SUPPORTING INFORMATION

A novel mitragynine analog with low efficacy mu-opioid receptor agonism displays antinociception with attenuated adverse effects

Soumen Chakraborty^{a,b}, Jeffrey F. DiBerto^c, Abdelfattah Faouzi^{a,b}, Sarah M. Bernhard^{a,b}, Anna M. Gutridge^d, Steven Ramsey^e, Yuchen Zhou^e, Davide Provasi^e, Nitin Nuthikattu^{a, b}, Rahul Jilakara^{a,b}, Melissa N.F. Nelson^f, Wesley B. Asher^f, Shainnel O. Eans^g, Lisa L. Wilson^g, Satyanarayana M Chintala^b, Marta Filizola^e, Richard M. van Rijn^d, Elyssa B. Margolis^h, Bryan L. Roth^c, Jay P. McLaughlin^g, Tao Che^{a,b,c}, Dalibor Samesⁱ, Jonathan A. Javitch^{f*}, and Susruta Majumdar ^{a, b,*}

^aCenter for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO 63110, USA.

^bDepartment of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA.

^cDepartment of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.

^dDepartment of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IA 47907, USA

^eDepartment of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. ^fDepartments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.

^gDepartment of Pharmacodynamics, University of Florida, Gainesville, FL 032610, USA.

^hDepartment of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, USA.

ⁱDepartment of Chemistry, Columbia University, NY 10027, USA.

Corresponding author(s)

Jonathan A. Javitch, MD PhD

Email: jaj2@cumc.columbia.edu

Tel No: 914-484-8668

and

Susruta Majumdar, PhD

Email:susrutam@email.wustl.edu

Tel no: 314-446-8162

Table of Contents

Page S3: Table S1. Functional studies at KOR using cAMP inhibition & Tango-arrestin assays.

Page S4: Table S2. Functional studies at DOR using cAMP inhibition & Tango-arrestin assays.

Page S5-S6: Figure S1. Characterization of **4**, **5** and **6** (**SC13**) in cAMP, Tango arrestin, PathHunter arrestin, binding, Nb33 recruitment at h/mMOR and Gi-signaling at hKOR and hDOR.

Page S7: Table S3. Functional binding data of the compounds at opioid receptors (hMOR/mMOR).

Page S8: Table S4. Potency and efficacy table for TRUPATH assay.

Page S9: Table S5. Compounds and data used to build the statistical models.

Page S10: Table S6. Average Structural Interaction Fingerprints (SIFt) probability for each ligand simulated.

Page S11: Table S7. Interactions in the top statistical models that are predicted to either enhance (negative coefficients) or reduce (positive coefficients) ligand-induced MOR activation and consequent G protein signaling.

Page S12: Table S8. Selected models for the prediction of the negative log of the efficacy $-\log(E_{Max})$ as a function of interaction probabilities. The R² on the full training set and the LOO-RMSE are reported for each model, as well as the values of the coefficient estimates and their standard errors.

Page S13: Figure S2. Full training set R^2 validation and leave-one-out (LOO) cross-validation root mean square error (RMSE) for models with R^2 >0.75. Models with R^2 in the top quartile (red points) were selected as best performing models on experimental data.

Page S14: Figure S3. Values of the negative logarithm of the G protein efficacy E_{max} predicted from the selected top 25% models, compared to the experimental values for morphine (red), the **4**, **5** and **6** (SC13) ligands (blue), buprenorphine (green), and the remaining 6 ligands in the training set (purple).

Page S15-S17: ¹H and ¹³C NMR spectra of **4**, **5** and **6** (SC13).

Page S18: HPLC method to determine purity

Page S19-S21: HPLC profiles of 4, 5 and 6 (SC13).

Compd.	cAMP inhibit	ion	β-arrestin2 recru	itment
-	EC_{50} nM (pEC ₅₀ ± SEM)	$E_{max}\% \pm SEM$	EC_{50} nM (pEC ₅₀ ± SEM)	$E_{max}\% \pm SEM$
8	10.71 (7.97 ± 0.11)	86.37 ± 2.66	n.d.	< 20
9	52.92 (7.28± 0.12)	83.46 ± 3.31	n.d.	< 20
10	63.27 (7.20 ± 0.09)	93.61 ± 3.39	n.d.	< 20
4	709.1 (6.15 ± 0.11)	91.7 ± 5.02	n.d.	< 20
5	26.73 (7.57 ± 0.09	97.75 ± 2.57	n.d.	< 20
6 (SC13)	213.2 (6.67 ±0.08)	92.29 ± 2.82	n.d.	< 20
13	4974 (5.30 ± 0.19)	61.1 ± 4.6	n.d.	< 20
14	98.09 (7.01 ± 0.10)	101.08 ± 3.89	n.d.	< 20
15	72.90 (7.14 ± 0.12)	99.28 ± 3.98	n.d.	< 20
16	2484 (5.60 ±0.21)	49.33 ± 4.53	n.d.	24.83 ± 3.84
17	7822 (5.11 ± 0.13)	96.2 ± 1.2	n.d.	< 20
18	86.32 (7.06 ±0.08)	89.70 ± 2.36	n.d.	< 20
21	48.38 (7.31 ± 0.10)	82.86 ± 3.28	n.d.	< 20
20	42.69 (7.37 ± 0.09)	78.76 ± 2.28	n.d.	< 20
22	1289 (5.89 ± 0.18)	61.88 ± 7.07	n.d.	< 20
24	127.4 (6.89 ± 0.09)	72.30 ± 2.58	n.d.	< 20
23	$4184~(5.38\pm 0.21)$	56.39 ± 3.00	n.d.	< 20
25	$22.67 (7.64 \pm 0.097)$	65.30 ± 2.11	n.d.	< 20
Mitragynine	68.76 (7.16 ± 0.21)	57.01 ± 3.93	n.d.	< 20
7 O H	25.41 (7.59 ± 0.05)	90.84 ± 1.43	2911 (5.54 ± 0.43)	36.79 ± 13.15
U50488H	$0.005 (10.29 \pm 0.06)$	100	7.85 (8.10 ± 0.10)	100

