

Supplementary Information for

The Hippo pathway regulates axis formation and morphogenesis in Hydra

Maria Brooun^{1*}, Willi Salvenmoser², Catherine Dana³, Marius Sudol⁴, Robert Steele³, Bert Hobmayer², Helen McNeill^{5*}

¹ Lunenfeld-Tanenbaum Research Institute, Toronto, ON, M5G 1X5, Canada

² Department of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria

³ Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700

⁴ Icahn School of Medicine at Mount Sinai, Department of Medicine, One Gustave Levy Place, New York, NY 10029, USA

⁵ Department of Developmental Biology , Washington University School of Medicine, 4577 McKinley Avenue, St. Louis, Missouri 63110-1093

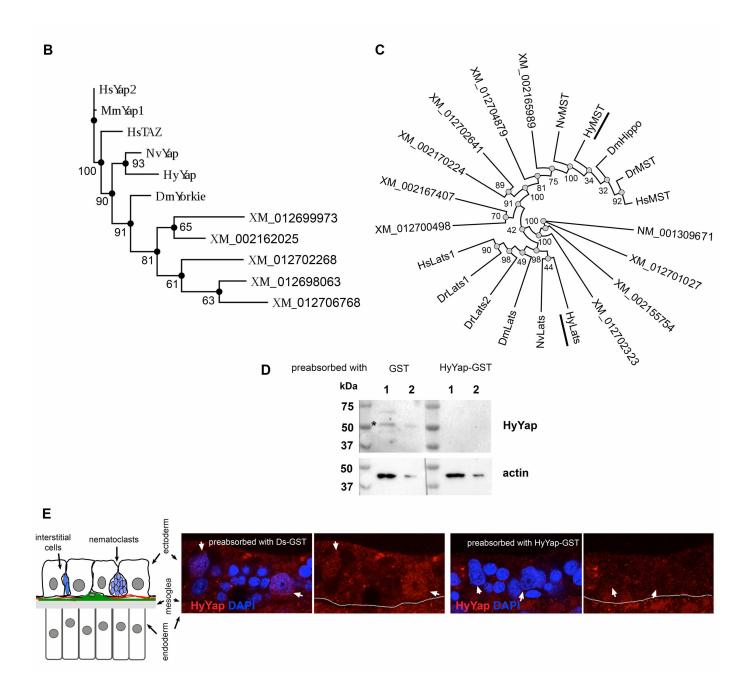
*authors for correspondence: Maria Brooun (brooun@lunenfeld.ca), Helen McNeill (mcneillh@wustl.edu)

Email: <u>brooun@lunenfeld.ca;</u> <u>mcneillh@wustl.edu</u>

This PDF file includes:

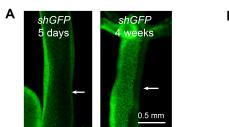
Table S1 Figures S1 to S5 **Table S1.** DNA oligonucleotides used in the study. T7 promoter sequence is in red, gap sequence is in blue.

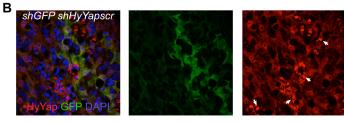
DNA oligo template for shRNA synthesis	
Sintiva Synthesis	
GFP sense	TAATACGACTCACTATAGAAGATGGAAACATTCTTGGATTCAAGAGATCCAA GAATGTTTCCATCTTCTT
GFP a-sense	AAGAAGATGGAAACATTCTTGGATCTCTTGAATCCAAGAATGTTTCCATCTT CTATAGTGAGTCGTATTA
HyYap1 sense	TAATACGACTCACTATAGACCTCCTCCGTCTCTAGATTCAAGAGAATCTAGA GACGGAGGAGGTCTT
HyYap1 a-sense	AAGACCTCCTCCGTCTCTAGATTCTCTTGAATCTAGAGACGGAGGAGGAGGTCTA TAGTGAGTCGTATTA
HyYap2 sense	TAATACGACTCACTATACGACAAGACTCAGACACTGTTCAAGAGACAGTGTC TGAGTCTTGTCGTT
HyYap2 a-sense	AACGACAAGACTCAGACACTGTCTCTTGACAGTGTCTGAGTCTTGTCGTATA GTGAGTCGTATTA
HyYap1 scrambled sense	TAATACGACTCACTATAGAGCCCCCTTAACGCTTCTCTTCAAGAGAAGAGAAG CGTTAAGGGGCTCTT
HyYap1 scrambled a-sense	AAGAGCCCCTTAACGCTTCTCTTCTCTTGAAGAGAAGCGTTAAGGGGGCTCTA TAGTGAGTCGTATTA
HyYap2 scrambled sense	TAATACGACTCACTATAGGTCAACCGCTCATAACAATCAAGAGATTGTTATG AGCGGTTGACCTT
HyYap2 scrambled a-sense	AAGCGAAACCGCAACATGACTTCTCTTGAAGTCATGTTGCGGTTTCGCTATA GTGAGTCGTATTA
HyLATS1 sense	TAATACGACTCACTATAGGTGTCAAGCGTTCTTACTTTCAAGAGAAGTAAGA ACGCTTGACACCTT
HyLATS a-sense	AAGGTGTCAAGCGTTCTTACTTCTCTTGAAAGTAAGAACGCTTGACACCTAT AGTGAGTCGTATTA
HyLATS2 sense	TAATACGACTCACTATAGACCAAGAGCAAATGAGAATTCAAGAGATTCTCAT TTGCTCTTGGTCTT
HyLATS2 a-sense	AAGACCAAGAGCAAATGAGAATCTCTTGAATTCTCATTTGCTCTTGGTCTAT AGTGAGTCGTATTA
HyWnt3 – 1 sense	TAATACGACTCACTATAGCAACGTAAGTGGAACTGTTCAAGAGAACAGTTCC ACTTACGTTGCTT

