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Abstract
Objective
To investigate the inherent clinical risks associated with the presence of cerebral micro-
hemorrhages (CMHs) or cerebral microbleeds and characterize individuals at high risk for
developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we longitudinally
evaluated families with dominantly inherited Alzheimer disease (DIAD).

Methods
Mutation carriers (n = 310) and noncarriers (n = 201) underwent neuroimaging, including
gradient echo MRI sequences to detect CMHs, and neuropsychological and clinical assess-
ments. Cross-sectional and longitudinal analyses evaluated relationships between CMHs and
neuroimaging and clinical markers of disease.

Results
Three percent of noncarriers and 8% of carriers developed CMHs primarily located in lobar
areas. Carriers with CMHs were older, had higher diastolic blood pressure and Hachinski
ischemic scores, and more clinical, cognitive, and motor impairments than those without
CMHs. APOE e4 status was not associated with the prevalence or incidence of CMHs.
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Prevalent or incident CMHs predicted faster change in Clinical Dementia Rating although not composite cognitive measure,
cortical thickness, hippocampal volume, or white matter lesions. Critically, the presence of 2 or more CMHs was associated with
a significant risk for development of additional CMHs over time (8.95 ± 10.04 per year).

Conclusion
Our study highlights factors associated with the development of CMHs in individuals with DIAD. CMHs are a part of the
underlying disease process in DIAD and are significantly associated with dementia. This highlights that in participants in
treatment trials exposed to drugs, which carry the risk of ARIA-H as a complication, it may be challenging to separate natural
incidence of CMHs from drug-related CMHs.

Cerebralmicrohemorrhages (CMHs) ormicrobleeds, small bleeds
in the brain, are commonly observed in older adults, particularly in
those with dementia.1 These lesions are commonly related to
hypertension,2 vascular β-amyloid (Aβ) related to Alzheimer dis-
ease (AD) or cerebral amyloid angiopathy (CAA),3 or Aβ-modi-
fying therapies currently in AD clinical trials4 as part of the
constellation of hemorrhagic amyloid-related imaging abnormali-
ties (ARIA-H). The presence of CMHs at baseline predicts future
additional CMHs in both the general population3 and in AD.5

Therefore, during trials of Aβ-modifying therapies, the Food and
Drug Administration recommends monitoring for CMHs and
excluding participants with 5 or more CMHs.6

Because older participants often have mixed pathologies, it
can be difficult to discriminate or identify which of these 3
factors is responsible for CMHs, particularly in treatment
trials. Evaluating a young cohort, such as individuals with
dominantly inherited AD (DIAD),7,8 with relatively normal
blood pressure and not on treatment may help characterize
the natural history of CMHs uniquely related to AD. This may
provide a better understanding of the implications of CMHs
when observed in individuals with DIAD in treatment trials as
well as potentially help evaluate other AD cohorts.

Here, we report results from the Dominantly Inherited Alz-
heimer Network (DIAN) observational study,9 in which par-
ticipants are assessed for ARIA-H and followed longitudinally
with the aim of defining the clinical risks related to CMHs.

Methods
Participants
We evaluated 511 participants from 19 DIAN sites using stan-
dardized clinical, neuropsychological, and imaging assessments

according to DIAN study protocols.9 Of the 534 participants
with data that passed strict quality control procedures as part of
the 14th DIAN Data Freeze (January 2009–December 2019),
we selected data based on the availability of MRI and radiology
reads from Mayo Clinic. APP, PSEN1, and PSEN2 mutation
carriers (n = 310, including 109 symptomatic) and noncarriers
(n = 201) underwent clinical assessments, neuropsychological
testing, and neuroimaging. A subset of 218 carriers, including 76
symptomatic and 127 noncarriers, had at least one follow-up
visit and were evaluated longitudinally. These participants had
similar clinical characteristics as those without follow-up.

Standard Protocol Approvals, Registrations,
and Patient Consents
Each DIAN site received approval from its institutional review
board and its institutional or regional ethical standards com-
mittee on human experimentation. All participants or their
caregivers provided written informed consent approved by
their local institutional review board.

Clinical Assessment
The protocol used for the clinical assessment is as previously
described.10 Clinical Dementia Rating (CDR) evaluated the
presence (CDR >0, symptomatic) or absence (CDR 0,
asymptomatic) of dementia.11 The CDR Sum of Boxes
(CDR-SB) is a total score of all subcategories of the CDR
assessment and was used as a continuous measure.11 The
estimated years to symptom onset (EYO) was defined as the
participant’s age at each assessment minus the estimated age
at symptom onset for their specific mutation.7 Other clinical
and vascular-related measures were assessed, including di-
astolic and systolic blood pressure and mean arterial pressure
(MAP). Conditions of hypertension, stroke, hypercholester-
olemia, and diabetes were clinically diagnosed. The Hachinski
Ischemic Score,12 taking into account any history of

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ARIA-E = edema type amyloid-related imaging abnormalities; ARIA-H =
hemorrhagic amyloid-related imaging abnormalities; CAA = cerebral amyloid angiopathy; CDR = Clinical Dementia Rating;
CDR-SB = Clinical Dementia Rating Sum of Boxes; CI = confidence interval; CMH = cerebral microhemorrhage; DIAD =
dominantly inherited Alzheimer disease; DIAN = Dominantly Inherited Alzheimer Network; EYO = estimated years to
symptom onset; FLAIR = fluid-attenuated inversion recovery; GRE = gradient recalled echo; HSD = honestly significant
difference; LME = linear mixed effects;MAP = mean arterial pressure;OR = odds ratio; SWI = susceptibility-weighted image;
TE = echo time; TR = repetition time; WMH = white matter hyperintensity.
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hypertension and history of stroke, was also assessed. Motor
impairment, including assessment of gait and tremor, were
also evaluated. An abnormal gait was reported when the
participant was unsteady, shuffled, had little or no arm swing,
dragged a foot, or had a change in gait not due to injury or
arthritis. Clinicians who performed the assessments were not
explicitly aware of the mutation status of participants.

