of

methods [61].

The interior-point approach to constrained minimization is to solve a sequence of ap-

proximate minimization problems. The original problem is

min
x

f (x), subject to h(x) = 0 and g(x)≤ 0 (4.18)

For each µ > 0, the approximate problem is

min
x,s

fµ(x,s) = min
x,s

f (x)−µ ∑
i

ln(si), subject to s≥ 0, h(x) = 0, and g(x)+s = 0

(4.19)

There are as many slack variables si as there are inequality constraints g. The si are

restricted to be positive to keep the iterates in the interior of the feasible region. As µ

decreases to zero, the minimum of fµ should approach the minimum of f . The added loga-

rithmic term is called a barrier function. The interior-point method is fully described in [62]

and [63]. The approximate problem eq. 4.19 is a sequence of equality constrained prob-

lems. These are easier to solve than the original inequality-constrained problem eq. 4.18.
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Subproblem Algorithm: Conjugate Direction Methods

When the EnableFeasibilityMode option is true and the iterations do not decrease the

infeasibility quickly enough, the algorithm switches to feasibility mode. This switch hap-

pens after the algorithm fails to decrease the infeasibility in normal mode, and then fails

again after switching to conjugate gradient mode. Therefore, for best performance when

the solver fails to find a feasible solution without feasibility mode, set the SubproblemAlgo-

rithm to Conjugate Gradient (’cg’) when using feasibility mode. Doing so avoids fruitless

searching in normal mode.

The feasibility mode algorithm is based on [64]. The algorithm ignores the objective

function and instead tries to minimize the infeasibility, defined as the sum of the positive

parts of the inequality constraint functions and the absolute value of the equality constraint

functions.

Conjugate direction methods can be regarded as being between the method of steepest

descent (first-order method that uses gradient) and Newton’s method (second-order method

that uses Hessian as well). The motivation behind developing such a method is that the

steepest descent is slow. The goal of conjugate direction methods is to accelerate it.

Newton method is fast. But, we need to calculate the inverse of the Hessian matrix.

Conjugate direction methods is something between steepest descent and Newton method.

It’s goal is to:

• Accelerate the convergence rate of steepest descent,

• To avoide the high computational cost of Newton’s method.
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As such, to solve the nonlinear programming problems of this study, fmincon is cho-

sen as the solver, the interior-point approach is used as the main algorithm and conjugate

direction method (or conjugate gradient (’cg’)) is chosen as the algorithm to solve the sub-

problems.

4.8.2 Solver and Algorithm for Linear Programming Problems

For linear programming, the following famous sovlers are available [60]:

CPLEX (free for academia), GUROBI (free for academia), LINPROG, MOSEK (free

for academia), XPRESS (generous community trial license available). In [65], it is stated

that the fastest and most powerful mathematical programming solver available for LP, QP

and MIP (MILP, MIQP, and MIQCP) problems is Gurobi. Benchmarks consistently show

that Gurobi finds both feasible and proven optimal solutions faster than competing solvers

(including CPLEX and XPRESS). The Gurobi Optimizer is simply the best mathematical

optimization solver out there [65]. As such, it was chosen as the main solver for this section.

The key Features of Gurobi are:

• Problem-Solving Power: The results of benchmark tests consistently show that the

Gurobi Optimizer finds both feasible and proven optimal solutions faster than com-

peting solvers, with the performance gap growing as model size and difficulty in-

crease. The Gurobi Optimizer is capable of solving all major problem types (con-

vex and non-convex): Linear programming (LP), Mixed-integer linear program-

ming (MILP), Quadratic programming (QP), Mixed-integer quadratic programming

(MIQP), Quadratically-constrained programming (QCP), Mixed-integer quadratically-
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constrained programming (MIQCP).

• Ease of Use: The Gurobi Optimizer is an out-of-the-box solver that – without any

customization of code – can be used in a vast array of applications to tackle a whole

host of real-life business problems.

• State-of-the-Art Algorithms: The Gurobi Optimizer provides advanced implementa-

tions of the latest algorithms including:

– LP algorithms – simplex, parallel barrier with crossover, concurrent and sifting.

– QP algorithms – simplex and parallel barrier QCP algorithms – parallel barrier

(SOCP).

– MIP algorithms – deterministic parallel, non- traditional search, heuristics, so-

lution improvement, cutting planes, and symmetry breaking.

• User-Friendly Development Environment

• Flexible Deployment

• Responsive Support

Gurobi developers come up with certain heuristics and rounding techniques, and then

implement it using concepts of distributed computing. So all you have to do is to get a set

of equations and throw it to the solver.

As such, to solve the linear programming problems of this study, Gurobi was the pre-

ferred solver. Still, to have a comparison between the performance of this solver and others,
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MOSEK solver was also tried.

