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Deep learning describes a class of machine learning

algorithms that are capable of combining raw inputs into

layers of intermediate features. These algorithms have

recently shown impressive results across avariety of domains.

Biology and medicine are data-rich disciplines, but the

data are complex and often ill-understood. Hence, deep learn-

ing techniques may be particularly well suited to solve

problems of these fields. We examine applications of deep

learning to a variety of biomedical problems—patient classi-

fication, fundamental biological processes and treatment of

patients—and discuss whether deep learning will be able to

transform these tasks or if the biomedical sphere poses

unique challenges. Following from an extensive literature

review, we find that deep learning has yet to revolutionize

biomedicine or definitively resolve any of the most pressing

challenges in the field, but promising advances have been

made on the prior state of the art. Even though improvements

over previous baselines have been modest in general, the

recent progress indicates that deep learning methods will

provide valuable means for speeding up or aiding human

investigation. Though progress has been made linking a

specific neural network’s prediction to input features, under-

standing how users should interpret these models to make

testable hypotheses about the system under study remains

an open challenge. Furthermore, the limited amount

of labelled data for training presents problems in some

domains, as do legal and privacy constraints on work with

sensitive health records. Nonetheless, we foresee deep learn-

ing enabling changes at both bench and bedside with the

potential to transform several areas of biology and medicine.

1. Introduction to deep learning
Biology and medicine are rapidly becoming data-intensive.

A recent comparison of genomics with social media, online

videos and other data-intensive disciplines suggests that geno-

mics alone will equal or surpass other fields in data generation

and analysis within the next decade [1]. The volume and com-

plexity of these data present new opportunities, but also pose

new challenges. Automated algorithms that extract meaningful

patterns could lead to actionable knowledge and change how

we develop treatments, categorize patients or study diseases,

all within privacy-critical environments.

The term deep learning has come to refer to a collection of

new techniques that, together, have demonstrated break-

through gains over existing best-in-class machine learning

algorithms across several fields. For example, over the past 5

years, these methods have revolutionized image classification

and speech recognition due to their flexibility and high accuracy

[2]. More recently, deep learning algorithms have shown

promise in fields as diverse as high-energy physics [3], compu-

tational chemistry [4], dermatology [5] and translation among

written languages [6]. Across fields, ‘off-the-shelf’ implemen-

tations of these algorithms have produced comparable or

higher accuracy than previous best-in-class methods that

required years of extensive customization, and specialized

implementations are now being used at industrial scales.

Deep learning approaches grew from research on artificial

neurons, which were first proposed in 1943 [7] as a model for

how the neurons in a biological brain process information.

The history of artificial neural networks—referred to as

‘neural networks’ throughout this article—is interesting in its

own right [8]. In neural networks, inputs are fed into the

input layer, which feeds into one or more hidden layers,

which eventually link to an output layer. A layer consists of a

set of nodes, sometimes called ‘features’ or ‘units’, which are

connected via edges to the immediately earlier and the

immediately deeper layers. In some special neural network

architectures, nodes can connect to themselves with a delay.

The nodes of the input layer generally consist of the variables

being measured in the dataset of interest—for example, each

node could represent the intensity value of a specific pixel in

an image or the expression level of a gene in a specific tran-

scriptomic experiment. The neural networks used for deep

learning have multiple hidden layers. Each layer essentially

performs feature construction for the layers before it. The train-

ing process used often allows layers deeper in the network to

contribute to the refinement of earlier layers. For this reason,

these algorithms can automatically engineer features that are

suitable for many tasks and customize those features for one

or more specific tasks.

Deep learning does many of the same things as more fam-

iliar machine learning approaches. In particular, deep learning

approaches can be used both in supervised applications—where

the goal is to accurately predict one or more labels or outcomes

associated with each data point—in the place of regression

approaches, as well as in unsupervised, or ‘exploratory’ appli-

cations—where the goal is to summarize, explain or identify

interesting patterns in a dataset—as a form of clustering.

Deep learning methods may, in fact, combine both of these

steps. When sufficient data are available and labelled, these

methods construct features tuned to a specific problem and

combine those features into a predictor. In fact, if the dataset

is ‘labelled’ with binary classes, a simple neural network

with no hidden layers and no cycles between units is equival-

ent to logistic regression if the output layer is a sigmoid

(logistic) function of the input layer. Similarly, for continuous

outcomes, linear regression can be seen as a single-layer

neural network. Thus, in some ways, supervised deep learning

approaches can be seen as an extension of regression models

that allow for greater flexibility and are especially well suited

for modelling nonlinear relationships among the input fea-

tures. Recently, hardware improvements and very large

training datasets have allowed these deep learning techniques

to surpass other machine learning algorithms for many pro-

blems. In a famous and early example, scientists from Google

demonstrated that a neural network ‘discovered’ that cats,

faces and pedestrians were important components of online

videos [9] without being told to look for them. What if, more
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generally, deep learning takes advantage of the growth of data

in biomedicine to tackle challenges in this field? Could these

algorithms identify the ‘cats’ hidden in our data—the patterns

unknown to the researcher—and suggest ways to act on them?

In this review, we examine deep learning’s application to biome-

dical science and discuss the unique challenges that biomedical

data pose for deep learning methods.

Several important advances make the current surge of

work done in this area possible. Easy-to-use software packages

have brought the techniques of the field out of the specialist’s

toolkit to a broad community of computational scientists.

Additionally, new techniques for fast training have enabled

their application to larger datasets [10]. Dropout of nodes,

edges and layers makes networks more robust, even when

the number of parameters is very large. Finally, the larger data-

sets now available are also sufficient for fitting the many

parameters that exist for deep neural networks. The conver-

gence of these factors currently makes deep learning

extremely adaptable and capable of addressing the nuanced

differences of each domain to which it is applied.

This review discusses recent work in the biomedical domain,

and most successful applications select neural network architec-

tures that are well suited to the problem at hand. We sketch out a

few simple example architectures in figure 1. If data have a natu-

ral adjacency structure, a convolutional neural network (CNN)

can take advantage of that structure by emphasizing local

relationships, especially when convolutional layers are used in

early layers of the neural network. Other neural network archi-

tectures such as autoencoders require no labels and are now

regularly used for unsupervised tasks. In this review, we do

not exhaustively discuss the different types of deep neural net-

work architectures; an overview of the principal terms used

herein is given in table 1. Table 1 also provides select example

applications, though in practice each neural network architec-

ture has been broadly applied across multiple types of

biomedical data. A recent book from Goodfellow et al. [11]

covers neural network architectures in detail, and LeCun et al.
[2] provide a more general introduction.

While deep learning shows increased flexibility over other

machine learning approaches, as seen in the remainder of this

review, it requires large training sets in order to fit the hidden

layers, as well as accurate labels for the supervised learning

applications. For these reasons, deep learning has recently

become popular in some areas of biology and medicine,

while having lower adoption in other areas. At the same

time, this highlights the potentially even larger role that it

may play in future research, given the increases in data in

all biomedical fields. It is also important to see it as a

branch of machine learning and acknowledge that it has the

same limitations as other approaches in that field. In particu-

lar, the results are still dependent on the underlying study

design and the usual caveats of correlation versus causation

still apply—a more precise answer is only better than a less

precise one if it answers the correct question.

1.1. Will deep learning transform the study of
human disease?

With this review, we ask the question: what is needed for deep

learning to transform how we categorize, study and treat

individuals to maintain or restore health? We choose a high

bar for ‘transform’. Grove [12], the former CEO of Intel,

coined the term Strategic Inflection Point to refer to a change

in technologies or environment that requires a business to be

fundamentally reshaped. Here, we seek to identify whether

deep learning is an innovation that can induce a Strategic

Inflection Point in the practice of biology or medicine.

There are already a number of reviews focused on appli-

cations of deep learning in biology [13–17], healthcare

[18–20] and drug discovery [4,21–23]. Under our guiding

question, we sought to highlight cases where deep learning

enabled researchers to solve challenges that were previously

considered infeasible or makes difficult, tedious analyses rou-

tine. We also identified approaches that researchers are using

to sidestep challenges posed by biomedical data. We find

that domain-specific considerations have greatly influenced

how to best harness the power and flexibility of deep learning.

Model interpretability is often critical. Understanding the

patterns in data may be just as important as fitting the data.

In addition, there are important and pressing questions about

how to build networks that efficiently represent the under-

lying structure and logic of the data. Domain experts can

play important roles in designing networks to represent data

appropriately, encoding the most salient prior knowledge

and assessing success or failure. There is also great potential

to create deep learning systems that augment biologists and

clinicians by prioritizing experiments or streamlining tasks

that do not require expert judgement. We have divided the

large range of topics into three broad classes: disease and

patient categorization, fundamental biological study and

input node

edges connecting nodes in different layers or
creating cycles within layers, correspond to
inputs to mathematical functions

FFNN MLP CNN autoencoder RNN

hidden node

output node

output node
(match input)

Figure 1. Neural networks come in many different forms. Left: A key for the various types of nodes used in neural networks. Simple FFNN: a feed-forward neural
network in which inputs are connected via some function to an output node and the model is trained to produce some output for a set of inputs. MLP: the multi-
layer perceptron is a feed-forward neural network in which there is at least one hidden layer between the input and output nodes. CNN: the convolutional neural
network is a feed-forward neural network in which the inputs are grouped spatially into hidden nodes. In the case of this example, each input node is only
connected to hidden nodes alongside their neighbouring input node. Autoencoder: a type of MLP in which the neural network is trained to produce an
output that matches the input to the network. RNN: a deep recurrent neural network is used to allow the neural network to retain memory over time or sequential
inputs. This figure was inspired by the Neural Network Zoo by Fjodor Van Veen.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170387

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 S

ep
te

m
be

r 
20

22
 



Ta
bl

e
1.

Gl
os

sa
ry

.

te
rm

de
fin

iti
on

ex
am

pl
e

ap
pl

ica
tio

ns

su
pe

rv
ise

d
lea

rn
in

g
m

ac
hi

ne
lea

rn
in

g
ap

pr
oa

ch
es

w
ith

go
al

of
pr

ed
ict

ion
of

lab
els

or
ou

tco
m

es

un
su

pe
rv

ise
d

lea
rn

in
g

m
ac

hi
ne

lea
rn

in
g

ap
pr

oa
ch

es
w

ith
go

al
of

da
ta

su
m

m
ar

iza
tio

n
or

pa
tte

rn
id

en
tifi

ca
tio

n

ne
ur

al
ne

tw
or

k
(N

N)
m

ac
hi

ne
lea

rn
in

g
ap

pr
oa

ch
in

sp
ire

d
by

bi
ol

og
ica

ln
eu

ro
ns

w
he

re
in

pu
ts

ar
e

fe
d

in
to

on
e

or
m

or
e

lay
er

s,
pr

od
uc

in
g

an
ou

tp
ut

lay
er

de
ep

ne
ur

al
ne

tw
or

k
NN

w
ith

m
ul

tip
le

hi
dd

en
lay

er
s.

Tra
in

in
g

ha
pp

en
s

ov
er

th
e

ne
tw

or
k,

an
d

co
ns

eq
ue

nt
ly

su
ch

ar
ch

ite
ctu

re
s

all
ow

fo
rf

ea
tu

re
co

ns
tru

cti
on

to
oc

cu
ra

lo
ng

sid
e

op
tim

iza
tio

n
of

th
e

ov
er

all
tra

in
in

g

ob
jec

tiv
e

fe
ed

-fo
rw

ar
d

ne
ur

al

ne
tw

or
k

(F
FN

N)

NN
th

at
do

es
no

th
av

e
cy

cle
s

be
tw

ee
n

no
de

s
in

th
e

sa
m

e
lay

er
m

os
to

ft
he

ex
am

pl
es

be
low

ar
e

sp
ec

ial
ca

se
s

of
FF

NN
s,

ex
ce

pt
re

cu
rre

nt
ne

ur
al

ne
tw

or
ks

M
LP

ty
pe

of
FF

NN
w

ith
at

lea
st

on
e

hi
dd

en
lay

er
w

he
re

ea
ch

de
ep

er
lay

er
is

a
no

nl
in

ea
rf

un
cti

on
of

ea
ch

ea
rli

er
lay

er

M
LP

s
do

no
ti

m
po

se
str

uc
tu

re
an

d
ar

e
fre

qu
en

tly
us

ed
w

he
n

th
er

e
is

no
na

tu
ra

lo
rd

er
in

g
of

th
e

in
pu

ts
(e

.g
.a

s
w

ith
ge

ne
ex

pr
es

sio
n

m
ea

su
re

m
en

ts)

CN
N

an
NN

w
ith

lay
er

s
in

w
hi

ch
co

nn
ec

tiv
ity

pr
es

er
ve

s
lo

ca
ls

tru
ctu

re
.I

ft
he

da
ta

m
ee

tt
he

un
de

rly
in

g

as
su

m
pt

ion
s

pe
rfo

rm
an

ce
is

of
te

n
go

od
,a

nd
su

ch
ne

tw
or

ks
ca

n
re

qu
ire

few
er

ex
am

pl
es

to
tra

in

ef
fe

cti
ve

ly
be

ca
us

e
th

ey
ha

ve
few

er
pa

ra
m

et
er

s
an

d
als

o
pr

ov
id

e
im

pr
ov

ed
ef

fic
ien

cy

CN
Ns

ar
e

us
ed

fo
rs

eq
ue

nc
e

da
ta

—
su

ch
as

DN
A

se
qu

en
ce

s—
or

gr
id

da
ta

—
su

ch
as

m
ed

ica
la

nd
m

icr
os

co
py

im
ag

es

re
cu

rre
nt

ne
ur

al

ne
tw

or
k

(R
NN

)

a
ne

ur
al

ne
tw

or
k

w
ith

cy
cle

s
be

tw
ee

n
no

de
s

w
ith

in
a

hi
dd

en
lay

er
.

th
e

RN
N

ar
ch

ite
ctu

re
is

us
ed

fo
rs

eq
ue

nt
ial

da
ta

—
su

ch
as

cli
ni

ca
lt

im
e

se
rie

s
an

d
te

xt
or

ge
no

m
e

se
qu

en
ce

s

LS
TM

ne
ur

al
ne

tw
or

k
th

is
sp

ec
ial

ty
pe

of
RN

N
ha

s
fe

at
ur

es
th

at
en

ab
le

m
od

els
to

ca
pt

ur
e

lo
ng

er
-te

rm
de

pe
nd

en
cie

s
LS

TM
s

ar
e

ga
in

in
g

a
su

bs
ta

nt
ial

fo
ot

ho
ld

in
th

e
an

aly
sis

of
na

tu
ra

ll
an

gu
ag

e,
an

d
m

ay

be
co

m
e

m
or

e
w

id
ely

ap
pl

ied
to

bi
ol

og
ica

ls
eq

ue
nc

e
da

ta

au
to

en
co

de
r(

AE
)

an
NN

w
he

re
th

e
tra

in
in

g
ob

jec
tiv

e
is

to
m

in
im

ize
th

e
er

ro
rb

et
we

en
th

e
ou

tp
ut

lay
er

an
d

th
e

in
pu

t

lay
er

.S
uc

h
ne

ur
al

ne
tw

or
ks

ar
e

un
su

pe
rv

ise
d

an
d

ar
e

of
te

n
us

ed
fo

rd
im

en
sio

na
lit

y
re

du
cti

on

au
to

en
co

de
rs

ha
ve

be
en

us
ed

fo
ru

ns
up

er
vis

ed
an

aly
sis

of
ge

ne
ex

pr
es

sio
n

da
ta

as
we

ll
as

da
ta

ex
tra

cte
d

fro
m

th
e

EH
R

va
ria

tio
na

l

au
to

en
co

de
r(

VA
E)

th
is

sp
ec

ial
ty

pe
of

ge
ne

rat
ive

AE
lea

rn
s

a
pr

ob
ab

ilis
tic

lat
en

tv
ar

iab
le

m
od

el
VA

Es
ha

ve
be

en
sh

ow
n

to
of

te
n

pr
od

uc
e

m
ea

ni
ng

fu
lr

ed
uc

ed
re

pr
es

en
ta

tio
ns

in
th

e
im

ag
in

g

do
m

ain
,a

nd
so

m
e

ea
rly

pu
bl

ica
tio

ns
ha

ve
us

ed
VA

Es
to

an
aly

se
ge

ne
ex

pr
es

sio
n

da
ta

de
no

isi
ng

au
to

en
co

de
r

(D
A)

th
is

sp
ec

ial
ty

pe
of

AE
in

clu
de

s
a

ste
p

w
he

re
no

ise
is

ad
de

d
to

th
e

in
pu

td
ur

in
g

th
e

tra
in

in
g

pr
oc

es
s.

Th
e

de
no

isi
ng

ste
p

ac
ts

as
sm

oo
th

in
g

an
d

m
ay

all
ow

fo
re

ffe
cti

ve
us

e
on

in
pu

td
at

a
th

at

is
in

he
re

nt
ly

no
isy

lik
e

AE
s,

DA
s

ha
ve

be
en

us
ed

fo
ru

ns
up

er
vis

ed
an

aly
sis

of
ge

ne
ex

pr
es

sio
n

da
ta

as
we

ll
as

da
ta

ex
tra

cte
d

fro
m

th
e

EH
R

ge
ne

rat
ive

ne
ur

al

ne
tw

or
k

ne
ur

al
ne

tw
or

ks
th

at
fa

ll
in

to
th

is
cla

ss
ca

n
be

us
ed

to
ge

ne
rat

e
da

ta
sim

ila
rt

o
in

pu
td

at
a.

Th
es

e

m
od

els
ca

n
be

sa
m

pl
ed

to
pr

od
uc

e
hy

po
th

et
ica

le
xa

m
pl

es

a
nu

m
be

ro
ft

he
un

su
pe

rv
ise

d
lea

rn
in

g
ne

ur
al

ne
tw

or
k

ar
ch

ite
ctu

re
s

th
at

ar
e

su
m

m
ar

ize
d

he
re

ca
n

be
us

ed
in

a
ge

ne
rat

ive
fa

sh
ion

RB
M

a
ge

ne
rat

ive
NN

th
at

fo
rm

s
th

e
bu

ild
in

g
bl

oc
k

fo
rm

an
y

de
ep

lea
rn

in
g

ap
pr

oa
ch

es
,h

av
in

g
a

sin
gl

e

in
pu

tl
ay

er
an

d
a

sin
gl

e
hi

dd
en

lay
er

,w
ith

no
co

nn
ec

tio
ns

be
tw

ee
n

th
e

no
de

s
w

ith
in

ea
ch

lay
er

RB
M

s
ha

ve
be

en
ap

pl
ied

to
co

m
bi

ne
m

ul
tip

le
ty

pe
s

of
om

ic
da

ta
(e

.g
.D

NA
m

et
hy

lat
ion

,

m
RN

A
ex

pr
es

sio
n

an
d

m
iR

NA
ex

pr
es

sio
n)

(C
on

tin
ue

d.
)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170387

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 S

ep
te

m
be

r 
20

22
 



treatment of patients. Below, we briefly introduce the types of

questions, approaches and data that are typical for each class in

the application of deep learning.

1.1.1. Disease and patient categorization
A key challenge in biomedicine is the accurate classification

of diseases and disease subtypes. In oncology, current ‘gold

standard’ approaches include histology, which requires

interpretation by experts, or assessment of molecular markers

such as cell surface receptors or gene expression. One example

is the PAM50 approach to classifying breast cancer where the

expression of 50 marker genes divides breast cancer patients

into four subtypes. Substantial heterogeneity still remains

within these four subtypes [24,25]. Given the increasing

wealth of molecular data available, a more comprehensive

subtyping seems possible. Several studies have used deep

learning methods to better categorize breast cancer patients:

for instance, denoising autoencoders, an unsupervised

approach, can be used to cluster breast cancer patients [26],

and CNNs can help count mitotic divisions, a feature that is

highly correlated with disease outcome in histological images

[27]. Despite these recent advances, a number of challenges

exist in this area of research, most notably the integration of

molecular and imaging data with other disparate types

of data such as electronic health records (EHRs).

1.1.2. Fundamental biological study
Deep learning can be applied to answer more fundamental

biological questions; it is especially suited to leveraging large

amounts of data from high-throughput ‘omics’ studies. One

classic biological problem where machine learning, and now

deep learning, has been extensively applied is molecular

target prediction. For example, deep recurrent neural networks

(RNNs) have been used to predict gene targets of microRNAs

(miRNAs) [28], and CNNs have been applied to predict protein

residue–residue contacts and secondary structure [29–31].

Other recent exciting applications of deep learning include rec-

ognition of functional genomic elements such as enhancers and

promoters [32–34] and prediction of the deleterious effects of

nucleotide polymorphisms [35].

1.1.3. Treatment of patients
Although the application of deep learning to patient treatment

is just beginning, we expect new methods to recommend

patient treatments, predict treatment outcomes and guide the

development of new therapies. One type of effort in this area

aims to identify drug targets and interactions or predict drug

response. Another uses deep learning on protein structures to

predict drug interactions and drug bioactivity [36]. Drug repo-

sitioning using deep learning on transcriptomic data is another

exciting area of research [37]. Restricted Boltzmann machines

(RBMs) can be combined into deep belief networks (DBNs)

to predict novel drug–target interactions and formulate drug

repositioning hypotheses [38,39]. Finally, deep learning is

also prioritizing chemicals in the early stages of drug discovery

for new targets [23].

2. Deep learning and patient categorization
In healthcare, individuals are diagnosed with a disease or

condition based on symptoms, the results of certain diagnos-

tic tests, or other factors. Once diagnosed with a disease, anTa
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individual might be assigned a stage based on another set of

human-defined rules. While these rules are refined over time,

the process is evolutionary and ad hoc, potentially impeding

the identification of underlying biological mechanisms and

their corresponding treatment interventions.

Deep learning methods applied to a large corpus of

patient phenotypes may provide a meaningful and more

data-driven approach to patient categorization. For example,

they may identify new shared mechanisms that would other-

wise be obscured due to ad hoc historical definitions of

disease. Perhaps deep neural networks, by reevaluating

data without the context of our assumptions, can reveal

novel classes of treatable conditions.

In spite of such optimism, the ability of deep learning

models to indiscriminately extract predictive signals must

also be assessed and operationalized with care. Imagine a

deep neural network is provided with clinical test results

gleaned from EHRs. Because physicians may order certain

tests based on their suspected diagnosis, a deep neural net-

work may learn to ‘diagnose’ patients simply based on the

tests that are ordered. For some objective functions, such as pre-

dicting an International Classification of Diseases (ICD) code,

this may offer good performance even though it does not pro-

vide insight into the underlying disease beyond physician

activity. This challenge is not unique to deep learning

approaches; however, it is important for practitioners to be

aware of these challenges and the possibility in this domain

of constructing highly predictive classifiers of questionable

utility.

