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Animals are remarkable at navigation, even in extreme situations. Through motion perception,

animals compute their own movements (egomotion) and find other objects (prey, predator,

obstacles) and their motions in the environment. Analogous to animals, artificial systems such

as robots also need to know where they are relative to structure and segment obstacles to avoid

collisions. Even though substantial progress has been made in the development of artificial visual

systems, they still struggle to achieve robust and generalizable solutions. To this end, I propose a

bio-inspired framework that narrows the gap between natural and artificial systems.

The standard approaches in robot motion perception seek to reconstruct a three-dimensional

model of the scene and then use this model to estimate egomotion and object segmentation.

However, the scene reconstruction process is data-heavy and computationally expensive and fails

to deal with high-speed and dynamic scenarios. On the contrary, biological visual systems excel in

the aforementioned difficult situation by extracting only minimal information sufficient for motion



perception tasks. I derive minimalist/purposive ideas from biological processes throughout this

thesis and develop mathematical solutions for robot motion perception problems.

In this thesis, I develop a full range of solutions that utilize bio-inspired motion representation

and learning approaches for motion perception tasks. Particularly, I focus on egomotion estimation

and motion segmentation tasks. I have four main contributions: 1. First, I introduce NFlowNet,

a neural network to estimate normal flow (bio-inspired motion filters). Normal flow estimation

presents a new avenue for solving egomotion in a robust and qualitative framework. 2. Utilizing

normal flow, I propose the DiffPoseNet framework to estimate egomotion by formulating the

qualitative constraint in a differentiable optimization layer, which allows for end-to-end learning.

3. Further, utilizing a neuromorphic event camera, a retina-inspired vision sensor, I develop

0-MMS, a model-based optimization approach that employs event spikes to segment the scene

into multiple moving parts in high-speed dynamic lighting scenarios. 4. To improve the precision

of event-based motion perception across time, I develop SpikeMS, a novel bio-inspired learning

approach that fully capitalizes on the rich temporal information in event spikes.
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Chapter 1: Introduction

The advent of automation has pushed for the coexistence of humans and artificial systems

such as Robots and Self-driving cars. Robots utilize a plethora of sensors for navigating safely

and with agility. Among various sensor modalities, vision is the most important cue for encoding

navigation information necessary for sensory-motor control or scene understanding. Therefore, a

significant amount of attention in AI and Robotics has been devoted to building robust artificial

visual navigation systems. Many solid mathematical frameworks and practical solutions have

developed [11]; however, they still struggle to perform in everyday environments and adverse

weather conditions. One approach to improve perception capabilities is to mimic biology, as

animals can navigate complex environments even at extreme speeds. Perhaps bio-inspired

computer vision could unlock the full potential of these autonomous systems. This thesis proposes

bio-inspired solutions to motion perception problems under challenging environments, namely

high speed, changing lighting conditions, and unseen/novel environments.

From primitive insects to advanced humans, one can observe that animals are excellent

at solving motion perception problems, such as localization and obstacle avoidance, that are

imperative for survival. Even miniature beings, such as bees (Fig. 1.1), are able to forage for

food and dodge predators with minimal resources [12]. The bulk of evidence [13] suggests that

biological beings follow the purposive or functional approach [14] by utilizing only minimal
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Figure 1.1: The motion perception in the nature. The images the depicts an example
for, Left: localization or egomotion, Right: obstacle avoidance. For original video see
https://www.youtube.com/c/FrederickDunnPhoto

information required for the perceptual task at hand. In this thesis, I derive inspiration from

biology and inculcate the minimalist philosophy right from data acquisition until motion inference.

1.1 The Chicken or the Egg dilemma: Egomotion and IMO Segmentation

At the core of visual navigation is Structure from Motion (SfM), i.e. the computations for

estimating the image motion, egomotion/3D camera motion, and scene structure. The motto of

these approaches is to recover the scene properties through reconstruction via multiple images.

Earlier algorithms [15–17] developed “scene independent” constraints (e.g. the epipolar constraint

[18] or depth positivity constraint [19]) to obtain egomotion, which subsequently is used in scene

reconstruction [20]. More recently, the SLAM framework has been adopted [21], where depth, 3D

motion, and image measurements are estimated together using probabilistic algorithms. These

methods, however, are computationally very heavy. Furthermore, classic SfM and SLAM struggle

to deal with the uncertainty posed by highly dynamic scenarios, where both camera and objects

are independently moving.

A significant problem still unsolved in dynamic scenarios is Independent Moving Object

2

https://www.youtube.com/c/FrederickDunnPhoto


(IMO) segmentation. IMO segmentation is an important step in obstacle avoidance (throughout

this thesis, motion segmentation and IMO segmentation are used interchangeably). In order to do

IMO segmentation, we need to enforce constraints on the image motion, which in turn depends on

the egomotion. In the case of the stationary camera, the motion field on the image is only caused

by moving objects. Still, in the case of a moving camera, the motion field is generated by the

combined effect of camera motion, structure, and the independent motion of objects. Isolating the

contribution of each of these three factors is needed to solve for independent motion completely.

Thus, space-time geometry has to be considered early in the problem to solve them together.

Along with the IMO segmentation problem, standard approaches also have difficulty in handling

challenging scenarios such as high-speed, low-light, and novel environments.

1.2 Minimalist Philosophy: Purposive Vision

The problem of IMO segmentation has traditionally been thought of in a reconstructionist

approach. This approach aims to first reconstruct a three-dimensional geometric description of

the world from one or more images and quantitatively recover the properties of the objects in the

scene that are relevant to the given task. For example, the IMO segmentation task is addressed as

a byproduct of solving the SfM task. This approach leads to extracting redundant information that

may not be absolutely required for the completion of a task. On the other hand, the evolution of

biological beings has led to the development of dedicated visual modules to extract/process only

required information. Light-sensitive cells in the retina come in two main types: rods (receptive to

low light) and cones (sensitive to color and bright light). Because of rods’ and cones’ different

functions, some nocturnal animals (such as lab mice) tend to have retinas rich in rods. On the other
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hand, diurnal animals like the tree squirrel and tree shrew have higher levels of cone receptors [22].

These purposive functionalities in the biological beings probably gave rise to superior visual

capabilities.

Similar to biological beings, it turns out that we can achieve many highly nontrivial visual

tasks in navigation with limited resources. This fresh perspective of minimalist philosophy is

termed Purposive Vision [23]. Inspired by the purposive vision, I developed bio-inspired motion

representation and learning capabilities to solve egomotion and IMO segmentation problems.

1.3 Bio-inspired Motion Representation

1.3.1 Normal Flow

When a robot is in continuous motion, its visual system extracts low-level representation

from moving images, and the representation is termed as optical flow field [24,25]. In practice,

it is challenging to extract the optical flow field since it depends on the 3D motion (translation

and radial directions of a camera) and the structure of the scene in view. However, normal flow,

the component perpendicular to the edges, is the only component of the optical flow that is well

defined on the basis of local information [26] (Fig. 1.2). This is the well-known aperture problem

(Fig. 1.3). Most reconstructionist approaches estimate the optical flow early in the process.

However, many theoretical and empirical findings suggest that initial local motion measurements

in biological beings are far away from an optical flow representation [27, 28].

Experiments conducted on primates suggested that there exist neural pathways dedicated

to processing dynamic visual motion information in the so-called “where” pathway or dorsal

stream [29]. The dorsal visual stream begins in the striate/primary visual cortex (V1), extends
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Figure 1.2: The comparison of normal flow vs. optical flow fields. Left: A drone with a
down-facing camera is landing vertically on a carpet. Right: Red arrows indicate normal flow,
and blue arrows indicate optical flow. The normal flow is the projection of optical flow on the
component perpendicular to the edges.

through several extrastriate areas (areas V3, V3A, middle temporal area MT/V5, medial superior

temporal area MST), and terminates in higher areas of the parietal and temporal lobes [30]. MT/V5

and MST are classically considered the key motion regions of the dorsal visual stream, being

strongly responsive to visual stimuli in motion and showing selectivity for the direction. A recent

neuro-imaging study [31] demonstrates that translation and radial direction of optic flow stimuli are

signaled independently by neural activity in areas V5/MT and V3A, respectively. This dissociation

reveals the existence of separate processing pathways to analyze different attributes of optic flow.

It supports that optical flow is estimated in later stages of motion processing rather than early.

Following the inspiration from neural pathways, a better computational approach [32,33] has

been developed. Early on in the pipeline, we compute a rough estimate of image motion (normal

flow), then we can compute the egomotion and estimate a more accurate optical flow, structure,

and IMO segmentation. Despite the advantages of the normal flow formulation, the computational

methods to estimate normal flow have not been robust enough to allow deployment in the wild.
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Figure 1.3: The illustration of aperture problem using Barbers’ Pole. Line feature observed
through a small aperture. It is not possible to determine exactly where each point has moved to.
However, normal flow (yellow arrow), the optical flow (red arrow) component perpendicular to
the line feature can be computed.

The recent approach [34] in this computational paradigm are limited to simple scenarios. In this

thesis, I present a scalable and robust approach for normal flow estimation [35] to aid egomotion

estimation in more generic and challenging driving/flying scenarios.

1.3.2 Neuromorphic Event Sensors

Traditionally, cameras acquire visual information through images. The image generation

process is used initially only for the purposes of visualization. However, there is no necessity for a

robot to acquire a complete image and extract motion cues necessary for navigation afterward. This
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Figure 1.4: Three-layer model of a human retina and corresponding event sensor pixel circuitry [4]

sequential acquiring and processing of visual data is inefficient and is a bottleneck for high-speed

navigation tasks.

On the contrary, biological visual systems are more efficient in image acquisition. The retina

of humans is a multilayered neural network lining the back hemisphere of the eyeball, where the

acquisition and the first stage of processing of the visual information happens. The retina converts

spatio-temporal information contained in the incident light from the visual scene into spike trains

and patterns, output and conveyed to the visual cortex by retinal ganglion cells, whose axons

form the fibers of the optic nerve [4]. In summary, retinal layers can be grouped into four main

processing stages: photoreception; transmission to bipolar cells; transmission to ganglion cells;

and transmission along the optic nerve (refer Fig1.4).

Inspired by the retinal layers, a new class of sensors called Event sensors [36, 37] have

been developed (Fig. 1.4). The event camera does not record image frames, but instead - the

changes of lighting occurring independently at every pixel. Each of these changes is transmitted
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asynchronously and is called an Event, also referred to as Spike. In most cases, brightness changes

occur due to the underlying motion of the sensor or the objects in the scene. Hence, due to this

unique property, event sensors are suitable for motion perception tasks. The neuromorphic design

of event sensors allows the sensor to accommodate a large dynamic range of lighting conditions

and provides high temporal resolution and low latency, which are imperative for real-time robot

applications.

In recent years, event sensors have attracted a lot of attention from academia and industry.

Event sensors are used for object tracking [38, 39], surveillance and monitoring [40], and

object/gesture recognition [41, 42], depth estimation [43, 44], optical flow estimation [45, 46],

and Simultaneous Localization and Mapping (SLAM) [47–49]. In this thesis, the contributed

approaches [50, 51] capitalize on the unique properties of event cameras in the development of

low-latency, low-power motion perception solutions.

1.4 Bio-inspired Learning

1.4.1 Learning from Geometry

Recent progress in deep neural networks can overcome the limitations of classical approaches

through end-to-end learning from data. Many such learning-based egomotion and IMO segmentation

methods [52, 53] have been proposed. Out of multiple learning paradigms, supervised approaches

are more popular and have shown promising results on publicly available datasets. However, the

major drawback is getting labels for the training data. The label annotation process is laborious

and time-consuming. Another disadvantage of a supervised model is that it overtrains on the scene
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properties and struggles to generalize to novel/unseen scenarios.

On the other hand, humans and animals develop a rich, structural understanding of the

world through the past visual experience without continuous label information. This inspires us

to seek an answer to a question: is it possible to train a deep neural network in a self-supervised

fashion without annotated labels? This is particularly possible in motion perception tasks due

to the geometrical relation between egomotion, 3D structure, and moving objects. Traditional

geometrical constraints such as epipolar [18] and cheirality [11] can be utilized to derive annotation-

less supervisory signals.

Geometry-based self-supervision approaches [54–57] have paved a new research direction.

Furthermore, recent advances in Differentiable Programming [58–60], facilitated new opportunities

to formulate geometric relations as a constrained optimization problem and embed them in an

end-to-end learning pipeline. Throughout this thesis, I showcase geometry-based self-supervised

learning approaches [35, 50, 61] for egomotion and IMO segmentation problems.

1.4.2 Spiking Neural Networks

Artificial neural networks are the de facto learning architectures for a wide range of motion

perception problems. The focus of much recent research has been improving accuracy, while other

considerations such as the energy and computational resource during the learning process have

been of secondary interest [62]. However, the problem lies in deploying large-scale models on

resource constraint robots and IoT systems for real-time performance. Over the last few years,

multi-disciplinary research efforts have been conducted in this direction. One approach is to

look deeper into neuroscience research. The biological brain is known for its excellent resource
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management and extreme energy efficiency [63].

Inspired by the brain, an alternative version of Artificial Neural Networks (ANNs) called

Spiking Neural Networks (SNNs) aims to replicate living neurons’ dynamical system aspects.

In contrast to standard ANNs which are essentially networks of complex functions, SNNs are

comprised of networks of neurons modeled as differential equations, inherently encode temporal

data, and offer low power and highly parallelizable computations similar to biological systems.

Furthermore, they can deliver predictions whose confidence incrementally changes with the

availability of input data. These networks are intrinsically suitable for directly processing

asynchronous irregular data from event-based cameras without pre-processing events.

There has been a renewed interest in using SNNs to process data directly from event-based

visual sensors since the sensor produces spike-like activity that fits well with SNN neurons.

Applications of SNNs in this domain include classification problems [64] such as digit recognition

[65], object recognition [41], gesture recognition [66], and optical flow [67,68]. Recent development

of neuromorphic processors such as the Intel Loihi [69] has led to the deployment of SNNs

on hardware [67, 70, 71]. Utilizing SNNs, I propose an energy-efficient IMO segmentation

approach [51] for event sensor data.

1.5 Research Objectives

To overcome the limitations of traditional motion perception techniques in challenging and

resource constrained scenarios, I propose a suite of minimalist bio-inspired solutions. Throughout

my doctoral research, I focus on the problem of egomotion estimation and IMO segmentation.

Each of my works has a philosophical ideology of purposive vision with a practical application of
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immediate impact. I have four research objectives:

• Robust and fast extraction of low-level motion representation (normal flow) in real-world

scenarios.

• Motion analysis with neuromorphic event sensors in high-speed and variable lighting

conditions.

• Induce geometrical knowledge in the learning mechanism to improve robustness and cross-

scenario generalization.

• Implement motion perception approaches in energy-efficient learning frameworks.
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1.6 Contributions

This thesis considers the full scope of objectives discussed above and contributes the

following algorithms

• NFlowNet to estimate normal flow in a deep learning framework. This estimated robust

normal flow is useful for applications requiring computationally efficient solutions for

navigation tasks in computer vision and robotics (refer to Chapter 2).