4.8.3 Numerical Results

In this section, the numerical results of solving the four FHOCPs of Sec. 4.7 are pre-

sented. The same network and model parameters of Chap. 3 was adapted here as well.

Also, the simulation horizon was chosen equal to 1 hour (K = 120 times steps, T = 0.5 min)

again. Table 4.5 shows a comparison between the iteration number and computation time

of solving each problem with its suitable solver.

Table 4.5: Comparison of the Computation Times (sec) and Iteration Numbers
Iteration Number Computation Time Solver

FHOCP 1 4570 6.80e+04 (18.91 hrs) fmincon
FHOCP 2 1561 8.3788e+03 (2.32 hr) fmincon
FHOCP 3 357 2.02e+03 (0.56 hr) fmincon
FHOCP 4 94 3.54e+03 (0.98 hr) fmincon
FHOCP 4 22 1.74 Gurobi

Figure 4.14 shows the comparison of the network flow rate for all problems. All four

problems converge to the network equilibrium flow rate equal to 113.37 veh/0.5 min. How-

ever, FHOCP 4 has many few fluctuations and faster convergence.
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Figure 4.14: Comparison of the network flow rate in all four problems.

Figure 4.15 shows the network mean velocity evolution. As expected the problem based

on PWA-METANET (FHOCP 4) is showing the largest deviation compared with FHOCP

2 and 3 with respect to the original problem (FHOCP 1) and the equilibrium value of the

network mean velocity. It is because of the substitution of three terms of the mean velocity

with their approximations.
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Figure 4.15: Evolution of the mean velocity in all four problems.

Also, Fig. 4.16 represents the evolution of RM control variable of on-ramp o3. As

discussed in Sec. 3.6, a proper RM variable basically should replicate the overall demand

pattern of that on-ramp. In all four problems, the control variable is trying to converge to the

value of the external demand applied (a constant demand of 7 veh/0.5 min). However, the

RM variable in problems based on PWA-METANET have smoother and faster convergence

with much less fluctuations while the control variable in the other problems represents large

fluctuations before they starts to converge.
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Figure 4.16: Evolution of the RM control variable of on-ramp o3.

In addition, a comparison between the approximation error of steady state velocity,

flow rate and mean velocity of all these four problems was performed and the results are

summarized in Table 4.6. The approximation error was computed as

Error =
∣∣∣∣x− xapprox

x

∣∣∣∣∗100 (4.20)

Table 4.6: Error Comparison of different factors w.r.t the original model (*SS Vel. means steady
state velocity).

SS Vel.* (%) Flow (%) Mean Vel. (%) TTS (%) TTD (%) Cost (%)
FHOCP 1 0 0 0 0 0 0
FHOCP 2 10.23 1.77 10.94 5.99 1.62 4.99
FHOCP 3 11.42 4.83 14.60 23.85 4.38 16.90
FHOCP 4 11.43 9.46 33.96 17.36 8.03 19.29

A glance to the table of errors show that overall, considering all the factors investigated,
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the FHOCP 4 which is based on PWA-METANET represents larger percentage of error due

to having more relations approximated with PWA functions. Still, if we consider the trade-

off between the computation time and error percentage of FHOCP 4 and FHOCP 1, this

PWA approximation could be a great substitute for the original nonlinear model for any

traffic control optimization study. As mentioned in Sec. 1.2.1, the speed of simulation is a

great factor for researchers in the field of traffic management and brings significant benefits

like real-time decision making capabilities, disruption management and robust scenario

analysis which are all critical features for a control scheme.

4.9 Conclusion

In this chapter, a linear approximation of the METANET model, called the PWA-

METANET, was developed which was based on the PWA approximation of the steady-

state velocity, the flow rate, and the mean velocity equations. The METANET model is

a non convex nonlinear model and when utilized as the underlying model of an optimiza-

tion problem, makes the problem nonlinear and solving it will be either difficult and time

consuming and for larger networks, it could even become impossible.

To PWA approximation of the METANET model proposed here is computed based on

two parts: 1) polynomial curve fitting of the nonlinear terms using the synthetic data gen-

erated by SUMO traffic simulator, 2) the two-step PWA identification method mentioned

in the previous chapter. The linearized METANET model is evaluated in the framework of

FHOCP for a complex hypothetical highway network.

