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Abstract: Metabolites are intermediates or end products of biochemical processes involved in both
health and disease. Here, we take advantage of the well-characterized Cooperative Health Research
in South Tyrol (CHRIS) study to perform an exome-wide association study (ExWAS) on absolute
concentrations of 175 metabolites in 3294 individuals. To increase power, we imputed the identified
variants into an additional 2211 genotyped individuals of CHRIS. In the resulting dataset of 5505 in-
dividuals, we identified 85 single-variant genetic associations, of which 39 have not been reported
previously. Fifteen associations emerged at ten variants with >5-fold enrichment in CHRIS compared
to non-Finnish Europeans reported in the gnomAD database. For example, the CHRIS-enriched
ETFDH stop gain variant p.Trp286Ter (rs1235904433-hexanoylcarnitine) and the MCCC2 stop lost vari-
ant p.Ter564GlnextTer3 (rs751970792-carnitine) have been found in patients with glutaric acidemia
type II and 3-methylcrotonylglycinuria, respectively, but the loci have not been associated with the
respective metabolites in a genome-wide association study (GWAS) previously. We further identified
three gene-trait associations, where multiple rare variants contribute to the signal. These results not
only provide further evidence for previously described associations, but also describe novel genes
and mechanisms for diseases and disease-related traits.

Keywords: GWAS; ExWAS; association study; whole-exome sequencing; imputation; metabolomics

1. Introduction

The human metabolism comprises the entire set of biochemical processes that govern
the life of cells. Metabolites are small molecules that represent intermediate or end products
of cellular metabolism. Their concentrations in blood are influenced by genetics, but also
environmental factors, such as lifestyle and dietary habits. Metabolite levels can provide
insights into the physiological state of the body. Dysregulations often indicate critical
physiological states or presence of metabolic diseases, such as diabetes, chronic kidney
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disease or inherited metabolic disorders, such as phenylketonuria and medium-chain
acyl-CoA dehydrogenase deficiency [1–3].

In the last decade, over 240,000 metabolite-variant associations have been discovered,
many of which account for up to 50% of the total variance in metabolite levels [4–8].
Most of these studies tested associations between metabolite levels and predominantly
common variants (minor allele frequency (MAF) > 5%). However, there are compelling
reasons to focus on variations in the protein-coding sequence. First, coding variants are
enriched for impact on molecular function and support more direct biological interpretation
than associations within a non-coding sequence. Second, the functional annotation of
coding variants allows discovery efforts to benefit from the improved power offered
by the aggregation of rare alleles presumed to exert broadly similar molecular effects
through gene-based aggregation tests, which enables the direct testing of gene-phenotype
associations. Finally, the development of efficient tools to interrogate coding variation,
through whole-exome sequencing (WES) or custom array genotyping, has made it practical
to investigate low-frequency (MAF 1–5%) and rare (MAF < 1%) variants in large sample
sizes. Recently, Barton et al. introduced a cost-efficient approach to characterize the coding
genome by imputing variants of 49,960 exome-sequenced individuals from the UK Biobank
into the remainder of the cohort, exploiting the extensive haplotype sharing within the UK
Biobank [9].

Here, we follow a similar approach, in which we exome sequenced 3294 participants of
the Cooperative Health Research in South Tyrol (CHRIS) study followed by an imputation
of those variants into the remaining 2211 individuals for whom only genotype data was
available. The CHRIS study is a population-based longitudinal study to investigate the
genetic and molecular basis of age-related common chronic conditions and their interaction
with environment in North Italy [10]. We then performed an exome-wide association
study (ExWAS) of 175 metabolites in the full set of 5505 WES-imputed individuals. We
identified 85 significant single variant-trait associations for 40 metabolites. When testing the
aggregate effects of coding variants in genes, we identified three additional gene-metabolite
associations. Among our significant findings, 15 rare associations are more than five times
more common in CHRIS than in non-Finnish Europeans in gnomAD. This demonstrates
the value of both exome sequencing followed by imputation for ExWAS and the value of
exploring diverse population cohorts, even if they might be smaller compared to others, for
the identification of novel variant-trait associations in the age of biobank-level studies [11].

2. Results
2.1. Study Design and Genotype Data

The study design is summarized in Figure 1. In brief, we assayed 175 metabolites
in 5505 CHRIS participants of which 3294 have been whole-exome sequenced. To in-
crease power, we imputed the 1,023,678 identified sequence variants into an additional
2211 genotyped CHRIS participants. Overall, variants were imputed with a mean estimated
imputation accuracy (rsq) of 0.757 (median = 0.815, sd = 0.211). Imputed variants with
rsq < 0.3 were discarded, retaining 95.3% of all imputed variants, resulting in a mean and
median rsq of 0.788 and 0.825 for the retained variants, respectively.

For an unbiased evaluation of the imputation quality, we used 181 WES samples not in-
cluded in the reference panel and compared imputed dosages and hard calls of sequencing-
derived genotypes at sites with MAC ≥ 2 in both callsets (n = 188,397). The mean and
median squared correlation of imputed dosage and sequencing hard calls (R2) was 0.913 and
0.978, respectively (Figure 2a). Rare variants with a MAC between 2 and 10 in the reference
panel achieved a mean and median R2 of 0.96 and 1.00, respectively. The overall genotype
hard call concordance was 0.989 with a concordance of 0.995, 0.963, and 0.975 for homozy-
gous reference, heterozygous, and homozygous alternative calls, respectively (Figure 2b).
To compute the true positive rate (TPR) and true negative rate (TNR), heterozygous and
homozygous alternative genotypes (i.e., carriers of variant) were defined as “positive” and
homozygous reference genotypes (i.e., non-carrier) defined as “negative”. Using these
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definitions, the TPR (carriers correctly imputed as carriers) was 0.967, the TNR (non-carriers
correctly imputed as non-carriers) was 0.995, the false negative rate (carriers incorrectly
imputed as non-carriers) was 0.019, and the false positive rate (non-carriers incorrectly
imputed as carriers) was 0.005.
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of imputed and sequenced hard calls in 181 validation samples split into bins based on MAC and 
MAF in the reference panel. (c) Manhattan plot of the single-variant associations of all 175 traits. 
The 85 significant associations listed in Table S4 are highlighted and colored by metabolite class. 
The dashed horizontal line indicates the significance threshold of 5.5 × 10−9. (d) to (f) −log10 p-value 
of the skato gene test, adding the variants constituting the gene test iteratively for tryptophan—
TDO2 (d), sphingomyeline C18:0—CERS4 (e), and carnitine—SLC22A5 (f). In each step i on the x-
axis, the gene test is computed using only the i variants with the smallest single variant p-value. 
Below each point, the minor allele count of the added variant is given. 
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Figure 2. Main results of the metabolite ExWAS. (a) Squared correlation of imputed dosages and
sequenced genotypes in 181 validation samples split into bins based on MAC or MAF in the ref-
erence panel. Number of variants included in the bins from left to right: 2–4: 1851; 5–9: 4412;
10–0.005 = 24,868; 0.005–0.01 = 24,232; 0.01–0.05 = 53,488; 0.05–0.1 = 19,669; 0.1–0.5 = 57,563. (b) Con-
cordance of imputed and sequenced hard calls in 181 validation samples split into bins based on
MAC and MAF in the reference panel. (c) Manhattan plot of the single-variant associations of all 175
traits. The 85 significant associations listed in Table S4 are highlighted and colored by metabolite class.
The dashed horizontal line indicates the significance threshold of 5.5 × 10−9. (d–f) −log10 p-value of
the skato gene test, adding the variants constituting the gene test iteratively for tryptophan—TDO2
(d), sphingomyeline C18:0—CERS4 (e), and carnitine—SLC22A5 (f). In each step i on the x-axis,
the gene test is computed using only the i variants with the smallest single variant p-value. Below
each point, the minor allele count of the added variant is given.