• DiffPoseNet for estimation of pose from normal flow and qualitative constraint (cheirality or

depth positivity). The qualitative constraints are formulating as a differentiable layer, which

allows for end-to-end learning in a self-supervised fashion (refer to Chapter 2).

• 0-MMS for monocular IMO segmentation using event sensors, combining bottom-up deep

feature tracking and top-down motion compensation into a unified pipeline (refer to Chapter

3).

• SpikeMS demonstrate an encoder-decoder spiking neural network architecture for the

problem of IMO segmentation using the event sensors camera as input (refer to Chapter 4).

Next, I briefly introduce each chapter with its key contributions and experimental results.

1.6.1 Chapter 2

Brief Description: Based on [35], we propose DiffPoseNet (Fig. 1.5), a novel direct

approach for ego-motion estimation in an end-to-end differentiable learning framework. Current

deep neural network approaches for camera pose estimation rely on scene structure for 3D motion
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estimation, but this decreases the robustness and thereby makes cross-dataset generalization

difficult. In contrast, classical approaches to structure from motion estimate 3D motion utilizing

optical flow and then compute depth. Their accuracy, however, depends strongly on the quality

of the optical flow. To avoid this issue, direct methods have been proposed, which separate 3D

motion from depth estimation, but compute 3D motion using only image gradients in the form of

normal flow. In this chapter, we introduce a network NFlowNet, for normal flow estimation which

is used to enforce robust and direct constraints. In particular, normal flow is used to estimate

relative camera pose (egomotion) based on the cheirality (depth positivity) constraint. We achieve

this by formulating the optimization problem as a differentiable cheirality layer, which allows for

end-to-end learning of camera pose. We perform extensive qualitative and quantitative evaluation

of the proposed DiffPoseNet’s sensitivity to noise and its generalization across datasets. We

compare our approach to existing state-of-the-art methods on KITTI, TartanAir, and TUM-RGBD

datasets.

1.6.2 Chapter 3

Brief Description: This chapter is based on [50]. We present 0-MMS (Fig. 1.6) framework

for IMO Segmentation in challenging and novel scenarios using event sensors. Without prior

knowledge of the object structure and motion, the IMO segmentation problem is very challenging

due to the plethora of motion parameters to be estimated while being agnostic to motion blur

and occlusions. Event sensors, because of their high temporal resolution, and lack of motion

blur, seem well suited for addressing this problem. We propose a solution to multi-object motion

segmentation using a combination of classical optimization methods along with deep learning
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Figure 1.5: DiffPoseNet: Egomotion estimation with normal flow and learning from geometry
paradigm.

Figure 1.6: 0-MMS: IMO Segmentation with a monocular event camera on an EV-IMO dataset
sequence.
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and does not require prior knowledge of the 3D motion and the number and structure of objects.

Using the events within a time-interval, the method estimates and compensates for the global rigid

motion. Then it segments the scene into multiple motions by iteratively fitting and merging models

using as input tracked feature regions via alignment based on temporal gradients and contrast

measures. The approach was successfully evaluated on both challenging real-world and synthetic

scenarios from the EV-IMO, EED and MOD datasets.

1.6.3 Chapter 4

time time

Figure 1.7: SpikeMS: Event-based motion segmentation pipeline using a deep spiking neural
network.

Brief Description: In this chapter, we present the Spiking Neural Networks (SNN) for the

IMO segmentation problem utilizing event sensor data as input. This chapter is based on [51]

work. SNNs are called so-called third generation of neural networks which attempt to more

closely match the functioning of the biological brain. They inherently encode temporal data,

allowing for training with less energy usage and can be extremely energy efficient when coded

on neuromorphic hardware. In addition, they are well suited for tasks involving event-based
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sensors, which match the event-based nature of the SNN. However, SNNs have not been as

effectively applied to real-world, large-scale tasks as standard Artificial Neural Networks (ANNs)

due to the algorithmic and training complexity. To exacerbate the situation further, the input

representation is unconventional and requires careful analysis and deep understanding. We propose

SpikeMS (Fig. 1.7), the first deep encoder-decoder SNN architecture for the real-world large-scale

problem of motion segmentation using the event-based DVS camera as input. To accomplish

this, we introduce a novel spatio-temporal loss formulation that includes both spike counts and

classification labels in conjunction with the use of new techniques for SNN backpropagation. In

addition, we show that SpikeMS is capable of incremental predictions, or predictions from smaller

amounts of test data than it is trained on. This is invaluable for providing outputs even with partial

input data for low-latency applications and those requiring fast predictions. We evaluated SpikeMS

on challenging synthetic and real-world sequences from EV-IMO, EED and MOD datasets and

achieving results on a par with a comparable ANN method, but using potentially 50 times less

power.

1.6.4 Chapter 5

Finally, in this chapter, I summarize the key contributions of my work and discuss its scope.

I also provide a few potential future directions to address these problems.
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Chapter 2: DiffPoseNet: Direct Differentiable Camera Pose Estimation

In this chapter, utilizing bio-inspired motion representation and learning paradigm, we

propose a novel direct approach for ego-motion estimation. We introduce a network NFlowNet,

for normal flow estimation which is used to enforce robust and direct constraints. Further, we

discuss DiffPoseNet, a differentiable framework to estimate relative camera pose based on the

normal flow and cheirality (depth positivity) constraint.

2.1 Introduction

The ability to localize is imperative for applications in mobile robotics, and solutions

based on vision are often the preferred choice because of size, weight, power constraints and the

availability of robust localization methods. Many mathematical frameworks and deep learning

approaches have been developed for the problem of visual localization [21, 72] under the umbrella

of Visual Odometry (VO) or Simultaneous Localization and Mapping (SLAM). However, their

performance is subpar for commonly encountered challenging conditions in-the-wild that involve

changing lighting, scenes with textureless regions, and dynamic objects.

Classical approaches [73–76] for localization rely either on sparse feature correspondences

between images or on the computation of dense motion fields (optical flow). One of the difficulties

in optical flow estimation is bias due to noise [8, 77]. For example, if in a patch there are more
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gradients in one direction than another, their estimated optical flow will be biased towards the

dominant direction. Even though over the past decade many learning-based approaches have

proposed to improve optical flow estimation, this behavior still persists in optical flow approaches.

This is demonstrated in Fig. 2.1 and Fig. 2.2, which shows the errors produced by the normal

flow algorithm presented in this chapter in comparison to three optical flow algorithms from the

literature. As can be seen, all flow algorithms have large errors in regions of non-uniform gradient

distributions.

To this end, the pioneers of the field remarked on the observation that the projection of

optical flow on the image gradient direction is resilient to the bias and can be computed robustly.

This projection is called the normal flow. Over the past few decades, a number of methods have

been proposed that use the spatial gradient directly for 3D motion recovery. These methods are

commonly called direct methods. In principle, such methods are robust and computationally

cheaper than flow-based feature based approaches as they use the image brightness directly.

However, despite the advantages of the normal flow formulation, the computational methods to

estimate normal flow have not been robust enough to allow deployment in the wild. Thus, optical

flow has been the go-to representation for ego-motion estimation, supported in recent years by

the high accuracy and speed of deep learning algorithms [78–80]. To improve the robustness of

camera pose estimation (ego-motion), we propose the first normal flow network NFlowNet.

Further, to estimate pose independent of scene structure from normal flow, direct approaches

utilize minimal constraints. When optical flow or correspondence are available, pose is estimated

using the depth-independent epipolar constraint. However different from these 2D measurements,

normal flow is 1D and thus depth cannot be eliminated from the equations relating it to scene

geometry and 3D motion. Not making assumptions about the scene structure, the only constraint
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Figure 2.1: Top Row: Projected Endpoint Error (PEE) map of NFlowNet compared to three
different optical flow approaches (SelFlow [5], LiteFlowNet [6], and PWC-Net [7]). Bottom Row:
enlarged endpoint error map of the region highlighted in red in the top row. The optical flow is
due to the camera undergoing translation parallel to the wall. It has large errors in regions of
non-uniform gradient directions. Notably, on the bricks of rectangular shape, there are many more
(vertical) gradients due to the horizontal edges than (horizontal) gradients due to vertical edges,
and this causes erroneous flow estimation. Similarly, on the edges of the niches, where there is
only one gradient direction, there is error.

Figure 2.2: Projected Endpoint Error (PEE) map on Ouchi Illusion [8]. In the illusion, the central
disk seems to float above the checkered background when moving the eyes around while viewing
the figure. For this experiment, we simulated the eye motion by randomly warping the illusion
image.

that can be imposed on the scene, is the depth positivity [81] or cheirality constraint [82]. Cheirality

states that the scene has to be in front of the camera for it to be imaged, and thus the depth has

to be positive. This constraint when enforced on normal flow can be utilized to estimate camera

pose without making assumptions on scene depth or shape. Since the cheirality condition is
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an inequality constraint and hence is not differentiable, until recently it was not possible to

employ it in a deep learning pipeline. To this end, we utilize the differentiable programming

paradigm [58] implemented with the implicit differentiation [59] framework to reformulate the

cheirality optimization into a differentiable layer and hence train our pose network in an end-to-end

fashion.

In this work, we design a novel normal flow network NFlowNet and couple it with a

differentiable cheirality layer for robust pose estimation. Our contributions (in the order for ease

of understanding) can be summarized as follows:

• We introduce a network NFlowNet to estimate normal flow. This estimated robust normal

flow, beyond this chapter, is useful for applications requiring computationally efficient

solutions for navigation tasks in computer vision and robotics.

• We formulate the estimation of pose from normal flow using the cheirality (or depth

positivity) constraint as a differentiable optimization layer.

• Extensive qualitative and quantitative experimental results highlighting the robustness and

cross-dataset generalizability of our approach without any fine-tuning and/or re-training.
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2.2 Related Work

2.2.1 Normal Flow and Camera Pose

Several works have developed direct methods that use normal flow for pose estimation.

The idea is that normal flow can be interpreted as “the projection of optical flow on the gradient

direction.” Thus, given a normal flow vector, the optical flow is constrained to a half-plane [83]. If

the 3D motion is only due to translation, this constrains the focus of expansion, i.e., the intersection

of the translation axis with the image plane [81] to a half plane. Based on this concept, [84]

proposed different algorithms to solve for the case of translation only, and [85] analyzed the

method’s stability in the presence of small rotations. Modeling the scene as piece-wise planar, [86]

solved for 3D motion and calibration [87], and [88] added constraints for combining multiple flow

fields. Not making depth assumptions, [19] developed constraints on the sign of normal flow, which

geometrically separate the rotational and translational flow components and can be implemented as

pattern matching. Others proposed techniques for separating 3D motion components by searching

for lines in the image, where certain 3D motion components cancel out [89, 90]. Recently [34]

modeled the cheirality constraint by approximating it with a smooth function, which allowed the

use of modern optimization techniques. The method first solves for 3D motion from normal flow,

and then refines using a regularization defined on depth. Experimental results demonstrate that the

proposed pipeline outperforms other flow based approaches. Inspired by these findings, we follow

a similar pipeline, but we develop the constraints within a neural network approach.
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2.2.2 Learning-based Camera Pose Estimation

Early studies of learning-based camera pose (VO) models [91] [92] [93] were mainly focused

on supervised learning approaches modelled as either absolute pose/relative pose regression

problems. However, these methods require real-world ground truth poses which is often difficult

to obtain. In order to alleviate the need of ground truth data, self-supervised VO was proposed.

SfMLearner [94] learns depth and pose simultaneously by minimizing photometric loss between

warped and input image. [95] and [96] extend this idea to joint estimation of pose, depth and

optical flow. Learning-based models suffer from generalization issues when tested on images from

a new environment. Most of the VO models are trained and tested on the same dataset. Most

recently, TartanVO [97] addresses generalization issues by incorporating the camera intrinsics

directly into the model and training with a large amount of data. Recent advances in differentiable

optimization layers ( or differentiable programming) [58, 59] has enabled a new generation of

generalizable pose learning approaches. [98] embeds an Epipolar geometric constraint into a

self-supervised learning framework via bi-level optimization of camera pose and optical flow.

BlindPnP [60] embeds geometric model fitting algorithms (PnP algorithm, RANSAC) into implicit

differentiation layers. All the above work focus on reconstructing the structure (either through

network or optimization) and/or optical flow correspondences for estimating camera motion. In our

work, we address robust pose estimation by depending only on structure-less cheirality constraints

and normal flow. Finally, we utilize the concepts of best of both-worlds to enable speedup using

data prior and novel data generalization from mathematical optimization.
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Figure 2.3: Overview of our proposed DiffPoseNet framework. Our network starts with a novel
normal flow estimation network NFlowNet and a first coarse pose estimate. Next, fine pose is
estimated using the proposed differentiable cheirality layer.

2.3 Overview of Proposed Approach

The network architecture is illustrated in Fig. 2.3. It consists of NFlowNet, a network for

estimating normal flow (Section 2.4), which then is used for self-adaptive camera pose estimation

(or odometry estimation) (Section 2.5). The camera pose estimation proceeds in three steps. First

we initialize the PoseNet using supervised training with successive images as input (Sec. 2.5.1).

Next, pose is estimated using differentiable optimization by embedding a cheirality constraint

defined on normal flow (Sec. 2.5.2). This way, simliar to the classic SfM approach, pose is

estimated independent of depth. In a last step, the pose in PoseNet is refined through a self-

supervised refinement loss by using the pose estimates from the cheirality constraint to minimize

the error in normal flow.
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2.4 NFlowNet for Normal Flow Prediction

The first step in motion analysis from video is to compute an image motion representation.

Most approaches either detect and track distinct features or compute gradient-based optical flow.

The latter is estimated by assuming the intensity Ix (or a function of the intensity) at a point

x =

[
x y

]T
to remain constant over a short time interval δt. This is referred to as the brightness

constancy constraint [82]:

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt) (2.1)

Here u and v refers to the image pixel motion. Approximating Eq.(2.1) with a first order

Taylor expansion, we obtain Eq.(2.2):

∂I

∂x
u+

∂I

∂y
v = −∂I

∂t
(2.2)

We call the component of the flow along the gradient direction, the normal flow. Denoting

the spatial gradients as ∇I =
(

∂I
∂x
, ∂I
∂y

)
and the flow as u =

[
u v

]T
, the normal flow vector n (a

2d vector) is defined as:

n =
(u · ∇I)

||∇I||2
∇I (2.3)

Using the brightness constancy constraint (eq. 2.1), the normal can be computed directly

from the spatial and temporal image derivatives, It, as n = −It
||∇I||2∇I . Since this constraint alone

is not sufficient to determine two-dimensional image motion, additional constraints need to be

introduced. Traditionally, variational methods combining multiple global smoothness assumptions,
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have been the dominant approach for optical flow estimation, and more recently they have been

replaced by deep learning algorithms. However, these methods tend to perform subpar on regions

with little features or repeated texture due to the strong reliance on the training dataset, and in

boundary regions due to oversmoothing, especially when the size of the flow varies significantly in

the image. Computing normal flow solely on spatio-temporal derivatives, is unreliable and prone

to errors. Hence, we propose a novel Normal flow network called NFlowNet.