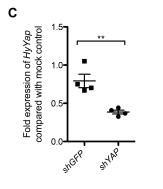

HyWnt3 – 1 a-sense	AAGCAACGTAAGTGGAACTGTTCTCTTGAACAGTTCCACTTACGTTGCTATA GTGAGTCGTATTA
HyWnt3 – 2 sense	TAATACGACTCACTATAGTTGACGGTTGCGAACTTATCAAGAGATAAGTTCG CAACCGTCAACTT
HyWnt3 – 2 a-sense	AAGTTGACGGTTGCGAACTTATCTCTTGATAAGTTCGCAACCGTCAACTATA GTGAGTCGTATTA
DNA oligos for qPCR	
analysis	
НуҮар F	ATTTGCCAGAAGGTTGGGAACGTG
HyYap R	TGTTGACGATGACGCTTCTCTTGC
HyLATS F	GGTCCTGGAGCCTATGCGTT
HyLATS R	GCAGAACGCTTTGCAGGTGA

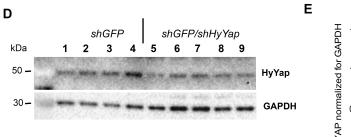
A % identity 100.00 HyYap 35.48 DmYork 34.04 MmYap1 33.68 HsYap2	ci.	[MCACLIAKIILCSFR		-MEPAQQPPPQ	PAPQGPAPPS	SV	SPAG	- <mark>MDMNSTQRQGNF</mark> DE <mark>DMIS</mark> PIKSNNI TPAAPPAPPA <mark>G</mark> HQ TQAAPQAPPA <mark>G</mark> HQ	2
HyYap DmYork MmYap1 HsYap2	_	VLHVRQDSDTDLEQL VVRVNQDTDDNLQAL VVHVRGDSETDLEAL IVHVRGDSETDLEAL	DSVLNPGDAK NAVMNPKTAN	RPLQLPLRMRK VPQTVPMRLRK	LP <mark>N</mark> SFF <mark>T</mark> PPA LP <mark>D</mark> SFF <mark>K</mark> PP <mark>B</mark>	Apshsransad Spkshsrq <mark>a</mark> st	STYDAGSQSS	INIGNKASIVQQP	-
HyYap DmYork MmYap1 HsYap2		DGQSPIAAIPQLQIQ 	PSPQHSRLAIH AGALT <mark>P</mark> Q	HTRARSLPSNI H <mark>S</mark> RARS <mark>S</mark> PASL HVRA <mark>H</mark> SSPASL HVRAHS <mark>S</mark> PASL	Q <mark>Q</mark> NYNVRARS QLG <mark>A</mark> VSPGT <mark>I</mark>	DAAAANNPNA TAS	GVVSG	NNF PT <mark>F</mark> PENSAQEFPS PAA	240
HyYap DmYork MmYap1 HsYap2	1	GAPASSAIDLDAMNT	CMSQDIPMSMQ	TV <mark>H</mark> KKQR <mark>SY</mark> DV AOHLROSSFEI	ISPIQLNRQI PD	LGALPPGWEQA	KTNDGQIYYL KTSSGQRYFL KTS <mark>SGQRY</mark> FL	NH <mark>NDOT</mark> TTWODPR NH <mark>IDO</mark> TTTWODPR	2
HyYap DmYork MmYap1 HsYap2		KAQSMTVL IQYRQQQQILMAERI KAMLSQLNVPAP KAMLSQMNVTAP	ASPA	TTTSTIANNLG	PLPDGWEQAU	/T <mark>ES</mark> GDLYFIN ATQDGEVYYIN ATQDGE <mark>IYY</mark> IN	HQTKTTSWFD HIDR <mark>TTSWN</mark> D HKNKTTSWID	PRLNRPNN PRMQSGLSVLDCF PRLDPRFAMNORI	
HyYap DmYork MmYap1 HsYap2		DNLVSSLQIEDNLCS TQSA SQSA	PVKQ	PPSSHKPDD PPPLAPQSPQG	LEW GV <mark>LGG</mark> GSSNQ	N <mark>Y</mark> KIN	MEKE <mark>R</mark> LRLK <mark>O</mark>		2
HyYap DmYork MmYap1 HsYap2		MNGQHTDSVLNNNSL LPTLEQ <mark>D</mark> GGTP <mark>N</mark> AVS LPTLEQ <mark>D</mark> GGTQ <mark>N</mark> PVS	SPGMSQ <mark>E</mark> LRTM	TTNSSDPFL <mark>NS</mark>	GTYHS <mark>R</mark> DE <mark>S</mark> I	DSGLSMSSYS	IPR <mark>T</mark> PD <mark>D</mark> FLN	SV <mark>D</mark> EM <mark>D</mark> TGDTI	
HyYap DmYork MmYap1 HsYap2		DKNTSMEQGICFNNR QSTLPSQQSR NQSTLPSQQNR	F <mark>P</mark> DYLEA <mark>L</mark> PGT	NVDL <mark>GT</mark> LE <mark>GDA</mark>	MNIEGEELME		L-DVESVLAA	- <mark>NNKPNAYMTWL</mark> TKLDKESFL <mark>TWL</mark>	639

