
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

5-1-2021 

Gardnerella vaginalis promotes group B Streptococcus vaginal Gardnerella vaginalis promotes group B Streptococcus vaginal 

colonization, enabling ascending uteroplacental infection in colonization, enabling ascending uteroplacental infection in 

pregnant mice pregnant mice 

Nicole M Gilbert 

Lynne R Foster 

Bin Cao 

Yin Yin 

Indira U Mysorekar 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Nicole M Gilbert, Lynne R Foster, Bin Cao, Yin Yin, Indira U Mysorekar, and Amanda L Lewis 



OBSTETRICS

Gardnerella vaginalis promotes group B Streptococcus
vaginal colonization, enabling ascending uteroplacental
infection in pregnant mice
Nicole M. Gilbert, PhD; Lynne R. Foster, BS; Bin Cao, PhD; Yin Yin, MD; Indira U. Mysorekar, PhD; Amanda L. Lewis, PhD

BACKGROUND: Group B Streptococcus is a common vaginal bacte-

rium and the leading cause of invasive fetoplacental infections. Group B

Streptococcus in the vagina can invade through the cervix to cause

ascending uteroplacental infections or can be transmitted to the neonate

during vaginal delivery. Some studies have found that women with a

“dysbiotic” polymicrobial or Lactobacillus-depleted vaginal microbiota

are more likely to harbor group B Streptococcus. Gardnerella vaginalis is

often the most abundant bacteria in the vaginas of women with dysbiosis,

while being detected at lower levels in most other women, and has been

linked with several adverse pregnancy outcomes. Mouse models of group

B Streptococcus and Gardnerella vaginalis colonization have been re-

ported but, to the best of our knowledge, the two have not been studied

together. The overarching idea driving this study is that certain members of

the dysbiotic vaginal microbiota, such as Gardnerella vaginalis, may

directly contribute to the increased rate of group B Streptococcus vaginal

colonization observed in women with vaginal dysbiosis.

OBJECTIVE: We used a mouse model to test the hypothesis that

vaginal exposure to Gardnerella vaginalismay facilitate colonization and/or

invasive infection of the upper reproductive tract by group B Streptococcus

during pregnancy.

STUDY DESIGN: Timed-pregnant mice were generated using an

allogeneic mating strategy with BALB/c males and C57Bl/6 females. Dams

were vaginally inoculated at gestational day 14 with group B Streptococcus

alone (using a 10-fold lower dose than previously reported models) or

coinoculated with group B Streptococcus and Gardnerella vaginalis.

Bacterial titers were enumerated in vaginal, uterine horn, and placental

tissues at gestational day 17. The presence (Fisher exact tests) and levels

(Mann-Whitney U tests) of bacterial titers were compared between mono-

and coinoculated dams in each compartment. Relative risks were calcu-

lated for outcomes that occurred in both groups. Tissue samples were also

examined for evidence of pathophysiology.

RESULTS: Inoculation of pregnant mice with 107 group B Strep-

tococcus alone did not result in vaginal colonization or ascending

infection. In contrast, coinoculation of group B Streptococcus with

Gardnerella vaginalis in pregnant mice resulted in a 10-fold higher

risk of group B Streptococcus vaginal colonization (relative risk,

10.31; 95% confidence interval, 2.710e59.04; P¼.0006 [Fisher

exact test]). Ascending group B Streptococcus infection of the uterus

and placenta occurred in approximately 40% of coinoculated ani-

mals, whereas none of those receiving group B Streptococcus alone

developed uterine or placental infections. Immunofluorescence mi-

croscopy revealed group B Streptococcus in both the maternal and

fetal sides of the placenta. Histologic inflammation and increased

proinflammatory cytokines were evident in the setting of group B

Streptococcus placental infection. Interestingly, placentas from dams

exposed to group B Streptococcus and Gardnerella vaginalis, but

without recoverable vaginal or placental bacteria, displayed distinct

histopathologic features and cytokine signatures.

CONCLUSION: These data suggest that Gardnerella vaginalis

vaginal exposure can promote group B Streptococcus vaginal

colonization, resulting in a greater likelihood of invasive perinatal

group B Streptococcus infections. These findings suggest that

future clinical studies should examine whether the presence of

Gardnerella vaginalis is a risk factor for group B Streptococcus

vaginal colonization in women. Because Gardnerella vaginalis can

also be present in women without bacterial vaginosis, these

findings may be relevant both inside and outside of the context of

vaginal dysbiosis.

Key words: ascending infection, bacterial vaginosis, Gardnerella vagi-
nalis, group B Streptococcus, health disparities, microbiota, placenta,

uterus, vagina, vaginal microbiome

Introduction
Group B Streptococcus (GBS) is a Gram-
positive bacterium associated with

multiple adverse pregnancy outcomes
and life-threatening neonatal in-
fections.1,2 In the United States, GBS
colonization rates during pregnancy
range from 15% to 60%, depending on
the study population.3e5 Vaginal colo-
nization with GBS occurs in approxi-
mately 18% of pregnant women
worldwide6 and has been linked with
preterm birth (PTB),2,7e9 preterm pre-
mature rupture of membranes
(PROM),10 and neonatal intensive care
unit (NICU) admission.11 GBS vaginal
colonization is a risk factor for neonatal

transmission during delivery12,13 and to
infants during the postnatal period14 and
is associated with a 3-fold increased rate
of NICU admission.11 GBS in the vagina
during pregnancy can also invade
through the cervix to cause uteropla-
cental and fetal infections.12,15,16 Mouse
models of GBS vaginal colonization
during pregnancy display several of these
adverse pregnancy outcomes, including
invasive ascending infection and
placental inflammation,17,18 neonatal
transmission,19 and PTB or intrauterine
fetal demise (IUFD).17,18,20 Despite the
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adverse outcomes arising from GBS in
the vagina, host or microbial factors that
promote GBS vaginal colonization dur-
ing pregnancy are poorly understood.