We use an encoder-decoder convolutional neural network, which we train in a supervised

way. Given an image pair, normal flow describes the pixel motion parallel to the image derivatives.

To learn normal flow, we utilize the TartanAir dataset. Specifically, we utilize Eq. 2.3 to compute

ground-truth normal flow. We train theNFlowNet supervised using the l2 loss between our network

predictions ñ and ground truth n̂, i.e.,

argmin
ñ

∥n̂− ñ∥2 (2.4)

In the experimental section (Sec. 2.7), we show that NFlowNet generalizes to the real-world

and other datasets without any fine-tuning or re-training.

2.5 Self-Adaptive Pose Estimation from Normal Flow

We use a deep network to regress relative poses, that is, the 3D rigid motion of the camera

between subsequent time steps and denoted as Pt+1
t . The conversions between absolute poses and

relative poses is explained next.
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If the absolute pose at time t is given by
[
Tt Rt

]T
, where Tt ∈ R3×1 and Rt ∈ SO(3).

The relative pose between t and t+ 1 under a linear velocity assumption is denoted as
[
V Ω

]T
and is given by

V =
Tt+1 −Tt

dt
; Ω× =

logm
(
RT

t Rt+1

)
dt

(2.5)

Here, dt is the time increment between t and t+ 1, logm is the matrix logarithm operator

and Ω× converts the vector Ω into the corresponding skew symmetric matrix

Ω× =


0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 (2.6)

2.5.1 PoseNet for Initializing Pose Estimation

In the first stage, we learn coarse relative poses using a CNN+LSTM. The feature representations

learned by the CNN layers are passed to the LSTM for sequential modelling. We use a supervised

l2 loss between the ground truth (P̂ =

[
V̂ Ω̂

]T
) and predicted poses (P̃ =

[
Ṽ Ω̃

]T
). Here, V

and Ω represent the translational and rotational parts of the pose. The orientation is represented

in X − Y − Z Euler Angles. Denoting as λ a weighting parameter, we solve the following

optimization using backpropagation:

argmin
P̃

(
∥V̂ − Ṽ∥22 + λ∥Ω̂− Ω̃∥22

)
(2.7)
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2.5.2 Differentiable Cheirality Layer for Fine Pose Estimation

To enable self-supervised learning of continuous pose (given a initialization value), we

propose to utilize the cheirality constraint or depth positivity constraint, which states that all

world points have to be in front of the camera, i.e., have positive depth. This condition has been

classically used in structure from motion problems to disambiguate the physically possible camera

poses from the set of computed solutions. The main reason for utilizing the cheirality rather than

the acclaimed epipolar constaint or scene planarity constraint is due to the minimalism in the

assumptions. Since in our formulation, depth positivity is enforced using the normal flow, which

in-turn makes minimal assumptions about the scene structure, our formulation generalizes to novel

scenes with remarkable accuracy (Sec. 2.6.2.2).

Let us mathematically define the constraints. Denoting the magnitude of the normal flow (a

scalar) at pixel x as nx and the direction of the image gradient as gx (a unit vector), we have

nx = ∥n∥2 =
1

Zx

(gx · A)V + (gx ·B)Ω, (2.8)

where, V denotes the constant translational velocity and Ω the rotational velocity Ω in a

small time instant, and Zx is the depth of the point under consideration. Intuitively, V,Ω warp the

flow field and Zx scales the flow field, and the matrices A and B determine how the motion flow

field is projected onto the image plane due to translational and rotational velocities respectively

and are given by

29



A =

−1 0 x

0 −1 y

 (2.9)

B =

 xy −(x2 + 1) y

(y2 + 1) −xy −x

 (2.10)

Let us consider in eq. (2.8) the two components of normal flow: the translational component,

which depends on depth, and the rotational component, which is independent of depth. If we

subtract the rotational component from both sides, we obtain

nx − (gx ·B)Ω =
1

Zx

(gx · A)V. (2.11)

We can enforce that the left hand side (the derotated normal flow) and the right hand side (the

translational component) must have same sign. Since the depth (Zx) is positive, the following

product, which we denote as ρx(V,Ω), is positive, i.e.,

ρx(V,Ω) = ((gx · A)V) · (nx − (gx ·B)Ω) > 0 (2.12)

To arrive at an objective function to be used in an optimization, we can model the cheirality

constraint by passing ρx through a smooth function, such as the ReLU function [34]. Since, the

deep learning pipeline requires the function to be twice differentiable, we choose the GELU

function, a smooth approximation of the ReLu function. Denoting the negative GELU function as

R, and denoting the average over all x values as E, we then obtain the following minimization,
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for the estimation of relative camera pose:

argmin
{V,Ω}

E (R(ρx(V,Ω))) (2.13)

In the stage of re-estimating motion, we simply use constraint (2.13) in an optimization

implemented by a robust Quasi-Newton optimization algorithm. We solve the optimization

sequentially, in one step for V and in the other for Ω, because ρx(V,Ω) is bilinear in these

parameters. The initial estimate comes from the PoseNet estimate in Sec. 2.5.1. In our implementation

we use the L-BFGS algorithm [99]. These steps (Sec. 2.5.1 and 2.5.2) are performed in the forward

pass in the network.

2.5.3 Self-Supervised Refinement

Let us denote the coarse pose obtained from our PoseNet as P̃c =

[
Ṽc Ω̃c

]
. This is further

refined by the Cheirality layer and we denote this refined pose as P̃r =

[
Ṽr Ω̃r

]
. Now we use

P̃r to refine our PoseNet’s coarse pose to obtain a more accurate prediction of pose.

The final self-adaptive pose estimation is performed as a bi-level minimization in the

network [59], in which an upper-level problem is solved subject to constraints imposed by a

lower-level problem and is formally defined next.

argmin
P̃c

E

(
nx − gx ·

((
nx − (gx ·B)Ω̃r

(gx · A)Ṽr

)
AṼc −BΩ̃c

))

subject to argmin
P̃r

E
(
R(ρx(Ṽc, Ω̃c))

)
(2.14)
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The lower-level problem (second row) of Eq. (2.14) enforces the cheirality constraint to

obtain pose P̃r, which then is used to compute the normal flow error in the upper-level loss function

(first row). The upper-level loss enforces the consistency between the normal flow from NFlowNet

and that computed using the motion parameters P̃c with the implicit depth term expressed by the

motion parameters P̃r.

In practice, we back-propagate through the upper-level to refine poses P̃c using supervision

from P̃r through the lower-level. Using implicit differentiation, all that is computed from the

lower layer is the gradient, and this step is agnostic to the optimizer used. Specifically, we derive

∂P̃r

∂P̃c
, which is computed from the product of second order derivatives. (The interested reader is

referred to [59], eq. (15) for details.) It is important to note that we rely on the generalizability of

NFlowNet, hence it is not fine-tuned.

2.6 Experiments

2.6.1 Implementation Details

2.6.1.1 Datasets

We use eight environments from the TartanAir [1] dataset (amusement, oldtown,

neighborhood, soulcity, japanesealley, office, office2, seasidetown) for

training and two environments (abandonedfactory and hospital) for testing our NFlownet

network. For odometry evaluation, we use the Tartan challenge test data [1]. We also conduct

extensive experiments on the KITTI Odometry [3] and the TUM-RGBD [2] datasets to evaluate

the robustness and generalization performance of our proposed system.
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2.6.1.2 Networks and Optimization Layer

For the NFlowNet we use an encoder-decoder architecture based on EVPropNet [100] to

directly regress sparse normal flow. The encoder contains residual blocks with convolutional

layers and the decoder contains residual blocks with transpose convolutional layers. We choose the

number of residual and transposed residual blocks as 2 and the expansion factor (factor by which

the number of neurons are increased after every block) as 2. We backpropagate the gradients using

a mean squared loss computed between groundtruth and predicted normal flow as given in Eq. 2.4.

We used the Adam optimizer to train our network with a learning rate of 10−4 and batch size of 8

for 400 epochs.

Our PoseNet architecture is inspired from [91] and uses the VGG-16 encoder for the CNN

stage [101] and two LSTM layers each with 250 hidden units for the recurrent layer-stage. We

initially train this model with a subset of the TartanAir data for 30 epochs to obtain a coarse

estimate to initialise the Cheirality Layer. We use the Adam optimizer and set a fixed learning rate

of 10−5. We consider sequences of six consecutive image frames and a batch size of eight while

training. During test time, we use only two consecutive image frames to estimate the relative

camera pose between images It and It+1.

For the optimization layer we use the L-BFGS [102] solver. The line search function was

set to strong Wolfe [103], the number of iterations were set to 100, and the gradient norms were

clipped to 100. We initialised the optimizer with coarse predictions provided by our PoseNet. Our

overall system is implemented in Python 3.7 and PyTorch 1.9.
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2.6.1.3 Training and Testing Procedure

The whole training schedule consists of three stages. First, we only train NFlowNet and

PoseNet in a supervised manner using the training strategies mentioned above. Then we freeze

NFlowNet and jointly train the PoseNet with the cheirality layer in an self-supervised fashion via

the refinement loss. The self supervised training is carried out for 120 epochs using four Nvidia

P6000 GPUs. For the cheirality layer, the stopping criteria is when the objective function is below

10−20 or the number of iterations exceeds 300.

During testing, our final pose predictions are obtained by passing PoseNet priors through the

cheirality layer along with the predictions from NFlowNet. Due to our self-supervised refinement

training, the prior PoseNet estimates help in faster convergence of the cheirality optimization

process (takes less than 5 iterations). Overall, NFlowNet takes 15 ms and the coarse PoseNet

takes 8 ms. The Cheirality layer takes an average of 8 ms per iteration to refine the estimates. The

inference time is obtained for an image resolution of 320×640 using a Nvidia 2070 MaxQ GPU.

2.6.1.4 Evaluation Metrics

To evaluate our NFlowNet and to compare against other optical flow networks, we project

the optical flow obtained from the state-of-the-art approaches on the gradient direction, and we

measure the pixel error. As normal flow is defined only along the gradient direction, we utilize the

Projection Endpoint Error (PEE), an analog to the Average Endpoint Error (AEE) error metric

proposed in [104]. The PEE between the projected optical flow (ũ) and the groundtruth (n̂) is

defined as:
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PEE =
∥∥∥n̂− ∇I

||∇I||22
· ũ
∥∥∥ (2.15)

To evaluate the regressed relative poses from our model, we use Absolute Trajectory Error

and Relative Pose Error metrics.

2.6.2 Analysis of Experimental Results

2.6.2.1 Accuracy of Normal Flow

In the first case study, we quantitatively evaluate NFlowNet. We compare our network with

optical flow methods of various flavours: (a) supervised (PWC-Net [7], LiteFlowNet [6]), and (b)

self-supervised (SelFlow [5]).

In Table 2.1, we present a quantitative evaluation of normal flow. We trained our NFlowNet

and fine-tuned optical flow networks with TartanAir (8 environments). We demonstrate the PEE

error on the first four sequences of the environments abandonedfactory and hospital.

NFlowNet performs better than the optical flow networks by up to 6×. By learning normal

flow, we constrain the network to focus on prominent features (edges, textures) rather than dense

correspondences in textureless regions. Through this “attention-like” mechanism, NFlowNet

performs better than its optical flow counterparts with upto 46× smaller model size.

We also tested our NFlowNet against supervised flow networks (including RAFT [105]) and

on the TartanAir and KITTI datasets. Referring to Table 2.2, we observe that directly regressing

normal flow via NFlowNet performs better in comparison to projecting the produced SOTA flow

predictions onto the image gradient. The weaker performance of the compared networks may be

due to optical flow bias because of the correlation layer in RAFT, PWC-Net, and LiteFlowNet.
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Since the correlation layer performs multiplicative patch comparisons between feature maps

which imitates classical matching of correspondences, it is likely to suffer from the aperture

problem [106].

Table 2.1: PEE (Projection Endpoint Error) ↓ of different state-of-the-art methods as compared to
of our NFlowNet.

Method
abandonfactory hospital Num.

000 001 002 003 000 001 002 003 param.(M) ↓
LiteFlownet [6] 2.56 1.82 1.93 2.15 3.17 2.68 2.45 1.93 5.37
PWC-Net [7] 1.23 0.95 1.64 1.48 2.35 2.92 2.28 1.47 8.75
UnFlow [107] 1.35 1.15 1.75 1.56 2.21 1.76 1.83 1.07 126.90
SelFlow [5] 0.67 0.73 0.52 0.64 1.91 0.51 0.73 0.65 5.11
NFlowNet (Ours) 0.72 0.54 0.57 0.63 0.82 0.44 0.57 0.71 2.72

Table 2.2: PEE (Projection Endpoint Error) ↓ of different state-of-the-art methods as compared to
of our NFlowNet.

Method
TartanAir KITTI 2015 Num.

abandon hospital param.(M) ↓
LiteFlownet [6] 2.12 2.57 3.94 5.37
PWC-Net [7] 1.32 2.25 3.18 8.75
RAFT [105] 0.83 1.25 1.52 5.3
NFlowNet (Ours) 0.61 0.64 1.37 2.72

2.6.2.2 Comparison of Pose Estimation

In this section we compare our DiffPoseNet framework with various state-of-the-art camera

pose estimation approaches. These approaches can be broadly be classified into: (a) pure deep

learning models, (b) pure geometric constraint based models, and (c) hybrid deep learning models

that incorporate some form of geometric constraints in the learning pipeline.
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We present the Absolute Trajectory Error (ATE) of our model on the TartanAir challenge

data in the MH000-007 sequences and compare it to the results of TartanVO and ORB-SLAM in

Table 2.3. We outperform both methods in this experiment by up to 3.4×.

We present the ATE for the TUM-RGBD sequences (360, desk, desk2, rpy, xyz) in

Table 2.4. We achieve competitive results, because TUM RGBD is difficult for monocular

vision methods due to rolling shutter, motion blur and large rotation. This is where pure

geometric constraints show a massive advantage. We believe our work can further be improved

by compensating for rolling shutter in the differential layer and we see this as a potential future

research direction. It is important to stress that our method was trained on the TartanAir dataset and

tested directly on other datasets to highlight cross-dataset generalization without any fine-tuning

or re-training.

We also present the relative pose errors, specifically, the average translational RMSE drift

(trel in % ) and average rotational RMSE drift (rrel in ◦/100m) for comparison in the KITTI

dataset sequences 06, 07, 09 and 10 (See Fig. 2.5). The error metrics are computed on a

trajectory of length of 100–800 m. In Table 2.5 we compare our model (DiffPoseNet) with (a) pure

deep learning models (TartanVO [97], GeoNet [95], UnDeepVO [108], DeepVO [91], Wang et

al. [109]), (b) pure geometric constraint based approaches (ORB-SLAM [110], VISO2-M [111])

and with (c) BiLevelOpt [98], a method implementing the epipolar constraint via a differentiable

layer. The test sequences were selected such that they do not overlap with the training sets in

the deep learning models used for comparison. Note that, similar to TartanVO, our training is

performed only on TartanAir and do not perform any fine-tuning or re-training on KITTI dataset.