Neuropsychological Testing
Participants underwent a comprehensive battery of neuro-
psychological tests at each visit, as described previously.13 The
battery included measures of global cognition, episodic
memory, executive function, attention, processing speed, se-
mantic memory, and language. To minimize the number of
statistical comparisons, a cognitive composite measure similar
to the one used as an endpoint in the DIAN Trials Unit14 and
in the A4 trial15 was included in the analyses. The cognitive
composite consisted of the Mini-Mental State Examination
global score, Digit–Symbol Substitution from the Wechsler
Adult Intelligence Scale–Revised, Logical Memory delayed
recall from the Wechsler Memory Scale–Revised, and the
delayed recall of the DIAN Word List Test. Scores from each
test were transformed to z scores using the mean and SD of a
relatively healthy cohort that is at least 15 years before esti-
mated age at symptom onset and then averaged to form the
cognitive composite score.16

Image Acquisition Protocol
Standardized procedures and protocols, concordant with the
Alzheimer Disease Neuroimaging Initiative group, were used
at the different DIAN sites to ensure consistency in data
collection (adni-info.org). The scanner parameters and image
quality were reviewed by the Mayo Clinic in Rochester as
previously described.17 During baseline and follow-up MRI
sessions, all participants underwent on 3T scanners a
magnetization-prepared rapid acquisition with gradient echo
(resolution 1.0 × 1.0 × 1.2 mm3, repetition time [TR] 2,300
ms, echo time [TE] 2.95 ms), a fluid-attenuated inversion
recovery (FLAIR) (resolution 0.86 × 0.86 × 5.0 mm3, TR
9,000 ms, TE 90 ms), and a gradient recalled echo (GRE)–
based sequence, either a T2*-GRE (resolution 0.8 × 0.8 ×
4 mm3, TR 650 ms, TE 20 ms) or a susceptibility-weighted
image (SWI) (resolution 0.7 × 0.7 × 2 mm3, TR 28 ms, TE 20
ms). At baseline visit, 240 participants had T2*-GRE and 234
had SWI sequences. Longitudinal scans were coregistered and
reviewed concurrently. Due to harmonization among sites
and vendors, some participants switched sequence at follow-
up from SWI to T2*-GRE (n = 153). The T2*-GRE was
tailored to be sensitive to small CMHs with an acquisition
time of ;2.5 minutes.

Image Processing and Analyses
CMHs, macrohemorrhages, and superficial siderosis were
identified on either T2*-GRE or SWI and confirmed by co-
authors K.K. and C.R.J. using the same methodology for
cross-sectional and longitudinal evaluation previously de-
scribed by Kantarci et al.18 Lesions ≤10 mm that were

dissociable from small vessels were counted as definite
CMHs. Macrohemorrhages were larger hemorrhagic lesions
visible on multiple slices and superficial siderosis was defined
by visible signal abnormalities along the pia. The CMH lo-
cation was reported as deep (basal ganglia, brainstem, thala-
mus), lobar (supratentorial cortico-subcortical areas of the
frontal, parietal, temporal, and occipital lobes), or cerebellar.
All findings reported from visual inspection of the images
passed quality control from the Mayo Clinic. White matter
hyperintensity (WMH) volumes were extracted from FLAIR
images using the lesion segmentation toolbox in SPM8.19 The
cortical thickness of precuneus and inferior parietal, regions
known to be highly affected in DIAD,20,21 and the hippo-
campal volume were measured using FreeSurfer software
(surfer.nmr.mgh.harvard.edu/).

Statistical Analysis
Demographic, clinical, and vascular-related measures were
compared among noncarriers, carriers without CMHs, and
carriers with CMHs for the cross-sectional cohort and among
noncarriers, carriers without change in CMH counts, and
carriers with increase in CMH counts at follow-up for the
longitudinal subset. The mutation carrier group with CMHs
was older and more advanced in expected disease stage
(analysis of variance and Tukey honestly significant difference
[HSD] post hoc tests). Thus, age and family age at onset were
included as covariates in analysis of covariance/Tukey HSD
and logistic regression/Wald χ2 tests for group comparisons
of continuous and dichotomous variables, respectively.

Cross-sectional analyses evaluated the prevalence and loca-
tion of CMHs in carriers and noncarriers. Multivariable lo-
gistic regression analyses were used to evaluate factors
associated with the prevalence of CMHs (dichotomized as yes
vs no) in noncarriers and carriers with the stepwise selection
method. The goodness of model fit was evaluated using the
Hosmer and Lemeshow test.22 Because of the relatively small
number of events, the penalized maximum likelihood method
was used to estimate the parameters and profile likelihood
confidence intervals (CIs) were reported for odds ratios
(ORs).22 Fisher exact tests investigated effect of mutation
types (PSEN1/PSEN2/APP) and subtypes (PSEN1mutation
before/after codon 200 and APP-Dutch/APP-non-Dutch) on
prevalent or incident CMHs.