To better investigate the effect of approximating each of the 3 nonlinear equations of the
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METANET, the PWA approximate of these equations was substituted in the original nonlin-

ear model one by one and overall, four FHOCPs were proposed. Simulation results of these

FHOCPs show that the problem based on PWA-METANET model requires much less com-

putation time and iteration numbers compared to other problems. Also, the optimization

problems based on the linearized METANET remains tractable for real-time application

of traffic-management optimal controllers. Hence, the proposed PWA-METANET consti-

tute one of the best linear approximation approaches for second-order traffic flow models

suitable for more challenging modeling and control applications.
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Chapter 5: A Learning-Based Ramp Metering Algorithm Based on Policy
Gradient Methods

5.1 Introduction

In this chapter, we are going to investigate reinforcement learning algorithms to solve

the optimal control problem of ramp-metering. Reinforcement learning methods are direct

adaptive algorithms that approximate the solution to infinite-horizon optimal control prob-

lems [21]. In our case, they offer a potentially appealing alternative method to solve the

problem at hand, since they are data-based and make no assumptions on the underlying

model parameters.

Towards this direction, it is convenient to study the traffic flow model as a multi-agent

system of non-homogeneous networked agents that belong to two classes: the controlled

links, i.e., ramps with a ramp metering controller, and the uncontrolled links, i.e., links that

are not controlled and the density flows freely depending on the intrinsic dynamics. In the

following, we offer a novel formulation of the ramp metering problem as an optimal control

problem on a first-order multi-agent dynamical system. We then apply policy gradient rein-

forcement learning algorithms to find a probabilistic policy that solves the ramp-metering

problem.
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5.1.1 Related Work on RM

Ramp metering (RM) is one of the most important strategies for traffic control to re-

duce freeway delay and improve safety [9, 15, 25, 43, 66–68]. It is achieved by placing

traffic signals at on-ramps to control the flow rate at which vehicles enter the freeway. The

ramp metering controller computes the metering rate to be applied. Ramp metering has the

following different goals [9, 69]:

• to improve or remove congestion;

• to alleviate freeway flow, traffic safety and air quality;

• to reduce total travel time and the number of peak-period accidents;

• to regulate the input demand of the freeway system so that a truly operationally bal-

anced corridor system is achieved.

Figure 5.1: Ramp metering algorithms classification [6]
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A classification of ramp metering algorithms is presented in the Figure 5.1.

Fixed time metering is the simplest strategy which is usually adjusted based on histori-

cal data and applied during particular times of day. Obviously, fixed time metering has very

limited application due to its major shortcoming of not historical traffic data. The computa-

tional simplicity of the proposed method allows it to run on reacting to any real-time traffic

metrics.

Reactive ramp metering techniques are based on real time traffic metrics. Two main

types in this category are the local and multi-variable strategies.

Local ramp metering uses traffic measures collected form the ramp vicinity. Demand-

capacity, and occupancy based strategies allow as much traffic inflow as possible to reach

the freeway capacity. ALINEA and PI-AlINEA offer a more complex and more respon-

sive strategy that unlike capacity and occupancy strategies generates smoother responses

towards changes in metrics.

Multi-variable regulator strategies perform the same as local strategies, but more com-

prehensively and independently on a set of ramps and usually outperform local strategies.

METALINE can be viewed as a more general and extended form of ALINEA.

Nonlinear optimal control strategy considers local traffic parameters and metrics as

well as nonlinear traffic flow dynamics, incidents, and demand predictions in a freeway

network and outputs a consistent control strategy.

Integrated freeway network traffic control is a more general approach to nonlinear con-

trol that extends application of optimal control strategies to all forms of freeway traffic
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control.

Most of these methods lie under the category of online optimization methods which

calculate the metering rate by solving on-line optimal control problems. These approaches

require accurate models to predict the traffic dynamics and contain large online computing

workload which is considered not capable for large-scale applications. Also, such ap-

proaches require deep understanding about the traffic flow characteristics and congestion

mechanisms at the target bottlenecks. The obtained strategies may be site-specific and may

not work well when applied on other freeway bottlenecks.

The optimization-based approaches optimize signal timings based on real-time traffic

data. The model predictive control framework, which considers the interactions between

ramp metering and future traffic states, is often employed to predict traffic evolution for

proactive traffic controls. Nevertheless, the models used to describe traffic dynamics may

lead to nonlinear control problems, which brings the difficulty in finding the optimal signal

timings. In addition, the effectiveness of the ramp metering strategy depends on the degree

of the fitness of the models to the actual traffic dynamics [70].

Artificial intelligence and machine learning approaches like reinforcement learning

(RL) and artificial neural networks (ANN) are new techniques being implemented recently

for RM control [71]. In the next section, more details on this category of RM algorithms

will be explained.
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5.1.2 Related Work on the Application of RL in RM

This section describes RL-adopted control schemes where the ramp metering is the

control action, and the goal is mitigating congestion phenomena in a highway network.