Regardless, we perform competitive to other approaches that are trained/fine-tuned on similar data,

thus demonstrating our cross-dataset generalization.
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Table 2.5 also presents our ablation study, comparing different configurations in our pipeline

on KITTI. ‘Ours (no-SS)’ denotes the results of the coarse PoseNet fine-tuned on KITTI ground-

truth poses. ‘Ours (no-CL)’ denotes DiffPosenet without cheirality layer refinement during

inference time, and ‘Ours (CL 1-iter)’ denotes DiffPoseNet with the refinement restricted to only

one iteration of the cheirality layer. ‘Ours (OF)’ denotes the results of DiffPoseNet where the

normal flow is computed by projecting optical flow on image gradients, instead of NFlowNet. We

noticed that ‘Ours’ and ‘Ours (OF)’ are capable of outperforming learning approaches, particularly

when there are rotation errors, which is notable because learning methods have shown higher

rotation errors compared to geometric methods.

We infer from the above results (also see Fig. 2.6) that deep learning models usually

outperform classical geometric constraint based methods in translation errors (trel), which can

be attributed to the scale drift issue. This sometimes might be solved by performing expensive

global bundle adjustment and loop closure. However, we are not using a loop closing procedure

in the models in our experiments. Models with differentiable optimizer layers, like DiffPoseNet

(Ours) and BilevelOpt [98], achieve the best of both worlds, with lower relative rotation errors

competitive with geometric methods like ORB-SLAM.

Table 2.3: ATE (m) ↓ on the MH sequences of TartanAir [1] dataset.

Methods 000 001 002 003 004 005 006 007
ORB-SLAM [110] 1.30 0.04 2.37 2.45 - - 21.47 2.73
TartanVO [97] 4.88 0.26 2.00 0.94 1.07 3.19 1.00 2.04
Ours 2.56 0.31 1.57 0.72 0.82 1.83 1.32 1.24
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Figure 2.4: Qualitative comparison of trajectories between our DiffPoseNet and other state-of-the-
art approaches on the KITTI dataset sequences Seq.05 (left) and Seq.07 (right)
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Figure 2.5: Qualitative comparison of trajectories between our DiffPoseNet and other state-of-the-
art approaches on the KITTI dataset Seq.09 (left) and Seq.10 (right)
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Figure 2.6: Comparison between our model and pure learning based VO on relative rotation error
(in ◦/frame) from KITTI - 07.

Figure 2.7: Robustness evaluation of normal flow representation for pose estimation on
KITTI-10.
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Table 2.4: ATE (m) ↓ on the TUM-RGBD [2] benchmark.

Methods 360 desk desk2 rpy xyz
ORB-SLAM2 [112] - 0.016 0.078 - 0.004
DeepTAM [113] 0.116 0.078 0.055 0.052 0.054
TartanVO [97] 0.178 0.125 0.122 0.049 0.062
Ours 0.121 0.101 0.053 0.056 0.048

Table 2.5: Relative Pose Error (trel and rrel) ↓ results of various Pose estimation methods on
KITTI [3] dataset. Note that bold represents the best result and underline represents the second
best.

Method
06 07 09 10

trel rrel trel rrel trel rrel trel rrel
DeepVO [91] 5.42 5.82 3.91 4.60 - - 8.11 8.83
Wang et al. [109] - - - - 8.04 1.51 6.23 0.97
UnDeepVO [108] 6.20 1.98 3.15 2.48 - - 10.63 4.65
GeoNet [95] 9.28 4.34 8.27 5.93 26.93 9.54 20.73 9.04
TartanVO [97] 4.72 2.95 4.32 3.41 6.03 3.11 6.89 2.73
BiLevelOpt [98] - - - - 4.36 0.69 4.04 1.37
ORB-SLAM [110] 18.68 0.26 10.96 0.37 15.3 0.26 3.71 0.3
VISO2-M [111] 7.34 6.14 23.61 19.11 4.04 1.43 25.2 3.84
Ours (no-SS) 5.23 3.15 4.83 3.92 7.12 4.31 8.33 3.74
Ours (no-CL) 4.23 2.43 4.28 2.76 5.13 3.18 5.89 2.98
Ours (CL-1-iter.) 3.19 2.03 4.13 2.53 4.72 1.71 4.82 2.57
Ours (OF) 3.03 2.08 3.89 2.13 4.24 0.72 4.12 1.56
Ours 2.94 1.76 4.06 2.35 4.02 0.51 3.95 1.23

2.6.2.3 Robustness of Pose Estimation

For most camera pose estimation approaches the performance of the algorithm is also

governed by external factors such as lighting, weather, and sensor noise. These external factors

often lead to errors in motion fields and cause pose estimation to fail or diverge. In this case study

we present a robustness analysis by injecting noise into the motion fields.
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We study the robustness of the normal flow based cheirality layer against the epipolar

layer [98]. We artificially inject errors in the normal flow and optical flow and evaluate our

framework’s performance under these conditions. The error is modelled as additive uniform noise

U (ϵ), where [−ϵ, ϵ] is the bound on noise. We induce this noise to both normal flow and optical

flow only on the gradient direction where normal flow is well-defined to make the comparison fair.

Fig. 2.7 shows the relative pose errors, trel and rrel, over ϵ values {0, 5, 10, 15, 20}%. Here,

BiLevelOpt refers to the pose estimation using the epipolar constraint layer [98] with optical flow

as input. “Cheirality-OF” refers to the pose estimation via the cheirality layer using normal flow

obtained by projecting SelFlow optical flow predictions on the gradient directions (we choose

SelFlow as it has the best performance among all optical flow methods used in this chapter).

Observe that, our DiffPoseNet is more resilient to noise and fails “more gracefully” compared to

other methods. We owe this robustness to the lack of strong constraints used in our approach as

compared to other methods that either rely on strong features or strong photometric consistency.

We believe that carefully crafted optimization problems can lead to robust pose estimation neural

networks that generalize well to novel datasets while being robust to noise, a capability rarely seen

in most state-of-the-art methods [114, 115].

2.7 Conclusion

In this work, we combined the best of both worlds from classical direct camera pose

estimation approaches and deep learning taking advantage of differentiable programming concepts.

Specifically, we addressed the problem of estimating relative camera pose using a sequence of

images. To achieve this, we introduced the DiffPoseNet framework. As part of this framework,
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we introduced a normal flow network called NFlowNet, that predicts accurate motion fields

under challenging scenarios and is more resilient to noise and bias. Furthermore, we proposed a

differentiable cheirality layer that when coupled with NFlowNet can estimate robust and accurate

relative camera poses.

A comprehensive qualitative and quantitative evaluation was provided on the challenging

datasets: TartanAir, TUM-RGBD and KITTI. We demonstrated the efficacy, accuracy and

robustness of our method under noisy scenarios and cross-dataset generalization without any

fine-tuning and/or re-training. Our approach outperforms the previous state-of-the-art approach.

Particularly, NFlowNet can output accurate motion fields at up to 6× the speed with up to 46×

smaller model size. We believe this will open a new direction for camera pose estimation problems.
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Chapter 3: 0-MMS: Zero-Shot Multi-Motion Segmentation With A Monocular

Event Camera

In this chapter, we focus on the application of neuromorphic event sensors for the problem

of IMO Segmentation in challenging and novel scenarios. We propose 0-MMS, a solution to

multi-object IMO segmentation using a combination of classical optimization methods along with

deep learning and does not require prior knowledge of the 3D motion and the number and structure

of objects.

3.1 Introduction

Navigation is a fundamental competence of life with visual motion estimation as its beating

heart [116–118]. Even though motion estimation has seen a tremendous advancement in the last

few decades, dynamic object motion is usually addressed by outlier rejection schemes as a part

of the mature structure from motion and SLAM pipelines [119]. Though, this can provide an

initial dynamic object segmentation, further processing for each segment relies on some prior

information (commonly appearance/structure/recognition).

To exacerbate the scenario further, classical imaging cameras often fail in dynamic scenarios

(moving objects) due to motion blur and low light scenarios. To this end, drawing inspiration from

nature, neuromorphic engineers developed a sensor called Dynamic Vision Sensor (DVS) [120]
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Figure 3.1: Multi-Motion Segmentation with a monocular event camera on an EV-IMO dataset
sequence. Top Row: The event frames are color-coded by cluster membership. The corresponding
grayscale frames are shown in the bottom row. Bounding boxes on the images are color coded
with respect to the objects for reference. Note that grayscale images are not used for computation
and are provided for visualization purposes only.

which records the asynchronous temporal changes in the scene in the form of a stream of events,

rather than the conventional image frames. This gives an unparalleled advantage in-terms of

temporal resolution, low latency, and low band-width signals. Such event data is tailor-made for

motion segmentation because of the disparity in event density at object boundaries.

In this chapter, we present a method to detect moving objects by inferring their motion

using a monocular event camera; we call this multi-motion segmentation. We formally define the

problem statement and our contributions next.
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3.1.1 Problem Formulation and Contributions

We address the following question: How do you cluster the scene into background and

Independently Moving Objects (IMOs) based on motion using data from a moving monocular

event camera?

Given an event volume E , we find and cluster the events based on 2D motion. We

over-segment the scene with the help of feature tracks and then merge clusters based on the

motion models and a contrast score. Each cluster is represented by a four parameter motion

model (denoting the similarity transformation/warp) Θ = {Θx,Θy,Θz,Θθ} which represents

the 2D translation (Θx,Θy), divergence and in-plane rotation, respectively [121]. To speed up

computation, we propagate these motion models until a cluster keyslice is invoked. A summary of

our contributions is given below (Sample outputs are shown in Fig. 3.7):

• A novel cluster splitting and merging approach for monocular event-based multi-motion

segmentation without prior knowledge of scene geometry (zero-shot) and a number of

objects.

• New open-source multi-motion segmentation dataset and benchmark MOD++ including

extensive motion stratification and including challenging collision/exploding sequences.

• Speeding up computation using motion propagation and introduction of cluster keyslices.
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3.1.2 Related Work

There has been extensive progress in the field of event-based motion segmentation in the

past decade for different scenarios at variable scene complexity. Earlier works focused on the case

of a static camera, where the events are generated by the moving objects, and a simple clustering

scheme can provide motion segmentation [122–125]. The next mark up in complexity is the case

of a moving camera, where event alignment is computed for the whole scene [121, 126, 127] (also

called sharpness or contrast measure [128, 129]) and the parts of the scene which are misaligned

give the motion segmentation of IMOs [121] using a simple thresholding algorithm. The results

were further improved by [130], who used an Expectation-Maximization scheme to obtain better

segmentation. Our work is closely related to [130] with the same underlying philosophy: using

motion compensation for clustering but adds robustness in long term segmentation using feature

tracking and cluster splitting and merging. We also introduce motion propagation and the concept

of cluster keyslices to speed-up the entire procedure.

Finally, a few approaches used machine learning [131] to learn object contours and border-

ownership information via a structured random forest, which they demonstrated for segmentation.

[61, 132] demonstrated a combination of supervised and unsupervised CNN learning using

deblurring/event-alignment in the cost function, and [133] designed a graph convolutional neural

network for supervised motion segmentation, that uses as input event volumes over extended time

periods.
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3.2 Preliminaries

3.2.1 Data From An Event Camera

A traditional camera records frames at a fixed frame rate by integrating the number of

photons for the chosen shutter time for all pixels synchronously. In contrast, an event camera

only records the polarity of logarithmic brightness changes asynchronously at each pixel. If

the brightness at time t of a pixel at location x is given by It,x an event is triggered when

∥ log (It+δt,x)− log (It,x) ∥1 ≥ τ . Here, δt is a small time increment and τ is a threshold which

will determine the trigger of an event (τ is set at the driver level as a combination of multiple

parameters). Each event outputs the following data: e = {x, t, p}, where p = ±1 denotes the sign

of the brightness change. We’ll denote events in a spatio-temporal window as Et = {ei}Ni=1 (N is

the number of events) and we’ll refer to E as event slice/stream/cloud/volume.

3.2.2 Model Fitting For Contrast Maximization

Processing event cloud is generally computationally very expensive and to speed up the

processing we use a projection function. The projection of E leads to a “blurry” image, and a

number of methods for measuring this blurriness to achieve event-cloud alignment (also called

contrast maximization or motion compensation or deblurring) have been developed [128,129,134].

The output of the alignment is an event frame denoted as Et. In particular, we utilize the method

proposed in [121] to estimate model parameters Θ to maximize the alignment E by minimizing

temporal gradients ∇T . Here T (E) = E (tx − t0), E is the expectation/averaging operator, tx

denotes the time value at location x, and t0 is the initial time of the temporal window. Formally, we
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solve the following optimization problem: argminΘ ∥∇T ∥2, where ∇ denotes the spatial gradient

operator. Note that the projection function denoted by W is also called a warping function and

refers to the creation of Et using parameters Θ.

3.2.3 Tracklets Using Point Tracker

We rely on obtaining tracklets (feature tracks across multiple event frames) as an input

to multi-motion segmentation. Over the past few years, robust feature extraction and tracking

approaches for event data have been proposed [127,135–138], however most of the robust methods

are relatively slow or not open-source or use conventional intensity images. Hence, we adapt

SuperPoint [139] (previously used on grayscale images) for extracting tracklets Tt from a set of

consecutive N event frames {Et+∆t×i|i ∈ [0, N − 1]}. We found the SuperPoint tracker to be

robust and generalizable over a wide range of scenarios without any fine tuning. The SuperPoint

tracker runs in the backend (we call this Tracker backend) on a First-In First-Out (FIFO) buffer of

consecutive N event slices.

3.3 Proposed Approach

3.3.1 Overview

The proposed solution comprises of two steps: 1. Split and Merge summarized in Algorithm

1 and illustrated in Fig. 3.2. 2. Motion Propagation and Cluster keyslices summarized in Algorithm

2.
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Figure 3.2: Overview of the proposed pipeline on a sequence from EV-IMO dataset (a) Projection
of the raw event cloud Et without motion compensation, (b) Projection of event cloud after global
motion compensation (Et), (c) Sparse tracklets Ft extracted on compensated event cloud, (d)
Merged feature clusters based on contrast and distance metrics ({Ct}), (e) Output of the pipeline
is the cluster of events. The cluster membership is color coded where gray color indicating
background cluster.

