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Supplementary Note 1: Assessing the impact of pruning and parameter
selection in KSTAR

Goal

1. Profile the impact of the heuristic prune on the characteristics of the kinase-substrate network

2. Explore the impact of applying different cutoffs to experimental datasets when determining which
phosphorylation sites to use as evidence.

Methods

For comparison to commonly used kinase-substrate networks, kinase-substrate annotations were
downloaded from PhosphoSitePlus [1]. The full NetworKIN prediction graph was downloaded for the
entire phosphoproteome and edges with weights less than 1 were removed [2]. A threshold of 1 was
selected in order to balance the number of edges that are removed from the network and the inaccuracy
often observed at low thresholds.

To look at sensitivity of KSTAR results to different evidence cutoffs in phosphoproteomic
experiments, we generated kinase activity predictions using different evidence sizes (number of
phosphorylation sites identified in original experiment used for prediction) for a tyrosine dataset [3] and
a serine/threonine dataset [4]. In both cases, the first test used all of the sites identified in the
experiment, and subsequent tests with smaller evidence sizes removed the least abundant sites from
analysis to mimic the effect of thresholding.

Table of Contents

Supplementary Figure 1 - Comparing the characteristics of pruned networks to PhosphoSitePlus and
NetworKIN (Page 3)
Supplementary Figure 2 - Assessing the stability of tyrosine predictions using different amounts of
sites as evidence, mimicking the effect of applying a threshold to the phosphoproteomic data to select
phosphosites used as evidences (Page 4)
Supplementary Figure 3 - Assessing the stability of serine/threonine predictions using different
amounts of sites as evidence, mimicking the effect of applying a threshold to the phosphoproteomic data
to select phosphosites used as evidence (Page 5)
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Supplementary Figure 1. Comparison of KSTAR pruned networks to PhosphoSitePlus
and NetworKIN Comparison of network characteristics for known kinase-substrate annotations from
PhosphoSitePlus (blue) [1], kinase-substrate predictions from NetworKIN thresholded with a value of 1
(remove edges with edge weights less than 1)(orange) [2], and the KSTAR ensemble of pruned networks
(green). A) Number of unique substrates found within each network. B) Fraction of sites identified
within an experiment that are also found within the kinase-substrate network. Experiments include
phosphoproteomic dataset for predictions found in Figures 2, 5, and 6 of the main text. Each point
on the plot represents a unique experiment (Tyrosine: n = 11 independent biological experiments,
Serine/Threonine: n = 6 independent biological experiments). While prediction algorithms using either
PhosphoSitePlus or NetworKIN will often have to drop > 50% of sites identified in an experiment, KSTAR
typically loses < 20%. This problem is especially apparent in tyrosine networks. C) Pairwise network
similarity between different kinases in each network, defined by the Jaccard similarity, calculated as
JI = total number of substrates connected to both kinases

total number of substrates of connected to either kinase . Each point represents a different pairwise comparison
between kinases in the kinase-substrate network [PhosphoSitePlus (Y): n = 7131, PhosphoSitePlus (ST):
n = 54,940, NetworKIN (Y): n = 1225, NetworKIN (ST): n = 9730, KSTAR (Y): n = 1225, KSTAR (ST):
n = 9730]. Unlike PhosphoSitePlus and NetworKIN, the majority of kinases share < 20% of substrates
in KSTAR networks. Source data are provided as a separate Source Data file with this paper.
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Supplementary Figure 2. Impact of experiment threshold on tyrosine kinase predictions Using
control data of K562 chronic myeloid leukemia cell lines [3], we assessed variance in KSTAR predictions
for tyrosine kinases using different thresholds (cutoff value to deterimine whether a phosphorylation site
should be included in evidence). The threshold determines the total number of sites used as evidence for
prediction. For this test, predictions were based evidence sizes ranging from 10 - 1665 (all identified)
sites. A) KSTAR predictions for kinases that have predicted activity in at least one test (FPR ≤ 0.05).
B) Distribution of KSTAR activity scores for all kinases at each evidence size. Box indicates median
(center line), 25th and 75th percentiles (box boundaries), 1.5x the IQR of the box edge (whiskers), and
any outliers beyond 1.5x IQR (points). If no outliers exist, whiskers indicate maxima or minima. For
each condition, statistics were derived from all tyrosine kinases with predictions in KSTAR (n = 50). C)
Histograms demonstrating the distribution of activity scores when 25, 100, 750, 1500 sites are used for
prediction. D) Correlation of activity rankings between predictions of different evidence sizes. Source
data are provided as a separate Source Data file with this paper.
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Supplementary Figure 3. Impact of experiment threshold on serine/threonine kinase
predictions Using control data of BT-474 Breast cancer cell lines [4], we assessed variance in KSTAR
predictions for serine/threonine kinases using different thresholds (cutoff value to deterimine whether a
phosphorylation site should be included in evidence). The threshold determines the total number of sites
used as evidence for prediction. For this test, predictions were based on evidence sizes ranging from 10 -
10345 (all identified) sites. A) KSTAR predictions for kinases that have predicted activity in at least one
test (FPR ≤ 0.05). B) Distribution of KSTAR activity scores for all kinases at each evidence size. Box
indicates median (center line), 25th and 75th percentiles (box boundaries), 1.5x the IQR of the box edge
(whiskers), and any outliers beyond 1.5x IQR (points). If no outliers exist, whiskers indicate maxima or
minima. For each condition, statistics were derived from all serine/threonine kinases with activity in at
least one condition in KSTAR (n = 55). C) Histograms demonstrating the distribution of activity scores
when 100, 2000, 6000, or 10000 sites are used for prediction. D) Correlation of activity rankings between
predictions of different evidence sizes. Source data are provided as a separate Source Data file with this
paper.
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Supplementary Note 2: Controlling for kinase- and experiment-specific false
positive rates

Goal

1. Assess the bias found within different phosphoproteomic databases by predicting activity from
random samplings of the database

2. Assess the bias found with phosphoproteomic datasets by looking at the distribution of study bias
across the sites identified in an experiment

3. Assess the relationship between study bias of a substrate and quantified log fold changes

Methods 

In order to measure the false positive rate, we randomly created 200 random datasets, each composed of 
250 randomly selected phosphotyrosine sites using different phosphoproteomic databases as the 
background. We set the desired false positive rate at 0.05 and therefore expect, on average, about 10 
positives per kinase across all datasets. The false positive results are from KSTAR networks before 
the final addition of controlling for the distribution of compendia was added (Supplementary Figures 4
-8).The size of the dataset was selected based on common dataset sizes for phosphotyrosines and this 
value is much smaller than the smallest of the compendia background. 
Summary of Results 

The first four figures here have been ordered from backgrounds that produce the highest false positive 
rates to those that produce the lowest false positive rates. It became clear that the kinases with high 
false positive rates were consistent across all compendia (except those from PhosphoSitePlus, which is
the largest and predominantly comprised of mass spectrometry identified sites). In short, FYN, LCK,
and HCK demonstrated significant levels (100%) false positive rates. On the other end of the range, it
became clear that most kinases were producing less than expected false positive rates (0%), which 
suggested that it is also more difficult to yield true positives for these kinases. Additionally, we noticed a
trend that the false positive rates were highest from the compendia that overlapped most with the 
genesis of the NetworKIN prediction models (Phospho.ELM [5], Supplementary Figure 4) and lowest 
from the compendia most separated from training data that formed the networks (PhosphoSitePlus [1],
Supplementary Figure 7). We therefore hypothesized that there was a direct connection between the 
study bias of the phosphorylation sites (the more compendia a site is in the more likely it is annotated
and was used in training the networks). Supplementary Figure 8 shows that our original KSTAR 
networks that generated such kinase-specific false positive rates indeed showed skew for more studied  
substrates connected to the kinases yielding high false positive rates. We next asked if we could measure

the false positive rate for random experiments by random draws from the human phosphoproteome. We

found that all experiments analyzed in this manuscript were not representative of random samples from
the phosphoproteome, with respect to how many different compendia each phosphorylation site is stored
(Supplementary Figure 10). We also found that magnitude of fold changes (i.e. quantification) was 
partially related to the study bias of the individual substrate (Supplementary Figure 11). This suggests
that each experiment will have different false positive rates, influenced directly by how well studied the
sites are within the dataset. This motivated the final mitigation strategy of selecting random datasets for
measuring empirical false positive rates based on sampling sites from the phosphoproteome, such thatt
he distribution matches that of the real experiment. The combination of avoiding quantification, 
normalizing kinase study bias distribution (Supplementary Figure 9), and sampling random sets to 
control for experiment-specific distributions, helps to control the false positive rate as desired in a kinase-
and experiment-specific manner. 
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(p <= 0.05). Many kinases, including FYN, LCK, and HCK exhibited close to a 100% false positive rate,
while others like FRK and INSRR were not predicted active in a single random dataset, lower than the
expected 5% false positive rate. Source data are provided as a separate Source Data file with this paper. 

Supplementary Figure 4. Kinase-Specific False Positive Rates in PhosphoELM To assess
false positive rates obtained from Phospho.ELM [5], 200 random datasets were created by randomly

sampling 250 phosphotyrosine sites from PhosphoELM, and KSTAR was applied (without accounting
for study bias, i.e. no study bias constraint in heuristic prune or comparison to random activities from
Mann Whitney U test) to generate activity predictions for each random dataset. Each column in the
above dotplot corresponds to results from a different random datset. The size of each dot corresponds to
the median p-value enrichment obtained across all pruned networks, and is colored based on significance 
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Supplementary Figure 5. Kinase-Specific False Positive Rates in HRPD To assess false
positive rates obtained from HPRD [6], 200 random datasets were created by randomly sampling 250
phosphotyrosine sites from HPRD, and KSTAR was applied (without accounting for study bias, i.e. no
study bias constraint in heuristic prune or comparison to random activities from Mann Whitney U test)
to generate activity predictions for each random dataset. Each column in the above dotplot corresponds
to results from a different random datset. The size of each dot corresponds to the median p-value
enrichment obtained across all pruned networks, and is colored based on significance (p <= 0.05). Similar

to Figure 1, many kinases, including FYN, LCK, and HCK exhibited close to a 100% false positive rate,
while others like FRK and INSRR were not predicted active in a single random dataset, lower than the
expected 5% false positive rate. Source data are provided as a separate Source Data file with this paper 
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Supplementary Figure 6. Kinase-Specific False Positive Rates in dbPTM To assess false
positive rates obtained from dbPTM [7], 200 random datasets were created by randomly sampling 250
phosphotyrosine sites from dbPTM, and KSTAR was applied (without accounting for study bias, i.e.
no study bias constraint in heuristic prune or comparison to random activities from Mann Whitney

U test) to generate activity predictions for each random dataset. Each column in the above dotplot
corresponds to results from a different random datset. The size of each dot corresponds to the median

p-value enrichment obtained across all pruned networks, and is colored based on significance (p <= 0.05).
Predictions exhibit lower false positve rates than when sampling from HPRD [6] or Phospho.ELM [5],
but still see high kinase-specific false-positive rates for kinases like FYN, LCK, and HCK, and sees more

kinases with 0 positives across all datasets. Source data are provided as a separate Source Data file with 
this paper 
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(p <= 0.05). All kinases show lower than expected false positive rates (0 instead of 10 positives) when
sampled from PhosphoSitePlus as the background. PhosphoSitePlus is the largest of the compendia and
derived predominantly of mass spectrometry identified sites from within the Cell Signaling Technology 
pipelines. Source data are provided as a separate Source Data file with this paper 

Supplementary Figure 7. Kinase-Specific False Positive Rates in PhosphoSitePlus To assess
false positive rates obtained from PhosphoSitePlus [1], 200 random datasets were created by randomly

sampling 250 phosphotyrosine sites from PhosphoSitePlus, and KSTAR was applied (without accounting
for study bias, i.e. no study bias constraint in heuristic prune or comparison to random activities from
Mann Whitney U test) to generate activity predictions for each random dataset. Each column in the
above dotplot corresponds to results from a different random datset. The size of each dot corresponds to
the median p-value enrichment obtained across all pruned networks, and is colored based on significance 
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Supplementary Figure 8. Distribution of substrate study bias in original networks We plotted
distribution of substrates, based on the number of compendia they are observed in, for our original
KSTAR generated networks (no study bias constraint, Algorithm 1 in Supplementary Methods) and
found that the high false positive rates of kinases correlated with kinases highly connected to well studied
phosphorylation sites. For example, FYN, LCK, and HCK have the highest proportion of phosphorylation
sites from three or more compendia and are the kinases with the highest degree of false positives. The
above plot represents the average number of substrates found in each study bias grouping (found in 0, 1
,2, 3, 4, or 5 compendia) across all of the 50 generated networks. 
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Supplementary Figure 9. Distribution of study bias in final networks We added the constraint
that all kinases should be connected to substrates with an equal distribution of study bias, as defined by
the number compendia they are observed in. This ensures that no kinase will be connected to more well
studied sites than any other kinase, which leads to kinase-specific false positive rates. This leads to a
more balanced network, as observed in the above plot indicating the average number of substrates found
in each study bias grouping (found in 0, 1, 2, 3, 4, or 5 compendia) across the final KSTAR generated
networks (with a study bias constraint, Algorithm 2 in Supplementary Methods). 
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B) Distribution of study bias in ProteomeScoutA) Distribution of study bias in example dataset

Supplementary Figure 10. Distribution of study bias in a real dataset, compared to whole

phosphoproteome We found that the phosphorylation sites from experiments were much more likely to
contain sites that are well annotated than expected by random chance (i.e. contributing to experiment-

specific study bias). A) This is the histogram of the number of compendia phosphorylation sites are
observed in for the phosphotyrosines of the PDX dataset from Huang et al. [8]. B) This is the distribution 
for all phosphotyrosines in the human phosphoproteome, which shows the majority of sites would be
annotated by only one compendia (most likely, these are annotated only in PhosphoSitePlus). The three 
lines represent our final classes of study bias for low (0 compendia), medium (1-2 compendia), and high 
(more than 3 compendia). This classification was defined and published in our prior work [9]. Source
data are provided as a separate Source Data file with this paper. 
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provided as a separate Source Data file with this paper. 