The rule-based approaches update signal timings in real-time according to specific

rules. The study in [72] proposed a feedforward ramp metering algorithm, aiming at keep-

ing the downstream traffic flow below the capacity. Papageorgiou et al. in [15] proposed

a feedback ramp metering algorithm, which is named as ALINEA, based on the occu-

pancy obtained by inductive loop detectors downstream of the merging area. The ALINEA

regulates the inflows from the on-ramp in the scheme of closed-loop control so that the

detected occupancy would approach a predefined target value. The ALINEA was further

extended by considering more traffic measures, such as queue lengths at the on-ramp and

traffic volumes in the mainline [17]. Wang et al. in [40] proposed the proportional-integral-

based ALINEA (i.e. PI-ALINEA), considering the cases where a bottleneck with a capacity

lower than that of the merging area is present further downstream of the merging area. They

demonstrated numerically that the PI- ALINEA performs better than the original ALINEA.

The ALINEA has been incorporated in several coordinated ramp metering algorithms, such

as METALINE and HERO [73].

The RL based approaches enables the agent to obtain optimal strategy in an unfamiliar

environment without prior knowledge on traffic flow, reducing the need for human knowl-

edge. Previous researchers have incorporated the Q-learning (QL) which is a basic RL

algorithm, into the RM control tasks. Deep Q-learning (DQN) is a combined use of the QL
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and the deep neural network (DNN). [70] incorporated the DQN algorithm with the RM

control to reduce total travel time and to improve traffic operation at freeway bottleneck

areas.

Existing RL-based ramp metering approaches were mainly developed based on value-

based RL methods, such as the Q-learning algorithm. They evaluate the value of policy

given each state-action pair and improve the policy with a heuristic search. The actions

usually refer to the metering rate or signal phase selection. The states are represented by

traffic measures, such as traffic density and volume. The downstream and upstream traffic

flow, ramp queue length, and traffic density are often selected to define the control reward

[74–77]. The RL has also been introduced for coordinated ramp metering [78, 79].

In this chapter, the optimal control problem of ramp-metering is formulated based on

policy gradient reinforcement learning (RL) algorithms. Figure 5.2 shows the general struc-

ture of using RL for the purpose of traffic control. Details of this methodology is explained

in the next chapters.

Figure 5.2: Traffic control with RL framework [7]

108



5.2 The CTM model as a Multi-Agent System

In this section, we introduce a multi-agent formulation of the CTM model. First, we

start with the definition of the agent. An agent i is a section of the road (also referred to as

a mainline link or an on-ramp), that is described by an one-dimensional system with:

• the density ρi ∈ R+ being the state of the system;

• the incoming flow φi ∈ R+ being the input of the system; and

• the out-going flow ri ∈ R+ being the output of the system.

The incoming flow φi of each agent is the sum of the out-going flows r j, j ∈Ni, of the

agents in its neighborhood Ni, in addition to a constant external demand di that may or may

not exist. The neighborhood Ni of each agent i is defined with respect to the topology of the

network, which, as will be shown later, corresponds to a directed graph. This is illustrated

in Fig. 5.3.

Assuming N agents, the road model is formulated as a weighted directed graph G =

(V,E) where the nodes V is the set of all the agents in the system (|V |= N), and the edge

set E ⊆V ×V is a set of ordered pairs of vertices that is defined by the specifications of the

problem. Each edge (i, j)∈ E is associated with a weight wi j that represents the percentage

of the out-going flow r j of agent j that flows towards agent i. This is also illustrated in

Fig. 5.3. When wi j = 0, the two agents are assumed disconnected. The neighborhood Ni is

defined as Ni = { j : wi j ̸= 0}. The weights wi j form the non-symmetric weighted adjacency

matrix W that encodes all the information needed about the structure of the network, and
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thus, the road configuration.

Figure 5.3: A CTM agent.

Given the definitions above, the dynamics of each agent i are given by:

∆ρi =
T
L
(φi− ri) (5.1)

where

φi = di +∑
j

wi jr j (5.2)

and

ri =


fFD(ρi), mainline

fC(ρi), on-ramp

(5.3)

Here ∆ρi is used to describe ρi(k+1)−ρi(k) such that the time indices can be removed for

clarity of the notation. The constraints

ρi ≤ ρmax
i ,

φi ≤ φ max
i ,

ri ≤ φi +
L
T ρi

(5.4)

should also hold.
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The functions fFD and fC define the controllers of each agent, depending on whether the

agent is an uncontrolled link in the mainline or a controlled link in an on-ramp. According

to the original CTM model, if an agent is a link in the mainline, the function fFD is given

by the fundamental diagram described in Chap. 3, eq. 3.20. However, if the agent is an on-

ramp controlled by ramp-metering, the function fC defines the ramp-metering controller.

