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Materials and Methods 
Gene signatures. We used five categories of signatures from publications, referred as “literature 
signatures”: (i) curated sets of gene lists –referred as hallmark signatures (N=50, https://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp) (1), (ii) gene signatures associated with cell composition in 
PBMC –referred as cell type signatures (N=22) (2), (iii) vaccine protection and response signatures –
referred as vaccine signatures (N=13), (iv) progression from latent to active TB infection signatures –
referred as TB signatures (N=20) and (v) viral and bacterial infection signatures –referred as infection 
signatures (N=43). All signature descriptions, sources, references and gene lists are provided in Dataset 
S1 and compiled in part in ref (3). Of note, due to gene nomenclature conversion issues, some signatures 
may be missing some genes identified in the parent paper. 
 
Training datasets. We used 14 different training datasets from six studies: one study on dengue 
infection (4) (Dataset S1 – study 1),  one study on influenza H1N1 infection (5) (Dataset S1 – study 2), 
one study on trivalent Influenza vaccination comprising two cohorts, one with males (Dataset S1 – study 
3) and one with females (6) (Dataset S1 – study 4) – each comprising 3 datasets obtained at different 
timepoints (pre-vaccination, day 1 and day 14 post-vaccination), one study on hepatitis B virus (HBV) 
vaccination (7) (Dataset S1 – study 5) – comprising 3 datasets obtained at different timepoints (pre-
vaccination, day 3 and day 7 post-vaccination) and one study on tuberculosis (TB) vaccination in rhesus 
macaques (8) (Dataset S1 – study 6) – comprising 3 datasets obtained at different timepoints (pre-
vaccination, pre-challenge with TB and 28 days post-challenge with TB). Of note, several studies contain 
multiple non-independent datasets (or timepoints). This design is expected to help understand the biology 
of transfer transcriptome signatures and to monitor what are the earliest time points with predictive power.  
 
Test datasets. We used 3 test datasets from three studies: one study on bronchoalveolar lavage in 
SARS-CoV-2 infection (9) (Dataset S1 – study 7), one study on influenza infection (10) (Dataset S1 – 
study 8) and one longitudinal study on TB progression in latently infected individuals (11) (Dataset S1 – 
study 9). Of note, all test datasets were independent from each other and from any training datasets. 
 
Phenotypes used. We explored multiple phenotypes in the training and test datasets, that can be 
categorized in four groups, namely (i) severity of symptoms during viral infection (for dengue, influenza 
and SARS-CoV-2 infection studies), (ii) vaccine response (for both HBV and influenza vaccination 
studies), (iii) disease state - for TB vaccination study in rhesus macaque, and (iv) time to disease in the 
longitudinal study TB progression. Further description and the number of individuals in each phenotype 
category per study are provided in Dataset S1. Of note, the phenotype extracted from the publicly 
available datasets is not necessarily the one used in the original study. The differences in phenotype 
definition, if any, are provided in Dataset S1. As an example, we used categorical/binary phenotypes 
even when the original study used numerical phenotype in order to be consistent across datasets and to 
better mimic future potential practical use cases. 
 
Gene Signature evaluation in training datasets. A random forest model was run on each “literature 
signature – training dataset” pair (hereafter referred as S-D pair). In order to prevent overfitting the model 
to a specific pair and given the downstream goal of identifying genes that were common biomarkers 
across experiments and conditions, rather than specific to a single study or pair, hyperparameters were 
not tuned and were used as follow: number of trees (N=1,000); all other hyperparameters were the 
default in randomForest function from the R package “randomForest” (https://cran.r-
project.org/web/packages/randomForest/index.html). In the model, normalized gene expression of the 
subset of genes present in the signature was used to classify the phenotype of interest. For RNAseq input 
datasets, the normalization consisted in log10 (reads per million mapped read + 1e-7) and genes with 
less than 20 reads in every sample in the dataset were removed. For microarray input datasets, we 
retrieved the normalized data from the GEO repository, averaged the normalized signal of all probes per 
gene and finally used the log10 (average normalized signal per gene + 1e-7) as input for the model. The 
code used for running the random forest modeling was adapted from 
https://github.com/jasonzhao0307/R_lib_jason/blob/master/RF_output.R 
 
Given the small sample size of most datasets, the models were trained using leave-one-out cross 
validation (LOOCV), where for each sample of a dataset, all other samples from the same dataset are 
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used to train the RF model, and the resulting model is used to predict the label or phenotype of the 
remaining sample. The LOOCV strategy results in one RF model trained per sample per S-D pair. To 
obtain the combined gene importance feature for a specific S-D pair, the gene importance scores were 
averaged across all models from a given S-D pair, resulting in one score of “importance” per gene per S-
D pair, where the importance measure reflects the mean decrease in node impurity. The receiving 
operating characteristic (ROC) and precision recall (PR) area under the curve (AUC) are computed using 
the scores of the single left-out sample per trained model. 
 
