Supporting Information

Corrections in the CHARMM36 parameterization of chloride interactions with proteins, lipids and alkali cations, and extension to other halide anions

Esam A. Orabi^{1*}, Tuğba N. Öztürk^{1,2}, Nathan Bernhardt¹ and José D. Faraldo-Gómez^{1*}

¹Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20814

> ²Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110

> *Correspondence should be addressed to: (E.A.O) esam.orabi@nih.gov or (J.D.F.G.) jose.faraldo@nih.gov

> > June 2nd, 2021

	8	$f_{ion-O}(r)$				g	ion-H (r)		
Property	F ⁻	Cl-	Br ⁻	Ι-	Property	F ⁻	Cl ⁻	Br ⁻	Ι-
$r_{\rm max1}$	2.67	3.13	3.30	3.58	$r_{\rm max1}$	1.73	2.22	2.38	2.67
$g_{ m max1}$	7.6	4.4	3.7	2.9	$g_{\max 1}$	8.6	3.9	3.1	2.2
$r_{\min 1}$	3.30	3.80	3.90	4.19	$r_{\min 1}$	2.40	2.92	3.05	3.33
$g_{\min 1}$	0.2	0.5	0.6	0.8	$g_{\min 1}$	0.1	0.3	0.4	0.5
CN1	6.7	7.7	8.0	8.7	CN1	6.7	7.3	7.3	7.6
$r_{\rm max2}$	4.6	5.0	5.3	_	$r_{\rm max2}$	3.02	3.48	3.65	3.92
$g_{ m max2}$	1.3	1.1	1.1	_	$g_{ m max2}$	2.3	1.5	1.4	1.3
$r_{\min 2}$	5.7	6.3	6.5	_	$r_{\min 2}$	3.5	4.0	4.2	4.5
$g_{\min 2}$	0.9	0.9	0.9	_	$g_{\min 2}$	0.7	0.8	0.9	1.0
CN2	27	35	38	—	CN2	15	19	21	23

Table S1. Properties of the radial distribution functions for each of the halide ions in liquid water.

Table S2. Calculated and experimental osmotic pressures of aqueous solutions of lithium halides.^{a,b}

Salt	molality	Calc	Expt. П	
	(m)	Generic	NBFIX ^c	(bar)
LiCl	0.5	18 ± 3	$27 \pm 3 (23 \pm 3)$	24
	1.0	30 ± 4	$50 \pm 3 (47 \pm 2)$	50
	3.0	71 ± 5	$177 \pm 10 (135 \pm 7)$	182
	5.0	110 ± 13	346 ±11 (223 ± 17)	366
LiBr	0.5	23 ± 3	24 ± 3	24
	1.0	44 ± 4	52 ± 5	50
	3.0	116 ± 6	188 ± 5	190
	5.0	190 ± 13	372 ± 17	387
LiI	0.5	24 ± 2	24 ±2	25
	1.0	53 ± 4	53 ± 4	51
	3.0	195 ± 10	195 ± 10	194
	5.0	372 ± 12	372 ± 12	—

^aCalculated values used the CHARMM36m forcefield and either generic LJ parameters or NBFIX pair-specific corrections. ^bNo data are shown for LiF as it is sparingly soluble in water (0.133 wt% at 25.4 °C). The dashes indicate that no experimental data are available. ^cData in brackets are calculated using the NBFIX parameters reported in Ref. 107 ($\epsilon_{LiCl} = -0.0187$ kcal/mol and $R_{min,LiCl} = 3.6875$ Å).

Salt	molality	Calculate	ed П (bar)	Expt. П
	(m)	Generic	NBFIX	(bar)
NaF	0.5	17 ± 3	23 ± 2	23
	1.0	10 ± 3	47 ± 6	44
NaCl	0.5	25 ± 3	26 ± 4	23
	1.0	52 ± 4	52 ± 4	46
	3.0	166 ± 10	161 ± 12	150
	5.0	138 ± 9	285 ± 7	273
NaBr	0.5	26 ± 2	26 ± 2	23
	1.0	48 ± 3	48 ± 3	47
	3.0	165 ± 12	165 ± 12	155
	5.0	275 ± 19	275 ± 19	286
NaI	0.5	27 ± 2	25 ± 5	23
	1.0	52 ± 3	49 ± 5	47
	3.0	204 ± 12	165 ± 4	159
	5.0	394 ± 9	283 ± 10	292

Table S3. Calculated and experimental osmotic pressures of aqueous solutions of sodium halides.^a

^aNo data are shown for NaF at 3 and 5 m as its solubility limit in water is 0.987 m at 25 °C.