As a result, the function fC is the solution of our optimal control problem.

In what follows, we will approximate the function fC with a parametric model fθ ≃ fC,

where the vector θ ∈Rm will be the unknown parameter vector. As a result, in vector nota-

tion, we can represent r := {ri} as a function of the densities ρ := {ρi} and the parameters

θ , i.e., r(ρ,θ). Finally, in vector notation, we can represent the entire multi-agent system

dynamics as:

∆ρ =
T
L
(W − I)r(ρ,θ)+

T
L

d (5.5)

To compare this multi-agent formulation with the classical road model, we present in

Fig. 2.3 the same network used in the previous chapters, using the formulation described

here.
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Figure 5.4: The network of previous chapter in multi-agent formulation.

5.3 Reinforcement Learning and Policy-Gradient (PG) Methods

Reinforcement Learning studies a sequential decision making problem in which an

agent acts in a stochastic environment with unknown dynamics by sequentially choosing

actions, so as to maximize a desired performance measure. A PG method tries to optimise

a parameterised policy function by gradient-descent/ascent method. Indeed, PG methods

are interested in searching policy space to learn policies directly, instead of estimating

state-value or action-value functions. Unlike the traditional RL algorithms, PG methods do

not suffer from the convergence problems of estimating value functions under non-linear

function approximation or in the environments which might be partially observable Markov

decision process (POMDP). They can also deal with the complexity of continuous state and

action spaces better than purely value-based methods. PG methods estimate policy gradi-

ents using Monte Carlo estimates of the policy gradients. These methods are guaranteed to

converge to a local optimum of their parameterised policy function. However, typically PG
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methods result in high variance in their gradient estimates [7]. Hence, in order to reduce

the variance of the gradient estimators, some methods subtract a baseline function from

the policy gradients. By inspiring these features of PG methods and successes of neural

networks in automatic feature abstractions, we use DNNs to represent an optimal traffic

control policy directly in the RM control problem.

Reinforcement Learning (RL) considers the problem of computing a sequence of de-

cisions under uncertainly in unknown or complex environments, in which an agent exe-

cutes actions in a sequential manner, so as to maximize some desired performance measure

[21, 80]. Recent impressive performance of RL algorithms in the domain of computer

games [81], starting with the DQN [82] algorithm, as well as successful applications of RL

systems in multiple domains, such as robotics, traffic control, interactive education, and

health care, have brought RL to the forefront of current research.

Reinforcement Learning studies a sequential decision making problem in which an

agent acts in a stochastic environment with unknown dynamics by sequentially choosing

actions, so as to maximize a desired performance measure. In Reinforcement Learning, the

interactive environment is modeled as a Markov Decision Process (MDP). An MDP is a

tuple M=(S ,A , p0,P,r,γ), where S is the state space and A is the action space, which

may each be discrete or continuous; p0 is the initial state distribution; P : S ×A → ∆(S )

is the transition kernel , which is in general unknown, where ∆(S ) denotes the space of

probability distributions on S ; r : S ×A →R is the reward function, defining a task; and

γ ∈ [0,1) is a discounting factor.
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In such environment, the behavior of an RL-agent is characterized by its policy. A

(randomized) policy π(·|s) is a probability distribution over action space given the state,

which prescribes the probability of taking an action a ∈A when in state s ∈S .

At each time-step t, when in state st , the RL-agent executes an action at according to

a differentiable parameterized policy (possibly a Neural Network) π(·|st ;θ) where θ ∈ Rd

is a vector of d parameters. Upon the execution of the action, the system transitions to a

successor state st+1 according to transition probability p(st+1|st ,at), unknown to the agent,

and the agent receives a reward rt := r(st ,at). In the setting of finite horizon episodic RL,

the agent aims to find a policy that maximizes some desired performance measure, J(θ),

during an episode.

A trajectory τ is a sequence of states and actions. The agents’ policy and the system

transition probabilities induce a trajectory distribution, a probability distribution over the

sequence of states and actions, i.e. the space of all possible trajectories T . The probability

distribution induced over the space of trajectories by following the policy parameterized by

θ is denoted by ρθ (τ) and is given by

ρθ (τ) = p0

|τ|−1

∏
t=0

π(at |st ;θ)p(st+1|st ,at) (5.6)

Policy gradient Reinforcement Learning (RL) algorithms are among the most well-

studied [83–85]. The desired performance measure is a long-run expectation, such as the

undiscounted cumulative reward, and is optimized with respect to parameterized policies

using stochastic gradient descent/ascent. The standard REINFORCE algorithm [86] is a
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prime example of a policy gradient algorithm that seeks a stochastic policy π(a|s;θ), a

distribution over action space A given the system state s ∈ S , so as to maximize the

expected cumulative (discounted) reward, i.e.

