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Lipid absorption and overall 
intestinal lymphatic transport are 
impaired following partial small 
bowel resection in mice
Emily J. Onufer1, Rafael S. Czepielewski2, Yong‑Hyun Han2,3, Cathleen M. Courtney1, 
Stephanie Sutton1, Anne Sescleifer4, Gwendalyn J. Randolph2 & Brad W. Warner1*

Short bowel syndrome (SBS) is associated with diminished levels of serum fats caused by unknown 
mechanisms. We have shown that mesenteric lymphatics remodel to a more primitive state one week 
after small bowel resection (SBR); therefore, this study focuses on the effect of chronic lymphatic 
remodeling and magnitude of resection on intestinal lipid uptake and transport. C57BL6 and Prox1 
creER‑Rosa26LSLTdTomato (lymphatic reporter) mice underwent 50% or 75% proximal SBR or 
sham operations. Functional transport of lipids and fecal fat content was measured and lymphatic 
vasculature was compared via imaging. There was a significant reduction in functional transport of 
cholesterol and triglyceride after SBR with increasing loss of bowel, mirrored by a progressive increase 
in fecal fat content. We also describe significant morphological changes in the lymphatic vasculature 
in both the lamina propria and mesentery. Intestinal lymphatic drainage assay in vivo demonstrated 
a marked reduction of systemic absorption after resection. Intestinal lymphatic vessels significantly 
remodel in the setting of chronic SBS. This remodeling may account at least in part for impaired 
intestinal uptake and transport of fat via the compromised lymphatic architecture. We believe that 
these changes may contribute to the development of intestinal failure associated liver disease (IFALD), 
a major morbidity in patients with SBS.

Abbreviations
SBS  Short bowel syndrome
SBR  Small bowel resection
Non-op  Non-operative
IO  Intraoperative
POD  Post-operative day

Short bowel syndrome (SBS) is a morbid clinical condition resulting from the massive loss of small intestine 
due to surgical resection. While such resections may be clinically necessary in settings as diverse as necrotizing 
enterocolitis, trauma, or inflammatory bowel disease, these radical surgeries have their own potentially adverse 
consequences. The remaining bowel may be unable to absorb and/or digest substantive nutrients for maintenance 
and  growth1–3. This failure can arise despite the remnant bowel undergoing a compensatory adaptation response 
to increase function via expansion of intestinal surface area. Consequently, many SBS patients still require par-
enteral nutrition for additional  supplementation4.

One class of these important macronutrient in the context of SBS is dietary fat. While fatty acids and cho-
lesterol can be synthesized de novo, the uptake of these lipids occurs concomitant with essential fatty acids and 
lipophilic vitamins that are not synthesized and must be acquired from the diet. Lipid absorption relies on the 
generation of lipoproteins called chylomicrons that are assembled and secreted by intestinal epithelial cells in the 
proximal small bowel and subsequently transported into intestine-draining lymphatic  vessels5. Bile acids, derived 
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from hepatic cholesterol metabolism, reach the proximal gut through the bile duct, where they facilitate emulsifi-
cation of dietary fats that allows epithelial uptake and repackaging of ingested lipids into chylomicrons. In turn, 
re-absorption of biliary bile acids occurs in the distal small  intestine6. Diet-derived plant sterols, such as camp-
esterol, enter the body via chylomicrons and thereby serve as a surrogate marker for dietary lipid  absorption7–10. 
When lipid absorption is impaired, the ratio of plasma lathesterol (a surrogate for endogenous cholesterol syn-
thesis) to campesterol is frequently  increased11–13. Indeed, there is a significant reduction in campesterol in the 
plasma of SBS patients after withdrawal from parenteral  nutrition14, raising the possibility that these patients 
may fail to absorb lipid nutrients from the diet normally. While diminished intestinal epithelial cell populations 
is thought to account for malabsorption of lipids observed in patients with SBS, other possible contributing 
factors like failed transport of cargo through the lymphatic vasculature has not been assessed. Addressing these 
possibilities is critical to optimizing and improving clinical management of SBS patients.

We had previously reported extensive structural remodeling of mesenteric lymphatic vessels draining the 
intestine within a week after experimental small bowel resection (SBR) in  mice15. However, it remained unclear 
whether this remodeling persisted beyond an initial recovery from surgery and whether lymphatic transport 
was functionally impacted by the remodeling. Here, we reveal that lymphatic cargo, including but not limited to 
dietary lipids, fail to traffic from the gut to the host circulation or draining lymph nodes. These findings highlight 
the need to consider diminished lymphatic transport in therapeutic management of SBS.