A Lactobacillus-dominated vaginal
microbiome is regarded as beneficial and
is believed to ward off colonization by
potential pathogens such as GBS.
Although results vary, some clinical
findings have suggested that GBS colo-
nization is more likely in women with a
polymicrobial, “dysbiotic” vaginal
microbiota or those with decreased
Lactobacillus (Supplemental
Table 1).3,21e24 In addition, there is a
notable parallel in the epidemiology of
GBS colonization and the composition
of the vaginal microbiota. Black3,25e30

and African American21,31,32 women
have higher rates of GBS vaginal colo-
nization and are more likely to have a
polymicrobial vaginal microbiota,
defined either as bacterial vaginosis (BV)
or as community state type (CST)-IV,
than White women. The factors driving
the association between the vaginal
microbiota and GBS colonization and
infection are not clear. We hypothesized
that certain members of the dysbiotic
vaginal microbiota may facilitate vaginal
colonization or ascending uterine and
placental infection by GBS.

Gardnerella vaginalis (G. vaginalis) is
frequently the most abundant member
of the dysbiotic vaginal microbiota and
has historically been associated with the
clinical syndrome now defined as
BV.33e38 Some studies have implicated
BV in spontaneous abortion and
miscarriage,39 PROM,40 PTB,40,41 low
birthweight and clinical chorioamnio-
nitis,42 and adverse neonatal outcomes
including NICU admission and neonatal
sepsis.43 G. vaginalis has itself been
associated with adverse pregnancy out-
comes including spontaneous PTB,44

chorioamnionitis,45,46 and intra-
amniotic infection.47 Importantly, we
previously demonstrated in nonpreg-
nant mice that G. vaginalis can trigger
features of BV on its own (eg, clue-like
cells, sialidase activity, mucus degrada-
tion, epithelial exfoliation) and also en-
courages pathogenesis, including
ascending uterine infection, by other
urogenital pathogens.48e50 In a pregnant
mouse model, G. vaginalis triggered a
local proinflammatory cytokine
response and cervical remodeling.51

Here, we developed a mouse model of
vaginal coinoculation during pregnancy
to test the hypothesis that G. vaginalis
may enhance GBS colonization and/or
invasive infection during pregnancy.

Methods
Bacterial strains and growth
conditions
All experiments used a spontaneous
streptomycin-resistant strain of G. vagi-
nalis JCP8151B-SmR derived from a
strain isolated from a woman with BV,52

and a serotype III GBS strain COH1
isolated from a case of systemic neonatal
infection,53 expressing a plasmid con-
taining an erythromycin resistance
cassette. Antibiotic-resistant bacteria
were used because bacteria endogenous
to the mice may be able to grow on
nonselective plates with no antibiotic
agents. The use of antibiotic-resistant
strains of GBS and G. vaginalis in
conjunction with selective plates con-
taining those antibiotic agents provided
confidence that the colonies observed
and counted to monitor infection were
indeed the inoculated strains.

G. vaginalis was grown statically in
NYCIII media at 37�C in an anaerobic
chamber (Coy Laboratory, Grass Lake,
MI) andGBSwas grown statically in Todd
Hewitt (TH) media supplemented with
100 mg/mL erythromycin at 37�C aero-
bically overnight. After growth, the bac-
terial cultures were centrifuged, and each
pellet was resuspended in phosphate-
buffered saline (PBS). The optical den-
sity (OD) of the bacterial suspensions
weremeasured. The bacterial suspensions
were centrifuged and resuspended in the
appropriate volume of PBS according to
the equation ([OD600 of PBS sus-
pension]�[volume of PBS suspension
centrifuged])/(inoculum target OD600).
The target ODs were determined empir-
ically to be GBS to either OD¼8
(approximately 107 colony-forming units
[cfu] per 10 uL) or OD¼40 (approxi-
mately 108 cfu per 10 uL) andG. vaginalis
to OD¼10 (approximately 107 cfu per 10
uL). The actual doses of bacterial inocula
were confirmed by serial dilution and
plating immediately after performing
mouse inoculations.

Generation of timed-pregnant mice
Female C57BL/6NCR mice were ob-
tained from the National Cancer Insti-
tute (now Charles River Laboratories
International, Inc, Frederick, MD), and
male BALB/c mice were obtained from

AJOG at a Glance

Why was this study conducted?
This study aimed to develop a murine pregnancy model to test whether Gard-
nerella vaginalis (G. vaginalis)—an abundant vaginal bacterium in certain set-
tings, especially bacterial vaginosis (BV)—facilitates vaginal group B
Streptococcus (GBS) colonization or invasive intrauterine infection.

Key findings
Coinoculation with G. vaginalis promoted sustained GBS vaginal colonization
and enhanced the likelihood of uterine and placental GBS infection associated
with a strong inflammatory signature in pregnant mice. Sustained vaginal
detection of G. vaginalis was dispensable for GBS colonization or invasion. Even
in mice without detectable ascending infection or histologic inflammation, pla-
centas from those coexposed to GBS and G. vaginalis displayed other histo-
pathologic features and a distinct cytokine signature.

What does this add to what is known?
Gardnerella may be a causal factor that engenders susceptibility to GBS coloni-
zation and invasive infections during pregnancy. These findings might help
explain persistent disparities in invasive GBS infections because BV is more
common among Black women.
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Jackson Laboratory between January
2015 and April 2018. Four days before
mating (day 0), some urine-soaked
bedding from a BALB/c male’s cage was
added to the bedding of the females’
cages. The female mouse’s cycle is 4 to 5
days in length, but group-housed fe-
males often develop cycles that are more
irregular and longer. The pheromones in
the male urine will cause most of the
group-housed females to begin a new
estrus cycle by the third day of exposure.
At day 0, females were weighed, and their
stage of the estrus cycle was determined
visually. Females that were determined
to be in estrus were placed in the cage of a
Balb/c male (1:1) late in the afternoon
of day 0. The followingmorning (day 0.5-
day 1), females were removed from the
male cages, checked for the presence of a
vaginal plug, and returned to their orig-
inal cage. Females that were both visibly
rounded by gestational day (E)13 and
weighed a minimum of 120% of their
originalweight were classified as pregnant
and used for infection experiments.

