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Abstract

Background: Alzheimer disease (AD) is the most common cause of dementia. Preclinical AD is the period during
which early AD brain changes are present but cognitive symptoms have not yet manifest. The presence of AD
brain changes can be ascertained by molecular biomarkers obtained via imaging and lumbar puncture. However,
the use of these methods is limited by cost, acceptability, and availability. The preclinical stage of AD may have a
subtle functional signature, which can impact complex behaviours such as driving. The objective of the present
study was to evaluate the ability of in-vehicle GPS data loggers to distinguish cognitively normal older drivers with
preclinical AD from those without preclinical AD using machine learning methods.

Methods: We followed naturalistic driving in cognitively normal older drivers for 1 year with a commercial in-
vehicle GPS data logger. The cohort included n = 64 individuals with and n = 75 without preclinical AD, as
determined by cerebrospinal fluid biomarkers. Four Random Forest (RF) models were trained to detect preclinical
AD. RF Gini index was used to identify the strongest predictors of preclinical AD.

Results: The F1 score of the RF models for identifying preclinical AD was 0.85 using APOE ε4 status and age only,
0.82 using GPS-based driving indicators only, 0.88 using age and driving indicators, and 0.91 using age, APOE ε4
status, and driving. The area under the receiver operating curve for the final model was 0.96.

Conclusion: The findings suggest that GPS driving may serve as an effective and accurate digital biomarker for
identifying preclinical AD among older adults.

Keywords: Naturalistic driving, Preclinical Alzheimer disease, Global positioning system, Machine learning

Introduction
Worldwide, around 50 million individuals are living with
dementia, and this number is projected to increase to
152 million by 2050 [1]. Alzheimer disease (AD) is the
most common form of dementia, accounting for 60 to
80% of cases [2–4]. Symptomatic AD impairs the cogni-
tive and functional abilities required for performing ac-
tivities of daily living, which can lead to hospitalizations,
home care, and even institutionalization [5]. As a result,

AD can place significant financial and emotional bur-
dens on family members and society at large [6]. Given
the growing socioeconomic impacts of AD, many studies
have focused on the development of specific treatment
strategies aimed at slowing down or even preventing the
onset of symptomatic AD [7, 8]. However, these strat-
egies may require AD to be diagnosed at an early stage
before significant damage to the brain has occurred,
when patients are still cognitively normal. Currently, the
presence of AD brain pathology can be determined by
molecular biomarkers obtained via imaging or lumbar
puncture. However, the use of these methods is limited
by cost, acceptability (i.e. willingness to participate in
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research or assessments involving cerebrospinal fluid
(CSF) collection), and availability [9, 10]. Therefore,
there is an increasing need for low-cost and low-burden
methods to make an early diagnosis of AD.
Preclinical AD is the period during which early AD

brain changes are present but cognitive symptoms have
not yet manifest [11]. The preclinical phase of AD can
include subtle cognitive changes, which may go un-
noticed. However, emerging evidence suggests that these
changes impact complex behaviours that involve both
cognitive and functional abilities such as spatial naviga-
tion and driving. Since subtle cognitive changes may
precede a clinical diagnosis of dementia by up to 20
years, tracking and recording navigational and driving
abilities could potentially enable earlier identification of
individuals with AD [12, 13]. A few studies have ex-
plored the utility of spatial navigation deficits as a
marker for early and preclinical AD and discussed its
high specificity for identifying at-risk individuals [13,
14]. This work, however, focuses on the potential of
driving, the primary means of transportation for older
adults, to detect underlying pathophysiology in preclin-
ical AD.
Road tests and driving simulators are commonly used

for assessing fitness-to-drive in clinical and healthy pop-
ulations [15]. These standardized assessments, however,
only measure performance in site-specific controlled
conditions and do not assess daily driving behaviour in
naturalistic settings. In addition, these assessment
methods are methodologically limited by objectivity,
availability, generalizability, and cost-effectiveness [15,
16]. To overcome these limitations, the field of driving
research has shifted to collecting naturalistic outcomes
using global positioning system (GPS) devices that can
be installed in a participant’s personal vehicle.
Several studies have adopted a naturalistic approach

and showed that everyday driving behaviour is associated
with symptomatic AD. These studies show that drivers
with symptomatic AD are more likely to drive shorter
distances, visit fewer unique destinations, and have a
smaller driving space compared to cognitively intact
drivers [17, 18]. However, only a few studies, to date,
have explored the impact of preclinical AD on driving
behaviour. To our knowledge, our group is the first to
use GPS to assess naturalistic driving behaviour among
older drivers with preclinical AD [19]. In earlier work,
we reported findings on a cross-sectional study that ex-
amined driving behaviour in a small sample (n = 20) of
cognitively intact drivers with and without preclinical
AD. Later, we reported results of the extension of the
data collection and evaluated driving behaviour changes
over a 2.5-year period [20]. Most recently, we presented
findings of a proof-of-concept study showing that pre-
clinical AD can be identified by evaluating driving