Results
Malabsorption of cholesterol and triglycerides after SBR. At an early time point after resection, 
postoperative day 7, the distal intestine reprograms to a more proximal identity with an upregulation of genes 
associated with lipid handling and  metabolism16. In agreement with this reprogramming, we observed a pro-
gressive increase in expression of ApoB in the proximal intestine and MTTP in the remaining distal intesti-
nal segment, which regulate the assembly of chylomicrons, in the resected mice (Fig. 1A, B; ANOVA p < 0.05 
and p < 0.01, respectively). As we have previously shown in single-cell analysis at early time points after resec-
tion, there was an increase in the intestinal lipid-sensing gene FABP2 in the distal intestine (Fig. 1B; ANOVA 
p < 0.005)16. Simultaneously, in the distal intestine, there was a decrease in the long-chain fatty acid transporter 
gene, CD36, the cholesterol transporter gene, Abca1, and the bile acid binding gene, FABP6, expression in the 
distal intestine with increasing loss of bowel (Fig. 1B; ANOVA p < 0.005, p < 0.005, and p < 0.05, respectively). 
These data show that the intestine reprograms to promote lipid absorption and chylomicron assembly, leading 
us to test whether fat absorption normalized in concert with this reprogramming.

Despite the favorable programming of genes to orient toward fat absorption, with increasing loss of bowel, 
total serum cholesterol decreased with 75% resected mice having a 67% decrease compared to non-operated 
controls (Fig. 2A; ANOVA p < 0.0001). Serum campesterol, a marker of dietary cholesterol absorption, followed 
this same trend of decreased concentrations with increased extent of bowel resection (Fig. 2B; ANOVA p < 0.001). 
Lathosterol, an intermediate in cholesterol synthesis, also decreased in the serum as proportion of intestine 
resected increased (Fig. 2C; ANOVA p < 0.05). However, as the lathosterol to campesterol ratio increased with 
the magnitude of resection (Fig. 2D), the extent of malabsorption appears greater than the decrease in choles-
terol synthesis. To directly assess absorption of exogenous cholesterol, we performed a time-course of serum 
fluorescence following oral delivery of the fluorescently labeled cholesterol mimetic TOPFLUOR cholesterol. 
With increasing loss of bowel, there was a decreasing amount of TOPFLUOR cholesterol absorbed (Fig. 2E, F; 
ANOVA p < 0.0001).

These data pointed to failed absorption of fat, leading to seek other ways to confirm this observation. Failed 
absorption of dietary fat would be expected to result from increased fat content in feces. At one year after SBR, 
with increasing loss of bowel after resection, fecal fat concomitantly increased (Fig. 3A, B; ANOVA p < 0.0005), 
a feature that held true when the data were normalized to average caloric intake (Fig. 3C; ANOVA p < 0.05). 
There was no difference in fat to lean mass ratios across the groups (Fig. 3D). To assess chylomicron transport via 
lymphatics, we performed a functional assay of lipid absorption using C16-Bodipy-labeled olive oil (C16-Bodipy 
is a neutral lipid that binds to olive oil upon mixture). This showed a decrease in chylomicron absorption with a 
lipid load over time in the resected mice (Fig. 3E, F; ANOVA p < 0.0001). Serum free fatty acids at 12–15 weeks 
after resection also followed this same trend (Fig. 3G; ANOVA p = 0.0007).

Figure 1.  (A) mRNA expression levels of intestinal fatty acid transporters in the (B) proximal and (B) distal 
small intestine (SI) in non-op (n = 5), sham (n = 5), 50% SBR (n = 5), and 75% SBR (n = 4) mice. *p < 0.05, 
**p < 0.005.
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These data indicate that failed intestinal lipid absorption is present in mice long after surgical resection. Over-
all, we conclude that fat malabsorption exists as a chronic consequence of SBR. SBR promoted a 51% reduction 
in serum bile acids after an oral fat load, which may result in reduced secretion of bile acids in the intestinal 
lumen to promote lipid uptake (Fig. 4A, B; p < 0.05). However, as an additional mechanism, there may also be 
a role for lymphatic remodeling, which we next set out to explore. The data so far reveal reduced food intake 
of mice with 75% SBR and higher fecal fat. Yet, absorption defects were similar between mice with 50% versus 
75% SBR. Thus, to proceed with fewer confounding factors, we continued our studies focusing on the lymphatic 
vasculature in mice receiving 50% SBR.