2.2. Single Variant Associations

We identified 85 locus-trait associations at 54 unique loci in 40 unique traits significant
at a p < 5.5 × 10−9 threshold (Methods) in the WES combined set (n = 5505; Table S4).
Of the 85 associations, 39 associations at 29 loci in 28 traits remained significant at a
5.5 × 10−9 threshold in the WES combined dataset after adjusting for known common
variant signals (Table 1, Figures 2c and S4). Of the 39 associations, 13 (6 rare) were near
known variants (±1 Mb of index variant), but conditionally independent (secondary
signals). The remaining 26 associations (10 rare) did not have known variants nearby
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(novel signals, Figure S5). Of the 29 unique index variants, 9 were directly genotyped and
20 imputed with high imputation quality (median rsq = 0.92, range 0.71–1.0). The index
variants explained 0.03% to 8.2% (median = 0.85%) of the variance in the respective traits.
Twenty of the twenty-nine unique variants were enriched in our data compared to the
gnomAD v2.1.1. European (non-Finnish) population.

Table 1. Locus-trait associations conditionally significant at a 5.5 × 10−9 threshold in the WES
combined dataset.

Trait Code Trait Name Gene (LD
Mapped Gene) Variant (Rsid) Effect p-Value

(Conditioned) Beta (SE) MAF

Ser Serine MTHFR 1:11856378_G/A
(rs1801133) missense 3.4 × 10−8 (4.0 × 10−9) −0.11 (0.02) 0.405

Asp Aspartate ENPEP 4:111398208_A/G
(rs10004516) missense 1.2 × 10−7 (1.8 × 10−11) 0.16 (0.03) 0.127

C10 Decanoylcarnitine ETFDH 4:159618737_G/A
(rs1235904433) stop gained 1.1 × 10−12 (2.5 × 10−16) 2.37 (0.33) 0.001

C6
(C4:1-DC)

Hexanoylcarnitine
(Fumarylcarnitine) ETFDH 4:159618737_G/A

(rs1235904433) stop gained 2.1 × 10−13 (8.0 × 10−15) 2.44 (0.33) 0.001

C8 Octanoylcarnitine ETFDH 4:159618737_G/A
(rs1235904433) stop gained 3.4 × 10−14 (6.5 × 10−18) 2.51 (0.33) 0.001

C10:1 Decenoylcarnitine PPID (ETFDH) 4:159631991_G/T
(rs9410) missense 3.8 × 10−11 (2.7 × 10−11) −0.14 (0.02) 0.296

C12 Dodecanoylcarnitine PPID (ETFDH) 4:159631991_G/T
(rs9410) missense 4.8 × 10−14 (5.2 × 10−14) −0.17 (0.02) 0.298

C5-OH
(C3-DC-M)

Hydroxyvalerylcarnitine
(Methylmalonylcarnitine) MCCC2 5:70952685_T/C

(rs751970792) stop lost 1.9 × 10−12 (1.9 × 10−12) 2.01 (0.28) 0.001

C16:1 Hexadecenoylcarnitine P4HA2; PDLIM4
(SLC22A5)

5:131607402_T/C
(rs10479000) intron; intron 2.3 × 10−10 (1.3 × 10−10) −0.13 (0.02) 0.489

C2 Acetylcarnitine SLC22A5 5:131714129_G/A
(rs386134194) synonymous 2.4 × 10−13 (3.2 × 10−13) −1.38 (0.19) 0.003

C4 Butyrylcarnitine SLC22A5 5:131714129_G/A
(rs386134194) synonymous 1.4 × 10−10 (1.3 × 10−12) −1.22 (0.19) 0.003

C0 Carnitine SLC22A5 5:131714129_G/A
(rs386134194) synonymous 5.6 × 10−12 (6.5 × 10−12) −1.3 (0.19) 0.003

Asp Aspartate F12; GRK6 5:176836532_A/G
(rs1801020) 5UTR; intron 2.5 × 10−9 (3.5 × 10−10) 0.14 (0.02) 0.235

Taurine Taurine F12; GRK6 5:176836532_A/G
(rs1801020) 5UTR; intron 5.9 × 10−16 (5.9 × 10−16) 0.19 (0.02) 0.235

Sarcosine Sarcosine PEX6 (GNMT) 6:42946943_G/A
(rs9462859) 5UTR 7.8 × 10−13 (7.8 × 10−13) −0.16 (0.02) 0.478

C3 Propionylcarnitine SLC22A1 6:160551204_G/C
(rs683369) missense 7.7 × 10−12 (1.2 × 10−19) 0.17 (0.03) 0.196

Serotonin Serotonin SLC22A1 6:160560880_CATG/C
(rs72552763)

inframe
insertion 1.3 × 10−11 (1.2 × 10−11) 0.19 (0.03) 0.159

Putrescine Putrescine AOC1 7:150553605_C/T
(rs10156191) missense 2.3 × 10−1 (2.5 × 10−15) 0.03 (0.02) 0.236

C10 Decanoylcarnitine COL27A1 9:116931401_C/T
(rs145560419) synonymous 8.8 × 10−9 (3.2 × 10−10) −2.68 (0.47) 0.001

C8 Octanoylcarnitine COL27A1 9:116931401_C/T
(rs145560419) synonymous 4.7 × 10−9 (4.3 × 10−10) −2.67 (0.46) 0.001

Sarcosine Sarcosine SARDH 9:136598926_C/G
(rs10993780) intron 5.3 × 10−44 (5.3 × 10−44) −0.39 (0.03) 0.171

PC aa
C36:0

Phosphatidylcholine
diacyl C36:0 A1CF 10:52603951_AT/A (-) intron 4.1 × 10−9 (5.4 × 10−9) 2.23 (0.38) 0.001

Putrescine Putrescine JMJD1C 10:65225899_A/AGG-
CGGC (rs3841602) upstream 1.7 × 10−19 (5.2 × 10−20) 0.19 (0.02) 0.477

C16-OH Hydroxyhexadecanoylcarnitine PYROXD2 10:100148308_T/G
(rs2147895) intron 8.9 × 10−19 (8.9 × 10−19) −0.18 (0.02) 0.336

His Histidine PSMC3 11:47445720_G/A
(rs186188306) synonymous 5.5 × 10−10 (4.5 × 10−9) −2.34 (0.38) 0.001

lysoPC a
C26:1

lysoPhosphatidylcholine
acyl C26:1

TMEM258 (MYRF,
FADS1, FADS2)

11:61560081_G/A
(rs174538) 5UTR 3.3 × 10−10 (3.3 × 10−10) −0.14 (0.02) 0.264
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Table 1. Cont.

Trait Code Trait Name Gene (LD
Mapped Gene) Variant (Rsid) Effect p-Value

(Conditioned) Beta (SE) MAF

Asn Asparagine ASRGL1 11:62105391_C/T
(rs2513749) 5UTR 1.2 × 10−15 (7.8 × 10−19) 0.24 (0.03) 0.12

Gln Glutamine GLS2 12:56866487_A/G (-) missense 8.2 × 10−13 (3.1 × 10−14) −2.97 (0.41) 0.001

His Histidine TMPO 12:98929093_A/G
(rs867372792) 3UTR 8.2 × 10−15 (5.6 × 1013) 1.72 (0.22) 0.002

His Histidine UHRF1BP1L
(ACTR6) 12:100492127_T/C (-) splice region

variant 1.3 × 10−10 (2.6 × 10−9) 1.32 (0.21) 0.002

Phe Phenylalanine PMCH 12:102591269_G/T
(rs200627654) intron 8.2 × 10−17 (1.4 × 10−14) 1.3 (0.16) 0.004

His Histidine TCHP; GIT2 12:110385016_A/AG (-) intron; intron 4.2 × 10−12 (1.2 × 10−11) 2.76 (0.4) 0.001

Asn Asparagine ASPG 14:104576448_G/A
(rs34362765) intron 8.8 × 10−105 (5.8 × 10−25) −0.46 (0.02) 0.358