Our goal in this section is to assess the extent to which deep

learning is already contributing to the discovery of novel cat-

egories. Where it is not, we focus on barriers to achieving

these goals. We also highlight approaches that researchers are

taking to address challenges within the field, particularly

with regards to data availability and labelling.

2.1. Imaging applications in healthcare
Deep learning methods have transformed the analysis of natu-

ral images and video, and similar examples are beginning to

emerge with medical images. Deep learning has been used to

classify lesions and nodules; localize organs, regions, land-

marks and lesions; segment organs, organ substructures and

lesions; retrieve images based on content; generate and enhance

images; and combine images with clinical reports [19,40].

Though there are many commonalities with the analysis

of natural images, there are also key differences. In all cases

that we examined, fewer than one million images were avail-

able for training, and datasets are often many orders of

magnitude smaller than collections of natural images.

Researchers have developed subtask-specific strategies to

address this challenge.

Data augmentation provides an effective strategy for work-

ing with small training sets. The practice is exemplified by a

series of papers that analyse images from mammographies

[41–45]. To expand the number and diversity of images,

researchers constructed adversarial [44] or augmented [45]

examples. Adversarial training examples are constructed by

selecting targeted small transformations to input data that

cause a model to produce very different outputs. Augmented

training applies perturbations to the input data that do not

change the underlying meaning, such as rotations for pathol-

ogy images. An alternative in the domain is to train towards

human-created features before subsequent fine-tuning [42],

which can help to sidestep this challenge though it does give

up deep learning techniques’ strength as feature constructors.

A second strategy repurposes features extracted from natu-

ral images by deep learning models, such as ImageNet [46],

for new purposes. Diagnosing diabetic retinopathy through

colour fundus images became an area of focus for deep learn-

ing researchers after a large labelled image set was made

publicly available during a 2015 Kaggle competition [47].

Most participants trained neural networks from scratch

[47–49], but Gulshan et al. [50] repurposed a 48-layer Incep-

tion-v3 deep architecture pre-trained on natural images and

surpassed the state-of-the-art specificity and sensitivity. Such

features were also repurposed to detect melanoma, the

deadliest form of skin cancer, from dermoscopic [51,52] and

non-dermoscopic images of skin lesions [5,53,54] as well as

age-related macular degeneration [55]. Pre-training on natural

images can enable very deep networks to succeed without

overfitting. For the melanoma task, reported performance

was competitive with or better than a board of certified derma-

tologists [5,51]. Reusing features from natural images is also an

emerging approach for radiographic images, where datasets

are often too small to train large deep neural networks without

these techniques [56–59]. A deep CNN trained on natural

images boosts performance in radiographic images [58]. How-

ever, the target task required either re-training the initial model

from scratch with special preprocessing or fine-tuning of the

whole network on radiographs with heavy data augmentation

to avoid overfitting.

The technique of reusing features from a different task falls

into the broader area of transfer learning (see Discussion).

Though we have mentioned numerous successes for the trans-

fer of natural image features to new tasks, we expect that a

lower proportion of negative results have been published.

The analysis of magnetic resonance images is also faced with

the challenge of small training sets. In this domain, Amit

et al. [60] investigated the trade-off between pre-trained

models from a different domain and a small CNN trained

only with MRI images. In contrast with the other selected lit-

erature, they found a smaller network trained with data

augmentation on a few hundred images from a few dozen

patients can outperform a pre-trained out-of-domain classifier.

Another way of dealing with limited training data is to

divide rich data—e.g. 3D images—into numerous reduced pro-

jections. Shin et al. [57] compared various deep network

architectures, dataset characteristics and training procedures

for computer tomography (CT)-based abnormality detection.

They concluded that networks as deep as 22 layers could be

useful for 3D data, despite the limited size of training datasets.

However, they noted that choice of architecture, parameter set-

ting and model fine-tuning needed is very problem- and

dataset-specific. Moreover, this type of task often depends on

both lesion localization and appearance, which poses chal-

lenges for CNN-based approaches. Straightforward attempts

to capture useful information from full-size images in all

three dimensions simultaneously via standard neural network

architectures were computationally unfeasible. Instead, two-

dimensional models were used to either process image slices

individually (2D) or aggregate information from a number of

2D projections in the native space (2.5D).

Roth et al. [61] compared 2D, 2.5D and 3D CNNs on a

number of tasks for computer-aided detection from CT

scans and showed that 2.5D CNNs performed comparably
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well to 3D analogues, while requiring much less training

time, especially on augmented training sets. Another advan-

tage of 2D and 2.5D networks is the wider availability of

pre-trained models. However, reducing the dimensionality

is not always helpful. Nie et al. [62] showed that multimodal,

multi-channel 3D deep architecture was successful at learning

high-level brain tumour appearance features jointly from

MRI, functional MRI and diffusion MRI images, outperform-

ing single-modality or 2D models. Overall, the variety of

modalities, properties and sizes of training sets, the dimen-

sionality of input and the importance of end goals in

medical image analysis are provoking a development of

specialized deep neural network architectures, training and

validation protocols, and input representations that are not

characteristic of widely-studied natural images.

Predictions from deep neural networks can be evaluated

for use in workflows that also incorporate human experts. In

a large dataset of mammography images, Kooi et al. [63]

demonstrated that deep neural networks outperform a

traditional computer-aided diagnosis system at low sensiti-

vity and perform comparably at high sensitivity. They also

compared network performance to certified screening radiol-

ogists on a patch level and found no significant difference

between the network and the readers. However, using deep

methods for clinical practice is challenged by the difficulty of

assigning a level of confidence to each prediction. Leibig et al.
[49] estimated the uncertainty of deep networks for diabetic

retinopathy diagnosis by linking dropout networks with

approximate Bayesian inference. Techniques that assign confi-

dences to each prediction should aid physician–computer

interactions and improve uptake by physicians.

Systems to aid in the analysis of histology slides are also

promising use cases for deep learning [64]. Ciresan et al. [27]

developed one of the earliest approaches for histology

slides, winning the 2012 International Conference on Pattern

Recognition’s Contest on Mitosis Detection while achieving

human-competitive accuracy. In more recent work, Wang

et al. [65] analysed stained slides of lymph node slices to ident-

ify cancers. On this task, a pathologist has about a 3% error rate.

The pathologist did not produce any false positives but did

have a number of false negatives. The algorithm had about

twice the error rate of a pathologist, but the errors were not

strongly correlated. Combining pre-trained deep network

architectures with multiple augmentation techniques enabled

accurate detection of breast cancer from a very small set of his-

tology images with less than 100 images per class [66]. In this

area, these algorithms may be ready to be incorporated into

existing tools to aid pathologists and reduce the false negative

rate. Ensembles of deep learning and human experts may help

overcome some of the challenges presented by data limitations.

One source of training examples with rich phenotypical

annotations is the EHR. Billing information in the form of ICD

codes are simple annotations but phenotypic algorithms can

combine laboratory tests, medication prescriptions and patient

notes to generate more reliable phenotypes. Recently, Lee et al.
[67] developed an approach to distinguish individuals with

age-related macular degeneration from control individuals.

They trained a deep neural network on approximately 100 000

images extracted from structured EHRs, reaching greater than

93% accuracy. The authors used their test set to evaluate when

to stop training. In other domains, this has resulted in a minimal

change in the estimated accuracy [68], but we recommend the

use of an independent test set whenever feasible.

Rich clinical information is stored in EHRs. However,

manually annotating a large set requires experts and is time-

consuming. For chest X-ray studies, a radiologist usually

spends a few minutes per example. Generating the number

of examples needed for deep learning is infeasibly expensive.

Instead, researchers may benefit from using text mining to gen-

erate annotations [69], even if those annotations are of modest

accuracy. Wang et al. [70] proposed to build predictive deep

neural network models through the use of images with weak
labels. Such labels are automatically generated and not verified

by humans, so they may be noisy or incomplete. In this case,

they applied a series of natural language processing (NLP)

techniques to the associated chest X-ray radiological reports.

They first extracted all diseases mentioned in the reports

using a state-of-the-art NLP tool, then applied a new method,

NegBio [71], to filter negative and equivocal findings in the

reports. Evaluation of four independent datasets demonstrated

that NegBio is highly accurate for detecting negative and

equivocal findings (approx. 90% in the F1 score, which balances

precision and recall [72]). The resulting dataset [73] consisted of

112 120 frontal-view chest X-ray images from 30 805 patients,

and each image was associated with one or more text-mined
(weakly labelled) pathology categories (e.g. pneumonia and

cardiomegaly) or ‘no finding’ otherwise. Further, Wang et al.
[70] used this dataset with a unified weakly supervised

multi-label image classification framework to detect common

thoracic diseases. It showed superior performance over a

benchmark using fully labelled data.

Another example of semi-automated label generation for

hand radiograph segmentation employed positive mining,

an iterative procedure that combines manual labelling with

automatic processing [74]. First, the initial training set was

created by manually labelling 100 of 12 600 unlabelled radio-

graphs that were used to train a model and predict labels for

the rest of the dataset. Then, poor-quality predictions were

discarded through manual inspection, the initial training set

was expanded with the acceptable segmentations, and the

process was repeated. This procedure had to be repeated

six times to obtain good quality segmentation labelling for

all radiographs, except for 100 corner cases that still required

manual annotation. These annotations allowed accurate seg-

mentation of all hand images in the test set and boosted the

final performance in radiograph classification [74].

With the exception of natural image-like problems (e.g.

melanoma detection), biomedical imaging poses a number of

challenges for deep learning. Datasets are typically small,

annotations can be sparse, and images are often high-dimen-

sional, multimodal and multi-channel. Techniques like

transfer learning, heavy dataset augmentation and the use of

multi-view and multi-stream architectures are more common

than in the natural image domain. Furthermore, high model

sensitivity and specificity can translate directly into clinical

value. Thus, prediction evaluation, uncertainty estimation

and model interpretation methods are also of great importance

in this domain (see Discussion). Finally, there is a need for

better pathologist–computer interaction techniques that will

allow combining the power of deep learning methods with

human expertise and lead to better-informed decisions for

patient treatment and care.

2.2. Text applications in healthcare
Owing to the rapid growth of scholarly publications and EHRs,

biomedical text mining has become increasingly important in
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recent years. The main tasks in biological and clinical text

mining include, but are not limited to, named entity recog-

nition (NER), relation/event extraction and information

retrieval (figure 2). Deep learning is appealing in this domain

because of its competitive performance versus traditional

methods and ability to overcome challenges in feature

engineering. Relevant applications can be stratified by the

application domain (biomedical literature versus clinical

notes) and the actual task (e.g. concept or relation extraction).

NER is a task of identifying text spans that refer to a bio-

logical concept of a specific class, such as disease or chemical,

in a controlled vocabulary or ontology. NER is often needed

as a first step in many complex text mining systems. The cur-

rent state-of-the-art methods typically reformulate the task as

a sequence labelling problem and use conditional random

fields [75–77]. In recent years, word embeddings that contain

rich latent semantic information of words have been widely

used to improve the NER performance. Liu et al. [78] studied

the effect of word embeddings on drug name recognition and

compared them with traditional semantic features. Tang et al.
[79] investigated word embeddings in the gene, DNA and

cell line mention detection tasks. Moreover, Wu et al. [80]

examined the use of neural word embeddings for clinical

abbreviation disambiguation. Liu et al. [81] exploited task-

oriented resources to learn word embeddings for clinical

abbreviation expansion.

Relation extraction involves detecting and classifying

semantic relationships between entities from the literature.

At present, kernel methods or feature-based approaches are

commonly applied [82–84]. Deep learning can relieve the fea-

ture sparsity and engineering problems. Some studies focused

on jointly extracting biomedical entities and relations simul-

taneously [85,86], while others applied deep learning on

relation classification given the relevant entities. For example,

both multi-channel dependency-based CNNs [87] and shortest

path-based CNNs [88,89] are well suited for sentence-based

protein–protein extraction. Jiang et al. [90] proposed a biomedi-

cal domain-specific word embedding model to reduce the

manual labour of designing semantic representation for the

same task. Gu et al. [91] employed a maximum-entropy

model and a CNN model for chemical-induced disease relation

extraction at the inter- and intra-sentence level, respectively.

For drug–drug interactions, Zhao et al. [92] used a CNN that

employs word embeddings with the syntactic information

of a sentence as well as features of part-of-speech tags and

dependency trees. Asada et al. [93] experimented with an

attention CNN, and Yi et al. [94] proposed an RNN model

with multiple attention layers. In both cases, it is a single

model with attention mechanism, which allows the decoder

to focus on different parts of the source sentence. As a result,

it does not require dependency parsing or training multiple

models. Both attention CNN and RNN have comparable

results, but the CNN model has an advantage in that it can

be easily computed in parallel, hence making it faster with

recent graphics processing units (GPUs).

For biotopes event extraction, Li et al. [95] employed CNNs

and distributed representation, while Mehryary et al. [96] used

long short-term memory (LSTM) networks to extract compli-

cated relations. Li et al. [97] applied word embedding to

extract complete events from the biomedical text and achieved

results comparable to the state-of-the-art systems. There are

also approaches that identify event triggers rather than the

complete event [98,99]. Taken together, deep learning models

outperform traditional kernel methods or feature-based

approaches by 1–5% in f-score. Among various deep learning

approaches, CNNs stand out as the most popular model both

in terms of computational complexity and performance,

while RNNs have achieved continuous progress.

Information retrieval is a task of finding relevant text that

satisfies an information need from within a large document

collection. While deep learning has not yet achieved the

same level of success in this area as seen in others, the

recent surge of interest and work suggest that this may be

quickly changing. For example, Mohan et al. [100] described

a deep learning approach to modelling the relevance of a

document’s text to a query, which they applied to the entire

biomedical literature [100].

To summarize, deep learning has shown promising results

in many biomedical text mining tasks and applications. How-

ever, to realize its full potential in this domain, either large

amounts of labelled data or technical advancements in current

methods coping with limited labelled data are required.

2.3. Electronic health records
EHR data include substantial amounts of free text, which

remains challenging to approach [101]. Often, researchers

developing algorithms that perform well on specific tasks

must design and implement domain-specific features [102].

These features capture unique aspects of the literature being

processed. Deep learning methods are natural feature construc-

tors. In recent work, Chalapathy et al. evaluated the extent to

which deep learning methods could be applied on top of gen-

eric features for domain-specific concept extraction [103]. They

clinicalbiological

named entity
recognition 

relation/event
extraction 

information
retrieval 

word
embeddings

convolutional
neural networks

recurrent
neural networks

recursive
neural networks

applications

natural language
processing tasks

deep learning
models 

Figure 2. Deep learning applications, tasks and models based on NLP perspectives.
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found that performance was in line with, but lower than the

best domain-specific method [103]. This raises the possibility

that deep learning may impact the field by reducing the

researcher time and cost required to develop specific solutions,

but it may not always lead to performance increases.

In recent work, Yoon et al. [104] analysed simple features

using deep neural networks and found that the patterns recog-

nized by the algorithms could be re-used across tasks. Their

aim was to analyse the free text portions of pathology reports

to identify the primary site and laterality of tumours. The

only features the authors supplied to the algorithms were

unigrams (counts for single words) and bigrams (counts for

two-word combinations) in a free text document. They subset

the full set of words and word combinations to the 400 most

common. The machine learning algorithms that they employed

(naive Bayes, logistic regression and deep neural networks) all

performed relatively similarly on the task of identifying the

primary site. However, when the authors evaluated the more

challenging task, evaluating the laterality of each tumour, the

deep neural network outperformed the other methods. Of par-

ticular interest, when the authors first trained a neural network

to predict the primary site and then repurposed those features

as a component of a secondary neural network trained to pre-

dict laterality, the performance was higher than a laterality-

trained neural network. This demonstrates how deep learning

methods can repurpose features across tasks, improving over-

all predictions as the field tackles new challenges. The

Discussion further reviews this type of transfer learning.

Several authors have created reusable feature sets for medi-

cal terminologies using NLP and neural embedding models, as

popularized by word2vec [105]. Minarro-Giménez et al. [106]

applied the word2vec deep learning toolkit to medical corpora

and evaluated the efficiency of word2vec in identifying pro-

perties of pharmaceuticals based on mid-sized, unstructured

medical text corpora without any additional background

knowledge. A goal of learning terminologies for different enti-

ties in the same vector space is to find relationships between

different domains (e.g. drugs and the diseases they treat). It

is difficult for us to provide a strong statement on the broad uti-

lity of these methods. Manuscripts in this area tend to compare

algorithms applied to the same data but lack a comparison

against overall best practices for one or more tasks addressed

by these methods. Techniques have been developed for free

text medical notes [107], ICD and National Drug Codes

[108,109] and claims data [110]. Methods for neural embed-

dings learned from EHRs have at least some ability to predict

disease–disease associations and implicate genes with a stat-

istical association with a disease [111], but the evaluations

performed did not differentiate between simple predictions

(i.e. the same disease in different sites of the body) and non-

intuitive ones. Jagannatha & Yu [112] further employed a

bidirectional LSTM structure to extract adverse drug events

from EHRs, and Lin et al. [113] investigated using CNNs to

extract temporal relations. While promising, a lack of rigorous

evaluation of the real-world utility of these kinds of features

makes current contributions in this area difficult to evaluate.

Comparisons need to be performed to examine the true utility

against leading approaches (i.e. algorithms and data) as

opposed to simply evaluating multiple algorithms on the

same potentially limited dataset.

Identifying consistent subgroups of individuals and indi-

vidual health trajectories from clinical tests is also an active

area of research. Approaches inspired by deep learning have

been used for both unsupervised feature construction and

supervised prediction. Early work by Lasko et al. [114], com-

bined sparse autoencoders and Gaussian processes to

distinguish gout from leukaemia from uric acid sequences.

Later work showed that unsupervised feature construction of

many features via denoising autoencoder neural networks

could dramatically reduce the number of labelled examples

required for subsequent supervised analyses [115]. In addition,

it pointed towards features learned during unsupervised train-

ing being useful for visualizing and stratifying subgroups of

patients within a single disease. In a concurrent large-scale

analysis of EHR data from 700 000 patients, Miotto et al. [116]

used a deep denoising autoencoder architecture applied to

the number and co-occurrence of clinical events to learn a rep-

resentation of patients (DeepPatient). The model was able to

predict disease trajectories within 1 year with over 90% accu-

racy, and patient-level predictions were improved by up to

15% when compared to other methods. Choi et al. [117]

attempted to model the longitudinal structure of EHRs with

an RNN to predict future diagnosis and medication prescrip-

tions on a cohort of 260 000 patients followed for 8 years

(Doctor AI). Pham et al. [118] built upon this concept by

using an RNN with an LSTM architecture enabling explicit

modelling of patient trajectories through the use of memory

cells. The method, DeepCare, performed better than shallow

models or plain RNN when tested on two independent cohorts

for its ability to predict disease progression, intervention rec-

ommendation and future risk prediction. Nguyen et al. [119]

took a different approach and used word embeddings from

EHRs to train a CNN that could detect and pool local clinical

motifs to predict unplanned readmission after six months,

with performance better than the baseline method (Deepr).

Razavian et al. [120] used a set of 18 common laboratory tests

to predict disease onset using both CNN and LSTM architec-

tures and demonstrated an improvement over baseline

regression models. However, numerous challenges including

data integration (patient demographics, family history, labora-

tory tests, text-based patient records, image analysis, genomic

data) and better handling of streaming temporal data with

many features will need to be overcome before we can fully

assess the potential of deep learning for this application area.

Still, recent work has also revealed domains in which deep

networks have proven superior to traditional methods. Survi-

val analysis models the time leading to an event of interest

from a shared starting point, and in the context of EHR data,

often associates these events to subject covariates. Exploring

this relationship is difficult, however, given that EHR data

types are often heterogeneous, covariates are often missing

and conventional approaches require the covariate–event

relationship be linear and aligned to a specific starting point

[121]. Early approaches, such as the Faraggi–Simon feed-

forward network, aimed to relax the linearity assumption,

but performance gains were lacking [122]. Katzman et al.
[123] in turn developed a deep implementation of the Far-

aggi–Simon network that, in addition to outperforming Cox

regression, was capable of comparing the risk between a

given pair of treatments, thus potentially acting as recommen-

der system. To overcome the remaining difficulties, researchers

have turned to deep exponential families, a class of latent gen-

erative models that are constructed from any type of

exponential family distributions [124]. The result was a deep

survival analysis model capable of overcoming challenges

posed by missing data and heterogeneous data types, while
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uncovering nonlinear relationships between covariates and

failure time. They showed their model more accurately strati-

fied patients as a function of disease-risk score compared to

the current clinical implementation.

There is a computational cost for these methods, however,

when compared to traditional, non-neural network

approaches. For the exponential family models, despite their

scalability [125], an important question for the investigator is

whether he or she is interested in estimates of posterior uncer-

tainty. Given that these models are effectively Bayesian neural

networks, much of their utility simplifies to whether a Bayesian

approach is warranted for a given increase in computational

cost. Moreover, as with all variational methods, future work

must continue to explore just how well the posterior distri-

butions are approximated, especially as model complexity

increases [126].

2.4. Challenges and opportunities in patient
categorization

2.4.1. Generating ground-truth labels can be expensive or
impossible

A dearth of true labels is perhaps among the biggest obstacles

for EHR-based analyses that employ machine learning. Popu-

lar deep learning (and other machine learning) methods are

often used to tackle classification tasks and thus require

ground-truth labels for training. For EHRs, this can mean

that researchers must hire multiple clinicians to manually

read and annotate individual patients’ records through a pro-

cess called chart review. This allows researchers to assign

‘true’ labels, i.e. those that match our best available knowledge.

Depending on the application, sometimes the features con-

structed by algorithms also need to be manually validated

and interpreted by clinicians. This can be time-consuming

and expensive [127]. Because of these costs, much of this

research, including the work cited in this review, skips the pro-

cess of expert review. Clinicians’ skepticism for research

without expert review may greatly dampen their enthusiasm

for the work and consequently reduce its impact. To date,

even well-resourced large national consortia have been chal-

lenged by the task of acquiring enough expert-validated

labelled data. For instance, in the eMERGE consortia and

PheKB database [128], most samples with expert validation

contain only 100–300 patients. These datasets are quite small

even for simple machine learning algorithms. The challenge

is greater for deep learning models with many parameters.

While unsupervised and semi-supervised approaches can

help with small sample sizes, the field would benefit greatly

from large collections of anonymized records in which a sub-

stantial number of records have undergone expert review.

This challenge is not unique to EHR-based studies. Work on

medical images, omics data in applications for which detailed

metadata are required, and other applications for which labels

are costly to obtain will be hampered as long as abundant

curated data are unavailable.