Intestinal mucosal lymphatic capillaries change after chronic SBR. We have previously shown 
dilation of the upstream mucosal lymphatic capillaries in the remnant distal bowel seven days after  resection15, 
but it was unclear if over time the remodeled lymphatics returned to their baseline arrangement or remained 
remodeled. We thus extended the period that we assessed the lymphatic vasculature to 3–4  months follow-
ing surgical resection. In cross-sectional images of the small intestine (Fig. 5A), we observed the previously 
documented 40% increase in villus height by post-operative week 12–15 (Fig. 5B; p < 0.0001), serving as a posi-
tive control for adaptive remodeling. Lymphatic capillary luminal area in the lamina propria was significantly 
increased in the distal intestine by 66% and 70% in resected mice compared to sham and intraoperative controls, 

Figure 2.  Effects of SBR on cholesterol and its derivatives. (A) Serum cholesterol levels in non-op (n = 4), 
sham (n = 16), 50% SBR (n = 11), and 75% SBR (n = 5) mice. (B) Serum campesterol levels, (C) lathosterol 
levels, and (D) lathosterol:campesterol ratios in non-op (n = 5), sham (n = 5), 50% SBR (n = 6), 75% SBR (n = 4) 
mice. Exogenous absorption of TopFluor-cholesterol assessed via fluorescence over (E) time course and as (F) 
area under the curve in non-op (n = 5), sham (n = 6), 50% SBR (n = 6), and 75% SBR (n = 5) mice. *p < 0.05, 
**p < 0.005, ***p < 0.001, ****p < 0.0001.
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respectively; there was also a pattern of increasing lymphatic area in the proximal intestine (Fig. 5C; p < 0.05, 
p < 0.005). Image analysis for the number lymphatic capillary vessels by both the total length and the total lamina 
propria area showed no change in the proximal intestine but significantly decreased in the 50% resected mice 
compared to both intraoperative and sham controls in the distal intestine (Fig. 5D, E).

Mesenteric collecting lymphatic vessel changes after chronic SBR. In addition to the alterations 
observed in the distal small intestine lymphatic mucosal capillary network, we examined the effect of resec-

Figure 3.  (A) Fecal fat, (B) % fat unabsorbed, and (C) average daily caloric intake over two days at 
approximately one year after resection in non-op (n = 5), sham (n = 4), 50% SBR (n = 5), and 75% SBR (n = 3) 
mice. (D) Fat to lean mass ratio at approximately one year after resection in non-op, sham, 50% SBR, and 75% 
SBR mice (n = 5 for all groups). (E) Kinetic C16-Bodipy-labeled olive oil fluorescence and (F) area under the 
curve in non-op (n = 5), sham (n = 7), 50% SBR (n = 6), and 75% SBR (n = 5) mice. (G) Serum free fatty acid 
levels non-op (n = 3), sham (n = 14), 50% SBR (n = 9), and 75% SBR (n = 6) mice. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4.  (A) Kinetic bile acid absorption and (B) area under the curve following an oral lipid bolus in sham 
(n = 5) and 50% SBR (n = 5) mice. *p < 0.05.

Figure 5.  Chronic mucosal lymphatic capillary changes in SBR vs. sham mice. (A) Representative 
immunofluorescence images of proximal (left side) and distal (right side) sham and 50% SBR intestinal tissue 
sections stained for smooth muscle (alpha-smooth muscle actin, αSMA, green), lymphatics (LYVE-1, red), 
and nuclei (DAPI, blue) on post-operative week 15 and 12, respectively. Lyve1 + vessels were considered 
mucosal lymphatics when present in the lamina propria (defined as the space between the basal membrane and 
muscularis mucosa in αSMA, green). Scale bar 30 μm. (B) Villus height increased by an average of 40% in 50% 
resected mice (n = 9 for IO and Post-op), assuring adaptation. (C) Average area of mucosal lymphatic capillaries 
in proximal (sham n = 3, 50% SBR n = 3) and distal (intraoperative n = 6, sham n = 7, 50% SBR n = 4) intestine. 
The number of mucosal lymphatic capillaries (Lyve1 + vessels as in A) per (D) length and (E) total area of the 
lamina propria in proximal and distal intestinal tissue. *p < 0.05, **p < 0.005, ****p < 0.0001.
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tion on the mesenteric lymphatic vessels. At postoperative week 13, collecting lymphatic vessels present in the 
mesentery and emerging from the intestinal wall distal to the anastomosis still showed the substantially altered 
morphology following 50% SBR versus sham control mice (Fig. 6A) that we had earlier observed at day  715. The 
resected mice had an average 31% increase in mesenteric branch width compared to sham controls (Fig. 6B; 
p < 0.05). Furthermore, resected mice had an average 31% increase in lymphatic budding area into the mesen-
teric sheath compared to sham controls (Fig. 6C; p < 0.05).