Extraction of transfer signatures. Only literature signatures that had a ROC AUC percentile above a 
given threshold were used at this step. Percentiles were determined as follows: for each S-D pair, 100 
random gene lists of the same size were used to compare the performance of the literature signature. 
Percentiles were used to be able to compare the numbers across datasets that did not have the same 
case/control distributions. The thresholds of 70, 80 and 90 were empirically tested (Fig. S9) and the 70th 
percentile was chosen, as the two latter were too stringent (in terms of number of literature signatures 
that passed the threshold) when the signatures were split by group. In order to be able to compare the 
gene importance feature across literature signatures for a given training dataset, each gene literature 
signature importance feature was standardized to obtain a mean of 0 and a standard deviation of 1 (z-
scores). The z-scores were then aggregated, and the top unique genes were selected as representing the 
transfer signature. 
 
The number of genes in a transfer signature (N=10, 20 and 50) were empirically tested (Fig. S3). The 
size of 50 genes was chosen for further analyses, with the rationale that (i) 50 genes appeared to provide 
the best performance in the datasets for which the signature length appeared to play the largest impact 
and (ii) the larger the signature length the more likely the signature will generalize to other datasets under 
different conditions. We did however not test transfer signatures containing more than 50 genes for 
practicality purposes, as the foreseen use of transfer signature will not necessarily be associated with 
high-throughput sequencing, and a limited size signature has the potential to be more broadly applicable 
(for example if the markers are assessed through qPCR rather than RNAseq). 
 
Throughout the main text, we used the transfer signature derived from all contributing literature signatures 
(Fig. 3-5), but we also generated and tested transfer signatures based on hallmark and cell type 
signatures to assess whether they could be broadly applicable, see Fig S4-9. The gene lists of transfer 
signatures are provided in Dataset S1. 
 
Gene set overrepresentation was performed on the Biological Process GO ontology. Significance was 
judged by Benjamini-Hochberg correct p-value cutoff of 0.01. The top 10 significant GO sets are laid out 
in a plane by placing sets of higher overlap closer to each other. Specifically the ‘enrichplot’ and 
‘clusterProfiler’ R packages have been used (12). Gene enrichment for Tuberculosis and Dengue transfer 
signatures are provided in Dataset S1. 
 
Prediction in unseen test dataset. Genes identified as markers of “commonality” – present in transfer 
signatures - were used in an unsupervised analysis to cluster samples from new test datasets, that 
originated from independent studies (notably new condition, new organism or new infectious agent). The 
dimension reduction was performed using Uniform Manifold Approximation and Projection (UMAP), 
followed by Hierarchical Density-Based Spatial Clustering of Application with Noise (HDBSCAN) (13) 
which can cluster data of varying shape and density. In this approach, the only parameter required is the 
minimal number of samples per cluster. For this purpose, we tested empirically the minimal number, by 
identifying the number of samples per cluster that resulted in the lowest number of outliers multiplied by a 
penalty score equivalent to the square of the number of clusters. This approach limits the creation of 
excessive numbers of clusters, which could make interpretation difficult. The minimum number of samples 
per cluster was set to contain at least 7% of the total population. HDBSCAN was run using the hdbscan 
command from the R package “dbscan” (https://github.com/mhahsler/dbscan). The samples considered 
as outliers by HDBSCAN, were attributed to the closest cluster label using the 3 nearest neighbors with 
the knn command from the R package “dbscan” (https://github.com/mhahsler/dbscan). The code used for 
running the dimensionality reduction and unsupervised clustering was adapted from 
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https://github.com/NikolayOskolkov/ClusteringHighDimensions/blob/master/easy_scrnaseq_tsne_cluster.
R 
 