Successful approaches to date in this domain have side-

stepped this challenge by making methodological choices

that either reduce the need for labelled examples or use trans-

formations to training data to increase the number of times it

can be used before overfitting occurs. For example, the un-

supervised and semi-supervised methods that we have

discussed reduce the need for labelled examples [115]. The

anchor and learn framework [129] uses expert knowledge to

identify high-confidence observations from which labels can

be inferred. If transformations are available that preserve the

meaningful content of the data, the adversarial and augmented

training techniques discussed above can reduce overfitting.

While these can be easily imagined for certain methods

that operate on images, it is more challenging to figure out

equivalent transformations for a patient’s clinical test results.

Consequently, it may be hard to employ such training

examples with other applications. Finally, approaches that

transfer features can also help use valuable training data

most efficiently. Rajkomar et al. [58] trained a deep neural net-

work using generic images before tuning using only radiology

images. Datasets that require many of the same types of fea-

tures might be used for initial training, before fine-tuning

takes place with the more sparse biomedical examples.

Though the analysis has not yet been attempted, it is possible

that analogous strategies may be possible with EHRs. For

example, features learned from the EHR for one type of clinical

test (e.g. a decrease over time in a laboratory value) may trans-

fer across phenotypes. Methods to accomplish more with little

high-quality labelled data arose in other domains and may also

be adapted to this challenge, e.g. data programming [130].

In data programming, noisy automated labelling functions

are integrated.

Numerous commentators have described data as the new

oil [131,132]. The idea behind this metaphor is that data are

available in large quantities, valuable once refined, and this

underlying resource will enable a data-driven revolution in

how work is done. Contrasting with this perspective,

Ratner et al. [133] described labelled training data, instead

of data, as ‘The New New Oil’. In this framing, data are abun-

dant and not a scarce resource. Instead, new approaches to

solving problems arise when labelled training data become

sufficient to enable them. Based on our review of research

on deep learning methods to categorize disease, the latter

framing rings true.

We expect improved methods for domains with limited

data to play an important role if deep learning is going to

transform how we categorize states of human health. We

do not expect that deep learning methods will replace

expert review. We expect them to complement expert

review by allowing more efficient use of the costly practice

of manual annotation.

2.4.2. Data sharing is hampered by standardization and privacy
considerations

To construct the types of very large datasets that deep learn-

ing methods thrive on, we need robust sharing of large

collections of data. This is, in part, a cultural challenge. We

touch on this challenge in the Discussion section. Beyond

the cultural hurdles around data sharing, there are also tech-

nological and legal hurdles related to sharing individual

health records or deep models built from such records. This

subsection deals primarily with these challenges.

EHRs are designed chiefly for clinical, administrative and

financial purposes, such as patient care, insurance and billing

[134]. Science is at best a tertiary priority, presenting chal-

lenges to EHR-based research, in general, and to deep

learning research, in particular. Although there is significant

work in the literature around EHR data quality and the

impact on research [135], we focus on three types of
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challenges: local bias, wider standards and legal issues. Note

these problems are not restricted to EHRs but can also apply

to any large biomedical dataset, e.g. clinical trial data.

Even within the same healthcare system, EHRs can be

used differently [136,137]. Individual users have unique

documentation and ordering patterns, with different depart-

ments and different hospitals having different priorities that

code patients and introduce missing data in a non-random

fashion [138]. Patient data may be kept across several ‘silos’

within a single health system (e.g. separate nursing documen-

tation, registries, etc.). Even the most basic task of matching

patients across systems can be challenging due to data

entry issues [139]. The situation is further exacerbated by

the ongoing introduction, evolution and migration of

EHR systems, especially where reorganized and acquired

healthcare facilities have to merge. Furthermore, even the

ostensibly least-biased data type, laboratory measurements,

can be biased based by both the healthcare process and

patient health state [140]. As a result, EHR data can be less

complete and less objective than expected.

In the wider picture, standards for EHRs are numerous

and evolving. Proprietary systems, indifferent and scattered

use of health information standards, and controlled terminol-

ogies makes combining and comparison of data across

systems challenging [141]. Further diversity arises from vari-

ation in languages, healthcare practices and demographics.

Merging EHRs gathered in different systems (and even

under different assumptions) is challenging [142].

Combining or replicating studies across systems thus

requires controlling for both the above biases and dealing

with mismatching standards. This has the practical effect of

reducing cohort size, limiting statistical significance, prevent-

ing the detection of weak effects [143], and restricting the

number of parameters that can be trained in a model. Further-

more, rule-based algorithms have been popular in EHR-based

research, but because these are developed at a single institution

and trained with a specific patient population, they do not

transfer easily to other healthcare systems [144]. Genetic

studies using EHR data are subject to even more bias, as the

differences in population ancestry across health centres (e.g.

proportion of patients with African or Asian ancestry) can

affect algorithm performance. For example, Wiley et al. [145]

showed that warfarin dosing algorithms often under-perform

in African Americans, illustrating that some of these issues

are unresolved even at a treatment best practices level. Lack

of standardization also makes it challenging for investigators

skilled in deep learning to enter the field, as numerous data

processing steps must be performed before algorithms

are applied.

Finally, even if data were perfectly consistent and compa-

tible across systems, attempts to share and combine EHR data

face considerable legal and ethical barriers. Patient privacy

can severely restrict the sharing and use of EHR data [146].

Here again, standards are heterogeneous and evolving, but

often EHR data cannot be exported or even accessed directly

for research purposes without appropriate consent. In the

USA, research use of EHR data is subject both to the

Common Rule and the Health Insurance Portability and

Accountability Act. Ambiguity in the regulatory language

and individual interpretation of these rules can hamper

use of EHR data [147]. Once again, this has the effect

of making data gathering more laborious and expensive,

reducing sample size and study power.

Several technological solutions have been proposed in

this direction, allowing access to sensitive data satisfying

privacy and legal concerns. Software like DataShield [148]

and ViPAR [149], although not EHR-specific, allow querying

and combining of datasets and calculation of summary stat-

istics across remote sites by ‘taking the analysis to the data’.

The computation is carried out at the remote site. Conversely,

the EH4CR project [141] allows analysis of private data by

use of an inter-mediation layer that interprets remote queries

across internal formats and datastores and returns the results

in a de-identified standard form, thus giving real-time con-

sistent but secure access. Continuous analysis [150] can

allow reproducible computing on private data. Using such

techniques, intermediate results can be automatically tracked

and shared without sharing the original data. While none of

these have been used in deep learning, the potential is there.

Even without sharing data, algorithms trained on confi-

dential patient data may present security risks or accidentally

allow for the exposure of individual-level patient data.

Tramer et al. [151] showed the ability to steal trained

models via public application programming interfaces

(APIs). Dwork & Roth [152] demonstrate the ability to expose

individual-level information from accurate answers in a

machine learning model. Attackers can use similar attacks to

find out if a particular data instance was present in the original

training set for the machine learning model [153], in this case,

whether a person’s record was present. To protect against these

attacks, Simmons et al. [154] developed the ability to perform

genome-wide association studies in a differentially private

manner, and Abadi et al. [155] show the ability to train deep

learning classifiers under the differential privacy framework.

These attacks also present a potential hazard for

approaches that aim to generate data. Choi et al. [156] propose

generative adversarial neural networks (GANs) as a tool to

make sharable EHR data, and Esteban et al. [157] showed

that recurrent GANs could be used for time-series data. How-

ever, in both cases the authors did not take steps to protect

the model from such attacks. There are approaches to protect

models, but they pose their own challenges. Training in a dif-

ferentially private manner provides a limited guarantee that

an algorithm’s output will be equally likely to occur regard-

less of the participation of any one individual. The limit is

determined by parameters which provide a quantification

of privacy. Beaulieu-Jones et al. [158] demonstrated the

ability to generate data that preserved properties of the

SPRINT clinical trial with GANs under the differential priv-

acy framework. Both Beaulieu-Jones et al. and Esteban et al.
train models on synthetic data generated under differential

privacy and observe performance from a transfer learning

evaluation that is only slightly below models trained on the

original, real data. Taken together, these results suggest that

differentially private GANs may be an attractive way to

generate sharable datasets for downstream reanalysis.

Federated learning [159] and secure aggregations [160] are

complementary approaches that reinforce differential priv-

acy. Both aim to maintain privacy by training deep learning

models from decentralized data sources such as personal

mobile devices without transferring actual training instances.

This is becoming of increasing importance with the rapid

growth of mobile health applications. However, the training

process in these approaches places constraints on the algor-

ithms used and can make fitting a model substantially

more challenging. It can be trivial to train a model without
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differential privacy, but quite difficult to train one within the

differential privacy framework [158]. This problem can be

particularly pronounced with small sample sizes.

While none of these problems are insurmountable or

restricted to deep learning, they present challenges that

cannot be ignored. Technical evolution in EHRs and data

standards will doubtless ease—although not solve—the pro-

blems of data sharing and merging. More problematic are the

privacy issues. Those applying deep learning to the domain

should consider the potential of inadvertently disclosing the

participants’ identities. Techniques that enable training on

data without sharing the raw data may have a part to play.

Training within a differential privacy framework may often

be warranted.

2.4.3. Discrimination and ‘right to an explanation’ laws
In April 2016, the European Union adopted new rules regard-

ing the use of personal information, the General Data

Protection Regulation [161]. A component of these rules can

be summed up by the phrase ‘right to an explanation’.

Those who use machine learning algorithms must be able

to explain how a decision was reached. For example, a clini-

cian treating a patient who is aided by a machine learning

algorithm may be expected to explain decisions that use

the patient’s data. The new rules were designed to target cat-

egorization or recommendation systems, which inherently

profile individuals. Such systems can do so in ways that are

discriminatory and unlawful.

As datasets become larger and more complex, we may

begin to identify relationships in data that are important for

human health but difficult to understand. The algorithms

described in this review and others like them may become

highly accurate and useful for various purposes, including

within medical practice. However, to discover and avoid

discriminatory applications it will be important to consider

interpretability alongside accuracy. A number of properties

of genomic and healthcare data will make this difficult.

First, research samples are frequently non-representative of

the general population of interest; they tend to be disproportio-

nately sick [162], male [163] and European in ancestry [164].

One well-known consequence of these biases in genomics is

that penetrance is consistently lower in the general population

than would be implied by case–control data, as reviewed in

[162]. Moreover, real genetic associations found in one popu-

lation may not hold in other populations with different

patterns of linkage disequilibrium (even when population stra-

tification is explicitly controlled for [165]). As a result, many

genomic findings are of limited value for people of non-Euro-

pean ancestry [164] and may even lead to worse treatment

outcomes for them. Methods have been developed for mitigat-

ing some of these problems in genomic studies [162,165], but it

is not clear how easily they can be adapted for deep models that

are designed specifically to extract subtle effects from high-

dimensional data. For example, differences in the equipment

that tended to be used for cases versus controls have led to

spurious genetic findings (e.g. Sebastiani et al.’s retraction

[166]). In some contexts, it may not be possible to correct for

all of these differences to the degree that a deep network is

unable to use them. Moreover, the complexity of deep net-

works makes it difficult to determine when their predictions

are likely to be based on such nominally irrelevant features

of the data (called ‘leakage’ in other fields [167]). When we

are not careful with our data and models, we may inadver-

tently say more about the way the data were collected (which

may involve a history of unequal access and discrimination)

than about anything of scientific or predictive value. This fact

can undermine the privacy of patient data [167] or lead to

severe discriminatory consequences [168].

There is a small but growing literature on the prevention

and mitigation of data leakage [167], as well as a closely

related literature on discriminatory model behaviour [169],

but it remains difficult to predict when these problems will

arise, how to diagnose them and how to resolve them in prac-

tice. There is even disagreement about which kinds of

algorithmic outcomes should be considered discriminatory

[170]. Despite the difficulties and uncertainties, machine

learning practitioners (and particularly those who use deep

neural networks, which are challenging to interpret) must

remain cognizant of these dangers and make every effort to

prevent harm from discriminatory predictions. To reach

their potential in this domain, deep learning methods will

need to be interpretable (see Discussion). Researchers need

to consider the extent to which biases may be learned by

the model and whether or not a model is sufficiently inter-

pretable to identify bias. We discuss the challenge of model

interpretability more thoroughly in Discussion.

2.4.4. Applications of deep learning to longitudinal analysis
The longitudinal analysis follows a population across time,

for example, prospectively from birth or from the onset of

particular conditions. In large patient populations, longitudi-

nal analyses such as the Framingham Heart Study [171] and

the Avon Longitudinal Study of Parents and Children [172]

have yielded important discoveries about the development

of disease and the factors contributing to health status. Yet, a

common practice in EHR-based research is to take a snapshot

at a point in time and convert patient data to a traditional

vector for machine learning and statistical analysis. This results

in loss of information as timing and order of events can provide

insight into a patient’s disease and treatment [173]. Efforts to

model sequences of events have shown promise [174] but

require exceedingly large patient sizes due to discrete combina-

torial bucketing. Lasko et al. [114] used autoencoders on

longitudinal sequences of serum uric acid measurements to

identify population subtypes. More recently, deep learning

has shown promise working with both sequences (CNNs)

[175] and the incorporation of past and current state (RNNs,

LSTMs) [118]. This may be a particular area of opportunity

for deep neural networks. The ability to recognize relevant

sequences of events from a large number of trajectories requires

powerful and flexible feature construction methods—an area in

which deep neural networks excel.

3. Deep learning to study the fundamental
biological processes underlying
human disease

The study of cellular structure and core biological processes—

transcription, translation, signalling, metabolism, etc.—in

humans and model organisms will greatly impact our under-

standing of human disease over the long horizon [176].

Predicting how cellular systems respond to environmental

perturbations and are altered by genetic variation remain
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daunting tasks. Deep learning offers new approaches for

modelling biological processes and integrating multiple types

of omic data [177], which could eventually help predict how

these processes are disrupted in disease. Recent work has

already advanced our ability to identify and interpret genetic

variants, study microbial communities and predict protein

structures, which also relates to the problems discussed in

the drug development section. In addition, unsupervised

deep learning has enormous potential for discovering novel

cellular states from gene expression, fluorescence microscopy

and other types of data that may ultimately prove to be

clinically relevant.

Progress has been rapid in genomics and imaging, fields

where important tasks are readily adapted to well-established

deep learning paradigms. One-dimensional CNNs and

RNNs are well suited for tasks related to DNA- and RNA-

binding proteins, epigenomics and RNA splicing. Two-

dimensional CNNs are ideal for segmentation, feature extrac-

tion and classification in fluorescence microscopy images

[17]. Other areas, such as cellular signalling, are biologically

important but studied less-frequently to date, with some

exceptions [178]. This may be a consequence of data limit-

ations or greater challenges in adapting neural network

architectures to the available data. Here, we highlight several

areas of investigation and assess how deep learning might

move these fields forward.

3.1. Gene expression
Gene expression technologies characterize the abundance

of many thousands of RNA transcripts within a given organ-

ism, tissue or cell. This characterization can represent

the underlying state of the given system and can be used to

study heterogeneity across samples as well as how the

system reacts to perturbation. While gene expression measure-

ments were traditionally made by quantitative polymerase

chain reaction, low-throughput fluorescence-based methods

and microarray technologies, the field has shifted in recent

years to primarily performing RNA sequencing (RNA-seq) to

catalogue whole transcriptomes. As RNA-seq continues to

fall in price and rise in throughput, sample sizes will increase

and training deep models to study gene expression will

become even more useful.

Already several deep learning approaches have been

applied to gene expression data with varying aims. For

instance, many researchers have applied unsupervised deep

learning models to extract meaningful representations of

gene modules or sample clusters. Denoising autoencoders

have been used to cluster yeast expression microarrays into

known modules representing cell cycle processes [179] and

to stratify yeast strains based on chemical and mutational

perturbations [180]. Shallow (one hidden layer) denoising

autoencoders have also been fruitful in extracting biological

insight from thousands of Pseudomonas aeruginosa experiments

[181,182] and in aggregating features relevant to specific

breast cancer subtypes [26]. These unsupervised approaches

applied to gene expression data are powerful methods for

identifying gene signatures that may otherwise be overlooked.

An additional benefit of unsupervised approaches is that

ground-truth labels, which are often difficult to acquire or are

incorrect, are non-essential. However, the genes that have

been aggregated into features must be interpreted carefully.

Attributing each node to a single specific biological function

risks over-interpreting models. Batch effects could cause

models to discover non-biological features, and downstream

analyses should take this into consideration.

Deep learning approaches are also being applied to gene

expression prediction tasks. For example, a deep neural

network with three hidden layers outperformed linear

regression in inferring the expression of over 20 000 target

genes based on a representative, well-connected set of about

1000 landmark genes [183]. However, while the deep learning

model outperformed existing algorithms in nearly every scen-

ario, the model still displayed poor performance. The paper

was also limited by computational bottlenecks that required

data to be split randomly into two distinct models and trained

separately. It is unclear how much performance would have

increased if not for computational restrictions.

Epigenomic data, combined with deep learning, may

have sufficient explanatory power to infer gene expression.

For instance, the DeepChrome CNN [184] improved the pre-

diction accuracy of high or low gene expression from histone

modifications over existing methods. AttentiveChrome [185]

added a deep attention model to further enhance Deep-

Chrome. Deep learning can also integrate different data

types. For example, Liang et al. [186] combined RBMs to inte-

grate gene expression, DNA methylation and miRNA data to

define ovarian cancer subtypes. While these approaches are

promising, many convert gene expression measurements

to categorical or binary variables, thus ablating many com-

plex gene expression signatures present in intermediate and

relative numbers.

Deep learning applied to gene expression data is still in its

infancy, but the future is bright. Many previously untestable

hypotheses can now be interrogated as deep learning enables

analysis of increasing amounts of data generated by new

technologies. For example, the effects of cellular hetero-

geneity on basic biology and disease aetiology can now be

explored by single-cell RNA-seq and high-throughput fluor-

escence-based imaging, techniques we discuss below that

will benefit immensely from deep learning approaches.

3.2. Splicing
Pre-mRNA transcripts can be spliced into different isoforms by

retaining or skipping subsets of exons or including parts

of introns, creating enormous spatio-temporal flexibility to

generate multiple distinct proteins from a single gene. This

remarkable complexity can lend itself to defects that underlie

many diseases. For instance, splicing mutations in the lamin

A (LMNA) gene can lead to specific variants of dilated cardio-

myopathy and limb-girdle muscular dystrophy [187]. A recent

study found that quantitative trait loci that affect splicing in

lymphoblastoid cell lines are enriched within risk loci for

schizophrenia, multiple sclerosis and other immune diseases,

implicating mis-splicing as a more widespread feature of

human pathologies than previously thought [188]. Therapeutic

strategies that aim to modulate splicing are also currently

being considered for disorders such as Duchenne muscular

dystrophy and spinal muscular atrophy [187].

Sequencing studies routinely return thousands of unanno-

tated variants, but which cause functional changes in splicing

and how are those changes manifested? Prediction of a ‘spli-

cing code’ has been a goal of the field for the past decade.

Initial machine learning approaches used a naive Bayes

model and a two-layer Bayesian neural network with
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thousands of hand-derived sequence-based features to predict

the probability of exon skipping [189,190]. With the advent of

deep learning, more complex models provided better predic-

tive accuracy [191,192]. Importantly, these new approaches

can take in multiple kinds of epigenomic measurements as

well as tissue identity and RNA-binding partners of splicing

factors. Deep learning is critical in furthering these kinds of

integrative studies where different data types and inputs inter-

act in unpredictable (often nonlinear) ways to create higher-

order features. Moreover, as in gene expression network analy-

sis, interrogating the hidden nodes within neural networks

could potentially illuminate important aspects of splicing be-

haviour. For instance, tissue-specific splicing mechanisms

could be inferred by training networks on splicing data from

different tissues, then searching for common versus distinctive

hidden nodes, a technique employed by Qin et al. [193] for

tissue-specific transcription factor (TF) binding predictions.

A parallel effort has been to use more data with simpler

models. An exhaustive study using readouts of splicing for

millions of synthetic intronic sequences uncovered motifs

that influence the strength of alternative splice sites [194].

The authors built a simple linear model using hexamer motif

frequencies that successfully generalized to exon skipping. In

a limited analysis using single-nucleotide polymorphisms

(SNPs) from three genes, it predicted exon skipping with

three times the accuracy of an existing deep learning-based fra-

mework [191]. This case is instructive in that clever sources of

data, not just more descriptive models, are still critical.

We already understand how mis-splicing of a single gene

can cause diseases such as limb-girdle muscular dystrophy.

The challenge now is to uncover how genome-wide alternative

splicing underlies complex, non-Mendelian diseases such as

autism, schizophrenia, Type 1 diabetes and multiple sclerosis

[195]. As a proof of concept, Xiong et al. [191] sequenced five

autism spectrum disorder and 12 control samples, each with

an average of 42 000 rare variants, and identified mis-splicing

in 19 genes with neural functions. Such methods may one

day enable scientists and clinicians to rapidly profile thousands

of unannotated variants for functional effects on splicing and

nominate candidates for further investigation. Moreover,

these nonlinear algorithms can deconvolve the effects of mul-

tiple variants on a single splice event without the need to

perform combinatorial in vitro experiments. The ultimate goal

is to predict an individual’s tissue-specific, exon-specific

splicing patterns from their genome sequence and other

measurements to enable a new branch of precision diagnostics

that also stratifies patients and suggests targeted therapies to

correct splicing defects. However, to achieve this we expect

that methods to interpret the ‘black box’ of deep neural

networks and integrate diverse data sources will be required.

3.3. Transcription factors
TFs are proteins that bind regulatory DNA in a sequence-

specific manner to modulate the activation and repression

of gene transcription. High-throughput in vitro experimental

assays that quantitatively measure the binding specificity of

a TF to a large library of short oligonucleotides [196] provide

rich datasets to model the naked DNA sequence affinity of

individual TFs in isolation. However, in vivo TF binding is

affected by a variety of other factors beyond sequence affi-

nity, such as competition and cooperation with other TFs,

TF concentration and chromatin state (chemical modifications

to DNA and other packaging proteins that DNA is wrapped

around) [196]. TFs can thus exhibit highly variable binding

landscapes across the same genomic DNA sequence across

diverse cell types and states. Several experimental approaches

such as chromatin immunoprecipitation followed by sequen-

cing (ChIP-seq) have been developed to profile in vivo
binding maps of TFs [196]. Large reference compendia of

ChIP-seq data are now freely available for a large collection

of TFs in a small number of reference cell states in humans

and a few other model organisms [197]. Owing to fundamen-

tal material and cost constraints, it is infeasible to perform

these experiments for all TFs in every possible cellular state

and species. Hence, predictive computational models of TF

binding are essential to understand gene regulation in diverse

cellular contexts.