Table S1. Functional studies at KOR using cAMP inhibition & Tango-arrestin assays.

^aThe functional data of each assay using human kappa opioid receptor (hKOR) was normalized to E_{max} of corresponding standard U50488H. Results were analyzed using a three-parameter logistic equation in GraphPad Prism and the data are presented as mean EC₅₀ (pEC₅₀ ± SEM) with $E_{max}\%$ ± SEM for assays run in triplicate; nd; results could not be determined because of efficacy of β -arrestin2 recruitment was less than 20% and/or shallow slopes.

	Functional data at DOI	on & Tango-arrestin assays ^a		
Compd.	cAMP inhibit	ion	β-arrestin2 recru	itment
	$EC_{50} \text{ nM (pEC}_{50} \pm SEM)$	$E_{max}\% \pm SEM$	$EC_{50} \text{ nM } (pEC_{50} \pm SEM)$	$E_{max}\% \pm SEM$
8	571.9 (6.24 ± 0.07)	115.37 ± 5.21	308.1 (6.51 ± 0.21)	53.82 ± 4.43
9	871.1 (6.06 ± 0.08)	85.53 ± 5.37	243.8 (6.61 ± 0.34)	46.88 ± 5.69
10	$2640~(5.58\pm 0.07)$	114.00 ± 20.9	503.8 (6.3 ± 0.26)	50.55 ± 5.7
4	85.89 (7.07 ± 0.10)	111.79 ± 5.97	260.8 (6.58 ± 0.06)	293.93 ± 7.65
5	152.6 (6.82 ± 0.10)	98.09 ± 5.45	1120 (5.95 ± 0.10)	211.34 ± 12.57
6 (SC13)	97.6 (7.01 ± 0.10)	103.15 ± 5.27	660 (6.18 ± 0.10)	191.03 ± 10.56
13	n.d	79 ± 1	n.d	< 20
14	$1650 (5.78 \pm 0.10)$	99.15 ± 7.74	n.d	< 20
15	2179 (5.66 ± 0.12)	116.22 ± 10.3	982.2 (6.01 ± 0.2)	65.04 ± 7.32
16	$176.4 \ (6.75 \pm 0.08)$	106.25 ± 3.21	$160.0 \ (6.8 \pm 0.08)$	129.52 ± 4.86
17	4279 (5.37 ± 0.09)	105.87 ± 3.04	n.d	<20
18	159.2 (6.80 ± 0.09)	100.49 ± 4.21	461.7 (6.34 ± 0.1)	168.77 ± 8.85
21	2817 (5.55 ± 0.19)	70.42 ± 3.57	n.d.	<20
20	n.d.	39.03 ± 3.17	n.d.	<20
22	2349 (5.63 ± 0.13)	78.35 ± 4.37	n.d.	<20
24	4082 (5.39 ± 0.27)	86.7 ±21.92	n.d	53.14 ± 16.41
23	n.d.	50 ± 4.8	2681 (5.57 ± 0.17)	81 ± 13
25	$144.6 (6.84 \pm 0.10)$	74.92 ± 2.73	729.8 (6.14 ±0.19)	70.01 ± 8.49
Mitragynine	1179 (5.93 ± 0.11)	112.43 ± 7.75	559.3 (6.25 ± 0.25)	46.83 ± 6.11
70 H	97.83 (7.01 ± 0.08)	91.60 ± 3.72	732.4 (6.13 ± 0.06)	191.39 ± 6.47
DPDPE	2.11 (8.68 ± 0.07)	100	6.91 (8.16 ± 0.10)	100

Table S2. Functional studies at DOR using cAMP inhibition & Tango-arrestin assays.

^aThe functional data of each assay using human delta opioid receptor (hDOR) was normalized to E_{max} of corresponding standards DPDPE. Results were analyzed using a three-parameter logistic equation in GraphPad Prism and the data are presented as mean EC₅₀ (pEC₅₀ ± SEM) with $E_{max}\% \pm$ SEM for assays run in triplicate; nd; results could not be determined because of efficacy of β-arrestin2 recruitment was less than 20% and/or shallow slopes.