Compromise of lymphatic flow after intestinal resection. The findings above collectively revealed 
that lymphatic remodeling persisted chronically after SBR. We thus wondered if lymph transport might be 
altered at these time points. To test the intestinal lymphatic drainage function in SBR, we performed a standard-
ized micro injection of a fluorescent marker into Peyer’s patches in vivo with timed measurements via serum 
fluorescence. This experiment tests that capacity of the lymphatic system to transport soluble cargo from the 
intestine in the lymph, of which chylomicrons are a major component. Gut that drains to the downstream 
mesenteric lymphatic network showed compromised flow in resected mice compared to controls (Fig. 7A, B; 
ANOVA p < 0.05). Accumulation of the tracer in the draining lymph node was 78% and 70% reduction in mice 
receiving surgical removal of 50% of the small bowel compared to nonoperative and sham controls, respectively 
(Fig. 7C; p < 0.005). These data reveal that marked impairment of lymphatic transport accompanies the altered 
morphology and may account at least in part for the failed absorption of lipid nutrients.

Discussion
Here, we show by analysis of fecal fat content and by tracing the fate of orally delivered fluorescent cholesterol 
analogue that dietary lipid absorption is impaired after experimental SBR many weeks beyond the point of 
surgical resection of the small bowel. Furthermore, we found a significant reduction in the blood cholesterol 
metabolite campesterol in our mice. This reduction resembles a similar trend in the plasma of SBS patients that 
have been studied after withdrawal from parenteral  nutrition14. Because campesterol arrives to plasma via absorp-
tion from the gut, the finding further supported the conclusion of impaired absorption or transport, although 
reduction in diet-derived campesterol might in part be due to partially reduced food intake in mice receiving 
75% SBR. All nutrient absorption is compromised in SBS patients due to the loss of absorptive surface area, lipid 
absorption is considered to be the most vulnerable, in part due to compromise of the enterohepatic circulation, 
decreased bile acid pool, and decreased pancreatic lipase  secretion17–19.

After establishing evidence for failed lipid absorption persisting after SBR in mice, the question became what 
mechanisms are causal. Failed transport of fats may indicate impaired duodenal and jejunal lymph transport, as 
lipid absorption is most prominent in these sites. Alternatively or additionally, impaired lipid transport might 

Figure 6.  Effect of SBR on mesenteric lymphatic vessels at post-operative week 13. (A) Whole mount 
fluorescence stereoscope image of collecting lymphatic vessels (Prox1-tdTomato +) (red) in sham and 50% SBR 
mice in regions in the ileum-draining mesentery distal to the anastomosis. Example of budding area is outlined 
by white box; mesenteric lymph node (mLN) is designated to the left and intestine to the right (white dashed 
line). Scale bar 1000 μm. (B) Average width of lymphatic branches and (C) average lymphatic budding area 
draining the bowel distal to the anastomosis in sham (n = 10 branches in 4 mice) and 50% SBR (n = 14 branches 
in 4 mice). *p < 0.05.
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point toward reduced capacity of the gut to take up or package fats. The bile acid pool was reduced, and indeed 
may contribute importantly to reduced lipid uptake. In addition, our findings suggest that the lymphatic vas-
culature was also impaired. Besides morphological changes in the lymphatic vasculature after SBR, fluorescent 
dextran tracer deposited in the submucosa-draining lymphatic network of the intestine confirmed significantly 
impaired lymph flow using an approach without confounding possible changes in absorption.