behaviours [21]. In discussing the results of that study,
we noted that future research aimed at using everyday
driving as a behavioural marker of AD should explore
additional statistical modelling techniques to determine
optimal combinations of variables [21].
The objective of this paper is to use machine learning

techniques to test the ability of GPS data to distinguish
persons with and without preclinical AD, defined using
cerebrospinal fluid, in a cohort of cognitively intact older
adults from a longitudinal driving study. Specifically, we
use machine learning to investigate the driving perform-
ance and driving space of older adults with and without
preclinical AD. Further, we use feature selection to iden-
tify indicators that were the strongest discriminators of
preclinical AD. This data-driven approach provides a
foundation for the development of a novel neurobeha-
vioural biomarker of AD.

Methods
Participants
Participants were enrolled in longitudinal studies on age-
ing and dementia conducted at the Washington Univer-
sity Knight Alzheimer Disease Research Center and in a
longitudinal driving study (R01AG056466). Participants
who met the following criteria were included in the
study: (1) were age 65 years or older, (2) had normal
cognition at a clinical assessment that included assign-
ment of the Clinical Dementia Rating™ (CDR™) [22], (3)
underwent CSF collection, (4) possessed a valid driving
licence, and (5) drove at least weekly, on average. Partici-
pants provided written informed consent, and all study
procedures were approved by the Washington University
Human Research Protection Office.

CSF biomarkers and APOE genotyping
CSF was collected as previously described [23]. CSF
Aβ42 and Aβ40 analytes were measured using the Lumi-
pulse G1200 automated assay system (Fujirebio, Mal-
vern, PA). Aβ42/Aβ40 < 0.0673 is highly concordant
with positive status by amyloid positron emission tom-
ography (PET) [24] and was used to identify individuals
with preclinical AD. Taqman genotyping of rs7412 and
rs429358 was used to determine APOE genotype [25].

GPS data collection
A GPS data logger (G2 Tracking Device™, Azuga Inc,
San Jose, CA) was installed into the onboard
diagnostics-II (OBD-II) port of each participant’s vehicle.
This data logger, together with custom software, com-
prises the Driving Real-World In-Vehicle Evaluation Sys-
tem (DRIVES) [20, 21, 26]. The DRIVES recorded date,
time, latitude and longitude coordinates, and speed every
30 s when a vehicle was driven. For each participant, 1
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year of GPS driving data from January 1, 2019, to De-
cember 31, 2019, was included for analysis in this study.
The 1-year study period was selected to account for sea-
sonal variability in travel behaviours.

GPS-based driving behaviour measures
A comprehensive set of GPS-based indicators that de-
scribe everyday driving behaviour were examined. The
indicators describe either the driving performance or
driving space for each participant. Driving perform-
ance indicators capture speed, acceleration, and ve-
hicle jerk characteristics, as well as aggressive driving
incidents (e.g. hard braking), while driving space indi-
cators capture the spatiotemporal characteristics of
outdoor excursions. To select these indicators, we
searched the literature for articles that used GPS
technology to evaluate driving performance and meas-
ure life-space [20, 27, 28]. We selected the indicators
that were most frequently used in these articles. The
definitions of our proposed GPS-based indicators are
presented in Table 1.

Machine learning and statistical analyses
All analyses were performed in Python. Data from par-
ticipants with CSF biomarkers within 2 years of January
1, 2019, were selected. We regarded the prediction
model for preclinical AD as a machine learning problem
with a binary output, where class 0 included participants
without preclinical AD (CSF Aβ42/Aβ40 ≥ 0.0673) and
class 1 included participants with preclinical AD (CSF
Aβ42/Aβ40 < 0.0673). Random Forest (RF) classifier, a
robust tree-structured machine learning algorithm, was
used for this problem. RFs were selected because they
have proven to outperform classical machine learning
models in terms of accuracy and are more interpretable
than deep learning models [32]. In addition, they are ef-
fective at handling high-dimensional data and are robust
to outliers [33]. We trained four RF-based models with
four sets of input variables: (1) age and APOE ε4 status
(carrier or non-carrier), (2) driving features only, (3)
driving features and age, and (4) driving features, age,
and APOE ε4 status. Predictive features of preclinical
AD were ranked according to importance using RF Gini
index, which is a method that ranks features based on

Table 1 Description of the GPS-based driving indicators

Characteristics Indicator Abbreviation Description

Driving space Average trip distance TripDist The average distance travelled in each trip. TripDist is computed by taking the average of
all the trips that a participant has made during the study period.