Figure 3.3: Iterative model fitting and merging approach. The colors indicate the average temporal
gradient for that particular cluster. (Blue indicates a low value and red indicates a high value). We
stop merging whenever the average temporal gradient increases drastically after a merging step
since this indicates a merger of the background with an IMO cluster.
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Algorithm 1: Splitting and Merging
Data: Tracklets Tt, Event Stream Et, Num. oversegments K
Result: Clusters {Ct}, Cluster Models {Θt}, Segmentation Masks {S}
Splitting;
{C̃t} = k-Means(Tt, K);
Merging;
{Θ̃t} = ClusterModelFit(Et, {C̃t});
while Stopping Criterion and All Clusters Visited do

if Ck,jD−1
k,j > ζ (Merging Criterion) then

{C̃t}, {Θ̃t} = MergeClusters(E , {C̃t}, {Θ̃t}) Updated Clusters and Motion
Models;

end
end
{Ct} = {C̃t} Final Clusters;
{Θt} = {Θ̃t} Final Models;
S = ConvexHull({Ct}) Final Dense Segmentation;

Algorithm 2: Motion Propagation And Cluster Keyslices
Data: Tracklets Tt, Event Stream Et, Clusters {Ct−1}, Cluster Models {Θt−1}
Result: Clusters {Ct}, Cluster Models {Θt}
foreach Cluster i do

E i
t = W(E i

t ,Ci
t−1,Θ

i
t−1) Cluster Event frame;

end
if E(C(E i

t ) ∀i) > α Scene Contrast Measure;
then

foreach Cluster i do
if C(E i

t ) > χ then
Keep Propagation;
no new cluster keyslice required;

else
Split and Merge on current cluster (Algorithm 1);
New cluster keyslice;

end
end

else
Split and Merge on entire scene (Algorithm 1);
New cluster keyslice for all clusters (scene);

end
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3.3.2 Notations

Before we explain the algorithm, we need to define the notations used formally. Tracklets

Ti
t, event stream E i

t , clusters Ci
t, cluster models Θi

t at time t for the ith cluster. If a superscript

is omitted, the quantity represents the entire data available at time t. Contrast function Ck,j and

distance function Dk,j are defined between two clusters k and j. The user chosen thresholds

are ζ (merging criterion), λ (stopping criterion), α (scene contrast measure), and χ (propagation

threshold).

3.3.3 Split And Merge

Splitting: Here, the tracklets from the backend are clustered into k clusters (k >> Num. of

objects) using k-Means clustering for its simplicity and speed (similar to [140, 141]). If a prior on

the number of objects or a bound is known, it can be trivially incorporated to choose k. We denote

these clusters as Ct.

Merging: Since the splitting method oversegments the scene, we need to merge the clusters to

obtain motion segmentation for Independently Moving Objects (IMOs) and the background. The

cluster merging is based on a similarity measure that depends on the contrast match (warping a

cluster with the model from another cluster and measuring the contrast) and distance between

centroids of the clusters (refer Fig. 3.3). We define contrast and distance functions Ck,j and Dk,j

respectively as follows: Ck,j = E (∥Var (E(δEj|Θk)) ∥1) and Dk,j = ∥Ck −Cj∥2 where k, j are

the cluster numbers, δEj represents the event volume for cluster j and Ck denotes the centroid of

cluster k. This formally entails solving the following optimization problem: argmaxj Ck,jD−1
k,j

52



which simultaneously maximizes the contrast and minimizes the distance. The larger value of

Ck,jD−1
k,j ensures a higher probability that motion model of j th cluster is similar to that of kth cluster

(as applying this motion model on δEj yields maximum contrast). Hence, both clusters belong to

one. This step is iteratively performed per cluster (where merging happens with every neighboring

cluster using breath first search) until a stopping criterion has been reached. The entire process is

repeated until all the clusters have been visited. The stopping criterion is explained next.

After each merging operation, we compute the motion model Θk,j of the merged clusters by

minimizing the temporal gradients ∇T . Intuitively, when two clusters are merged, the combined

motion model captures the average motion of the two clusters thereby slightly increasing the

average temporal gradients. Further, whenever a moving object cluster is merged with the

background or different IMO cluster the average temporal gradient increases drastically. Hence,

a difference in temporal gradient at every step i (E (∥∇Ti∥2)) with respect to the initial step

(E (∥∇T0∥2)) is computed. If at any step the difference in temporal gradient is large, we terminate

the current merge and continue to the next iteration until all the clusters have been visited. This

is mathematically described by ∥E (∥∇Ti∥2) − E (∥∇T0∥2) ∥1 ≥ λ, where λ is some constant

threshold.

After split and merge has been performed, we obtain the final clusters {Ct} ({} indicates

a set of clusters and each cluster can be indexed with a superscript, i.e., Ci
t for ith cluster) and

motion models per cluster Θi
t where i indexes the cluster number. Optionally, we obtain the

dense segmentation by taking the convex hull of the sparse feature points in each cluster, which is

denoted as S. Refer to Algorithm 1 for a summary of split and merge methods.
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3.3.4 Motion Propagation

Optimizing the parameters Θ at every time step to obtain Et from Et is computationally

exorbitant. Inspired by classical tracking pipelines, we propagate motion models from previous to

current time slice assuming linear event trajectories. The propagation is achieved using tracklets,

and we validate the propagation quality using the following contrast function

Ct = E (∥Var (E(δEt|Θt−1)) ∥1). Here, Ct measures the deviation from the current optimal motion

model with respect to the motion model of the previous time slice.

3.3.5 Speeding-Up Computation Using Cluster Keyslices

Classical Visual Odometry pipeline utilizes the concept of keyframes to speed-up computation

based on certain conditions, this avoids performing bundle adjustment on every frame whilst

maintaining good accuracy. We employ a similar strategy of keyframes for event slices, which

we call a keyslice, for re-clustering based on contrast function Ct. We apply the contrast function

at different levels starting from the entire scene to each clusters separately. Depending on the

following two measures the split and merge procedures are performed either per cluster or on

the entire scene: 1. Cluster contrast score, 2. Scene contrast score. The cluster contrast score is

defined by Ct when applied to a single cluster during motion propagation and the average of all

cluster scores is called the scene contrast score. Refer to Algorithm 2 for a summary of motion

propagation and cluster keyslicing.
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Figure 3.4: Velocity vectors vCAM and vIMO
i used for data stratification in the MOD++ dataset.

3.4 MOD++ Dataset/Benchmark

Currently, three main datasets exist for IMO segmentation using event cameras, namely,

Extreme Event Dataset (EED) [121] and EV-IMO [132] featuring real data and the synthetic

Moving Object Dataset (MOD) [61]. However none of the datasets have data stratification based

on camera and/or object motion and/or velocities. To this end, we extend the MOD dataset

presented in [61] which we call MOD++ to add additional synthetic sequences (Refer to Table 3.1).

This data stratification is explained next. Let the instantaneous velocity of the center of mass of the

camera and IMOs be denoted as vCAM and vIMO
i , where i is the IMO index (Fig. 3.4). Now consider

the angle and relative-magnitude between two vectors (a, b) denoted by θ and η respectively and

defined as follows: θ (a, b) = cos−1
(

a·b
∥a∥∥b∥

)
and η (a, b) = ∥a∥

∥b∥ . Also, let the instantaneous

rotational velocity around it’s principal axes be denoted by ω where the superscripts and subscripts

have the same meaning as that of linear velocities. We classify the sequences as follows: 1.
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Different linear velocities: Here we set the instantaneous rotational velocity close to zero, i.e.,∥∥ωCAM
∥∥ ≈ 0 and

∥∥ωIMO
i

∥∥ ≈ 0. We classify the motions based on relative angle and speed. If

θ
(
vCAM, vIMO

i

)
∈ [0, 45]◦∀i we call this sequence small angle. If θ

(
vCAM, vIMO

i

)
∈ [60, 120]◦∀i

we call this sequence medium angle and if θ
(
vCAM, vIMO

i

)
∈ [140, 180]◦∀i we call this sequence

large angle. (Note that we wrap the angles in the range [0, 180] in our case).

If η
(
vIMO, vCAM

i

)
∈ [0.5, 3.0) ∀i we call this sequence slow. If η

(
vIMO, vCAM

i

)
∈ [3.0, 7.0) ∀i

we call this sequence medium and if η
(
vIMO, vCAM

i

)
∈ [7.0, 10.0] ∀i we call this sequence fast.

If
∥∥ωCAM − ωIMO

i

∥∥ ∈ [0, 5]◦s−1∀i we call this sequence slow rotation. If
∥∥ωCAM − ωIMO

i

∥∥ ∈

[25, 30]◦s−1∀i we call this sequence medium rotation and if
∥∥ωCAM − ωIMO

i

∥∥ ∈ [90, 100]◦s−1∀i

we call this sequence fast rotation.

To make it easy to identify the sequence we use the following naming convention:

SeqSEQNUM ATTR1 ATTRN where SEQNUM is the sequence number which will determine the

scene setup (room walls and objects with texture), ATTR1 to ATTRN are modifiers which specify

speed and/or rotation classifications. We use the following modifiers: AS, AM, AL for small,

medium and large angles, SS, SM, SL for small, medium and large linear speeds, RS, RM,

RL for small, medium and large rotational speeds. For eg., Seq4 AM SL RS would be the fourth

sequence with medium angles, large linear speeds and small rotational speeds.

Additionally, we also provide two challenge sequences for researchers to evaluate their

algorithm on: Cube and Cup. The Cube sequence is two cubes (a smaller cube on top of a larger

cube) falling on the ground and breaking into smaller non-cube pieces. The Cup sequence is a

bullet hitting a cup and shattering it into smaller fragments of different shapes.
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Table 3.1: Overview Of Related Datasets.
MOD++ EV-IMO [132] EED [121] MOD [61]

Year 2020 2019 2018 2019
Data-type Simulated Real Real Simulated
Camera Sim. DAVIS346C DAVIS346C DAVIS240B Sim. DAVIS346C

Data

Events
RGB Images @ 1000 Hz

6-DoF Camera Poses @ 1000 Hz
6-DoF IMO Poses @ 1000 Hz

IMO Bounding Boxes @ 1000 Hz
IMO Masks @ 1000 Hz
Optical Flow @ 1000 Hz

Depth @ 1000 Hz

Events
Grayscale Images @ 40 Hz

6-DoF Camera Poses @ 200 Hz
6-DoF IMO Poses @ 200 Hz

IMO Masks @ 40 Hz

Events
Grayscale Images @ 20 Hz

IMO Bounding Boxes @ 20 Hz

Events
RGB Images @ 1000 Hz

6-DoF Camera Poses @ 1000 Hz
6-DoF IMO Poses @ 1000 Hz

IMO Bounding Boxes @ 1000 Hz
IMO Masks @ 1000 Hz

Poses Ground
Truth (Acc.) Blender® Engine (Sub. mm)

12 × Vicon®

Vantage V8 Cameras (≈ 1mm) – Blender® Engine (Sub. mm)

IMO Bounding Boxes
(Masks) Ground Truth

Blender® Engine
for both

Scanned 3D Objects
projected using

Ground Truth Pose
Hand-labelled (–)

Blender® Engine
for both

Num. Sequences 43 30 5 7
Num. Unique Objects

(Max. Number of Objects
in frame)

12 (9) 4 (3) 7 (3) 9 (3)

Num. Backgrounds 11 5 5 9
Challenging Scenes Exploding and Breaking objects Fast camera motion Extreme illumination –

Data Stratification
Velocity Direction

Velocity Magnitude
IMO Rotation Magnitude

– – –

3.5 Experiments and Results

We evaluate our approach on publicly available real and synthetic datasets. We demonstrate

our approach’s performance both qualitatively and quantitatively employing two different metrics

based on the availability of groundtruth information.

3.5.1 Detection Rate

For datasets which provide timestamped bounding boxes for the objects, we consider the

prediction as success when the estimated bounding box fulfills two conditions; (1) it has a overlap

of more than at least 50% with the ground-truth bounding box, (2) the area of intersection with the

ground-truth box is higher than the intersection with outside area. We can formulate the metric as:

Success if D ∩ G > 0.5 and (D ∩ G) > (¬G ∩ D) (3.1)
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Figure 3.5: Qualitative Evaluation of our method on three datasets. Top two rows: EV-IMO dataset,
Bottom two rows: MOD dataset. Insets show the corresponding grayscale/RGB images for reference. The
cluster membership is color coded where gray color indicates background cluster. Bounding boxes on the
images are color coded with respect to the objects for reference.

where D is the predicted mask and G is the ground truth mask. We evaluate our pipeline’s

performance on all the datasets using this metric. We obtain the bounding box for our method

by obtaining the convex hull on the cluster of events. For comparison purpose we evaluate the
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Figure 3.6: Multi-Motion Segmentation on the real sequences from [9]. (a) Gnome shooting:
Gnome statue getting shot by a bullet, (b) Mug shooting: Mug getting shot by a bullet. The
event frames are colored by cluster membership with gray showing background cluster. Note that
the corresponding RGB frames are not used for computation and are provided for visualization
purposes only.

performance of [121] using the same metric on all the three datasets. For datasets with more than

one sequence, we compute the average of each model’s performance on individual sequences.

Table 3.2: Comparison with state-of-the-art using the detection rate for different sequences of
MOD++.

Method
Detection Rate (DR in %) ↑ Speed ↑

Speed×Avg. DR ↑
AS SM RS AM SM RS AL SM RS AM SS RS AM SL RS AL SS RS AL SS RM AL SS RL (MEv/s)

Mitrokhin et al. [121] 35.24 32.29 38.12 28.78 43.28 24.56 32.29 39.65 5.41 185.47
EVDodgeNet [61] 42.25 46.94 53.23 37.81 61.72 46.13 43.50 52.38 10.01 480.42
k-Means (k=5) 44.89 47.73 49.35 40.17 59.52 42.19 45.71 55.83 1.07 51.54
k-Means (k=10) 60.36 64.87 59.27 47.73 65.78 48.92 54.74 58.47 1.02 58.66
k-Means (k=20) 56.1 62.28 58.01 45.25 61.25 44.71 49.37 54.91 0.98 52.90
Ours (No Propagation) 70.13 73.29 72.58 65.80 85.76 66.24 72.90 79.02 0.83 60.77
Ours 69.52 73.94 71.27 63.58 84.21 64.93 71.18 78.37 1.16 83.67

3.5.2 Intersection Over Union (IoU)

IoU is one the most common and henceforth the most standard measure to evaluate and

compare the performance of different segmentation methods. IoU is given by:

59



Figure 3.7: Challenge sequences from the proposed MOD++ dataset. (a) Cube breaking into
smaller pieces by falling, and (b) Cup getting shot by a bullet.

IoU = (D ∩ G) / (D ∪ G)

Our method outputs a cluster of events which are associated with an object. For the purpose of

comparison we convert the sparse mask to a dense mask by assigning all the points lying inside

the cluster as the same value.

3.5.3 Discussion of Results

Table 3.2 reports results on our proposed MOD++ dataset. We pick eight scenarios with

different relative (camera and IMO) velocity direction, velocity magnitude and rotation magnitude.

We illustrate the merits of split and merge, and motion propagation through extensive ablation

studies and compare with previous approaches. Our approach outperforms others by at least

∼10% . Executing split and merge at every step offers better accuracy than propagating motion
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Table 3.3: Comparison with state-of-the-art using detection rate for EED, MOD, EV-IMO datasets.