Once the clusters were identified, the inference of cluster attribution (case or control) was estimated 
based on the expression of the genes in the signature. Specifically, we did not directly compare the 
expression between training and test set as the range of expression is most likely more different across 
dataset than across phenotype within a dataset. We used the direction of the signal rather than the 
absolute value: for each gene present in the transfer signature, we compared the median expression in 
each cluster and recorded the direction of the signal in each cluster (high, low or intermediate - in the 
presence of more than 2 clusters). We performed the same in the training dataset where the transfer 
signature was obtained from, using the true labels (case/control) instead of clusters to group the samples. 
We then assessed which cluster in the test dataset had the highest proportion of genes that matched the 
label of interest in the training dataset (in terms of signal direction) and defined it as “case cluster”, while 
the other cluster(s) were defined as control cluster. In the rare case where two clusters had the same 
proportion of matches, we compared the sum of the absolute difference (in median expression) of the 
genes that matched the direction of the signal in the training dataset. Of note, we need to use biological 
understanding to decide which phenotype label in the training dataset (Dataset S1) would resemble the 
most the phenotype of interest (“case”) in the test dataset, if not the clusters might be inverted. For 
example, in the tuberculosis use case, when we used the transfer signatures obtained with the post-
challenge timepoint, we expected that the rhesus macaques that were not protected by the vaccine at the 
end of the study, were the most likely to resemble the individuals that were going to develop acute TB 
within in a year, as the rhesus macaques were already in a disease state at that time point and the 
unprotected animals were expected to have a much higher level of immune gene expression in the 
disease state. While on the opposite, when we used the transfer signatures obtained from the pre-vaccine 
or pre-challenge datasets, we expected the “case” phenotype to the be rhesus macaques that were 
protected by the vaccine at the end of the study, as the animals with higher basal level of immune gene 
expression (such as interferon stimulated genes) are expected to have a higher likelihood of vaccine 
protection. 
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Fig. S1. Study design in detail. This figure complements the study design depicted in Fig. 1.Three steps 
to progress from literature signatures to transfer signatures to prediction in unseen datasets. (A) each 
literature signature (N=148) is used with each training dataset (N=14) as an input to train a random forest 
model. In other words, there are 148 random forest models per training dataset. (B) The gene importance 
feature and ROC AUC from all random forest models obtained for a given training dataset is used as 
input to generate one “transfer signature” per training dataset. In other words, a single transfer signature 
is obtained by combining the information obtained from a set of literature gene signatures (here, we start 
with all literature signatures, excluding the signature coming from the same paper of a given training 
dataset). (C) Finally, the transfer signature derived from each training dataset can be used as an input for 
unsupervised clustering of an unseen test dataset. UMAP, Uniform Manifold Approximation and 
Projection. HDBSCAN, Hierarchical Density-Based Spatial Clustering of Application with Noise. LOOCV, 
leave-one-out cross validation. 
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Fig. S2. Performance of literature signatures as compared to cognate signatures. The classifying 
performance of the predicted phenotypes obtained from the random forest leave-one-out cross validation 
strategies using the literature signatures was assessed for each training dataset (Methods, Dataset S1). 
Both panels display the difference in performance (as measured in ROC AUC – Panel A – or PR AUC – 
Panel B) between the cognate signature (signature from the same paper than the dataset) and the best 
performing signature from the literature. When there were multiple signatures originate from the same 
paper than the training dataset the best performing one was used as “cognate”. The literature signatures 
that outperformed the cognate signature have a positive difference and inversely the ones that did not 
perform as well have a negative difference. The results are depicted for each group of signatures 
(Methods, Dataset S1) – ‘global’ encompasses all groups of signatures. The color code is provided in the 
legend. For both panels, there could be multiple reasons why the cognate signatures do not necessarily 
perform the best, including (i) the phenotype used for this study may differ from the parent study (f.ex. 
categorical phenotype rather than numerical; Dataset S1), (ii) the cognate signature may only apply to 
one timepoint of the parent dataset, and finally (iii) some genes from the cognate signature may not have 
been retrievable due to gene nomenclature conversion issue (Dataset S1). In any case, this validates 
that minor changes in the conditions or analytical settings can alter the results, supporting our strategy to 
focus on what is shared and transferable across studies rather than what is specific to a single study or 
condition. ROC, Receiver operating characteristic. AUC, area under the curve. PR, precision recall. 
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Fig. S3. Performance of transfer signatures of different sizes. The classifying performance of the 
predicted phenotypes obtained from the random forest models (with leave-one-out cross validation) using 
transfer signatures of varying sizes was assessed for each respective training dataset – where the 
transfer signatures were obtained from (Methods, Dataset S1). Three lengths of transfer signatures are 
depicted in different color and shape. The color code is provided in the legend. Panel A displays the ROC 
AUC obtained for each training dataset. Panel B displays the PR AUC obtained for each training dataset. 
The size of 50 genes was chosen for further analyses, with the rationale that (i) 50 genes appeared to 
provide the best performance in the datasets for which the transfer signature length appeared to play the 
largest impact and (ii) the larger the signature length the more likely the signature will generalize to other 
datasets with different conditions. We did not test transfer signatures containing more than 50 genes for 
practicality purposes, as the foreseen use of transfer signature will not necessarily be associated with 
high-throughput sequencing. ROC, Receiver operating characteristic. AUC, area under the curve. PR, 
precision recall. 
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Fig. S4. Performance of transfer signatures as compared to single signatures. The classifying 
performance of the predicted phenotypes obtained from the random forest models (with leave-one-out 
cross validation) using the transfer or single literature signatures was assessed for each training dataset 
(Methods, Dataset S1). Both panels display the difference in performance (as measured in ROC AUC – 
Panel A – or PR AUC – Panel B) between the transfer signature and the best single performing literature 
signature (including the cognate signature for the dataset). The transfer signatures that outperformed the 
best single literature signature have a positive difference and inversely the ones that did not perform as 
well have a negative difference. For the purpose of this analysis, we developed not only one transfer 