C10 Decanoylcarnitine ABCC1 16:16139714_T/C
(rs35587) synonymous 4.5 × 10−8 (5.0 × 10−9) −0.12 (0.02) 0.326

C12:1 Dodecanoylcarnitine ABCC1 16:16139714_T/C
(rs35587) synonymous 7.2 × 10−10 (6.5 × 10−10) −0.13 (0.02) 0.326

C12 Dodecenoylcarnitine ABCC1 16:16139714_T/C
(rs35587) synonymous 1.2 × 10−9 (1.2 × 10−9) −0.13 (0.02) 0.326

lysoPC a
C20:3

lysoPhosphatidylcholine
acyl C20:3 TM6SF2 19:19379549_C/T

(rs58542926) missense 9.3 × 10−9 (5.0 × 10−9) −0.25 (0.04) 0.054

PC aa
C34:4

Phosphatidylcholine
diacyl C34:4 TM6SF2 (SUGP1) 19:19379549_C/T

(rs58542926) missense 2.0 × 10−11 (4.1 × 10−12) −0.29 (0.04) 0.054

Pro Proline PRODH 22:18910479_C/T
(rs13058335) intron 4.8 × 10−55 (4.5 × 10−31) 0.68 (0.04) 0.063

Including four variants that were not detected in gnomAD, 10 variants in 15 associ-
ations were more than five-fold enriched in the CHRIS population, which demonstrates
the value of this cohort and its power to identify associations for variants rare or absent
in other populations (Figure 3). For example, the secondary association at the GLS2 mis-
sense variant p.Ser500Pro (12:56866487:A:G) with glutamine (p = 3 × 10−14, MAF = 0.001,
beta = −2.97) is not present in gnomAD. GLS2 encodes glutaminase 2, an enzyme that
catalyzes the conversion of glutamine to glutamate and ammonia, promoting mitochon-
drial respiration and ATP generation. Another example is the novel association at the
UHRF1BP1L/ACTR6 splice region variant 12:100492127:T:C with histidine (p = 2.6 × 10−9,
MAF = 0.02, beta = 1.32). This variant is in high LD (r2 = 0.98) with the ACTR6 missense
variant p.Arg36His (rs772372420, p = 4 × 10−8, MAF = 0.002, beta = 1.2). The association
was significant only before conditional analysis, but was predicted as deleterious (SIFT = 0,
PolyPhen = 0.997, CADD = 31). Little is known about the role of ACTR6, and therefore, this
gene might be a novel causal gene for histidine regulation.

Of the 39 conditionally independent single variant associations, three are in
genes related to recessive inherited metabolic disorders. These are the associations
MCCC2—hydroxyvalerylcarnitine (3-methylcrotonylglycinuria), ETFDH—hexanoylcarnitine
(glutaric acidemia type II) and SARDH—sarcosine (sarcosinemia). Of the three variants, the
ETFDH stop gain variant p.Trp286Ter (rs1235904433, p = 8 × 10−15, beta = 2.4, MAF = 0.001,
rsq = 0.78, CHRIS enrichment = 110x) and the MCCC2 stop lost variant p.Ter564GlnextTer3
(rs751970792, p = 2 × 10−12, beta = 2.0, MAF = 0.001, rsq = 0.88, CHRIS enrichment = 17x)
have been reported in individuals with the respective diseases glutaric acidemia type
II and 3-methylcrotonylglycinuria, compatible with a recessive disease mode [12–15].
Glutaric acidemia type II is commonly identified in newborn screenings by the eleva-
tion of two or more acylcarnitines, such as hexanoylcarnitine [12]. Additionally, for
3-methylcrotonylglycinuria, a characteristic clinical phenotype is the presence of hydrox-
yvalerylcarnitine in blood and urine [14]. For both rs1235904433 and rs751970792, we
observed only heterozygous individuals in our cohort, which, despite elevated metabolite
levels, appear phenotypically healthy. Both variants represent examples of rare, novel
associations enriched more than five-fold in CHRIS, which, even though they have been
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associated with the disease, they have not been reported as associated the metabolite in
a GWAS previously. The third variant rs10993780 is a common intron variant in SARDH
with 136 homozygous healthy carriers in our cohort, which indicates that it is not causal
for sarcosinemia.
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To facilitate the discussion of the identified associations, we assigned them to one
of three categories based on previous biological knowledge of the relationship between
genes and associated metabolites (Table 2): (1) variants in enzymes acting directly on the
associated metabolite, (2) variants in other enzymes in the metabolic pathway, or (3) variants
in genes with no established link to the metabolite or its direct metabolic pathway.

Twelve associated variants were in enzymes that act directly on the metabolite. One ex-
ample is the novel association of SLC22A1 inframe insertion variant p.Met420dup with
serotonin (rs72552763, p = 1 × 10−11, MAF = 0.16, beta = 0.19). SLC22A1 encodes the
organic cation transporter protein (OCT1), which has selectivity for serotonin among other
endogenous molecules and drugs. Therefore, a variant on this gene can directly affect the
plasma concentration of serotonin [16].

Another 12 associations involved enzymes in the metabolic pathway of the metabolite
(level 2). One example is the association of the CHRIS-enriched ETFDH stop gain variant
p.Trp286Ter with octanoylcarnitine (rs1235904433, p = 7 × 10−18, beta = 2.5, MAF = 0.001,
rsq = 0.78, CHRIS enrichment = 110x). ETFDH encodes for a protein involved in the electron-
transfer chain (ETC) in mitochondria, while octanoylcarnitine is a metabolite involved in
the fatty acid β-oxidation (FAO). Both ETC and FAO are mitochondrial metabolic pathways
that are required for energy production in the mitochondria. Variants in ETFDH might
also affect other mitochondrial metabolic pathways, such as FAO, and therefore the blood
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level of some acylcarnitines, even though the mechanism leading to an altered level of
octanoylcarnitine is not known [17].

For the remaining 15 associations, no clear link between the putative causal gene and
the metabolite could be established (level 3). This latter class represents associations that
might offer novel insights into the genetic determinants of metabolite levels and merit
follow-up. One example of a putatively novel gene association is the association of the
common PPID missense variant p.Leu302Ile (rs9410, MAF = 0.3) with decenoylcarnitine
(p = 3 × 10−11, beta = −0.14) and dodecanoylcarnitine (p = 5 × 10−14, beta = −0.17). Even
though the index variant is in LD (r2 = 0.8) with a significant variant in ETFDH, which has
been associated with various carnitines previously [18,19], it shows colocalization not only
with increased ETFDH expression (PP = 0.99), but also with decreased PPID expression
(PP = 0.69).

Table 2. Summary of genes identified in this ExWAS.

Gene Associated Metabolite(s) Lead, LD, or
Gene Variant 1 Level Description

A1CF PC aa C36:0 Lead 2

Apolipoprotein B (apo B) is a major component of low-density
lipoproteins and in mammals exist in two isoforms: apoB-100 and

apoB-48. The two isoforms are encoded by a single mRNA
transcript. A1CF encodes an RNA binding protein that facilitates
APOBEC1’s editing of APOB mRNA, introducing a premature
stop codon that yields apoB-48, resulting in the truncated gene

product known as apoB-48 [20]. ApoB-48 is produced by action of
APOBEC-1 exclusively in the small intestine of humans and

ApoB-48 can be found in chylomicrons synthetized in the small
intestine. As expected, the present of not functional APOBEC-1

enzyme resulted in impaired circulating levels of triglycerides and
cholesterol and we found that it also impacts on blood levels of

several PCs, such as PC aa C36:0.

ABCC1 C10, C12:1, C12 Lead 2 This gene encodes for an ABC proteins that transport various
molecules across extra-and intra-cellular membranes.

ACTR6 His LD 3 Actin Related Protein 6. The role of this gene is not fully
understood as well as its association with histidine.

AOC1 Putrescine Lead 1
Amine oxidase copper containing 1 (AOC1) encodes a
metal-binding membrane glycoprotein that oxidatively

deaminates putrescine, histamine, and related compounds.