Method
Detection rate for dataset (%) ↑ Speed ↑
EED MOD EV-IMO (MEv/s)

Mitrokhin et al. [121] 88.93 70.12 48.79 5.41
Stoffregen et al. [130] 93.17 - - 0.64∗ (Nl=10)

Ours 94.2 82.35 81.06 1.16
∗Results taken directly from [130]

models (evident for more challenging scenarios like slow relative motion, large/small relative

velocity direction and/or small rotation magnitude). However, motion propagation offers a speed-

up without a significant loss of performance (∼1%). Even though simple thresholding [121]

and the deep learning-based approach [61] offer better speed-up and Speed×Avg. DR (a metric

proposed in [142]), their accuracies are almost 2-3× lower than our approach and is not reliable in

challenging scenarios. We leave the speeding-up of our approach using deep learning to enable

deployment on mobile robots for future work.

Table 4.2 reports the result of our method in comparison with two state-of-the-art IMO

detection methods [121], [130] using only a monocular event camera. Our method outperforms

the previous methods by up to ∼12% detection rate. Specifically, we outperform [121] by a large

margin (up to ∼32%) on all the three datasets. Our approach is about 2× faster than [130] because

of motion propagation while maintaining similar/slightly better accuracy on EED.

Table 3.4 reports the comparison with two deep learning methods for IMO segmentation

[132] and [61] using the IoU metric. [61] was trained on the MOD dataset and is tested here on

the EV-IMO dataset without any fine-tuning/re-training. We outperform [61] and [132] (which

was trained on EV-IMO) on the EV-IMO dataset.

Fig. 4.3 shows qualitative results of our approach on the two datasets (top two rows show

results for the EV-IMO dataset and the last two rows show results for the MOD dataset). Gray
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Table 3.4: Comparison with state-of-the-art using IoU for EV-IMO.
Method IoU

EV-IMO [132] 77.00∗

EVDodgeNet [61] 65.76
Ours 80.37

∗Results taken directly from [132] in which boxes and wall are used for training.
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Figure 3.8: Number of moving segments vs. frame number (time) on challenge sequences of
MOD++: (a) Cube, (b) Cup.

areas in the event images show the background cluster and red/blue colored regions show the

differently segmented IMOs. The outputs show the robustness of our approach to shape, size and

speed of the objects and in-variance with respect to camera motion. Also, note that the objects are

sometimes very hard to detect in the corresponding grayscale/RGB frames in Fig. 4.3 motivating

the use of event cameras for IMO detection using motion cues.

We obtain the ground truth IMO by counting ground truth labels with IoU overlap ≤0.2.

The graph shows robustness of our approach with increasing number of moving segments. The

predicted number of segments closely matches the ground truth. Segmenting solely based on

motion with a monocular event-camera is ambiguous in challenging scenarios and results could

be improved with incorporation of depth and appearance information in our split and merge step

which we believe is the logical next step for future work.

Figs. 3.6a and 3.6b show the output of our method for challenging sequences of Gnome
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shooting and Mug shooting from [9] showing that our method performs well even on real

sequences with a large number of objects.

Fig. 3.8 shows performance of our algorithm with the respect to number of moving segments

across time on challenge sequences of MOD++ dataset i.e., Cube and Cup sequence (shown in

Figs. 3.7a and 3.7b).

Our algorithm runs on a hybrid CPU and GPU system (i7 CPU and NVIDIA Titan Xp GPU).

Model fitting and feature extractions are run on GPU in parallel. Even though our core algorithm

runs fast, the bottleneck is in the memory transfer to and from the GPU. The complexity of our

approach is linear in the number of clusters, events and frequency of cluster keyslices initiation.

Table 3.2 shows the speed of our algorithm in comparison with other approaches in Million Events

per second (MEv/s). Our motion propagation and keyslicing provides a speed-up of upto 40%

without compromising accuracy.

3.6 Conclusions

We presented a method for multi-motion segmentation using data from a monocular event

camera. Our approach works by splitting the scene into smaller motions and then iteratively

merging them based on a contrast measure. To our knowledge, this is the first approach for

monocular independent motion segmentation which combines a bottom-up feature tracking and

top-down motion compensation into a unified pipeline. We further speed up our method by using

the concept of motion propagation and cluster keyslices.

A comprehensive qualitative and quantitative evaluation is provided on three challenging

event motion segmentation datasets, namely, EV-IMO, EED and MOD showcasing the robustness
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of our approach. Our method outperforms the previous state-of-the-art approaches by upto ∼12%

detection, thereby achieving the new state-of-the-art on the three aforementioned datasets. To

accelerate further research in this area, we present and open-source a new benchmark dataset

MOD++ which includes challenging scenes such as cube breaking and a mug getting shot by

a bullet along with extensive data stratification in-terms of camera and object motion, velocity

magnitudes, direction and rotational speeds. We achieve 73.21% detection rate on MOD++ which

is 2 to 3× higher than the state-of-the-art methods.
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Chapter 4: SpikeMS: Deep Spiking Neural Network for Motion Segmentation

time time

Figure 4.1: Event-based motion segmentation pipeline using a deep spiking neural network. Left
to right: Event stream input represented as red (brightness increase) and blue (brightness decrease),
representation of the proposed encoder-decoder spiking neural network called SpikeMS and the
output predicted spike containing only the region of moving object(s).

In this chapter, we present the Spiking Neural Networks (SNN) for the IMO segmentation

problem utilizing event sensor data as input. We propose SpikeMS, the first deep encoder-

decoder SNN architecture for the problem of IMO segmentation using the event sensor as input.

To accomplish this, we introduce a novel spatio-temporal loss formulation that includes both

spike counts and classification labels in conjunction with the use of new techniques for SNN

backpropagation.
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4.1 Introduction

The animal brain is remarkable at perceiving motion in complex scenarios with high speed

and extreme energy efficiency. Inspired by the animal brain, an alternative version of Artificial

Neural Networks (ANNs) called Spiking Neural Networks (SNNs) aim to replicate the dynamical

system aspects of living neurons. In contrast to standard ANNs which are essentially networks of

complex functions, SNNs are comprised of networks of neurons modeled as differential equations,

and inherently encode temporal data and offer low power and highly parallelizable computations.

Furthermore, they possess the capability to deliver predictions whose confidence scale with the

availability of input data [143, 144]. These low-power and low-latency properties are of great

use to real-world robotics applications such as self-driving cars or drones, which demand fast

responses during navigation in challenging scenarios [61].

Until recently, SNNs have been restricted to simple tasks and small datasets due to instability

in learning regimes [145]. Recent development in new spike learning mechanisms [146, 147]

has made it possible to design SNNs for real-world robotics applications. This coupled with

neuromorphic processors such as Intel ® Loihi [69] and IBM TrueNorth [148] along with

neuromorphic sensors such as DVS [120] and ATIS [149] have made it possible for producing

real-world prototypes, drastically enhancing the appeal of such technologies.

In this work, we propose a deep SNN architecture called SpikeMS for the problem of motion

segmentation using a monocular event camera. We consider the data from event sensors as they

are well-suited for motion segmentation (due to the disparity in event density at object boundaries)

and are a natural fit for SNNs (due to their temporal nature). We will now formally define the

problem statement and our main contributions.
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4.1.1 Problem Formulation and Contributions

We address the following question: How do you learn to segment the scene into background

and foreground (moving objects) using a Spiking Neural Network from the data of a moving

monocular event camera?

Our spiking neural network, SpikeMS, takes the event stream as input and outputs predictions

of each event’s class association as either foreground (moving object) or background (moving due

to camera motion).

The model learns to distinguish between the spatio-temporal patterns of moving objects and

the background. To the best of our knowledge, this is the first end-to-end deep encoder-decoder

SNN. In particular, we evaluate our network on the task of motion segmentation using event input.

The main contributions of the chapter are given below:

• A novel end-to-end deep encoder-decoder Spiking Neural Network (SNN) framework for

motion segmentation from event-based cameras.

• Demonstration of “early” evaluation of the network (at low latency), which we call Incremental

Predictions, for imprecise but fast detection of moving objects for variable-sized integration

windows.

4.2 Related Work

4.2.1 Spiking Neural Network Weight Learning Rules

While the concept of a spiking neuron has been around for a few decades [150], their

progress has been bounded by the difficulty in training due to the ubiquitous vanishing gradient
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problem for deep neural networks. In SNNs, the neurons output pulses that are non-differentiable,

rendering attempts at directly applying the backpropagation algorithm non-trivial. Early attempts

at training SNNs revolved around more biologically plausible Hebbian-style mechanisms [151]

that only involve local updates, such as Spike Time Dependent Plasticity (STDP) [152], avoiding

gradient issues. Work in this field continues to this day, with results [153–155] demonstrating

utilities of STDP in training deep SNNs. Early attempts at incorporating backpropagtion into

SNNs involved first training a traditional ANN, and then transferring the learned weights to an

SNN [143]. Recent methods, which we build off of here, allow the SNN to be directly trained

through backpropagation by finding a surrogate, continuous value function that roughly correlates

for the spike activity [146, 147, 156].

4.2.2 SNNs for Visual Tasks and Event Data

There has been a renewed interest in using SNNs to process data directly from event-based

visual sensors, such as the DVS since the sensor produces spike-like activity that fits well with

SNN neurons. Applications of SNNs in this domain include classification problems [64] such as

digit recognition [65], object recognition [41] gesture recognition [66], and optical flow [67, 68].

Recent development of neuromorphic processors such as the Intel Loihi [69] has lead to the

deployment of SNNs on hardware [67, 70, 71].

Closest related to our work, in [145] recently a neural architecture of multiple layers has

been designed. A six-layer neural network (five convolutional and one pooling layer) is used to

learn with supervision to regress the three parameters of camera rigid rotation. In Lee et al. [157]

a deep hybrid encoder decoder architecture was designed for self-supervised optic flow estimation.
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The encoding layers are SNN with the backpropagation learning employing the approximation

of [156], and the residual and decoding layers are ANN with the self-supervised loss computed

from the images of a combined DVS and image sensor (DAVIS).

Event-based cameras have been recognized as a promising sensor for the problem of

segmentation and detection of independently moving objects, as the event stream carries essential

information about the movement of object boundaries [125]. Classical approaches [39,50,130] treat

motion segmentation as a geometric problem and model it as an artifact of motion compensation

of events. In ANN approaches, the input representation is formed by binning the events within a

time-interval and convert to an image-like frame based structure [61, 132] the so called “event-

frames”. Our approach is similar to [133], but rather than creating event-frames, a sampled version

of the event stream is fed directly into the network, taking advantage of the SNN’s temporal nature

in conjunction with the temporal nature of the event stream.

4.3 SpikeMS Architecture

4.3.1 Event Camera Input

A traditional camera records frames at a fixed frame rate by integrating the number of photons

for the chosen shutter time for all pixels synchronously (in a global shutter camera). In contrast,

an event camera only records the polarity of logarithmic brightness changes asynchronously at

each pixel, resulting in asynchronous packets of information containing the pixel location and the

time of the change known as an event. If the brightness at time t of a pixel at location x is given

by It,x an event is triggered when

69



Time

N
e

u
ro

n
 R

e
s

p
o

n
s

e

Input Spikes

Neuron Threshold 

Refractory
Response

Spike

Figure 4.2: Depiction of the dynamical activity of a spiking neuron. The neuron receives input
coming either from the data or lower layers (shown here as colored arrows), which generate
bumps in the membrane voltage; we refer to this voltage in the chapter as u(t). If the voltage u(t)
exceeds a threshold ϑ, shown here as the dotted line, the neuron outputs a spike, and then enters a
refractory phase where it is less likely to fire another spike for a short time. Computationally, this
spiking after passing a threshold amounts to feeding u(t) through the spike function fs. The effect
that incoming pulses have on the voltage, and the extent of the refractory response, is governed in
the Spike Response Model (SRM) [10] via the ε and ν kernels respectively (See Section 4.3.2 for
more detail).

∥ log (It+δt,x)− log (It,x) ∥1 ≥ τ (4.1)

where δt is a small time increment and τ is a trigger threshold. Each event outputs the

following data: e = {x, t, p}, where p = ±1 denotes the sign of the brightness change. We will

denote the event stream in a spatio-temporal window as E (t, t+ δt) = {ei}Ni=1 (N is the number

of events). We refer to it as event slice/stream/cloud/volume or spike train interchangeably.
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4.3.2 Spiking Neuron Model

Spiking Neurons, unlike traditional rate-encoding neurons (commonly used neurons in

standard ANNs), implicitly encode time in their formulation. They are modeled loosely after

neurons in the brain, following the pioneering work by Hodgkin-Huxley [150] which laid the

groundwork for differential equation modeling of neuronal activity. We utilize the Spike Response

Model (SRM) which similar to all spiking neuron models, sums up incoming voltage from pre-

synaptic neurons, but contains two filters: a filter that accounts for the neuron’s self-refractory

response denoted as ν, and a spike response kernel that accounts for the integration of incoming

pre-synaptic pulses denoted as ε. For a given neuron i at timestep t, the update of the neuron’s

synaptic potential dynamics takes the form of:

ui(t) =
(∑

j

wj(ε ∗ sj)
)
+ (ν ∗ s)

= w⊤a + (ν ∗ s)

(4.2)

for all incoming weight connections from pre-synaptic neurons 1, ..., j, where a(t) =

(ε ∗ s)(t), si(t) is an input spike train in a neuron and ∗ denotes the convolution operator. An

output spike is generated whenever u(t) reaches the spiking threshold ϑ (the dotted line in Fig.

4.2)

The motivation for using SRM neuron types is that it inexpensively models the refractory

behavior of neurons without having to run multiple differential equation solvers, as seen in other

models.

Specific choices of ε and ν reduce the SRM equations to a LIF neuron [158]. Here, we use

the formulation from [145]:
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ε(t) =
t

τs
e1−

t
τsH(t) (4.3)

ν(t) = −2ϑe1−
t
τr H(t) (4.4)

where H is the Heaviside function, and τs and τr are the spike response and refractory time

constants.

The activity of the neurons is then propagated forward through the layers of the network, in

the same manner as an ANN. The feed-forward weight matrix W(l) = [w1, ...,wNl+1
] for a given

layer l with Nl neurons is applied to the activity resulting from the spike response kernel, added to

the refractory activity and then thresholded. Thus, for all layers l in the network, the activity is

forward-propagated as:

a(l)(t) = (εd ∗ s(l))(t) (4.5)

u(l+1)(t) = W(l)a(l)(t) + (ν ∗ s(l+1)(t)) (4.6)

s(l+1)(t) = fs(u
(l+1)(t)) (4.7)

where fs is the thresholding function, W(l) is the forward weight matrix for layer l, and εd

is the spike response kernel with delay, as in [147]. The input to the network, s(0), is the event

data over the learning window.
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4.3.3 Network Architecture

SpikeMS utilizes an end-to-end deep Spiking Neural Network, in contrast to many recent

models [157] that use a hybrid combination of spiking and rate-encoding layers. To the best of our

knowledge, SpikeMS is the first end-to-end spike trained deep encoder-decoder network for large

scale tasks such as motion segmentation.