Figure S1. Characterization of **4**, **5** and **6** (**SC13**) in cAMP, Tango arrestin, PathHunter arrestin, binding, Nb33 recruitment at h/mMOR and Gi-signaling at hKOR and hDOR.

A) 4, 5 and 6 (SC13) are full agonists at hMOR in cAMP inhibition (N=3) compared to DAMGO. See table 1 (main paper) for values B) 4, 5 and 6 (SC13) showed robust arrestin recruitment (E_{max}>100% for 4, 5 & 45% for 6 (SC13) with poor potency $(EC_{50}>10\mu M)$ in Tango assays at MOR. See table 1 (main paper) for values. C) 4, 5 and 6 (SC13) in PathHunter-arrestin recruitment assays (n=3) show less β arrestin-2 recruitment compared to DAMGO. β -arrestin2: 4 EC₅₀ nM (pEC₅₀ ± SEM) = n.d., $E_{max}\% \pm SEM = \langle 20\%, \beta \text{-arrestin2: 5 EC}_{50} \text{ nM } (pEC_{50} \pm SEM) = n.d., E_{max}\% \pm SEM = \langle 20\%, \beta \text{-arrestin2: 6 (SC13)} \rangle$ EC_{50} nM (pEC₅₀ ± SEM) = n.d., E_{max} % ± SEM = <20%, β-arrestin2: morphine EC₅₀ nM (pEC₅₀ ± SEM) = 80.08 (7.09 ± 0.17) nM, $E_{max}\% \pm SEM = 33.08 \pm 1.84$, β -arrestin2: DAMGO EC₅₀ nM (pEC₅₀ ± SEM) = 281.57 (6.55 ± 0.2) nM. D) In competitive radioligand binding assays in MOR-CHO using ³H-DAMGO as radioligand, 4, 5 and 6 (SC 13) labelled MOR with high to reasonable affinity. 6 (SC13) K_i (pK_i ± SEM) = 6.05 (8.22 ± 0.08), 5 K_i (pK_i ± SEM) = 12.33 (7.91 ± 0.03), 4 K_i (pK_i ± SEM) = 15.42 (7.81 \pm 0.06), morphine K_i (pK_i \pm SEM) = 0.37 (9.42 \pm 0.04), DAMGO K_i (pK_i \pm SEM) = 0.49 (9.31 \pm 0.03). E) Gi-1 activation in BRET assays of controls. Fentanyl had higher efficacy over DAMGO. Efficacy of morphine was 94% and buprenorphine showed 44% efficacy. See table S3 for values. F) β-arrestin2 recruitment in BRET assays of controls. Fentanyl showed robust arrestin recruitment with efficacy of 94%, morphine showed 31% efficacy while buprenorphine showed no recruitment. See table S3 for values. G) No measurable Gi-1 potency was observed for 6 (SC13) at hKOR. U50488 EC_{50} nM $(pEC_{50} \pm SEM) = 8.07 (8.09 \pm 0.27) nM.$ 6 (SC13) EC₅₀ nM $(pEC_{50} \pm SEM) = n.d.$, $E_{max}\% \pm SEM = 38 \pm 17$. H) No measurable Gi-1 potency was observed for 6 (SC 13) at hDOR. 6 (SC13) EC_{50} nM (p $EC_{50} \pm SEM$) = n.d; E_{max} % $\pm SEM$ = 88 \pm 35 at hDOR. I) Efficacy of 4, 5 and 6 (SC13) compounds, buprenorphine and morphine at the human opioid receptors in BRET-based Nb33 recruitment assays are shown as a percentage of receptor activation relative to the full agonist, DAMGO. 4, 5 and 6 (SC13) had significantly lower efficacy than DAMGO (p<0.0001) and morphine (p<0.0001) and similar efficacy to buprenorphine. Statistical significance was determined using one-way ANOVA followed by Dunnett's multiple comparison test, F(5,68)=239.172.5, p<0.0001. J) Efficacy of 4, 5 and 6 (SC13) compounds, buprenorphine and morphine at the mouse opioid receptors in BRET-based Nb33 recruitment assays are shown as a percentage of receptor activation relative to the full agonist, DAMGO. 4, 5 and 6 (SC13) had significantly lower efficacy than DAMGO (p<0.0001), morphine (p<0.0001), and similar efficacy to buprenorphine. Statistical significance was determined using one-way ANOVA followed by Dunnett's multiple comparison test, F(5,64)=572.5, p<0.0001.