max
θ

J(θ) := Eτ∼ρθ
[R(τ)] (5.7)

where R(τ) = ∑
|τ|−1
t=0 γ tr(st ,at) is the trajectory’s total reward; expectation is taken over

space of trajectories T generated by following the policy, i.e. s0 ∼ p0, at ∼ π(·|st ;θ) and

st+1 ∼ p(·|st ,at). Thus, the optimal policy parameter can be obtained iteratively by using

gradient ascent as follows

θt+1 = θt +α∇̂J(θt) (5.8)

where α∈R is a constant step-size, i.e., learning rate, and ∇̂J(θt)∈Rd denotes an unbiased

stochastic estimate of the gradient of the system’s performance measure with respect to the

policy parameter θ .

The gradient of the (risk-neutral) objective of (5.7) with respect to the policy parameters

is given by Policy Gradient theorem [83]

∇J(θ) ∝ Eτ∼ρθ

[
R(τ)

|τ|−1

∑
t=0

∇ logπθ (at |st ;θ)
]

(5.9)

The Monte Carlo estimation of the expectation in Eq. (5.9) suffers from high vari-

ance. To reduce variance, by taking advantage of the temporal structure of the problem and

causality, it can be shown that the gradient could be re-written in terms of reward-to-go
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Rt := ∑
|τ|−1
t ′=t γ t ′−tr(st ′,at ′) as follows:

∇J(θ) ∝ Eτ∼ρθ

[ |τ|−1

∑
t=0

Rt∇ logπθ (at |st ;θ)
]

(5.10)

Using Eq. (5.10), the update rule in standard REINFORCE algorithm is obtained, i.e.,

θk+1 = θk +αRt
∇π(at |st ;θ)

π(at |st ;θ)
(5.11)

Note that the Monte Carlo estimate of expectation in Eq. (5.10) has a lower variance

than that of the expectation in Eq. (5.9). However, Monte Carlo estimates of both ex-

pectations in Equations (5.9) and (5.10) typically have high variance and hinder learning,

especially in complex environments. A well-studied variance reduction technique to reduce

the variance associated with the gradient estimations of (5.9) and (5.10) is the subtraction

of an appropriately chosen baseline, reducing the variance without introducing bias. To

that end, the policy gradient theorem can be generalized to include a baseline as follows

[80]:

∇J(θ) ∝ Eτ∼ρθ

[ |τ|−1

∑
t=0

(
Rt−b(st)

)
∇ logπθ (at |st ;θ)

]
(5.12)

where b(st) is a state-dependent (action-independent) function. While an optimal state-

dependent baseline exist it is hard to find [87]. One particularly common and popular

baseline is an estimate of the value function defined as

v(st) := Eτ∼ρθ
[Rt |st ]

The effect of action-dependent baselines over state-dependent baselines is subject to

much debate [88], so we don’t consider action-dependent baselines here. The basic REIN-
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FORCE algorithm is depicted in Alg. 1.

Algorithm 1 REINFORCE algorithm
1: Input: a differentiable policy parametrization π(a|s;θ).
2: Algorithm parameters: step-size α>0, and discount factor γ>0.
3: Initialization: Initialize policy parameters θ ∈ R (e.g. to 0).
4: while True do
5: Generate an episode following the policy π(·|·;θ), i.e., s0∼p0, at∼π(·|st ;θ) and

st+1∼p(·|st ,at), generating a sequence of state-actions s0,a0,. . . ,s|τ|−1,a|τ|−1
6: for t = 0 to |τ|−1 do
7: R← ∑

|τ|−1
t ′=t γ t ′−trt

8: θ ← θ +αγ tR∇ logπ(at |st ;θ)
9: end for

10: end while

5.4 Ramp-Metering with Policy-Gradient Reinforcement Learning

Using the multi-agent system formulation introduced in Section 5.2, we are in place

to use standard reinforcement learning approaches (see Section 5.3) to solve the optimal

control problem of ramp-metering in arbitrary complex road sections.

In this case, the MDP M = (S ,A , p0,P,r,γ) is defined such that

• the state space S ∈ RN
+ is the domain of all possible density values, i.e., s :=

[ρ1, . . . ,ρN ];

• the action space A ∈ RN
+ is the domain of all possible out-going flows, i.e., a :=

[r1, . . . ,rN ];

• p0 is the initial state distribution;

• P : S ×A → ∆(S ) is the transition kernel which is assumed unknown for the RL

algorithm;
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• γ ∈ [0,1) is a discounting factor; and

• r : S ×A → R is the reward function which is defined as

r(s,a) :=−J(s,a) =−(V +α1J1(s,a)+α2J2(s,a)) (5.13)

where J1(s,a) = T ∑
N
i=1 siLiλi is the travel time cost to be minimized, and J2(s,a) =

T ∑
N
i=1 aiLi is the travel distance objective to be maximized. The constant cost V < 0

is designed to provide a positive reward for every time step that the constraints in

eq. (5.4) are not violated. This drives the system towards normal and safe operation,

while the terms J1 and J2 drive the system towards optimal operation.