Several machine learning approaches have been developed

to learn generative and discriminative models of TF binding

from in vitro and in vivo TF binding datasets that associate

collections of synthetic DNA sequences or genomic DNA

sequences to binary labels (bound/unbound) or continuous

measures of binding. The most common class of TF binding

models in the literature are those that only model the DNA

sequence affinity of TFs from in vitro and in vivo binding

data. The earliest models were based on deriving simple, com-

pact, interpretable sequence motif representations such as

position weight matrices (PWMs) and other biophysically

inspired models [198–200]. These models were outperformed

by general k-mer-based models including support vector

machines (SVMs) with string kernels [201,202].

In 2015, Alipanahi et al. [203] developed DeepBind, the first

CNN to classify bound DNA sequences based on in vitro and

in vivo assays against random DNA sequences matched for

dinucleotide sequence composition. The convolutional layers

learn pattern detectors reminiscent of PWMs from a one-

hot encoding of the raw input DNA sequences. DeepBind

outperformed several state-of-the-art methods from the

DREAM5 in vitro TF-DNA motif recognition challenge [200].

Although DeepBind was also applied to RNA-binding pro-

teins, in general, RNA binding is a separate problem [204]

and accurate models will need to account for RNA secondary

structure. Following DeepBind, several optimized convolu-

tional and recurrent neural network architectures as well as

novel hybrid approaches that combine kernel methods with

neural networks have been proposed that further improve

performance [205–208]. Specialized layers and regularizers

have also been proposed to reduce parameters and learn

more robust models by taking advantage of specific proper-

ties of DNA sequences such as their reverse complement

equivalence [209,210].

While most of these methods learn independent models for

different TFs, in vivo multiple TFs compete or cooperate to

occupy DNA binding sites, resulting in complex combinatorial

co-binding landscapes. To take advantage of this shared

structure in in vivo TF binding data, multi-task neural network

architectures have been developed that explicitly share

parameters across models for multiple TFs [208,211,212].

Some of these multi-task models train and evaluate classifi-

cation performance relative to an unbound background set of

regulatory DNA sequences sampled from the genome rather

than using synthetic background sequences with matched

dinucleotide composition.

The above-mentioned TF binding prediction models that

use only DNA sequences as inputs have a fundamental
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limitation. Because the DNA sequence of a genome is the

same across different cell types and states, a sequence-only

model of TF binding cannot predict different in vivo TF bind-

ing landscapes in new cell types not used during training.

One approach for generalizing TF binding predictions

to new cell types is to learn models that integrate DNA

sequence inputs with other cell-type-specific data modalities

that modulate in vivo TF binding such as surrogate measures

of TF concentration (e.g. TF gene expression) and chroma-

tin state. Arvey et al. [213] showed that combining the

predictions of SVMs trained on DNA sequence inputs and

cell-type specific DNase-seq data, which measures genome-

wide chromatin accessibility, improved in vivo TF binding

prediction within and across cell types. Several ‘footprint-

ing’-based methods have also been developed that learn to

discriminate bound from unbound instances of known cano-

nical motifs of a target TF based on high-resolution footprint

patterns of chromatin accessibility that are specific to the

target TF [214]. However, the genome-wide predictive per-

formance of these methods in new cell types and states has

not been evaluated.

Recently, a community challenge known as the ‘ENCODE-

DREAM in vivo TF Binding Site Prediction Challenge’ was

introduced to systematically evaluate the genome-wide per-

formance of methods that can predict TF binding across

cell states by integrating DNA sequence and in vitro DNA

shape with cell-type-specific chromatin accessibility and gene

expression [215]. A deep learning model called FactorNet was

among the top three performing methods in the challenge

[216]. FactorNet uses a multimodal hybrid convolutional and

recurrent architecture that integrates DNA sequence with chro-

matin accessibility profiles, gene expression and evolutionary

conservation of sequence. It is worth noting that FactorNet

was slightly outperformed by an approach that does not use

neural networks [217]. This top ranking approach uses an

extensive set of curated features in a weighted variant of a

discriminative maximum conditional likelihood model in com-

bination with a novel iterative training strategy and model

stacking. There appears to be significant room for improvement

because none of the current approaches for cross cell-type pre-

diction explicitly account for the fact that TFs can co-bind with

distinct cofactors in different cell states. In such cases, sequence

features that are predictive of TF binding in one cell state may be

detrimental to predicting binding in another.

Singh et al. [218] developed transfer string kernels for

SVMs for cross-context TF binding. Domain adaptation

methods that allow training neural networks which are trans-

ferable between differing training and test set distributions of

sequence features could be a promising avenue going for-

ward [219,220]. These approaches may also be useful for

transferring TF binding models across species.

Another class of imputation-based cross cell type in vivo
TF binding prediction methods leverage the strong correlation

between combinatorial binding landscapes of multiple TFs.

Given a partially complete panel of binding profiles of multi-

ple TFs in multiple cell types, a deep learning method called

TFImpute learns to predict the missing binding profile of a

target TF in some target cell type in the panel based on the

binding profiles of other TFs in the target cell type and

the binding profile of the target TF in other cell types in the

panel [193]. However, TFImpute cannot generalize predictions

beyond the training panel of cell types and requires TF binding

profiles of related TFs.

It is worth noting that TF binding prediction methods in

the literature based on neural networks and other machine

learning approaches choose to sample the set of bound and

unbound sequences in a variety of different ways. These

choices and the choice of performance evaluation measures

significantly confound systematic comparison of model

performance (see Discussion).

Several methods have also been developed to interpret

neural network models of TF binding. Alipanahi et al. [203]

visualize convolutional filters to obtain insights into the

sequence preferences of TFs. They also introduced in silico
mutation maps for identifying important predictive nucleotides

in input DNA sequences by exhaustively forward propagating

perturbations to individual nucleotides to record the corre-

sponding change in output prediction. Shrikumar et al. [221]

proposed efficient backpropagation-based approaches to simul-

taneously score the contribution of all nucleotides in an input

DNA sequence to an output prediction. Lanchantin et al. [206]

developed tools to visualize TF motifs learned from TF binding

site classification tasks. These and other general interpretation

techniques (see Discussion) will be critical to improve our

understanding of the biologically meaningful patterns learned

by deep learning models of TF binding.

3.4. Promoters and enhancers
3.4.1. From transcription factor binding to promoters

and enhancers
Multiple TFs act in concert to coordinate changes in gene

regulation at the genomic regions known as promoters and

enhancers. Each gene has an upstream promoter, essential for

initiating that gene’s transcription. The gene may also interact

with multiple enhancers, which can amplify transcription in

particular cellular contexts. These contexts include different

cell types in development or environmental stresses.

Promoters and enhancers provide a nexus where clusters

of TFs and binding sites mediate downstream gene

regulation, starting with transcription. The gold standard to

identify an active promoter or enhancer requires demonstrat-

ing its ability to affect transcription or other downstream

gene products. Even extensive biochemical TF binding data

has thus far proven insufficient on its own to accurately

and comprehensively locate promoters and enhancers. We

lack sufficient understanding of these elements to derive a

mechanistic ‘promoter code’ or ‘enhancer code’. But extensive

labelled data on promoters and enhancers lends itself to

probabilistic classification. The complex interplay of TFs

and chromatin leading to the emergent properties of pro-

moter and enhancer activity seems particularly apt for

representation by deep neural networks.

3.4.2. Promoters
Despite decades of work, computational identification of pro-

moters remains a stubborn problem [222]. Researchers have

used neural networks for promoter recognition as early as

1996 [223]. Recently, a CNN recognized promoter sequences

with sensitivity and specificity exceeding 90% [224]. Most

activity in computational prediction of regulatory regions, how-

ever, has moved to enhancer identification. Because one can

identify promoters with straightforward biochemical assays

[225,226], the direct rewards of promoter prediction alone have

decreased. But the reliable ground-truth provided by these
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assays makes promoter identification an appealing test bed for

deep learning approaches that can also identify enhancers.

3.4.3. Enhancers
Recognizing enhancers presents additional challenges.

Enhancers may be up to 1 000 000 bp away from the affected

promoter, and even within introns of other genes [227]. Enhan-

cers do not necessarily operate on the nearest gene and may

affect multiple genes. Their activity is frequently tissue- or

context-specific. No biochemical assay can reliably identify

all enhancers. Distinguishing them from other regulatory

elements remains difficult, and some believe the distinction

somewhat artificial [228]. While these factors make the enhan-

cer identification problem more difficult, they also make a

solution more valuable.

Several neural network approaches yielded promising

results in enhancer prediction. Both Basset [229] and DeepEn-

hancer [230] used CNNs to predict enhancers. DECRES used

a feed-forward neural network [231] to distinguish between

different kinds of regulatory elements, such as active enhan-

cers and promoters. DECRES had difficulty distinguishing

between inactive enhancers and promoters. They also investi-

gated the power of sequence features to drive classification,

finding that beyond CpG islands, few were useful.

Comparing the performance of enhancer prediction

methods illustrates the problems in using metrics created

with different benchmarking procedures. Both the Basset

and DeepEnhancer studies include comparisons to a baseline

SVM approach, gkm-SVM [202]. The Basset study reports

gkm-SVM attains a mean area under the precision-recall

curve (AUPR) of 0.322 over 164 cell types [229]. The DeepEn-

hancer study reports for gkm-SVM a dramatically different

AUPR of 0.899 on nine cell types [230]. This large difference

means it is impossible to directly compare the performance of

Basset and DeepEnhancer based solely on their reported

metrics. DECRES used a different set of metrics altogether.

To drive further progress in enhancer identification, we

must develop a common and comparable benchmarking

procedure (see Discussion).

3.4.4. Promoter – enhancer interactions
In addition to the location of enhancers, identifying enhancer–

promoter interactions in three-dimensional space will provide

critical knowledge for understanding transcriptional regu-

lation. SPEID used a CNN to predict these interactions with

only sequence and the location of putative enhancers and

promoters along a one-dimensional chromosome [232]. It

compared well to other methods using a full complement

of biochemical data from ChIP-seq and other epigenomic

methods. Of course, the putative enhancers and promoters

used were themselves derived from epigenomic methods.

But one could easily replace them with the output of one of

the enhancer or promoter prediction methods above.

3.5. MicroRNA binding
Prediction of miRNAs and miRNA targets is of great interest, as

they are critical components of gene regulatory networks

and are often conserved across great evolutionary distance

[233,234]. While many machine learning algorithms have

been applied to these tasks, they currently require extensive fea-

ture selection and optimization. For instance, one of the most

widely adopted tools for miRNA target prediction, TargetScan,

trained multiple linear regression models on 14 hand-curated

features including structural accessibility of the target site on

the mRNA, the degree of site conservation and predicted

thermodynamic stability of the miRNA–mRNA complex

[235]. Some of these features, including structural accessibility,

are imperfect or empirically derived. In addition, current

algorithms suffer from low specificity [236].

As in other applications, deep learning promises to

achieve equal or better performance in predictive tasks by

automatically engineering complex features to minimize an

objective function. Two recently published tools use different

recurrent neural network-based architectures to perform

miRNA and target prediction with solely sequence data as

input [236,237]. Though the results are preliminary and still

based on a validation set rather than a completely indepen-

dent test set, they were able to predict microRNA target

sites with higher specificity and sensitivity than TargetScan.

Excitingly, these tools seem to show that RNNs can accu-

rately align sequences and predict bulges, mismatches and

wobble base pairing without requiring the user to input sec-

ondary structure predictions or thermodynamic calculations.

Further incremental advances in deep learning for miRNA

and target prediction will likely be sufficient to meet the cur-

rent needs of systems biologists and other researchers who

use prediction tools mainly to nominate candidates that are

then tested experimentally.

3.6. Protein secondary and tertiary structure
Proteins play fundamental roles in almost all biological pro-

cesses, and understanding their structure is critical for basic

biology and drug development. UniProt currently has about

94 million protein sequences, yet fewer than 100 000 proteins

across all species have experimentally solved structures in

Protein Data Bank (PDB). As a result, computational structure

prediction is essential for a majority of proteins. However, this

is very challenging, especially when similar solved structures,

called templates, are not available in PDB. Over the past several

decades, many computational methods have been developed

to predict aspects of protein structure such as secondary struc-

ture, torsion angles, solvent accessibility, inter-residue contact

maps, disorder regions and side-chain packing. In recent

years, multiple deep learning architectures have been applied,

including DBNs, LSTMs, CNNs and deep convolutional neural

fields [31,238].

Here, we focus on deep learning methods for two repre-

sentative sub-problems: secondary structure prediction and

contact map prediction. Secondary structure refers to local

conformation of a sequence segment, while a contact map

contains information on all residue–residue contacts. Second-

ary structure prediction is a basic problem and an almost

essential module of any protein structure prediction package.

Contact prediction is much more challenging than secondary

structure prediction, but it has a much larger impact on ter-

tiary structure prediction. In recent years, the accuracy of

contact prediction has greatly improved [29,239–241].

One can represent protein secondary structure with three

different states (a-helix, b-strand and loop regions) or eight

finer-grained states. The accuracy of a three-state prediction

is called Q3, and accuracy of an eight-state prediction is

called Q8. Several groups [30,242,243] applied deep learning

to protein secondary structure prediction but were unable to

achieve significant improvement over the de facto standard
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method PSIPRED [244], which uses two shallow feed-forward

neural networks. In 2014, Zhou & Troyanskaya [245] demon-

strated that they could improve Q8 accuracy by using a deep

supervised and convolutional generative stochastic network.

In 2016, Wang et al. developed a DeepCNF model that

improved Q3 and Q8 accuracy as well as prediction of solvent

accessibility and disorder regions [31,238]. DeepCNF achieved

a higher Q3 accuracy than the standard maintained by

PSIPRED for more than 10 years. This improvement may be

mainly due to the ability of convolutional neural fields to cap-

ture long-range sequential information, which is important for

b-strand prediction. Nevertheless, the improvements in sec-

ondary structure prediction from DeepCNF are unlikely to

result in a commensurate improvement in tertiary structure

prediction because secondary structure mainly reflects

coarse-grained local conformation of a protein structure.

Protein contact prediction and contact-assisted folding

(i.e. folding proteins using predicted contacts as restraints)

represent a promising new direction for ab initio folding of

proteins without good templates in PDB. Coevolution analy-

sis is effective for proteins with a very large number (more

than 1000) of sequence homologues [241], but fares poorly

for proteins without many sequence homologues. By combin-

ing coevolution information with a few other protein

features, shallow neural network methods such as MetaPSI-

COV [239] and CoinDCA-NN [246] have shown some

advantage over pure coevolution analysis for proteins with

few sequence homologues, but their accuracy is still far

from satisfactory. In recent years, deeper architectures have

been explored for contact prediction, such as CMAPpro

[247], DNCON [248] and PConsC [249]. However, blindly

tested in the well-known CASP competitions, these methods

did not show any advantage over MetaPSICOV [239].

Recently, Wang et al. [29] proposed the deep learning

method RaptorX-Contact, which significantly improves con-

tact prediction over MetaPSICOV and pure coevolution

methods, especially for proteins without many sequence

homologues. It employs a network architecture formed by

one one-dimensional residual neural network and one 2D

residual neural network. Blindly tested in the latest CASP

competition (i.e. CASP12 [250]), RaptorX-Contact ranked

first in F1 score on free-modelling targets as well as the

whole set of targets. In CAMEO (which can be interpreted

as a fully automated CASP) [251], its predicted contacts

were also able to fold proteins with a novel fold and only

65–330 sequence homologues. This technique also worked

well on membrane proteins even when trained on non-mem-

brane proteins [252]. RaptorX-Contact performed better

mainly due to the introduction of residual neural networks

and exploitation of contact occurrence patterns by simul-

taneously predicting all the contacts in a single protein.

Taken together, ab initio folding is becoming much easier

with the advent of direct evolutionary coupling analysis and

deep learning techniques. We expect further improvements in

contact prediction for proteins with fewer than 1000 homol-

ogues by studying new deep network architectures. The

deep learning methods summarized above also apply to

interfacial contact prediction for protein complexes but may

be less effective because on average protein complexes have

fewer sequence homologues. Beyond secondary structure

and contact maps, we anticipate increased attention to pre-

dicting 3D protein structure directly from amino acid

sequence and single residue evolutionary information [253].

3.7. Structure determination and cryo-electron
microscopy

Complementing computational prediction approaches, cryo-

electron microscopy (cryo-EM) allows near-atomic resolution

determination of protein models by comparing individual

electron micrographs [254]. Detailed structures require tens

of thousands of protein images [255]. Technological develop-

ment has increased the throughput of image capture. New

hardware, such as direct electron detectors, has made large-

scale image production practical, while new software has

focused on rapid, automated image processing.

Some components of cryo-EM image processing remain

difficult to automate. For instance, in particle picking, micro-

graphs are scanned to identify individual molecular images

that will be used in structure refinement. In typical appli-

cations, hundreds of thousands of particles are necessary to

determine a structure to near-atomic resolution, making

manual selection impractical [255]. Typical selection

approaches are semi-supervised; a user will select several par-

ticles manually, and these selections will be used to train a

classifier [256,257]. Now CNNs are being used to select par-

ticles in tools like DeepPicker [258] and DeepEM [259]. In

addition to addressing shortcomings from manual selection,

such as selection bias and poor discrimination of low-contrast

images, these approaches also provide a means of full auto-

mation. DeepPicker can be trained by reference particles from

other experiments with structurally unrelated macromolecules,

allowing for fully automated application to new samples.

Downstream of particle picking, deep learning is being

applied to other aspects of cryo-EM image processing. Stat-

istical manifold learning has been implemented in the

software package ROME to classify selected particles and elu-

cidate the different conformations of the subject molecule

necessary for accurate 3D structures [260]. These recent

tools highlight the general applicability of deep learning

approaches for image processing to increase the throughput

of high-resolution cryo-EM.

3.8. Protein – protein interactions
Protein–protein interactions (PPIs) are highly specific and

non-accidental physical contacts between proteins, which

occur for purposes other than generic protein production or

degradation [261]. Abundant interaction data have been gen-

erated in part thanks to advances in high-throughput

screening methods, such as yeast two-hybrid and affinity-

purification with mass spectrometry. However, because

many PPIs are transient or dependent on biological context,

high-throughput methods can fail to capture a number of

interactions. The imperfections and costs associated with

many experimental PPI screening methods have motivated

an interest in high-throughput computational prediction.

Many machine learning approaches to PPI have focused on

text mining the literature [262,263], but these approaches can

fail to capture context-specific interactions, motivating de

novo PPI prediction. Early de novo prediction approaches

used a variety of statistical and machine learning tools on struc-

tural and sequential data, sometimes with reference to the

existing body of protein structure knowledge. In the context

of PPIs—as in other domains—deep learning shows promise

both for exceeding current predictive performance and for

circumventing limitations from which other approaches suffer.
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One of the key difficulties in applying deep learning tech-

niques to binding prediction is the task of representing

peptide and protein sequences in a meaningful way. DeepPPI

[264] made PPI predictions from a set of sequence and compo-

sition protein descriptors using a two-stage deep neural

network that trained two subnetworks for each protein and

combined them into a single network. Sun et al. [265] applied

autocovariances, a coding scheme that returns uniform-size

vectors describing the covariance between physico-chemical

properties of the protein sequence at various positions. Wang

et al. [266] used deep learning as an intermediate step in PPI

prediction. They examined 70 amino acid protein sequences

from each of which they extracted 1260 features. A stacked

sparse autoencoder with two hidden layers was then used to

reduce feature dimensions and noisiness before a novel type

of classification vector machine made PPI predictions.

Beyond predicting whether or not two proteins interact,

Du et al. [267] employed a deep learning approach to predict

the residue contacts between two interacting proteins. Using

features that describe how similar a protein’s residue is rela-

tive to similar proteins at the same position, the authors

extracted uniform-length features for each residue in the

protein sequence. A stacked autoencoder took two such vec-

tors as input for the prediction of contact between two

residues. The authors evaluated the performance of this

method with several classifiers and showed that a deep

neural network classifier paired with the stacked autoencoder

significantly exceeded classical machine learning accuracy.

Because many studies used predefined higher-level fea-

tures, one of the benefits of deep learning—automatic

feature extraction—is not fully leveraged. More work is

needed to determine the best ways to represent raw protein

sequence information so that the full benefits of deep learning

as an automatic feature extractor can be realized.

3.9. Major histocompatibility complex-peptide binding
An important type of PPI involves the immune system’s ability

to recognize the body’s own cells. The major histocompatibility

complex (MHC) plays a key role in regulating this process by

binding antigens and displaying them on the cell surface to

be recognized by T cells. Owing to its importance in immunity

and immune response, peptide–MHC binding prediction is a

useful problem in computational biology, and one that must

account for the allelic diversity in MHC-encoding gene region.

Shallow, feed-forward neural networks are competitive

methods and have made progress towards pan-allele and

pan-length peptide representations. Sequence alignment tech-

niques are useful for representing variable-length peptides as

uniform-length features [268,269]. For pan-allelic prediction,

NetMHCpan [270,271] used a pseudo-sequence representation

of the MHC class I molecule, which included only poly-

morphic peptide contact residues. The sequences of the

peptide and MHC were then represented using both sparse

vector encoding and Blosum encoding, in which amino acids

are encoded by matrix score vectors. A comparable method

to the NetMHC tools is MHCflurry [272], a method which

shows superior performance on peptides of lengths other

than nine. MHCflurry adds placeholder amino acids to trans-

form variable-length peptides to length 15 peptides. When

training the MHCflurry feed-forward neural network [273],

the authors imputed missing MHC-peptide binding affinities

using a Gibbs sampling method, showing that imputation

improves performance for datasets with roughly 100 or fewer

training examples. MHCflurry’s imputation method increases

its performance on poorly characterized alleles, making it com-

petitive with NetMHCpan for this task. Kuksa et al. [274]

developed a shallow, higher-order neural network (HONN)

comprised both mean and covariance hidden units to capture

some of the higher-order dependencies between amino acid

locations. Pre-training this HONN with a semi-RBM, the

authors found that the performance of the HONN exceeded

that of a simple deep neural network, as well as that

of NetMHC.

Deep learning’s unique flexibility was recently leveraged

by Bhattacharya et al. [275], who used a gated RNN method

called MHCnuggets to overcome the difficulty of multiple

peptide lengths. Under this framework, they used smoothed

sparse encoding to represent amino acids individually.

Because MHCnuggets had to be trained for every MHC

allele, performance was far better for alleles with abundant,

balanced training data. Vang et al. [276] developed HLA-

CNN, a method which maps amino acids onto a 15-dimen-

sional vector space based on their context relation to other

amino acids before making predictions with a CNN. In a

comparison of several current methods, Bhattacharya et al.
found that the top methods—NetMHC, NetMHCpan,

MHCflurry and MHCnuggets—showed comparable per-

formance, but large differences in speed. Convolutional

neural networks (in this case, HLA-CNN) showed compara-

tively poor performance, while shallow networks and

RNNs performed the best. They found that MHCnuggets—

the recurrent neural network—was by far the fastest-training

among the top performing methods.