One week after resection, early lymphatic remodeling in the intestinal mucosal lymphatics is characterized 
by reduced mucosal lymphatic capillary vessel  area15. Interestingly, after a prolonged period of resection, we 
have shown that lymphatic capillary area actually increases compared to both intraoperative and sham controls 
in the distal intestine. We believe that is likely secondary obstruction of flow in the mesentery causing upstream 
dilation in the intestinal mucosa. We also witnessed this in the mesenteric collecting vessels as the branch width 
was also dilated after resection. Similar to prior observations seen at POD7, resected mice also had an increase 
in lymphatic budding area into its mesenteric sheath compared to controls. This budding is normally observed 
during early development in  mice20,21.

In addition to possibly direct effects on lipid absorption along the epithelium, could failed lymphatic trans-
port impact lipid absorption such that lipid remained luminal in the intestine and ultimately appeared in the 
feces? While the idea that altered lymphatic function might impact absorption across the epithelium may seem 
counterintuitive, there is strong precedent for it. Preceding studies revealed that loss of lymphatic integrity due 
to altered signaling in VEGFR3 within lymphatic lacteals leads to increased fecal fat  load22,23. Furthermore, 
conditions that lead to the closure of intercellular junctions in the lacteals also prevents dietary fat uptake and 
diverts it to the  feces24.

The causal root of lymphatic changes after small bowel resection is likely multifactorial, with chronic distur-
bance of flow downstream of the surgery likely having a major effect on lymphatic phenotype and likely resulting 
in prolonged inflammation. However, the mechanisms of impaired lymph transport remain unknown. After 
massive intestinal resection, there is a critical, programmed compensatory response in the epithelium resulting 
in both adaptation (with increased enterocyte proliferation) and  apoptosis25. Indeed, an emerging concept is 

Figure 7.  (A) Kinetic measurement of lymphatic flow from Peyer’s patch injection to systemic blood by 
fluorescence, presented in fold change from pre-injection baseline, in non-op (n = 8), sham (n = 6), and 50% SBR 
(n = 4) mice, with resultant (B) area under the curve. (C) Measurement of fluorescence in the mesenteric lymph 
node (mLN) at one hour in non-op (n = 3), sham (n = 4), and 50% SBR (n = 3) mice after Peyer’s patch injection. 
**p < 0.005.
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that intestinal epithelial cells and the underlying lymphatic vessels coordinately  communicate26,27. While it is 
demonstrated that the status of the lymphatic vasculature affects the integrity of intestinal epithelial cells, whether 
a major change in the status of the epithelium affects the lymphatic vasculature has not been studied. Perhaps 
future manipulations to improve the status of epithelial cells may improve the lymphatic vasculature or vice versa.

Overall, we have shown that the early lymphatic remodeling structural changes occur chronically after SBR 
and contribute to functionally compromised lipid absorption. Further studies are necessary to determine if 
other lymphatic cargo, such as vitamins and immune cells, are also affected after resection. Perturbations in 
lymphatic function after SBR likely also contribute to greater delivery of luminal endotoxin into the portal vein, 
thereby contributing to liver  injury28. Indeed, we have found severe liver injury and fibrosis in resected mice at 
15 weeks following SBR when placed on a higher fat  diet29. Liver injury and fibrosis are the most lethal clinical 
consequences of  SBS30. Manipulations of enteral fat may therefore be a critical therapeutic strategy to prevent 
this significant morbidity.

These data indicate that intestinal lymphatic vessels significantly remodel in the setting of chronic short 
bowel syndrome. This remodeling results in impaired intestinal transport of fat via the compromised lymphatic 
architecture, contributing to decreased fatty acid uptake. We believe that these changes may contribute to the 
development of IFALD, a major morbidity in patients with SBS.

Materials and methods
Animals. As described previously, C57BL/6 J 9–12 week-old male mice were obtained from Jackson Labo-
ratories (Bar Harbor, ME)15. Prox1-Cre-ERT2 (Jax # 022075; originally generated by Srinivasan and  Oliver31) 
crossed with Rosa26-tdTomatofl/fl reporter (Jax # 007905) 15–20 week male and female mice were orally treated 
with 20 mg/ml tamoxifen (Sigma, St. Louis, MO) dissolved in corn oil (50 µg/per gram body weight) every 
other day over two weeks, inducing Cre recombinase activity and downstream tdTomato expression. Mice were 
housed in a temperature controlled, specific pathogen-free unit on a 12-h light–dark cycle. All mice were fed 
a liquid diet (PMI Micro-Stabilized Rodent Liquid Diet LD 101; TestDiet, St. Louis, MO) and water ad  libi-
tum. This study was approved by the Washington University in St. Louis Animal Studies Committee (Protocol 
20170252 and 20170154) in accordance with the National Institute of Health laboratory animal care and use 
guidelines. This study is reported in accordance to the ARRIVE  guidelines32.