Salt	molality	Calculated	IП (bar)	Expt. П
	(m)	Generic	NBFIX	(bar)
KF	0.5	22 ± 4	22 ± 3	23
	1.0	43 ± 1	44 ± 4	46
	3.0	95 ± 4	133 ± 8	157
	5.0	160 ± 8	235 ± 9	297
KCl	0.5	24 ± 2	22 ± 2	22
	1.0	45 ± 5	45 ± 3	44
	3.0	111 ± 4	149 ± 6	130
	5.0	150 ± 7	238 ± 10	219
KBr	0.5	24 ± 1	24 ± 3	22
	1.0	46 ± 1	48 ± 3	44
	3.0	129 ± 8	143 ± 5	129
	5.0	178 ± 1	214 ± 8	214
KI	0.5	24 ± 1	23 ± 3	23
	1.0	52 ± 3	45 ± 3	44
	3.0	155 ± 7	136 ± 7	128
	5.0	257 ± 10	204 ± 7	208

Table S4. Calculated and experimental osmotic pressures of aqueous solutions of potassium halides.

Salt	molality	Calculated Π (bar)		Expt. П
	(m)	Generic	NBFIX	(bar)
RbF	0.5	19 ± 2	23 ± 4	24
	1.0	43 ± 5	45 ± 4	48
	3.0	121 ± 4	140 ± 4	155
	5.0	206 ± 15	243 ± 8	N/A
RbCl	0.5	24 ± 1	24 ± 1	22
	1.0	44 ± 2	44 ± 2	43
	3.0	130 ± 6	130 ± 6	125
	5.0	202 ± 13	202 ± 13	206
RbBr	0.5	25 ± 3	23 ± 2	22
	1.0	48 ± 3	46 ± 4	42
	3.0	139 ± 6	128 ± 6	120
	5.0	207 ± 9	201 ± 6	193
RbI	0.5	23 ± 1	24 ± 3	22
	1.0	49 ± 2	46 ± 3	41
	3.0	151 ± 11	124 ± 7	116
	5.0	248 ± 13	182 ± 5	183

Table S5. Calculated and experimental osmotic pressures of aqueous solutions of rubidium halides.

Table S6. Calculated and experimental osmotic pressures of aqueous solutions of cesium halides.

Salt	molality	Calculated	lП (bar)	Expt. П
	(m)	Generic	NBFIX	(bar)
CsF	0.5	23 ± 3	24 ± 3	24
	1.0	46 ± 2	45 ± 3	48
	3.0	140 ± 6	157 ± 5	167
	5.0	257 ± 10	281 ± 15	N/A
CsCl	0.5	21 ± 3	22 ± 4	22
	1.0	48 ± 3	45 ± 3	41
	3.0	146 ± 6	122 ± 7	117
	5.0	240 ± 10	190 ± 4	191
CsBr	0.5	22 ± 1	24 ± 4	21
	1.0	45 ± 4	43 ± 3	41
	3.0	150 ± 10	115 ± 4	113
	5.0	238 ± 5	180 ± 11	180
CsI	0.5	25 ± 2	23 ± 3	21
	1.0	50 ± 2	42 ± 2	40
	3.0	150 ± 5	107 ± 9	103
	5.0	251 ± 4	130 ± 9	N/A