Mouse vaginal coinoculation model
A schematic of the mouse model time-
line is shown in Figure 1A. At E14, dams
were restrained and inoculated vaginally
with 2 immediately successive 10 mL
inoculations as follows: PBS and PBS
(mock vehicle controls), G. vaginalis
then PBS, PBS then GBS, and G. vagi-
nalis then GBS. This small volume of
liquid was entirely taken up into the
vagina (it did not pool at the introitus).
To further ensure that the inoculum was
maintained in the vagina, the mouse was
restrained stationary with its tail end
raised up for approximately 30 seconds
before being returned to its cage. An
initial experiment confirmed that the
order of inoculation of the 2 bacteria did
not affect colonization or infection.
Previous studies reported that a 108 cfu
inoculum of GBS strain COH1 resulted
in vaginal colonization and ascending
intrauterine infection in >90% of preg-
nant mice and IUFD and/or PTB in 16%
to 40% of pups.18,54,55 As a positive
control, we included a small number of
mice inoculated with 108 cfu of GBS
(GBShigh) but used a 10-fold lower 107

dose of GBS (GBSlow) in our

coinoculation model. The dose of G.
vaginalis was approximately 108 cfu, and
the dose of GBSwas either 107 or 108 cfu.
Dams convalesced undisturbed (so as to
not trigger adverse pregnancy outcomes)
until they were sacrificed at E17 (as
explained in the following paragraphs).
Dams were sacrificed by cervical

dislocation under isoflurane anesthesia
at E17 to evaluate aseptically dissected
tissues from all animals at 1 time point
for bacterial cfu and histologic analysis
(Supplemental Material). In contrast to
studies using higher doses or more
invasive strains of GBS, we saw no evi-
dence that any dam delivered before E17
in 13 independent experiments
(although we did not continuously
monitor the dams with video surveil-
lance). Furthermore, there was no dif-
ference in fetal weight and incidence of
IUFD between mono- and coinfected
groups (Figure 1, BeD), and there was
no GBS recovered from the amniotic
fluid or fetuses.

Tissue collection
At E17, dams were sacrificed by cervical
dislocation under isoflurane anesthesia
to evaluate aseptically dissected tissues
from all animals at 1 time point. Vaginas
were collected and bisected longitudi-
nally; one-half was fixed in methacarn
(60% methanol, 30% chloroform, 10%
glacial acetic acid), and the other half was
homogenized for bacterial cfu determi-
nation (as explained in the following
text). A piece of uterine tissue was
collected and weighed from each horn
immediately adjacent to the cervix and
surrounding themost proximal fetus. All
placentas and fetuses from both horns
were collected and weighed. The uterine
tissue and the first 2 placentas proximal to
the cervix from the left horn were ho-
mogenized in sterile PBS. The remaining
placentas were fixed in methacarn.

Bacterial colony-forming unit
determination
To distinguish GBS andG. vaginalis from
endogenous mouse vaginal bacteria, cfu
were determined by serial dilution in 96-
well plates in PBS and plating on selec-
tive agar media (supplemented with
streptomycin for G. vaginalis and

erythromycin for GBS). GBS plates were
incubated at 37�C aerobically overnight.
Our previous experiments determined
that the plasmid conferring erythro-
mycin resistance in GBS is maintained
during in vivo vaginal colonization ex-
periments over extended time periods
(data not indicated). G. vaginalis plates
were grown at 37�C anaerobically for 48
hours. Colonies were counted and re-
ported as cfu per gram of tissue or cfu
per placenta.

Histologic analysis and placental
pathology score
Histologic slide preparation and hema-
toxylin and eosin staining of the fixed
vaginal and placental tissue were per-
formed by the Department of Develop-
mental Biology Histology Core at
Washington University. Placentas were
visualized with a ZEISS ApoTome mi-
croscope (ZEISS, Oberkochen, Ger-
many) using a 20� objective. A blinded
observer scored the pathophysiology
based on the presence or absence of
placental cellular damage and vascular
lesions characterized by dark eosin
staining and fragmented hematoxylin
signals as follows: 0¼absent or barely
seen, 1¼occasional, 2¼moderate, and
3¼abundant. Vaginas were visualized on
an BX61 microscope (Olympus, Tokyo,
Japan) using a 10� objective and scored
by a blinded observer for epithelial
keratinization and exfoliation as follows:
0¼absent, 1¼mild, and 2¼severe.

Placenta cytokine and
chemokine analysis
Placenta homogenates were centrifuged
for 5 minutes at 12,000g at 4�C, and the
supernatant was transferred (taking care
to avoid the pellet and any fat) to a fresh
Eppendorf tube and stored at �20�C
until analysis. Supernatants were thawed
on ice, centrifuged again at 4�C to
remove any remaining particulates, and
collected. Cytokine and chemokine
levels were measured using the Bio-Plex
Pro Mouse Cytokine 23-Plex Panel
multiplex cytokine bead kit (Bio-Rad
Laboratories, Hercules, CA), which
quantifies 23 different cytokines and
chemokines. The assays were performed
according to the manufacturer’s

Original Research OBSTETRICS ajog.org

530.e3 American Journal of Obstetrics & Gynecology MAY 2021

http://www.AJOG.org


instructions, except using 10-fold less
standard and half the number of coupled
beads and detection antibodies indicated
in the protocol.

Immunofluorescence
microscopy
Slides were stained for GBS (rabbit
polyclonal antibody 1:200, ab 53584;

Abcam, Cambridge, United Kingdom)
and the cytoskeleton (rabbit monoclonal
antivimentin antibody 1:200, ab 92547;
Abcam, Cambridge, United Kingdom).
After 3 PBSwashes at room temperature,
antigen-antibody complexes were
detected with species-specific Alexa
Fluor 488 and 594econjugated second-
ary antibodies (1:500; Invitrogen,

Carlsbad, CA). Slides were counter-
stained with 40,6-diamidino-2-
phenylindole (1:1000) for 10 minutes
to visualize the nuclei and mounted with
ProLong Gold (Life Technologies,
Carlsbad, CA). Images were obtained
with a ZEISS ApoTome microscope
using �40 or �60 oil immersion
objectives.