ASPG Asn Lead 1 Predicted to have lysophospholipase activity and mainly
responsible to catalyze the conversion of asparagine to aspartate.

ASRGL1 Asn Lead 1 Encodes the l-asparaginase enzyme responsible for the catalysis of
asparagine catabolism to aspartate.

CERS4 SM C18:0 Gene 1
This gene encodes for the protein Ceramide synthase 4, which

catalyzes the formation of ceramides via sphinganine and
acyl-CoA substrates, with high selectivity on long-chains.

COL27A1 C10, C8 Lead 3

The gene encodes a member of the fibrillar collagen family,
involved in the cartilage calcification process and the transition of

cartilage to bone. Mutations on this gene are known to cause
Steel Syndrome.

ENPEP Asp Lead 1

ENPEP encodes for glutamyl aminopeptidase that regulates
central hypertension through its calcium-modulated preference to

cleave N-terminal acidic residues from peptides such as
angiotensin II. This protein can upregulate blood pressure by

cleaving the N-terminal aspartate from angiotensin II, and can
regulate blood vessel formation and enhance tumorigenesis in

some tissues.

ETFDH C10, C6 (C4:1-DC), C8,
C10:1, C12 Lead/LD 2

This gene encodes for the Electron transfer flavoprotein (ETF)
present in the mitochondria, which acts in the electron transfer for

at least 9 flavins. Mutations on this gene (and other ETF genes
such as ETFA and ETFB) are known to cause multiple acyl-CoA

deficiency (MADD), also known as glutaric acidemia
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Table 2. Cont.

Gene Associated Metabolite(s) Lead, LD, or
Gene Variant 1 Level Description

FADS1 PC ae C38:3, lysoPC a C26:1 LD 2 Fatty acid desaturase enzymes regulate unsaturation of fatty acids
through the introduction of double bonds into the fatty acyl chain.

FADS2 PC ae C38:3, lysoPC a C26:1 LD 2 Fatty acid desaturase enzymes regulate unsaturation of fatty acids
through the introduction of double bonds into the fatty acyl chain.

F12; GRK6 Asp, Taurine Lead 3 The human coagulation factor XII (FXII) is involved in the
intrinsic coagulation pathway.

GLS2 Gln Lead 1

The gene is responsible for encoding the glutaminase 2, an
enzyme that catalyzes the conversion of glutamine to glutamate

and ammonia, promoting mitochondrial respiration and
ATP generation.

GNMT Sarcosine LD 1
Acts on the conversion of S-adenosyl-L-methionine (SAMe) and
glycine to S-adenosyl-L-homocysteine and sarcosine. Defects in

this gene are a cause of hypermethioninemia.

JMJD1C Putrescine Lead 3 Plays a central role in histone code and lysine demethylation.

LTA4H His LD 3

This gene encodes an enzyme used in the final step of the
biosynthesis of leukotriene B4, a proinflammatory mediator. It is
known to degrade proline-glycine-proline, biomarker for chronic

obstructive pulmonary disease.

MCCC2 C5-OH (C3-DC-M) Lead 2

Catalyzes the conversion of 3-methylcrotonyl-CoA to
3-methylglutaconyl-CoA, playing an important role in the

catabolism of leucine and isovaleric acid. Mutations in this gene
are associated with 3-methylcrotonylglycinuria.

MTHFR Ser Lead 2

Responsible for the catalysis of 5,10-methylenetetrahydrofolate to
5-methyltetrahydrofolate, involved in the remethylation of

homocysteine to produce methionine and tetrahydrofolate, a
substrate for serine production.

MYRF PC ae C38:3, lysoPC a C26:1 Lead, LD 3 Encodes an essential transcript factor that acts on the central
nervous system myelination process.

P4HA2;
PDLIM4 C16:1 Lead 3 P4HA2 gene encodes a component of prolyl 4-hydroxylase, a key

enzyme in collagen synthesis.

PEX6 Sarcosine Lead 3

Encodes a member of the AAA family of ATPases, which plays a
direct role in peroxisomal protein import and PTS1 (peroxisomal

targeting signal 1, a C-terminal tripeptide of the sequence
Ser-Lys-Leu) receptor activity.

PMCH Phe Lead 3

Responsible for the generation of multiple protein products
including melanin-concentrating hormone (MCH),
neuropeptide-glutamic acid-isoleucine (NEI), and

neuropeptide-glycine-glutamic acid (NGE). Acts on behaviors
such as hunger and arousal.

PPID C10:1, C12 Lead 3 Index variant associated with different carnitines and colocalized
with decreased gene expression. PPID is a putatively novel gene.

PRODH Pro Lead 1
This protein catalysis the intermediate reaction of proline

catabolism to glutamic acid and mutations on this gene are
associated with hyperprolinemia type 1.

PSMC3 His Lead 3 Proteasome 26S Subunit, ATPase 3 (PSMC3) is a multicatalytic
proteinase complex.

PYROXD2 C16-OH Lead 3 Predicted oxidoreductase that may play in
mitochondrial organization.

SARDH Sarcosine Lead 1
This gene encodes for the sarcosine dehydrogenase enzyme that
acts on the conversion of sarcosine to glycine. Mutations in this

gene are the cause for sarcosinemia.

SLC22A1 C3, Serotonin Lead 1
An organic cation transporter with polyspecificity, such as for
histamine, epinephrine, adrenaline, noradrenaline, dopamine,

spermine and spermidine, among others.

SLC22A5 C0, C2, C4, C16:1 Lead/LD/gene 1
An organic cation transporter with high affinity for carnitine.

Mutations in this gene are the cause of systemic primary
carnitine deficiency.
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Table 2. Cont.

Gene Associated Metabolite(s) Lead, LD, or
Gene Variant 1 Level Description

SUGP1 PC aa C34:4 LD 3 Acts in pre-mRNA splicing.

TCHP; GIT2 His Lead 3 Trichoplein keratin filament binding (TCHP) encodes for a protein
with unknown function.

TDO2 Trp Gene 1 This enzyme catalyzes the first and rate-limiting step in the
conversion of tryptophan into kynurenine.

TM6SF2 lysoPC a C20:3, PC aa C34:4 Lead 2
Regulator of liver fat metabolism this gene influences triglyceride
secretion and hepatic lipid droplet content. It is associated with

fatty liver disease and non-alcoholic fatty liver disease.

TMEM258 lysoPC a C26:1, PC ae C38:3 Lead 3
Transmembrane Protein 258 (TMEM258) is a component of the

oligosaccharyltransferase complex controlling ER stress and
intestinal inflammation.

TMPO His Lead 3

This gene encodes several proteins containing a LEM domain
through an alternative splicing mechanism. These proteins are

involved in gene expression, chromatin organization, replication
and cell cycle control.

UHRF1BP1L His Lead 3 UHRF1 Binding Protein 1 Like (URHF1BP1L) has analogy with
ubiquitin-like containing PHD and RING finger domains.

1 Method by which this gene has been associated with the metabolite. Lead: index variant was located in the gene;
LD: genome-wide significant variant (p < 5 × 10−8) in the gene was in high LD (r2 > 0.8) with index variant; Gene:
significant association with the gene in the gene-level test.

2.3. Gene-Level Associations

The overwhelming majority of exome variants are rare, and thus we have limited
power to detect associations for single variants. To increase power, we performed aggre-
gate tests of putatively functional variants within each gene, combining rare variants of
“high” and “moderate” impact as defined by Ensembl (“high-moderate impact” mask)
or rare loss of function variants (“loss of function” mask, Methods). Nineteen gene-trait
associations were significant at a 3.6 × 10−8 threshold (Methods) in the WES combined
dataset, 18 with the “high-moderate impact” mask and one with the “loss of function”
mask. Sixteen of these associations were driven by a single variant (Table S5, Figure S6),
one association (carnitine—SLC22A5, p = 2.9× 10−10) reached significance only after includ-
ing the two best variants (rs139203363 and rs202088921), and two gene-trait associations
(tryptophan—TDO2, p = 8.9 × 10−9 and sphingomyelin C18:0—CERS4, p = 6.1 × 10−10)
reached significance only after including the three best variants (TDO2: rs151132024,
rs183821149, 4:156837056:T:A; CERS4: 19:8321859:C:G, rs1478814187, rs150540280) (Table 3,
Figures 2d–f and S7). Neither of the two latter associations were identified in the single
variant analysis, which demonstrates the value of gene level association testing.