Receptors	Compounds	G protein activation	(BRET) assay	Arrestin recruitment	t (BRET) assay	Figure
		$EC_{50} nM (pEC_{50} \pm SEM)$	$E_{max}\% \pm SEM$	$EC_{50} nM (pEC_{50} \pm SEM)$	$E_{max}\% \pm SEM$	
	4	1250 (5.90 ± 0.14)	60.50 ± 5.15	nd	nd	2A-B
hMOR	5	252.79 (6.6 ± 0.15)	61.76 ± 4.05	nd	nd	2A-B
	6 (SC13)	145.13 (6.84 ± 0.08)	69.65 ± 2.61	nd	nd	2A-B
	DAMGO	17.35 (7.76 ± 0.09)	100	161.33 (6.79 ± 0.06)	100	2A-B
Receptors	Controls	G protein activation	(BRET) assay	Arrestin recruitment	t (BRET) assay	Figure
		$EC_{50} nM (pEC_{50} \pm SEM)$	Emax% ± SEM	$EC_{50} nM (pEC_{50} \pm SEM)$	$Emax\% \pm SEM$	
	Buprenorphine	0.42 (9.38 ± 0.24)	43.63 ± 2.36	nd	nd	S1E-F
hMOR	Morphine	81.34 (7.09 ± 0.12)	97.21 ± 4.36	6774.6 (5.17 ± 0.64)	32.59 ± 10.55	S1E-F
	Fentanyl	13.17 (7.88 ± 0.18)	122.45 ± 9.11	118.64 (6.93 ± 0.13)	97.93 ± 4.17	S1E-F
	DAMGO	12.58 (7.9 ± 0.07)	100	175 (6.76 ± 0.08)	100	S1E-F
Receptors	Compounds	Nb33 recruitment a	ssay (hMOR)	Nb33 recruitment a	ssay (mMOR)	Figure
		$EC_{50} nM (pEC_{50} \pm SEM)$	Emax% ± SEM	$EC_{50} nM (pEC_{50} \pm SEM)$	Emax% ± SEM	
	DAMGO	265.45 (6.58 ± 0.05)	100 ± 2.17	154.25 (6.81 ± 0.04)	100 ± 1.50	2C-D
	Buprenorphine	3.25 (8.49 ± 0.31)	23.83 ± 1.89	3.65 (8.44 ± 0.34)	20.55 ± 1.62	2C-D
	Morphine	$1600 (5.78 \pm 0.17)$	71.86 ± 4.79	584.83 (6.23 ± 0.09)	69.62 ± 2.44	2C-D
	6 (SC13)	730.53 (6.14 ± 0.21)	21.13 ± 2.23	12.27 (7.91 ± 0.40)	7.69 ± 1.1	2C-D

Table S3. Functional binding data of the compounds at opioid receptors (hMOR/mMOR).

The functional data of each assay using human/mouse mu opioid receptor (hMOR/mMOR) were normalized to E_{max} of corresponding standards. Results were analyzed using a three-parameter logistic equation in GraphPad Prism and the data are presented as mean EC₅₀ (pEC₅₀ ± SEM) with $E_{max}\%$ ± SEM for assays run in triplicate.

Table S4. Potency and efficacy table for TRUPATH assay

Potency table (Figure 2G):

	Gi1	Gi2	Gi3	Goa	Gob	Gz	βarr1	βarr2
Compounds	EC50 nM	EC50 nM	EC50 nM	EC50 nM	EC50 nM	EC50 nM	EC50 nM	EC50 nM
Compounds	$(pEC_{50} \pm$	$(pEC_{50} \pm$	$(pEC_{50} \pm$	$(pEC_{50} \pm$	$(pEC_{50} \pm$	$(pEC_{50} \pm$	$(pEC_{50} \pm$	$(pEC_{50} \pm$
	SEM)	SEM)	SEM)	SEM)	SEM)	SEM)	SEM)	SEM)
DAMCO	17.39 (7.76	8.53 (8.07	40.04 (7.4	6.52 (8.19	4.38 (8.36	1.63 (8.79	321.08 (6.49	161.07 (6.79
DAMGO	± 0.08	± 0.05	± 0.06)	$\pm 0.08)$	$\pm 0.07)$	± 0.04)	± 0.04)	$\pm 0.05)$
4	1000 (5.90 ± 0.13)	319.95 (6.49 ± 0.21)	790.84 (6.10 ± 0.29	247.62 (6.61 ± 0.21)	184.07 (6.73 ± 0.16)	83.78 (7.08 ± 0.1)	nd	nd
5	255.75 (6.59 ± 0.14)	148.26 (6.83 ± 0.22)	1500 (5.83 ± 0.59)	64.83 (7.19 ± 0.14)	100.91 (7 ± 0.13)	37.96 (7.42 ± 0.10)	nd	nd
6 (SC13)	145.27 (6.84 ± 0.07)	121.81 (6.91 ± 0.21)	255.34 (6.59 ± 0.22)	52.94 (7.28 ± 0.14)	62.17 (7.21 ± 0.08)	14.53 (7.84 ± 0.09)	nd	nd
Buprenorphine	0.37 (9.43 ±	0.13 (9.89	0.17 (9.77	0.17 (9.77	0.55 (9.26	$0.2(9.7 \pm$	nd	nd
Duprenorphine	0.18)	$\pm 0.22)$	$\pm 0.23)$	± 0.1)	$\pm 0.18)$	0.09)		
Fentanyl	12.35 (7.91	1.15 (8.94	31.1 (7.51	3.78 (8.42	4.08 (8.39	1.39 (8.86	300.74 (6.52	114.29 (6.94
	$\pm 0.16)$	$\pm 0.17)$	$\pm 0.17)$	$\pm 0.12)$	$\pm 0.08)$	$\pm 0.16)$	$\pm 0.13)$	$\pm 0.11)$
Mornhine	51.66 (7.29	18 (7.74 ±	88.27 (7.05	11.2 (7.95	15.16 (7.82	8.22 (8.08	nd	4930 (5.31 ±
	± 0.13	0.21)	± 0.16)	± 0.15)	$\pm 0.1)$	$\pm 0.18)$	ind ind	00.58)