3.10. Protein – protein interaction networks and
graph analysis

Because interacting proteins are more likely to share a similar

function, the connectivity of a PPI network itself can be a

valuable information source for the prediction of protein

function [277]. To incorporate higher-order network infor-

mation, it is necessary to find a lower-level embedding of

network structure that preserves this higher-order structure.

Rather than use hand-crafted network features, deep learning

shows promise for the automatic discovery of predictive

features within networks. For example, Navlakha [278]

showed that a deep autoencoder was able to compress a

graph to 40% of its original size, while being able to recon-

struct 93% of the original graph’s edges, improving upon

standard dimension reduction methods. To achieve this,

each graph was represented as an adjacency matrix with

rows sorted in descending node degree order, then flattened

into a vector and given as input to the autoencoder. While the

activity of some hidden layers correlated with several popu-

lar hand-crafted network features such as k-core size and

graph density, this work showed that deep learning can effec-

tively reduce graph dimensionality while retaining much of

its structural information.

An important challenge in PPI network prediction is the

task of combining different networks and types of networks.

Gligorijevic et al. [279] developed a multimodal deep autoen-

coder, deepNF, to find a feature representation common

among several different PPI networks. This common lower-

level representation allows for the combination of various

PPI data sources towards a single predictive task. An SVM
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classifier trained on the compressed features from the middle

layer of the autoencoder outperformed previous methods in

predicting protein function.

Hamilton et al. [280] addressed the issue of large, hetero-

geneous and changing networks with an inductive approach

called GraphSAGE. By finding node embeddings through

learned aggregator functions that describe the node and its

neighbours in the network, the GraphSAGE approach

allows for the generalization of the model to new graphs.

In a classification task for the prediction of protein function,

Chen & Zhu [281] optimized this approach and enhanced

the graph convolutional network with a preprocessing step

that uses an approximation to the dropout operation. This

preprocessing effectively reduces the number of graph convo-

lutional layers and it significantly improves both training

time and prediction accuracy.

3.11. Morphological phenotypes
A field poised for dramatic revolution by deep learning is bio-

image analysis. Thus far, the primary use of deep learning for

biological images has been for segmentation—that is, for the

identification of biologically relevant structures in images

such as nuclei, infected cells or vasculature—in fluorescence

or even brightfield channels [282]. Once the so-called regions

of interest have been identified, it is often straightforward to

measure biological properties of interest, such as fluorescence

intensities, textures and sizes. Given the dramatic successes

of deep learning in biological imaging, we simply refer to

articles that review recent advancements [17,282,283]. How-

ever, user-friendly tools must be developed for deep learning

to become commonplace for biological image segmentation.

We anticipate an additional paradigm shift in bioimaging

that will be brought about by deep learning: what if images

of biological samples, from simple cell cultures to three-

dimensional organoids and tissue samples, could be mined

for much more extensive biologically meaningful information

than is currently standard? For example, a recent study demon-

strated the ability to predict lineage fate in haematopoietic cells

up to three generations in advance of differentiation [284]. In

biomedical research, most often biologists decide in advance

what feature to measure in images from their assay system.

Although classical methods of segmentation and feature

extraction can produce hundreds of metrics per cell in an

image, deep learning is unconstrained by human intuition

and can in theory extract more subtle features through its

hidden nodes. Already, there is evidence deep learning can

surpass the efficacy of classical methods [285], even using gen-

eric deep convolutional networks trained on natural images

[286], known as transfer learning. Recent work by Johnson

et al. [287] demonstrated how the use of a conditional adversar-

ial autoencoder allows for a probabilistic interpretation of cell

and nuclear morphology and structure localization from fluor-

escence images. The proposed model is able to generalize well

to a wide range of subcellular localizations. The generative

nature of the model allows it to produce high-quality synthetic

images predicting localization of subcellular structures by

directly modelling the localization of fluorescent labels.

Notably, this approach reduces the modelling time by omitting

the subcellular structure segmentation step.

The impact of further improvements on biomedicine could

be enormous. Comparing cell population morphologies using

conventional methods of segmentation and feature extraction

has already proven useful for functionally annotating genes

and alleles, identifying the cellular target of small molecules,

and identifying disease-specific phenotypes suitable for

drug screening [288–290]. Deep learning would bring to

these new kinds of experiments—known as image-based

profiling or morphological profiling—a higher degree of accu-

racy, stemming from the freedom from human-tuned feature

extraction strategies.

3.12. Single-cell data
Single-cell methods are generating excitement as biologists

characterize the vast heterogeneity within unicellular species

and between cells of the same tissue type in the same organism

[291]. For instance, tumour cells and neurons can both harbour

extensive somatic variation [292]. Understanding single-cell

diversity in all its dimensions—genetic, epigenomic, transcrip-

tomic, proteomic, morphologic and metabolic—is key if

treatments are to be targeted not only to a specific individual,

but also to specific pathological subsets of cells. Single-cell

methods also promise to uncover a wealth of new biological

knowledge. A sufficiently large population of single cells will

have enough representative ‘snapshots’ to recreate timelines

of dynamic biological processes. If tracking processes over

time is not the limiting factor, single-cell techniques can pro-

vide maximal resolution compared to averaging across all

cells in bulk tissue, enabling the study of transcriptional burst-

ing with single-cell fluorescence in situ hybridization or the

heterogeneity of epigenomic patterns with single-cell Hi-C or

ATAC-seq [293,294]. Joint profiling of single-cell epigenomic

and transcriptional states provides unprecedented views of

regulatory processes [295].

However, large challenges exist in studying single cells.

Relatively few cells can be assayed at once using current dro-

plet, imaging or microwell technologies, and low-abundance

molecules or modifications may not be detected by chance

due to a phenomenon known as dropout, not to be confused

with the dropout layer of deep learning. To solve this pro-

blem, Angermueller et al. [296] trained a neural network to

predict the presence or the absence of methylation of a

specific CpG site in single cells based on surrounding methyl-

ation signal and underlying DNA sequence, achieving

several percentage points of improvement compared to

random forests or deep networks trained only on CpG or

sequence information. Similar deep learning methods have

been applied to impute low-resolution ChIP-seq signal from

bulk tissue with great success, and they could easily be

adapted to single-cell data [193,297]. Deep learning has also

been useful for dealing with batch effects [298].

Examining populations of single cells can reveal biologi-

cally meaningful subsets of cells as well as their underlying

gene regulatory networks [299]. Unfortunately, machine learn-

ing methods generally struggle with imbalanced data—when

there are many more examples of class 1 than class 2—because

prediction accuracy is usually evaluated over the entire dataset.

To tackle this challenge, Arvaniti et al. [300] classified healthy

and cancer cells expressing 25 markers by using the most dis-

criminative filters from a CNN trained on the data as a linear

classifier. They achieved impressive performance, even for

cell types where the subset percentage ranged from 0.1 to

1%, significantly outperforming logistic regression and

distance-based outlier detection methods. However, they did

not benchmark against random forests, which tend to work

better for imbalanced data, and their data were relatively

low dimensional.
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Neural networks can also learn low-dimensional represen-

tations of single-cell gene expression data for visualization,

clustering and other tasks. Both scvis [301] and scVI [302] are

unsupervised approaches based on VAEs. Whereas scvis pri-

marily focuses on single-cell visualization as a replacement

for t-Distributed Stochastic Neighbour Embedding [303], the

scVI model accounts for zero-inflated expression distributions

and can impute zero values that are due to technical effects.

Beyond VAEs, Lin et al. [304] developed a supervised model

to predict cell type. Similar to transfer learning approaches

for microscopy images [286], they demonstrated that the

hidden layer representations were informative in general and

could be used to identify cellular subpopulations or match

new cells to known cell types. The supervised neural network’s

representation was better overall at retrieving cell types than

alternatives, but all methods struggled to recover certain cell

types such as haematopoietic stem cells and inner cell mass

cells. As the Human Cell Atlas [305] and related efforts gener-

ate more single-cell expression data, there will be opportunities

to assess how well these low-dimensional representations gen-

eralize to new cell types as well as abundant training data to

learn broadly applicable representations.

The sheer quantity of omic information that can be

obtained from each cell, as well as the number of cells in each

dataset, uniquely position single-cell data to benefit from

deep learning. In the future, lineage tracing could be revolutio-

nized by using autoencoders to reduce the feature space of

transcriptomic or variant data followed by algorithms to

learn optimal cell differentiation trajectories [306] or by feeding

cell morphology and movement into neural networks [284].

Reinforcement learning algorithms [307] could be trained on

the evolutionary dynamics of cancer cells or bacterial cells

undergoing selection pressure and reveal whether patterns of

adaptation are random or deterministic, allowing us to develop

therapeutic strategies that forestall resistance. We are excited to

see the creative applications of deep learning to single-cell

biology that emerge over the next few years.

3.13. Metagenomics
Metagenomics, which refers to the study of genetic material—

16S rRNA or whole-genome shotgun DNA—from microbial

communities, has revolutionized the study of micro-scale eco-

systems within and around us. In recent years, machine

learning has proved to be a powerful tool for metagenomic

analysis. 16S rRNA has long been used to deconvolve mixtures

of microbial genomes, yet this ignores more than 99% of the

genomic content. Subsequent tools aimed to classify 300–

3000 bp reads from complex mixtures of microbial genomes

based on tetranucleotide frequencies, which differ across

organisms [308], using supervised [309,310] or unsupervised

methods [311]. Then, researchers began to use techniques

that could estimate relative abundances from an entire

sample faster than classifying individual reads [312–315].

There is also great interest in identifying and annotating

sequence reads [316,317]. However, the focus on taxonomic

and functional annotation is just the first step. Several groups

have proposed methods to determine host or environment

phenotypes from the organisms that are identified [318–321]

or overall sequence composition [322]. Also, researchers have

looked into how feature selection can improve classification

[321,323], and techniques have been proposed that are classifier-

independent [324,325].

Most neural networks are used for phylogenetic classifi-

cation or functional annotation from sequence data where

there is ample data for training. Neural networks have been

applied successfully to gene annotation (e.g. Orphelia [326]

and FragGeneScan [327]). Representations (similar to Word2-

Vec [105] in NLP) for protein family classification have been

introduced and classified with a skip-gram neural network

[328]. RNNs show good performance for homology and

protein family identification [329,330].

One of the first techniques of de novo genome binning used

self-organizing maps, a type of neural network [311]. Essinger

et al. [331] used Adaptive Resonance Theory to cluster similar

genomic fragments and showed that it had better performance

than k-means. However, other methods based on interpolated

Markov models [332] have performed better than these early

genome binners. Neural networks can be slow and there-

fore have had limited use for reference-based taxonomic

classification, with TAC-ELM [333] being the only neural

network-based algorithm to taxonomically classify massive

amounts of metagenomic data. An initial study successfully

applied neural networks to taxonomic classification of 16S

rRNA genes, with convolutional networks providing about 10%

accuracy genus-level improvement over RNNs and random

forests [334]. However, this study evaluated only 3000 sequences.

Neural network uses for classifying phenotype from the

microbial composition are just beginning. A simple multi-

layer perceptron (MLP) was able to classify wound severity

from microbial species present in the wound [335]. Recently,

Ditzler et al. [336] associated soil samples with pH level using

MLPs, DBNs and RNNs. Besides classifying samples appro-

priately, internal phylogenetic tree nodes inferred by the

networks represented features for low and high pH. Thus,

hidden nodes might provide biological insight as well as

new features for future metagenomic sample comparison.

Also, an initial study has shown promise of these networks

for diagnosing disease [337].

Challenges remain in applying deep neural networks to

metagenomics problems. They are not yet ideal for phenotype

classification because most studies contain tens of samples and

hundreds or thousands of features (species). Such underdeter-

mined, or ill-conditioned, problems are still a challenge for

deep neural networks that require many training examples.

Also, due to convergence issues [338], taxonomic classification

of reads from whole-genome sequencing seems out of reach at

the moment for deep neural networks. There are only thou-

sands of full-sequenced genomes as compared to hundreds

of thousands of 16S rRNA sequences available for training.

However, because RNNs have been applied to base calls

for the Oxford Nanopore long-read sequencer with some suc-

cess [339] (discussed below), one day the entire pipeline, from

denoising to functional classification, may be combined into

one step using powerful LSTMs [340]. For example, metage-

nomic assembly usually requires binning then assembly,

but could deep neural nets accomplish both tasks in one net-

work? We believe the greatest potential for deep learning is to

learn the complete characteristics of a metagenomic sample in

one complex network.

3.14. Sequencing and variant calling
While we have so far primarily discussed the role of deep learn-

ing in analysing genomic data, deep learning can also

substantially improve our ability to obtain the genomic data
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itself. We discuss two specific challenges: calling SNPs and

indels (insertions and deletions) with high specificity and sen-

sitivity and improving the accuracy of new types of data such

as nanopore sequencing. These two tasks are critical for study-

ing rare variation, allele-specific transcription and translation,

and splice site mutations. In the clinical realm, sequencing of

rare tumour clones and other genetic diseases will require the

accurate calling of SNPs and indels.

Current methods achieve relatively high (greater than

99%) precision at 90% recall for SNPs and indel calls from

Illumina short-read data [341], yet this leaves a large

number of potentially clinically important remaining false

positives and false negatives. These methods have so far

relied on experts to build probabilistic models that reliably

separate signal from noise. However, this process is time-

consuming and fundamentally limited by how well we

understand and can model the factors that contribute to

noise. Recently, two groups have applied deep learning to

construct data-driven unbiased noise models. One of these

models, DeepVariant, leverages Inception, a neural network

trained for image classification by Google Brain, by encoding

reads around a candidate SNP as a 221 � 100 bitmap image,

where each column is a nucleotide and each row is a read

from the sample library [341]. The top five rows represent

the reference, and the bottom 95 rows represent randomly

sampled reads that overlap the candidate variant. Each

RGBA (red/green/blue/alpha) image pixel encodes the

base (A, C, G, T) as a different red value, quality score as a

green value, strand as a blue value and variation from the

reference as the alpha value. The neural network outputs

genotype probabilities for each candidate variant. They

were able to achieve better performance than GATK [342], a

leading genotype caller, even when GATK was given infor-

mation about population variation for each candidate

variant. Another method, still in its infancy, hand-developed

62 features for each candidate variant and fed these vectors

into a fully connected deep neural network [343]. Unfortu-

nately, this feature set required at least 15 iterations of

software development to fine-tune, which suggests that

these models may not generalize.

Variant calling will benefit more from optimizing neural

network architectures than from developing features by

hand. An interesting and informative next step would be to rig-

orously test if encoding raw sequence and quality data as an

image, tensor or some other mixed format produces the best

variant calls. Because many of the latest neural network archi-

tectures (ResNet, Inception, Xception and others) are already

optimized for and pre-trained on generic, large-scale image

datasets [344], encoding genomic data as images could prove

to be a generally effective and efficient strategy.

In limited experiments, DeepVariant was robust to

sequencing depth, read length and even species [341]. How-

ever, a model built on Illumina data, for instance, may not be

optimal for Pacific Biosciences long-read data or MinION

nanopore data, which have vastly different specificity

and sensitivity profiles and signal-to-noise characteristics.

Recently, Boža et al. [339] used bidirectional RNNs to infer

the E. coli sequence from MinION nanopore electric current

data with higher per-base accuracy than the proprietary

hidden Markov model-based algorithm Metrichor. Unfortu-

nately, training any neural network requires a large amount

of data, which is often not available for new sequencing tech-

nologies. To circumvent this, one very preliminary study

simulated mutations and spiked them into somatic and germ-

line RNA-seq data, then trained and tested a neural network

on simulated paired RNA-seq and exome sequencing data

[345]. However, because this model was not subsequently

tested on ground-truth datasets, it is unclear whether simu-

lation can produce sufficiently realistic data to produce

reliable models.

Method development for interpreting new types of

sequencing data has historically taken two steps: first,

easily implemented hard cutoffs that prioritize specificity

over sensitivity, then expert development of probabilistic

models with hand-developed inputs [345]. We anticipate

that these steps will be replaced by deep learning, which

will infer features simply by its ability to optimize a complex

model against data.

3.15. Neuroscience
Artificial neural networks were originally conceived as a

model for computation in the brain [7]. Although deep

neural networks have evolved to become a workhorse

across many fields, there is still a strong connection between

deep networks and the study of the brain. The rich parallel

history of artificial neural networks in computer science

and neuroscience is reviewed in [346–348].

CNNs were originally conceived as faithful models of

visual information processing in the primate visual system,

and are still considered so [349]. The activations of hidden

units in consecutive layers of deep convolutional networks

have been found to parallel the activity of neurons in con-

secutive brain regions involved in processing visual scenes.

Such models of neural computation are called ‘encoding’

models, as they predict how the nervous system might

encode sensory information in the world.

Even when they are not directly modelling biological

neurons, deep networks have been a useful computational

tool in neuroscience. They have been developed as statistical

time-series models of neural activity in the brain. And in

contrast to the encoding models described earlier, these

models are used for decoding neural activity, for instance,

in brain–machine interfaces [350]. They have been crucial

to the field of connectomics, which is concerned with map-

ping the connectivity of biological neural networks in the

brain. In connectomics, deep networks are used to segment

the shapes of individual neurons and to infer their connec-

tivity from 3D electron microscopic images [351], and they

have also been used to infer causal connectivity from optical

measurement and perturbation of neural activity [352].

It is an exciting time for neuroscience. Recent rapid pro-

gress in deep networks continues to inspire new machine

learning-based models of brain computation [346]. And

neuroscience continues to inspire new models of artificial

intelligence [348].

4. The impact of deep learning in treating
disease and developing new treatments

Given the need to make better, faster interventions at the

point of care—incorporating the complex calculus of a

patient’s symptoms, diagnostics and life history—there

have been many attempts to apply deep learning to patient

treatment. Success in this area could help to enable
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personalized healthcare or precision medicine [353,354]. Ear-

lier, we reviewed approaches for patient categorization. Here,

we examine the potential for better treatment, which broadly,

may be divided into methods for improved choices of

interventions for patients and those for development

of new interventions.

4.1. Clinical decision-making
In 1996, Tu [355] compared the effectiveness of artificial neural

networks and logistic regression, questioning whether these

techniques would replace traditional statistical methods for

predicting medical outcomes such as myocardial infarction

[356] or mortality [357]. He posited that while neural networks

have several advantages in representational power, the diffi-

culties in interpretation may limit clinical applications, a

limitation that still remains today. In addition, the challenges

faced by physicians parallel those encountered by deep learn-

ing. For a given patient, the number of possible diseases is

very large, with a long tail of rare diseases and patients are

highly heterogeneous and may present with very different

signs and symptoms for the same disease. Still, in 2006

Lisboa & Taktak [358] examined the use of artificial neural net-

works in medical journals, concluding that they improved

healthcare relative to traditional screening methods in 21 of

27 studies. Recent applications of deep learning in pharmaco-

genomics and pharmacoepigenomics show the potential for

improving patient treatment response and outcome prediction

using patient-specific data, pharmacogenomic targets and

pharmacological knowledge bases [20].

While further progress has been made in using deep

learning for clinical decision-making, it is hindered by a chal-

lenge common to many deep learning applications: it is much

easier to predict an outcome than to suggest an action to

change the outcome. Several attempts [121,123] at recasting

the clinical decision-making problem into a prediction pro-

blem (i.e. prediction of which treatment will most improve

the patient’s health) have accurately predicted survival pat-

terns, but technical and medical challenges remain for

clinical adoption (similar to those for categorization). In par-

ticular, remaining barriers include actionable interpretability

of deep learning models, fitting deep models to limited and

heterogeneous data, and integrating complex predictive

models into a dynamic clinical environment.

A critical challenge in providing treatment recom-

mendations is identifying a causal relationship for each

recommendation. Causal inference is often framed in terms

of the counterfactual question [359]. Johansson et al. [360]

use deep neural networks to create representation models

for covariates that capture nonlinear effects and show signifi-

cant performance improvements over existing models. In a

less formal approach, Kale et al. [361] first create a deep

neural network to model clinical time series and then analyse

the relationship of the hidden features to the output using a

causal approach.

A common challenge for deep learning is the interpret-

ability of the models and their predictions. The task of

clinical decision-making is necessarily risk-averse, so model

interpretability is key. Without clear reasoning, it is difficult

to establish trust in a model. As described above, there has

been some work to directly assign treatment plans without

interpretability; however, the removal of human experts

from the decision-making loop make the models difficult to

integrate with clinical practice. To alleviate this challenge,

several studies have attempted to create more interpretable

deep models, either specifically for healthcare or as a general

procedure for deep learning (see Discussion).

4.1.1. Predicting patient trajectories
A common application for deep learning in this domain is

the temporal structure of healthcare records. Many studies

[362–365] have used RNNs to categorize patients, but most

stop short of suggesting clinical decisions. Nemati et al.
[366] used deep reinforcement learning to optimize a heparin

dosing policy for intensive care patients. However, because

the ideal dosing policy is unknown, the model’s predictions

must be evaluated on counterfactual data. This represents a

common challenge when bridging the gap between research

and clinical practice. Because the ground-truth is unknown,

researchers struggle to evaluate model predictions in the

absence of interventional data, but the clinical application is

unlikely until the model has been shown to be effective.

The impressive applications of deep reinforcement learning

to other domains [307] have relied on the knowledge of the

underlying processes (e.g. the rules of the game). Some

models have been developed for targeted medical problems

[367], but a generalized engine is beyond current capabilities.

4.1.2. Clinical trial efficiency
A clinical deep learning task that has been more successful is

the assignment of patients to clinical trials. Ithapu et al. [368]

used a randomized denoising autoencoder to learn a multi-

modal imaging marker that predicts future cognitive and

neural decline from positron emission tomography (PET),

amyloid florbetapir PET and structural magnetic resonance

imaging. By accurately predicting which cases will progress

to dementia, they were able to efficiently assign patients to a

clinical trial and reduced the required sample sizes by a

factor of five. Similarly, Artemov et al. [369] applied deep learn-

ing to predict which clinical trials were likely to fail and which

were likely to succeed. By predicting the side effects and path-

way activations of each drug and translating these activations

to a success probability, their deep learning-based approach

was able to significantly outperform a random forest classifier

trained on gene expression changes. These approaches suggest

promising directions to improve the efficiency of clinical trials

and accelerate drug development.