(box edges), and 1.5x the IQR of the box edge (whiskers). Statistical significance was assessed using
a one-tailed Mann Whitney U test and p-values indicated on the plot if p < 0.4. We did not find as
strong a relationship between study bias and quantification in serine/threonine datasets. Source data are 

Supplementary Figure 11. Relationship between study bias and quantification in the
benchmarking dataset In addition to the likelihood of identification discussed in Supplementary

Figure 10, we explored whether quantification and study bias are related by looking at the distribution
of fold change magnitudes as a function of study bias. We have defined three classes of study bias
based on the number of compendia a site is identified in: low (0 compendia), medium (1-2 compendia),

and high (more than 3 compendia). This classification was defined and published in our prior work,
KinPred [9]. A) Distribution of log2fold changes for phosphorylated tyrosine sites based on degree of
study bias. Quantification was obtained from the tyrosine kinase benchmarking dataset described in
Supplementary Table 3 (20 independent experiments, Low: n = 253 sites, Medium: n = 7188 sites, High:
n = 10,464).Violin plots indicate the median (white dot), 25th and 75th percentile (box edges), and
1.5x the IQR of the box edge (whiskers). Statistical significance was assessed using a one-tailed Mann

Whitney U test and associated p-values are indicated on the plot. We found that well studied tyrosine
sites identified in an experiment tend to exhibit larger log2 fold changes than less well studied sites. B)

Distribution of log2fold changes for phosphorylated serine or threonine sites based on degree of study
bias. Quantification was obtained from the serine/threonine kinase benchmarking dataset described 
in Supplementary Table 4 (33 independent experiments, Low: n = 3933 sites, Medium: n = 95,243
sites, High: n = 176,849 sites). Violin plots indicate the median (white dot), 25th and 75th percentile 
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Supplementary Note 3: Full KSTAR Predictions on Control Datasets

Goal

Provide the full KSTAR predictions on activation and inhibition datasets discussed in Figure 2 of the
main text.

Methods

For all inhibition and activation datasets where KSTAR was applied (Figure 2 in the main text and
Supplementary Table 2), a dotplot is provided that includes all kinases with predictions (limited by the
kinases with substrate predictions in NetworKIN). For the two serine/threonine datasets (Figure 5, 6),
only kinases with significant activity in at least one sample (FPR ≤ 0.05) were included in the plot due
to space constraints.

Table of Contents 

Supplementary Figure 12 - Full activity predictions during EGF stimulation of 184A1 epithelial cells 
(Page 16) 
Supplementary Figure 13 - Full activity predictions during EGF/HRG stimulation of 184A1 epithelial cells 
overexpressing HER2, corresponding to Figure 2A (Page 17) 
Supplementary Figure 14 - Full activity predictions during TCR activation of Jurkat cells, 
corresponding to Figure 2B (Page 18) 
Supplementary Figure 15 - Full activity predictions during BCR-ABL inhibition by dasatanib in 
chronic myeloid leukemia cells, corresponding to Figure 2C (Page 19) 
Supplementary Figure 16 - Full activity predictions after AKT Inhibition in breast cancer cells with 5 
different AKT inhibitors, corresponding to Figure 2D (Page 20) 
Supplementary Figure 17 - Full activity predictions after BRAF inhibition in two different colorectal 
cancer cell lines leading to paradoxical MAPK activation, corresponding to Figure 2E (Page 21) 
Supplementary Figure 18 - Quantile-normalized activity scores for MAPK1 and MAPK3 after BRAF 
inhibition in two different colorectal cancer cell lines, corresponding to Figure 2E (Page 22) 
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Supplementary Figure 12. EGF stimulation of 184A1 epithelial cells Full KSTAR predictions on 
EGF stimulation phosphoproteomic data obtained from Wolf-Yadlin et al. [10]. 184A1 epithelial cells
were stimulated with EGF and phosphorylation was measured at 0, 1, 2, 4, 8, 16 and 32 minutes. For
each condition, sites with abundance ratios greater than 1 were used as evidence, where ratios were 
relative to the 4 minute timepoint. Kinases were sorted using hierarchical clustering with Ward linkages.
Source data are provided as a separate Source Data file with this paper. 
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Supplementary Figure 13. EGF/HRG stimulation of 184A1 epithelial cells overexpressing
HER2 Full KSTAR predictions corresponding to Figure 2A of the main text, with phosphoproteomic

data obtained from Wolf-Yadlin et al. [11]. Epithelial cells expressing normal HER2 levels (Parental, P) or
overexpressing HER2 (24H) were stimulated with EGF or HRG and phosphorylation was measured at 0, 5,
10 and 30 minutes. For each condition, sites with abundance ratios greater than 0.8 were used as evidence,
where ratios were relative to the Parental, 5 minute EGF condition (P EGF 5(min)). Kinase were sorted
using hierarchical clustering with Ward linkages. Parental cell stimulated with EGF corresponds to the
same culture conditions measured in Supplementary Figure 12. Source data are provided as a separate
Source Data file with this paper. 
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Supplementary Figure 14. TCR activation of Jurkat cells Full KSTAR predictions corresponding 
to Figure 2B based on data from Chylek et al. [12]. Jurkat cells were stimulated to activate T-cell 
receptor signaling and phosphorylation was measured at 0, 15, 30, and 60 seconds. For each condition,
sites with abundance ratios greater than 0.2 were used as evidence, where ratios were relative to the 0
minute timepoint. Kinases were sorted using hierarchical clustering with Ward linkages. Source data are
provided as a separate Source Data file with this paper. 
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Supplementary Figure 15. BCR-ABL inhibition by dasatanib Full KSTAR predicitions corre-
sponding to Figure 2C of the main text, based on data from Asmussen et al. [13]. K562 chronic myeloid 
leukemia (CML) cell line, which contains the BCR-ABL fusion protein, was treated with dasatanib, an 
ABL inhibitor, for 20 minutes prior to drug washout. PRE refers to pre-treatment, EOE refers to the endof 
treatment, HDP3 refers to 3 hours post drug washout, and HDP6 refers to 6 hours post drug washout. 
For each condition, sites with abundance ratios greater than 0.5 were used as evidence, where ratios were 
relative to the 0 minute timepoint. Kinases were sorted using hierarchical clustering with Ward linkages. 
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Wiechmann et al. [4]. BT-474 breast cancer cells were treated with one of five different inhibitors
(GSK2110183, Ipatasertib, AZD5363, GSK690693, MK-2206). All of the inhibitors work by directly
binding the ATP binding pocket except for MK-2206, which is an allosteric inhibitor. For each inhibitor
condition, sites with abundance ratios greater than or equal to 1 were used as evidence, relative to
pre-treatment contol. Kinases and conditions were sorted using hiearchical clustering with Ward linkages.
Source data are provided as a separate Source Data file with this paper.

Supplementary Figure 16. AKT Inhibition with breast cancer cells with 5 different AKT

inhibitors. Full KSTAR predictions corresponding to Figure 2E of the main text, based on data from 
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Supplementary Figure 17. Paradoxical MAPK activation after BRAF inhibition Full KSTAR

predictions corresponding to Figure 2F of the main text, based on data from Kubiniok et al. [14]. 
Colorectal cancer cell lines Colo205 (BRAF V 600E mutation) or HCT116 (KRAS mutation) were treated 
with the BRAF inhibitor, vemurafenib, over the course of 60 minutes. In cells containing KRAS mutations,

BRAF inhibition leads to the activation of the MAP-ERK pathway rather than inhibiting the pathway, 
as is the case for cells with a BRAF V 600E mutation. For each timepoint/cell line, sites with abundance 
greater than median observed abundance were used as evidence. Kinases were sorted using hierarchical 
clustering with Ward linkages. Source data are provided as a separate Source Data file with this paper. 

21/71



0 10 20 30 40 50 60
Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0
Q

ua
nt

ile
 S

co
re

HCT116_MAPK1
HCT116_MAPK3
Colo205_MAPK1
Colo205_MAPK3

Supplementary Figure 18. MAPK activity response to BRAF inhibition Predicted MAPK

activity after performing quantile normalization across conditions on the original KSTAR activities
corresponding to Figure 2E of the main text and Supplementary Figure 17. This demonstrates that despite 
statistical saturation issues in serine/threonine networks where MAPK/CDK activity is often high, the
expected trend is observed (increased MAPK activity in HCT116 cells, decreased MAPK activity in
Colo205 cells). Source data are provided as a separate Source Data file with this paper. 
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Supplementary Note 4: Comparing KSTAR to other available activity
inference algorithms

Goals

1. Compare the usability and interpretability of various kinase activity inference methods.

2. Compile datasets for use in comprehensive benchmarking of activity inference methods

3. Compare the accuracy of KSTAR to other kinase activity inference methods for both
serine/threonine kinases and tyrosine kinases

4. Assess the robustness of algorithms to data loss and the influence of well studied sites on final
predictions

generating predictions, either by random removal or targeted removal based on the degree of study bias 
(Supplementary Figures 25-28). Starting with 5% loss and continuing to 50% loss (at increments of 5%)

,the given percent of sites were removed and predictions were regenerated as normal. We then looked at 
the change in false discovery rate for each prediction, and how this differed between the random and 
targeted attack. To quantify the differences between these two curves, we defined two metrics: 1) 
sensitivity to data loss, which is the area under the random attack curve, and 2) sensitivity to study bias,
which is the area between the targeted and random attack curve. Given that we are looking at changes
to significance of prediction, only KSTAR, KSEA, and PTM-SEA were assessed (KARP and KEA3 do
not provide significance of prediction). 

Methods 

As described in the main text, datasets used in the benchmarking analysis were collected from 16 
different publications (10 for ST [4] [15] [16] [17] [18] [19] [20] [21] [22] [23], 7 for 
Y [13] [10] [11] [12] [24] [25] [21]), described in detail in Supplementary Tables 3 and 4. In total, the 
benchmarking dataset used contained a total of 51 experimental conditions impacting 38 
serine/threonine kinases and 19 tyrosine kinases (Supplementary Figure 20). KSTAR, KSEA [26], 
PTM-SEA [27], KARP [28], and KEA3 [29] were all used to generate predictions about the most 
enriched/differentially active kinases across the benchmarking dataset (Supplementary Figure 19). 
Accuracy was calculated based on Phit, defined as the fraction of times a kinase expected to perturbed 
was identified as differentially active, either based on kinase rank or significance. In addition, we looked 
at the total number of kinases with available predictions for each test condition, per algorithm 
(Supplementary Figures 22 and 23). 