Alkali ion	Halide ion	Gener	ic FF	Optimized FF ^b		
		Емм	r^{MM}	$E^{\rm MM,opt}$	r ^{MM,opt}	
Li+	F-	-176.2	1.73	-158.6	1.92	
	Cl-	-148.3	2.06	-137.2	2.23	
	Br ⁻	-140.7	2.17	-131.9	2.32	
	I-	-129.1	2.36	_	_	
Na ⁺	F-	-148.8	2.05	-143.1	2.14	
	Cl-	-126.1	2.43	-124.3	2.46	
	Br ⁻	-119.9	2.55	_	_	
	I-	-110.4	2.78	-113.9	2.69	
K+	F-	-129.9	2.35	-125.5	2.44	
	Cl-	-111.4	2.75	-110.0	2.79	
	Br ⁻	-106.3	2.89	-105.7	2.91	
	I-	-98.5	3.12	-99.4	3.09	
Rb+	F-	-122.1	2.51	-119.6	2.56	
	Cl-	-105.1	2.92	_	_	
	Br ⁻	-100.5	3.06	-100.7	3.05	
	I-	-93.3	3.30	-94.6	3.25	
Cs^+	F-	-114.4	2.68	-111.5	2.75	
	Cl-	-99.0	3.10	-100.5	3.06	
	Br ⁻	-94.8	3.25	-96.2	3.20	
	I-	-88.3	3.50	-90.7	3.39	

Table S7. Gas-phase interaction energies and contact distances for energy-minimized complexes of alkali and halide ions.^a

 ${}^{a}E^{MM}$ and $E^{MM.opt}$ are interaction energies (in kcal/mol) calculated with the CHARMM36m forcefield, either with generic LJ parameters or pair-specific NBFIX corrections, respectively; and *r* refers to the distance (in Å) between the two ions. *^b*The NBFIX parameters used for NaCl and KCl are reproduced from reference 35. Note that no NBFIX parameters were required for LiI, NaBr or RbCl.

Figure S1. Association of alkali halides in water. $g_{MX}(r)$ radial distribution functions calculated from 100-ns MD simulations of a single M⁺X⁻ pair in 250 H₂O molecules (at 298.15 K and 1.0 atm) show the structure of contact-ion and solvent-shared ion-pairs. Data are shown for calculations using the CHARMM36m forcefield, and either generic LJ parameters (black) or with NBFIX pair-specific parameters (red). The NBFIX parameters for NaCl and KCl are reproduced from reference 35 Note that no NBFIX parameters were required for LiI, NaBr, or RbCl.

Anion	molality	Calcula	ated	Expt.
	(m)	Generic FF	NBFIX	
Fluoride	0.5	11 ± 1	19 ± 2	21
	1	19 ± 2	40 ± 3	39
	3	25 ± 5	90 ± 8	106
	5	52 ± 5	160 ± 10	165
Chloride	0.5	22 ± 2	20 ± 3	21
	1	41 ± 4	33 ± 3	38
	3	110 ± 9	81 ± 6	89
	5	173 ± 14	131 ± 5	126
Bromide	0.5	24 ± 2	20 ± 3	21
	1	43 ± 5	36 ± 3	38
	3	131 ± 7	82 ± 5	88
	5	218 ± 15	129 ± 11	122
Iodide	0.5	25 ± 2	21 ± 3	21
	1	50 ± 3	32 ± 2	38
	3	156 ± 5	81 ± 3	86
	5	275 ± 7	115 ±7	119

Table S8. Calculated and experimental osmotic pressures of aqueous solutions of guanidinium halides.^a

^aCalculated values used the CHARMM36m forcefield and either generic LJ parameters or NBFIX pair-specific corrections.

Table S9. Calculated and experimental osmotic pressures of aqueous solutions of tetramethylammonium halides.

Anion	molality	Calcula	ated	Expt.
	(m)	Generic FF	NBFIX	
Fluoride	0.5	31 ± 1	27 ± 2	25
	1	60 ± 2	54 ± 3	52
	3	283 ± 7	208 ± 7	204
	5	651 ± 17	408 ± 17	405
Chloride	0.5	27 ± 3	20 ± 1	21
	1	57 ± 4	38 ± 3	39
	3	220 ± 7	114 ± 7	114
	5	447 ± 12	180 ± 3	189
Bromide	0.5	24 ± 1	23 ± 2	20
	1	53 ± 4	39 ± 5	36
	3	198 ± 5	89 ± 8	94
	5	379 ± 10	142 ± 9	143
Iodide	0.5	24 ± 2	19 ± 3	_
	1	49 ± 3	36 ± 4	_
	3	164 ± 4	88 ± 6	—
	5	292 ± 12	120 ± 4	—