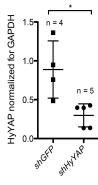
% identity		1	<u> </u>	80
100.00 43.88 41.30 43.34	HyLats DrLats1 DrLats2 DmLats		MTEPSKKSSIISSNQLLRNVPYNVLSHHLHHEHQOPRILDSAHIOSOSKEFEDFLSOSYNIHALSOSAAGDR MRRAEKPEGYRQMRPKTFPASNNSGNSOQMLOBIRESURNLSPSSNASKPEQSSGKG MRPKTFPATLYVGNTRQRLQDIKEGUKOPAKLVSQALHGGSSRGEGGRGGD 	
	HyLats DrLats1 DrLats2 DmLats		1 - <mark>R</mark>	160
	HyLats DrLats1 DrLats2 DmLats		2 <u>SQLVSYGYDEAIAADVLRNNSNKSIEVLVDIL</u> Q-TQEPGFDEELMVNRINFQEA QDLVNACCDQEMAVRALKQTGSRN <mark>IE</mark> AALEYISKMSYLDPHTEQIVRVIKQTSPGKSCMPNLMDHRTAMEGSG RYTATNGRNDALTPDYHAKQPMEPPPSASPAPDVVIPPPPA <mark>I</mark> VCQPGAGSI <mark>S</mark> VSGVGVGVA	240
	HyLats DrLats1 DrLats2 DmLats		3 ESLAPORHSALINDVLIYRPSSPGPQSDLSRPATFPQNLASASSGQRVNAPLSRQVRSITPPPSSWDSNPS-TKRYSGN- DGALPPYHQMGAPLYEGASYGAEGEM	320
	HyLats DrLats1 DrLats2 DmLats		4 DLTRKGMQYKDLSPTNFTNNLPFEHFSNVQSQCKYPRETDHAQRYQSSVFVSAHNLYHQDMPDD LDYLVPRISPVPQGPRGDGYINPQSQNQRGLSPVPVGRQPI PVMNYMPPPANPSQGSQPSGGPGAHYDYRSHMMENSSYGVKRSASFQNK SGFSEVAPPAPPPRNPTASSAATPPPPVPPTSQAYVKRRSPALNNRPPAIAPPTQRGNSPVITQNGLKNPQQ	400
	HyLats DrLats1 DrLats2 DmLats		<mark>SYLQNLGAENFGRPSVVTMROKKTDKOFNPONRWSADVLO</mark> <mark>TYEIE</mark> <mark>NVPNKPPPPYPGL</mark>	480
	HyLats DrLats1 DrLats2 DmLats		5 SALTAPPNGASLPQSMLVPNRNSHNLDMYNLGVIRPPVQQAQTPPGQDTSSSWTHSVPGRSNSFTSAPNNR AMGGEFSDVPQGLLTPSRASLNLDLYEHHWPGAQGP-EGTPPARQPQGPFRGEVRV <mark>PS</mark> RTNS <mark>B</mark> NNHQKVTVRQTLPP YRKSPSSGIYSATSAGSPSPITVSLPP	560
	HyLats DrLats1 DrLats2 DmLats		6 RQCPNS-QLSATTVTTVTQAPTLQPVKSMRVQKPELHTAVAPAHPPKLQ TASVAGKPESSLGPPNTITAVTSPPTQPPVKSIRVMRPEPKTAVCPCHPGWLSQPRVYQARSQQPITMQSVKSTQVQKPVLQTAVARQSPSSASASNSPVHVLAAPPSYPQKSAAVVQQQQ	640
	HyLats DrLats1 DrLats2 DmLats	641		720
	HyLats DrLats1 DrLats2 DmLats		8 IQAVHYFGTPTKMDSN-FSPIVESVIPRRSPPYSAGGSORSSKCNSLNIEELENSLLYTFSSLDDRN PPPPTAYQEPPTPPA-PAAEVPSYQGPPPYPKHLLQQQQ-PPPGYDSSPALK	800
	HyLats DrLats1 DrLats2 DmLats		FNKEDVESNLGDSSPTFLSNSDNTERFDGVKRS <mark>YSPLPECSNSPY-VTMIVRKDHEKESAIEENENQHENASLRLKNY</mark> PC <mark>SKEGDAADNENDTD</mark> STCS <mark>S</mark> ERAEGSB <mark>E</mark> KKQITTSPVPVRRHKRDEERKGESRLPMY LQDVS <mark>ATGRTIQ</mark> SSSVGKQEEPIFKDKVKMGKGEKAVKDKKQIQTSPVPVRNARDEE-KRESRIKSY YNNNS <mark>SNTG</mark> AN <mark>S</mark> SGGSNG <mark>S</mark> TGTTA <mark>S</mark> SSTS <mark>C</mark> KKIKHASPIPE <mark>RK</mark> KISK <mark>E</mark> KEEBRKEFRIRQY	880
	HyLats DrLats1 DrLats2 DmLats		9 TPOACKFYLEGHFENLLKRQEGREVRRKQLEDEMSRVGLPLQDQEQMRKLLRQKESNYIRLRRAKMDKTMFTKIKIIGIG SPOAFKFFMEQHVENILKNRQQRMRKKQLESEMQRVGLSGDADEQMRMLSQKESNYIRLRRAKMDKMFEKIKTLGIG SPFAFKFYMEQHVENVMKTYQQKLNRRMQLEQEMSKAGLSEAEQEQMRKKLYQKESNYIRLRRAKMDKSMFVKIKTLGIG SPQAFKFFMEQHIENVIKSYRQRTYRKNQLEKEMHKVGLPDQTQTEMRKKLNQKESNYIRLRRAKMDKSMFVKIKTLGIG STKC-LATS	960
	HyLats DrLats1 DrLats2 DmLats			1040