Table 3. Gene-trait associations significant (unconditioned) at a 3.55 × 10−8 threshold in the WES
combined dataset, with at least two variants needed to reach significance.

Trait ID Trait Name Gene Mask 1 p-Value (Conditional) Number of
Variants

Cumulative
Allele Count

Number of Variants Needed
to Reach Significance

Trp Tryptophan TDO2 HMI 8.9 × 10−9 (1.7 × 10−8) 6 45 3

SM C18:0 Sphingomyeline C18:0 CERS4 HMI 6.1 × 10−10 (2.7 × 10−8) 10 82 3

C0 Carnitine SLC22A5 HMI 2.9 × 10−10 (4.0 × 10−10) 6 37 2

1 HMI = high-moderate impact.

All three of these gene-based associations involve enzymes that act directly on the
associated metabolite. Approximately 95% of tryptophan (Trp) is catabolized via the
kynurenine pathway [21] by the tryptophan 2,3-dioxygenase (TDO2), an enzyme encoded
by the TDO2 gene [22]. Therefore, impaired activity of the TDO2 enzyme results in Trp
accumulation. The first confirmed case of hypertryptophanemia due to TDO2 deficiency
was caused by heterozygosity on two rare variants of TDO2 gene [21]. The variant carriers
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from CHRIS have elevated Trp levels (mean = 70.65 µmol/L, max = 96.66 µmol/L; non-
carriers mean = 61.88 µmol/L, max = 132.78 µmol/L) and lower blood cortisol levels
(two-sided wilcoxon test, p = 0.016). Cortisol is known to act as an activator of TDO2.
Consequently, lower cortisol levels increase Trp availability. Tryptophan levels have been
previously associated with behavioral disorders [23,24] such as anxiety [25]. We have found
that the anxiety trait score, as calculated from STAI anxiety questionnaire [26] was higher
in the carriers than in the non-carriers (one-sided Wilcoxon test, p = 0.041), which further
supports that tryptophan levels can indeed be correlated with behavioral disorders.

2.4. Colocalization Analysis

The colocalization analysis revealed 27 locus-trait associations at 14 index variants
colocalized with expression quantitative trait loci (eQTL) with a posterior probability
(PP) ≥ 0.8 (Figure 4, Table S6). In 17 of the 27 metabolite eQTL colocalizations, the index
variant of the metabolite association was either located in or was in high LD with a
significant variant in the same gene as the gene whose expression it was colocalized with.
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These data allow us to further speculate on the functional genes of the identified
associations. For example, a 5′ UTR variant in TMEM258, rs174538, was associated with
decreased lysophosphatidylcholine acyl C26:1 levels in our data, yet for the corresponding
transcript, no link to the metabolite could be found. However, the index variant is in LD
with significant variants in FADS1 (r2 = 0.84) and FASD2 (r2 = 0.84) and colocalized with
FADS1 and FADS3 transcript levels at a PP = 0.97 (Figure 4). Since the fatty acid desaturase
enzymes regulate unsaturation of fatty acids through the introduction of double bonds
into the fatty acyl chain, a gene of the FADS family is likely the causal gene at this locus.
Another example is rs10479000, located in an intron of both P4HA2 and PDLIM4, which is
associated with hexadecenoylcarnitine, but none of the eQTLs for either gene colocalizes
with the metabolite. However, the index variant is in LD with an upstream variant of
SLC22A5 (r2 = 0.82) and colocalized with eQTLs for both SLC22A5 and SLC22A4 at a
PP = 0.96. Since SCL22A5 is an organic cation transporter with high affinity for carnitine
and we have identified an additional association of the variant rs386134194 in this gene
with butyrylcarnitine and carnitine, it is likely that SLC22A5 is the functional gene for the
rs10479000 signal as well.

2.5. Mendelian Randomization

We then used the genetic associations from each metabolite as instrumental variables
in Mendelian randomization analyses to test whether metabolite levels could be causally
linked to health-related outcomes using the UK Biobank. We identified 63 significant
metabolite-outcome associations. The overwhelming majority, 62 of 63, exhibited some
evidence of pleiotropy, which is a violation of the assumptions of Mendelian randomization,
and so must be interpreted with caution with respect to causal inference. One association,
putrescine to waist circumference (p = 1.8 × 10−12), though, did not exhibit evidence
of pleiotropy and is consistent with previous studies. Increased putrescine has been
associated with obesity in children [27] and with type 2 diabetes [28]. Seven metabolites
had at least one significant outcome association (carnitine = 30, phosphatidylcholine diacyl
C34:4 = 12, propionylcarnitine = 9, lysoPhosphatidylcholine acyl C20:3 = 6, putrescine = 4,
hexanoylcarnitine (fumarylcarnitine) = 1, serine = 1). Forty-eight outcomes were associated
with at least one metabolite (Table S8).

3. Discussion

We performed an exome-wide association study on 175 metabolic traits in 5505 indi-
viduals from a North Italian Alpine valley (CHRIS study). Since only a subset of individuals
(n = 3294) was whole-exome sequenced, we used these sequenced individuals and exonic
variants as a reference panel for within-cohort imputation for the remaining 2211 individu-
als (Figure 1). This strategy generated a set of high-quality genotypes with a mean squared
correlation R2 of 0.91 over all tested variants.

The ExWAS in the combined dataset revealed 85 variant-trait associations, includ-
ing 39 conditionally independent of known common variant signals, and 3 of 19 signif-
icant gene-trait associations showed contribution from multiple rare variants (Figure 2).
Twelve of the novel thirty-nine associations were located in an enzyme acting directly on
the metabolite (level 1), twelve associations were located in an enzyme that was involved in
the metabolic pathway of the metabolite (level 2), and for the remaining fifteen associations,
no link between the putative gene and the metabolite could be identified (level 3).

Fifteen associations emerged at ten variants which were enriched more than five-fold
compared to the non-Finnish population in gnomAD (Figure 3). We identified three asso-
ciations related to inherited metabolic disorders. Of these, the ETFDH stop gain variant
p.Trp286Ter (rs1235904433, p = 8 × 10−15 with hexanoylcarnitine) and the MCCC2 stop lost
variant p.Ter564GlnextTer3 (rs751970792, p = 2 × 10−12 with hydroxyvalerylcarnitine) have
been linked to the respective diseases glutaric acidemia type II and 3-methylcrotonylglycinuria
but have not been identified in a GWAS previously.
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Colocalization analysis with GTEx gene expression data analysis revealed 27 locus-trait
associations colocalized with eQTLs at a posterior probability ≥ 0.8. Mendelian random-
ization analysis with health-related outcomes in the UK Biobank resulted in 63 significant
metabolite-outcome associations, 62 with some evidence of pleiotropy and one without
any evidence of pleiotropy (putrescine—waist circumference p = 1.8 × 10−12).

Even though previous metabolite GWAS have benefited from a larger sample size
or more metabolites tested, our study queries the entire coding space, which, due to the
high cost of sequencing is infeasible for many mGWAS studies, who often use imputed
genotype data [5–8]. Despite the smaller size of our panel compared to others, the Biocrates
kit used here measures some metabolites missed by other common platforms, such as
Metabolon [5,6,8,29,30] or Nightingale [6,11]. For example, Nightingale does not measure
the amino acids tryptophan, arginine, or aspartate, and neither Metabolon nor Nightingale
measures the biogenic amines histamine, spermine, or putrescine, or the acylcarnitines
decadienylcarnitine or dodecanedioylcarnitine.