SpikeMS consists of a traditional hourglass-shaped layer structure of an autoencoder, with

larger layers progressively encoded to smaller representations, which are then decoded back to

the original size. We use three encoder layers followed by three decoder layers. The first three

convolutional layers perform spatial downsampling with a stride of 2 and kernel size of 3×3. The

output of the first encoder layer contains 16 channels, and each encoder layer after doubles the

number of channels. The last three decoder layers perform spatial upsampling using transposed

convolution, with a stride of 2 and kernel size of 3x3. Decoder layers 4 and 5 each halve the

number of channels. The last layer (6) outputs the predicted spikes of the moving object(s) using

2 channels, representing positive and negative event polarities.

4.3.4 Spatio-Temporal Loss

We propose a novel loss formulation which takes full advantage of the spatio-temporal

nature of the event data. Our loss function consists of two parts: a binary cross entropy loss Lbce

and spike loss Lspike.

The binary cross-entropy loss Lbce is computed by comparing the predicted temporal spike
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projection to the ground truth temporal spike projection.

Lbce = −
(
1f log

(
Êf

)
+ 1b log

(
Êb

))
(4.8)

Where, the spike projection E is obtained as: E (x) =
∑

t E (x). Such a projection converts

a spike train into a real-valued output, encoding the frequency of spikes. And the groundtruth

foreground and background labels are denoted as 1f and 1b respectively.

The spike loss Lspike is derived from the Van-Rossom distance [159] and measures the

distance between two binary spike trains [160]. Lspike preserves the temporal precision of the event

stream. The ground truth spike labels are generated by applying a binary mask to the event cloud

input E , i.e., masking all non-moving-object events (background events) as 0, and keeping intact

the events that correspond to the moving object. Lspike is given by

Lspike =
t+δt∑
t=0

(
Ê (t, t+ δt) ◦ 1f − Ẽ (t, t+ δt)

)2
∆t (4.9)

where ◦ denotes the Hadamard product and 1f denotes the mask of foreground spikes.

The overall loss Ltotal is given by

Ltotal = Lbce + λLspike (4.10)

where λ is a weighting factor. The error is backpropagated through the network using SLAYER

[147].
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Figure 4.3: Representation of event stream E and its corresponding projection (event frame). Note
that, only event streams are fed to SpikeMS. The event frame is shown only for clarity purposes.

4.3.5 Simulation of SNNs on GPU

SNNs are continuous dynamical systems which can process input event streams asynchronously.

However, for our experiments, we simulate the SNN network on a GPU. To achieve this, we need

to discretize the event data at fixed time steps. To balance the trade-off between accuracy and

resource availability [145], we restrict the simulation time step to one millisecond. We train our

SNNs with fixed simulation time window/width/steps ∆ttrain of 10ms for all experiments. However,

to test the out-of-domain temporal performance, we test our predictions on simulation time steps
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a b

c d

Figure 4.4: Qualitative Evaluation of our approach on two datasets. Top row (a and b): MOD
dataset, Bottom row (c and d): EV-IMO dataset. Each sample includes, (left to right) event stream,
groundtruth, and network prediction. Here, we show event projections for clarity purposes but
SpikeMS predicts spatio-temporal spikes.

∆ttest of 1ms to 25ms. To fit the event inputs into fixed time steps, the multiple events with the

same polarity and spatial location within a timeframe are represented as a single binary event.

This downsampling collapses all events within the window into a single event. The simulated

network is trained with the publicly available PyTorch implementation of SLAYER [147].

4.4 Experiments and Results

We evaluate our approach on publicly available synthetic and real datasets. We demonstrate

performance of SpikeMS both qualitatively and quantitatively by employing the Intersection over

Union (IoU ) and Detection Rate (DR) metrics [50].

4.4.1 Overview of Datasets

We use the publicly available MOD [61] and EV-IMO [132] datasets for training and

evaluating the motion segmentation predictions. MOD [61] is a synthetic dataset specifically

targeted for learning based motion segmentation approaches. The simulated data contains objects
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moving in an indoor room-like environment with randomized wall textures, static/dynamic objects

and the object/camera trajectories. EV-IMO [132] contains monocular event-based camera data

captured in a lab environment with challenging scenarios (multiple objects moving in random

trajectories and varying speeds). EV-IMO contains five different sequences (boxes, floor,

wall, table, and fast) which were collected using the DAVIS 346 camera.

4.4.2 Quantitative Results

Table 4.1: Quantitative Evaluation using IoU (%) ↑ metric on EV-IMO and MOD datasets.
Method

EV-IMO
MOD

boxes floor wall table fast
100 20 100 20 100 20 100 20 100 20 100 20

EV-IMO† [132] 70±5 59±9 78±5 79±6 67±3 -
EVDodgeNet [61] 67±8 61±6 72±9 70±8 60±10 75±12
GConv† [133] 81±8 60±18 79±7 55±19 83±4 80±7 57±14 51±16 74±17 39±19 - -
PointNet++ [161] 71±22 80±15 68±18 76±10 75±19 74±20 62±28 68±23 24±10 20±6 74±13 67±15
Ours (Lbce) 57±11 59±7 56±9 46±12 62±8 62±9 51±12 45±12 42±13 36±13 62±11 63±7
Ours (Lspike) 45±4 52±7 49±8 44±6 53±15 47±11 43±15 37±4 41±6 35±4 55±11 55±8
Ours (Lbce + Lspike) 61±7 65±8 60±5 53±16 65±7 63±6 52±13 50±8 45±11 38±10 68±7 65±5

†Results taken directly from [133]

We compare our method against state-of-the-art ANNs (both 2D and 3D) and the results are

given in Table 4.1. In particular, 2D ANNs (EV-IMO [132], EVDodgeNet [61]) are trained with

inputs consisting of event-frames computed by accumulating (or projecting) events on a plane. In

contrast, 3D ANNs (GConv [133] and PointNet++ [161]) are trained directly on the event cloud

E . We evaluate ANN-2D with event frames integrated with a time width ∆t of 25ms. ANN-3D

approaches are evaluated with two time widths ∆t of 20ms and 100ms similar to [133].

During evaluation, SpikeMS is tested at ∆ttest = 100ms and ∆ttest = 20ms (trained at

∆ttrain=10ms) for a fair comparison with ANNs-3D. Table 4.1 provides the mean IoU results

on multiple sequences of the EV-IMO and MOD datasets. We observe that the performance of
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SpikeMS is comparable to ANN-2D and ANN-3D approaches in all cases. However, note that the

ANN-2D and ANN-3D perform better in the domain they are trained in as compared to SpikeMS

and we speculate this is because of more stable training procedures in ANNs. This points to a

direction of future work for SNNs of proposing better training methodologies.

In Table 4.1, we also compare our results when trained on different loss functions. We

observe that the proposed spatio-temporal loss formulation performs better than just using the

spike loss or crossentropy loss as it utilizes the information from both spatial and time domains

together.

Finally, we also compare SpikeMS with classical hand-crafted methods in Table 4.2 and

we see that, our SNN approach outperforms most hand-crafted methods whilst being deployable

directly on neuromorphic hardware. This would lead to huge power savings when deployed on a

robot.

4.4.3 Incremental Prediction

We test the network’s capability to perform incremental predictions evaluating the network

at different testing discretized window sizes, with ∆ttest ranging from 1ms to 25 ms, while

keeping the training window fixed at ∆ttrain of 10ms. This experiment tests for the out-of-domain

generalization performance of SpikeMS.

All predictions made at ∆t < 10ms can be considered as incremental predictions (See Fig.

4.5), since the testing window is smaller than the training window. This is particularly important

for robotics applications since one can filter these incremental predictions to get close to the

accuracy of the model with long time predictions but with a lower latency. For example, we
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can filter predictions (we use a linear Kalman filter [162] for filtering) of 3ms to obtain up to

∼64% of the accuracy of 10ms predictions, but with 70% less latency which might be required for

time-critical controllers. We also experiment with values greater than 10ms, where we examine

whether longer integration windows yield more accurate results.

Fig. 4.5 shows the plot of accuracy (IoU) versus the duration of input spikes during

simulation, considered for prediction. We observe that the prediction accuracy increases over

time with the occurrence of more spikes, but critically, that the SNN is able to output reasonable

predictions from less spikes. As shown in SNNs outperform ANN-2D and ANN-3D at early

stages with less amount of data. We observe that ANN-3D outperforms ANN-2D since it is trained

with temporal augmentation techniques as proposed in [133]. Note that the SNN does not rely

on temporal augmentations for incremental predictions rather utilizes dynamic nature of spiking

architecture. This demonstrates how well SpikeMS generalize outside the temporal domain.

4.4.4 Qualitative Results

Fig. 4.4 shows qualitative results of our approach on the two datasets. For each example

the input, moving object groundtruth, and network prediction are shown. Note that, we show the

event projections for clarity purposes but the network input and outputs are the event cloud/spikes.

We can observe that the network output predictions are similar to the ground truth for the moving

objects in the presence of significant background variation and motion dynamics.

Fig. 4.6 shows the performance of SpikeMS on real-world event streams, again with

significant background variations and patterns. These results demonstrate the capability of

SpikeMS to generalize to different environments without any retraining or fine tuning of the
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Figure 4.5: Incremental Prediction: Segmentation accuracy vs. input spike window length in
milliseconds for various simulation time width ∆t. SpikeMS is able to achieve good accuracy
significantly faster than ANNs, given smaller input data. The dashed lines represent accuracy
improvement after employing a filtering (See Sec. 4.4.3).

network.

4.4.5 Power Efficiency

We further analyze the benefits of SpikeMS compared to a fully ANN architecture with

respect to power consumption. It is important to note that the main power consumption benefits

occur when the SNN is implemented on a neuromorphic hardware such as the Intel® Loihi [69],

where the network only consumes power when there is a spike. Hence, the power consumption

depends on the mean spike activity of the incoming data and the number of synaptic operations.

In contrast, ANNs perform dense matrix operations without exploiting the event sparsity. Thus, in

anticipation of deploying SpikeMS on the new generation of neurmorphic chips, we demonstrate

80



Figure 4.6: Results showing motion segmentation generalization without fine-tuning or re-training
on real world data. SpikeMS is able to segment the moving object from the scene even in the
presence of substantial background noise. The objects in the red bounding box are the true moving
objects. Top row: A fast drone approaching a moving event camera. Bottom row: Moving object
behind netted background.
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Table 4.2: Comparison with state-of-the-art classical approaches for EED, MOD, EV-IMO datasets.

Method
Detection Rate (%) ↑

EED MOD EV-IMO
Mitrokhin et al. [39] 88.93 70.12 48.79

Stoffregen et al. [130] 93.17 - -
0-MMS [50] 94.2 82.35 81.06

Ours 91.5 68.82 65.14

Table 4.3: Performance Metrics for EV-IMO and MOD datasets.

Method
EV-IMO MOD

boxes floor wall table fast
Num. Operations (×108) 0.42 0.34 0.52 0.38 0.53 0.83

Energy benefit (×) 116.19 143.53 93.84 128.42 92.07 58.80

the power savings by comparing the number of operations by a metric proposed in [157].

Table 4.3 provides the average number of synaptic operations in SNNs along with a

conservative estimate of the energy benefit when compared to an ANN-2D. We can observe

that SNNs require a significantly lower number of synaptic operations and power as compared to

ANNs.

4.5 Conclusion

We presented a deep encoder-decoder Spiking Neural Network for a large-scale problem and

demonstrated our architecture on the task of motion segmentation using data from a monocular

event camera. Our novel spatio-temporal loss formulation takes full advantage of the spatio-

temporal nature of the event data. We demonstrated the unique ability of our network, SpikeMS,

for incremental prediction and showed its capability to generalize across a range of temporal

intervals without explicit augmentation. A comprehensive qualitative and quantitative evaluation
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was provided using synthetic and real-world sequences from the EV-IMO, EED and MOD datasets.

It was shown that SpikeMS achieves performance comparable to an ANN method, but with 50×

less power consumption.
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Chapter 5: Conclusion and Future Work

The thesis presented a suite of minimalist solutions for motion perception problems. Notably,

we address the egomotion and IMO segmentation problems in challenging scenarios such as

high speed, changing lighting conditions, and unseen/novel environments. Furthermore, we have

established the mathematical foundation for combining bio-inspired motion representation (normal

flow and event sensors) and learning (geometry-based and spiking network) frameworks to address

the problem mentioned above. In this chapter, I lay out the key contributions of my work and

discuss its scope. I also provide a few potential future directions to address these problems.

Chapter 2 addressed the problem of estimating egomotion (camera pose) using a sequence

of images. We introduced a normal flow network called NFlowNet, which predicts accurate

motion fields under challenging scenarios and is more resilient to noise and bias. Furthermore, we

proposed DiffPoseNet framework, whose primary goal is to improve robustness and cross-data

generalization of egomotion. This is achieved by changing the order of processes classically used

in the structure from motion (SfM) and postponing depth estimation and regularization to later

stages in the pipeline. We utilized normal flow from NFlowNet and estimated relative camera

pose based on the cheirality (depth positivity) constraint. We formulated cheirality constraint as a

differentiable optimization layer to enable end-to-end learning of camera pose. A comprehensive
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qualitative and quantitative evaluation was provided on the challenging datasets: TartanAir, TUM-

RGBD, and KITTI. We demonstrated our method’s efficacy, accuracy, and robustness under

noisy scenarios and cross-dataset generalization without any fine-tuning and/or re-training. Our

approach outperforms the previous state-of-the-art approaches. Particularly, NFlowNet can output

accurate motion fields at up to 6× the speed with up to 46× smaller model size.

The currently pretrained posenet takes the role of “initialization” in the optimization pipeline.

Since we are proposing DiffPoseNet as a generic framework, one could replace posenet with

better pose estimators in future work. Furthermore, the current approach focuses on static scenes

(with no moving objects) only. In the future, dynamic scenes can be addressed by including the

differentiable IMO segmentation module in DiffPoseNet.

Until recently, classical normal flow estimation methods were unreliable and prone to

noise when deployed in real-world scenarios. Our NFlowNet is the first deep learning approach

to robustly estimate normal flow and to showcase the application via DiffPoseNet framework.

Utilizing the new normal flow estimation approach, we could implement additional purposive and

qualitative visual frameworks [14] to improve robust and cross-scenario generalization. As these

approaches are fast and require less computational resources than traditional approaches, we can

deploy them in real-time autonomous vehicle applications.

Recent advances in differentiable programming have paved a new research direction

to induce geometrical priors into end-to-end learning. This fusion is beneficial in reducing

the dependency on large deep neural networks and thereby minimizing power requirements.

Differentiable programming is not only limited to visual sensors but also can enable next-

generation sensor fusion research, similar to [163]. Furthermore, from the bio-inspired perspective,

we can build cognitive architecture (inspired by the brain’s “physics engine” [164]) for sensorimotor

85



integration in real-time robotics applications.