signature per training dataset (that was obtained when starting with all literature signatures, Fig. S1), but 
also one transfer signature for the cell type and hallmark group of signatures, per training dataset. In 
other words, we started with different subsets of literature signatures to compute the transfer signature 
and the results are depicted for those three groups of signatures (Methods, Dataset S1) – ‘global’ 
encompasses all signatures. The color code is provided in the legend. In most instances, the transfer 
signature outperforms the best performing single signature, with the advantage of increasing the 
likelihood of generalization in new datasets as transfer signatures are obtained from multiple literature 
signatures, reducing the risk of extracting condition/study specific markers. ROC, Receiver operating 
characteristic. AUC, area under the curve. PR, precision recall. 
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Fig. S5. Tuberculosis progression use case – comparison of transfer signature size performance. 
Top panel shows the study design as displayed in Fig. 4A. Bottom panel displays the enrichment of 
cases in the inferred case cluster compared to the other cluster(s) – y axis – using transfer signatures of 
differing size – x axis. The three plots represent the results obtained with transfer signatures trained with 
samples obtained at 3 different timepoints shown in the top panel: pre-vaccine, pre-infectious challenge 
and post-challenge. The results are depicted as boxplot with the individual data overlaid, where each dot 
represents the result obtained with a transfer signature derived from a different group of literature 
signatures (global, cell type and hallmark), as explained in Fig. S4 (see also Methods, Dataset S1). The 
enrichment per transfer signature group is further detailed for the 50-gene-long transfer signatures in Fig. 
S8.  
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Fig. S6. Severe viral disease use cases – comparison of transfer signature size and performance. 
Top panel shows the study design as displayed in Fig. 4B. Bottom panel displays the enrichment of 
cases in the inferred case cluster compared to the other cluster(s) – y axis – using transfer signatures of 
differing size – x axis. The results are depicted as boxplot with the individual data overlaid, where each 
dot represents the result obtained with a transfer signature derived from a different group of literature 
signatures (global, cell type and hallmark), as explained in Fig. S4 (see also Methods, Dataset S1). The 
enrichment per transfer signature group is further detailed for the 50-gene-long transfer signatures in Fig. 
S9.  Enrichment below 1 indicates that the “case” cluster was inversely inferred (Methods). Here, 
enrichment depicted as ≥8 indicate that all cases were correctly labeled/present in the inferred case 
cluster, as seen in Fig. 4B. 
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Fig. S7. Tuberculosis progression use case – comparison of transfer signatures obtained from 
different signature groups. Top panel shows the study design as displayed in Fig. 4A. Bottom panel 
displays the enrichment of cases in the inferred case cluster compared to the other cluster(s) using 50-
gene-long transfer signatures – y axis – versus the fraction of samples present in the inferred case cluster 
– x axis. The three plots represent the results obtained with transfer signatures trained with samples 
obtained at 3 different timepoints shown in the top panel: pre-vaccine, pre-infectious challenge and post-
challenge. Each dot represents the result obtained with a transfer signature derived from a different group 
of literature signatures (global, cell type and hallmark) – as explained in Fig. S4 and where ‘global’ 
encompasses all signatures (see also Methods, Dataset S1). The color code is provided in the legend. 
The missing dot for the cell type transfer signature trained on the TB pre-challenge dataset indicates that 
there were not enough (<50) genes present in the signatures that passed the initial 70th percentile 
threshold used to extract the transfer signature (Methods). 
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Fig. S8. Severe viral disease use cases – comparison of transfer signatures obtained from 
different signature groups. Top panel displays the study design. Bottom panel displays the 
enrichment of cases in the inferred case cluster compared to the other cluster(s) using 50 gene 
commonality signatures – y axis – versus the fraction of samples present in the inferred case cluster – x 
axis. Each dot represents the result obtained with a transfer signature derived from a different group of 
literature signatures (global, cell type and hallmark) – as explained in Fig. S4 and where ‘global’ 
encompasses all signatures (see also Methods, Dataset S1). The color code is provided in the legend. In 
the SARS-CoV-2 example, due to the small sample size, multiple transfer signatures obtained from 
different groups of signatures (global and hallmark) generated the same clustering, yielding to the same 
results in terms of enrichment and fraction and are therefore overlaid and non-visible individually. Here, 
enrichments depicted as ≥8 indicate that all cases were correctly labeled/present in the inferred case 
cluster, as seen in Fig. 4B. 
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Fig. S9. Number of literature signatures at different percentile threshold. The barplots display, for 
the three groups of signatures used to generate transfer signatures (global, cell type and hallmark), the 
number of signatures with ROC AUC higher than the 70th percentile (Panel A), 80th percentile (Panel B) 
and 90th percentile (Panel C) for each signature group. The classifying performance of the predicted 
phenotypes are obtained from the random forest models (with leave-one-out cross validation) using the 
literature signatures was assessed for each training dataset. The percentiles are obtained by comparing 
the literature signature performance to 100 random gene lists of the same size. The higher the percentile, 
the better the performance of the signature. The color code is provided in the legend. ROC, Receiver 
operating characteristic. AUC, area under the curve. 
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Dataset S1.  Description of training datasets, testing datasets, literature signatures and transfer 
signatures. (separate file) 
Abbreviation sheet – list of abbreviations used in the different sheets. 
Training dataset sheet – description and sources of the training datasets. 
Test dataset sheet – description and sources of the test datasets. 
Signature description sheet – description and sources of the literature signatures. 
Literature ENSG gene lists sheet – ENSEMBL gene ID list for all literature signatures. 
Literature ENSG gene list overlap – ENSEMBL gene ID of all genes that appeared in at least one 
literature signature, as well as the number of signatures they appeared in. 
Transfer signature gene lists sheet – ENSEMBL gene ID and gene name list for all transfer signatures 
Transfer signature gene list overlap - ENSEMBL gene ID and gene name of all genes that appeared in a 
least one transfer signature, as well as the number of transfer signature they appear in. 
All TS – Enriched Biological Process GO terms for the Dengue and TB transfer signatures. 
Dengue TS – Enriched Biological Process GO terms for the Dengue transfer signature for Figure 4. 
TB Pre-vaccine TS – Enriched Biological Process GO terms for the TB pre-vaccine transfer signature. 
TB Pre-challenge TS – Enriched Biological Process GO terms for the TB pre-challenge transfer signature. 
TB Post-challenge TS – Enriched Biological Process GO terms for the TB post-challenge transfer 
signature for Figure 4. 
 