There are potential limitations to our study. First, the CHRIS cohort only includes
individuals of European ancestry; therefore, our results might not be generalizable to
non-European ancestries. Second, we favor a joint analysis approach over a discovery
and replication setting since it has been shown that joint analysis is more powerful than
replication [31]. Nonetheless, we report also the results for the whole-exome sequenced data
set and the imputed data set separately. We acknowledge that external replication could
provide additional evidence. Finally, we use the EBI GWAS catalog in addition to a literature
search to identify known associated variants to use in the conditional analysis. However,
new associations are identified at a high pace and very recently reported associations might
not be included in our conditional analysis.

The unique characteristics of the CHRIS study represent a clear strength of this work.
The participants were recruited from an Alpine valley in Northern Italy, where the individ-
uals share similar heritage, lifestyle, and diet habits that are influenced by tradition and
rural culture. While the region was not geographically isolated in the past hundreds of
years, gene-flow was certainly limited in contrast to more urban areas, potentially leading
to the collection of enriched variants we identified in this study.

Several studies have highlighted the value and challenges of WES imputation [9,32,33].
In our study, we demonstrate that this approach is a cost-efficient strategy to infer coding
variation in individuals not sequenced. Achieving high quality imputation is especially
challenging for rare variants. Using a true validation set of individuals that have been
sequenced as well as imputed, we demonstrate high imputation accuracy at very rare vari-
ants (mean R2 = 0.96 for n = 6263 variants with MAC 2–10 in the reference panel). In fact,
the imputation accuracy at rare variants even supersedes the accuracy at more common
variants (Figure 2a,b), which might be due to the high relatedness of the individuals in the
CHRIS cohort, as haplotype matching might be more accurate. Of the 39 significant associ-
ations, only 20 would have been detected using only the WES subset of 3294 individuals,
which demonstrates the increase in power achieved by the exome imputation. Apart from
the ability to identify rare variants, (imputed) whole exome sequencing data by design
focuses on the protein coding part of the genome, which facilitates the interpretation of
results in contrast to the non-coding genome.

To sum up, we show the value of smaller, well-characterized cohorts in the age of large
population biobanks like the UK Biobank through the identification of 15 associations at
10 variants that are enriched in CHRIS. We almost doubled our sample size and therefore
our power to detect associations in the coding space using a within-cohort imputation
strategy. Our results extend the knowledge about genetic mechanisms controlling human
metabolism with the potential for identifying novel targets and impacting human health.



Metabolites 2022, 12, 604 14 of 22

4. Materials and Methods

An overview of the study workflow is given in Figure 1.

4.1. CHRIS Population Study

The Cooperative Health Research in South Tyrol (CHRIS) study [10] is a single-site,
prospective, population-based study with 13,389 participants recruited from the Vin-
schgau/Val Venosta valley in South Tyrol, Italy, between 2011 and 2018. The study was
initiated with the goal of investigating the relationship of genetic, metabolomic, environ-
mental and lifestyle factors with common chronic conditions, emphasizing neurological and
cardiovascular diseases. Participants underwent tremor assessment, blood drawing, urine
collection, anthropometric measurements, a 20 min electrocardiographic (ECG) analysis,
and blood pressure measurement. Additionally, each participant completed an interview
with questions to screen for cardiovascular, endocrine, metabolic, genitourinary, nervous,
behavioral and cognitive system conditions, and to semi-quantitatively assess nutrient
intake, physical activity, and life-course smoking.

4.2. Genotyping

DNA samples were genotyped using the Illumina HumanOmniExpressExome and
Illumina Omni2.5Exome array. Illumina GenomeStudio v2010.3 with default settings was
used to call genotypes on GRCh37. Variants with GenTrain score < 0.6, cluster separation
score < 0.4, or call rate < 80% were considered technical failures and discarded. Only
variants present on both arrays were forwarded to our standard quality control pipeline.
Samples with a call rate < 98%, monomorphic variants or variants with Hardy-Weinberg
equilibrium p < 10−6 were removed. After quality control, 612,000 variants and 10,770 sam-
ples were retained.

4.3. Whole Exome Sequencing

Whole exome sequencing (WES) of 3840 CHRIS participants was performed using
the xGen® Exome Research Panel v1.0 at the McDonnell Genome Institute at Washington
University. The generated exome sequencing data were processed using the Genome
Analysis Toolkit (GATK) v3.7 best practices pipeline [34–36] in conjunction with additional
quality control measures. Specifically, reads were aligned with BWA version 0.7.15 [37]
to GRCh37, and duplicates annotated with SAMBLASTER [38]. Base quality scores were
recalibrated with GATK and quality control statistics generated with Qualimap v2.2.1 [39]
and QPLOT ver: 20,130,619 [40]. Samples were excluded if they did not have more than
or equal to 20X coverage at a minimum of 80% of target sites (176 samples). VerifyBamID
version 1.1.2 was used to detect the contamination of samples with foreign DNA, and to
determine sample swaps by comparison with the genotype array data [41]. Samples with
greater than 3% contamination were removed (n = 79, FREEMIX > 3%). Forty-two cases
of sample swapping were detected, six of which could be reassigned. Using QPLOT,
127 samples were identified as having abnormal q20 bases vs. cycle plots and were removed.
After quality control, 3422 samples were retained, with a mean target coverage of 68.4X.
For a subset of 3294 samples, metabolite data were available and were used subsequently.
All 3294 sequenced samples were also genotyped.

Variant calling was performed on the exonic regions defined in the xGen® Exome
Research Panel v1.0 bed file with an interval padding of 500 bp. Per-sample variant
calling was performed with the GATK HaplotypeCaller, followed by joint-call genotyping
across all samples using GATK’s GenotypeGVCFs. Variant quality score recalibration
was performed, and variants were filtered based on a tranche sensitivity threshold of
0.99 for both SNVs and indels. Post GATK, the software vt version 0.5772 [42] was used
to decompose multiallelic sites and to normalize variants. Further variant annotation was
performed with the Ensembl Variant Effect Predictor (VEP) version 99 [43] with the Loss-
Of-Function Transcript Effect Estimator (LOFTEE) plugin [44] to identify high confidence
loss of function variants. The mean concordance between hard call genotypes called from
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the WES data and the array genotype data (number of matching genotypes/total number
of genotypes) was 0.998 for the approximately 25,000 overlapping variants. After quality
control, 1,121,060 variants were retained.

4.4. Genotype Imputation

Custom Reference Panel. Imputation of a population specific whole-exome sequencing
reference panel into 10,770 genotyped CHRIS individuals was performed. To create the
reference panel, all WES variants of the 3294 sequenced individuals were combined with the
genotypes for the same set of individuals. If a variant was present both in the genotyping
and the sequencing data, genotyping data were used. Variants were phased with SHAPEIT2
v2.r837, using the duoHMM method (–duohmm -W 5) with 800 states and 30 rounds [45].
Genotypes of all 10,770 samples were phased with SHAPEIT2 using the same parameters
as for the reference panel. Imputation was performed with mimimac3 version 2.0.1, using
800 states and 20 rounds [46]. Variants with estimated imputation quality rsq < 0.3 were
removed. Validation of imputation quality was performed on 181 imputed samples which
underwent WES belatedly in the same fashion as the 3294 samples described above and
were not included in the reference panel nor in the ExWAS described in this paper. For the
validation, genotyped variants were removed.

Standard Reference Panel. To enlarge the set of variants available for conditional analysis,
imputation of the TOPMed reference panel into the 10,770 genotyped CHRIS samples
was performed with the Michigan imputation server [47,48]. Variants with rsq < 0.3
were removed.