FIGURE 1
Coinoculation with G. vaginalis facilitates GBS vaginal colonization in pregnant mice

A, Schematic of allogeneic timed-pregnancy vaginal coinoculation model. B, Fetal weights at E17. Each dot represents the average fetal weight for an
individual dam. C, Number of dams with 0 (white bars) or 1 or more (black bars) instance of intrauterine fetal demise (IUFD) at E17. D, Fetal outcomes:
alive (white bars) or IUFD (black bars). The fraction of fetuses that died in utero (indicated above each bar) were used to calculate the IUFD rate indicated
across the top of the graph. E, The number of dams without and with bacterial cfu in vaginal homogenates. The percentage of dams with detectable cfu
indicated across the top of each bar. Fisher’s exact test, Triple asterisk indicates P<.001; single asterisk indicates P<.05. F, Bacterial titers in vaginal
tissue homogenates. Data points for GBS (circles) and G. vaginalis (triangles) cfu from the same tissues are connected with lines. The fraction of vaginas
with detectable cfu is indicated across the top of graph. Bars denote geometric mean; 11 independent experiments. Mann-Whitney U test; double
asterisks indicate P<.01; triple asterisks indicates P<.001. G, Titers of G. vaginalis and GBS present in vaginas were plotted for organs from which cfu
was detectable. No significant (ns) correlation (Spearman) was detected in either organ, even if the samples with only 1 of the 2 organisms were excluded
from the analysis.
cfu, colony-forming unit; E17, gestational day 17; G. vaginalis, Gardnerella vaginalis; GBS, group B Streptococcus; IUFD, intrauterine fetal demise; np, not powered; ns, not significant.

Gilbert et al. Group B Streptococcus and the vaginal microbiota. Am J Obstet Gynecol 2021.
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Statistics
Our primary outcome of interest was
vaginal colonization by GBS. To deter-
mine sample sizes, we anticipated 10%
of dams would be colonized vaginally
with GBS alone. We required a mini-
mumof 11mice in each group to detect a
significant difference (alpha, 0.05; beta,
0.2; power, 80%) if 60% of coinoculated
mice became colonized with GBS
(ClinCalc.com).We used 15 and 16 mice
in the GBS and GBSþG. vaginalis
groups, respectively, which powered us
to detect a significant difference if 52%
of coinoculated dams became colonized
with GBS. We used a minimum number
of animals in the high-dose GBS group
because we anticipated, based on previ-
ous studies, that 100% of dams would
become colonized. Thus, fewer animals
were required to detect a significant
difference between high-dose GBS and
low-dose GBS groups. Our study was
underpowered (at only 18%) to detect a
significant effect of GBS on G. vaginalis
because we only had 11 mice in the G.
vaginalisealone group. Based on the
observed rates of vaginal colonization by
G. vaginalis (G. vaginalis alone, 18%; G.
vaginalisþGBS, 38%), we would require
78 animals per group to detect signifi-
cance with alpha of 0.05, beta of 0.2, and

FIGURE 2
Coinoculation with G. vaginalis results in increased GBS invasive ascending
infection

A and B, The number of dams without or with bacterial cfu in uterine horn (A) or placental (B) tissue
homogenates. The percentage of dams with detectable cfu indicated across the top of each bar.
Fisher’s exact test; single asterisk indicates P<.05. C, Bacterial titers in uterine tissue homogenates.
The fraction of dams with detectable cfu is indicated across the top of the graph; 11 independent
experiments. Uterine tissue was not collected from every dam; therefore, data are from a subset of
animals included in Figure 1. D, Bacterial cfu in placental homogenates. The fraction of placentas

with detectable cfu is indicated across the top of
the graph; 13 independent experiments. C and
D, Bars denote geometric mean. Data points for
GBS (circles) and G. vaginalis (triangles) cfu from
the same tissues are connected with lines.
Mann-Whitney U test; double asterisks indicate
P<.01 and single asterisk indicates P<.05.
Mann-Whitney test comparing G. vaginalis titers
in placentas from mono- vs coinoculated dams
was P¼0.07 if the 2 outliers were excluded from
the analysis. E and F, Correlation of GBS (E) and
G. vaginalis (F) cfu in UH and vaginal homoge-
nates. G, Titers of G. vaginalis and GBS present
in placentas were plotted for organs from which
cfu were detectable. No significant correlation
(Spearman) was detected in either organ, even if
the samples with only 1 of the 2 organisms were
excluded from the analysis.
cfu, colony-forming unit; G. vaginalis, Gardnerella vaginalis; GBS,
group B Streptococcus; np, not powered; ns, not significant; UH,
uterine horn.

Gilbert et al. Group B Streptococcus and the vaginal micro-
biota. Am J Obstet Gynecol 2021.
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power of 80%, which is well beyond the
scope of mouse pregnancy models.
Prism 8.0 software (GraphPad, San
Diego, CA) was used for all statistical
analyses; tests used to analyze each data
set are indicated in the figure legends.
Relative risk (RR) was calculated using
the Koopman asymptotic method.

Ethics statement
The mouse experiments were performed
in strict accordance with the recom-
mendations in the Guide for the Care
and Use of Laboratory Animals and
approved by the Animal Studies Com-
mittee of Washington University School
of Medicine (protocol #20140114 and
#20170081).

Results
Consistent with previous reports,18,51 a
high dose (approximately 108 cfu) of
GBS or G. vaginalis alone in our model
(Figure 1, A) resulted in vaginal coloni-
zation (Figure 1, E and F). Vaginal
colonization was only rarely achieved
upon a 10-fold reduction of the GBS
inoculum (GBSlow¼107 GBS cfu, here-
after referred to as “GBS alone”)
(Figure 1, E and F). In contrast, coino-
culation with G. vaginalis resulted in a
10-fold increased risk of dams becoming
vaginally colonized by GBS compared
with animals inoculated with GBS alone
(69% vs 7%; RR, 10.31; 95% confidence
interval [CI], 2.710e59.04; P¼.0006
[Fisher exact test]) (Figure 1).