Total travelled distance TotalDist The total distance travelled during the study period.

Number of trips nTrips The total number of trips made during the study period. The trips are also placed into
five subgroups: (1) trips with a distance smaller than 1 mi, (2) trips with a distance
between 1 and 5 mi, (3) trips with a distance between 5 and 10 mi, (4) trips with a
distance between 10 and 20 mi, and (4) trips with a distance of more than 20 mi.

Radius of gyration Rg Typical distance travelled by an individual, computed using [29]:

rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

iϵL

niðri−rcmÞ2
r

where L is the set of destinations by the individual, ri is the latitude and longitude
coordinates of location i, ni is the visitation frequency of location i, N ¼

X

i ϵL

ni is the total
number of visits of the individual, and rcm is the center of mass of the visited destinations.

Entropy S The degree to which a participant’s trip destinations are random (i.e. unpredictable) in
space and time [30]. S is assessed over the entire period of the study.

Number of night trips nNightTrip The average number of trips made after sunset.

Number of unique
destinations

nUniqDest The total number of distinct destinations that an individual visited during the entire study
period.

Driving
performance

Number of hard brakes
per mile

nHardBrake The average number of events with a deceleration rate of above 8 miles per hour in 1 s
per mile.

Number of sudden
acceleration per mile

nSuddenAcc The average number of events with an acceleration rate of above 8 miles per hour in 1 s
per mile.

Overspeed OverV The average number of trips with a speed of 6 miles per hour above the posted speed
limit.

Underspeed UnderV The average number of trips with a speed of 6 miles per hour below the posted speed
limit.

Average speed avgV The average speed of trips.

Average acceleration avgA The average acceleration of trips.

Average jerk avgJ The average jerk of trips. Jerk is the rate of change of acceleration [31]; that is, more
abrupt brake actions or accelerations lead to higher jerk values.
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how much they contribute to the model. All models
were trained on 70% of the data and tested on the
remaining 30% of the data. Note that each month record
for each participant was considered an independent data
point. To achieve the best performance, the models’
specifications were selected based on incremental hyper-
parameter tuning; that is, each model was trained on
many hyperparameters on training data, and then
models that were performing better were selected. For
performance evaluation, the precision, recall, and F1
score were calculated and compared across the four
models. In this problem, we define preclinical AD to be
positive class and no preclinical AD to be negative class.
Given these definitions, precision measures the number
of true positives (i.e. preclinical AD) divided by the total
number of predicted positives. That is, the ratio of pre-
dicted preclinical AD subjects who truly have preclinical
AD over all subjects predicted to have preclinical AD.
Recall, however, measures the ratio of true-positive cases
over the total number of true-positive and false-negative
cases. Finally, to compare the performances of the
models, the F1 score is used, which combines precision
and recall into a single number by taking their harmonic.
In addition, in a similar approach to previous studies
that tested the ability of a novel biomarker to distinguish
between clinical groups [34, 35], a receiver operating
curve (ROC) was generated and its area under the curve
(AUC) was computed for each model. Models’ perform-
ance metrics are reported on the test set, and 1000 boot-
strapped samples were used to calculate 95% confidence
intervals.

Results
Sample characteristics
Participant characteristics are presented in Table 2. The
two groups did not differ significantly with regard to sex,
race, or years of education level. The descriptive statis-
tics and effect sizes of driving indicators are tabulated in
Table 3.

RF models
The precision, recall, and F1 score for each model are
presented in Table 4. The performance of the model for
predicting preclinical AD improved with the addition of

age alone, and age and APOE4 ε4 status. The final model
with all the features achieved an F1 score of 0.91 (95%
CI 0.893–0.937). The model was correct in identifying
96% of individuals with preclinical AD (by the precision
measure). Among all participants with preclinical AD,
the model correctly identified 88% (by the recall
measure).
The ROC area under the curve (AUC) for predicting

preclinical AD from driving features was 0.82 (95% CI
0.782–0.932) (Fig. 1) and improved with the addition of
age alone to 0.94 (95% CI 0. 881–0.962), and age and
APOE ε4 status 0.96 (95% CI 0.0.903–0.981) (Fig. 1).

Driving indicator importance
The ranked importance scores of the features are pre-
sented in Fig. 2. The five most important features were
APOE4 ε4 status, age, average jerk, number of night
trips, and radius of gyration.