4.5. Metabolomics Data

Measurement, data normalization and quality assessment of the targeted metabolomics
data are described in [49]. In brief, the AbsoluteIDQ p180 kit (Biocrates Life Sciences AG,
Innsbruck, Austria) was used to determine absolute concentrations for 188 metabolites in
serum samples from participants of the CHRIS study. To remove batch effects, the data
were normalized using a combination of 3 different quality control (QC) samples, included
on each plate. Quality assessment was based on the number of missing values, coefficient
of variation across QC samples and visual inspection of signal distributions. Thirteen of
the one hundred and eighty-eight metabolites were removed because of poor quality.

In order to obtain a homogenous set of individuals for the analysis, pregnant and pos-
sibly pregnant women as well as individuals of non-European descent (both self-reported)
were excluded from the analysis, resulting in a data set of 175 quantified metabolites
in 5505 individuals. All these 5505 individuals were genotyped and 3295, in addition,
exome sequenced.

Concentrations for each metabolite were further adjusted for age, sex, fasting status
(categories: did fast (93.3%), did not fast (6.6%), not available (0.1%)), and the first ten prin-
cipal components using linear regression, followed by rank inverse normal transformation
of the model’s residuals. All genetic analyses were performed using these transformed
residuals. Additionally, the single variant ExWAS was repeated correcting also for body
mass index (BMI) and genotyping batch prior to the rank inverse normal transformation.
Since the p-values were highly correlated (0.996 and 0.987, Figure S1), results are reported
here for the analysis without correcting for BMI or genotyping batch. The metabolites
analyzed in this study are displayed in Table S1.

To choose a significance threshold for single variant and gene tests, principal compo-
nent analysis (PCA) was performed on the 175 transformed traits. Missing trait values were
imputed with the imputePCA function of the missMDA R package. Principal components
(PCs) were computed with the PCA function of the FactoMineR package and the prcomp
function of the stats package. The first 91 PCs explained 95% of the variability; therefore,
the p-value threshold was set to 0.05/(100,000× 91) = 5.5× 10−9 for single variant tests [50]
and to 0.05/(15,496 × 91) = 3.5 × 10−8 for gene tests, as 15,496 was the maximum number
of genes tested in either mask. Trait correlation is displayed in Figure S2.
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The Biocrates platform predefines 29 and 36 biologically relevant sums and ratios,
respectively, from the basic measured metabolites (Tables S2 and S3). Since these derived
traits are highly informative for biological interpretation but increase the multiple testing
burden, the ExWAS was only performed on the 175 basic metabolites. Subsequently,
association tests were performed for the sums and ratios only on the index variants of the
significant associations. Rank inverse normal transformations were performed on the ratios
and sums were as described for the basic metabolites.

4.6. Definition of Datasets

For the analysis, three datasets were defined (autosomes only). Association analysis
was performed on variants with minor allele count (MAC) ≥ 4.

1. Whole exome sequencing (WES): All individuals with whole-exome sequencing and
measured metabolite data (3294 individuals and 554,589 variants).

2. Imputed only (WES imputed): All individuals with genotype data (and thereby
imputed) that were not in the imputation reference panel with measured metabolite
data, restricting to imputed variants only (2211 individuals 374,349 variants).

3. Whole-exome sequencing combined with imputed (WES combined): All individu-
als with whole-exome sequencing data, genotype, and imputation data, and with
measured metabolite data, combining sequenced, genotyped, and imputed variants
(5505 individuals and 624,751 variants).

The final evaluation of results was performed on the WES combined set, but summary
statistics for the WES and WES imputed set are provided in Table S4.

4.7. Known Genetic Associations and Conditional Analysis

Literature mining was performed to identify previously reported GWAS associations
between metabolites and genetic variants. The identified trait descriptions were manually
mapped to Biocrates metabolite IDs based on the provided trait names, common identifiers,
such as HMDB IDs, or metabolite descriptions. Additionally, the EBI GWAS catalog
r2020-11-20 was mined for known associations (Appendix A).

At the time of writing this manuscript, 2197 previously reported genome-wide sig-
nificant associations were identified in 115 traits, corresponding to 1746 unique variants.
For the remaining traits no reported associations could be found. Genomic coordinates for
these associations were obtained in GRCh37 and GRCh38. Variants were extracted from
WES imputed or TOPMed imputed datasets with preference given to WES imputed over
TOPMed in case the variant was present in both datasets. In total, 1678 (96%) variants were
present in at least one dataset.

Novel associations were categorized into 3 levels reflecting their biological rele-
vance. Level 1—The gene is encoding an enzyme that acts directly on the metabolite.
Level 2—The gene encodes an enzyme that acts on a metabolite present in the same
metabolic pathway as the associated metabolite. Level 3—No relationship between the
gene and the metabolite could be found.

4.8. Single Variant Association Tests

Single variant association tests on all 175 traits were performed on the rank inverse
normal transformed metabolite concentrations using the q.emmax test of the EPACTS
version 3.2.6 software on all variants with a minor allele count greater three. Tests were
performed on the WES, the WES imputed and the WES combined set separately, using
genotype hard calls for WES and dosage values for the latter two datasets.

The significance threshold was set to 0.05/(100,000 × 91) = 5.5 × 10−9 as described
above. For 115 of the 175 traits, variants meeting the traditional genome-wide significance
threshold of p ≤ 5 × 10−8 have been reported previously. For these traits, the association
tests were repeated in all three datasets conditioning on all known variants for each trait.

Subsequently, single-variant tests were performed on the 29 predefined sums and
36 predefined ratios only for the index variants that reached conditional significance.



Metabolites 2022, 12, 604 17 of 22

To identify the independent loci for each metabolite, we applied LD-based clumping
with swiss version 1.1.1 [51] on the unconditional ExWAS in the WES combined set using
the phased WES combined data as LD source with a clump p-value threshold of 5.5 × 10−9

and an LD clumping threshold of 0.8. Since LD-based clumping is not always successful,
distance-based clumping with swiss was performed subsequently using a 500 kb window
and a clump p-value threshold of 5.5 × 10−9. This procedure resulted in 112 loci in 40 traits.
On these 112 loci, the following filtering steps were performed: (i) remove variants that
could not be tested in the WES set due to MAC < 4 (n = 23), (ii) remove variants that
have a higher alternative allele count in the WES imputed set than in the WES set (n = 4),
(iii) remove variants where the direction of effect was different in the WES imputed and the
WES set (n = 0). This filtering procedure resulted in 85 loci in 40 traits that were significant
at a 5.5 × 10−9 threshold (Table S4). After conditional analysis, 39 locus-trait associations
remained significant at a 5.5 × 10−9 threshold in 28 unique traits and 29 unique variants
(Table 1).

To determine the causal gene for the detected associations, we used the variant effect
predictor (VEP) version 100 to annotate the index variants. If only one gene overlapped
the variant, we reported this gene and the most severe consequence [52]. If multiple genes
overlapped the variant, we reported only the gene with the most severe consequence. We
further extracted all significant variants (p ≤ 5.5 × 10−9) in high LD (r2 > 0.8) with the
index variant and reported the corresponding gene (Tables 1 and 2).

4.9. Gene Level Association Tests

To increase power to identify rare-variant signals, we performed gene-level association
tests using the R-package SKAT [53]. All variants in the three datasets were annotated with
Ensembl v99 data, using a local installation of VEP with the plugin LOFTEE to annotate
loss of function variants. Variants were grouped across genes using two different masks.
For the “loss of function” mask, variants were included for a gene if the variant (i) was
annotated as high confidence loss-of-function variant (as determined by the VEP LOFTEE
plugin) in at least one protein-coding gene transcript and (ii) had a minor allele frequency
(MAF) of at most 0.01 in the analyzed individuals. For the second mask “high-moderate
impact”, variants were included for a gene if the variant (i) had an annotated consequence
that was either “high” (transcript ablation, splice acceptor variant, splice donor variant,
stop gained, frameshift variant, stop lost, start lost, transcript amplification) or “moderate”
(in-frame insertion, in-frame deletion, missense variant, protein altering variant) as defined
by Ensembl [52] in at least one protein-coding gene transcript and (ii) had a MAF ≤ 0.01
in the analyzed individuals. Genes were tested for association in either mask, if at least
three variants fulfilled these criteria. Specifically, for each trait, the SKAT_NULL_emmaX
function from the SKAT R-package was used to build the model, including the kinship
matrix. For each gene, the SKAT function with method “skato” was invoked.