An episode of the RL algorithm starts with random initial conditions, i.e., initial policy

π(a|s;θ) with random vector θ . The episode stops after a predefined number of time steps

|τ|, or if any of the constraints in eq. (5.4) are violated. While the episode is running, the

RL algorithm collects the rewards rt . When the episode is terminated, the average objective

function Eτ∼ρθ
[∑
|τ|−1
t=0 γ tr(st ,at)] is being approximated through Monte-Carlo simulation,

and the gradient ascent update of the REINFORCE algorithm follows.

Experimental results are shown in Section 5.5.

5.5 Simulation and Numerical Results

In this section we illustrate the policy learned by the REINFORCE algorithm described

in Section 5.4. In Fig. 5.5 and 5.7, we present snapshots of the evolution of the network of

Fig. 5.4 under the policy learned by the REINFORCE algorithm. We compare the policies
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learned using the the proposed CTM-PWA7 model to a baseline ramp-metering method and

a REINFORCE policy learned using the standard non-linear CTM dynamics. The objective

functions to be minimized are as defined in Section 5.4. For this task, we use a learning

rate of α = 0.001 and a discount factor of γ = 0.99. The action space A ∈ [0,φ max
i ]N is

discretized using bins of width Wa = 1.0. We use the ‘Adam’ optimization method with step

sizes that evolve according to the stochastic approximation theory using α(n+1) = 1
1+αmn ,

where αm = 0.99. We train the agent for ne = 1000 episodes, and run an additional testing

run to evaluate the performance of the learned policy.

In both Fig. 5.5 and 5.7, we observe that the flows and densities of the network con-

verge, and the output flow matches the total input flow. This is further illustrated in Fig.

5.6 and 5.8. This shows that reinforcement learning can be used as a method to find a

ramp-metering policy when using the multi-agent formulation of the CTM model described

above. In addition, the CTM-PWA7 model results in a policy that yields similar results in

terms of safe operation and maximum throughput. We can observe that the policy learned

for the CTM-PWA7 model allows slightly higher maximum density inside the road sections

(see Fig. 5.6 and 5.8), but the convergence to that policy appears to be faster by a factor of

40% in terms of total episodes needed in the experiments conducted.
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Figure 5.5: Evolution of density and flow at time steps t ∈{0,50,100,150}, using the ramp metering
policy learned by the REINFORCE algorithm using the original non-linear model.

Figure 5.6: Evolution of the maximum density and output flow, using the ramp metering policy
learned by the REINFORCE algorithm using the original non-linear model.
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Figure 5.7: Evolution of density and flow at time steps t ∈{0,50,100,150}, using the ramp metering
policy learned by the REINFORCE algorithm using the CTM-PWA7 model.

Figure 5.8: Evolution of the maximum density and output flow, using the ramp metering policy
learned by the REINFORCE algorithm using the CTM-PWA7 model.

To understand what a naive ramp metering policy would look like without the formu-

lation described here and the use of reinforcement learning approaches, we present in Fig.
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5.7 and 5.10 a constant ramp metering algorithm which results from a predefined red-green

light cycle that provides on average a flow of ( fc1, fc1) = (6,2)veh/km. Observe the accu-

mulation of vehicles on the on-ramps and the monotonic increase of the maximum density

of the network in Fig. 5.10. This is a result of the output flow not being able to match the

input flow for the entire simulation time.

Figure 5.9: Evolution of density and flow at timesteps t ∈ {0,50,100,150}, using a constant ramp
metering policy.
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Figure 5.10: Evolution of the maximum density and output flow, using a constant ramp metering
policy.

Finally, comparing the results of the Reinforcement Learning method with those of

the optimization approach of chapters 3 and 4, it is important to keep in mind that the

constraints of eq. (5.4) are not directly applied to the RL algorithm. Rather, the reward

function is used to incorporate these constraints. This may result in the algorithm not being

able to learn a policy that satisfies the constraints, or, on the other hand, a policy that does

satisfy the constraints but does not take into account the optimality from the J1 and J2

objective functions. In other words, quite a few experimentation is necessary for the RL

algorithms to converge to an acceptable solution, i.e., for the parameters above to be found

through experimentation. This is in contrast to the model-based approach developed in

Chapters 3 and 4.