In addition to accuracy, we also assessed the impact of losing specific sites from the dataset when 

Table of Contents 

Supplementary Figure 19 - Chart demonstrating how each algorithm can be interpreted in different 
scenarios, as well as characteristics of each activity score/rank (Page 24) 
Supplementary Figure 20 - Pie charts indicating the distribution of kinases across the benchmarking 
dataset used here and how the distribution changes when equal weighting of each kinase is applied for Phit 
calculations. (Page 25) 
Supplementary Figure 21 - Full kinase-specific accuracies for all kinases in the benchmarking dataset 
(Page 26) 
Supplementary Figure 22 - Number of kinases with predictions for each condition in the benchmarking 
datasets (Page 27) 
Supplementary Figure 23 - Impact of applying a substrate requirement on the number of kinases with 
available predictions in KSEA, KARP, and PTM-SEA (Page 28) 
Supplementary Figure 24 - Ability of pruned networks to improved performance of other algorithms (Page 
29) 
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Supplementary Figure 25 - Two individual condition examples of the impact of data loss and study bias  
on activity predictions, as described in Figure 3 in the main text. (Page 30) 
Supplementary Figure 26 - Average random and targeted loss curves for individual tyrosine kinases (Page 
31) 
Supplementary Figure 27 - Average random and targeted loss curves for individual serine/threonine 
kinases (Page 32) 
Supplementary Figure 28 - Average sensitivity to data loss and study bias for individual kinases 
(Page 33) 
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Supplementary Figure 19. Interpreting kinase activity inference methods. Kinase activity 
algorithms differ both in the type of data that can be used and in the way that their output should be
interpreted. KSTAR, KARP, and KEA3 are all algorithms that can be used in single sample settings,
where differential abundances are not available and an activity score/rank is generated for each sample.
While KARP and KSTAR were explicitly designed for use with single sample experiments, KEA3 was
largely designed for differential setttings (all three can be used in differential settings as well). On the
other hand, KSEA and PTM-SEA require differential abundances. Of the single sample approaches
described here, only KSTAR provides both an indicator of the degree of activity and the associated
significance of activity. Finally, only KSTAR and KEA3 do not rely on quantification for prediction.
Figure created using Biorender. 
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a c

b d

e f

Supplementary Figure 20. Distribution of kinases in benchmarking dataset. A,B)To better
understand distribution of kinases across the compiled benchmarking dataset, we looked at the percent 
influence of each kinase, defined by the fraction of conditions for which a kinase is an expected positive.
Tyrosine kinases are shown in A, and serine/threonine kinases are shown in B. Certain kinases are
overrepresented, such as AKT1 and MAPK1/3 for serine/threonine and EGFR for tyrosine kinases.
(caption continued on next page) 
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C,D) To avoid certain kinases exhibiting large influence on Phit results, we 
collapsed each kinase into a single accuracy score (Phit,k) and then took the average of each kinase-specific
score to obtain the final Phit. The impact of this approach can be seen for tyrosine kinases (C) and
serine/threonine kinases (D). E,F) Distribution of tyrosine and serine/threonine kinases. We found that 
there was still an overrepresentation of serine/threonine kinases in the dataset both before (E) and after
(F) equal weighting was applied. As a result, we separated serine/threonine and tyrosine kinases for
benchmarking purposes. 

a b c d

(differential activity has FDR ≤ 0.05). KARP and KEA3 were only assessed using the rank-based metric.
Not all algorithms generated predictions for all kinases, indicated by the light purple squares. A) Tyrosine 
kinase prediction accuracy based on rank. B) Tyrosine kinase prediction accuracy based on significance.
C) Serine/Threonine kinase prediction accuracy based on rank. D) Serine/Threonine kinase prediction
accuracy based on significance. Source data are provided as a separate Source Data file with this paper. 

Supplementary Figure 21. Full results obtained from benchmarking analysis. Kinase-specific

accuracy scores (Phit,k) for all kinases perturbed in the benchmarking dataset. All results seen here were 
used to calculate the final Phit scores in the barplots from Figure 3A in the main text. Kinase predictions
were assessed based on rank (found in the top 10 most differentially active kinases) or significance 
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c d

b

predictions for most existing kinases, regardless of modification type (tyrosine vs. serine/threonine),
we have included plots that omit KEA3. KSTAR generates predictions for 50 tyrosine kinases and 140
serine/threonine kinases for all datasets, while KSEA, PTM-SEA, and KARP depend on the specific
phosphorylation sites identified in an experiment, where predictions are only generated when at least one
known substrate of a kinase is identified. A) Number of kinases with predictions for all algorithms based
on tyrosine-centric phosphoproteomic datasets described in Supplementary Table 3 (n = 20 biologically
independent experiments). B) Same plot as A, but omitting KEA3. C) Number of kinases with
predictions for all algorithms based on serine/threonine centric phosphoproteomic datasets described in
Supplementary Table 4 (n = 33 biologically independent experiments). D) Same plot as C, but omitting
KEA3. Source data are provided as a separate Source Data file with this paper. 

(each point corresponds a single experiment result). Each boxplot indicates the median (center line), 25th
and 75th percentiles (box boundaries), 1.5x the IQR of the box edge (whiskers), and any outliers beyond
1.5x IQR (points). If no outliers exist, whiskers indicate maxima or minima. Because KEA3 generates 

Supplementary Figure 22. Number of Kinases with Predictions Across Different Activity

Inference Algorithms. Beyond the accuracy of an algorithm, success of kinase activity inference can 
also be based on the number of different kinases for which predictions are available. Here, we have
displayed boxplots indicating the number of different kinases with a prediction in a single experiment 
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ba

requirement is enforced. Box indicates median (center line), 25th and 75th percentiles (box boundaries),
1.5x the IQR of the box edge (whiskers), and any outliers beyond 1.5x IQR (points). If no outliers exist,
whiskers indicate maxima or minima. There is a loss of available kinase predictions for serine/threonine
kinases when implementing substrate requirements for KSEA or PTM-SEA. Source data are provided as
a separate Source Data file with this paper. 

(box boundaries), 1.5x the IQR of the box edge (whiskers), and any outliers beyond 1.5x IQR (points). If
no outliers exist, whiskers indicate maxima or minima. There is a loss of available kinase predictions for
tyrosine kinases when implementing substrate requirements for KSEA or PTM-SEA. While KARP does
not explicitly define a substrate requirement, it also relies on PhosphoSitePlus annotations, so would be
similarly affected by such a requirement as KSEA. B) Distribution of the number of serine/threonine
kinases with a prediction from KSEA or PTM-SEA across the benchmarking dataset (described in
Supplementary Table 4, n = 33 biologically independent experiments), based on whether a substrate 

Supplementary Figure 23. Applying substrate requirements significantly reduces overall
kinome coverage of many activity inference algorithms. For algorithms relying on kinase-substrate
annotation, it is common to restrict analyses to kinases with a set number of substrates. For KSEA, which 
relies on annotation from PhosphoSitePlus, analysis is restricted to kinases with at least five substrates by
default. PTM-SEA, which relies on PTMsigDB, restricts analysis to kinases with at least 10 substrates
by default. To determine the impact of these requirements, we asked how many kinases had available
predictions for each condition in the benchmarking dataset. We found that, in both cases, the substrate 
requirement significantly reduced the number of available kinase predictions. For tyrosine kinases, there
were several cases where less than 5 kinases had available predictions for a given condition. While these
predictions are likely to be more robust as more data is associated with each prediction, the lack of
kinome coverage significantly reduces the utility of these algorithms. Further, kinases that tend to be
connected to well-studied substrates will be more likely to have available predictions, as well studied sites
are more likely to be seen in any given experiment (Supplementary Note 2). For that reason, all accuracy
metrics used in benchmarking were calculated using results without this requirement. A) Distribution of 
the number of tyrosine kinases with a prediction from KSEA or PTM-SEA across the benchmarking

dataset (described in Supplementary Table 3, n = 20 biologically independent experiments), based on
whether a substrate requirement is enforced. Box indicates median (center line), 25th and 75th percentiles 
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Supplementary Figure 24. Accuracy of KSEA when using different background kinase
-substrate networks. To determine whether the general pruning procedure described in this work could
also improve the prediction ability of other algorithms, we applied KSEA [26] to the benchmarking

dataset using different kinase-substrate networks for A) Tyrosine kinases or B) serine/threonine kinases.
Kinase-substrate information was obtained from three different sources: 1) Annotations: known kinase-
substrate interactions stored in PhosphoSitePlus (most commonly used, approach used in the main 
text), 2) Thresholded: predictions from a NetworKIN graph thresholded with a value of 2 (default in 
the KSEA web app [30]), and 3) Pruned: KSTAR networks generated through a heuristic prune of the
weighted NetworKIN graph (described in Figure 1 of the main text and Supplementary Methods). For
the pruned networks, accuracy was either calculated for a single pruned network or based on the median 
scores/p-values for each kinase across the 50 networks. The former is reported as the median accuracy
across the 50 networks, with the accuracy obtained from each single network indicated by the black
points. For reference, we also included the accuracy of KSTAR in each plot, which matches Figure 3A of
the main text. Source data are provided as a separate Source Data file with this paper. 
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a) EGFR Stimulation

b) ATR inhibition

are provided as a separate Source Data file with this paper. 

Wolf-Yadlin et al. [10], which is experiment #4 from Supplementary Table 3, focused on predicted EGFR
activity increase after EGF stimulation. B) ATR inhibition condition from Beli et al. [23], which is
experiment #51 from Supplementary Table 4, focused on predicted ATR activity decrease. Source data 

Supplementary Figure 25. Experiment-specific examples of the influence of data Loss and
study bias in individual experiments Here, we have provided two specific examples of the loss curves
obtained for a single condition via either random or targeted attack. As described in the main text,
random loss curves are obtained by randomly removing sites (up to 50% of them, done in increments of
5%) and obtaining the average false discovery rate obtained by each algorithm at each data loss amount.

Targeted loss curves are obtained in a similar fashion, except that more well studied sites (defined by
the number of compendia they are found in) are removed first. A) EGF stimulation condition from 
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Supplementary Figure 26. Tyrosine kinase predictions lose significance with increasing data 
loss. The average random and targeted loss curves for each tyrosine kinase tested in the data loss 
experiment (corresponds to Figure 4 of the main text). Rows correspond to a specific kinase, columns 
correspond to a specific algorithm. The x-axis indicates increasing data loss from 0 to 50%, and the y-axis 
indicates the false discovery rate of the predicted activity for the kinase of interest, ranging from 0 to 1. 
The average sensitivity to data loss (blue) and study bias (green) are displayed in the upper left of each 
plot (these values correspond to heatmap in Supplementary Figure 21). In cases where the curve stops 
before reaching 50% data loss (indicated by a black point at the stop point), this occurs because there is 
no longer any available substrates in the data that can be used for prediction in either PhosphoSitePlus [1] 
(for KSEA) or PTMsigDB [27](for PTM-SEA). Source data are provided as a separate Source Data file 
with this paper. 
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Supplementary Figure 27. Serine/threonine kinase predictions lose significance with increas- 
ing data loss. The average random or targeted loss curves for each serine/threonine kinase tested in 
the data loss experiment (corresponds to Figure 4 of the main text). Rows correspond to a specific  
kinase, columns correspond to a specific algorithm. The x-axis of each plot indicates increasing data  
loss from 0-50%, and the y-axis indicates the false discovery rate of the predicted activity for the kinase of 
interest, ranging from 0 to 1. The average sensitivity to data loss (blue) and study bias (green) are  
displayed in the upper left of each plot (these values correspond to heatmap in Supplementary Figure 21). 
In cases where the curve stops before reaching 50% data loss, this occurs because there is no longer any 
available substrates in the data that can be used for prediction in either PhosphoSitePlus [1] (for KSEA) 
or PTMsigDB [27](for PTM-SEA). Source data are provided as a separate Source Data file with this 
paper. 
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a) b)

Supplementary Figure 28. Kinase-specific sensitivity to data loss and study bias for different
activity inference methods. Heatmaps indicating the average sensitivity to data loss and study bias
for individual kinases, rather than the whole benchmarking dataset. As described in the main text,
”sensitivity to data loss” is defined as the area under the random attack curve, while ”sensitivity to study
bias” is defined as the difference in the area under the curve between the targeted and random attack.
Cells in the heatmap that are gray indicate that predictions were either not available or were not found
to be significant in the full dataset. We found that in addition to KSTAR being generally less sensitive
to both random and targeted attacks, certain kinase predictions tended to suffer more from targeted
attack (removal of well-studied sites), such as KDR (also known as VEGFR2), EPHA2, and MAP2K1

.A) Tyrosine kinases B) Serine/Threonine Kinases. Source data are provided as a separate Source 
Data file with this paper. 
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Supplementary Note 5: Robustness analysis comparing NSCLC and CML cell
lines from independent experiments

Goal

Apply KSTAR and KEA3 [29] predictions to multiple different datasets from different labs profiling non
small cell lung carcinoma (NSCLC) and/or chronic myeloid leukemia (CML) cell lines to determine if
predictions can identify tissue similarities between datasets even when the identified sites differ. These
results correspond to Figure 5 in the body of the paper.

Methods

A total of 11 datasets from 7 studies and 5 labs were obtained from the original publications (described
in Supplementary Table 5) [31] [32] [33] [34] [35] [3] [13]. For each dataset, only data corresponding to an
untreated cell line was utilized. To generate predictions for each dataset, any site identified in the
experiment, regardless of quantification, was utilized as evidence. In KSTAR, the phophorylated sites
were inputted into the algorithm to produce activity scores and false positive rates. In KEA3, the gene
names associated with each phosphorylated site were extracted and inputted into the KEA3 API in
python to generate integrated mean ranks, where low mean ranks indicate that the kinase was found to
be one of the more enriched kinases in many different protein-protein interaction databases. Spearman
rank correlation was used (either with KSTAR activity scores or KEA3 mean ranks) to assess the
similarity of predictions across datasets.