Efficacy table (Figure 2H):

	Gi1	Gi2	Gi3	Goa	Gob	Gz	βarr1	βarr2
Compounds	E _{max} % ±	$E_{max}\% \pm$	$E_{max}\% \pm$	E _{max} % ±	$E_{max}\% \pm$			
	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM
DAMGO	100	100	100	100	100	100	100	100
4	60.50 ± 5.01	70.21 ± 7.05	42.77 ± 7.19	64.87 ± 6.28	63.87 ± 4.8	79.47 ± 3.42	nd	nd
5	61.81 ± 3.94	74.75 ± 7.38	32.74 ± 12.54	65.42± 3.92	71.24 ± 4.09	81.4 ± 3.16	nd	nd
6 (SC13)	69.66 ± 2.32	81.45 ± 7.62	59.78 ± 6.13	75.37 ± 4.26	73.84 ± 2.58	85.66± 2.93	nd	nd
Buprenorphine	43.56 ± 2.27	59.88 ± 3.69	40.02 ± 2.63	65.49 ± 1.92	65.45± 3.58	80.62 ± 2.14	nd	nd
Fentanyl	122.08 ± 8.82	94.47 ± 5.92	111.58 ± 8.99	100.36 ± 4.47	98.40 ± 2.91	93.92± 5.69	83.24± 3.96	97.81 ± 4.04
Morphine	94.89 ± 4.91	88.54 ± 7.04	86.34 ± 6.08	88.37± 4.83	94.38± 3.38	87.7 ± 5.52	nd	31.68 ± 9.51

Pharmacological parameters from **Figure 2G** and **2H** for all responding transducers. Potency [EC₅₀ nM (pEC₅₀ ± SEM)] and efficacy (E_{max} % ± SEM) are reported as estimates from simultaneous curve fitting of all biological replicates and include standard error. nd: E_{Max} <10%.

 Table S5. Compounds and data used to build the statistical models.

	Drug	G-protein (E _{max} ±SEM %DAMGO)
N N N N N N N N N N N N N N N N N N N	MG	<10
10 H $10 \text{ R}_1 = \text{Me}$	70 H	31.15 ± 4.93
MeO	8	<10
0	9	<10
R ₂	10	<10
70H : R ₂ = OMe, R ₃ = H	4	60.50 ± 5.15
4: $R_2 = Ph, R_3 = H$	5	61.76 ± 4.05
R_3 6 (SC13) : R_2 = furan-3-yl, R_3 = H	6 (SC13)	69.65 ± 2.61
MaQ $11-F: R_2 = OMe, R_3 = F$	11-F	<10
	Morphine	97.21 ± 4.36
0	Buprenorphine	43.63 ± 2.36