Anion	molality	Calcula	nted	Expt.
	(m)	Generic FF	NBFIX	
Fluoride	0.5	17 ± 2	25 ± 1	_
	1	30 ± 2	53 ± 7	_
	3	78 ± 5	183 ± 5	-
	5	145 ± 13	345 ± 14	_
Chloride	0.5	24 ± 1	20 ± 3	22
	1	49 ± 2	41 ± 2	42
	3	148 ± 2	117 ± 5	119
	5	253 ± 5	185 ± 6	188
Bromide	0.5	25 ± 5	22 ± 2	-
	1	49 ± 3	38 ± 2	_
	3	166 ± 4	101 ± 5	_
	5	290 ± 9	150 ± 6	_
Iodide	0.5	25 ± 2	22 ± 2	-
	1	54 ± 6	37 ± 3	_
	3	183 ± 5	93 ± 8	_
	5	314 ± 5	136 ± 7	_

Table S10. Calculated and experimental osmotic pressures ofaqueous solutions of methylammonium halides.

Table S11. Calculated osmotic pressures of aqueous solutions of imidazolium halides.

Anion	molality	Coloula	Evot	
Allion	moranty			Expt.
	(m)	Generic FF	NBFIX	
Fluoride	0.5	16 ± 3	25 ± 2	—
	1	36 ± 3	50 ± 5	_
	3	101 ± 3	186 ± 10	_
	5	208 ± 16	340 ± 20	_
Chloride	0.5	24 ± 3	22 ± 2	-
	1	51 ± 2	46 ± 3	_
	3	165 ± 6	134 ± 5	_
	5	295 ± 14	258 ± 10	_
Bromide	0.5	25 ± 3	22 ± 3	_
	1	54 ± 1	42 ± 2	_
	3	169 ± 9	119 ± 6	_
	5	305 ± 16	202 ± 9	_
Iodide	0.5	24 ± 3	21 ± 2	_
	1	50 ± 3	35 ± 4	—
	3	161 ± 5	104 ± 5	—
	5	287 ± 14	170 ± 7	_

Ion	Ligand		Ger	neric		NBFIX			
		r_1	PMF1	r_2	PMF2	r_1	PMF1	r_2	PMF2
Fluoride	Guanidinum	3.3	-3.0	5.5	-0.6	3.7	-1.0	5.4	-0.6
	Tetramethylammonium	-	-	5.8	-0.2	3.8	-1.2	6.4	-0.1
	Methyl ammonium	2.7	-3.1	4.8	-0.6	2.8	-0.5	4.8	-0.6
	Imidazolium	3.8	-2.7	5.7	-0.4	4.1	-0.2	5.8	-0.5
Chloride	Guanidinum	3.7	-1.2	6.1	-0.3	3.7	-1.9	6.1	-0.3
	Tetramethylammonium	4.6	-0.5	7.2	-0.2	4.3	-1.7	7.2	-0.2
	Methyl ammonium	3.2	-1.6	5.4	-0.4	3.1	-2.1	5.2	-0.4
	Imidazolium	4.3	-0.9	6.6	-0.2	4.2	-1.6	6.7	-0.2
Bromide	Guanidinum	3.9	-0.7	6.3	-0.2	3.8	-2.0	6.7	-0.2
	Tetramethylammonium	4.7	-0.8	7.2	-0.2	4.4	-1.9	7.2	-0.2
	Methyl ammonium	3.3	-1.3	5.4	-0.4	3.2	-2.4	5.6	-0.3
	Imidazolium	4.4	-1.0	6.8	-0.2	4.3	-1.8	6.7	-0.2
Iodide	Guanidinum	4.6	-0.4	6.7	-0.3	3.9	-1.9	6.8	-0.1
	Tetramethylammonium	4.8	-0.9	7.7	-0.1	4.7	-1.7	7.9	-0.1
	Methyl ammonium	3.6	-0.6	5.4	-0.4	3.4	-2.1	5.7	-0.3
	Imidazolium	4.7	-1.0	7.1	-0.2	4.4	-2.4	7.2	-0.2

Table S12. Ion-ligand distance (r_1 and r_2 in Å) at the minimum potential of mean force (PMF1 and PMF2, in kcal/mol) for the halide ion complexes with the cationic analogs in bulk water^a