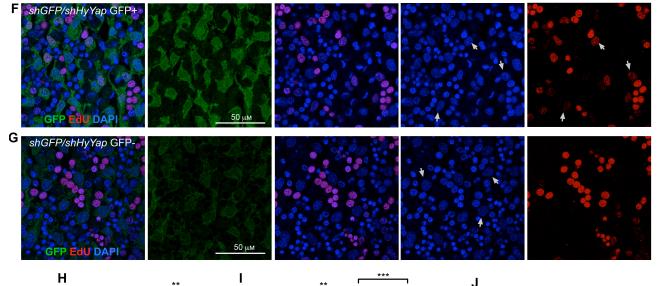

HyLats DrLats1 DrLats2 DmLats	1041	112 LIKRGIFEDNLARFYIGELVLAIESVHKLGFIHRDIKPDNVLIDRYGHIKLTDFGLCTGFHWTHDSKYYQPEQALENHSR LIRMGIFOEDLAOFYIAELICAVESVHKYGFIHRDIKPDNILIDRDGHIKLTDFGLCTGFRWTHDSKYYQSGDHVR LIRMGVFPEVLARFYVAELILAIESVHKYGFIHRDIKPDNILIDLDGHIKLTDFGLCTGFRWTHNSKYYQKGNHIR LIKLGIFEEELARFYIAEVTCAVDSVHKYGFIHRDIKPDNILIDRDGHIKLTDFGLCTGFRWTHNSKYYQENGNHSR	0
HyLats DrLats1 DrLats2 DmLats	1121	2 120 OFSMEPEGGWDSLVEEGDCGCKSSERLDNDLYEPLORRNMRRHMRCOAHSLVGTPNYIAPEVLMRIPYSOOCDWWSVGVI ODSMDFSMEWEDSANCRCGDRLKPLERRAAROHORCLAHSLVGTPNYIAPEVLLRTGYTOICDWWSVGVI ODSMEPSDSWDDVSNCRCGDRLMTLEORATROHORCLAHSLVGTPNYIAPEVLLRKGYTOICDWWSVGVI ODSMEPWEEYSENGPKPTVLERRMRDHORVLAHSLVGTPNYIAPEVLERSGYTOICDWWSVGVI	0
HyLats DrLats1 DrLats2 DmLats	1201	STKC-LATS LYEMLIGHPPFMARTPAEIOLKIINWKETLTIRKKLPRHSENLILOCSAPENRIGRNGAHEIKNHPYPDNFNFLSIH LYEMVVGOPPFLATTPLETOMKVIRWOTSLHIPLOAKLSPEATDLILKLORGPDDRUGRNGADEIKAOPFFRTIDFSKDL LYEMLVGOPPFLATTPLETOMKVINWENTLOVPPOVKLSPEAVDIIGOLCSABBRUGGNGAGEIKAHPFSEVDFSSNL LYEMLVGOPPFLANSPLETOOKVINWEKTLHIPPOAELSREATDLIRRLCASADKRUGK-SVDEVKSHDPFKGIDFADMR	0
HyLats DrLats1 DrLats2 DmLats	1281	3	0
HyLats DrLats1 DrLats2 DmLats	1361	4] 1406 IEONIKPNTVSPAKRSATTTSNSISIPNKVSVPNSDANKSKLPVFV IESEEEDEDEDYVEEDEPSQRPMEQSRDIVYV LEATQSLSSSDGAGSLKPELEEEEAHEEEEQGEGCEPVYV	