Residue	MG	70H	8	9	10	4	5	6 (SC13)	11-F	bpr	morphine
G efficacy	10%	31%	10%	10%	10%	61%	62%	70%	10%	43%	97%
Y(1.39)_Apolar	-	34%	-	-	-	44%	-	41%	68%	-	-
Y(1.39)_Aro_E2F	-	12%	-	-	-	-	-	15%	30%	-	-
L/M(2.57)_Apolar	-	-	-	-	-	-	-	-	32%	-	-
Q(2.60)_Apolar	100%	100%	100%	100%	99%	100%	93%	100%	97%	83%	-
Q(2.60)_Hbond_1Wat	-	-	-	-	-	-	-	-	14%	-	-
N/V(2.63) Apolar	5/%	/1%	8/%	84%	/2%	84%	69%	/9%	54%	26%	-
$\frac{Y(2.64)}{V(2.64)}$ Apolar	20%	190/	15%	3/%	-	38%	-	24%	33%	0/%	29%
$\frac{1(2.04)}{W(23.50)} \text{ Apolar}$	- 03%	1870	-	03%	-	63%	-	53%	25%	-	
I/L (3 29) Apolar	99%	64%	100%	100%	100%	78%	90%	89%	37%	62%	
D(3.32) Apolar	100%	100%	100%	100%	100%	100%	98%	100%	99%	98%	100%
D(3.32) Elec ProN	99%	76%	97%	95%	100%	87%	73%	90%	54%	96%	98%
D(3.32) Hbond 1Wat	-	27%	-	-	-	12%	23%	-	56%	24%	-
D(3.32)_Hbond_ProA	99%	65%	96%	90%	99%	70%	73%	82%	35%	58%	86%
Y(3.33)_Apolar	100%	98%	100%	100%	100%	100%	99%	100%	98%	100%	100%
Y(3.33)_Aro_E2F	-	-	-	-	-	-	-	-	-	20%	-
Y(3.33)_Hbond_1Wat	27%	25%	-	-	-	29%	25%	30%	21%	69%	56%
Y(3.33)_Hbond_2Wat	49%	55%	65%	58%	58%	60%	57%	62%	41%	32%	44%
M(3.36)_Apolar	98%	98%	99%	100%	98%	99%	99%	97%	95%	92%	99%
F(3.37)_Apolar	-	12%	-	-	-	-	-	26%	-	-	-
C(45.50) Apolar	85%	4/%	9/%	9/%	62%	81%	/0%	//%	24%	25%	-
C(45.50) Hbond 1 Wat	20%	24%	-	-	-	-	23%	12%	14%	-	-
T/S(45.51) Apolar	-	20/0	-	-	-	13/0	10/0	2370	2370	24/0	
1/5(45.51) Apolar L (45.52) Hoond 2Wat		13%					19%	-		17%	
E(45.52)_Hoond_2Wat	-	-	-	-	-	-	-	_	-	2.0%	15%
K(5.39) Hbond 2Wat	33%	15%	27%	25%	34%	14%	11%	11%	11%	11%	22%
V(5.42) Apolar	56%	72%	46%	59%	52%	78%	78%	83%	77%	99%	88%
A(5.46)_Apolar	-	-	-	-	-	-	-	14%	10%	-	-
W(6.48)_Apolar	80%	97%	90%	87%	76%	99%	90%	100%	92%	85%	41%
I(6.51)_Apolar	97%	99%	97%	98%	98%	99%	100%	93%	97%	98%	95%
H(6.52)_Apolar	99%	96%	100%	99%	95%	99%	92%	95%	91%	95%	91%
H(6.52)_Aro_E2F	-	-	-	-	-	-	-	-	-	84%	77%
V/I(6.55)_Apolar	70%	38%	62%	48%	55%	55%	66%	47%	35%	89%	55%
W/Y(7.35) Apolar $W/V(7.35)$ Ubond 1Wat	-	14%	-	-	-	270/	39%	210/	- 470/	99%	/3%
W/1(7.35) Hbond 2Wat	-	28%	26%	330/2	270/2	320/2	2370	2170	23%	-	
W/Y(7.35) Hbond ProD	-	- 2070		-	-	-	-	-	-		-
H/Y(7.36) Apolar	-	57%	-	10%	-	86%	28%	82%	75%	_	
H/Y(7.36) Aro E2F	-	36%	-	-	-	56%	13%	49%	44%	-	_
H/Y(7.36) Hbond 2Wat	-	12%	-	-	-	10%	-	-	14%	-	-
I(7.39)_Apolar	69%	99%	92%	96%	84%	99%	98%	99%	100%	92%	98%
G(7.42)_Apolar	47%	94%	75%	79%	61%	92%	64%	91%	96%	95%	-
Y(7.43)_Apolar	58%	96%	83%	100%	74%	98%	98%	99%	95%	100%	86%
Y(7.43)_Hbond_1Wat	-	10%	-	-	-	-	-	-	27%	22%	-
Q(2.60)_Hbond_2Wat	18%	-	29%	23%	31%	-	-	-	-	-	-
S(2.61)_Apolar	-	-	-	-	-	20%	-	31%	31%	-	-
V(3.28)_Apolar	89%	-	99%	98%	/6%	22%	17%	37%	-	-	-
1/5(45.51)_Hbond_2Wat	-	14%	-	-	-	-	18%	-	-	24%	-
1(1.37)_Ar0_F2F H(6.52)_Hbord_1Wet	-	-	-	-	-	-	-	-	1.5%	-	-
V(1.39) Hoond 2Wet	- 12%	-	20%	- 15%	- 21%	-	-	-	10/0	-	-
O(2.60) Hoond ProD	2.2%	-		-	- 1 /0	-	-	-	-	-	
K(5.39) Apolar	21%	-	-	-	-	-	-	-	-	35%	-
F(5.43) Apolar	13%	-	-	-	-	-	-	-	-	-	-
H(6.52)_Hbond_2Wat	21%	11%	21%	17%	28%	-	-	-	-	-	-
N/V(2.63)_Hbond_2Wat	-	13%	-	-	-	-	-	-	-	-	-
W(23.50)_Aro_E2F	-	-	31%	18%	19%	34%	-	31%	-	-	-
W(23.50)_Aro_F2F	-	-	70%	69%	-	12%	-	13%	-	-	-
C(3.25)_Apolar	-	-	37%	15%	-	-	-	-	-	-	-
L/M(5.38)_Hbond_2Wat	-	-	11%	-	-	-	-	-	-	-	-
I/L(3.29)_Hbond_1Wat	-	-	-	-	-	-	17%	-	-	-	-
L(45.52)_Apolar	-	-	-	-	-	-	18%	-	-	-	-
F(2.37)_Apolar V(2.64) Hoond 2Wat	-	-	-	40%	-	-	-	-	-	-	- 10%
W/V(7.35) Are F2F	-	-	-	- 10/0	-	-	-	-	-	-	10/0
	-	-	-	-	-	-	-	-	-	-	-