To determine whether the number of CMHs at baseline
influenced the rate of incident CMHs in carriers, the severity
of CMH finding was categorized as follows: no (0 CMHs),
mild (1 CMH), moderate (2–4 CMHs), and severe (more
than 4 CMHs). Similar categorization was used previously to
evaluate association of CMHs with cognitive decline.23

Generalized linear mixed effects (LME) models were used to
estimate the rate of change in CMHs for asymptomatic car-
riers and symptomatic carriers and to evaluate whether the
presence of CMHs at baseline (dichotomized as yes vs no), its
increase (dichotomized as yes vs no), or the number of CMHs
at baseline, respectively, were associated with the longitudinal
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change in cortical thickness, hippocampal volume, WMH
volumes, CDR-SB, and the cognitive composite among car-
riers.24 To discount potential effects of pathology in Dutch

mutation carriers, all analyses were also run excluding this
group. The type of scanner sequence (T2*-GRE, SWI, and
SWI to T2*-GRE) was controlled for in the longitudinal

Table 1 Demographics of Cross-Sectional Data

Characteristics NC

MC

p ValueNo CMH CMH+

N (PSEN1/PSEN2/APP) 201 284 (212/23/49) 26 (20/1/5) —

PSEN1 post-c200, n (% PSEN1) — 135 (64) 15 (75) —

APP Dutch, n (% APP) — 9 (18) 1 (20) —

Age, y 37.5 (11.2) 37.1 (10.6) 46.7 (10.5)*,† <0.0001

EYO, y −10.2 (11.6) −8.8 (11.0) 1.6 (8.3)*,† <0.0001

Family mutation age at onset, y 48.3 (6.8) 46.4 (7.8)‡ 45.6 (6.6) <0.05

Education (3 missing) 14.3 (2.9) 14.3 (3.1) 13.6 (3.0) 0.08

Male 86 (42.8) 118 (41.5) 17 (65.4) 0.06

APOE «4+ 61 (30.3) 86 (30.3) 6 (23.1) 0.74

Cases with diabetesa (1 missing) 7 (3.5) 3 (1.1) 2 (7.7) 0.17a

Cases of hypercholesterolemiaa (10 missing) 25 (12.7) 37 (13.3) 4 (15.4) 0.65a

Cases with hypertensiona 24 (11.9) 14 (4.9)‡ 5 (19.2) <0.05a

Diastolic blood pressure,a mm Hg 76.4 (10.5) 74.5 (9.6) 81.7 (9.3)§ <0.005a

Systolic blood pressure,a mm Hg 123.0 (17.0) 121.1 (13.3) 129.4 (12.7) 0.068a

Mean arterial pressure,a mm Hg 91.9 (11.7) 90.0 (9.8) 97.6 (9.3){ <0.005a

CDR-Global >0b 12 (6.0) 89 (31.3)* 20 (76.9)* <0.0001b

CDR-SBb 0.05 (0.18) 1.19 (2.91)* 2.75 (2.37)* <0.0001b

Cognitive compositeb (39 missing) 0.01 (0.63) −0.44 (1.00)* −1.51 (1.02)*,§ <0.0001b

Hachinski Ischemia Scorea (1 missing) 0.20 (0.52) 0.25 (0.70) 1.15 (2.15)*,† <0.0001a

Abnormal gaita 5 (2.5) 15 (5.3) 6 (23.1)**,{ <0.05a

Tremora 10 (5.0) 17 (6.0) 1 (3.8) 0.61a

WMH volume,a mm3 (17 missing) 2,504.7 (3,479.5) 4,895.9 (9,775.9)‡ 21,568.1 (32,725.2)*,† <0.0001a

Precuneus thickness,a mm (18 missing) 2.38 (0.12) 2.30 (0.21)* 2.12 (0.23)*,{ <0.0001a

Hippocampal volume,a mm3 (18 missing) 8,816.1 (643.2) 8,456.5 (1,139.8)* 7,557.8 (1,564.2)*,{ <0.0001a

CMH prevalencec 6 (3.0) 26 (8.4) <0.05c

CMHs baseline,c median (lower – upper quartile) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.16c

Abbreviations: APP = amyloid precursor protein; CDR-Global = Clinical Dementia Rating global score; CDR-SB = Clinical Dementia Rating Sum of Boxes;
EYO = estimated years to symptom onset; PSEN = presenilin; PSEN1 post-c200 = presenilin-1 mutation position after codon 200; WMH = white matter
hyperintensity.
Values are n (%) or mean (SD). Demographic data are shown for noncarriers (NC), for mutation carriers without cerebral microbleeds (MC no CMH), and for
carriers with CMHs (MC CMH+) at baseline. The groups had similar proportions of men and APOE e4+ but the MC CMH+ group was older. Thus, age was
included as a covariate in the comparisons of age-dependent demographic variables (a,b,c). The MC CMH+ group was particularly affected by cognitive
impairments, motor impairments, and stroke history at baseline.
*<0.0001: Significantly different from NC.
†<0.0001: MC CMH+ significantly different from MC no CMH.
‡<0.05: Significantly different from NC.
§<0.005: MC CMH+ significantly different from MC no CMH.
{<0.05: MC CMH+ significantly different from MC no CMH
**<0.005: Significantly different from NC.
a Age-adjusted p values.
b Age and family age at onset adjusted p values.
c Age and sequence type adjusted p values.
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Table 2 Demographics of Longitudinal Data