4.2. Drug repositioning
Drug repositioning (or repurposing) is an attractive option for

delivering new drugs to the market because of the high costs

and failure rates associated with more traditional drug discov-

ery approaches [370,371]. A decade ago, the Connectivity Map

[372] had a sizeable impact. Reverse matching disease gene

expression signatures with a large set of reference compound

profiles allowed researchers to formulate repurposing hypoth-

eses at scale using a simple non-parametric test. Since then,

several advanced computational methods have been applied

to formulate and validate drug repositioning hypotheses

[373–375]. Using supervised learning and collaborative filter-

ing to tackle this type of problem is proving successful,

especially when coupling disease or compound omic data

with topological information from protein–protein or

protein–compound interaction networks [376–378].
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For example, Menden et al. [379] used a shallow neural

network to predict sensitivity of cancer cell lines to drug

treatment using both cell line and drug features, opening

the door to precision medicine and drug repositioning oppor-

tunities in cancer. More recently, Aliper et al. [37] used gene-

and pathway-level drug perturbation transcriptional profiles

from the Library of Network-Based Cellular Signatures [380]

to train a fully connected deep neural network to predict

drug therapeutic uses and indications. By using confusion

matrices and leveraging misclassification, the authors

formulated a number of interesting hypotheses, including

repurposing cardiovascular drugs such as otenzepad and

pinacidil for neurological disorders.

Drug repositioning can also be approached by attempting

to predict novel drug–target interactions and then repurposing

the drug for the associated indication [381,382]. Wang et al.
[383] devised a pairwise input neural network with two

hidden layers that takes two inputs, a drug and a target binding

site, and predicts whether they interact. Wang et al. [38] trained

individual RBMs for each target in a drug–target interaction

network and used these models to predict novel interactions

pointing to new indications for existing drugs. Wen et al. [39]

extended this concept to deep learning by creating a DBN

called DeepDTIs, which predicts interactions using chemical

structure and protein sequence features.

Drug repositioning appears an obvious candidate for deep

learning both because of the large amount of high-dimensional

data available and the complexity of the question being asked.

However, perhaps the most promising piece of work in this

space [37] is more of a proof of concept than a real-world

hypothesis-generation tool; notably, deep learning was used

to predict drug indications but not for the actual repositioning.

At present, some of the most popular state-of-the-art methods

for signature-based drug repurposing [384] do not use predic-

tive modelling. A mature and production-ready framework for

drug repositioning via deep learning is currently missing.

4.3. Drug development
4.3.1. Ligand-based prediction of bioactivity
High-throughput chemical screening in biomedical research

aims to improve therapeutic options over a long-term horizon

[22]. The objective is to discover which small molecules (also

referred to as chemical compounds or ligands) specifically

affect the activity of a target, such as a kinase, PPI or broader

cellular phenotype. This screening is often one of the first

steps in a long drug discovery pipeline, where novel mol-

ecules are pursued for their ability to inhibit or enhance

disease-relevant biological mechanisms [385]. Initial hits are

confirmed to eliminate false positives and proceed to the

lead generation stage [386], where they are evaluated for

absorption, distribution, metabolism, excretion and toxicity

(ADMET) and other properties. It is desirable to advance

multiple lead series, clusters of structurally similar active

chemicals, for further optimization by medicinal chemists to

protect against unexpected failures in the later stages of

drug discovery [385].

Computational work in this domain aims to identify suf-

ficient candidate active compounds without exhaustively

screening libraries of hundreds of thousands or millions of

chemicals. Predicting chemical activity computationally is

known as virtual screening. An ideal algorithm will rank a

sufficient number of active compounds before the inactives,

but the rankings of actives relative to other actives and inac-

tives are less important [387]. Computational modelling also

has the potential to predict ADMET traits for lead generation

[388] and how drugs are metabolized [389].

Ligand-based approaches train on chemicals’ features with-

out modelling target features (e.g. protein structure). Neural

networks have a long history in this domain [21,23], and the

2012 Merck Molecular Activity Challenge on Kaggle generated

substantial excitement about the potential for high-parameter

deep learning approaches. The winning submission was an

ensemble that included a multi-task MLP network [390]. The

sponsors noted drastic improvements over a random forest

baseline, remarking ‘we have seldom seen any method in the

past 10 years that could consistently outperform [random

forest] by such a margin’ [391], but not all outside experts

were convinced [392]. Subsequent work (reviewed in more

detail by Goh et al. [4]) explored the effects of jointly modelling

far more targets than the Merck challenge [393,394], with

Ramsundar et al. [394] showing that the benefits of multi-task

networks had not yet saturated even with 259 targets.

Although DeepTox [395], a deep learning approach, won

another competition, the Toxicology in the 21st Century

(Tox21) Data Challenge, it did not dominate alternative

methods as thoroughly as in other domains. DeepTox was

the top performer on nine of 15 targets and highly competitive

with the top performer on the others. However, for many tar-

gets, there was little separation between the top two or three

methods.

The nuanced Tox21 performance may be more reflective of

the practical challenges encountered in ligand-based chemical

screening than the extreme enthusiasm generated by the Merck

competition. A study of 22 ADMET tasks demonstrated that

there are limitations to multi-task transfer learning that are in

part a consequence of the degree to which tasks are related

[388]. Some of the ADMET datasets showed superior per-

formance in multi-task models with only 22 ADMET tasks

compared to multi-task models with over 500 less-similar

tasks. In addition, the training datasets encountered in practical

applications may be tiny relative to what is available in public

datasets and organized competitions. A study of BACE-1

inhibitors included only 1547 compounds [396]. Machine

learning models were able to train on this limited dataset,

but overfitting was a challenge and the differences between

random forests and a deep neural network were negligible,

especially in the classification setting. Overfitting is still a pro-

blem in larger chemical screening datasets with tens or

hundreds of thousands of compounds because the number of

active compounds can be very small, of the order of 0.1%

of all tested chemicals for a typical target [397]. This has

motivated low-parameter neural networks that emphasize

compound–compound similarity, such as influence-relevance

voter [387,398], instead of predicting compound activity

directly from chemical features.

4.3.2. Chemical featurization and representation learning
Much of the recent excitement in this domain has come from

what could be considered a creative experimentation phase,

in which deep learning has offered novel possibilities for

feature representation and modelling of chemical com-

pounds. A molecular graph, where atoms are labelled

nodes and bonds are labelled edges, is a natural way to rep-

resent a chemical structure. Chemical features can be
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represented as a list of molecular descriptors such as

molecular weight, atom counts, functional groups, charge

representations, summaries of atom–atom relationships in

the molecular graph, and more sophisticated derived proper-

ties [399]. Traditional machine learning approaches relied on

preprocessing the graph into a feature vector of molecular

descriptors or a fixed-width bit vector known as a fingerprint

[400]. The same fingerprints have been used by some drug–

target interaction methods discussed above [39]. An overly

simplistic but approximately correct view of chemical finger-

prints is that each bit represents the presence or the absence

of a particular chemical substructure in the molecular

graph. Instead of using molecular descriptors or fingerprints

as input, modern neural networks can represent chemicals as

textual strings [401] or images [402] or operate directly on the

molecular graph, which has enabled strategies for learning

novel chemical representations.

Virtual screening and chemical property prediction have

emerged as one of the major applications areas for graph-

based neural networks. Duvenaud et al. [403] generalized stan-

dard circular fingerprints by substituting discrete operations in

the fingerprinting algorithm with operations in a neural net-

work, producing a real-valued feature vector instead of a bit

vector. Other approaches offer trainable networks that can

learn chemical feature representations that are optimized for

a particular prediction task. Lusci et al. [404] applied recursive

neural networks for directed acyclic graphs to undirected mol-

ecular graphs by creating an ensemble of directed graphs in

which one atom is selected as the root node. Graph convolu-

tions on undirected molecular graphs have eliminated the

need to enumerate artificially directed graphs, learning feature

vectors for atoms that are a function of the properties of neigh-

bouring atoms and local regions on the molecular graph [405–

407]. More sophisticated graph algorithms [408,409] addressed

limitations of standard graph convolutions that primarily oper-

ate on each node’s local neighbourhood. We anticipate that

these graph-based neural networks could also be applicable

in other types of biological networks, such as the PPI networks

we discussed previously.

Advances in chemical representation learning have also

enabled new strategies for learning chemical–chemical simi-

larity functions. Altae-Tran et al. [406] developed a one-shot

learning network to address the reality that most practical

chemical screening studies are unable to provide the thou-

sands or millions of training compounds that are needed to

train larger multi-task networks. Using graph convolutions

to featurize chemicals, the network learns an embedding

from compounds into a continuous feature space such that

compounds with similar activities in a set of training tasks

have similar embeddings. The approach is evaluated in an

extremely challenging setting. The embedding is learned

from a subset of prediction tasks (e.g. activity assays for indi-

vidual proteins), and only one to 10 labelled examples are

provided as training data on a new task. On Tox21 targets,

even when trained with one task-specific active compound

and one inactive compound, the model is able to generalize

reasonably well because it has learned an informative embed-

ding function from the related tasks. Random forests, which

cannot take advantage of the related training tasks, trained

in the same setting are only slightly better than a random

classifier. Despite the success on Tox21, performance on

MUV datasets, which contains assays designed to be challen-

ging for chemical informatics algorithms, is considerably

worse. The authors also demonstrate the limitations of trans-

fer learning as embeddings learned from the Tox21 assays

have little utility for a drug adverse reaction dataset.

These novel learned chemical feature representations may

prove to be essential for accurately predicting why some com-

pounds with similar structures yield similar target effects and

others produce drastically different results. Currently, these

methods are enticing but do not necessarily outperform clas-

sic approaches by a large margin. The neural fingerprints

[403] were narrowly beaten by regression using traditional

circular fingerprints on a drug efficacy prediction task but

were superior for predicting solubility or photovoltaic effi-

ciency. In the original study, graph convolutions [405]

performed comparably to a multi-task network using stan-

dard fingerprints and slightly better than the neural

fingerprints [403] on the drug efficacy task but were slightly

worse than the influence-relevance voter method on an HIV

dataset [387]. Broader recent benchmarking has shown that

relative merits of these methods depend on the dataset and

cross-validation strategy [410], though evaluation in this

domain often uses the area under the receiver operating

characteristic curve (AUROC) [411], which has limited utility

due to the large class imbalance (see Discussion).

We remain optimistic about the potential of deep learning

and specifically representation learning in drug discovery. Rig-

orous benchmarking on broad and diverse prediction tasks

will be as important as novel neural network architectures to

advance the state of the art and convincingly demonstrate

superiority over traditional cheminformatics techniques. Fortu-

nately, there has recently been much progress in this direction.

The DeepChem software [406,412] and MoleculeNet bench-

marking suite [410] built upon it contain chemical bioactivity

and toxicity prediction datasets, multiple compound featuriza-

tion approaches including graph convolutions, and various

machine learning algorithms ranging from standard baselines

like logistic regression and random forests to recent neural net-

work architectures. Independent research groups have already

contributed additional datasets and prediction algorithms to

DeepChem. Adoption of common benchmarking evaluation

metrics, datasets and baseline algorithms has the potential to

establish the practical utility of deep learning in chemical bio-

activity prediction and lower the barrier to entry for machine

learning researchers without biochemistry expertise.

One open question in ligand-based screening pertains to

the benefits and limitations of transfer learning. Multi-task

neural networks have shown the advantages of jointly mod-

elling many targets [393,394]. Other studies have shown the

limitations of transfer learning when the prediction tasks

are insufficiently related [388,406]. This has important impli-

cations for representation learning. The typical approach to

improve deep learning models by expanding the dataset

size may not be applicable if only ‘related’ tasks are

beneficial, especially because task–task relatedness is ill-

defined. The massive chemical state space will also influence

the development of unsupervised representation learning

methods [401,413]. Future work will establish whether it is

better to train on massive collections of diverse compounds,

drug-like small molecules or specialized subsets.

4.3.3. Structure-based prediction of bioactivity
When protein structure is available, virtual screening has tra-

ditionally relied on docking programs to predict how a
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compound best fits in the target’s binding site and score the

predicted ligand–target complex [414]. Recently, deep learn-

ing approaches have been developed to model protein

structure, which is expected to improve upon the simpler

drug–target interaction algorithms described above that rep-

resent proteins with feature vectors derived from amino acid

sequences [39,383].

Structure-based deep learning methods differ in whether

they use experimentally derived or predicted ligand–target

complexes and how they represent the 3D structure. The

Atomic CNN [415] and TopologyNet [416] models take 3D

structures from PDBBind [417] as input, ensuring the

ligand–target complexes are reliable. AtomNet [36] samples

multiple ligand poses within the target binding site, and

DeepVS [418] and Ragoza et al. [419] use a docking program

to generate protein–compound complexes. If they are suffi-

ciently accurate, these latter approaches would have wider

applicability to a much larger set of compounds and proteins.

However, incorrect ligand poses will be misleading during

training, and the predictive performance is sensitive to the

docking quality [418].

There are two established options for representing a

protein–compound complex. One option, a 3D grid, can fea-

turize the input complex [36,419]. Each entry in the grid

tracks the types of protein and ligand atoms in that region of

the 3D space or descriptors derived from those atoms. Alterna-

tively, DeepVS [418] and atomic convolutions [415] offer

greater flexibility in their convolutions by eschewing the 3D

grid. Instead, they each implement techniques for executing

convolutions over atoms’ neighbouring atoms in the 3D

space. Gomes et al. [415] demonstrate that currently random

forest on a one-dimensional feature vector that describes the

3D ligand–target structure generally outperforms neural net-

works on the same feature vector as well as atomic

convolutions and ligand-based neural networks when predict-

ing the continuous-valued inhibition constant on the PDBBind

refined dataset. However, in the long-term, atomic convolu-

tions may ultimately overtake grid-based methods, as they

provide greater freedom to model atom–atom interactions

and the forces that govern binding affinity.

4.3.4. De novo drug design
De novo drug design attempts to model the typical design–

synthesize–test cycle of drug discovery [420,421]. It explores

an estimated 1060 synthesizable organic molecules with drug-

like properties without explicit enumeration [397]. To test or

score structures, algorithms like those discussed earlier are

used. To ‘design’ and ‘synthesize’, traditional de novo design

software relied on classical optimizers such as genetic

algorithms. Unfortunately, this often leads to overfit, ‘weird’

molecules, which are difficult to synthesize in the laboratory.

Current programs have settled on rule-based virtual chemical

reactions to generate molecular structures [421]. Deep learning

models that generate realistic, synthesizable molecules have

been proposed as an alternative. In contrast to the classical,

symbolic approaches, generative models learned from data

would not depend on laboriously encoded expert knowledge.

The challenge of generating molecules has parallels to the gen-

eration of syntactically and semantically correct text [422].

As deep learning models that directly output (molecular)

graphs remain under-explored, generative neural networks

for drug design typically represent chemicals with the

simplified molecular-input line-entry system (SMILES), a stan-

dard string-based representation with characters that represent

atoms, bonds and rings [423]. This allows molecules to be trea-

ted as sequences and leveraging recent progress in RNNs.

Gómez-Bombarelli et al. [401] designed a SMILES-to-SMILES

autoencoder to learn a continuous latent feature space for

chemicals. In this learned continuous space, it was possible to

interpolate between continuous representations of chemicals

in a manner that is not possible with discrete (e.g. bit vector

or string) features or in symbolic, molecular graph space.

Even more interesting is the prospect of performing gradient-

based or Bayesian optimization of molecules within this latent

space. The strategy of constructing simple, continuous features

before applying supervised learning techniques is reminiscent

of autoencoders trained on high-dimensional EHR data [115].

A drawback of the SMILES-to-SMILES autoencoder is that

not all SMILES strings produced by the autoencoder’s decoder

correspond to valid chemical structures. Recently, the Grammar

Variational Autoencoder, which takes the SMILES grammar

into account and is guaranteed to produce syntactically valid

SMILES, has been proposed to alleviate this issue [424].

Another approach to de novo design is to train character-

based RNNs on large collections of molecules, for example,

ChEMBL [425], to first obtain a generic generative model for

drug-like compounds [423]. These generative models suc-

cessfully learn the grammar of compound representations,

with 94% [426] or nearly 98% [423] of generated SMILES corre-

sponding to valid molecular structures. The initial RNN is then

fine-tuned to generate molecules that are likely to be active

against a specific target by either continuing training on a

small set of positive examples [423] or adopting reinforce-

ment learning strategies [426,427]. Both the fine-tuning and

reinforcement learning approaches can rediscover known,

held-out active molecules. The great flexibility of neural net-

works, and progress in generative models offers many

opportunities for deep architectures in de novo design

(e.g. the adaptation of GANs for molecules).

5. Discussion
Despite the disparate types of data and scientific goals in the

learning tasks covered above, several challenges are broadly

important for deep learning in the biomedical domain.

Here, we examine these factors that may impede further pro-

gress, ask what steps have already been taken to overcome

them, and suggest future research directions.

5.1. Customizing deep learning models reflects a
trade-off between bias and variance

Some of the challenges in applying deep learning are shared

with other machine learning methods. In particular, many

problem-specific optimizations described in this review reflect

a recurring universal trade-off—controlling the flexibility of a

model in order to maximize predictivity. Methods for adjusting

the flexibility of deep learning models include dropout,

reduced data projections and transfer learning (described

below). One way of understanding such model optimizations

is that they incorporate external information to limit model

flexibility and thereby improve predictions. This balance is for-

mally described as a trade-off between ‘bias and variance’ [11].
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Although the bias-variance trade-off is common to all

machine learning applications, recent empirical and theoreti-

cal observations suggest that deep learning models may have

uniquely advantageous generalization properties [428,429].

Nevertheless, additional advances will be needed to establish

a coherent theoretical foundation that enables practitioners to

better reason about their models from first principles.

5.1.1. Evaluation metrics for imbalanced classification
Making predictions in the presence of high-class imbalance

and differences between training and generalization data

are a common feature of many large biomedical datasets,

including deep learning models of genomic features, patient

classification, disease detection and virtual screening. Predic-

tion of TF binding sites exemplifies the difficulties with

learning from highly imbalanced data. The human genome

has three billion base pairs, and only a small fraction of

them are implicated in specific biochemical activities. Less

than 1% of the genome can be confidently labelled as

bound for most TFs.

Estimating the false discovery rate (FDR) is a standard

method of evaluation in genomics that can also be applied

to deep learning model predictions of genomic features.

Using deep learning predictions for targeted validation

experiments of specific biochemical activities necessitates a

more stringent FDR (typically 5–25%). However, when pre-

dicted biochemical activities are used as features in other

models, such as gene expression models, a low FDR may

not be necessary.

What is the correspondence between FDR metrics and com-

monly used classification metrics such as AUPR and AUROC?

AUPR evaluates the average precision, or equivalently, the

average FDR across all recall thresholds. This metric provides

an overall estimate of performance across all possible use

cases, which can be misleading for targeted validation exper-

iments. For example, classification of TF binding sites can

exhibit a recall of 0% at 10% FDR and AUPR greater than 0.6.

In this case, the AUPR may be competitive, but the predictions

are ill-suited for targeted validation that can only examine a

few of the highest-confidence predictions. Likewise, AUROC

evaluates the average recall across all false positive rate (FPR)

thresholds, which is often a highly misleading metric in

class-imbalanced domains [72,430]. Consider a classification

model with the recall of 0% at FDR less than 25% and 100%

recall at FDR greater than 25%. In the context of TF binding

predictions where only 1% of genomic regions are bound by

the TF, this is equivalent to a recall of 100% for FPR greater

than 0.33%. In other words, the AUROC would be 0.9967,

but the classifier would be useless for targeted validation. It

is not unusual to obtain a chromosome-wide AUROC greater

than 0.99 for TF binding predictions but a recall of 0% at 10%

FDR. Consequently, practitioners must select the metric most

tailored to their subsequent use case to use these methods

most effectively.

5.1.2. Formulation of classification labels
Genome-wide continuous signals are commonly formulated

into classification labels through signal peak detection. ChIP-

seq peaks are used to identify locations of TF binding and his-

tone modifications. Such procedures rely on thresholding

criteria to define what constitutes a peak in the signal. This

inevitably results in a set of signal peaks that are close to the

threshold, not sufficient to constitute a positive label but too

similar to positively labelled examples to constitute a negative

label. To avoid an arbitrary label for these examples, they may

be labelled as ‘ambiguous’. Ambiguously labelled examples

can then be ignored during model training and evaluation of

recall and FDR. The correlation between model predictions

on these examples and their signal values can be used to evalu-

ate if the model correctly ranks these examples between

positive and negative examples.

5.1.3. Formulation of a performance upper bound
In assessing the upper bound on the predictive performance

of a deep learning model, it is necessary to incorporate

inherent between-study variation inherent to biomedical

research [431]. Study-level variability limits classification per-

formance and can lead to underestimating prediction error if

the generalization error is estimated by splitting a single data-

set. Analyses can incorporate data from multiple laboratories

and experiments to capture between-study variation within

the prediction model mitigating some of these issues.

5.2. Uncertainty quantification
Deep learning-based solutions for biomedical applications

could substantially benefit from guarantees on the reliability

of predictions and a quantification of uncertainty. Owing to

biological variability and precision limits of equipment, bio-

medical data do not consist of precise measurements but of

estimates with noise. Hence, it is crucial to obtain uncertainty

measures that capture how noise in input values propagates

through deep neural networks. Such measures can be used

for reliability assessment of automated decisions in clinical

and public health applications, and for guarding against

model vulnerabilities in the face of rare or adversarial

cases [432]. Moreover, in fundamental biological research,

measures of uncertainty help researchers distinguish between

true regularities in the data and patterns that are false or

merely anecdotal. There are two main uncertainties that one

can calculate: epistemic and aleatoric [433]. Epistemic uncer-

tainty describes uncertainty about the model, its structure or

its parameters. This uncertainty is caused by insufficient

training data or by a difference in the training set and testing

set distributions, so it vanishes in the limit of infinite data.

On the other hand, aleatoric uncertainty describes uncer-

tainty inherent in the observations. This uncertainty is due

to noisy or missing data, so it vanishes with the ability to

observe all independent variables with infinite precision.

A good way to represent aleatoric uncertainty is to design

an appropriate loss function with an uncertainty variable.

In the case of data-dependent aleatoric uncertainty, one

can train the model to increase its uncertainty when it is

incorrect due to noisy or missing data, and in the case of

task-dependent aleatoric uncertainty, one can optimize for

the best uncertainty parameter for each task [434]. Mean-

while, there are various methods for modelling epistemic

uncertainty, outlined below.

In classification tasks, confidence calibration is the problem

of using classifier scores to predict class membership probabil-

ities that match the true membership likelihoods. These

membership probabilities can be used to assess the uncertainty

associated with assigning the example to each of the classes.

Guo et al. [435] observed that contemporary neural networks

are poorly calibrated and provided a simple recommendation
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for calibration: temperature scaling, a single parameter special

case of Platt scaling [436]. In addition to confidence calibra-

tion, there is early work from Chryssolouris et al. [437] that

described a method for obtaining confidence intervals with

the assumption of normally distributed error for the neural net-

work. More recently, Hendrycks & Gimpel [438] discovered

that incorrect or out-of-distribution examples usually have

lower maximum softmax probabilities than correctly classified

examples, allowing for effective detection of misclassified

examples. Liang et al. [439] used temperature scaling and

small perturbations to further separate the softmax scores of

correctly classified examples and the scores of out-of-

distribution examples, allowing for more effective detection.