Chapter 3 introduced 0-MMS, a method for IMO segmentation using data from a monocular

event sensor. Our approach works by splitting the scene into smaller motions and then iteratively

merging them based on a contrast measure. 0-MMS combines bottom-up feature tracking and

top-down motion compensation into a unified pipeline. We further accelerated our method by

using the concept of motion propagation and cluster key slices. The approach was successfully

evaluated on both challenging real-world and synthetic scenarios from the EV-IMO, EED, and

MOD datasets. It outperformed the state-of-the-art detection rate by 12%, achieving a new state-

of-the-art average detection rate of 81.06%, 94.2%, and 82.35% on the aforementioned datasets.

To enable further research and systematic evaluation of multi-motion segmentation, we present

a new open-source dataset/benchmark called MOD++, which includes challenging sequences

and extensive data stratification in camera and object motion, velocity magnitudes, direction, and

rotational speeds.

One of the limitations of 0-MMS was the manual tuning of parameters for spitting and

merging operations. This can be resolved by an automatic choice of parameters via model

selection [165]. Another major issue with 0-MMS is the assumption of rigidly moving segments.

However, this assumption would be constraining when the object considered is non-rigid, such as a

human or animal. One could solve this issue by considering non-rigid motion as a composition of

many piece-wise rigid motions. Another approach would be to model non-rigid motion directly by

fitting event surfaces. Even though the current method is relatively faster than existing approaches,

it is not real-time. The approach needs acceleration via GPU parallelization to enable usage on

mobile robots.
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Throughout our 0-MMS work, we focused only on monocular camera solutions. Overall

performance of our approach can be improved by fusing additional sensors such as IMU and

stereo event camera, similar to [49, 166]. However, one of the drawbacks of using additional

event sensors would be increased computational requirements. As early event cameras such as the

DVS128 had a resolution of 128×128 pixels, it was not challenging to deploy multiple DVS128

for robotic applications. But, the recent release of large resolution sensors from Samsung [167],

Prophesee [168], Celepixel [169] now go up to 1280×960 pixels. The sensor design improvements

definitely helped in the deployment of event sensors in real-world autonomous driving [170],

flying [100], and computational photography [9] applications. Using multiple large-resolution

events sensors would be very challenging in resource-constrained scenarios. Recent initial efforts

in event compression mechanism [171] have shown promising results for an image reconstruction

task. The future compression approaches can be specifically designed for motion perception

problems for a real-time fusion of multiple event sensors.

Chapter 4 presented SpikeMS, a deep encoder-decoder Spiking Neural Network (SNNs)

for a large-scale problem, and demonstrated our architecture on the task of motion segmentation

using data from a monocular event camera. Traditionally, SNNs are aimed at closely matching

the functioning of the biological brain. However, due to algorithmic and training complexity,

SNNs have not solved the highly complex tasks that standard Artificial Neural Networks (ANNs)

excel at. To accomplish this, we introduced a novel spatio-temporal loss formulation that includes

both event spike counts and classification labels in conjunction with new techniques for SNN

backpropagation. In addition, we demonstrated the unique ability of our network, SpikeMS, for

incremental prediction, or predictions from smaller amounts of test data than it is trained on.
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Providing outputs even with partial input data proves invaluable for low-latency applications and

fast predictions.

A comprehensive qualitative and quantitative evaluation was provided using synthetic and

real-world sequences from the EV-IMO, EED, and MOD datasets. It was shown that SpikeMS

achieves performance comparable to an ANN method but with 50× less power consumption. Also,

the incremental prediction feature demonstrated the SpikeMS’s capability to generalize across a

range of temporal intervals without explicit augmentation.

The current SpikeMS pipeline is trained with ground-truth labels in a supervised fashion.

As getting labels is arduous and time-consuming, a self-supervised variant of SpikeMS would be

beneficial for real-time robot deployment. In this work, we simulated the SNN dynamical processes

on a GPU for evaluation purposes. A recent development in neuromorphic computing has enabled

us to bypass the simulation process and directly deploy on the neuromorphic processors [69, 148].

Neuromorphic processors have given a new direction to spiking neural network research by

allowing real-time deployment. The tight coupling of sensors and processors would enable

the realization of bio-inspired and bio-plausible learning approaches such as Vector Symbolic

Architectures (VSA) [172] or HD computing [173].

The thesis has opened up a new line of research in applying a minimalist philosophy. The

proposed approaches have been formulated in generic frameworks to enable possible extension

beyond the scope of this thesis. This work will help put bio-inspired approaches at the forefront of

autonomous vehicle research.
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Appendix A: Moving Object Dataset (MOD)

This chapter presents the details of MOD dataset generation. MOD is a simulated dataset

that was used for evaluating 0-MMS and SpikeMS in Chapter 3 and Chapter 4.

Extensive and growing research on visual (inertial) odometry or SLAM have lead to the

development of a large number of datasets. Recent adaption of deep learning to solve these

aforementioned problems have fostered the development of large scale datasets (large amount of

data). However, most of these datasets are built with the fundamental assumption of static scenes

in mind and as a manifestation of which moving or dynamic objects are often not included in these

datasets [174–176].

To this end, we propose to use synthetic scenes for generating “unlimited” amount of

training data with one or more moving objects in the scene. We accomplish this by adapting and

proliferating the simulator presented in [175]. To incubate generalization to novel scenes and to

utilize the algorithm trained on simulation directly in the real world, we create synthetic moving

objects which vary significantly in their texture, shape and trajectory. We also choose random

textures for the walls of the 3D room in which objects will move about.

To generate data, we randomize wall textures, objects and object/camera trajectories to

obtain seven unique configurations out of which one is exclusively used for test of generalization

on more complex structures. Each configuration has a room with three objects moving as shown
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Figure A.1: Various Scene setups used for generating data.

in Fig. A.1. Images are rendered at 1000 frames per second at a resolution of 346 × 260 and a

field of view of 90◦ for each configuration. Using these images, events are generated following the

approach described in [175]. Later event frames E are generated with three different integration

times δt of {1, 5, 10} ms. Details about the room, lighting and objects are given next.

A.1 Simulated Environment

Each room is of size 10× 10× 5 m and has random textures on all the walls. These random

textures consist of different patterns, colors and shapes. These textures mimic those which occur

in real-world indoor and outdoor environments such as skyscrapers, flowers, landscape, bricks,

wood, stone and carpet. Each room contains seven light sources inside it for uniform illumination.

The camera is moved inside the 3D room on trajectories such that almost all possible

combinations of rotation and translation are obtained. This is aimed at replicating the movement
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Figure A.2: Moving objects used in our simulation environment. Left to right: ball, cereal box,
tower, cone, car, drone, kunai, wine bottle and airplane. Notice the variation in texture, color and
shape.
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Figure A.3: Random textures used in our simulation environment

which could be encountered on a real quadrotor.

We have three Independently Moving Objects (IMOs) in each room. Each object is unique in

color, shape, texture and size. The objects are chosen to range from simple shapes and textures to

complex ones. The objects chosen are ball, cereal box, tower, cone, car, drone, kunai, wine bottle

and airplane. The trajectories of the objects are chosen such that many different combinations of

relative pose between the camera and the objects are encountered. Also, the objects are moving

ten times faster than the camera simulating objects being thrown at a hovering or a slow moving

(drifting) quadrotor. The wall textures and moving objects are shown in Figs. A.2 and A.3

respectively.
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A.2 Dataset Content

The dataset comprise of images and events along with ground truth for object segmentation,

optical flow, object poses, camera pose, and depth. All the data is stored in the form of ROS bags

files which are compressed by default and each bag file consuming up to 5 gigabytes. To help with

the data pre-possessing, we provide the development kit for easy data handling.

A.3 Evaluation Metrics

A.3.1 IMO Segmentation

For the IMO segmentation, we present three simple evaluation metrics based on standard

literature [117]. Detection Rate is defined as number of detections which have an overlap of more

than τ .

DR = E

(
D ∩ G
G

≥ τ

)
× 100%

Here, x denotes the cardinality of a set x, G,D denote the set of ground truth and detected pixels

respectively. Detection rate penalizes for false positives, false negatives and missed detections.

To measure false positives we defined a metric called Average False Positive (AFP) and is

given by

AFP = E

(
¬D ∩ G

G

)
× 100%

Similarly, false negatives are given by a metric called Average False Negative (AFN) and is

given by

AFN = E

(
D ∩ ¬G

G

)
× 100%
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A.3.2 Optical Flow

Optical Flow is defined as the image pixel velocity between two camera views. It can be

thought of as the projection of the real 3D velocity on the image plane between two camera views.

Optical flow can be computed in multiple-ways, either by using depth and pose of the camera

between two views or by matching features in the image frame. The former method is often much

more accurate and is the method employed in this dataset for generating optical flow ground truth.

Let the images/event frames be captured at times t and t + 1 with a pose W[R,T]C,t0

and W[R,T]C,t1 respectively. Here, W,C denotes the world and camera coordinate frames

respectively. Assuming that the linear and angular velocity is constant between t0 and t1, we can

compute the linear and angular velocities by numerical differentiation.

vt1
t0 =

(
WTC,t1 − WTC,t0

)
δt

(A.1)

⌊ωt1
t0⌋× =

logm
(
WRC,t0

T WRC,t1

)
δt

(A.2)

Here δt = (t1 − t0), logm denotes matrix logarithm, ⌊ωt1
t0⌋× represents the skew-symmetric

matrix from of the vector ωt1
t0 given as follows.

⌊ω⌋× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


Finally, the ground truth optical flow ˆ̇x is computed as follows.
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ˆ̇x =

−1
Z

0 x
Z

0 −1
Z

y
Z

vt1
t0 +

 xy − (1 + x2) y

(1 + y2) −xy −x

ωt1
t0 (A.3)

Here. Z is the depth at the pixel location x = (x, y) and is computed as the average of

depths at times t0 and t1, i.e., Zx = E (Zx,t0 , Zx,t1). Note that the ground truth optical flow

computed above is based on the assumption that the movement in the image is only due to camera

motion/ego-motion, hence this optical flow is generally called rigid flow. However, in our dataset,

there are a lot of independently moving objects where the above flow calculation will be wrong.

Hence, we compute the flow of pixels corresponding to IMOs separately. To compute the optical

flow for the ith IMO’s visible pixels denoted by Fi, we have to compute relative linear and angular

velocities between the coordinate frame of the camera C and each of the IMO Fi. In our case, the

simulator gives us the object pose in world frame (with respect to the object’s geometric center),

i.e., W[R,T]Fi,t. Also, all the objects are rigid (non-deformable), hence with the information of

relative object pose we can compute relative 3D movement of each and every point on the object

and hence finally obtain the optical flow for Fi. To obtain the transformation between C and Fi,

we use the following transformation.

WHC,t =
FiHW,t

WHC,t =
(
WHFi,t

)−1 WHC,t

H =

 R T

03×1 1



Obtaining, optical flow of IMO pixels denoted by ˆ̇xFi
is as simple as replacing coordinate

frame W by Fi in Eqs. A.1, A.2 and A.3. From now on, optical flow computed for background
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pixels (non-foreground pixels) denoted by B is denoted by ˆ̇xB or simply ˆ̇x (This is given by Eqs.

A.1, A.2 and A.3). Again depth for Fi is computed as the average depths at the two time instants

just like that for B.

Now, that we have ground truth optical flows for both background and IMOs, we can present

a metric for quantitative evaluation. The first metric is called Average Endpoint Error or AEE.

AEE = E
(
∥ˆ̇x− ˜̇x∥2)

Here, ˜̇x is the estimated/predicted optical flow. We compute AEE for background and IMO pixels

separately and is denoted as AEEB and AEEFi
respectively.

For non-geometric computations using optical flow such as tracking on the image plane, it is

generally sufficient to have accurate flow direction rather than accurate flow magnitude. A metric

to quantitatively evaluate only the flow direction is called Average Angular Error or AAE.

AAE = E

(
cos−1

(
ˆ̇x · ˜̇x

∥ˆ̇x∥2∥˜̇x∥2
))

Similar to AEE, we compute AAE separately for background and IMO pixels and is denoted

as AAEB and AAEFi
respectively.

In addition to computing AEE and AAE we also compute the percentage of outliers in each

case. This is computed as follows for the error metric AEE and AAE separately.
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AEEoutlier (ϵ, δ) = E
(
1
(

AEE
(
ˆ̇x, ˜̇x) ≥ min

(
ϵ, δ ˆ̇x

)))
AAEoutlier (ϵ, δ) = E

(
1
(

AAE
(
ˆ̇x, ˜̇x) ≥ ϵ

))

where ϵ denotes the maximum acceptable error tolerance, δ denotes the maximum acceptable

percentage error tolerance and 1 denotes the indicator function. AEEoutlier and AAEoutlier are

computed separately for B and Fi and are denoted by AEEoutlier,B, AEEoutlier,Fi
and AAEoutlier,B,

AAEoutlier,Fi
respectively.

A.3.3 Depth and Pose

Though the main aim of the dataset is to facilitate monocular IMO segmentation and optical

flow, we also release per-pixel depth to enable learning based algorithms to learn segmentation

based on depth disparity or border ownership methods. We also present pose of the camera to

enable Visual Odometry or Ego-motion algorithm development.

If the ground truth and predicted depth at a pixel location x are given by Ẑx and Z̃x,

we defined the depth loss with the following three metrics defined below based on standard

literature [177, 178].
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SILog = E
(
∥LDx∥22

)
− E (∥LDx∥1)2

RMSElin =
√

E (∥Dx∥22)

RMSElog =
√
E (∥LDx∥22)

Dx = Zx̂ − Zx̃

LDx = log (Zx̂)− log (Zx̃)

SILog, RMSElin and RMSElog denote the Scale Invariant Logarithmic error, Linear Root

Mean Square Error and Logarithmic Root Mean Square Error respectively.

For evaluating pose/odometry quantitatively, we adopt two error metrics from literature [179]

defined next. Let the sequence of poses denote a trajectory. For eg., if pose at time t is given by

Ht ∈ SE(3), then the trajectory from t0 to t1 is given by H = {Ht | ∀t ∈ [t0, t1]}. Now, let Ĥ, H̃

denote the ground truth and predicted pose sequence or trajectory. The first error metric is called

Relative Pose Error or RPE which measures the amount of drift, particularly useful for odometry

algorithms. The RPE and it’s RMSE is given as follows.

RPEt =
(
Ĥ−1

t0
Ĥt1

)−1 (
H̃−1

t0
H̃t1

)
RPERMSE =

√
E (∥trans (RPEt) ∥22)

Here trans (RPEt) refers to the translational component of RPE at time t.

For measuring global consistency of trajectories of SLAM systems, Absolute Trajectory
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Error or ATE is used and is defined as follows.

ATEt = Ĥ−1
t SH̃t

ATERMSE =
√

E (∥trans (ATEt) ∥22)

Here S refers to the least squares best fit rigid body transformation between Ĥ and H̃ which

includes scale, rotation and translation.
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