Characteristics NC

MC

p ValueNo change in CMH Increase in CMH

N (PSEN1/PSEN2/APP) 127 195 (143/13/39) 23 (15/0/8) —

PSEN1 post-c200, n (% PSEN1) — 90 (63) 11 (73) —

APP Dutch, n (% APP) — 5 (13) 5 (63) —

Baseline age, y 36.8 (10.2) 37.0 (10.7) 47.0 (7.5)*,† <0.0001

Visit gaps, y 1.4 (0.6) 1.2 (0.6)** 0.9 (0.3)*,{ <0.0001

Baseline EYO, y −10.9 (10.5) −9.1 (11.0) 1.6 (4.9)*,† <0.0001

Family mutation age at onset, y 48.1 (6.0) 46.6 (7.4) 45.7 (6.5) 0.11

Education 15.1 (2.7) 14.3 (3.1) 14.6 (2.7) 0.06

Male 52 (40.9) 83 (42.6) 12 (52.2) 0.61

APOE «4+ 35 (27.6) 62 (31.8) 5 (21.7) 0.50

Cases with diabetesa (1 missing) 2 (1.6) 1 (0.6) 0 (0) 0.65a

Cases of hypercholesterolemiaa (10 missing) 11 (8.9) 26 (13.8) 4 (17.4) 0.44a

Cases with hypertensiona 12 (9.4) 8 (4.1) 3 (13.0) 0.12a

Baseline diastolic blood pressure,a mm Hg 74.6 (10.3) 74.0 (9.2) 83.1 (10.8)§** <0.005a

Baseline systolic blood pressure,a mm Hg 119.3 (15.8) 120.5 (13.3) 132.0 (14.4){,** <0.005a

Baseline mean arterial pressure,a mm Hg 89.5 (11.1) 89.5 (9.7) 99.4 (11.1)§,** <0.005a

CDR-Global >0b 5 (3.9) 59 (30.3)* 17 (73.9)* <0.0001b

Baseline CDR-SBb 0.02 (0.10) 1.09 (2.64)* 2.13 (1.91)‡ <0.0001b

Baseline cognitive compositeb (16 missing) 1.67 (0.65) 1.05 (1.05)* 0.31 (0.95)** <0.0001b

Baseline Hachinski Ischemia Scorea (1 missing) 0.13 (0.46) 0.25 (0.73) 1.22 (2.21)*† <0.0001a

Abnormal gaita 2 (1.6) 10 (5.1) 4 (17.4)‡ <0.05a

Tremora 5 (3.9) 11 (5.6) 2 (8.7) 0.82a

Baseline WMH volume,a mm3 (2 missing) 1,854.8 (1,919.1) 4,035.8 (7,024.3) 23,040.9 (33,957.0)*,† <0.0001a

Baseline precuneus thickness,a mm (8 missing) 2.38 (0.12) 2.30 (0.20)** 2.17 (0.19)** <0.0001a

Baseline hippocampal volume,a mm3 (8 missing) 8,812.5 (655.6) 8,434.9 (1,101.8)** 7,579.1 (1,534.8)**,{ <0.0001a

CMH prevalencec 3 (2.4) 7 (3.6) 14 (60.9)*,† <0.0001c

CMHs baseline,c median (lower – upper quartile) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 1.0 (0.0–6.0)*,† <0.0001c

Abbreviations: APP = amyloid precursor protein; CDR-Global = Clinical Dementia Rating global score; CDR-SB = Clinical Dementia Rating Sum of Boxes;
EYO = estimated years to symptom onset; PSEN = presenilin; PSEN1 post-c200 = presenilin-1 mutation position after codon 200; WMH = white matter
hyperintensity.
Values are n (%) or mean (SD). Baseline demographic data are shown for noncarriers (NC), for carriers without change in cerebral microbleeds at
follow-up (MC no change in CMH), and for carriers with increase in CMHs at follow-up (MC with increase in CMH). The groups had similar proportions
of men and APOE e4+ but the MC with increase in CMHs group was older. Thus, age was included as a covariate in the comparisons of age-dependent
demographic variables (a,b,c). The MC CMH+ group was particularly affected by cognitive impairments, motor impairments, and stroke history at
baseline.
*<0.0001: Significantly different from NC.
†<0.0001: MC CMH+ significantly different from MC no CMH.
‡<0.05: Significantly different from NC.
§<0.005: MC CMH+ significantly different from MC no CMH.
{<0.05: MC CMH+ significantly different from MC no CMH
**<0.005: Significantly different from NC.
a Age-adjusted p values.
b Age and family age at onset adjusted p values.
c Age and sequence type adjusted p values.
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analyses. Sensitivity analyses were also performed to in-
vestigate the effect of other factors such as baseline age,
baseline EYO, APOE e4 status, sex, MAP, and sequence type.
The normality assumption was examined using histograms
and the Q-Q (quantile-quantile) plots of the residuals output
by the mixed effects models.

All analyses were conducted using SAS 9.4 (SAS Institute Inc.,
Cary, NC) or R (r-project.org). Missing data during the
longitudinal follow-up were considered missing at random.
All tests are 2-sided and p values less than 0.05 are considered
significant.

Data Availability
The DIAN data are available upon request. All requests for
data must be submitted in writing via the electronic data
request form available at dian.wustl.edu.