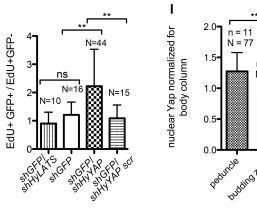

. 80	[ity	identity
LQ	MSRSLKKLSEESLNRPAEEVFDLLAKLGEGAYGSVYKAMHKESGEVLAIKQVPVDTDL	% HyMST	100.0%
LH	MSEPEVTSVVDMKSPNISSSCSFFKLKKLSEESLLQPPEKVFDIMYKLGEGSYGSVYKAVHKESSSIVAIKUVPVESDL	% DmHippo	56.20%
LQ	METVQLRNPPRRCLKKLDEDSLTKQPEEVFDVLEKLGEGSYGSVYKAIHKETGQIVAIKQVPVESDL	% HsMst	60.00%
ΓŌ	MEHSVPKNKLKKLSEDSLTKOPEEVFDVLEKLGECSYGSVFKAIHKESCOVVAIKOVPVESDL	% DrMST	60.95%
. 16	. 1		
	EIIKEISIMQQCDSPYVVKYFGSYFK <u>NT</u> DLWIVMEYCGAGSVSDCMRLRNKTLTEDEIACICRDTLKGLEYLHLRRKIH	HyMST	
HR	EIIKEISIMQQCDSPYVV <mark>RYY</mark> GSYFK <mark>QY</mark> DLWI <mark>C</mark> MEYCGAGSVSD <mark>IMRLRKKTLTEDEIATILS</mark> DTL <mark>Q</mark> GL <mark>VYLHLRRKIH</mark>	DmHippo	
HR	EIIKEISIMQQCDSP <mark>h</mark> vvky <mark>y</mark> gsyfkntdlwivmeycgagsvsd <mark>ii</mark> rlrnktltedeia <mark>t</mark> ilqstlkgleylh <mark>fm</mark> rkih	HsMst	
HR	EIIKEISIM <u>QQ</u> CDSPYVVKY <mark>Y</mark> GSYFKNTDLWIVMEYCGAGSVSD <mark>II</mark> RLRNKTLTEDEIA <mark>TVLKS</mark> TLKGLEYLH <mark>FM</mark> RKIH	DrMST	
. 24		1	
	$\tt DIKAGNILLNTEGHSKLADFGVAGQLTDTMAKRNTVIGTPFWMAPEVIQEIGYDCKADIWSLGITLLEMAEGKPPHADI$	HYMST	
IH	DIKA <mark>a</mark> nillnteg <mark>ya</mark> kladfgvagQltdtmakrntvigtpfwmapevi <mark>e</mark> eigydC <mark>v</mark> adiwslgit <mark>a</mark> lemaegkpp <mark>yge</mark> i	DmHippo	
ІН	DIKAGNILLNTEGH <mark>A</mark> KLADFGVAGQLTDTMAKRNTVIGTPFWMAPEVIQEIGY <mark>NCV</mark> ADIWSLGIT <mark>AI</mark> EMAEGK <mark>R</mark> PYADI	HsMst	
IΗ	DIKAGNILLNTEGH <mark>A</mark> KLADFGVAGQLTDTMAKRNTVIGTPFWMAPEVIQEIGY <mark>NC</mark> VADIWSLGIT <mark>SI</mark> EMAEGKPP <mark>Y</mark> ADI	DrMST	
_	STKc - MST1/2		
. 32		2	
	${\tt PMRAIFMIPTKPPPTFKHPEKWSKDMIDFVSKCLVKNPDDRLSATALLQHPFIKNSKPVEVLAQMLSDAMRIREEEVEK$	HYMST	
NR	PMRAIFMIP <mark>2</mark> KPPP <mark>SFREPDRWSTEFIDFVSKCLVKE</mark> PDDRATATELLEHEFIRNAKHRSILKPMLEETCAIREQQRAN	DmHippo	