FIGURE 3
Coinoculation with G. vaginalis facilitates GBS maternal-fetal unit invasion

=
Representative images of immunofluorescence
microscopy of the maternal-fetal interface from
placentas isolated from dams inoculated with
GBSlow or GBSlowþGvag. GBS bacteria were
detected with a monoclonal antibody (green).
Sections were counterstained with DAPI (nuclei
[blue]) and vimentin (vasculature [red]). Similar
robust GBS staining was observed in placentas
that were collected from GBSlowþGvag dams
that had placental infection evident by detect-
able cfu. The negative control panel (bottom) is a
section from a GBSlowþGvag placenta stained in
parallel but omitting the GBS 1o antibody.
cfu, colony-forming unit; DAPI, 40 ,6-diamidino-2-phenylindole;
Gvag, Gardnerella vaginalis; G vaginalis, Gardnerella vaginalis;
GBS, group B Streptococcus.

Gilbert et al. Group B Streptococcus and the vaginal micro-
biota. Am J Obstet Gynecol 2021.
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Infection by GBS in utero is known to
be a progressive infection that starts with
GBS ascending from the vagina to the
cervix, followed by placental invasion,
causing chorioamnionitis and bacterial
invasion into the amniotic sac. Mice
receiving GBS alone never developed
ascending infection of uterine (0 of 9
dams) or placental tissues (0 of 23 dams)
(Figure 2, A and B). Note that RR wasN
because there were zero events of ute-
roplacental infection in the GBS-alone
group. Nevertheless, compared with
GBS alone, significantly more of the
GBSþG. vaginalis coinoculated dams
had detectable bacterial infections in
uterine (42%; P¼.0451 [Fisher exact
test]) and placental tissues (40%;
P¼.0178) (Figure 2, AeD). Immuno-
fluorescence microscopy of placentas
collected in parallel revealed that GBS
was present in both maternal and fetal
sides of the placenta (Figure 3); however,
GBS cfu were not detected in the amni-
otic fluid or fetus (data not indicated).
The absence of detectable GBS in am-
niotic fluid suggests (1) GBS infection
had not progressed to the point of
invading the amniotic sac, (2) GBS
invaded earlier but was cleared from this
niche by the time we sacrificed the ani-
mals, or (3) GBSwas present in amniotic
fluid, but at a level lower than our limit
of detection. We think the first

possibility is the most likely. When GBS
cfu were detected in the placenta or
uterus of coinoculated dams, GBS cfu
were also detected in the vagina
(Supplemental Table 2). Levels of GBS in
the vagina and uterine tissues were
significantly correlated (Figure 2, E).
Some dams from both the GBS-alone
and coinoculated groups showed evi-
dence of keratinization and exfoliation
of the vaginal epithelium at E17, but this
phenotype did not correlate with vaginal
colonization or ascending infection
(Figure 4).
Consistent with previous studies us-

ing high GBS doses or more invasive
GBS strains,17,55,56 placentas examined
for pathology revealed inflammatory
infiltrates at the decidual compartment
by the junctional zone specifically in
coinoculated dams with detectable
placental infections (Figure 5, A).
Consistent with the presence of inflam-
matory cells, there were high levels of
interleukin (IL)-1 beta, macrophage in-
flammatory protein-1 alpha, and gran-
ulocyte colonyestimulating factor
exclusively in placentas from coinoculated
dams that had detectable titers (triangle
symbols), suggesting this response
depended on active infection (Figure 5, B).
Other histopathologic phenotypes

were observed within the junctional
zone and labyrinth in placentas from

coinoculated mice that did not have
signs of histologic inflammation and
irrespective of whether live placental
bacteria were detected (Figure 6, A). In a
blinded analysis, compared with the
mock or GBS-alone groups, placentas
from coinoculated dams were signifi-
cantly more likely to exhibit histopa-
thology (Figure 6, B). Interestingly,
certain cytokines (different from those
elevated in infected placentas presented
in Figure 4, B) were elevated in mice
vaginally inoculated with bacteria, in-
dependent of detectable placental infec-
tion (Figure 6, C). Placental IL-2, IL-6,
and macrophage inflammatory protein-
1 beta were higher in mice inoculated
with bacteria (G. vaginalis, GBS alone, or
both) than PBS controls. Mice inocu-
lated with GBS alone (with or withoutG.
vaginalis) had significantly higher levels
of regulated upon activation, normal T
cell expressed, and presumably secreted
(RANTES). Eotaxin, interferon gamma,
IL-12p70, and keratinocytes-derived
chemokine (KC) (mouse functional ho-
molog of IL-8) were significantly higher
in the GBSþG. vaginalis group. IL-6,
RANTES, and KC were highest in pla-
centas with active infection (triangle
symbols), but the significant difference
between themock and GBSþG. vaginalis
groups remained even if the data from
infected placentas were excluded from

FIGURE 4
Alterations in the vaginal epithelium in GBS-colonized mice

A, Representative images of H&E-stained vaginal sections collected on E17. Area of keratinization and exfoliation in boxed region is shown at higher
magnification. Phenotype was present in 0 of 4 mock, 6 of 8 GBS alone, 7 of 14 GBSþG. vaginalis, and 0 of 4 G. vaginalis dams. B, Vaginal keratinization
score. Each dot represents an individual dam. Filled circles denote tissues with detectable GBS cfu, and filled triangles denote detectable GBS and G.
vaginalis cfu in the vaginal homogenates. Lines denote the mean�standard deviation. Mann-Whitney U test, asterisk indicates P¼.05.
cfu, colony-forming unit; E17, gestational day 17; G vaginalis, Gardnerella vaginalis; GBS, group B Streptococcus; H&E, hematoxylin and eosin.
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the analysis. Together, these data suggest
that vaginal exposure to bacteria can
trigger histopathology and a placental
cytokine response that overlaps with, yet
is distinct from, the response present
during active placental infection.