Results
Participant Clinical and Vascular-Related
Characteristics in the Presence of CMHs
The demographics, along with clinical, psychometric, and
vascular-related variables of the cross-sectional and longitudinal
cohorts, are summarized in tables 1 and 2. The clinical assess-
ments based on CDR and CDR-SB did not show differences
between carriers with and without CMHs, while cognitive as-
sessment with the cognitive composite measure revealed that
carriers with CMHs were more impaired than carriers without
CMH and noncarriers (table 1). Carriers with an increase in
CMH at follow-up were also more cognitively impaired com-
pared to carriers without change in CMHbased on the cognitive
composite. These 2 groups were similar in clinical measurements
(table 2). It is important to note that carriers with CMHs and
with increased CMH at follow-up were significantly older and at
a more advanced EYO (tables 1 and 2). After controlling for age,
carriers with CMHs had higher prevalence of abnormal gait
(table 1), but the prevalence of tremor, diabetes, and hyper-
cholesterolemia was similar in the 3 groups (table 1). Mean
arterial blood pressure, diastolic blood pressure, and Hachinski

Ischemic Score were significantly higher in carriers with CMHs
(table 1). Carriers with an increase in CMH count at follow-up
presented higher mean arterial blood pressure, diastolic and
systolic blood pressure, and Hachinski Ischemic score compared
to carriers without change in CMH at follow-up (table 2). A
stroke history was observed only in carriers with CMHs.

CMH Prevalence and Location
Of all 511 participants, 32 (6.3%) participants had CMHs at
baseline. Of the 310 carriers, 26 (8.4%) had CMHs, whereas of
the 201 noncarriers, only 6 (3.0%) had CMHs. The CMH
prevalence was 3.0% and 18.3% in asymptomatic and symp-
tomatic carriers, respectively. Thirteen participants with baseline
SWI had 32 CMHs overall; upon protocol change to T2*-GRE,
the same 32 CMHs were again detected, along with additional
new CMHs. Stepwise selection of multivariable logistic re-
gression analysis indicated that carriers were more likely to have
CMHs compared with noncarriers (OR 3.575, 95% CI 1.499,
9.904). Age and diastolic blood pressure were also significantly
associated with the odds of having CMHs (OR 1.071, 95% CI
1.034, 1.110 and OR 1.068, 95% CI 1.030, 1.108, respectively).
Controlling for these factors, CDR, systolic blood pressure,
MAP, sex, APOE e4 status (yes vs no), sequence type, and
education were not significantly associated with the odds of
having CMHs. Within carriers, the mutation type was not as-
sociated with the odds of having CMHs. When looking at CMH
severity, a count of 5 or more CMHs was identified in 1.6% of
the overall cohort, all of them mutation carriers (n = 8). CMHs
were found more in lobar areas than in deep areas, and prefer-
entially in occipital areas (figure 1A). Eighty-one percent of the
participants with CMHs (n = 26) had lesions strictly in lobar
areas while 3% had CMHs only in deep areas. Sixteen percent
had CMHs in both lobar and deep areas. Only 2 participants
(0.6%) developed CMHs solely located in the cerebellum.

CMHs, Other ARIA-H, andWhiteMatter Lesions
Besides CMHs, other types of hemorrhagic lesions were also
observed on GRE MRI in carriers. Though present in fewer
cases, these lesions can be severe (figure 1). Superficial side-
rosis, corresponding to subarachnoid hemorrhage, was
detected in 4 participants with and without CMHs (figure

Figure 1 Hemorrhagic Amyloid-Related Imaging Abnormality Observed on Gradient Echo MRI in Mutation Carriers

(A) Severe cerebral microhemorrhage (CMH) le-
sion observed in posterior cortico-subcortical
area (arrows indicate several CMHs) on T2* gra-
dient recalled echo. (B) Severe superficial side-
rosis (arrows) detected on susceptibility-
weighted image (SWI). (C) Macrohemorrhage
(arrow) observed in temporal area on SWI. In
carriers, CMHs (A), superficial siderosis (B), and
macrohemorrhages (C) are observed with an
overall prevalence of 8%, 1%, and 0.6%,
respectively.

Neurology.org/N Neurology | Volume 96, Number 12 | March 23, 2021 e1637

http://www.r-project.org
http://dian.wustl.edu/
http://neurology.org/n


1B). The 4 participants were from different mutation types (2
PSEN1 and 2 APP mutation carriers); 3 were symptomatic
and had or developed new CMHs. The most severe case
demonstrated widely spread superficial siderosis in the oc-
cipital lobe; this participant was an APPmutation carrier with
severe CMH counts (31, including 10 in the occipital) and a
macrohemorrhage in the occipital lobe. Macrohemorrhages
were overall observed in 2 APP mutation carriers, both with
CMHs and history of stroke (figure 1C). The other APP
carrier with macrohemorrhages was a Dutch mutation carrier
and presented with moderate CMH severity at baseline. In-
terestingly, the participants with the highest number of CMHs
in the overall cohort (135 CMHs at baseline) and the highest
increase in CMHs (3–139 CMHs over 7 years) did not have
any superficial siderosis or macrohemorrhages, suggesting
that the severity of CMHs is not always a predictor of the
presence of those abnormalities. However, concerning white
matter lesions (quantified here as WMH volume), we ob-
served that the severity of CMH in mutation carriers was
associated with increased white matter lesion volume (p <
0.0001, F3,208 = 26.2) and with larger volume increase at
follow-up (p = 0.001, F3,244 = 5.4), particularly when 5 or
more CMHs were present at baseline (14,847.1 mm3/y, p <
0.0001, 95% CI 7,555.6, 22,138.6). Similar results were ob-
served when Dutch mutation carriers were excluded.