 

Dataset S2. Performance of literature signatures compared to random lists of genes. (separate 
file) 
The classifying performance of the predicted phenotypes obtained from the random forest models (with 
leave-one-out cross validation) using the literature signatures was assessed for each training dataset 
(Methods, Dataset S1, Fig. 1 and Fig. S1). The columns represent the training datasets and the rows 
the literature signatures. In order to be able to compare the performance across datasets (which do not 
have the same case/control distribution), we evaluated the ROC AUCs in terms of percentiles. The 
percentiles are obtained by comparing the literature signature performance to 100 random gene lists of 
the same size. The higher the percentile the better the performance of the signature. Missing data – due 
to gene conversion issues or no expression in under the curve. 
 

Table S1. Target pairs and non-target pairs of training and test datasets. (separate file) 
We define “target pairs” as training-test pairs from diseases with apparent biological relationships. We 
define “non-target pairs” as training-test pairs from unrelated diseases. All possible pairs of training 
(n=14) and test datasets (n=3 “target pairs”, n=34 “non-target pairs”) were evaluated. The table provides 
the enrichment (a) and the F1 score (b) obtained when comparing the inferred case cluster versus the 
inferred control cluster (see step C in Figure 1). To facilitate comparison across test datasets with 
different prevalence of cases and control, for the enrichment metric, the scores are displayed as a rank 
within each test dataset (rank 1 indicates best performance). The highest score is also provided for each 
test dataset. The cells that represent an on-target comparison are highlighted in green. The off-target 
comparison that performed as well as on-target pairs are highlighted in yellow. All dataset descriptions 
are provided in Dataset S1. 
 