This approach outperformed the baseline approaches by a

large margin, establishing a new state-of-the-art performance.

An alternative approach for obtaining principled uncer-

tainty estimates from deep learning models is to use Bayesian

neural networks. Deep learning models are usually trained to

obtain the most likely parameters given the data. However,

choosing the single most likely set of parameters ignores the

uncertainty about which set of parameters (among the possible

models that explain the given dataset) should be used.

This sometimes leads to uncertainty in predictions when the

chosen likely parameters produce high-confidence but

incorrect results. On the other hand, the parameters of Bayesian

neural networks are modelled as full probability distributions.

This Bayesian approach comes with a whole host of benefits,

including better calibrated confidence estimates [440] and

more robustness to adversarial and out-of-distribution

examples [441]. Unfortunately, modelling the full posterior dis-

tribution for the model’s parameters given the data is usually

computationally intractable. One popular method for circum-

venting this high computational cost is called test-time

dropout [442], where an approximate posterior distribution is

obtained using variational inference. Gal & Ghahramani

[442] showed that a stack of fully connected layers with drop-

out between the layers is equivalent to approximate inference

in a Gaussian process model. The authors interpret dropout

as a variational inference method and apply their method to

CNNs. This is simple to implement and preserves the possi-

bility of obtaining cheap samples from the approximate

posterior distribution. Operationally, obtaining model uncer-

tainty for a given case becomes as straightforward as leaving

dropout turned on and predicting multiple times. The spread

of the different predictions is a reasonable proxy for model

uncertainty. This technique has been successfully applied in

an automated system for detecting diabetic retinopathy [443],

where uncertainty-informed referrals improved diagnostic

performance and allowed the model to meet the National

Health Service recommended levels of sensitivity and

specificity. The authors also found that entropy performs com-

parably to the spread obtained via test-time dropout for

identifying uncertain cases, and therefore it can be used instead

for automated referrals.

Several other techniques have been proposed for effectively

estimating predictive uncertainty as uncertainty quantification

for neural networks continues to be an active research area.

Recently, McClure & Kriegeskorte [444] observed that test-

time sampling improved calibration of the probabilistic

predictions, sampling weights led to more robust uncertainty

estimates than sampling units, and spike-and-slab sampling

was superior to Gaussian dropconnect and Bernoulli dropout.

Krueger et al. [445] introduced Bayesian hypernetworks as

another framework for approximate Bayesian inference in

deep learning, where an invertible generative hypernetwork

maps isotropic Gaussian noise to parameters of the primary

network allowing for computationally cheap sampling and

efficient estimation of the posterior. Meanwhile, Lakshminar-

ayanan et al. [446] proposed using deep ensembles, which are

traditionally used for boosting predictive performance, on

standard (non-Bayesian) neural networks to obtain well-

calibrated uncertainty estimates that are comparable to those

obtained by Bayesian neural networks. In cases where model

uncertainty is known to be caused by a difference in training

and testing distributions, domain adaptation-based techniques

can help mitigate the problem [220].

Despite the success and popularity of deep learning, some

deep learning models can be surprisingly brittle. Researchers

are actively working on modifications to deep learning frame-

works to enable them to handle probability and embrace

uncertainty. Most notably, Bayesian modelling and deep learn-

ing are being integrated with renewed enthusiasm. As a result,

several opportunities for innovation arise: understanding the

causes of model uncertainty can lead to novel optimization

and regularization techniques, assessing the utility of uncer-

tainty estimation techniques on various model architectures

and structures can be very useful to practitioners, and extend-

ing Bayesian deep learning to unsupervised settings can be a

significant breakthrough [447]. Unfortunately, uncertainty

quantification techniques are underused in the computational

biology communities and largely ignored in the current deep

learning for biomedicine literature. Thus, the practical value

of uncertainty quantification in biomedical domains is yet to

be appreciated.

5.3. Interpretation
As deep learning models achieve state-of-the-art performance in

a variety of domains, there is a growing need to make the

models more interpretable. Interpretability matters for two

main reasons. First, a model that achieves breakthrough per-

formance may have identified patterns in the data that

practitioners in the field would like to understand. However,

this would not be possible if the model is a black box. Second,

interpretability is important for trust. If a model is making medi-

cal diagnoses, it is important to ensure the model is making

decisions for reliable reasons and is not focusing on an artefact

of the data. A motivating example of this can be found in

Ba & Caruana [448], where a model trained to predict the likeli-

hood of death from pneumonia assigned lower risk to patients

with asthma, but only because such patients were treated as a

higher priority by the hospital. In the context of deep learning,

understanding the basis of a model’s output is particularly

important as deep learning models are unusually susceptible

to adversarial examples [449] and can output confidence

scores over 99.99% for samples that resemble pure noise.

As the concept of interpretability is quite broad, many

methods described as improving the interpretability of deep

learning models take disparate and often complementary

approaches.

5.3.1. Assigning example-specific importance scores
Several approaches ascribe importance on an example-

specific basis to the parts of the input that are responsible

for a particular output. These can be broadly divided into

perturbation- and backpropagation-based approaches.
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Perturbation-based approaches change parts of the input

and observe the impact on the output of the network.

Alipanahi et al. [203] and Zhou & Troyanskaya [211] scored

genomic sequences by introducing virtual mutations at indi-

vidual positions in the sequence and quantifying the change

in the output. Umarov et al. [224] used a similar strategy, but

with sliding windows where the sequence within each sliding

window was substituted with a random sequence. Kelley

et al. [229] inserted known protein-binding motifs into the

centres of sequences and assessed the change in predicted

accessibility. Ribeiro et al. [450] introduced LIME, which

constructs a linear model to locally approximate the output

of the network on perturbed versions of the input and assigns

importance scores accordingly. For analysing images,

Zeiler & Fergus [451] applied constant-value masks to differ-

ent input patches. More recently, marginalizing over the

plausible values of an input has been suggested as a way to

more accurately estimate contributions [452].

A common drawback to perturbation-based approaches is

computational efficiency: each perturbed version of an input

requires a separate forward propagation through the network

to compute the output. As noted by Shrikumar et al. [221],

such methods may also underestimate the impact of features

that have saturated their contribution to the output, as can

happen when multiple redundant features are present. To

reduce the computational overhead of perturbation-based

approaches, Fong & Vedaldi [453] solve an optimization

problem using gradient descent to discover a minimal

subset of inputs to perturb in order to decrease the predicted

probability of a selected class. Their method converges in

many fewer iterations but requires the perturbation to have

a differentiable form.

Backpropagation-based methods, in which the signal from

a target output neuron is propagated backwards to the input

layer, are another way to interpret deep networks that sidestep

inefficiencies of the perturbation-based methods. A classic

example of this is calculating the gradients of the output with

respect to the input [454] to compute a ‘saliency map’. Bach

et al. [455] proposed a strategy called Layerwise Relevance

Propagation, which was shown to be equivalent to the

element-wise product of the gradient and input [221,456]. Net-

works with Rectified Linear Units create nonlinearities that

must be addressed. Several variants exist for handling this

[451,457]. Backpropagation-based methods are a highly active

area of research. Researchers are still actively identifying weak-

nesses [458], and new methods are being developed to address

them [221,459,460]. Lundberg & Lee [461] noted that several

importance scoring methods including integrated gradients

and LIME could all be considered approximations to Shapely

values [462], which have a long history in game theory for

assigning contributions to players in cooperative games.

5.3.2. Matching or exaggerating the hidden representation
Another approach to understanding the network’s predictions

is to find artificial inputs that produce similar hidden represen-

tations to a chosen example. This can elucidate the features that

the network uses for prediction and drop the features that the

network is insensitive to. In the context of natural images,

Mahendran & Vedaldi [463] introduced the ‘inversion’ visual-

ization, which uses gradient descent and backpropagation to

reconstruct the input from its hidden representation. The

method required placing a prior on the input to favour results

that resemble natural images. For genomic sequence,

Finnegan & Song [464] used a Markov chain Monte Carlo algor-

ithm to find the maximum-entropy distribution of inputs that

produced a similar hidden representation to the chosen input.

A related idea is ‘caricaturization’, where an initial image

is altered to exaggerate patterns that the network searches for

[465]. This is done by maximizing the response of neurons

that are active in the network, subject to some regularizing

constraints. Mordvintsev et al. [466] leveraged caricaturiza-

tion to generate aesthetically pleasing images using neural

networks.

5.3.3. Activation maximization
Activation maximization can reveal patterns detected by an

individual neuron in the network by generating images

which maximally activate that neuron, subject to some regular-

izing constraints. This technique was first introduced in Ehran

et al. [467] and applied in subsequent work [454,465,466,468].

Lanchantin et al. [206] applied class-based activation maximi-

zation to genomic sequence data. One drawback of this

approach is that neural networks often learn highly distributed

representations where several neurons cooperatively describe

a pattern of interest. Thus, visualizing patterns learned by

individual neurons may not always be informative.

5.3.4. RNN-specific approaches
Several interpretation methods are specifically tailored to

recurrent neural network architectures. The most common

form of interpretability provided by RNNs is through attention

mechanisms, which have been used in diverse problems such

as image captioning and machine translation to select portions

of the input to focus on generating a particular output

[469,470]. Deming et al. [471] applied the attention mechanism

to models trained on genomic sequence. Attention mechan-

isms provide insight into the model’s decision-making

process by revealing which portions of the input are used by

different outputs. Singh et al. [185] used a hierarchy of attention

layers to locate important genome positions and signals for

predicting gene expression from histone modifications. In the

clinical domain, Choi et al. [472] leveraged attention mechan-

isms to highlight which aspects of a patient’s medical history

were most relevant for making diagnoses. Choi et al. [473]

later extended this work to take into account the structure of

disease ontologies and found that the concepts represented

by the model aligned with medical knowledge. Note that

interpretation strategies that rely on an attention mechanism

do not provide insight into the logic used by the attention layer.

Visualizing the activation patterns of the hidden state of a

recurrent neural network can also be instructive. Early work

by Ghosh & Karamcheti [474] used cluster analysis to study

hidden states of comparatively small networks trained to

recognize strings from a finite-state machine. More recently,

Karpathy et al. [475] showed the existence of individual

cells in LSTMs that kept track of quotes and brackets in

character-level language models. To facilitate such analyses,

LSTMVis [476] allows interactive exploration of the hidden

state of LSTMs on different inputs.

Another strategy, adopted by Lanchatin et al. [206] looks

at how the output of a recurrent neural network changes as

longer and longer subsequences are supplied as input to

the network, where the subsequences begin with just the

first position and end with the entire sequence. In a binary
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classification task, this can identify those positions that are

responsible for flipping the output of the network from nega-

tive to positive. If the RNN is bidirectional, the same process

can be repeated in the reverse sequence. As noted by the

authors, this approach was less effective at identifying motifs

compared with the gradient-based backpropagation approach

of Simonyan et al. [454], illustrating the need for more

sophisticated strategies to assign importance scores in RNNs.

Murdoch & Szlam [477] showed that the output of an

LSTM can be decomposed into a product of factors, where

each factor can be interpreted as the contribution at a particu-

lar time step. The contribution scores were then used to

identify key phrases from a model trained for sentiment

analysis and obtained superior results compared to scores

derived via a gradient-based approach.

5.3.5. Latent space manipulation
Interpretation of embedded or latent space features learned

through generative unsupervised models can reveal underlying

patterns otherwise masked in the original input. Embedded fea-

ture interpretation has been emphasized mostly in image- and

text-based applications [105,478], but applications to genomic

and biomedical domains are increasing.

For example, Way & Greene trained a VAE on gene

expression from The Cancer Genome Atlas (TCGA) [479]

and use latent space arithmetic to rapidly isolate and inter-

pret gene expression features descriptive of high-grade

serous ovarian cancer subtypes [480]. The most differentiat-

ing VAE features were representative of biological processes

that are known to distinguish the subtypes. Latent space

arithmetic with features derived using other compression

algorithms were not as informative in this context [481].

Embedding discrete chemical structures with autoencoders

and interpreting the learned continuous representations

with latent space arithmetic has also facilitated predicting

drug-like compounds [401]. Furthermore, embedding biome-

dical text into lower dimensional latent spaces have improved

name entity recognition in a variety of tasks including

annotating clinical abbreviations, genes, cell lines and drug

names [78–81].

Other approaches have used interpolation through latent

space embeddings learned by GANs to interpret unobserved

intermediate states. For example, Osokin et al. [482] trained

GANs on two-channel fluorescent microscopy images to

interpret intermediate states of protein localization in yeast

cells. Goldsborough et al. [483] trained a GAN on fluorescent

microscopy images and used latent space interpolation and

arithmetic to reveal underlying responses to small molecule

perturbations in cell lines.

5.3.6. Miscellaneous approaches
It can often be informative to understand how the training

data affects model learning. Towards this end, Koh & Liang

[484] used influence functions, a technique from robust stat-

istics, to trace a model’s predictions back through the

learning algorithm to identify the datapoints in the training

set that had the most impact on a given prediction. A more

free-form approach to interpretability is to visualize the acti-

vation patterns of the network on individual inputs and on

subsets of the data. ActiVis and CNNvis [485,486] are two

frameworks that enable interactive visualization and explora-

tion of large-scale deep learning models. An orthogonal

strategy is to use a knowledge distillation approach to replace

a deep learning model with a more interpretable model that

achieves comparable performance. Towards this end, Che

et al. [487] used gradient boosted trees to learn interpretable

healthcare features from trained deep models.

Finally, it is sometimes possible to train the model to pro-

vide justifications for its predictions. Lei et al. [488] used a

generator to identify ‘rationales’, which are short and coher-

ent pieces of the input text that produce similar results to

the whole input when passed through an encoder. The

authors applied their approach to a sentiment analysis task

and obtained substantially superior results compared to an

attention-based method.

5.3.7. Future outlook
While deep learning lags behind most Bayesian models in

terms of interpretability, the interpretability of deep learning

is comparable to or exceeds that of many other widely used

machine learning methods such as random forests or SVMs.

While it is possible to obtain importance scores for different

inputs in a random forest, the same is true for deep learning.

Similarly, SVMs trained with a nonlinear kernel are not easily

interpretable because the use of the kernel means that one

does not obtain an explicit weight matrix. Finally, it is

worth noting that some simple machine learning methods

are less interpretable in practice than one might expect.

A linear model trained on heavily engineered features

might be difficult to interpret as the input features themselves

are difficult to interpret. Similarly, a decision tree with many

nodes and branches may also be difficult for a human to

make sense of.

There are several directions that might benefit the devel-

opment of interpretability techniques. The first is the

introduction of gold standard benchmarks that different

interpretability approaches could be compared against, simi-

lar in spirit to how the ImageNet [46] and CIFAR [489]

datasets spurred the development of deep learning for com-

puter vision. It would also be helpful if the community

placed more emphasis on domains outside of computer

vision. Computer vision is often used as the example appli-

cation of interpretability methods, but it is not the domain

with the most pressing need. Finally, closer integration of

interpretability approaches with popular deep learning fra-

meworks would make it easier for practitioners to apply

and experiment with different approaches to understanding

their deep learning models.

5.4. Data limitations
A lack of large-scale, high-quality, correctly labelled training

data have impacted deep learning in nearly all applications

we have discussed. The challenges of training complex, high-

parameter neural networks from few examples are obvious,

but uncertainty in the labels of those examples can be just as

problematic. In genomics, labelled data may be derived from

an experimental assay with known and unknown technical

artefacts, biases and error profiles. It is possible to weight

training examples or construct Bayesian models to account

for uncertainty or non-independence in the data, as described

in the TF binding example above. As another example,

Park et al. [490] estimated shared non-biological signal bet-

ween datasets to correct for non-independence related to

assay platform or other factors in a Bayesian integration of
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many datasets. However, such techniques are rarely placed

front and centre in any description of methods and may be

easily overlooked.

For some types of data, especially images, it is straight-

forward to augment training datasets by splitting a single

labelled example into multiple examples. For example, an

image can easily be rotated, flipped or translated and retain

its label [43]. 3D MRI and 4D fMRI (with time as a dimen-

sion) data can be decomposed into sets of 2D images [491].

This can greatly expand the number of training examples

but artificially treats such derived images as independent

instances and sacrifices the structure inherent in the data.

CellCnn trains a model to recognize rare cell populations in

single-cell data by creating training instances that consist of

subsets of cells that are randomly sampled with replacement

from the full dataset [300].

Simulated or semi-synthetic training data have been

employed in multiple biomedical domains, though many of

these ideas are not specific to deep learning. Training and

evaluating on simulated data, for instance, generating syn-

thetic TF binding sites with PWMs [209] or RNA-seq reads

for predicting mRNA transcript boundaries [492], is a stan-

dard practice in bioinformatics. This strategy can help

benchmark algorithms when the available gold standard

dataset is imperfect, but it should be paired with an evalu-

ation on real data, as in the prior examples [209,492]. In

rare cases, models trained on simulated data have been

successfully applied directly to real data [492].

Data can be simulated to create negative examples when

only positive training instances are available. DANN [35]

adopts this approach to predict the pathogenicity of genetic

variants using semi-synthetic training data from Combined

Annotation-Dependent Depletion (CADD) [493]. Though

our emphasis here is on the training strategy, it should be

noted that logistic regression outperformed DANN when dis-

tinguishing known pathogenic mutations from likely benign

variants in real data. Similarly, a somatic mutation caller

has been trained by injecting mutations into real sequencing

datasets [345]. This method detected mutations in other

semi-synthetic datasets but was not validated on real data.

In settings where the experimental observations are biased

towards positive instances, such as MHC protein and peptide

ligand binding affinity [273], or the negative instances vastly

outnumber the positives, such as high-throughput chemical

screening [398], training datasets have been augmented by

adding additional instances and assuming they are negative.

There is some evidence that this can improve performance

[398], but in other cases, it was only beneficial when the real

training datasets were extremely small [273]. Overall, training

with simulated and semi-simulated data is a valuable idea

for overcoming limited sample sizes but one that requires

more rigorous evaluation of real ground-truth datasets before

we can recommend it for widespread use. There is a risk that

a model will easily discriminate synthetic examples but not

generalize to real data.

Multimodal, multi-task and transfer learning, discussed in

detail below, can also combat data limitations to some degree.

There are also emerging network architectures, such as Diet

Networks for high-dimensional SNP data [494]. These use

multiple networks to drastically reduce the number of free par-

ameters by first flipping the problem and training a network to

predict parameters (weights) for each input (SNP) to learn a

feature embedding. This embedding (e.g. from the principal

component analysis, per class histograms or a Word2vec

[105] generalization) can be learned directly from input data

or take advantage of other datasets or domain knowledge.

Additionally, in this task, the features are the examples, an

important advantage when it is typical to have 500 000 or

more SNPs and only a few thousand patients. Finally, this

embedding is of a much lower dimension, allowing for a

large reduction in the number of free parameters. In the

example given, the number of free parameters was reduced

from 30 million to 50 000, a factor of 600.

5.5. Hardware limitations and scaling
Efficiently scaling deep learning is challenging, and there is a

high computational cost (e.g. time, memory and energy)

associated with training neural networks and using them to

make predictions. This is one of the reasons why neural net-

works have only recently found widespread use [495].

Many have sought to curb these costs, with methods ran-

ging from the very applied (e.g. reduced numerical precision

[496–499]) to the exotic and theoretic (e.g. training small net-

works to mimic large networks and ensembles [448,500]).

The largest gains in efficiency have come from computation

with GPUs [495,501–505], which excel at the matrix and

vector operations so central to deep learning. The massively

parallel nature of GPUs allows additional optimizations, such

as accelerated mini-batch gradient descent [502,503,506,507].

However, GPUs also have limited memory, making networks

of useful size and complexity difficult to implement on a single

GPU or machine [68,501]. This restriction has sometimes forced

computational biologists to use workarounds or limit the size

of an analysis. Chen et al. [183] inferred the expression level

of all genes with a single neural network, but due to memory

restrictions, they randomly partitioned genes into two separ-

ately analysed halves. In other cases, researchers limited the

size of their neural network [29] or the total number of training

instances [401]. Some have also chosen to use standard central

processing unit (CPU) implementations rather than sacrifice

network size or performance [508].

While steady improvements in GPU hardware may alleviate

this issue, it is unclear whether advances will occur quickly

enough to keep pace with the growing biological datasets and

increasingly complex neural networks. Much has been done to

minimize the memory requirements of neural networks [448,

496–499,509,510], but there is also growing interest in specialized

hardware, such as field-programmable gate arrays (FPGAs)

[505,511] and application-specific integrated circuits (ASICs)

[512]. Less software is available for such highly specialized hard-

ware [511]. But specialized hardware promises improvements in

deep learning at reduced time, energyand memory [505]. Special-

ized hardware may be a difficult investment for those not solely

interested in deep learning, but for those with a deep learning

focus these solutions may become popular.

Distributed computing is a general solution to intense

computational requirements and has enabled many large-

scale deep learning efforts. Some types of distributed compu-

tation [513,514] are not suitable for deep learning [515], but

much progress has been made. There now exist a number

of algorithms [498,515], tools [516–518] and high-level

libraries [519,520] for deep learning in a distributed environ-

ment, and it is possible to train very complex networks with

limited infrastructure [521]. Besides handling very large net-

works, distributed or parallelized approaches offer
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other advantages, such as improved ensembling [522] or

accelerated hyperparameter optimization [523,524].

Cloud computing, which has already seen wide adoption in

genomics [525], could facilitate easier sharing of the large data-

sets common to biology [526,527], and may be key to scaling

deep learning. Cloud computing affords researchers flexibility,

and enables the use of specialized hardware (e.g. FPGAs, ASICs

and GPUs) without major investment. As such, it could be

easier to address the different challenges associated with

the multitudinous layers and architectures available [528].

Though many are reluctant to store sensitive data (e.g. patient

EHRs) in the cloud, secure, regulation-compliant cloud services

do exist [529].

5.6. Data, code and model sharing
A robust culture of data, code and model sharing would

speed advances in this domain. The cultural barriers to

data sharing, in particular, are perhaps best captured by the

use of the term ‘research parasite’ to describe scientists who

use data from other researchers [530]. A field that honours

only discoveries and not the hard work of generating useful

data will have difficulty encouraging scientists to share

their hard-won data. It is precisely those data that would

help to power deep learning in the domain. Efforts are under-

way to recognize those who promote an ecosystem of

rigorous sharing and analysis [531].

