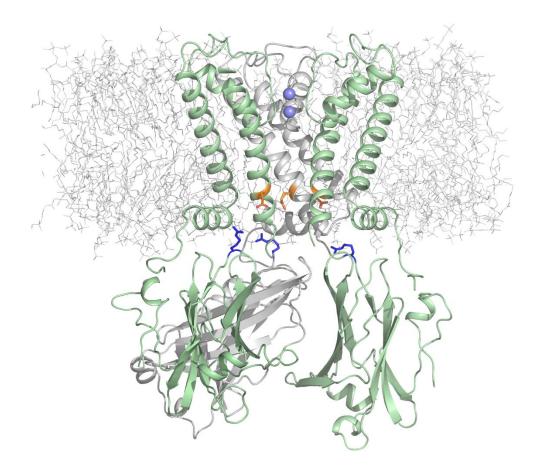
Supporting Information

Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels

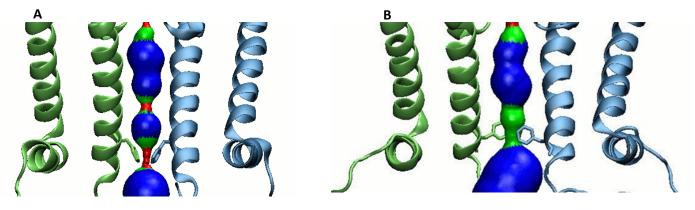
Tobias Linder^{‡1}, Shizhen Wang², Eva-Maria Zangerl-Plessl¹, Colin G. Nichols², Anna Stary-Weinzinger^{‡*1}

¹Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.

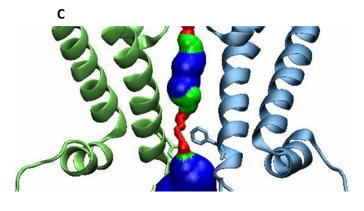

²Center for Investigation of Membrane Excitability Diseases, Department of Cell Biology and

Physiology, Washington University School of Medicine, St. Louis MO 63110, USA

*To whom correspondence should be addressed. E-mail: anna.stary@univie.ac.at


Figure S1

Overview of the KirBac1.1 channel (3 subunits are shown) embedded in a POPC lipid bilayer (grey lines). The mutated G143E residues are shown in orange, the arginine 153 positions are shown in blue. 2 K^+ ions in the filter are shown as pale blue spheres.


Figure S2

Hole analysis of Kirbac1.1 WT and mutant channels revealing conformational changes at the HBC gate.

Kirbac1.1 WT

Kirbac1.1 G143Ed (200ns)

<u>References</u>

O. S. Smart, J. G. Neduvelil, X. Wang , B. A. Wallace, M. S. Sansom, HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996).