Operations and harvest. Mice underwent either a sham control operation, 50% proximal SBR, or a 75% 
proximal SBR, as previously  described33,34. There was also a cohort of mice that did not undergo an operation 
(non-op), but were treated identically. Mice were placed on liquid diet for 12–24 h preoperatively to minimize 
the risk of anastomotic obstruction. In brief, for 50% and 75% SBRs, bowel was first exteriorized via a midline 
laparotomy and then transected 1 to 2 cm distal to the ligament of Treitz and 12 cm or 6 cm proximal to the 
ileocecal junction, respectively. An end-to-end anastomosis was handsewn with interrupted 9–0 nylon sutures. 
Sham operations involved a transection with re-anastomosis 12 cm distal to the ileocecal junction. Intraopera-
tive (IO) resected distal bowel was fixed in 10% formalin and embedded in paraffin for immunohistochemistry 
and immunofluorescence. Postoperatively, mice were kept in an incubator and fasted for 12–24 h before resum-
ing the liquid diet.

RNA extraction and quantitative reverse transcription‑polymerase chain reaction. As 
described previously, total RNA from proximal and distal intestinal tissue from C57BL/6  J mice harvested 
approximately 1.5 years postoperatively was isolated using RNeasy Mini kits per the manufacturer’s protocol 
(Qiagen, Germantown, MD). Proximal intestine was approximately 6 cm harvested from 2 cm past the gas-
troduodenal junction and distal intestine was the 6 cm leading up to the ileocecal junction, so as to consistently 
take the same bowel from all operative types (non-operative, sham, and SBRs)29. qRT-PCR was conducted using 
the ABI StepOnePlus Real-Time PCR system with the ApoB primer (forward AAA CAT GCA GAG CTA CTT 
TGGAG, reverse TTT AGG ATC ACT TCC TGG TCAAA), FABP2 primer (forward GGT ATG GGA CAG GCC 
TTG CT, reverse GGG CAT TGT GGT ATA GAT GAC ATC ), MTTP primer (forward ATG ATC CTC TTG GCA 
GTG CTT, reverse TGA GAG GCC AGT TGT GTG AC), FABP6 primer (forward AGA AGT TCA AGG CTA CCG 
TGA AGA , reverse CCT CCG AAG TCT GGT GAT AGTTG), CD36 primer (forward GAG AAC TGT TAT GGG 
GCT AT, reverse TTC AAC TGG AGA GGC AAA GG), and Abca1 primer (forward GAA GAG AGC ATG TGG AGT 
TCTT, reverse TAC TTT ACC AGG CCC AGT TTG; all are from Applied Biosystems, Waltham, MA). The relative 
mRNA levels were estimated from the Eq. (2)–ΔCt (ΔCt = Ct of target gene minus Ct of 18S rRNA). Fold changes 
in the mRNA level of genes were calculated with a control group level set at 1. Only transporters with significant 
fold changes were reported.

Serum free fatty acid, cholesterol, lathesterol, and campesterol levels. Serum free fatty acid, 
and cholesterol levels were measured using a commercially available kit (Wako Chemicals, Richmond, VA) on 
C57BL/6 J at 12–15 weeks after SBR. Serum lathesterol and campesterol levels were measured on C57BL/6 J mice 
12–13 weeks after SBR. The lathosterol and campesterol esters in mouse plasma were hydrolyzed with potassium 
hydroxide, and total lathosterol and campesterol were extracted with liquid–liquid extraction in the presence 
of d7-lathosterol and d6-campesterol as internal standards for lathosterol and campesterol, respectively. The 
plasma samples and 8-point calibration samples were derivatized with nicotinic acid to improve the mass spec-
trometric sensitivity. The lathosterol and campesterol were separated by reversed phase liquid chromatography 
and detected with positive multiple-reaction monitoring on an Applied Biosystems Sciex 4000QTRAP tandem 
mass spectrometer. The peak integration and construction of standard curve were performed with Analyst 1.6.3. 
The calibration curve was constructed by plotting the peak area ratios of analyte to internal standard versus the 
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corresponding concentrations using 1/x2 weighted least square regression. Serum free fatty acid, and cholesterol 
levels were performed on mice with confirmed adaptation; adaptation was not assessed in mice tested for serum 
campesterol and lathosterol levels.