The sharing of high-quality, labelled datasets will be

especially valuable. In addition, researchers who invest time

to preprocess datasets to be suitable for deep learning can

make the preprocessing code (e.g. Basset [229] and variation

analysis [343]) and cleaned data (e.g. MoleculeNet [410]) pub-

licly available to catalyse further research. However, there are

complex privacy and legal issues involved in sharing patient

data that cannot be ignored. Solving these issues will require

increased understanding of privacy risks and standards speci-

fying acceptable levels. In some domains, high-quality training

data have been generated privately, i.e. high-throughput

chemical screening data at pharmaceutical companies. One

perspective is that there is little expectation or incentive for

this private data to be shared. However, data are not inherently

valuable. Instead, the insights that we glean from them are

where the value lies. Private companies may establish a com-

petitive advantage by releasing data sufficient for improved

methods to be developed. Recently, Ramsundar et al. [532]

did this with an open source platform DeepChem, where

they released four privately generated datasets.

Code sharing and open source licensing are essential for

continued progress in this domain. We strongly advocate

following established best practices for sharing source code,

archiving code in repositories that generate digital object iden-

tifiers, and open licensing [533] regardless of the minimal

requirements, or lack thereof, set by journals, conferences or

preprint servers. In addition, it is important for authors to

share not only code for their core models but also scripts

and code used for data cleaning (see above) and hyperpara-

meter optimization. These improve reproducibility and

serve as documentation of the detailed decisions that impact

model performance but may not be exhaustively captured in

a manuscript’s methods text.

Because many deep learning models are often built using

one of several popular software frameworks, it is also possible

to directly share trained predictive models. The availability of

pre-trained models can accelerate research, with image classi-

fiers as an apt example. A pre-trained neural network can be

quickly fine-tuned on new data and used in transfer learning,

as discussed below. Taking this idea to the extreme, genomic

data have been artificially encoded as images in order to

benefit from pre-trained image classifiers [341]. ‘Model

zoos’—collections of pre-trained models—are not yet

common in biomedical domains but have started to appear

in genomics applications [296,534]. However, it is important

to note that sharing models trained on individual data requires

great care, because deep learning models can be attacked to

identify examples used in training. One possible solution

to protect individual samples includes training models under

differential privacy [155], which has been used in the bio-

medical domain [158]. We discussed this issue as well as

recent techniques to mitigate these concerns in the patient

categorization section.

DeepChem [406,410,412] and DragoNN (Deep RegulAtory

GenOmic Neural Networks) [534] exemplify the benefits of

sharing pre-trained models and code under an open source

licence. DeepChem, which targets drug discovery and quan-

tum chemistry, has actively encouraged and received

community contributions of learning algorithms and bench-

marking datasets. As a consequence, it now supports a large

suite of machine learning approaches, both deep learning

and competing strategies, that can be run on diverse test

cases. This realistic, continual evaluation will play a critical

role in assessing which techniques are most promising for

chemical screening and drug discovery. Like formal, organized

challenges such as the ENCODE-DREAM in vivo TF Binding

Site Prediction Challenge [215], DeepChem provides a forum

for the fair, critical evaluations that are not always conducted

in individual methodological papers, which can be biased

towards favouring a new proposed algorithm. Likewise

DragoNN offers not only code and a model zoo but also a

detailed tutorial and partner package for simulating training

data. These resources, especially the ability to simulate datasets

that are sufficiently complex to demonstrate the challenges of

training neural networks but small enough to train quickly

on a CPU, are important for training students and attracting

machine learning researchers to problems in genomics and

healthcare.

5.7. Multimodal, multi-task and transfer learning
The fact that biomedical datasets often contain a limited

number of instances or labels can cause poor performance of

deep learning algorithms. These models are particularly

prone to overfitting due to their high representational

power. However, transfer learning techniques, also known as

domain adaptation, enable transfer of extracted patterns

between different datasets and even domains. This approach

consists of training a model for the base task and subsequently

reusing the trained model for the target problem. The first step

allows a model to take advantage of a larger amount of data

and/or labels to extract better feature representations. Transfer-

ring learned features in deep neural networks improves

performance compared to randomly initialized features even

when pre-training and target sets are dissimilar. However,

transferability of features decreases as the distance between

the base task and target task increases [535].

In image analysis, previous examples of deep transfer

learning applications proved large-scale natural image sets
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[46] to be useful for pre-training models that serve as generic

feature extractors for various types of biological images

[15,286,536,537]. More recently, deep learning models pre-

dicted protein subcellular localization for proteins not

originally present in a training set [538]. Moreover, learned

features performed reasonably well even when applied to

images obtained using different fluorescent labels, imaging

techniques and different cell types [539]. However, there are

no established theoretical guarantees for feature transferabil-

ity between distant domains such as natural images and

various modalities of biological imaging. Because learned

patterns are represented in deep neural networks in a layer-

wise hierarchical fashion, this issue is usually addressed by

fixing an empirically chosen number of layers that preserve

generic characteristics of both training and target datasets.

The model is then fine-tuned by re-training top layers on

the specific dataset in order to re-learn domain-specific

high-level concepts (e.g. fine-tuning for radiology image

classification [58]). Fine-tuning of specific biological datasets

enables more focused predictions.

In genomics, the Basset package [229] for predicting chro-

matin accessibility was shown to rapidly learn and accurately

predict on new data by leveraging a model pre-trained on

available public data. To simulate this scenario, authors put

aside 15 of 164 cell-type datasets and trained the Basset

model on the remaining 149 datasets. Then, they fine-tuned

the model with one training pass of each of the remaining data-

sets and achieved results close to the model trained on all

164 datasets together. In another example, Min et al. [230]

demonstrated how training on the experimentally validated

FANTOM5 permissive enhancer dataset followed by fine-

tuning on ENCODE enhancer datasets improved cell-type-

specific predictions, outperforming state-of-the-art results. In

drug design, general RNN models trained to generate mol-

ecules from the ChEMBL database have been fine-tuned to

produce drug-like compounds for specific targets [423,426].

Related to transfer learning, multimodal learning

assumes simultaneous learning from various types of

inputs, such as images and text. It can capture features that

describe common concepts across input modalities. Genera-

tive graphical models like RBMs, deep Boltzmann machines

and DBNs, demonstrate successful extraction of more infor-

mative features for one modality (images or video) when

jointly learned with other modalities (audio or text) [540].

Deep graphical models such as DBNs are well suited for mul-

timodal learning tasks because they learn a joint probability

distribution from inputs. They can be pre-trained in an unsu-

pervised fashion on large unlabelled data and then fine-

tuned on a smaller number of labelled examples. When

labels are available, CNNs are ubiquitously used because

they can be trained end-to-end with backpropagation and

demonstrate state-of-the-art performance in many discrimi-

native tasks [15].

Jha et al. [192] showed that integrated training delivered

better performance than individual networks. They compared

a number of feed-forward architectures trained on RNA-seq

data with and without an additional set of CLIP-seq, knock-

down and over-expression based input features. The

integrative deep model generalized well for combined data,

offering a large performance improvement for alternative spli-

cing event estimation. Chaudhary et al. [541] trained a deep

autoencoder model jointly on RNA-seq, miRNA-seq and

methylation data from TCGA to predict survival subgroups

of hepatocellular carcinoma patients. This multimodal

approach that treated different omic data types as different

modalities outperformed both traditional methods (principal

component analysis) and single-omic models. Interestingly,

multi-omic model performance did not improve when com-

bined with clinical information, suggesting that the model

was able to capture redundant contributions of clinical features

through their correlated genomic features. Chen et al. [178]

used DBNs to learn phosphorylation states of a common set

of signalling proteins in primary cultured bronchial cells col-

lected from rats and humans treated with distinct stimuli. By

interpreting species as different modalities representing similar

high-level concepts, they showed that DBNs were able to cap-

ture cross-species representation of signalling mechanisms in

response to a common stimuli. Another application used

DBNs for joint unsupervised feature learning from cancer data-

sets containing gene expression, DNA methylation and

miRNA expression data [186]. This approach allowed for the

capture of intrinsic relationships in different modalities and

for better clustering performance over conventional k-means.

Multimodal learning with CNNs is usually implemented

as a collection of individual networks in which each learns

representations from the single data type. These individual rep-

resentations are further concatenated before or within fully

connected layers. FIDDLE [542] is an example of a multimodal

CNN that represents an ensemble of individual networks that

take NET-seq, MNase-seq, ChIP-seq, RNA-seq and raw DNA

sequence as input to predict transcription start sites. The com-

bined model radically improves performance over separately

trained datatype-specific networks, suggesting that it learns

the synergistic relationship between datasets.

Multi-task learning is an approach related to transfer

learning. In a multi-task learning framework, a model

learns a number of tasks simultaneously such that features

are shared across them. DeepSEA [211] implemented multi-

task joint learning of diverse chromatin factors from raw

DNA sequence. This allowed a sequence feature that was

effective in recognizing binding of a specific TF to be simul-

taneously used by another predictor for a physically

interacting TF. Similarly, TFImpute [193] learned information

shared across TFs and cell lines to predict cell-specific TF

binding for TF-cell line combinations. Yoon et al. [104]

demonstrated that predicting the primary cancer site from

cancer pathology reports together with its laterality substan-

tially improved the performance for the latter task, indicating

that multi-task learning can effectively leverage the com-

monality between two tasks using a shared representation.

Many studies employed multi-task learning to predict chemi-

cal bioactivity [390,394] and drug toxicity [395,543]. Kearnes

et al. [388] systematically compared single-task and multi-task

models for ADMET properties and found that multi-task

learning generally improved performance. Smaller datasets

tended to benefit more than larger datasets.

Multi-task learning is complementary to multimodal and

transfer learning. All three techniques can be used together in

the same model. For example, Zhang et al. [536] combined

deep model-based transfer and multi-task learning for

cross-domain image annotation. One could imagine extend-

ing that approach also to multimodal inputs. A common

characteristic of these methods is a better generalization of

extracted features at various hierarchical levels of abstraction,

which is attained by leveraging relationships between

various inputs and task objectives.
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Despite demonstrated improvements, transfer learning

approaches pose challenges. There are no theoretically sound

principles for pre-training and fine-tuning. Best practice rec-

ommendations are heuristic and must account for additional

hyper-parameters that depend on specific deep architectures,

sizes of the pre-training and target datasets, and similarity of

domains. However, the similarity of datasets and domains in

transfer learning and relatedness of tasks in multi-task learning

are difficult to access. Most studies address these limitations by

empirical evaluation of the model. Unfortunately, negative

results are typically not reported. A deep CNN trained on natu-

ral images boosts performance in radiographic images [58].

However, due to differences in imaging domains, the target

task required either re-training the initial model from scratch

with special preprocessing or fine-tuning of the whole network

on radiographs with heavy data augmentation to avoid overfit-

ting. Exclusively fine-tuning top layers led to much lower

validation accuracy (81.4 versus 99.5). Fine-tuning the afore-

mentioned Basset model with more than one pass resulted in

overfitting [229]. DeepChem successfully improved results

for low-data drug discovery with one-shot learning for related

tasks. However, it clearly demonstrated the limitations of

cross-task generalization across unrelated tasks in one-shot

models, specifically nuclear receptor assays and patient

adverse reactions [406].

In the medical domain, multimodal, multi-task and transfer

learning strategies not only inherit most methodological issues

from natural image, text and audio domains, but also pose

domain-specific challenges. There is a compelling need for the

development of privacy-preserving transfer learning algor-

ithms, such as Private Aggregation of Teacher Ensembles

[544]. We suggest that these types of models deserve deeper

investigation to establish sound theoretical guarantees and

determine limits for the transferability of features between

various closely related and distant learning tasks.

6. Conclusion
Deep learning-based methods now match or surpass the pre-

vious state of the art in a diverse array of tasks in patient and

disease categorization, fundamental biological study, geno-

mics and treatment development. Returning to our central

question: given this rapid progress, has deep learning trans-

formed the study of human disease? Though the answer is

highly dependent on the specific domain and problem being

addressed, we conclude that deep learning has not yet realized

its transformative potential or induced a strategic inflection

point. Despite its dominance over competing machine learning

approaches in many of the areas reviewed here and quantitat-

ive improvements in predictive performance, deep learning

has not yet definitively ‘solved’ these problems.

As an analogy, consider recent progress in conversational

speech recognition. Since 2009, there have been drastic per-

formance improvements with error rates dropping from

more than 20% to less than 6% [545] and finally approaching

or exceeding human performance in the past year [546,547].

The phenomenal improvements on benchmark datasets are

undeniable, but greatly reducing the error rate on these

benchmarks did not fundamentally transform the domain.

Widespread adoption of conversational speech technologies

will require solving the problem, i.e. methods that surpass

human performance, and persuading users to adopt them

[545]. We see parallels in healthcare, where achieving the

full potential of deep learning will require outstanding pre-

dictive performance as well as acceptance and adoption by

biologists and clinicians. These experts will rightfully

demand rigorous evidence that deep learning has impacted

their respective disciplines—elucidated new biological mech-

anisms and improved patient outcomes—to be convinced

that the promises of deep learning are more substantive

than those of previous generations of artificial intelligence.

Some of the areas we have discussed are closer to surpass-

ing this lofty bar than others, generally, those that are more

similar to the non-biomedical tasks that are now monopolized

by deep learning. In medical imaging, diabetic retinopathy

[50], diabetic macular oedema [50], tuberculosis [59] and skin

lesion [5] classifiers are highly accurate and comparable to

clinician performance.

In other domains, perfect accuracy will not be required

because deep learning will primarily prioritize experiments

and assist discovery. For example, in chemical screening for

drug discovery, a deep learning system that successfully

identifies dozens or hundreds of target-specific, active small

molecules from a massive search space would have immense

practical value even if its overall precision is modest. In medi-

cal imaging, deep learning can point an expert to the most

challenging cases that require manual review [59], though

the risk of false negatives must be addressed. In protein struc-

ture prediction, errors in individual residue–residue contacts

can be tolerated when using the contacts jointly for 3D struc-

ture modelling. Improved contact map predictions [29] have

led to notable improvements in fold and 3D structure predic-

tion for some of the most challenging proteins, such as

membrane proteins [252].

Conversely, the most challenging tasks may be those in

which predictions are used directly for downstream model-

ling or decision-making, especially in the clinic. As an

example, errors in sequence variant calling will be amplified

if they are used directly for genome-wide association studies.

In addition, the stochasticity and complexity of biological sys-

tems imply that for some problems, for instance, predicting

gene regulation in disease, perfect accuracy will be unattainable.

We are witnessing deep learning models achieving human-

level performance across a number of biomedical domains.

However, machine learning algorithms, including deep

neural networks, are also prone to mistakes that humans are

much less likely to make, such as misclassification of adversar-

ial examples [548,549], a reminder that these algorithms do not

understand the semantics of the objects presented. It may be

impossible to guarantee that a model is not susceptible to

adversarial examples, but work in this area is continuing

[550,551]. Cooperation between human experts and deep learn-

ing algorithms addresses many of these challenges and can

achieve better performance than either individually [65]. For

sample and patient classification tasks, we expect deep learning

methods to augment clinicians and biomedical researchers.

We are optimistic about the future of deep learning in

biology and medicine. It is by no means inevitable that deep

learning will revolutionize these domains, but given how

rapidly the field is evolving, we are confident that its full poten-

tial in biomedicine has not been explored. We have highlighted

numerous challenges beyond improving training and predic-

tive accuracies, such as preserving patient privacy and

interpreting models. Ongoing research has begun to address

these problems and shown that they are not insurmountable.
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Deep learning offers the flexibility to model data in its most

natural form, for example, longer DNA sequences instead of

k-mers for TF binding prediction and molecular graphs instead

of pre-computed bit vectors for drug discovery. These flexible

input feature representations have spurred creative modelling

approaches that would be infeasible with other machine

learning techniques. Unsupervised methods are currently

less developed than their supervised counterparts, but they

may have the most potential because of how expensive and

time-consuming it is to label large amounts of biomedical

data. If future deep learning algorithms can summarize very

large collections of input data into interpretable models that

spur scientists to ask questions that they did not know how

to ask, it will be clear that deep learning has transformed

biology and medicine.

7. Methods
7.1. Continuous collaborative manuscript drafting
We recognized that deep learning in precision medicine is a

rapidly developing area. Hence, diverse expertise was required

to provide a forward-looking perspective. Accordingly, we colla-

boratively wrote this review in the open, enabling anyone with

expertise to contribute. We wrote the manuscript in markdown

and tracked changes using git. Contributions were handled

through GitHub, with individuals submitting ‘pull requests’ to

suggest additions to the manuscript.

To facilitate citation, we defined a markdown citation syntax.

We supported citations to the following identifier types (in order

of preference): DOIs, PubMed Central IDs, PubMed IDs, arXiv

IDs and URLs. References were automatically generated from

citation metadata by querying APIs to generate Citation Style

Language JSON items for each reference. Pandoc and pandoc-

citeproc converted the markdown to HTML and PDF, while ren-

dering the formatted citations and references. In total, referenced

works consisted of 372 DOIs, six PubMed Central records, 129

arXiv manuscripts and 48 URLs (webpages as well as manu-

scripts lacking standardized identifiers).

We implemented continuous analysis so the manuscript was

automatically regenerated whenever the source changed [150].

We configured Travis CI—a continuous integration service—to

fetch new citation metadata and rebuild the manuscript for

every commit. Accordingly, formatting or citation errors in pull

requests would cause the Travis CI build to fail, automating

quality control. In addition, the build process renders templated

variables, such as the reference counts mentioned above, to auto-

mate the updating of dynamic content. When contributions were

merged into the master branch, Travis CI deployed the built

manuscript by committing back to the GitHub repository. As a

result, the latest manuscript version is always available at

https://greenelab.github.io/deep-review. To ensure a consistent

software environment, we defined a versioned conda environ-

ment of the software dependencies.

In addition, we instructed the Travis CI deployment script to

perform blockchain timestamping [552,553]. Using OpenTimes-

tamps, we submitted hashes for the manuscript and the source

git commit for timestamping in the Bitcoin blockchain [554].

These timestamps attest that a given version of this manuscript

(and its history) existed at a given point in time. The ability to

irrefutably prove manuscript existence at a past time could be

important to establish scientific precedence and enforce an

immutable record of authorship.
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27. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber
J. 2013 Mitosis detection in breast cancer histology
images with deep neural networks. In Medical
Image Computing and Computer-Assisted
Intervention—MICCAI 2013, pp. 411 – 418.

28. Zurada J. 1994 End effector target position learning
using feedforward with error back-propagation and
recurrent neural networks. In Proc. of 1994 IEEE Int.
Conf. on Neural Networks (ICNN’94), Orlando, FL,
USA, 28 June – 2 July 1994, vol. 4, pp. 2633 – 2638.

29. Wang S, Sun S, Li Z, Zhang R, Xu J. 2017 Accurate
de novo prediction of protein contact map by ultra-
deep learning model. PLoS Comput. Biol. 13,
e1005324. (doi:10.1371/journal.pcbi.1005324)

30. Spencer M, Eickholt J, Cheng J. 2015 A deep
learning network approach to ab initio protein
secondary structure prediction. IEEE/ACM Trans.
Comput. Biol. Bioinf. 12, 103 – 112. (doi:10.1109/
tcbb.2014.2343960)

31. Wang S, Peng J, Ma J, Xu J. 2016 Protein secondary
structure prediction using deep convolutional neural
fields. Sci. Rep. 6, 18962. (doi:10.1038/srep18962)

32. Liu F, Li H, Ren C, Bo X, Shu W. 2016 PEDLA:
predicting enhancers with a deep learning-based
algorithmic framework. bioRxiv (doi:10.1101/
036129)

33. Li Y, Chen C-Y, Wasserman WW. 2015 Deep feature
selection: theory and application to identify
enhancers and promoters. In (ed. T Przytycka)
Research in computational molecular biology.
RECOMB 2015. Lecture Notes in Computer Science,
vol. 9029. Cham, Switzerland: Springer.

34. Kleftogiannis D, Kalnis P, Bajic VB. 2015 DEEP: a
general computational framework for predicting
enhancers. Nucleic Acids Res. 43, e6. (doi:10.1093/
nar/gku1058)

35. Quang D, Chen Y, Xie X. 2015 DANN: a deep
learning approach for annotating the pathogenicity
of genetic variants. Bioinformatics 31, 761 – 763.
(doi:10.1093/bioinformatics/btu703)

36. Wallach I, Dzamba M, Heifets A. 2015 AtomNet: a
deep convolutional neural network for bioactivity
prediction in structure-based drug discovery. arXiv,
1510.02855 (https://arxiv.org/abs/1510.02855v1)

37. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P,
Zhavoronkov A. 2016 Deep learning applications for
predicting pharmacological properties of drugs and
drug repurposing using transcriptomic data. Mol.
Pharm. 13, 2524 – 2530. (doi:10.1021/acs.
molpharmaceut.6b00248)

38. Wang Y, Zeng J. 2013 Predicting drug-target
interactions using restricted Boltzmann machines.
Bioinformatics 29, i126 – i134. (doi:10.1093/
bioinformatics/btt234)

39. Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, Lu H.
2017 Deep-learning-based drug – target interaction
prediction. J. Proteome Res. 16, 1401 – 1409.
(doi:10.1021/acs.jproteome.6b00618)

40. Shen D, Wu G, Suk H. 2017 Deep learning in
medical image analysis. Annu. Rev. Biomed. Eng.
19, 221 – 248. (doi:10.1146/annurev-bioeng-
071516-044442)

41. Dhungel N, Carneiro G, Bradley AP. 2015 Deep
learning and structured prediction for the
segmentation of mass in mammograms. In 18th
International Conference on Medical Image
Computing and Computer Assisted Intervention
(MICCAI), Munich, Germany, October. Lecture Notes
in Computer Science, vol. 9349. Cham, Switzerland:
Springer.

42. Dhungel N, Carneiro G, Bradley AP. 2016 The
automated learning of deep features for breast
mass classification from mammograms. In Medical
image computing and computer-assisted
intervention – MICCAI 2016. Lecture Notes in
Computer Science, vol. 9901. Cham: Springer.

43. Zhu W, Lou Q, Scott Vang Y, Xie X. 2016 Deep
multi-instance networks with sparse label
assignment for whole mammogram classification.
bioRxiv. (doi:10.1101/095794)

44. Zhu W, Xie X. 2016 Adversarial deep structural
networks for mammographic mass segmentation.
bioRxiv (doi:10.1101/095786)

45. Dhungel N, Carneiro G, Bradley AP. 2017 A deep
learning approach for the analysis of masses in
mammograms with minimal user intervention.
Med. Image Anal. 37, 114 – 128. (doi:10.1016/j.
media.2017.01.009)

46. Russakovsky O et al. 2015 ImageNet large scale
visual recognition challenge. Int. J. Comput.
Vision 115, 211 – 252. (doi:10.1007/s11263-015-
0816-y)

47. Pratt H, Coenen F, Broadbent DM, Harding SP,
Zheng Y. 2016 Convolutional neural networks
for diabetic retinopathy. Procedia Comp. Sci. 90,
200 – 205. (doi:10.1016/j.procs.2016.07.014)
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