Table of Contents 

Supplementary Figure 29 Full KSTAR activity predictions for each of the 11 datasets and the top 
ranking kinases in each dataset (Page 3) 
Supplementary Figure 30 Correlation of KEA3 mean ranks across each of the 11 datasets (Page 4) 
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a b c

Supplementary Figure 29. Full KSTAR predictions on NSCLC and CML cell lines The full
KSTAR predictions across all datasets used in robustness analysis. A) Full KSTAR dotplot including 
activity predictions for all kinases with at least one sample that has significant activity (F P R ≤ 0.05). 
The size of each dot indicates the degree of predicted activity, with red dots indicating significant activity.
Context bars above the plot indicate the cancer type and dataset number. Context dots above the plot 
indicate the specific cell line measured. Kinases and samples are sorted using hierarchical clustering 
with ward linkages. B) Top 10 most active kinases in each non small cell lung cancer (NSCLC) dataset,
as predicted by KSTAR. Size of the bar indicates the degree of activity. As both H3255 and HCC827 
contain activating EGFR mutations, we have the EGFR activity bar in yellow. C) Top 10 most active
kinases in each chronic myeloid leukemia (CML) dataset, as predicted by KSTAR. ABL1 and ABL2 are 
highlighted in red, as the K562 cell lines contains the BCR-ABL fusion protein. Source data are provided 
as a separate Source Data file with this paper. 
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Supplementary Figure 30. KEA3 predictions on NSCLC and CML cell lines Heatmap indicating
the pairwise correlation between KEA3 rankings obtained from each dataset used in the robustness
analysis, based on Spearman correlation coefficient. KEA3 ranks are calculated by reducing the predictions 
to only include the 50 tyrosine kinases predicted in KSTAR, and then ranked according to KEA3 mean

rank. Datasets are sorted according to the same sorting used for the KSTAR heatmap in Figure 5 and in
Supplementary Figure 29. Heat cells surrounded by a black box indicate that datasets were obtained from 
the same study. Overall, this demonstrates that KEA3 was unable to clearly differentiate between the
tissues across datasets, with most predictions exhibiting high correlation between each other, regardless
of tissue type. Source data are provided as a separate Source Data file with this paper. 
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Supplementary Note 6: Full analysis results of breast cancer 
phosphoproteomic datasets 
Goal 

1. Assess the ability of kinase activity inference approaches to predict treatment response in the clinic, 
particularly in the context of HER2 activity in breast cancer 

2. Compare the efficacy of KSTAR, KEA3, and KSEA in the clinical setting 
Methods 
In this supplement, we have provided the KSTAR predictions for all kinase and samples discussed in 
Figure 6 of the main text, focused on predicting kinase activity in breast tumor biopsies. For the 
microscaled biopsies of HER2+ patients [36], we have included multiple different dotplots to seperate
between the pre- and post-treatment data and provide the predictions for serine/threonine kinases in
pre-treatment samples (to illustrate that serine/threonine kinase activity profiles do not appear to 
differentiate between responders and nonresponders). 
In addition, where relevant, we have compared our KSTAR results to the results obtained by either 
KSEA (Supplementary Figure 32) or KEA3 (Supplementary Figures 32, 38, and 40). We found that 
KSEA results from the tumor biopsies tended to be nonrobust and difficult to apply in this setting (due 
to low numbers of known substrates and reliance on quantification), so we did not continue use of 
KSEA after application to the CPTAC dataset [37]. To make KEA3 more directly comparable to 
KSTAR results, the list of kinases with predictions from KEA3 was reduced to include only kinases that 
also have predictions in KSTAR. As all predictions are based on the abundance of phosphorylated 
tyrosines (except in Supplementary Figure 36), this also had the effect of removing serine/threonine 
kinases from KEA3 predictions, which are not relevant to the actual input data. The KEA3 rankings 
displayed throughout this supplement are then obtained based on the KEA3 mean ranks, where the 
10th ranked kinase had the 10th smallest mean rank across the 50 tyrosine kinases with predictions in 
KSTAR. 

Table of Contents 

Supplementary Figure 31 - Full KSTAR predictions on CPTAC phosphoproteomic analysis of 77 
Breast cancer patients, corresponding to Figure 4A (Page 2) 
Supplementary Figure 32 - KSTAR, KSEA, and KEA3 predictions in the CPTAC breast cancer 
dataset for ERBB2/HER2 and their correlation with HER2 status. Corresponds to Figure 4A (Page 3)Su
pplementary Figure 33 - Full KSTAR predictions on phosphoproteomic analysis of PDX models ofbreast 
cancer, corresponding to Figure 4B (Page 4) 
Supplementary Figure 34 Full KSTAR tyrosine kinase activity predictions for microscaled biopsies ofHER
2+ patients, corresponding to Figure 4C (Page 5) 
Supplementary Figure 35 Pre-treatment KSTAR tyrosine kinase activity predicitons for microscaledbiopsi
es of HER2+ patients, corresponding to Figure 4C (Page 6) 
Supplementary Figure 36 Pre-treatement KSTAR serine/threonine kinase activity predictions for 
microscaled biopsies of HER2+ patients, corresponding to Figure 4C (Page 7) 
Supplementary Figure 37 - Patient-specific KSTAR activity predictions for ERBB2/EGFR in 
non-pathologically complete responders from microscaled biopsies, corresponding to Figure 4C (Page 8)S
upplementary Figure 38 - Patient-specific KEA3 rankings for ERBB2/EGFR in non-pathologicallycompl
ete responders from microscaled biopsies, corresponding to Figure 4C (Page 9) 
Supplementary Figure 39 - Patient-specific KSTAR activity predictions for ERBB2/EGFR in 
pathologically complete responders from microscaled biopsies, corresponding to Figure 4C (Page 10) 
Supplementary Figure 40 - Patient-specific KEA3 rankings for ERBB2/EGFR in pathologically 
complete responders from microscaled biopsies, corresponding to Figure 4C (Page 11) 
Supplementary Figure 41 - Ranking of ERBB2 in microscaled biopsies and its relation to HER2 
status, based on either KSTAR activity scores or KEA3. Corresponds to Figure 4C (Page 12) 

38/71



0

50

100

HER2 Final Status
PAM50 mRNA
RPPA Clusters

HER2 Final Status
Negative
Positive
Equivocal

PAM50 mRNA
Basal-like
HER2-enriched
Luminal A
Luminal B

RPPA Clusters
Basal
X
ReacII
Her2
LumA/B
LumA
ReacI

RPPA Clusters
Basal
X
ReacII
Her2
LumA/B
LumA
ReacI

0100
FGR

ABL1
EPHA2
SRMS

MET
FYN

ERBB3
EGFR

VEGFR1
TYK2
LCK
KIT

ERBB2
PTK6
FRK

NTRK2
INSR
SRC

IGF1R
ERBB4

BLK
FLT3

EPHB6
ABL2

INSRR
EPHB4

TEC
EPHA8

ITK
TXK

EPHB3
PDGFRA

NTRK3
NTRK1
MST1R

BMX
EPHA6
EPHA4
EPHA1
EPHA7
EPHA5
EPHB1
EPHA3
EPHB2

YES1
PDGFRB

HCK
BTK

CSF1R
VEGFR2

AO
-A

03
O

AR
-A

0T
R

AR
-A

1A
S

A8
-A

07
9

A2
-A

0Y
F

BH
-A

0E
9

AO
-A

0J
9

A2
-A

0E
Q

A2
-A

0Y
D

AO
-A

0J
E

A2
-A

0S
W

AO
-A

0J
L

AN
-A

0F
L

BH
-A

18
Q

BH
-A

0D
D

AO
-A

0J
J

BH
-A

0A
V

A2
-A

0C
M

A2
-A

0Y
C

BH
-A

0B
V

A2
-A

0E
Y

AO
-A

0J
C

AR
-A

0T
V

BH
-A

0C
1

AR
-A

1A
V

AN
-A

0A
J

C
8-

A1
30

E2
-A

15
8

E2
-A

15
A

AN
-A

04
A

AO
-A

12
D

A8
-A

06
N

AO
-A

12
6

C
8-

A1
31

A2
-A

0S
X

C
8-

A1
38

A7
-A

13
F

BH
-A

0C
7

AO
-A

12
E

AN
-A

0F
K

A2
-A

0E
X

C
8-

A1
2Z

AO
-A

0J
M

C
8-

A1
2U

D
8-

A1
42

A2
-A

0D
2

AN
-A

0A
M

AN
-A

0A
L

AR
-A

0T
T

C
8-

A1
2V

A2
-A

0T
6

A2
-A

0Y
M

BH
-A

0E
1

C
8-

A1
34

A2
-A

0E
V

A8
-A

07
6

AR
-A

1A
W

AO
-A

0J
6

AR
-A

1A
P

BH
-A

18
N

A7
-A

0C
J

A8
-A

06
Z

C
8-

A1
2L

C
8-

A1
35

A2
-A

0Y
G

AO
-A

12
F

AR
-A

0U
4

BH
-A

0D
G

E2
-A

15
4

A2
-A

0T
3

BH
-A

18
U

A8
-A

09
G

AO
-A

12
B

AR
-A

0T
X

C
8-

A1
2T

A7
-A

0C
E

A8
-A

08
Z

Significant
FPR > 0.05
FPR <= 0.05

-log10(p-value)
8
16
24
32

Source Data file with this paper. 

(-log10(p)), and dots are colored based on if the observed activity score has a false positive rate below
0.05. Kinases and samples were sorted using hierarchical clustering with ward linkage. Important
clinical attributes of each patient can be found above the main dotplot, including the HER2 status and
classification based on either mRNA or protein expression data. Source data are provided as a separate 

Supplementary Figure 31. Full KSTAR predictions on CPTAC phosphoproteomic analysis
of 77 Breast cancer patients Dotplot containing all kinase activity predictions for the CPTAC
phosphoproteomic dataset [37], corresponding to Figure 6A. Dot size corresponds the activity score 
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HER2+ (18) HER2- (58)

Active 9 (50%) 14 (24%)

Inactive 9 (50%) 44 (76%)

a

b

c

d

Patients Ranked By…

e

HER2+ (18) HER2- (58)

Active 13 (72%) 38 (65%)

Inactive 5 (27%) 20 (34%)

f

(KSTAR, KSEA [26], KEA3 [29]), with patient samples sorted based on KSTAR predicted activity. HER2
status is indicated using the color of the bars/dots depending on plot type. A) KSTAR predictions
of ERBB2/HER2 activity, where each where dotsize indicates degree of activity and red samples are
significant (FPR <= 0.05). This plot is identical to Figure 6A. B) KEA3 ERBB2/HER2 ranking,
relative to the 50 kinases that also have predictions in KSTAR. So, for a sample where the rank is 10,
ERBB2/HER2 is the 10th most enriched kinase out of 50 other tyrosine kinases. C) KSEA z-scores and
number of identified ERBB2 substrates for each CPTAC patient sample. In patients with at least one
ERBB2/HER2 substrate, z-score enrichment was calculated with measured log2 transformed abundances.
Positive z-scores indicate high ERBB2 activity and negative z-scores indicate low ERBB2 activity, relative
to a pooled sample. Empty bars correspond to patients with no identified substrates, as indicated by
PhosphoSitePlus [1]. All patient samples with KSEA predictions for HER2/ERBB2 relied on a single
site as evidence, LDHA Y10. Significant z-scores are indicated by ’*’ (FDR <= 0.05). D) GSEA-style
running sum to test if KSTAR HER2/ERBB2 activity or KEA3 HER2/ERBB2 mean ranks significantly
correlates with HER2 status. To calculate the running sum, samples were sorted according to predicted
ERBB2 activity obtained from KSTAR or KEA3, with the most ERBB2 active samples at the top of
the list. We then moved through the list, adding to the running sum if the sample was HER2+ and
subtracting from the running sum if the sample was HER2-. (Caption continued on next page)

Supplementary Figure 32. Comparing Kinase Activity Inference Approaches Relationship

with HER2 Status Predicted HER2 activity using different kinase activity inference algorithms 
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The final enrichment score is equal to the maximum deviation from0 obtained in the running sum. 
Statistical significance was then calculated using a null distributionconsisting of ES scores obtained 
when the sample list was sorted randomly. Only KSTAR ERBB2 activitypredictions were found to be 
significantly correlated with HER2 status. E) HER2 status predictions for 
KSTAR, with active ERBB2/HER2 defined by score ≤ 1e − 3. Same table as in Figure 4A. F) HER2 
status predictions for KEA3, defining active ERBB2/HER2 by an ERBB2 rank of 8 or higher. This
cutoff was determined by identifying the rank cutoff with the best overall F1 score for KEA3. Source
data are provided as a separate Source Data file with this paper. 
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Supplementary Figure 33. Full KSTAR predictions on PDX Dataset Dotplot containing all
tyrosine kinase activity predictions for the PDX dataset [8], corresponding to Figure 6B. Dot size 
corresponds the activity score (-log10(p)), and dots are colored based on if the observed activity score 
has a false positive rate below 0.05. Kinases and samples were sorted using hierarchical clustering with
ward linkage. HER2 status of each patient is indicated above the dotplot. 3 of the 25 PDX samples were
HER2+, the rest of the samples were HER2-. Source data are provided as a separate Source Data file
with this paper. 
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Supplementary Figure 34. Full KSTAR tyrosine kinase activity predictions on microscaled

biopsies Full dotplot containing all tyrosine kinase activity predictions on Microscaled Biopsies of HER2+
patients for both pre- and post-treatment [36]. Corresponds to Figure 6C. Patients were treated with 
a combination of chemotherapy and HER2 targeted therapy, and post-treatment biopsies were taken
48-72 hours following the beginning of treatment. Dot size corresponds to the activity score (-log10(p)), 
and dots are colored based on if the observed activity score has a false positive rate below 0.05. Kinases 
and samples were sorted using hierarchical clustering with ward linkage. Treatment status (pre- vs.
post-treatment) and treatment response (responder vs. non-responder) of each sample are indicated with 
the context dots above the dotplot. Source data are provided as a separate Source Data file with this 
paper. 
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Supplementary Figure 35. KSTAR tyrosine kinase activity predictions on microscaled biopsies
prior to treatment Full dotplot containing all tyrosine kinase activity predictions on microscaled

biopsies of HER2+ patients for only pre-treatment from Satpathy et al. [36]. Corresponds to Figure 
6C. Dot size corresponds to the activity score (-log10(p)), and dots are colored based on if the observed 
activity score has a false positive rate below 0.05. Kinases and samples were sorted using hierarchical 
clustering with ward linkage. Treatment response to combination therapy of chemotherapy and anti-HER2
therapy (responder/pCR vs. non-responder/non-pCR) of each sample are indicated with the context 
dots above the dotplot. Source data are provided as a separate Source Data file with this paper. 
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Supplementary Figure 36. KSTAR serine/threonine kinase activity predictions on microscaled

biopsies prior to treatment Full dotplot containing all serine/threonine kinase activity predictions (for
which at least one sample patient had on microscaled biopsies of HER2+ patients for only pre-treatment 
from Satpathy et al. [36]. Dot size corresponds to the activity score (-log10(p)), and dots are colored 
based on if the observed activity score has a false positive rate below 0.05. Kinases and samples were 
sorted using hierarchical clustering with ward linkage. Treatment response to combination therapy of
chemotherapy and anti-HER2 therapy (responder/pCR vs. non-responder/non-pCR) of each sample are 
indicated with the context dots above the dotplot. Source data are provided as a separate Source Data 
file with this paper. 
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a c edb

Supplementary Figure 37. Patient-specific KSTAR predictions for non-pathologically com-

plete responders (non-pCR) Patient specific dotplots of EGFR and ERBB2 KSTAR activity pre-
dictions for non-pathologically complete responders (non-pCR) to treatment with chemotherapy and 
anti-HER2 therapy from Satpathy et al. [36]. Each plot includes all available replicates and both pre/post- 
treatment samples. A) Patient BCN1326, a false positive without ERBB2 copy number amplification.