Functional cholesterol transport. Intestinal uptake of cholesterol was measured using TopFluor-cho-
lesterol (Avanti Polar Lipids, Alabaster, AL) in C57BL/6 J mice at post-operative week  3135,36. Mice were fasted 
for six hours during the mouse dark cycle and then gavaged with TopFluor (8 μg/gm body weight) with methyl-
β-cyclodextrin (1 mg/gm body weight; Sigma-Aldrich, St. Louis, MO). Tail vein serum was measured at time 
points 0, 1, 2, 4, and 6 h after gavage. Methyl-β-cyclodextrin is given with TopFluor in order to deplete already 
present plasma membrane  cholesterol37,38. Serum fluorescence was determined using Cytation 5 multiplate 
reader (Biotek, Winooski, VT). Mice were excluded if fluorescence curve was not achieved secondary to a tech-
nical gavage error resulting in post-gavage emesis and incomplete distribution of gavage bolus.

Food consumption and fecal fat content. Food consumption and fecal fat content were analyzed on 
mice aged approximately one year after operation. After acclimation to individual metabolic cages, food intake 
was measured and feces were collected for two days. As previously described, fecal fat content was determined 
 gravimetrically39. In brief, dried feces (0.2gm) was solubilized overnight in 1.6 mL water and extracted in 5 mL 
chloroform:methanol (2:1). The organic phase was transferred into a pre-weighed vial and the homogenate was 
re-extracted again with 2 mL of cholorform:methanol (2:1). The organic phase was transferred again and, in 
total, was dried under nitrogen and reweighed to determine the lipid mass. Percent fat absorption was deter-
mined by normalizing the lipid mass to food consumption.

Measurement of body composition. Accretion of body fat mass and lean mass were measured approxi-
mately one year after operation using a quantitative nuclear magnetic resonance instrument (Echo Medical 
Systems, Houston, TX)40.

Functional chylomicron transport. Triglyceride transport was measured in C57BL/6 J mice at approxi-
mately one-year postoperatively. Mice were fasted for six hours overnight and then gavaged with C16-Bodipy 
labeled olive oil (10 μg/gm body weight; Invitrogen, Carlsbad, CA). Tail vein serum was measured at time points 
0, 1, 2, 4, and 6 h after gavage. Serum fluorescence was determined using Cytation 5 multiplate reader (Biotek, 
Winooski, VT). Mice were excluded if fluorescence curve was not achieved secondary to a technical gavage error 
resulting in post-gavage emesis and incomplete distribution of gavage bolus.

Bile acid absorption. C57BL/6 J mice approximately 1 year after operation were fasted for six hours over-
night and then gavaged with 20% intralipid (7.5μL/gm body weight; Sigma-Aldrich; St. Louis, MO). Tail vein 
serum was measured at time points 0, 30, 60, and 120 min after gavage. Serum bile acids were measured using a 
commercially available kit (CrystalChem; Elk Grove Village, IL). Mice were excluded if curve was not achieved 
secondary to a technical gavage error resulting in post-gavage emesis and incomplete distribution of gavage 
bolus.