sg	PMRAIFMIPTNPPPTFRKPELWSDNFTDFVKOCLVK <mark>S</mark> PEORATATOLLOHPFVRSAKGVSILRDLINEAMDVKLKROBS PMRAIFMIPTNPPPTFRKPEHWSDDFTDFVKKCLVKNPEORATATOLLOHPFIVGAKPVSILRDLITEAMDMKAKROOE	HsMst	
EQ	PMRAIFMIPINPPPTPRRPEHWSDDFIDFVKKCLVKNPEORAIATOLLOHPFIVGAKPVSILRDLIITEAMDMKAKROOE	DrMST	
4 40		3	
	NGNDDEDGIDDN-DQDIFV-TAHTDTIMANQDMGTMILNNDIDSNDGTMI	HyMST	
	SFGGVLAASQAKSLATQ <mark>ENC</mark> MQQHITDNA <mark>B</mark> MEDPG <mark>T</mark> LVPEKFGEYQQSSASDA <mark>TMI</mark> AHAEQGVDE <mark>GT</mark> LGPGGLRNLSKA	DmHippo	
	QREMDQDDEE-N-SEEDEM-DSGTMVRAVGDEMGTVRVASTMTDGA	HsMst	
	QRELB <mark>BD</mark> DEN-S-EEEVE <mark>V</mark> -DS <mark>HT</mark> MVKSGSESA <mark>GTM</mark> RATGTMSDGA	DrMST	
. 48		4	
	INSGTMIGHEMDTMITINSGTMIENMGTMVINDGDDCTMKSLESSTGKSTQYRPAYLEHFEKLELQNQRNI	HyMST	
	APAAASSAASPLDMPAVDSGTMVELES <mark>NLGTMVIN</mark> SDSDDSTTAKNNDDQKPRNR <mark>YRP</mark> QF <mark>LEHF</mark> DRKNAGDGRGDEK	DmHippo	
	GTMKRRDETMOPAKPSFLE <mark>YFE</mark> QKEKENQINS	HsMst	
1. T	Q <mark>TMI</mark> EHG <mark>S</mark> TMLES <mark>NLGTMVIN</mark> SD <mark>D</mark> EEEEED <mark>L</mark> GSMRRNPTSQQIQ <mark>RP</mark> SFMDY <mark>FDK</mark> QDSNKAQEG	DrMST	
. 56		4	
		HYMST	
	IATEYSPAAAEQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ	DmHippo	
	F <mark>C</mark> KSVF	HsMst	
	FNHNQ	DrMST	
. 64		5	
LR	VNENMLKGSDPNVPGKLLGPIDFEFLKNLSFEELQQRMSSLDTDMEREIEDL	HYMST	
N	ALNNQPNLLLSNAAPMGQQGIPAAAPAQPPPAYQNQHMHTQSHAYVEGE <mark>FEFLKFLTFDDUNQRLCNIDHEMEUEIE</mark> QL	DmHippo	
IR	PGPLLKNSSDWKIPQDGDYEFLKSWTVEDLOKRLLALDPMMEOCIEEI	HsMst	
LR	QDPCLI-SKTAFPDNW <mark>R</mark> VPQDG <mark>DFDFLKNL</mark> D <mark>FEELQ</mark> MRLTALDPMMEREIE	DrMST	
	MST1_SARAH	6	
	RRYOVKRHPIIEAMEVKKRROANF	HyMST	
	KKYNAKROPIVDAMNAKRKROONINNNLIKI	DmHippo	
	ALAY MARANA K. K. A.		
	OKYOSKROPTLDAT PAKKRROONF	HeMet	
	OKYOSKROPILDAIDAKKRROONF	HsMst	
	QKYQSKRQPILDAIBAKKRRQQNF QRYTAKRQPILDAMDAKKRRQQNF	HsMst DrMST	