|--|

Y(2.64)_Aro_F2F	-	-	-	-	-	-	-	-	-	-	-
Y(2.64)_Hbond_1Wat	-	-	-	-	-	-	-	-	-	-	13%

Table S7. Interactions in the top statistical models that are predicted to either enhance (negative coefficients) or reduce (positive coefficients) ligand-induced MOR activation and consequent G protein signaling.

			Morp	hine	4, 5 &	6 (SC13)	Buprei	norphine
Residue	Interaction	Avg. Coeff	Prob.	Effect	Prob.	Effect.	Prob.	Effect
Interactions re	educing G prote	ein signaling						
Y(1.39)	Apolar	7.46			28%	$\downarrow\downarrow$		
V(2.63)	Apolar	2.81			77%	$\downarrow\downarrow$	26%	\downarrow
C(45.50)	Apolar	2.43			78%	$\downarrow\downarrow$	23%	\downarrow
L(3.29)	Apolar	2.30			86%	$\downarrow\downarrow$	62%	$\downarrow\downarrow$
W(23.50)	Apolar	1.99			54%	$\downarrow\downarrow$		
Interactions en	hancing G prot	tein signaling						
H(6.52)	Aro_E2F	-2.32	77%	1 1			84%	11
Y(7.36)	Apolar	-5.76			65%	11		
Y(7.36)	Aro E2F	-8.65			39%	↑ ↑		

Table S8. Selected models for the prediction of the negative log of the efficacy $-\log(E_{Max})$ as a function of interaction probabilities. The R² on the full training set and the LOO-RMSE are reported for each model, as well as the values of the coefficient estimates and their standard errors.

Model ID	R ²	LOO-RMSE	Interaction	Coefficient	std. Error
1	0.936	0.312	(intercept)	0.176	0.244
			Y(1.39)_Apolar	7.633	1.083
			N/V(2.63)_Apolar	2.954	0.41
			H/Y(7.36)_Apolar	-6.353	0.756
2	0.93	0.494	(intercept)	0.513	0.218
			H/Y(7.36)_Aro_E2F	-7.572	1.151
			Y(1.39)_Apolar	6.749	1.068
			W(23.50)_Apolar	1.973	0.317
3	0.918	0.531	(intercept)	0.335	0.279
			Y(1.39)_Apolar	9.097	1.466
			C(45.50)_Apolar	2.428	0.424
			H/Y(7.36)_Apolar	-6.558	0.99
4	0.916	0.366	(intercept)	0.19	0.279
			H/Y(7.36)_Aro_E2F	-9.397	1.349
			Y(1.39)_Apolar	7.077	1.217
			N/V(2.63)_Apolar	2.659	0.463
5	0.907	0.386	(intercept)	-0.06	0.361
			Y(1.39)_Apolar	8.523	1.468
			I/L(3.29)_Apolar	2.394	0.441
			H/Y(7.36)_Apolar	-5.918	0.955
6	0.904	0.484	(intercept)	-0.068	0.348
			H/Y(7.36)_Aro_E2F	-8.988	1.395
			Y(1.39)_Apolar	8.093	1.337
			I/L(3.29)_Apolar	2.211	0.408
7	0.901	0.624	(intercept)	0.583	0.274
			Y(1.39)_Apolar	6.629	1.363
			W(23.50)_Apolar	2.014	0.38
			H/Y(7.36)_Apolar	-4.657	0.915
8	0.899	0.403	(intercept)	2.327	0.195
			Y(1.39)_Apolar	5.867	1.255
			H(6.52)_Aro_E2F	-2.321	0.41
			H/Y(7.36)_Apolar	-5.324	0.872

Figure S2. Full training set R^2 validation and leave-one-out (LOO) cross-validation root mean square error (RMSE) for models with R^2 >0.75. Models with R^2 in the top quartile (red points) were selected as best performing models on experimental data.

Figure S3. Values of the negative logarithm of the G protein efficacy E_{max} predicted from the selected top 25% models, compared to the experimental values for **morphine** (red), the **4**, **5** and **6** (**SC13**) ligands (blue), **buprenorphine** (green), and the remaining 6 ligands in the training set (purple).