To examine whether uterine infection
was evident at earlier time points, 10
dams (GBS alone, n¼5; GBSþG. vagi-
nalis, n¼5) were sacrificed at 24 hours
after infection (E15). Dams inoculated
with GBS alone cleared the bacteria
rather rapidly, with only 1 of 5 having
detectable GBS cfu in the vagina at 24
hours. In contrast, G. vaginalis and GBS
were detectable in the vagina of 3 of 5
coinoculated dams. However, none of
these dams had detectable ascending
infection by either bacterium at 24 hours
(data not indicated), supporting the
conclusion that ascending infection by

both organisms required longer than 24
hours to occur in this model. These data
also indicate that the inoculation pro-
cedure did not introduce the bacterial
inoculum into the upper reproductive
tract.
Although the experiments were not

originally designed to investigate the ef-
fect of GBS on G. vaginalis, we note that
38% of coinoculated dams had detect-
able vaginal colonization with G. vagi-
nalis compared with 18% of dams
inoculated with G. vaginalis alone
(Figure 1).G. vaginalis and GBS cfu were
not significantly correlated in the vagina
(Figure 1, G). A previous study using a
different strain of G. vaginalis inoculated
at E12e13 did not detect uterine or
placental infection at E15.51 In our
model, the rate of G. vaginalis placental
infection at E17 was 9% in mice

inoculated with G. vaginalis alone and
30% in mice coinoculated with GBS
(Figure 2, B). Although these findings
are potentially interesting, we were un-
derpowered to detect significant differ-
ences between the proportions for G.
vaginalis vaginal colonization and
placental infection. Unlike GBS, G. vag-
inalis titers in vaginal and uterine horn
tissues were not significantly correlated
(Figure 2, F). Moreover, 7 placentas had
both GBS and G. vaginalis cfu, but the
titers were not significantly correlated
(Figure 2, G). Nonetheless, among the
coinoculated dams, 2 with no detectable
vaginal titers of G. vaginalis had G. vag-
inalis cfu in uterine horn tissue, one of
which also had placental titers
(Supplemental Table 2). Similarly, 5
coinoculated dams with no detectable G.
vaginalis in the vagina nonetheless had
evident ascending GBS infection
(Supplemental Table 2).

Comment
Principal findings
Coinoculation of pregnant mice with
Gardnerella led to a 10-fold higher RR of
vaginal colonization with GBS. In this
model, invasive infections of uterine and
placental tissue by GBS only occurred in
coinoculated animals. These data are
consistent with our stated hypothesis
that G. vaginalis may enhance GBS
colonization and invasive infection.
Levels of invasive GBS in uterine tissue
were proportional to the GBS vaginal
burden. Ascending G. vaginalis uterine
and placental infection also occurred,
including in mice that did not have
detectable vaginal titers. This suggests
that after ascension of G. vaginalis, the
mouse was able to clearG. vaginalis from
the vagina, but not from the upper
reproductive tract. Sustained vaginal
colonization by G. vaginalis was also not
required to enhance GBS ascending
infection. Finally, coinoculation with
GBS and G. vaginalis resulted in
placental histopathology even in the
absence of placental infection.

Clinical implications
Our results provide causal information
regarding the effect of G. vaginalis on

FIGURE 5
Placental inflammation is evident in coinoculated dams with detectable GBS
placental infection

A, H&E staining reveals prolific PMNs, cell debris, and monocytes in the decidual compartment by the
junctional zone (black arrow) in placentas from the GBSlowþGvag dams that had detectable infection.
Scale bars, 20 mm (top, 40� images) and 100 mm (bottom, 10� images). B, Cytokine/chemokine
levels in placenta homogenates. Black triangles denote placentas that had detectable bacterial cfu.
cfu, colony-forming unit; Dec, decidua; G-CSF, granulocyte colonyestimulating factor; Gvag, Gardnerella vaginalis; GBS, group B
Streptococcus; H&E, hematoxylin and eosin; IL-1b, interleukin 1 beta; Jun, junctional zone; Lab, labyrinth; MIP1a, macrophage in-
flammatory protein-1 alpha; PMNs, polymorphonuclear leukocytes.
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GBS vaginal colonization that generates
a specific and testable question for clin-
ical research application. Namely, is G.
vaginalis a risk factor in women that
contributes to GBS colonization and
neonatal GBS disease? Two observations
from the clinical literature already

suggest that this could be true. First,
some data inwomen show an association
between GBS colonization and BV and
intermediate Nugent score, both of
which have high levels of G. vaginalis.3,21

Second, Black and African American
women have disproportionately high

rates of GBS colonization and neonatal
infections3,21,25e27,31 and are also more
likely to have a polymicrobial vaginal
microbiota or BV.28e30,32 As of 2016, the
rate of severe GBS infections within the
first week of life in the United States was
300% higher in Black infants than their

FIGURE 6
Coinoculation with GBS and G. vaginalis adversely affects the placenta independent of sustained ascending infection

A, Representative images of H&E-stained fixed placental sections from dams inoculated with bacteria, but without detectable placental infection, or mock
controls. Placentas from GBSlowþG. vaginalis show cellular damage, characterized by dark eosin staining and fragmented hematoxylin signals (arrows),
exclusively within the Jun and Lab layers. Scale bars, 50 mm. B, Blinded scoring of the placental pathologic features shown in panel A; 2 independent
experiments, 3 dams per group. C, Cytokine and chemokine levels in placenta homogenates. A Kruskal-Wallis test was performed, followed by Dunn’s
multiple comparisons test comparing each bacterial group with the PBS control group. Single asterisk indicates P<.05; double asterisks indicate P<.01.
Gvag, Gardnerella vaginalis; G vaginalis, Gardnerella vaginalis; GBS, group B Streptococcus; H&E, hematoxylin and eosin; IFN-g, interferon gamma; IL-2, interleukin 2; IL-6, interleukin 6; IL12(p70),
interleukin 12 p70; Jun, junctional zone; KC, keratinocyte-derived chemokine; Lab, labyrinth;MIP-1b, macrophage inflammatory protein-1 beta; RANTES, regulated upon activation, normal T cell expressed,
and presumably secreted.
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White counterparts.57 Furthermore, a
recent study showed that African
American women had a higher rate of
conversion from GBS-negative to GBS-
positive status between the time of
routine screening and presentation at the
labor and delivery unit (RR, 2.0; 95% CI,
1.02e3.8).58 Understanding the factors
that contribute to racial disparities in
GBS colonization is necessary for the
development of measures to limit the
disproportionate burden of GBS disease.
Our findings warrant future clinical
studies to determine whether vaginal
colonization by G. vaginalis is a risk
factor for GBS colonization, becoming
GBS positive after antenatal screening,
or for invasive GBS disease. The poten-
tial for a relationship between G. vagi-
nalis and GBS colonization and infection
may be relevant even outside of the
context of vaginal dysbiosis because G.
vaginalis has been detected, albeit at
lower levels than during BV, in the ma-
jority of women examined. IfG. vaginalis
proved to be a risk factor for GBS colo-
nization in women, this could translate
to improved screening for vaginal colo-
nization and treatment strategies in
specific at-risk populations.