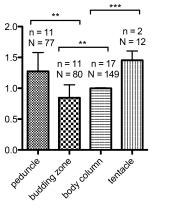


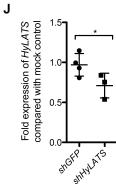

Fig. S1. (*A*) Alignments of predicted *Hydra* Yap, LATS and MST proteins with *Drosophila* and vertebrate homologues. Characteristic domains of proteins are underlined: WW – tryptophan containing domain that binds specific proline-rich sequences, STKc–LATS – catalytic domain of LATS family of serine/threonine kinases, STKc–MST1/2 catalytic domain of MST family of serine/threonine kinases, MST1-SARAH – apoptosis-mediating SARAH domain of MST1 proteins.


Dm – Drosophila melanogaster, Mm – Mus musculus, Hs – Homo sapience, Dr – Danio rerio. (B) Phylogenetic tree of Yap family proteins based on the complete protein sequence, Maximum Likelihood analysis (100 bootstrap replicates, bootstrap values are indicated for each node); predicted *Hydra* homologue of Yap is underlined; Hs - Homo sapiens, Mm - Mus musculus, Nv - Nematostella vectensis, Hy – Hydra vulgaris, Dm – Drosophila melanogaster; XM_012699973, XM_002162025, XM_012702268, XM_012698063, XM_012706768 - sequences that came at the top of BLAST search of *Hydra* nucleotide databases for Yap along with NP_001296578 (HyYap) and encode homologues of WW domain containing proteins; sequences were aligned with Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) and analyzed using Akaike Information Criterion (http://www.atgc-montpellier.fr). (*C*) Phylogenetic tree of LATS and MST families based on the complete protein sequence, Maximum Likelihood analysis (100 bootstrap replicates, bootstrap values are indicated for each node); predicted Hydra homologues LATS and MST proteins are underlined; XM_012702323, NM_001309671, XM_012701027, XM_002155754 sequences that came at the top of BLAST search of Hydra nucleotide databases for LATS along with MW650881 (HyLATS) and encode homologues of serine/threonine protein kinases; XM_002167407, XM_012700498, XM_002165989, XM_012704879, XM_002170224, XM_012702641 - sequences that came at the top of BLAST search of Hydra nucleotide databases for MST along with MW650879 (HyMST) and encode serine/threonine protein kinases (S6, MINK1, Pak, PKA); sequences were aligned with Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) and analyzed using Akaike Information Criterion (http://www.atgc-montpellier.fr). (D) Western blot analysis of total *Hydra* lysates with anti-HyYap serum preabsorbed with either GST or HyYap-GST. Lysates are made from either 3 animals (lanes 1) or 1 animal (lanes 2); asterisk indicates a 52kDa band corresponding to the predicted full length HyYap protein (46 kDa, accession number NP_001296578), the differences in the molecular weight may be due to phosphorylation. For the loading control the same blot was immunostained with actin antibodies. (E) Lateral view of *Hydra* ectoderm immunostained with anti-HyYap serum preabsorbed with HyDs-GST or with HyYap-GST antigens. Arrows point to the nuclei of ectodermal epithelial cells; schematic drawing of the lateral view of Hydra ecto- and endoderm is shown on the left.









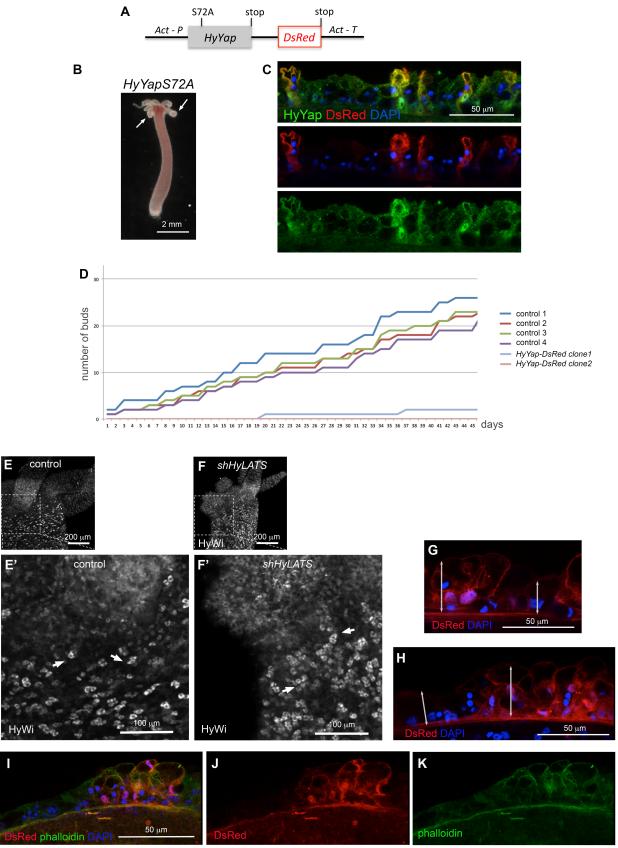


Fig. S2. (*A*) *GFP* hydras electroporated with *shGFP* 5 days and 4 weeks after electroporation. Arrows point to the areas of GFP knockdown. Different animals are shown in two panels. Reduced expression of GFP is still visible 4 weeks after electroporation. (*B*) Apical view of ectoderm of *GFP* hydras electroporated with *shGFP/shHyYapscr* hairpin and immunostained with anti-GFP and anti-HyYap antibodies. Arrows point to a non-specific staining of nematocyte capsules that is observed for a variety of antibodies when used *Hydra* immunostaining protocol. (*C*) qPCR analysis of *HyYap* in *GFP* hydras electroporated with either shGFP or shGFP/shHyYap. 4 animals for each condition; two-tailed unpaired ttest. (D, E)Western blot analysis of total lysate from GFP hydras electroporated with either *shGFP* alone or *shGFP/shHyYap*, 1 animal per lane; n – number of animals. For the loading control the same blot was immunostained with GAPDH antibodies; two-tailed unpaired t-test. (F, G) Apical view of Hydra ectoderm electroporated with *shGFP/shHyYap*, pulse labeled with EdU 6 days after electroporation and immunostained for GFP and EdU; (F) – GFP⁺ area, (G) – GFP⁻ area; arrows point to epithelial cells; images are taken in the body column areas. Only ectodermal epithelial cells express GFP in *GFP Hydra*, therefore not all cells are GFP⁺ in (*F*). (*H*) Graph shows ratio between numbers of EdU+ ectodermal epithelial cells in GFP⁺ and GFP⁻ areas in *GFP* hydras electroporated with either shGFP alone, shGFP/shHyYap or shGFP/shHyYap scr and pulse-labeled with EdU 6 – 7 days after electroporation; EdU+GFP+/EdU+GFP- ratio was calculated for each individual animal; the total of 60 – 200 cell was used in analysis of each animal; n – number of animals; two-tailed unpaired t-test. (1) Graph shows the intensities of HyYap immunostaining in nuclei of tentacles, body column, budding zone and a peduncle normalized for the projection area of nuclei and the intensity in the body column; n – number of animals, N – number of nuclei; two-tailed unpaired t-test. (/) qPCR analysis of *HyLATS* in *GFP* hydras electroporated with either *shGFP* or *shGFP/shHyLATS*. Each point represents an individual animal; one-tailed unpaired t-test.