¹H and ¹³C NMR spectra of 4, 5 and 6 (SC13)

¹H NMR of 4 (500 MHz, CDCl₃)

¹³C NMR of 4 (100 MHz, CDCl₃)

¹H NMR of 5 (400 MHz, CDCl₃)

¹³C NMR of 5 (100 MHz, CDCl₃)

¹H NMR of 6 (SC13) (500 MHz, CDCl₃)

¹³C NMR of 6 (SC13) (100 MHz, CDCl₃)

HPLC method to determine purity

Instrument: Agilent 1200 Series HPLC Column: Higgins Analytical CLIPEUS C18 column (5 μ m, 150 × 4.6 mm), Method: Gradient elution program–(acetonitrile/water 5/95/95/5, 0.1% TFA), flow rate = 0.65 ml/min.

HPLC profile of 4

Data File C:\CHEM32\1\DATA\MURTHY\MURTHY100720 2020-10-07 23-15-32\10-01-202000031.D Sample Name: SC11

Area	Percent	Report

Sorted By	:	Signal			
Multiplier	:	1.0000			
Dilution	:	1.0000			
Use Multiplier	6	Dilution	Factor	with	ISTDS

```
Signal 1: DAD1 A, Sig=254,16 Ref=360,100
```

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	吕
1	8.230	VV	0.0967	1.97031e4	3343.78052	99.3420
2	9.261	VV	0.0632	130.51276	30.92712	0.6580
Total	s:			1.98336e4	3374.70764	

Totals :

Instrument 1 10/8/2020 10:14:44 PM Grant

HPLC profile of 5

Data File C:\CHEM32\1\DATA\MURTHY\MURTHY101720 2020-10-17 14-46-55\10-01-202000002.D Sample Name: SC12

Acq. Operator	ser Seq. Line : 2	
Acq. Instrument	strument l Location : Vial 43	
Injection Date	/17/2020 3:01:34 PM Inj: 1	
	Inj Volume : 10 µl	
Acq. Method	Chem32\1\DATA\MURTHY\MURTHY101720 2020-10-17 14-46-55\MURTHY100120-1.M	
Last changed	7/2020 11:11:21 PM by Grant	
Analysis Method	CHEM32\1\DATA\MURTHY\MURTHY101720 2020-10-17 14-46-55\MURTHY100120-1.M	
Last changed	7/2020 11:11:21 PM by Grant	
DAD1	54,16 Ref=360,100 (MURTHY/MURTHY101720 2020-10-17 14-46-55\10-01-202000002.D)	
mAU ±	8	
1400	Đ,	
1200		
1000-		
800		
600		
400	8 8 2	
200	4 / 7 3, 8, 5, 9	
0		
0	2 4 6 8 10	12 min

Area Percent Report

Sort	ted By		:	Sig	nal	
Multiplier			:	1.0000		
Dilution			:	1.0000		
Use	Multiplier	á	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.418	VV	0.0539	118.41225	32.93866	1.7806
2	7.606	VV	0.0590	6418.16650	1665.01318	96.5136
3	7.930	VV	0.0619	16.27796	3.80944	0.2448
4	8.521	VV	0.0615	97.15552	23.88614	1.4610

Totals : 6650.01222 1725.64742

Instrument 1 10/18/2020 10:42:24 AM Peter

HPLC profile of 6 (SC13)

Data File C:\CHEM32\1\DATA\MURTHY\MURTHY100720 2020-10-07 23-15-32\10-01-202000030.D Sample Name: SC13

```
Acq. Operator : Grant
                                       Seq. Line : 30
   Acq. Instrument : Instrument 1
                                        Location : Vial 70
   Injection Date : 10/8/2020 6:15:29 AM
                                         Inj: 1
                                      Inj Volume : 10 ul
   Acg. Method : C:\Chem32\1\DATA\MURTHY\MURTHY100720 2020-10-07 23-15-32\MURTHY100120-1.M
   Last changed : 10/7/2020 11:11:21 PM by Grant
   Analysis Method : C:\CHEM32\1\DATA\MURTHY\MURTHY100720 2020-10-07 23-15-32\MURTHY100120-1.M
   Last changed
             : 10/7/2020 11:11:21 PM by Grant
        DAD1 A, Sig=254,16 Ref=360,100 (MURTHY/MURTHY100720 2020-10-07 23-15-32\10-01-202000030.D)
     mAU :
     2500 -
     2000 -
     1500 -
     1000 -
                                                   7.930
                                                        882
      500 -
                                                        80
       0
                                                                         12 min
                                                              10
        0
   Area Percent Report
   Sorted By
                        Signal
                   :
                       1.0000
   Multiplier
                  :
   Dilution
                   :
                        1.0000
   Use Multiplier & Dilution Factor with ISTDs
   Signal 1: DAD1 A, Sig=254,16 Ref=360,100
   Peak RetTime Type Width
                        Area
                                Height
                                         Area
    # [min] [mAU*s]
                                [mAU]
                                         융
   1 7.930 VV 0.0543 29.86893 8.64324 0.2560
       8.044 VV 0.0632 1.16139e4 2868.91309 99.5341
     2
       8.882 VB 0.0639 24.49723 5.73100 0.2099
     3
  Totals :
                       1.16683e4 2883.28733
Instrument 1 10/8/2020 10:14:16 PM Grant
```