To exclude spurious associations that are driven by one highly associated variant, the
contribution of the individual variants to the gene level p-value was determined for all
gene-trait associations that reached significance in the combined dataset. For each dataset,
the p-values of the constituting variants were extracted from the single variant association
tests. Variants were ordered by increasing p-value, and the skato test was performed
stepwise, starting with only the best variant by p-value, subsequently adding one variant
and repeating the test, finally performing the test on all constituting variants. A gene-trait
association was only considered genuine, if significance in the WES combined set was
reached after adding at least two variants. Furthermore, the p-value in the combined set
was required to be smaller than the p-value in the WES set.

4.10. Colocalization Analysis

To identify shared causal variants between the tested metabolites and gene expression,
colocalization analysis of the conditionally significant single variant associations with ex-
pression quantitative trait loci (eQTL) associations was performed using GTEx data version
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8 (EUR) for the kidney, whole blood, and liver tissue. All genes within a ±1 Mb window of
the ExWAS index SNPs were tested for colocalization using the coloc.fast function of the
gtx R-package version 2.1.6 [54], which is an implementation of the colocalization method
described here [55]. For each colocalization analysis, all variants within ±100 kb of the
index variant were included using the default prior probability of 1 × 10−5. A posterior
probability (PP) ≥ 0.8 was considered as an indicator that the same locus is causal for both
the metabolite and the eQTL association.

4.11. Mendelian Randomization

Causal effects of differences on metabolite concentrations on 172 functional related out-
comes (i.e., blood, urine and health-related traits) were tested by a two-sample Mendelian
randomization (MR) approach [56], using summary genetic data obtained from two in-
dependent homogeneous populations: this ExWAS study (n = 5505 all with European
ancestry) for metabolites and the Pan-UKBiobank study (n~500,000 with a great majority of
European ancestry [57]) (Table S7).

For each of the 175 metabolites, genetic instruments were selected that were genome-
wide significant (p ≤ 5 × 10−8), had sufficient strength (F-statistic > 10), and were pairwise
independent (LD clumping with r2 < 0.01). The F-statistic was estimated by the ratio
between the squared estimate of the instrument-metabolite association and its squared
standard error [58]. LD clumping was performed with swiss [51]. Genetic instruments not
present in Pan-UKBiobank were discarded since no proxies could be identified for these
mostly rare variants.

After instrument selection, genetic data were harmonized [56], that is, first, negative
genetic effect estimates on metabolites were flipped, with its effect allele and the corre-
sponding frequency. Furthermore, an alignment was created by effect allele and frequency
of the outcome. To guarantee the homogeneity between the two genetic datasets, genetic
effect estimates on the outcome were also flipped when there was no correspondence with
the allele frequency of the metabolite.

No MR analyses were performed on metabolites with fewer than four instruments
since the presence of pleiotropy could not be investigated with statistical tools. Hence, the
pleiotropy was evaluated for 11 metabolites using the I2 index and the Cochran Q test [59].
A nominal significance threshold was used. The following MR methods were applied for
1826 metabolite-outcome causal hypotheses: the inverse variance weighted random effects
(IVW-RE) [60], MR-Egger (MRE) [61], weighted median (WMedian) [62], and weighted
mode-based (WMode) estimators [63]. Analyses were performed using the R software
(version 4.1.1) and MendelianRandomization R package (version 0.5.1).

We implemented both IVW-RE and MR-Egger using MM-estimation and penalization
of extreme Wald estimates, an approach robust to outliers [64]. Standard errors of WMedian
and WMode estimates were estimated using a bootstrap procedure with 10,000 iterations
(default setting in MendelianRandomization package). Moreover, when the algorithm of
one of the MR methods did not converge, the MR result was removed.

The significance threshold was set to α = 0.05/1826 = 2.74 × 10−5. For metabolite-
outcome pairs with no evidence of pleiotropy, a causal association was called significant if
the p-value of IVW-RE test was below α. When there was statistical evidence of pleiotropy,
a causal association was called significant if the estimates of the MRE, WME, and WMO tests
were direction consistent, and all p-values were smaller α. A rank of statistical evidence of
causality was defined by identifying the number of significant MR estimates. The overall
MR procedure is described in Figure S3.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12070604/s1, Figure S1: ExWAS results corrected for BMI or
genotyping batch ( y-axis) plotted against ExWAS p-values not corrected for BMI or genotyping batch
( x-axis). (a) −log10 p-values, corrected for BMI vs. not corrected for BMI. (b) like (a), restricted to
range (0, 20). (c) Beta, corrected for BMI vs. not corrected for BMI. (d) −log10 p-values, corrected
for genotyping batch vs. not corrected for genotyping batch. (e) like (d), restricted to range (0, 20).

https://www.mdpi.com/article/10.3390/metabo12070604/s1
https://www.mdpi.com/article/10.3390/metabo12070604/s1
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(f) Beta, corrected for genotyping batch vs. not corrected for genotyping batch; Figure S2: Heatmap
of the Spearman correlation of the rank inverse normal transformed values of the 175 metabolomic
traits; Figure S3: Flowchart of the Mendelian randomization analysis; Figure S4: Minus log10 p-value
versus beta of all traits for all index variants. For the significant association (triangle), beta is plotted
against p-value for all other metabolites (green) and the ratios (orange) and sums (purple); Figure S5:
Number of conditionally significant associations per trait, split into rare (MAF ≤ 1) and common
(MAF > 1) associations. Traits without any significant associations are omitted. Traits are ordered
according to their class and separated by the horizontal dotted lines; Figure S6: Minus log10 p-value
of the skato gene test, adding the variants constituting the gene test iteratively for the 16 associations
that reached significance after adding only the one best single variant. In each step i on the x-axis,
the gene test is computed using only the i variants with the smallest single variant p-value. Below
each point, the minor allele count is given; Figure S7: Details of the three significant gene-trait
associations. (a–c) Beta is plotted against single variant –log10 p-value for all variants that constitute
the gene test for the associations TDO2—tryptophan (a), CERS4—sphingomyeline C18:0 (b), and
SLC22A5—carnitine (c). The minor allele count in the WES combined set is given below or above
each point. (d–f) Quantile-quantile plots of observed versus expected p-values for the associations
TDO2—tryptophan (d), CERS4—sphingomyeline C18:0 (e), and SLC22A5—carnitine (f); Table S1:
Metabolomic traits investigated in this study; Table S2: Predefined sums investigated at significant
index variants; Table S3: Predefined ratios investigated at significant index variants; Table S4: Locus-
trait associations conditionally or unconditionally significant at a 5.5 × 10−9 threshold in at the
WES combined dataset, with results given for WES and WES imputed at the best variant at the
locus; Table S5: Gene-trait associations significant (unconditioned) at a 3.55 × 10−8 threshold in WES
combined, where one variant was sufficient to reach significance; Table S6: Locus-trait associations
with eQTL protein-coding genes colocalized at a PP ≥ 0.8; Table S7: Outcomes tested in the MR
analysis, selected from [65]; Table S8: Results from the Mendelian randomization analysis.
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Appendix A

EBI GWAS catalog data mining: The EBI GWAS catalog r2020-11-20 in GRCh38 was
downloaded and restricted to genome-wide significance (p-value≤ 5× 10−8). The columns
“disease trait” and “p-value text” were identified to contain the crucial information regard-
ing trait description and were merged. The Biocrates trait names of the 35 traits with
significant associations were matched against the merged catalog column and all partial
matches were extracted. False mappings, e.g., carnitine–succinylcarnitine, were manu-
ally excluded, resulting in 226 retained associations for 83 traits. Genomic coordinates in
GRCh37 for the identified variants were obtained from dbSNP via the dbSNP id.
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