Fig. S3. (*A*) Schematic drawing of the construct used to generate *HyYap-DsRed* transgenic *Hydra*. (*B*) Photos of live *HyYap-DsRed* hydras. Arrows point to the thick tentacles. (*C*) Lateral view of the ectoderm of *HyYap-DsRed Hydra* immunostained for HyYap and DsRed. (*D*) Budding rate of control and *HyYap-DsRed* hydras shown as the number of buds produced by a single polyp over time. (E - F') The stem/progenitor marker HyWi is not detected in either control (*E*, *E'*) or thick (*F*, *F'*) tentacles, arrows point to undifferentiated interstitial cells expressing HyWi. (*G*) Lateral view of the ectoderm of *HyYap-DsRed Hydra* immunostained for DsRed. Double-headed arrows indicate the apico-basal dimension of transgenic and wild type cells. (*H*) Lateral view of ectoderm of *HyYap-DsRed Hydra* immunostained for DsRed. Double-headed arrows indicate the apico-basal dimension of transgenic and wild type cells. (*I - K*) Lateral view of the ectoderm of *HyYap-DsRed Hydra* immunostained for DsRed Hydra immunostained for DsRed. Double-headed arrows indicated the apico-basal dimension of transgenic and wild type cells. (*I - K*) Lateral view of the ectoderm of *HyYap-DsRed Hydra* immunostained for DsRed and phalloidin.

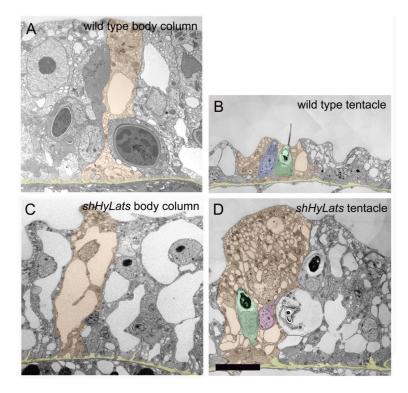
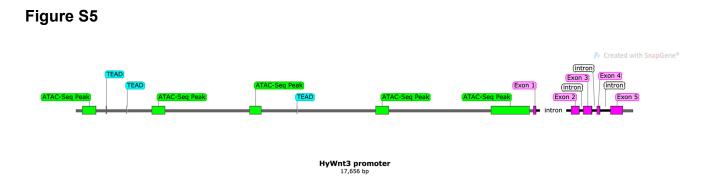



Fig. S4. Low magnification transmission electron microscopy images of wild type and *shHyLats* ectoderm. (*A*,*B*) Images of body column and tentacle tissue in wild type polyps; (C,D) Corresponding images of shHyLats polyps. One representative ectodermal epithelial cell is colored in orange. The mesoglea is colored in yellow. *shHyLATS* thick tentacles show a dramatic expansion of ectodermal epithelial cells in along their apical-basal axis. They generally exhibit a higher volume of intracellular vacuoles indicating that their osmoregulation is affected. (B) Wild type epithelial cells in the tentacles (called battery cells) incorporate differentiated nematocytes (stinging cells; green) mounted at their apical membrane and a sensory nerve cell (blue). (D) Tentacle epithelial cells in *shHyLATS* thick tentacles also exhibit incorporated and fully differentiated nematocytes, but these are usually not mounted at the apical membrane. In addition, these cells show interstitial precursor cells (violet), which are not occurring in the tentacles of wild type polyps. Furthermore, *shHyLATS* polyps exhibit major disruptions of ectodermal basal muscle fibers and mesoglea structure as discussed in detail using high magnification images in the main paper (see Fig. 4). Size bar: 20 µm.

Fig. S5. Map of the HyWnt3 promoter region indicating TEAD binding sites.