CMH Increase and Baseline Status
A total of 345 participants had longitudinal data with 2 or
more visits over 0.9–9.1 years, with an average of 1.3 ± 0.6
years between evaluations. Three (2.4%) of the 127 noncar-
riers developed new CMHs during the follow-up, whereas 23
(10.6%) of the 218 carriers developed new CMHs (figure 2).
Among carriers, 14 (66.7%) of the 21 with CMHs at baseline
developed new CMHs during the follow-up, whereas only 9
(4.6%) of the 197 carriers without CMH at baseline de-
veloped new CMHs (p < 0.0001, Fisher exact test, OR 35.6,
95% CI 12.9, 98.6). Although some mutations presented with
+5 CMH/year (table 3), the odds of increased CMHs was not
influenced by the mutation type (PSEN1, PSEN2, or APP).
Subgroup analyses showed that Dutch mutation carriers have

higher odds of developing new CMHs compared to APP
Dutch noncarriers (p < 0.005, Fisher exact test, OR 5.8, 95%
CI 1.8, 22.6). No association was found regarding the muta-
tion position within PSEN1.

For all participants with CMHs at baseline, the rate of increase in
CMHs per year was 0.01 ± 0.04 for noncarriers and 0.58 ± 3.18
for carriers overall, but 8.95 ± 10.04 for the 13 carriers with 2
CMHs or more at baseline. In carriers, the rate of CMH accu-
mulation per year was associated with the number of CMHs
observed at baseline (p < 0.0001, F3,252 = 57.5). The presence of
2–4 CMHs and more than 4 CMHs at baseline were associated
with higher rate of increase per year (5.9 CMH/year, p < 0.0001,
95% CI 4.0, 7.7 and 11.2 CMH/year, p < 0.0001, 95% CI 9.4,
13.1 CMHs, respectively) (figure 3). Similar associations were
observed when excluding Dutch mutation carriers.

Figure 4 shows an individual’s longitudinal CMH count as a
function of EYO. All participants with more than 2 CMHs and
with an increased rate of 2 or more CMHs per year were
symptomatic carriers (figure 4). For carriers, the rate of CMH
occurrence increased near the expected date of symptom onset
(figure 4). Based on the generalized linear mixed effects model
analysis, only the symptomatic carriers had an increased rate in
CMHs during the follow-up (1.62 CMH/year, p < 0.0001, 95%
CI 0.95, 2.29). Similar analyses for APOE e4 status revealed
that APOE e4 status (noncarrier vs carrier) does not influence
the annual CMH increase whether accounting for Dutch mu-
tation carriers or not. Controlling for clinical symptomatic
status, sensitivity analyses indicated that baseline age, baseline
MAP, change of sequence type during the follow-up, APOE e4,
and sex were not associated with the change in CMHs.

CMH Presence/Increase and
Disease Progression
Among the carriers with longitudinal follow-up, participants
with CMHs or with an increase in CMHs at follow-up were
more advanced in expected disease stage. Adjusting for
baseline EYO, the LME model showed that having CMHs at
baseline or having an increase in CMHs at follow-up was not

Table 3 Dominantly Inherited Alzheimer Disease (DIAD) Mutations With High Incident Cerebral Microhemorrhages
(CMHs) per Year and Previously Characterized Mutation-Related Phenotypes

Gene Mutation
% Of carriers with +5
CMHs/year

Highest observed
CMH increase Reported phenotype in literature

APP APPdup 20 +12 CMH/y Seizures, intracerebral hemorrhage, severe cerebral amyloid angiopathy47

PSEN1 N135S 50 +20 CMH/y Cotton-wool plaques, mild amyloid angiopathy, corticospinal tract
pathology48

PSEN1 H163R 8 +20 CMH/y Myoclonus49

PSEN1 Y288H 25 +9 CMH/y Seizure, spastic paraparesis, parkinsonism50

PSEN1 A431E 14 +33 CMH/y Spastic paraparesis, widespread white-matter abnormalities in several
patients with motor impairments30

Abbreviations: APP = amyloid precursor protein; APPdup = duplication of APP gene; PSEN1 = presenilin-1.
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associated with faster cortical thinning of precuneus or in-
ferior parietal, hippocampal volume decrease or faster change
in white matter lesion volumes. Moreover, participants who
had CMHs at baseline demonstrated faster increase in CDR-
SB (0.67/y, p = 0.001, 95% CI 0.27, 1.07) and a larger, but
nonsignificant, annual decline in the cognitive composite
(−0.07/y, p = 0.14, 95% CI −0.16, 0.02) compared with those
without CMH at baseline. Similarly, carriers with increased
CMHs during the follow-up had a faster annual increase in
CDR-SB (0.75/y, p = 0.048, 95% CI 0.01, 1.49) and a larger,
but nonsignificant, annual decline in the cognitive composite
(−0.07/y, p = 0.38, 95% CI −0.21, 0.08) compared to those
without an increase in CMHs. Analyses excluding Dutch
mutation carriers did not alter these findings.