Discussion/conclusion
Our findings suggest that driving may serve as an effect-
ive and accurate digital biomarker for identifying pre-
clinical AD among older adults. In fact, the increasing
availability of GPS devices is creating an environment
where the naturalistic driving behaviours of older drivers
are continuously monitored. This trend may make the
analysis of naturalistic driving a non-invasive, unobtru-
sive, and low-cost solution for identifying individuals
who are likely to have preclinical AD.
A novel finding of our study is the application of ma-

chine learning methods to a large dataset of GPS driving
trajectories to predict preclinical AD. To provide an in-
clusive view of the driving behaviours of older adults
with and without preclinical AD, we created a compre-
hensive set of GPS-based indicators describing daily
driving performance and space. Using driving indicators
alone, our predictive model achieved an average F1 score
of 0.82 (95% CI 0.79–0.84), indicating the model’s high
robustness and precision. The 0.89 precision score indi-
cates that the model correctly predicts preclinical AD
89% of the time. The 0.76 recall score indicates that
among the participants with preclinical AD, the model
correctly identified 76%. Furthermore, compared to this
model, the model with age and APOE ε4 status alone

Table 2 Sample characteristics

Without preclinical AD (n = 75) With preclinical AD (n = 64)

Age, years 75.7 ± 4.8 79.1 ± 4.90

APOE ε4+ carrier, % 30 33

Education, years 16.4 ± 2.3 16.5 ± 2.43

Sex, % female 51% 47%

Racea, % White 84% 92%
aThe sample includes only Blacks and Whites
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achieved a higher F1 score and recall score, but a lower
precision score. The higher precision score of the model
with driving indicators is indicative of the model’s lower
false-positive rate (i.e. predicted preclinical AD, but the
subject did not have preclinical AD). This may be, at
least partially, due to the fact that driving features reflect
actual changes that are occurring on an individual basis
due to the biological presence of AD, while APOE4 are
risk factors for developing AD. In addition, it is import-
ant to note that the age and APOE ε4 status model re-
quires only two predictors as opposed to more than ten
predictors in the driving behaviour model. It is, however,
more invasive and less accessible because it requires
APOE genotype testing.
The predictive power of the model with driving indica-

tors was improved by including age and APOE ε4 status
[21]. In fact, the predictive model with driving behaviour
and age alone achieved an F1 score of 0.88 (95% CI
0.86–0.91), and the model with driving behaviour, age,
and APOE ε4 status achieved an F1 score of 0.91 (95%
CI 0.89–0.94). This improvement is unsurprising since
age and APOE ε4 are among the strongest risk factors
for AD [36]. Others have shown that the ability of novel

AD biomarkers to predict preclinical AD (generally indi-
cated by abnormality of PET or CSF amyloid bio-
markers) may be improved by including age and APOE
ε4 status in models [34, 37, 38].
Overall, although the model with driving behaviour,

age, and APOE ε4 status achieved the highest perform-
ance, the model with driving indicators and age alone is
the highest performing non-invasive and accessible
choice. This finding is important because, given the
small size and ease of installation of vehicle GPS
trackers, they can be mailed to clinics and individuals,
allowing widespread use in different environments (i.e.
urban and rural). It is also important to note that APOE
genotype testing, although invasive, is becoming more
accessible through new commercial platforms such as 23
and me [39]. Therefore, GPS driving in combination
with age alone or age and APOE genotype can be used
as an accurate, easily implementable, and cost-effective
biomarker to identify preclinical AD.
Another key finding of our study is that the import-

ance ranking of all the features. The results confirmed
that APOE ε4 status and age are the two most important
features for predicting preclinical AD. Interestingly, the

Table 3 Driving indicators’ descriptive statistics and effect sizes using Cohen’s d