Research implications
Further studies are needed to delineate
the mechanisms by which G. vaginalis
encourages GBS colonization, define the
determinants of ascending infection, and
examine how exposure to these bacteria
adversely affects the placenta indepen-
dent of active infection and whether
other aspects of pathogenesis are affeced,
such as PTB or vertical transfer to the
neonate.17,19 Our data suggest that even
transient vaginal exposure toG. vaginalis
may promote GBS colonization.
Furthermore, transient vaginal exposure
to GBS or G. vaginalis resulted in distinct
placental cytokine signatures and histo-
pathology, even in the absence of detect-
able placental infection. The findings are
consistent with other models in which
Gardnerella has been described as a
“covert pathogen,” a microbe that can
have pathologic effects despite being ab-
sent at the time and place disease features
manifest.49,50 The presence ofG. vaginalis
in mouse placental tissue in our model is

consistent with studies that have found
Gardnerella in human placenta59 and
provide a tool for investigating the impact
of this bacteria on tissues of the upper
reproductive tract during pregnancy.
Similar studies in mice could be per-
formed to examine whether additional
strains of GBS and G. vaginalis yield
similar results. Studies could be expanded
to test whether other bacteria associated
with BV or CST-IV could have a similar
effect as G. vaginalis on GBS colonization
and infection. Understanding how
different strain backgrounds of GBS or
G. vaginalis, or even othermembers of the
vaginal microbiota, contribute to findings
in women or in mouse models could also
yield insights important for future
research efforts aimed at treatment and
prevention.

Strengths and limitations
Key strengths of our study were the
development of a GBS/G. vaginalis
coinoculation model during allogeneic
pregnancy.60 The limitations necessi-
tated by the labor and cost-intensive
nature of the mouse pregnancy model
include that only 1 strain each of G.
vaginalis and GBS were tested, multiple
doses or variations in timing of bacterial
inoculation were not thoroughly exam-
ined, and observations were primarily at
a single time point. We used a 10-fold
higher dose of G. vaginalis than GBS;
therefore, coinoculated dams received a
higher total bacteria dose than those
inoculated with GBS alone. The bacterial
load in the vagina is significantly higher
in the context of BV than without BV.61

Therefore, even if the effect of G. vagi-
nalis on GBS infection in pregnant mice
is caused by the heightened overall bac-
terial load of the inoculum used, this is
directly relevant to the situation of BV in
women. Our primary focus was to
examine the effect of G. vaginalis on
GBS; thus, our studies included fewer
dams inoculated with G. vaginalis alone
and were underpowered to detect sig-
nificant effects of GBS on G. vaginalis.
Vaginal inoculation models in pregnant
mice have proven valuable,17e19,51,62 but
they do not recapitulate all features of
human pregnancy. Mice have a different
endogenous vaginal microbiota than

humans, and not all studies on women
concur with the interpretation that dys-
biotic communities are more likely to
harbor GBS (Supplemental Table 1).
Interestingly, a recent study showed that
the composition of the endogenous
vaginal microbiome can affect GBS
ascending uterine infection in nonpreg-
nant mice.63 As with previous GBS and
G. vaginalismouse models in pregnancy,
it is unknown whether or how the
endogenous microbiota in mice may
influence the observed phenotypes in
our model.

Conclusions
These data suggest that G. vaginalis plays
a causal role in promoting GBS coloni-
zation of the vaginal niche during
pregnancy. n
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SUPPLEMENTAL TABLE 1
Summary of the clinical literature examining relationship between GBS vaginal colonization and the vaginal microbiota

Study
Total, N GBS
(þ), n

Pregnancy
status Country/region

Method of vaginal microbiome
analysis Method GBS detection Significant findings

Meyn et al (2009)1 N¼1248
(þ), n¼814

Nonpregnant United States (White, 2496 visits;
Black, 1361 visits)

Nugent score Culture (Columbia agarþ5%
sheep blood and selective broth)
identified by colony morphology,
b-hemolysis, and catalase
reaction

GBSþ status positively
associated with intermediate
(adjusted OR, 2.1 [1.7e2.6];
P<.001) and BV (adjusted OR,
1.7 [1.4e2.0]; P<.001)a

No BV score, 0e3

Intermediate score, 4e6

BV score, 7e10

Meyn et al (2002)2 N¼1248
(þ), n¼365

Nonpregnant United States (White, 61.2%;
African American, 34.8%)

Nugent score (see above) Culture (Columbia agarþ5%
sheep blood and selective broth)
identified by colony morphology,
b-hemolysis, and catalase
reaction

GBSþ status more likely in
women with intermediate
(P<.05)a

Mu et al (2019)3 N¼66 (þ),
n¼22

Nonpregnant China 16S (V1eV2) GBS nucleic acid detection kit GBSþ group had higher
betadiversity and lower
Lactobacillus and higher
Prevotella, Megasphaera, and
Streptococcus relative
abundance (P<.01)b

Rosen et al
(2017)4

N¼428 (þ),
n¼92

Nonpregnant United States (“racially and
ethnically diverse”)

16S (V3eV4) CST IV-A microbiota
dominated by Streptococcus and
Prevotella

RT-PCR Significantly higher proportion of
GBSþ samples in CST IV-A
(P¼.001 [Fisher exact test])
Prevotella bivia and
Staphylococcus associated with
GBSþ (LDA score, >2.5)b