B) Patient BCN1331, a pseudo-false positive with ERBB2 amplification but without increased protein 
expression. C) Patient BCN1335, a pseudo-false positive with ERBB2 amplification but without increased 
protein expression. Post-treatment data was not available. D) Patient BCN1369, who failed to respond 
to treatment despite having ERBB2 amplification and increased protein expression. E) Patient BCN1371,
who failed to respond to treatment despite having ERBB2 amplification and increased protein expression.
Post treatment data was not available. Source data are provided as a separate Source Data file with this 
paper. 
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Supplementary Figure 38. Patient-specific KEA3 ranks for non-pathologically complete re-
sponders (non-pCR) Patient specific dotplots of EGFR and ERBB2 KEA3 ranks for non-pathologically 
complete responders to treatment with chemotherapy and anti-HER2 therapy from Satpathy et al. [36].
Ranks are relative to the 50 tyrosine kinases found in NetworKIN in order to make ranks comparable 
to KSTAR. Each plot includes all available replicates and both pre/post-treatment samples. As all but
one true HER2+ sample (not identified as a false positive by Satpathy et al. [36] had ERBB2 as one 
of the top 4 most active kinases based on KSTAR predictions, we have applied a significance cutoff
of rank 4 (rank is 4 or better, kinase is deemed significantly active). See Supplementary Figure 41 for
more details on this cutoff choice. A) Patient BCN1326, a false positive without ERBB2 copy number

amplification. B) Patient BCN1331, a pseudo-false positive with ERBB2 amplification but without 
increased protein expression. C) Patient BCN1335, a pseudo-false positive with ERBB2 amplification but
without increased protein expression. Post-treatment data was not available. D) Patient BCN1369, who 
failed to respond to treatment despite having ERBB2 amplification and increased protein expression. E)

Patient BCN1371, who failed to respond to treatment despite having ERBB2 amplification and increased
protein expression. Post treatment data was not available. Source data are provided as a separate Source
Data file with this paper. 
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Supplementary Figure 39. Patient-specific KSTAR predictions for pathologically complete

responders (pCR) Patient specific dotplots of EGFR and ERBB2 KSTAR activity predictions for
pathologically complete responders (pCR) to treatment with chemotherapy and anti-HER2 therapy from
Satpathy et al. [36]. Each plot includes all available replicates and both pre/post-treatment samples.

A) Patient BCN1300. This is the only pCR patient who had basal ERBB2 activity but did not see
activity decrease post-treatment, indicating that ERBB2 therapy arm was not responsible for successful 
response. B) Patient BCN1358. C) Patient BCN1365. D) Patient BCN1325. E) Patient BCN1367.

F) Patient BCN1303. G) Patient BCN 1368. Post treatment data not available. H) Patient BCN1357.

Post treatment data not available. I) Patient BCN1359. This patient exhibited an interesting response
to treatment, where ERBB2 mRNA levels actually increased upon treatment, perhaps explaining the 
increase in predicted activity. Source data are provided as a separate Source Data file with this paper. 
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Supplementary Figure 40. Patient-specific KEA3 ranks for pathologically complete re-
sponders (pCR) Patient specific dotplots of EGFR and ERBB2 KEA3 ranks for non-pathologically
complete responders to treatment with chemotherapy and anti-HER2 therapy from Satpathy et al. [36].
Ranks are relative to the 50 tyrosine kinases found in NetworKIN in order to make ranks comparable

to KSTAR. Each plot includes all available replicates and both pre/post-treatment samples. As all but
one true HER2+ sample (not identified as a false positive by Satpathy et al [36] had ERBB2 as one
of the top 4 most active kinases based on KSTAR predictions, we have applied a significance cutoff of
rank 4 (rank is 4 or better, kinase is deemed significantly active). See Supplementary Figure 41 for more

details on this cutoff choice. A) Patient BCN1300. This is the only pCR patient who had basal ERBB2
activity but did not see activity decrease post-treatment, indicating that ERBB2 therapy arm was not
responsible for successful response. B) Patient BCN1358. C) Patient BCN1365. D) Patient BCN1325.

E) Patient BCN1367. F) Patient BCN1303. G) Patient BCN 1368. Post treatment data not available
.H) Patient BCN1357. Post treatment data not available. I) Patient BCN1359. This patient exhibited
an interesting response to treatment, where ERBB2 mRNA levels actually increased upon treatment,

perhaps explaining the increase in predicted activity. Source data are provided as a separate Source Data 
file with this paper. 
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Supplementary Figure 41. Comparing HER2/ERBB2 activity ranks in KSTAR and KEA3 
for microscaled biopsies The activity rank of HER2/ERBB2 in the pre-treatment microscaled biopsies
of HER2+ patients from Satpathy et al. [36], obtained using either KSTAR activity scores or KEA3 mean
ranks. Patients are colored according to their true HER2 positivity status identified in Satpathy et al. 
(BCN1326, BCN1331, BCN1335 were all identified as false positives, and therefore are colored as negative
in this plot). All patient replicates are included. As KSTAR uses false discovery rate as the indicator 
of activity, KSTAR predictions where FDR ≤ 0.05 are indicated with a red edge. Lastly, all but one 
true HER2 positive patient sample, BCN1359, identified ERBB2 as one of the top 4 most active kinases.
Notably, ERBB2 did not appear in the top 4 most enriched kinases in any KEA3 predictions, and there
does not appear to be a clear distinction between the ranks of the true postives and the negative samples.
Source data are provided as a separate Source Data file with this paper. 
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Supplementary Tables

Supplementary Table 1. Commonly used and available kinase activity inference methods We have compiled information regarding
several popular/commonly referenced kinase activity/enrichment inference methods currently available. Included is a brief description of their
implementation, as well as the input data type, background networks used, whether they use quantification, and if they account for study bias.

 

PMID Year 
Algorithm 

Name 
Data Input 

Kinase-Substrate Info 
Used 

Quantification 
Required 

Single 
Sample 

Account for 
Study Bias 

Platform 

Number of 
times cited in 
PubMed as of 

Dec. 2021 

23532336, 
28655153 

2013, 
2017 

KSEA Phosphoproteomics 
PhosphoSitePlus and 

NetworKIN 
Yes No No 

R or web-based 
application: 

116, 33 

34019655 2021 KEA3 
Transcriptomics, 
Proteomics, or 

Phosphoproteomics 
11 PPI Databases No Yes No 

Web-based 
application 

1 (original 
KEA paper 
cited 105 

times) 

30979792 2019 INKA Phosphoproteomics 
PhosphositePlus and 

NetworKIN 
Yes Yes No 

R or web-based 
application: 

13 

28674151 2017 KARP Phosphoproteomics PhosphositePlus Yes Yes Yes 
Excel VBA, but 
not published 

7 

26628587 2016 IKAP 
Phosphoproteomics 

and Proteomics 
PhosphositePlus Yes No No Matlab 23 

30563849 2019 PTM-SEA Phosphoproteomics 
PTMsigDB (utilizes 

information from 
PhosphoSitePlus) 

Yes No No 

Hosted on 
tinyurl 

(GenePlatform), 
source code 
available on 

github 

30 
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Supplementary Table 2. Control experiments used for Figure 2 For each of the datasets used in Figure 2 of the main text, we have
provided a description of the original experiment and how it was used in KSTAR analyses, including the threshold used to define binary evidence
within them and the resulting evidence sizes.

 

Source 
Short-Hand 

Name 
Cell Line 
or Tissue 

ST/Y 
or 

both? 

Description of 
experiment 

Conditions 
Number 
of pTyr 
(total) 

Number of 
pSer/pThr 

(total) 

Threshold 
used 

Quantification 
meaning 

Range of pTyr in 
post-thresholded 

experiments 

Range of 
pSer/pThr in post-

thresholded 
experiments 

[10] 
EGF_ 
HMEC 

Cell line 
(HMEC, 
184A1) 

Y 
EGF 

stimulation of 
HMEC cells 

0, 1, 2, 4, 8, 
16, 32 minutes 

of EGF 
stimulation 

228 0 1 

Relative to 
four minutes 

post-EGF 
stimulation 

9-194 NA 

[11] 
EGF_ 

HER2_ 
HMEC 

Cell line 
(184A1 
and 24H 
184A1) 

Y 

EGF and HRG 
stimulation of 

HMEC cell 
lines, one of 

which 
overexpresses 

HER2 

HRG or EGF 
stimulation at 
0, 5, 10 and 

30 minutes of 
normal or 

HER2 
overexpressin

g cells 

66 0 0.8 
Relative to 

P_EGF at 5' 
13-66 NA 

[12] TCR 
Cell line 
(Jurkat) 

Y 

Early T-cell 
Signaling, 

activated by 
anti-CD28 
antibody. 

0, 5, 15, 30, 
60 seconds of 

activation 
665 0 0.2 

Relative to 
unstimulated 

(0-sec) 
condition 

(log2) 

128-200 NA 

[13] BCR-ABL 
Cell Line 
(K562) 

Y 

BCR-ABL 
driven CML 

cell line 
(K562) treated 
with dasatinib. 

Pre-treatment, 
20 minutes 

post-
treatment, 
3hrs post 

washout, 6hrs 
post washout 

161 0 0.5 
Relative to 

pre-treatment 
81-161 NA 

[14] BRAF 
Cell Line 
(Colo205, 
HCT116) 

ST 

CRC cell lines 
treated with 
vemurafenib 
for an hour 

Measured 
every 5 

minutes over 
the course of 
an hour, for 

both HCT116 
and Colo205 

cell lines 

15 6851 0 

Relative to a 
DMSO control 

at each 
timepoint (and 

then mean 
centered 
across 

timepoints) 

NA 1590-2785 

[4] AKT_Inhib 
Cell Line 
(BT-474) 

ST 

BT-474 cells 
treated with 

five different 1 
uM AKT 

inhibitors for 1 
hour 

Untreated, 
MK-2206, 

Ipatasertib, 
GSK2110183, 
GSK690693, 

AZD5363 

0 10345 1 
Relative to 
control/pre-
treatment 

NA 5069-8980 
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Exp # Source Study Name 
Chemo 

proteomics? 
Tyrosine 

Enriched? 
Condition Kinases Direction 

1 [13] 
Dasatinib_inhibition_ 

Asmussen 
Table S1 No Yes 

K562 cells treated with dasatinib 
for 20 minutes 

ABL1 Down 

2 [10] EGF_WolfYadlin2007 Table S3 No Yes 
Human mammary epithelial cells 
stimulated with EGF for 1 minute 

EGFR Up 

3 [10] EGF_WolfYadlin2007 Table S3 No Yes 
Human mammary epithelial cells 

stimulated with EGF for 4 minutes 
EGFR Up 

4 [10] EGF_WolfYadlin2007 Table S3 No Yes 
Human mammary epithelial cells 

stimulated with EGF for 8 minutes 
EGFR Up 

5 [10] EGF_WolfYadlin2007 Table S3 No Yes 
Human mammary epithelial cells 

stimulated with EGF for 16 minutes 
EGFR Up 

6 [11] 
HER2overexpression_ 

WolfYadlin2006 
Supplementary 

Table 
No Yes 

HER2 overexpressing epithelial 
cells stimulated with EGF for 10 

minutes,  

EGFR Up 

7 [11] 
HER2overexpression_ 

WolfYadlin2006 
Supplementary 

Table 
No Yes 

HER2 overexpressing epithelial 
cells stimulated with HRG for 10 

minutes,  

EGFR,ERBB2 Up 

8 [12] TCRstimulation_Chylek Table S1 No Yes TCR stimulation for 5 seconds 
LCK, FYN, ZAP70, 