Without preclinical AD (n = 75) With preclinical AD (n = 64) Cohen’s da

TripDist, km 8.1 ± 2.6 7.9 ± 2.8 0.07

TotalDist, km 891.5 ± 371.4 787.5 ± 368.8 0.28

nTrips 113.7 ± 40.4 103.3 ± 41.9 0.25

Rg, km 67.0 ± 98.8 44.0 ± 63.5 0.27

S 3.97 ± 0.5 3.84 ± 0.5 0.26

nNightTrip 53.2 ± 19.4 46.43 ± 19.7 −0.35

nUniqDest 38.2 ± 13.0 34.8 ± 13.9 0.25

nHardBrake 0.027 ± 0.04 0.022 ± 0.02 0.15

nSuddenAcc 0.039 ± 0.05 0.034 ± 0.03 0.12

OverV 0.07 ± 0.08 0.06 ± 0.05 −0.15

UnderV 0.20 ± 0.12 0.23 ± 0.15 −0.22

avgV, m/s 8.03 ± 1.87 8.04 ± 1.83 −0.01

avgA, m/s2 2.84 ± 0.35 2.79 ± 0.41 0.15

avgJ, m/s3 1.46 ± 0.16 1.39 ± 0.20 0.39
aEffect sizes (Cohen’s d) of 0.2 are considered small, 0.5–0.6 are considered medium, and 0.8 are considered large
Abbreviations: TripDist average trip distance, TotalDist total travelled distance, nTrips number of trips, RG radius of gyration, S entropy, nNightTrip number of night
trips, nUniqDest number of unique destinations, nHardBrake number of hard brakes per mile, nSuddenAcc number of sudden accelerations per mile, OverV
overspeed, UnderV underspeed, avgV average speed, avgA average acceleration, avgJ average jerk

Table 4 Assessment of the model performance on the test set. Values in parentheses represent 95% confidence intervals

Model inputs Precision Recall F1 score AUC

Age and APOE ε4 status 0.84 (0.802–0.875) 0.79 (0.770–0.861) 0.85 (0.833–0.852) 0.88 (0.861–0.927)

Driving features 0.89 (0.862–0.917) 0.76 (0.716–0.796) 0.82 (0.794–0.840) 0.82 (0.782–0.932)

Driving features and age 0.94 (0.909–0.959) 0.84 (0.794–0.876) 0.88 (0.858–0.906) 0.94 (0.881–0.962)

Driving features, age, and APOE ε4 status 0.96 (0.939–0.981) 0.88 (0.837–0.912) 0.91 (0.893–0.937) 0.96 (0.903–0.981)
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most important driving feature was jerk, which is a
measure of the smoothness or abruptness of driving. Al-
though studies on driving behaviour in naturalistic set-
tings have used vehicle jerk to identify unsafe and
aggressive driving behaviour [31, 40], no study to date
has examined vehicle jerk to identify AD. Furthermore,

the top five most important features consisted of two
features describing driving performance (average jerk
and over speeding) and three features describing driving
space (total number of night trips, radius of gyration,
and number of trips shorter than 1 mi). Thus, our re-
sults suggest that both driving space and driving

Fig. 1 The final area under the receiver operating curves (AUC) for each model. Legends show the AUC as each feature is added to the model

Fig. 2 Importance ranking of all features
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performance features have to be considered simultan-
eously to identify preclinical AD.
Because the decline in CSF Aβ42 is one of the earliest

pathological events in AD [41], preceding the appear-
ance of dementia symptoms by up to 20 years, we used
Aβ42/Aβ40 as our marker of neuropathological AD
among our cognitively normal participants. However,
other changes in total tau and phosphorylated tau, and
neurodegeneration, occur subsequently in the disease
course, suggesting that future research should examine
how driving behaviours predict the presence of abnor-
malities in other CSF biomarkers such as tau, phosphor-
ylated tau181, phosphorylated tau217, and neurofilament
light. Furthermore, recent advances in the development
of plasma AD biomarkers have led to newly available
blood tests for abnormality of AD-related proteins [42],
and these blood tests may ultimately become widely
used in clinical practice to diagnose AD. Machine learn-
ing methods like those used here should also be applied
to determining the optimal combination of driving be-
haviours to identify and predict blood-based AD
diagnoses.

Limitations
The findings of this study should be considered in light
of a number of inherent limitations, which can be ad-
dressed in future work. First, although most of our par-
ticipants were the sole drivers of their vehicles, no
automatic method was available to identify drivers and,
in fact, friends, spouses, and family members may have
made a small number of trips. Second, all the partici-
pants were from the greater St. Louis metropolitan area,
and thus, the findings may not be generalizable to other
regions. Third, future studies with a larger sample
should further investigate the role of sociodemographic
attributes including sex, race, income, and education
level in the driving patterns, since these attributes may
contribute to various factors, including social and cul-
tural norms affecting daily driving behaviour [43]. In
addition, our sample’s racial make-up, similar to that of
the surrounding areas, only consists of Blacks and
Whites, limiting the generalizability of the findings.
Thus, future research with participants of other races
and ethnicities is warranted. Finally, since repeated mea-
sures were treated as independent measures, future stud-
ies should further incorporate the longitudinal nature of
the data by exploring machine learning methods that
handle the correlated features from participants over
time such as repeated measures random forest.

Abbreviations
AD: Alzheimer disease; ML: Machine learning; CSF: Cerebrospinal fluid;
RF: Random Forest; ROC: Receiver operating curve; AUC: Area under the
curve
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