Immunohistochemistry and immunofluorescence. As described previously, intestinal tissue from 
50% SBR and sham control mice 1  cm distal to their anastomosis was harvested 12  weeks post-operatively, 
fixed in 10% formalin and embedded in paraffin similar to the IO samples taken from the distal bowel resected 
in the 50% SBR mice at  operation15. Additionally, proximal gut was obtained from both sham and 50% SBR 
mice 15 weeks after operation at approximately 5 cm from the gastro-duodenal junction. Longitudinal, 5-μm 
thick sections were created and hematoxylin and eosin stained for villus height measurement to asses for struc-
tural adaptation (NIS elements AR 4; Nikon, Melville, NY), which was set at > 15% increase from IO  samples41. 
For immunofluorescence, slides were deparaffinized and antigen retrieval (Diva Decloaking solution, Biocare 
Medical, Concord, CA) was performed under pressure for 10 min. Slides were blocked in donkey serum (5%, 
Sigma-Aldrich), bovine serum albumin (1%, Sigma-Aldrich), and Triton-X100 (0.03%, Pharmacia Biotech). 
Slides were incubated overnight at 4 °C with primary antibodies diluted in 0.2% bovine serum albumin and then 
secondary antibodies were added for 1 h. Antibodies used include rabbit anti-mouse Lymphatic vessel endothe-
lial hyaluronic acid receptor (LYVE-1; 1:600, Abcam, ab14917), Cy3-conjugated donkey anti-rabbit IgG (1:400, 
Jackson ImmunoResearch, 711-165-152) and FITC-conjugated mouse anti-mouse alpha-smooth muscle actin 
IgG (1:500, Sigma, F3777, Clone #1A4). A confocal microscope (Leica SPE and SP8) was used to capture images 
and blinded analysis was performed using Imaris (Bitplane, Switzerland) and FIJI (ImageJ) software (National 
Institute of Health, Bethesda, MD) of at least 6 mm of intestine for each sample. LYVE-1+, which is a marker of 
lymphatic endothelial cells, vessel structures present in the lamina propria were defined as mucosal lymphatics 
and slides were excluded if staining was of poor  quality42.

Whole mount mesenteric imaging. Mesentery from Prox1-Cre-ERT2xRosa26LSLtdTomato mice who 
were both post-operative week 13 from 50% SBR and sham control operations and also postoperative 1.5 years 
from 75% SBR and sham control operations was pinned and fixed in 4% paraformaldehyde + 30% sucrose for 
at least 12 h and then transferred into phosphate-buffered saline, as described  previously15. The expression of 
Prospero homeobox protein 1 (PROX1), which governs lymphangiogenesis, is restricted to lymphatic endothe-
lial  cells43. Fluorescent imaging of the lymphatic branches distal to the anastomosis was then performed (Leica 
M205FA). Blinded image analysis, including average branch width and area of budding structures was per-
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formed using Imaris (Bitplane, Switzerland) and FIJI (ImageJ) software (National Institute of Health, USA) on 
the postoperative week 13 50% SBR and sham samples.

Functional lymphatic flow. In mice 12–14 weeks after SBR, anesthetized mice were placed in a custom-
built stage to perform intravital recordings using our fluorescence stereoscope, as described  previously44. Physi-
ological conditions were maintained by a temperature-controlled metal stage with 3 temperature sensors (Dual 
Channel Temperature Controller, Warner Instruments, TC-344C), controlling the temperature independently at 
3 sites at ~ 36–37 °C. Intestine and mesentery were placed over a  SYLGARD® 184 (Dow Corning, Nidland, MI) 
stage and securely attached with fine pins (Fine Science Tools, 26002-20). A midline incision of the peritoneum 
was used to expose the cecum and terminal ileum, along with the mesentery and mesLNs. Mesentery and intes-
tine were kept moist and under controlled temperature with buffer using a peristaltic pump and In-Line Solution 
Heater (Harvard Apparatus, 64-0102). To address the intestinal lymphatic draining function, we injected ~ 1.5 
µL of 2000  kDa FITC-Dextran (Sigma-Aldrich, FD2000S, or Invitrogen, D7137) into a Peyer’s patch in the 
ileum, which was the closest to the anastomosis able to be reached in sham and resected mice and the third from 
the cecum in non-operative mice. After, serum fluorescence, obtained via tail vein, was determined using Cyta-
tion 5 multiplate reader (Biotek, Winooski, VT) at 0, 5, 10, 15, 30, 45, and 60 min after the Peyer’s patch injection 
and presented as fold change from baseline.

Statistical analysis. Statistical analysis was performed GraphPad-Prism 6 software (La Jolla, CA). Levels 
of triglyceride, free fatty acid, cholesterol, campesterol, lathosterol, TopFluor cholesterol, C16-Bodipy, fecal fat, 
mRNA expression levels, and bile acid levels, were analyzed using a one-way ANOVA with Tukey’s multiple 
comparisons between groups. Intestinal adaptation (increases in villus height) and lymphatic network charac-
teristics were analyzed using the unpaired Student’s t test. A p value of < 0.05 was considered significant. Data are 
expressed as the mean + / − SEM with significance of multiple comparison analyses displayed.
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