ITK 
Up 

9 [12] TCRstimulation_Chylek Table S1 No Yes TCR stimulation for 15 seconds 
LCK ,FYN, ZAP70, 

ITK 
Up 

10 [12] TCRstimulation_Chylek Table S1 No Yes TCR stimulation for 30 seconds 
LCK, FYN, ZAP70, 

ITK 
Up 

11 [12] TCRstimulation_Chylek Table S1 No Yes TCR stimulation for 60 seconds 
LCK,FYN,ZAP70, 

ITK 
Up 

12 [24] TKIs_Giansanti 
SI Table 2, SI 

Table 3  
Yes Yes 

A431 cells treated with imatinib for 
2 hours, a TKI inhibitor 

CSK, SRC, DDR1 Down 

13 [24] TKIs_Giansanti 
SI Table 2, SI 

Table 3  
Yes Yes 

A431 cells treated with dasatinib 
for 2 hours, a TKI inhibitor 

EPHA2, SRC, 
DDR1, YES1, FRK 

Down 

14 [24] TKIs_Giansanti 
SI Table 2, SI 

Table 3 
Yes Yes 

A431 cells treated with bosutinib 
for 2 hours, a TKI inhibitor 

EPHA2, EPHB2, 
FRK, PTK2B, LYN 

Down 

15 [24] TKIs_Giansanti 
SI Table 2, SI 

Table 3 
Yes Yes 

A431 cells treated with nilotinib for 
2 hours, a TKI inhibitor 

DDR1, EPHA2, 
CSK, SRC, PTK2B 

Down 

16 [25] VEGF_Zhuang Table S1 No Yes 
HUVEC cells treated with VEGF 

for 10 minutes 
FLT1, KDR, FLT4 Up 

17 [25] VEGF_Zhuang Table S1 No Yes 
HUVEC cells treated with VEGF 

for 20 minutes 
FLT1, KDR, FLT4 Up 

18 [25] VEGF_Zhuang Table S1 No Yes 
HUVEC cells treated with VEGF 

for 30 minutes 
FLT1, KDR, FLT4 Up 

19 [21] Dasatinib_inhibition_Pan Table S5 No No 
K562 cells treated with 5nm 

dasatinib for 1 hour 
ABL1 Down 

20 [21] Dasatinib_inhibition_Pan Table S5 No No 
K562 cells treated with 50nm 

dasatinib for 1 hour 
ABL1 Down 
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Supplementary Table 3. Phosphoproteomic datasets used in the tyrosine kinase benchmarking dataset Information about each
study/condition used to benchmarking tyrosine kinase predictions, including the kinases considered to be perturbed. We have indicated the file
name/location of the source data in the original publication from which the data was obtained. In cases where chemoproteomic information was
available, binding information was used to determine the top 5 kinases most likely to be perturbed by drug.



Exp 
# 

Source Study Shorthand 
Chemo 

proteomics? 
Condition Kinases Direction 

21 
[4] 

AKTinhibition_ 
Wiechmann 

Table S3A Yes 
BT-474 cells treated with 1uM 

AZD5363 for 1 hour 
RPS6KB1,AKT1, ROCK2,EIF2AK4, 

PRKX 
Down 

22 
[4] 

AKTinhibition_ 
Wiechmann 

Table S3A Yes 
BT-474 cells treated with 1uM 

GSK2110183 for 1 hour 
AKT1,PAK6,CLK1, MARK3, 

PRKACA 
Down 

23 
[4] 

AKTinhibition_ 
Wiechmann 

Table S3A Yes 
BT-474 cells treated with 1uM 

GSK690693 for 1 hour 
PDPK1,ROCK1, CDC42BPB,AKT1, 

CDC42BPG 
Down 

24 
[4] 

AKTinhibition_ 
Wiechmann 

Table S3A Yes 
BT-474 cells treated with 1uM 

Ipatasertib for 1 hour 
AKT1,DYRK1A,PRKCH, 

CLK2,ROCK2 
Down 

25 
[4] 

AKTinhibition_ 
Wiechmann 

Table S3A Yes 
BT-474 cells treated with 1uM MK-
2206, an AKT inhibitor, for 1 hour 

AKT1,AKT2 Down 

26 
[15] 

ATRinhibition_ 
Salovska 

Supplementary 
File 1 

No 
HL60 cells treated with VE-821, an 

ATR inhibitor, after irradiation 
ATR Down 

27 
[16] 

AURK_CellCycleStudy
_ Kellenbach 

Table S1 No 
HeLa cells arrested in mitosis and 

treated with 0.25uM MLN8054 
AURKA Down 

28 
[16] 

AURK_CellCycleStudy
_ Kellenbach 

Table S1 No 
HeLa cells arrested in mitosis and 

treated with 1uM MLN8054  
AURKA Down 

29 
[16] 

AURK_CellCycleStudy
_ Kellenbach 

Table S1 No 
HeLa cells arrested in mitosis and 

treated with 5uM MLN8054 
AURKA,AURKB Down 

30 
[16] 

AURK_CellCycleStudy
_ Kellenbach 

Table S1 No 
Hela cells arrested in mitosis and 

treated with AZD1152 
AURKB Down 

31 
[16] 

AURK_CellCycleStudy
_ Kellenbach 

Table S1 No 
HeLa cells arrested in mitosis and 

treated with BI2536 
PLK1,PLK2,PLK3 Down 

32 
[17] 

CDK8/19_inhibition_ 
Poss 

Table S1 No 
HCT116 cells treated with 

cortistatinA 
CDK8,CDK19 Down 

33 
[18] 

CK2_inhibition_ 
Franchin 

Tables S1-S6 No 
HEK293T cells treated with 

quinalizarin for 3 hours 
CSNK2A1, CSNK2A2,CSNK2B Down 

34 
[19] EGF_IGF_ Wilkes Dataset S2 No 

MCF7 cells stimulated with EGF 
for 5 minutes 

MAPK1,MAPK3, 
BRAF,RAF1,AKT1,MAP2K1,MAP2

K2 

Up 

35 
[19] EGF_IGF_ Wilkes Dataset S2 No 

MCF7 cells stimulated with EGF 
for 10 minutes 

MAPK1,MAPK3, 
BRAF,RAF1,AKT1,MAP2K1,MAP2

K2 

Up 

36 
[19] EGF_IGF_ Wilkes Dataset S2 No 

MCF7 cells stimulated with EGF 
for 30 minutes 

MAPK1,MAPK3, 
BRAF,RAF1,AKT1,MAP2K1,MAP2

K2 

Up 

37 
[19] EGF_IGF_ Wilkes Dataset S2 No 

MCF7 cells stimulated with EGF 
for 60 minutes 

MAPK1,MAPK3, 
BRAF,RAF1,AKT1,MAP2K1, 

MAP2K2 

Up 

38 

[19] EGF_IGF_ Wilkes Dataset S2 No 
MCF7 cells stimulated with IGF1 

for 5 minutes 

MAPK1,MAPK3, 
BRAF,RAF1,AKT1,MAP2K1, 

MAP2K2 
Up 
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Supplementary Table 4. Phosphoproteomic datasets used in the serine/threonine kinase benchmarking dataset Information about
each study/condition used to benchmark serine/threonine kinase predictions, including the kinases considered to be perturbed. We have indicated
the file name/location of the source data in the original publication from which the data was obtained. In cases where chemoproteomic information
was available, binding information was used to determine the top 5 kinases most likely to be perturbed by drug.



 

39 

[19] EGF_IGF_ Wilkes Dataset S2 No 
MCF7 cells stimulated with IGF1 

for 10 minutes 

MAPK1,MAPK3, 
BRAF,RAF1,AKT1,MAP2K1, 

MAP2K2 
Up 

40 

[19] EGF_IGF_ Wilkes Dataset S2 No 
MCF7 cells stimulated with IGF1 

for 30 minutes 

MAPK1,MAPK3, 
BRAF,RAF1,AKT1,MAP2K1, 

MAP2K2 
Up 

41 
[19] EGF_IGF_ Wilkes Dataset S2 No 

MCF7 cells stimulated with IGF1 
for 60 minutes 

MAPK1,MAPK3,BRAF,RAF1, 
AKT1,MAP2K1,MAP2K2 

Up 

42 
[20] CDK1_inhib_ Petrone Table S1 No 

HeLa cells treated with 
Flavopiridol, a CDK1 inhibitor 

CDK1 Down 

43 
[20] CDK1_inhib_ Petrone Table S1 No 

HeLa cells treated with RO-3306, a 
CDK1 inhibitor 

CDK1 Down 

44 
[21] 

MEK/p38_inhibition_ 
Pan 

Tables S1 and 
S2 

No HeLa cells treated with EGF 
MAPK1,MAPK3,MAP2K1, 

MAP2K2,BRAF,RAF1,AKT1 
Up 

45 

[21] 
MEK/p38_inhibition_ 

Pan 
Tables S1 and 

S2 
No 

HeLa cells treated with U0126, a 
MEK inhibitor, after EGF 

stimulation 
MAP2K1,MAP2K2,MAPK1, MAPK3 Down 

46 
[21] 

MEK/p38_inhibition_ 
Pan 

Tables S1 and 
S2 

No HeLa cells treated with EGF 
MAPK1,MAPK3,MAP2K1, 

MAP2K2,BRAF,RAF1,AKT1 
Up 

47 

[21] 
MEK/p38_inhibition_ 

Pan 
Tables S1 and 

S2 
No 

HeLa cells treated with SB202190, 
a p38 inhibitor, after EGF 

stimulation 
MAPK11,MAPK14 Down 

48 
[22] 

MEK_BRAF_Inhibition
_ Stuart 

Tables S1 and 
S2 

No 
WM239A cells treated with 
PLX4032, a BRAF inhibitor 

BRAF,MAPK1,MAPK3 Down 

49 
[22] 

MEK_BRAF_Inhibition
_ Stuart 

Tables S1 and 
S2 

No 
WM239A cells treated with 

AZD6244, a MEK1/2 inhibitor 
MAP2K1,MAP2K2,MAPK1, MAPK3 Down 

50 
[23] DNA_damage_Beli Table S1 No 

U2OS cells treated with epotoside 
for 24 hours 

ATR,ATM Up 

51 
[23] DNA_damage_Beli Table S1 No 

U2OS cells treated with ionizing 
radiation for 1 hour 

ATR,ATM Up 
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Supplementary Table 5. Phosphoproteomic datasets used for robustness analysis in Figure 5 For each of the datasets used in Figure
5 of the main text, we have provided a description of the original experiment, the conditions/cell lines we used from this experiment, and the
phosphorylation sites used for prediction

 

Source Dataset Number Cell Line 
Primary 
MS Lab 

Description of experiment Number of Sites Identified 

[31] 1 H3255 Comb 
Comparison of NSCLC cell lines driven by EGFR activating mutations and/or 

genomic amplification 
466 

[32] 2 H3255 Comb 
EGF and HRG stimulation of HMEC cell lines, one of which overexpresses 

HER2 
444 

[31] 3 HCC827 Comb 
Comparison of NSCLC cell lines driven by EGFR activating mutations and/or 

genomic amplification 
469 

[32] 4 HCC827 Comb BCR-ABL driven CML cell line (K562) treated with dasatinib. 452 

[33] 5 H3255 Comb 
Profile of multiple different well-studied cell lines, used to test INKA 

algorithm 
414 

[34] 6 HCC827 Jimenez Profile of multiple different wellstudied cell lines, used to test INKA algorithm 2586 

[35] 7 H3255 Pandey 
NSCLC cell lines with varying sensitivity to erlotnib treatment treated with 

either erlotnib or afatanib 
189 

[3] 8 K562 Heck 
Comparison of phosphotyrosine (pY) sites identified via two different 

enrichment approaches (pY immunaffinity enrichment vs. 2-dimensional 
approach using metal-affinity based enrichment) 

167 

[13] 9 K562 Shah K562 cells treated with dasatinib 161 

[34] 10 K562 Jiminez Profile of multiple different wellstudied cell lines, used to test INKA algorithm 1185 

[3] 11 K562 Heck 
Comparison of phosphotyrosine (pY) sites identified via two different 

enrichment approaches (pY immunaffinity enrichment vs. 2-dimensional 
approach using metal-affinity based enrichment) 

1414 
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Supplementary Table 6. Breast cancer datasets used in Figure 6 For each of the datasets used in Figure 6 of the main text, we have
provided a description of the original experiment and how it was used for KSTAR analysis

 

Source 
Short-hand 

Name 
Cell Line 
or Tissue 

ST/Y 
or 

Both 

Description of 
Experiment 

Conditions 
Used 

Number 
of pTyr 
(total 

Number of 
pSer/pThr 

(total) 

Threshold 
used 

Quantification 
meaning 

Range of 
pTyr in post-
thresholded 
experiments 

 

Range of 

pSer/pThr in 

post-

thresholded 

experiments 

 

[36] Microbiospy 
Tissue 
(Breast 
cancer) 

Both 

Performed 
extensive 

proteogenomic 
measurements for 
14 HER2+ breast 

cancer patient 
samples before and 
after treatment with 

a combination of 
HER2 inhibitors 

and chemotherapy, 
where some 
patients were 

unresponsive to 
treatment. 