Discussion
In this cross-sectional and longitudinal study, we describe
microhemorrhage prevalence, location, severity, and inherent
increase in a population with DIAD, allowing study of AD
pathology with reduced influence from confounders of age-
related vascular risk factors. We found that CMH were asso-
ciated with worsening of clinical symptoms, occurred primarily
after the expected age at symptom onset, and that, once pre-
sent, they are likely to increase in number over time. These
findings have important implications for participant selection
andmonitoring in clinical trials involving theDIADpopulation.

Hypertension is a risk factor for cerebral hemorrhagic lesions
and a common feature of AD.2 Carriers with CMHs had
mildly elevated blood pressure (MAP 97.6 ± 9.3 mmHg) and
the presence of CMHs was associated with higher diastolic
and mean arterial pressure. However, blood pressure values
were not associated with accumulation of CMHs or cognitive
decline. These findings suggest that higher blood pressure
may still contribute to CMHs in a relatively young population
with a significant risk for AD. CMHs were mainly located in
lobar areas with a minority of deep CMHs, supporting the
hypothesis that CMHs in the setting of DIAD are largely due

to CAA rather than hypertensive arteriopathy.25 A recent
study from Graff-Radford et al.26 showed that Aβ burden is
associated with lobar CMHs but not deep CMHs in aging
populations, which supports CAA as the pathologic substrate
for multiple lobar CMHs. Previous studies showed pre-
dominance for lobar CMHs in familial and sporadic AD
populations.1,27 CAA has been observed in DIAD pop-
ulations28 with higher frequency than in sporadic AD,29 but
further postmortem evaluation is needed to correlate CAA
and CMHs in DIAD. Diabetes and hypercholesterolemia
were not found more frequently in carriers with CMHs.

Regarding clinical risks, carriers with CMHs in our study had
more severe gait disorders and cognitive impairment at base-
line. CMHs were previously reported in carriers of specific
DIAD mutations associated with parkinsonism and spastic
paraparesis.30 It has also been reported that the presence of
lobar CMHs predicted worsening of gait and parkinsonism in
patients with dementia, including AD.1 In our DIAD cohort,
abnormal gait but not tremor was associated with the presence
of CMHs. Further study is of interest to better establish the
relationship between motor deterioration and CMH in DIAD.
Symptomatic carriers were most likely to develop CMHs and
were the only group with a significant increase in CMHs per
year. Only a few occurrences of CMHs were observed before
the estimated year of symptoms onset, suggesting a relationship
between disease progression and occurrence of CMHs. A large
study involving 3,257 participants showed that the presence of
CMHs was associated with an increased risk for dementia,
including AD, and that the presence of more than 4 CMHs was
associated with cognitive decline.23 In our study, DIAD mu-
tation carriers declined faster as measured by CDR-SB when
they had CMHs or developed more CMHs.

Our cross-sectional cohort was larger than the longitudinal
one due to recent participants having only baseline evalua-
tions and due to participants’ transfer from the DIAN Ob-
servational Study to the DIAN Trials Unit. However, the 2
cohorts presented similar clinical characteristics, suggesting

Figure 2 Longitudinal Accumulation of Cerebral Microhemorrhages (CMHs) in a Mutation Carrier

Baseline, 1 year, and 2 year follow-up suscepti-
bility-weighted image scans of 1 participant
showing longitudinal accumulation of CMHs (ar-
rows). The total number of CMHs observed on the
overall scan was 6, 14, and 26, respectively.
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comparability between cross-sectional and longitudinal anal-
yses. As an international, multisite, longitudinal study, we
harmonize protocols across sites. In our dataset, participants
had either SWI or T2*-GRE sequences at each evaluation,
with some sites changing from SWI to T2*-GRE for harmo-
nization. Although the T2*-GRE employed was specifically
tailored for sensitivity (;2.5 minutes acquisition time instead
of traditional 30-second scan), this raises concerns regarding
differences in detection sensitivity.31 All CMHs observed on
SWI were detected on subsequent T2*-GRE, suggesting no
underdiagnosis of CMHs with the change in protocol.
Moreover, sensitive analyses showed no effect of sequence
type on CMH detection.

The prevalence of CMHs varies across studies on DIAD
populations. Whereas Ryan et al.,27 in a study including 12
individuals with DIAD, observed 25% prevalence of CMHs, a
previous DIAN study of 175 participants reported a 15%
prevalence of CMHs.32 Here we evaluated 511 participants
and found around 8% of mutation carriers with CMHs. Note
that the mean age of these studies on DIAD is below 50 years
while studies on sporadic AD reported a prevalence of CMHs
of 23%–24% in cohorts with a mean age above 67 years.33

In our study, age was an important factor for CMH prevalence
even though the group is relatively young (46.7 ± 10.5 years
for carriers with CMHs). Thus, the age of our population and
the variability in CMHs counts raise the question of the role of
genetic factors.34 Several studies reported increased risk of
vascular disease associated with specific mutations, particu-
larly within the APP and PSEN1 genes.27 The APP Dutch
mutation (Glu693Gln) is associated with CAA and cerebral

hemorrhage, reporting CMH prevalence of more than 60%.35

PSEN1 mutations after the codon 200 are possibly associated
with severe CAA.36 Using Exact tests for our small group size,
the odds of having CMHs or developing new CMH was not
influenced by mutation type (PSEN1, PSEN2, or APP) among
carriers. Analyses of subgroups within APP (Dutch vs non-
Dutch) or PSEN1 (before vs after codon 200) mutation
carriers revealed increased risk for incident CMHs in Dutch
mutation carriers. However, none of the findings excluding
Dutch mutation carriers were different, suggesting that our
findings were not driven by this group. The APOE e4 allele
has been shown to be associated with increased risk for de-
veloping CMHs37,38 but this risk was not necessarily found in
relation to the Dutch mutation.39 In our study, though we
could not establish a clear relationship with specific mutation
types, the APOE e4 allele was not associated with increased
risk for developing CMHs regardless of the inclusion of Dutch
mutation carriers. These findings demonstrate the variability
of genotype–phenotype relationships and the difficulty of
relying on genotype to estimate risks for vascular disorders in
disease progression and during clinical trials.