For samples with Ct 41e50,
recorded as positive only if
typical (mauve) colonies were
present on CHROMagar StrepB

Kubota et al
(2002)5

N¼4025
(þ), n¼408

Pregnant Japan Culture (aerobic, Trypticase Soy
Agar IIþ5% sheep blood,
Chocolate II Agar, and Drigalski
Agar, modified; anaerobic,
Brucella Agar medium with
hemin and vitamin K)

Culture (details not reported) GBSþ samples decreased a-
diversity, higher likelihood of
Klebsiella pneumoniae and
MRSA, and lower likelihood of
Lactobacillus, coagulase-
negative Staphylococcus, and
Prevotellab

Gilbert et al. Group B Streptococcus and the vaginal microbiota. Am J Obstet Gynecol 2021. (continued)
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SUPPLEMENTAL TABLE 1
Summary of the clinical literature examining relationship between GBS vaginal colonization and the vaginal microbiota (continued)

Study
Total, N GBS
(þ), n

Pregnancy
status Country/region

Method of vaginal microbiome
analysis Method GBS detection Significant findings

Cools et al (2016)6 N¼430 Nonpregnant (n¼229),
pregnant (n¼30),
adolescents (n¼60)

Sub-Saharan Africa (Kenya,
Rwanda, and South Africa)

Nugent score (see above) qPCR GBSþ status negatively
associated with BV (crude OR,
0.29 [0.12e0.70]; P¼.006;
adjusted OR, 0.43 [0.21e0.88];
P¼.022)

GBS PCRepositive samples
confirmed with Lim Broth culture

Hillier et al (1992)7 N¼7918 Pregnant United States Nugent score (see above) GBSþ status associated with no
BV or intermediate negative
association with BV

Brzychczy-Włoch
et al (2014)8

N¼42 (þ),
n¼15

Pregnant Poland Nugent score Culture (Columbiaþ5% sheep
blood agar)

No significant differences in the
numbers of H2O2 positive/
negative Lactobacillus spp or
Bifidobacterium spp between
GBSþ and GBS samples

Excluded samples with BV score
(7e10)

qPCR

MRS agar for Lactobacillus

Bifidobacterium agar for
Bifidobacterium

Rochetti et al
(2011)9

N¼405 (þ),
n¼103

Pregnant Brazil Nugent score Culture (Todd Hewitt, subcultured
in blood agar; colonies confirmed
by catalase and CAMP test)

Logistic regression analysis did
not detect significant association
between GBS status and
intermediate or BV GBS positively
associated with cytolytic
vaginosis

Intermediate (8.1%)

BV (10.9%)

Thorsen et al
(1998)10

N¼3174
(þ), n¼278

Pregnant Denmark (all White) Amsel criteria Culture (blood agar, GBS
confirmed by Gram stain and
coagulation test)

No significant association
between GBS status and BV

Honig et al
(2002)11

N¼250 (þ),
n¼50

Nonpregnant The Netherlands Nugent score (see above) Culture (blood agar and chocolate
agar, colonies grouped using
Streptex test)

No significant association
between GBS status and BV
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SUPPLEMENTAL TABLE 1
Summary of the clinical literature examining relationship between GBS vaginal colonization and the vaginal microbiota (continued)

Study
Total, N GBS
(þ), n

Pregnancy
status Country/region

Method of vaginal microbiome
analysis Method GBS detection Significant findings

Altoparlak et al
(2004)12

N¼150 (þ),
n¼41

Pregnant Turkey Nugent score (see above) Culture (details not reported) Lactobacillus detected less
frequently in GBS� group
(P<.01)

Rick et al (2017)13 N¼896 (þ),
n¼155

Pregnant Guatemala 16S (V3eV4) Cultured (CHROMagar StrepB and
in BBL Lim Broth; mauve or dark
pink colonies confirmed by GBS
latex agglutination)

GBSþ samples significantly
higher abundance of
Corynebacterium and lower
abundance in Aerococcus

BV, bacterial vaginosis; CAMP, Christie-Atkins-Munch-Peterson; CST, community state type; GBS, group B Streptococcus; H2O2, hydrogen peroxide; LDA, linear discriminant analysis; MRS, de Man, Rogosa, and Sharpe; MRSA, methicillin-resistant Staphylococcus
aureus; OR, odds ratio; qPCR, quantitative polymerase chain reaction; RT-PCR, reverse transcription polymerase chain reaction.

a Those who found a significant positive association between GBS vaginal colonization and BV or intermediate Nugent score; b Those who found a significant association between GBS vaginal colonization and lower Lactobacillus or the presence of a non-Lactobacillus
dominated microbiota (CST IV-A).

Gilbert et al. Group B Streptococcus and the vaginal microbiota. Am J Obstet Gynecol 2021.
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SUPPLEMENTAL TABLE 2
Organ infections in GBSDG. vaginalis coinfected dams

Mouse ID Placenta Uterus Vagina

32 No cfu ND GBS and G. vaginalis

14 GBS and G. vaginalis ND GBS and G. vaginalis

39 GBS and G. vaginalis ND GBS and G. vaginalis

44 GBS and G. vaginalis ND GBS and G. vaginalis

41 ND GBS and G. vaginalis GBS and G. vaginalis

85 GBS and G. vaginalis GBS and G. vaginalis GBS

255 GBS GBS GBS

95 No cfu GBS and G. vaginalis GBS

78 No cfu GBS GBS

224 GBS No cfu GBS

10 No cfu No cfu GBS and G. vaginalis

70 No cfu No cfu No cfu

89 No cfu No cfu No cfu

92 No cfu No cfu No cfu

235 No cfu No cfu No cfu

252 No cfu No cfu No cfu

cfu, colony-forming unit; G. vaginalis, Gardnerella vaginalis; GBS, group B Streptococcus; ID, identification; ND, not determined.

Gilbert et al. Group B Streptococcus and the vaginal microbiota. Am J Obstet Gynecol 2021.
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