14 patients 
with pre-

treatment, 
10 patients 
with post-
treatment, 
some with 
multiple 

replicates 

139 23,298 
-0.2 (Y),  
1 (ST) 

Relative to a 
common 
reference 
sample 

32-60 1945-2874 

[37] BRCA 
Tissue 
(Breast 
cancer) 

Both 

CPTAC: Large 
scale profiling of 

107 different breast 
cancer patients 
with associated 
HER2 clinical 

status 

77 patients 
with high 
quality 

samples 

177 26,111 -0.5 
Relative to a 
global pooled 

sample 
35-109 NA 

[8] PDX 

Tissue 
(PDX 
Breast 

Cancer) 

Both 

Measurements for 
25 PDX models of 
breast cancer, 3 of 

which were 
identified as 

HER2+ 

Pre-
treatment 
measurem
ents for all 

PDX 
models 

563 48,330 0 

Expression was 
median 

centered 
across samples 

72-164 NA 
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Supplementary Table 7. Ancestry, age, and sex of the cell lines used in studies analyzed by KSTAR For all cell-line based data
(Figures 2-5), we have included information regarding the ancestry and demographic informaiton of the cell lines used. All information was
obtained from Cellosaurus [38]. For patient focused demographic information, please reference the original publications (Figure 6A: Supplementary
Table 1 in Mertins et al. [37], Figure 6B: Supplementary Data 1 in Huang et al. [8], Figure 6C: Supplementary Table1B from Satpathy et al. [36]).

 

Cell Line RRID Accession Tissue/Disease 
Sex of 

cell 
Age at 

sampling 
Genetic Ancestry 

Associated 
Figure(s) 

184A1 
CVCL_3040 
(Secondary: 
CVCL_8222) 

Human mammary 
epithelial cells 

Female 21 Not Available 
Figures   

2-4 

Jurkat CVCL_0065 
T-cell acute 

lymphoblastic leukemia 
Male 14 

European (north): 70.73%, European (south): 26.45%, East Asian (south): 
1.21%, South Asian: 1.08%, African: 0.4%, East Asian (north): 0.13% 

Figures   
2-4 

K562 CVCL_0004 
Chronic myeloid 

leukemia 
Female 53 

European (north): 43.44%, European (south): 42.97%, East Asian (north): 
5.19%, African: 5.19% 

Figures    
2-5 

BT-474 CVCL_0179 
Invasive breast 

carcinoma 
Female 60 

European (north): 70.19%, European (south): 26.74%. East Asian (north): 
2.47%, African: 0.6% 

Figures   
2-4 

Colo205 CVCL_0218 Colon adenocarcinoma Male 70 
European (north): 61.39%, European (south): 36.53%, East Asian (north): 

2.08% 
Figure 2 

HCT116 CVCL_0291 Colon carcinoma Male 48 
European (north): 64.85%, European (south): 32.93%, East Asian (north): 

1.16%, South Asian: 0.97%, Native American: 0.08% 
Figure 2 

A431 CVCL_0037 
Skin squamous cell 

carcinoma 
Female 85 

European (south): 65.16%, European (north): 17.15%, East Asian (north): 
7.84%, South Asian: 6.03%, African: 3.82% 

Figures   
3-4  

HL60 CVCL_0002 Acute myeloid leukemia Female 36 
European (north): 71.71%, European (south): 26.32%, African: 1.15%, 

Native American: 0.42%, East Asian (north): 0.4% 
Figures    

3-4 

HeLa CVCL_0030 
HPV-related 
endocervical 

adenocarcinoma 
Female 30 

African: 64.74%, European (north): 19.45%, European (south): 12.78%, 
East Asian (north): 2.26%, Native American: 0.77% 

Figures   
3-4 

HEK293T CVCL_0063 Fetal kidney Female Fetus Not available 
Figures   

3-4 

MCF7 CVCL_0031 
Invasive breast 

carcinoma 
Female 69 

European (north): 56.91%, European (south): 38.15%, East Asian (north): 
4.2%, African: 0.74% 

Figures   
3-4 

WM239A CVCL_6795 Melanoma Female 55 Not available 
Figures   

3-4 

U2OS CVCL_0042 Osteosarcoma Female 15 
European (north): 60.98%, European (south): 31.08%, East Asian (north): 

5.19%, African: 2.75% 
Figures   

3-4 

K562 CVCL_0004 
Chronic myeloid 

leukemia 
Female 53 

European (north): 43.44%, European (south): 42.97%, East Asian (north): 
5.19%, African: 5.19% 

Figures   
2-5 

HCC827 CVCL_2063 Lung adenocarcinoma Female 39 
European(south): 67.96%, European (north): 19.48%, South Asian: 
7.09%, East Asian (north): 3.47%, African: 1.62%, Native American: 

0.39% 
Figure 5 

HCC827-ER3 CVCL_EJ09 Lung adenocarcinoma Female 39 Derived from parent HCC827 Figure 5 

H3255 CVCL_6831 Lung adenocarcinoma Female Unknown 
European(north): 59.85%, European (south): 34.46%, African: 3.63%, 

East Asian (north): 2.06% 
Figure 5 
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Supplementary Methods

Content Found In Section

1. Problems Addressed by the KSTAR Algorithm

(a) Issues with Kinase-Substrate Networks

i. Problem 1: Kinase-substrate annotations are sparse (page 60)

ii. Problem 2: Using thresholded kinase-substrate prediction networks degrades performance
(page 60)

iii. Problem 3: Thresholding kinase-substrate prediction networks results in “Hub”
substrates (page 61)

iv. Problem 4: Thresholding kinase-substrate prediction networks results in “Hub” kinases
and kinases with little associated evidence (page 61-62)

v. Problem 5: Certain kinases tend to be connected to well studied sites, leading to
kinase-specific false positive rates. (page 61-62)

vi. Problem 6: Kinases from the same family often exhibit high network overlap (connected
to the same substrates) in thresholded networks (page 63)

(b) Challenges with applying kinase activity inference

i. Problem 7: Most kinase-activity inference algorithms rely on relative quantification (page
63-64)

ii. Problem 8: Phosphoproteomic experiments tend to identify well-studied sites, leading to
experiment specific false positive rates (page 64)

2. Implementing the KSTAR algorithm

(a) Heuristic Prune and Generation of Network Ensemble

i. Prune algorithm without accounting for kinase-specific study bias (page 64-65)

ii. Prune algorithm when accounting for kinase-specific study bias (page 65-66)

(b) Inferring Kinase Activity from Phosphoproteomic Data

i. Calculating kinase-substrate enrichment in each pruned network (page 66-67)

ii. Generating random phosphoproteomic experiments (page 67)

iii. Calculating the final KSTAR activity score (page 68)

iv. Calculating the false positive rate of the activity score (page 68-69)
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Problems Addressed by the KSTAR Algorithm

Issues with Kinase-Substrate Networks

Problem 1: Known kinase-substrate annotations from phosphoproteome databases like
PhosphoSitePlus [1] are sparse: only a small fraction of the total phosphoproteome have at least one
known connection to a kinase.

Solution: Using information from kinase-substrate prediction networks like NetworKIN [2] would allow
for better coverage of the phosphoproteome.

a b

Problem 2: Thresholded kinase-substrate prediction networks have been shown to exhibit poor
performance relative to using kinase-substrate annotations alone.

Solution: We hypothesized there is useful information in these kinase-substrate networks, but that the
single kinase-substrate network generated by thresholding contains too many incorrect predictions and
issues with study bias to be useful. Instead, we proposed that we could create an ensemble of many
possible kinase-substrate networks using the network edge weights to guide edge selection, rather than
relying on single representation of kinase-substrate relationships (heuristic prune, Algorithm 2). This
approach is built on the idea that all networks are wrong, but they are wrong in different ways. While
any one single network is unlikely to be the correct representation, aggregating information across these
networks will allow us to converge on the kinases most likely to be active. We have demonstrated the
utility of ensemble approaches in some of our prior work, such as for clustering with OpenEnsembles [39].

Supplementary Figure 42. KSTAR Expands the Number of Phosphorylation Sites Used

in Prediction A) The total number of unique substrates with a edge/interaction with at least one
kinase for known kinase-substrate annotations in PhosphoSitePlus [1], or predicted interactions from at
hresholded NetworKIN [2], or predicted interactions from KSTAR networks. B) The same information 
as A, but provided as a fraction of the total phosphoproteome. Source data are provided as a separate
Source Data file with this paper. 
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Problem 3: Thresholded kinase-substrate prediction networks result in the emergence of “Hub”
substrates, which provide evidence for a disproportionate number of kinases.
Solution: During the heuristic prune, we limit the number of edges each substrate can have in each
network (number of kinases it can provide evidence for).

Weighted Edges

Thresholded Edges

a

b

c

Problem 4: Thresholded kinase-substrate prediction networks result in the emergence of “Hub” kinases,
which are connected to a disproportionate number of substrates. In addition, many kinases often lose the
majority of their edges in the network, losing the ability to generate predictions for these kinases.
Solution: During the heuristic prune, force all kinases to have the same number of edges in each
network, ensuring that no one kinase has too few/too many substrates providing evidence for them.

Problem 5: Kinase-substrate prediction networks exhibit high study bias, where certain kinases are
more likely to be connected to well-studied sites, which leads to kinase-specific false positive rates.
Solution: Enforce a rule during the heuristic prune that ensures every kinase has edges with the same
distribution of study bias, as defined by the number of phosphoproteome compendia they are identified
in. This means that no one kinase is connected to more well studied sites (site found in most compendia)
and no one kinase is connected to more poorly studied sites (site found in few compendia).

… 
Pruned Edges 

Supplementary Figure 43. Effect of Heuristic Prune on Hub Substrates in NetworKIN Here, 
we demonstrate the impact of the prune on substrate hubs, using PI3KR1 Y12 as an example (In network
graphs, PI3KR1 Y12 is indicated by light blue node, dark blue nodes represent a unique kinase). A)
Example hub substrate in NetworKIN thresholded with a value of 1 and B) the same substrate in two of
the 50 pruned networks. C) Number of kinases each substrate is connected to in PhosphoSitePlus [1],
NetworKIN thresholded with a value of 1 [2], and KSTAR pruned networks [PhosphoSitePlus: n = 1319
tyrosine substrates with at least one known interaction, NetworKIN: n = 6707 tyrosine substrates with
at least one predicted interaction, KSTAR; n = 1752023 tyrosine substrates with at least one predicted
interaction (only 39,268 unique substrates, each KSTAR network was counted separately to ensure
that the properties/distribution of individual networks was illustrated)]. Box indicates median (center
line), 25th and 75th percentiles (box boundaries), 1.5x the IQR of the box edge (whiskers), and any
outliers beyond 1.5x IQR (points). If no outliers exist, whiskers indicate maxima or minima. Thresholded
NetworKIN and pruned KSTAR networks exhibit similar distributions, where the median number of
kinases each substrate is connected to is 2. However, KSTAR networks do not have any outlier substrates
connected to more than 10 kinases (“Hub” substrates), which can have a large influence on the final
predictions. Source data for c are provided as a separate Source Data file with this paper. 
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a

b

c

(certain kinases are connected to more substrates, or are connected to many well-studied sites), the
heuristic prune enforces a rule that ensures all kinases have an equal number of edges in each pruned
network, and that these edges have the same distribution of study bias for all kinases (as defined by the
number of compendia each substrate is identified in). High study bias sites are found 3-5 compendia,
medium study bias sites are found in 1-2 compendia, and low study bias sites are found in 0 compendia
(only found in ProteomeScout [40]). A) Number of substrates each kinase is connected to in NetworKIN
thresholded with a value of 1, and the distribution of study bias within these connections. In addition
to certain kinases having significantly more predicted substrates in these networks, we discovered that
certain kinases, such as FYN and SRC tended to be connected to more well studied sites. B) Number of
substrates each kinase is connected to in a pruned network if no study bias constraint is applied (Box 1).
While all kinases now have an equal number of edges, certain kinases tend to be more well connected to
well studied sites (such as LCK, HCK, and FYN), leading to higher than expected, kinase-specific false
positive rates. See Supplementary Note 2 for examples.C) Number of substrates each kinase is connected
to in one of the pruned KSTAR networks when the study bias constraint is applied (Box 2). Unlike in
B, all kinases have the same distribution of study bias among their substrate connections. This is an
example of network used for the predictions in the main body of this work. Source data are provided as
a separate Source Data file with this paper.

Supplementary Figure 44. KSTAR networks exhibit a more balanced distribution of kinase
network edges In order to account for kinase-specific study bias issues in kinase-substrate network
s 
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Problem 6: In thresholded kinase-substrate prediction networks, kinases from the same family
commonly exhibit high substrate overlap, where many of the same phosphorylation sites provide
evidence for the same kinases. This reduces the ability of prediction algorithms to discriminate between
the activity of these kinases.

Solution: We have observed that the probability based selection of edges and the constraints placed on
this selection (equal distribution of study bias, all kinases have the same number of edges, limits to the
number of kinases a substrate can provide evidence for, etc.) during the heuristic prune procedure serve
to significantly reduce the overlap between like kinases, allowing for greater discriminability in the
activity of these kinases.