Previous studies showed that the presence of CMHs was asso-
ciated with the presence of superficial siderosis40 and indicates
increased risk for future macroscopic hemorrhages.41,42 A study
in normal aging reported a 0.2% prevalence of superficial side-
rosis with 23% of cases with superficial siderosis also having
CMHs.43 In our study, 0.19% of the overall cohort had super-
ficial siderosis and half of those with widely spread lesions had
CMHs. The 2 participants in the current study with

Figure 4 Longitudinal Accumulation of Cerebral Micro-
hemorrhages (CMHs) as a Function of Estimated
Years to Symptom Onset

Plot of CMH count as a function of estimated years from symptom onset
(EYO) within mutation noncarriers (blue, n = 127), asymptomatic mutation
carriers (green, n = 142), and symptomatic mutation carriers (red, n = 76).
Accumulation of CMH is more pronounced (increase to >5 CMHs, above red
dashed line) andmostly observed in symptomatic mutation carriers (n = 17,
22.4%) past EYO 0 (black dashed line). Three noncarriers (2.4%) and 6
asymptomatic mutation carriers (4.2%) had new CMHs to a lesser extent
(increase to <5 CMHs, under red dashed line).

Figure 3 Increase of Cerebral Microhemorrhages (CMHs)
as a Function of the Number of CMHs at Baseline
in Carriers

In mutation carriers (n = 218), the rate of CMH accumulation per year was
different as a function of the number of CMHs observed at baseline. The
presence of 2–4 CMHs (moderate CMH count) and more than 5 CMHs (se-
vere CMH count) at baseline predicted a higher rate of increase in CMHs at
follow-up (5.9 ± 0.9 and 11.2 ± 0.9 CMHs per year, respectively) relative to the
group with no CMH at baseline. ***p < 0.0001.
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macrohemorrhages had a history of stroke and CMHs with
differing severity (2 and 31 lobar CMHs). However, participants
with the highest CMH counts (135 lobar CMHs) and with the
greatest rate of change in CMHs did not have any superficial
siderosis, macrohemorrhages, or history of stroke, suggesting
that a high number of CMHs is not necessarily associated with
preexisting superficial siderosis or macrohemorrhages.

Whereas in this study we focused on ARIA-H, previous
studies found that ARIA edema types (ARIA-E) are closely
associated with the presence of CMHs. In our cohort, only
one participant had possible ARIA-E and we found no clear
evidence for a relationship with CMHs. WMH also observed
on FLAIR is a small vessel disease–related abnormality more
commonly observed in AD,44 including DIAD.45 A previous
DIAN study demonstrated that white matter lesions were
greater in individuals with CMHs compared to those without
CMHs and the presence of CMHs was associated with in-
creased WMH volume.32 We confirmed this finding with our
dataset. Having 5 or more CMHs was particularly associated
with change in WMH volume. However, having incident
CMHs was not associated with worsening WMH.

Mutation carriers were particularly at risk for developing
CMHs and the presence of CMHs at baseline was related to
risk for increase in CMH prevalence within 2 years. The
presence of CMHs is itself a risk for an increase in CMHs
without any treatments, as shown by the accumulation of
CMHs over time in our population followed longitudinally.
Studies in a healthy elderly population,3 preclinical AD,38

and a memory clinic population46 showed that occurrence of
new CMHs is linked to baseline CMHs and reported ORs
from 5 to 8, suggesting predictable development of new
CMHs when CMHs are present at baseline. Here, we report
a smaller OR of 3.6 for our cohort. However, while those
studies reported that 10%–12% of participants developed
new CMHs, we observed that 66.7% of the carriers who
already had CMHs developed new CMHs at follow-up in
our DIAD population. Incidence of CMHs was not associ-
ated with progressive brain atrophy but was associated with
worsening dementia as measured by CDR-SB. The expo-
nential and quasisystematic increase of CMHs makes these
findings critical for clinical trial monitoring. For participants
in clinical trials at risk for developing ARIA-H as a compli-
cation, it will be important to try to separate the natural
incidence of CMHs from adverse events related to therapy.
Aβ-modifying therapies, such as passive immunotherapy
with bapineuzumab, induced CMHs in patients with AD and
studies confirmed that the odds to develop CMHs after
treatment were increased.37 Based on these clinical trial
outcomes, AD working groups recommended excluding
participants with more than 5 CMHs (defined in our study as
a severe CMH finding).6 In DIAD, having 2–4 CMHs (de-
fined as moderate CMH severity) is a risk factor for de-
veloping more and the odds of increase appear higher than
what has been reported in sporadic AD. Based on these
results, recommendation guidelines for CMHs in such

populations may need to be revisited and adapted for familial
AD. This study additionally shows that any clinical trial on
individuals with DIAD needs careful participant selection
and monitoring.
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