Finally, we should make a comment on the complexity of the algorithm. A minimum

of ne = 1000 training episodes are required for the RL policy to converge. While the RL

algorithm does not need a known model for the system, the PWA approach of chapters 3 and

4 serve as a better candidate for the trade-off between accuracy and complexity, since the
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PWA approximation greatly reduces the computation time of the exhaustive optimization

algorithm. We believe this to be an example of how prior information from the field can

enhance the existing algorithms when handled in an appropriate way, instead of ignoring

this information and only relying in non-robust generic algorithms that require high volume

of parameter tuning.

5.6 Conclusion

In this chapter, a Reinforcement Learning (RL) algorithm was offered to solve the opti-

mal control problem of ramp metering (RM). In the case of RM, the RL approach enables

the agents to obtain optimal strategy in an unfamiliar environment without prior knowledge

on traffic flow, reducing the need for human knowledge. To reach this goal, at first, the traf-

fic flow model CTM was modified as a multi-agent system of non-homogeneous networked

agents. In the following, a novel formulation of the RM problem as an optimal control

problem based on the multi-agent dynamical system was offered. Then, applying policy

gradient RL algorithm, a probabilistic policy was found that solved the ramp-metering

problem. Simulation results show that the flow and density evolution of all the links of the

network are fully compatible with the total demand of the network and it represent that the

RM agents are able to perform based on an optimal policy which was learned without any

prior knowledge on traffic flow. As such, our approaches have led to promising results.
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Chapter 6: Conclusion

In this dissertation, after a performance analysis of different first-order CTM versions in

chap. 2, a PWA extension of this model was proposed in Chap. 3 where its features enable

this model to better match the needs of traffic management studies. Next, in Chap. 4, a lin-

earized version of the second-order METANET traffic model was offered which will highly

benefit the complexity and computational requirements of solving any optimization prob-

lem based on this model. In the next phase of this study, the focus was shifted to the design

and evaluation of a learning-based framework for the RM strategy and a learning-based

ramp metering algorithm was introduced in Chap. 5. The performance of this algorithm

was evaluated from different points of view and it was shown that the RL approach enables

the agents to obtain optimal strategy in an unfamiliar environment without prior knowledge

on traffic flow, reducing the need for human knowledge.

6.1 Future Work

• For the class of PWA-CTMs and PWA-METANET offered in Chapters 3 and 4, the

FD used was based on the benchmark parameters of this diagram widely used in the

literature. This could be extended by deriving the parameters of the FD from the

synthetic data generated in Chap. 4. Also, instead of assuming that all links follow
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the same FD parameters, in other words, assuming to have homogeneous links, a

unique FD can be extracted and utilized for each link. This will extend the traffic

flow models offered in these two chapters to be compatible with real-world highway

networks with non-homogeneous links.

• The models offered in chapters 3 and 4 can be simply extended to multi-lane multi-

class models more suitable for real-world simulations. The term multi-class refers to

the capability of the traffic flow model to represent the dynamics of different types

of vehicles.

• For all the optimization problems in this dissertation, the RM variables of the op-

timization problems are considered as continuous variables. For real-world ramp

metering control, the RM variables are the number of vehicles per hour entering the

mainline from an on-ramp and they should be integer values. For all the simulation

results, a future work would be to define an additional optimization problem which

gets the continuous variables and finds their corresponding integer values by mini-

mizing the error between the the continuous and integer values.

• PWA-CTM is a first-order model while the PWA-METANET model is a second-

order model. A general comparison between the performance of the PWA-CTM and

PWA-METANET could be done to investigate the advantages and disadvantages of

each class.

• The main benefits of the PWA-METANET model is in having an extra dynamical
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equation of the model (mean velocity equation). As such, for better evaluation of the

proposed PWA model, it would be best to investigate its performance for Variable

Speed Limit (VSL) control techniques rather than for RM control.

• The PWA-CTMs and PWA-METANET offered in Chapters 3 and 4 could be used in

model predictive control or event-triggered control schemes and their performance

could be compared with the original nonlinear CTM and METANET models in these

receding horizon fashions as well.

• To solve the nonlinear programming problems of Chap. 4 other non-open source

solvers could be tried and the computation time and iteration numbers could be com-

pared with that of the fmincon solver.

• The performance of the policy gradient reinforcement algorithm offered in Chap. 5

could be compared with that of other RM algorithms like PI-ALINEA or other RL

algorithm like deep Q-Learning and PPO to better evaluate the performance of the

proposed method.

• We would like to investigate the effect of risk-sensitivity in the optimal solution, by

applying new risk-sensitive policy-gradient reinforcement learning algorithms based

on exponential criteria.
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