EPHA/B

SFKs SFKs

VEGFR

a b
VEGFR

EPHA/B

Challenges with Kinase Activity Inference

Problem 7: Quantification is required for the majority of currently available kinase activity inference
algorithms. This is problematic for several reasons:

1. Relative quantification is inherently noisy, and a fold change can mean different things for different
proteins. For example, a fold change of 2 can indicate an increase in abundance from 0.1 to 0.2,
but it can also indicate an increase in abundance from 10 to 20, two very different outcomes.

2. More well studied sites tend to exhibit higher magnitude fold changes (See Supplementary Note 2)

3. In the clinical setting, it is often difficult to obtain a matched healthy sample required for relative
quantification.

Supplementary Figure 45. Effect of Heuristic Prune on Network Similarity Between Kinases

A) Heatmap depicting the overlapping substrates between kinases in NetworKIN when thresholded by
a value of 1, as defined by the Jaccard similarity index of the sites providing evidence for each kinase.
Kinases were sorted using hierarchical clustering. Key kinases/kinase families that exhibit high overlap
are indicated by the boxes. B) Heatmap depicting the overlapping substrates between the same kinases 
in KSTAR networks, as defined by the average Jaccard Similarity across all KSTAR networks. Kinases

were sorted using the same order in A. Source data are provided as a separate Source Data file with this
paper. 
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Solution: Measured abundance values are converted to binary evidence based on some cutoff value
relevant to the biological problem, and binary evidence is used as input into the KSTAR algorithm. We
can also convert to binary evidence based only on whether a site is identified in a sample. This also
allows for use of the KSTAR algorithm without relying on any quantification at all, using any sites
identified in a sample as evidence, as done for Figure 5 in the main text.

Problem 8: Experiments are more likely to identify well-studied sites, which can lead to
experiment-specific false positive rates (see Supplementary Note 2).

Solution: Compare enrichment p-values obtained from the real experiment to enrichment p-values that
can be obtained from random phosphoproteomic experiments with the same properties as the real
experiment (same number of sites used as evidence, same distribution of study bias). This is done using
the Mann Whitney U-test, a non-parametric distribution test.

Implementing the KSTAR algorithm

In this section, we will expand upon our original description of the KSTAR algorithm and how it is
implemented in practice. We have seperated the algorithm into two main sections for the purpose of
clarity. First, we will describe the heuristic prune and how to generate the ensemble of possible
kinase-substrate networks. For this section, the primary data that is required is a weighted
kinase-substrate network containing predictions for the entire phosphoproteome, such as NetworKIN [2],
GPS [41], or PhosphoPICK [42], and the reference human phosphoproteome obtained from KinPred [9].
The second section describes how phosphoproteomic data is converted into kinase activities using the
network ensemble obtained in the first section.

The Heuristic Prune and the Generation of the Network Ensemble

The heuristic prune generates an ensemble of binary kinase-substrate networks representing possible
representions of kinase-substrate interactions based on weighted graph predictions (we used NetworKIN,
but theoretically can be any weighted kinase-substrate network). In this procedure, we ensure that all
kinases have an equal number of edges/interactions in each binary network, set by kinase network size.
We also ensured that no phosphorylation site provides evidence for more kinases than a predetermined
cutoff, site limit. Lastly, we generate seperate networks for serine/threonine sites and tyrosine sites, as
these are nonoverlapping networks. Once these parameters have been determined, edges are randomly
selected from the weighted network and added to the pruned network according to a probability equal to
edge weights in the weighted network. Importantly, each kinase in the network will have edges added at
the same rate (all kinases will have one edge in the pruned network before any have two, etc.), which
ensures that every kinase is most likely to have their highest probability edges present in the final
networks. If any substrate in the pruned network obtains a number of edges equal to site limit, it is
removed from the weighted network and cannot serve as evidence for any other kinases. Because edge
selection is ultimately probabilistic in nature, every network generated using this procedure will be a
unique representation of a possible kinase-substrate landscape. The implementation of this approach for
a single network is described in Box 1.
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We noticed that the above approach resulted in a high number of false positives for certain kinases
and experiments (see Problem 5 and Supplementary Note 2), and determined that this was likely a result
of the study bias found within these networks, where well studied substrates tend to have high influence
on predictions. To account for study bias, we modified the approach described in Box 1 so that each 
kinase has edges/interactions with the same distribution of study bias (i.e. no kinases have only 
well-studied sites providing evidence for them, and no kinases have only poorly studied sites providing
evidence for them). To do so, we defined study bias for each substrate in the human phosphoproteome as
the number of different phosphoproteome compendia they are identified in. The compendia used in this
study are PhosphoSitePlus [1], phosphoELM [5], HRPD [6], dbPTM [7], and UniProt [43]. 

The heuristic prune described in Box 2 is similar to the procedure in Box 1, except that each kinase 
in the final binary network contains an equal distribution of sites found in 0, 1, 2, 3, 4, or 5 compendia 

(Supplementary Figure 44). Box 2 illustrates is the prune implementation we utilize throughout the 
main body of this work. 
 

Box 1: Heuristic prune of kinase-substrate network without accounting for study bias

Data: Weighted kinase-substrate network
Input: kinase network size = number of substrate interactions for each kinase in the pruned

network
site limit = maximum number of kinase interactions for each substrate in the pruned
network
modified sites = type of phosphorylation event to generate network for. Can either be Y
(tyrosine) or ST (serine/threonine)

Output: Binary kinase-substrate network

1 Initialize empty binary network;
2 Reduce weighted network to include either only Y or only S/T sites;
3 for i = 1, 2, 3, ...,kinase network size do
4 Shuffle kinase order;
5 foreach kinase do
6 substrate ← sample from weighted network with probability equal to kinase edge weights;
7 Add substrate-kinase edge to binary network;
8 Remove substrate-kinase edge from weighted network;
9 if degree(substrate) ≥ textsite limit then

10 Remove substrate node from weighted network;
11 end if

12 end foreach

13 end for
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Box 2: Heuristic prune of kinase-substrate network that ensures equal distribution of study bias
for each kinase
Data: Weighted kinase-substrate network

Human Reference Phosphoproteome from KinPred
Input: kinase network size = number of substrate interactions for each kinase in the pruned

network
site limit = maximum number of kinase interactions for each substrate in the pruned
network

Output: Binary kinase-substrate network

1 Initialize empty binary network;
2 Reduce weighted network to include only Y or S/T sites;
3 for n = 1, 2, 3, 4, 5 do

/* In order to know how many sites found in n compendia to sample, we need to

determine the fraction of these sites found in the overall phosphoproteome.

Out of the total kinase network size, we will then sample that same

fraction so that each kinase has the same distribution of study bias as

the background network. */

4 compendia size← number of sites in weighted network found in n compendia
total number of sites in weighted network ∗ kinase network size;

5 compendia network ← reduce weighted network to only include sites found in n compendia;
/* For each compendia size, n, follow the same pruning procedure as described

in Box 1. */

6 for i = 1, 2, 3, ..., compendia size do
7 Shuffle kinase order;
8 foreach kinase do
9 substrate ← sample from compendia network with probability equal to kinase edge

weights;
10 Add substrate-kinase edge to binary network;
11 Remove substrate-kinase edge from weighted network;
12 if degree(substrate) >= site limit then
13 Remove substrate node from weighted network;
14 end if

15 end foreach

16 end for

17 end for

Calculating Kinase Activity from a Phosphoproteomic Experiment

Once networks have been generated, we are now ready to predict kinase activity based on the
phosphorylation sites identified in a mass spectrometry experiment. Prior to enrichment calculations, the
list of phosphorylation sites to use as evidence for a particular sample must be determined. In most
cases, this is determined by defining a threshold and accepting any phosphorylation sites with abundance
values greater than the threshold as evidence. In other cases, we either do not want to use the relative
abundance values or do not have relative abundance values (no matched samples), and instead want to
use all sites identified in an experiment as evidence (in practice, this equivalent to setting a very low
threshold like -1e10).

The first step of activity prediction is to assess the statistical enrichment of each kinase’s substrates
identified in a sample using the hypergeometric distribution. In this test, for each kinase, we are asking
what is the likelihood that there are k substrates of a kinase in the the n phosphorylation sites providing
evidence for a sample, based on the total number of substrates (K) and phosphorylation sites (N) in the
background phosphoproteome. As there are a total of 50 binary networks in the ensemble, the end result
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of this process is to produce 50 p-values for each kinase. The implementation of this procedure is
described in Box 3.

Box 3: Calculating statistical enrichment of kinase substrates in binary networks

Data: Phosphoproteomic experiment
Ensemble of pruned networks generated from tje procedure in Box 2

Input: threshold = cutoff value that determines which sites are used as evidence
Output: Arrays with 50 p-values (one for each kinase) containing hypergeometric enrichment

results in each of the 50 pruned networks

1 Intialize p-value array;
2 binary experiment ← reduced experiment including phosphorylation sites with abundance ≥

threshold;
3 foreach kinase do
4 foreach network do
5 k ← number of kinase substrates in binary experiment;
6 K ← number of kinase substrates in network;
7 n← number of sites in binary experiment;
8 N ← number of sites in network;
9 p← 1− hypergeometric cdf(k − 1,K, n,N);

10 Add p to array of p-values;

11 end foreach

12 end foreach

Next, we wished to ask whether, for each kinase, the distribution of p-values obtained from the
procedure in Box 3 could be obtained from a random experiment where substrates are randomly pulled
from the human phosphoproteome. To do so, we first needed to generate a collection of random
experiments. In order to accurately reflect the characteristics of the real dataset, each random
experiment must have the same number of observed phosphorylation sites and equal distribution of
study bias (defined by the number of compendia a site is identified in). The procedure of generating
these random experiments is described in Box 4.

Box 4: Generate random phosphoproteomic experiments for use in Mann Whitney tests

Data: Phosphoproteomic experiment (Real)
Human Phosphoproteome Compendia (KinPred)

Input: num experiments = number of random experiments to generate
Output: random array = array of random experiments with identical characteristics as the real

experiment (number of phosphorylation sites, distribution of study bias, etc.).

1 Initialize random array;
2 for i = 1, 2, 3, ...,num experiments do
3 Initialize random experiment;
4 foreach site identified in real experiment do
5 numCompendia← number of compendia site is found in;
6 random site← randomly sampled site from human phosphoproteome compendia found in

the same number of compendia as numCompendia;
7 Add random site to random experiment

8 end foreach
9 Add random experiment to random array

10 end for

Once random experiments have been generated by the protocol in Box 4, we can generate the final
activity scores for each kinase. Ultimately, this score is a reflection of the enrichment of kinase-substrates
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in the actual experiment (calculated from protocol in Box 3), relative the enrichment that could be
obtained from a random phosphoproteomic experiment. For this task, we use a Mann Whitney U-test,
non-parametric distribution-based test which compares the ranked p-values of the real and random
experiments. The outcome of this test is a p-value for each kinase, which we then convert to an activity
score by taking the -log10 of each p-value. In this way, kinases with high activity (and as a result of high
enrichment of substrates in the dataset) will have high activity scores. The application of this test is
demonstrated in Box 5.

Box 5: Calculate the final KSTAR activity score using a Mann Whitney U test for an individual
kinase
Input: real p = array of 50 p-values obtained from applying the procedure in Box 3

random array = 150 random experiments generated from the procedure in Box 4
Output: activity = -log10(MannWhitney p-value)

1 random p ← algorithm in Box 3 applied to each random experiment in random array;
2 foreach kinase do
3 MannWhitneyP ← MannWhitneyUtest(real pkinase, random pkinase );
4 activitykinase ← -log10(MannWhitneyP);

5 end foreach
6 return activity;

To verify the significance of these scores, we then ask how often we could obtain the same activity
scores or better from the random datasets. To do so, we treat one random experiment generated from
the procedure in Box 4 as the real experiment and use the procedure in Box 5 to generate a random
activity score. We then repeat this procedure to generate an array of random activity scores. The false
positive rate is then the fraction of times a random experiment generated an activity score equal to or
greater than the activity score calculated for the real dataset.

Box 6: Calculate the false positive rate of obtaining the activity score for a single kinase obtained
from Box 5
Input: real activity = activity score obtained from Box 5

random array = 150 random experiments generated from Box 4
numTrials = number of random activity scores to obtain for FPR calculation

Output: fpr = fraction of random experiments which obtained the same or greater activity score
as real activity

1 Initialize numFalsePositives (numFalsePositives = 0);
2 for i = 1, 2, 3, ...,numTrials do

/* randomly select one of the random experiments in random array to be

treated as a real experiment in the MannWhitneyU test */

3 pseudoreal ← randomly select experiment from random array;
4 trimrandom ← random array with pseudoreal removed;

/* So, pseudoreal should consist of 1 experiment from random array, and

trimrandom should consist of all other experiments from random array */

5 MannWhitneyP ← apply Box 5, treating pseudoreal as the real experiment and trimrandom
as random experiments;

6 random activityi ← -log10(MannWhitneyP);
7 if random activityi ≥ real activity then
8 numFalsePositives ← numFalsePositives + 1
9 end if

10 end for
11 return fpr;
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