Ion	Ligand (structure)	Generic FF		Optimi	zed FF
		r ^{MM}	$E^{\rm MM}$	r ^{MM,opt}	$E^{\rm MM,opt}$
Fluoride	Guanidinum	3.05	-123.2	3.18	-116.6
	Tetramethylammonium	3.22	-97.0	2.92	-106.8
	Methylammonium	2.54	-125.4	2.65	-118.9
	Imidazolium	2.54	-106.5	2.69	-100.1
Chloride	Guanidinum	3.55	-101.8	3.51	-103.3
	Tetramethylammonium	3.68	-85.7	3.49	-90.1
	Methylammonium	2.96	-106.2	2.92	-107.6
	Imidazolium	3.02	-90.9	2.95	-92.3
Bromide	Guanidinum	3.71	-96.5	3.62	-99.2
	Tetramethylammonium	3.83	-82.6	3.64	-86.6
	Methylammonium	3.10	-101.2	3.02	-103.9
	Imidazolium	3.18	-87.2	3.02	-89.8
Iodide	Guanidinum	3.98	-88.8	3.81	-93.3
	Tetramethylammonium	4.10	-77.8	3.92	-80.8
	Methylammonium	3.34	-93.6	3.15	-98.0
	Imidazolium	3.44	-81.4	3.18	-85.7

Table S13. Gas-phase interaction energies and contact distances for energy-minimized binary complexes of the halide anions and cationic protein/lipid analogs.^a

 ${}^{a}E^{MM}$ and $E^{MM,opt}$ are interaction energies (in kcal/mol) calculated with the CHARMM36m forcefield and either generic LJ parameters or pair-specific NBFIX corrections, respectively; and *r* refers to the distance (in Å) between the anion and the C atom of guanidinium, or the nearest N atom of the other ligands.

Figure S2. Average error of the optimized model for F^- , Cl^- , Br^- , and I^- (top to bottom) over (**A**) the abinitio E^{CP} interaction energies with a single cationic analog calculated with the MP2 (*black*), B2PLYPD (red) and M062X (*blue*) and (*B*) the ab-initio E^{CP} interaction energies with one to three cationic analogs calculated with the MP2 energy function.

Figure S3. Ab-initio optimized, global energy-minimum structures of Cl⁻, one molecule of NMA and an additional ligand L, for L = NMA (S3a), water (S3b), acetamide (S3c), methylamine (S3d), methanol (S3e), ethylene glycol (S3f), acetic acid (S3g), methanethiol (S3h), benzene (S3i), phenol (S3j), indole (S3k), and imidazole (S3l). For all complexes, the distance between the atoms connected with dotted lines is indicated, in Å; in *black* from B2LYPD/6-311++G(d,p) calculations; in *red* from M062X/6-311++G(d,p) calculations. Atom color code: H (white), C (gray), N (blue), O (red), S (yellow), Cl⁻ (green).

Ligand (structure)	B2PLYPD/6-311++G(d,p)		M062X/6-3	311++G(d,p)
	E	E^{CP}	E	$E^{ ext{CP}}$
NMA (S3a)	-45.7	-41.3	-46.1	-44.7
Water (S3b)	-38.4	-35.3	-38.8	-37.6
Acetamide (S3c)	-44.4	-40.6	-45.2	-43.9
Methylamine (S3d)	-34.0	-30.5	-34.7	-33.6
Methanol (S3e)	-39.6	-35.7	-41.0	-39.7
Ethylene glycol (S3f)	-50.5	-45.7	-51.0	-49.4
Acetic acid (S3g)	-44.2	-39.9	-44.9	-43.4
Methanethiol (S3h)	-36.7	-32.4	-38.4	-36.9
Benzene (S3i)	-33.3	-29.0	-33.7	-32.4
Phenol (S3j)	-47.3	-42.5	-47.4	-45.7
Indole (S3k)	-46.8	-41.9	-45.8	-44.3
Imidazole (S3I)	-47.2	-43.0	-46.4	-45.1

Table S14. Interaction energies (in kcal/mol) for the Cl⁻ complexes shown in Figure S3.^a

Table S15. Ion-ligand distance (r_1 and r_2 in Å) and potential of mean force (PMF1 and PMF2, in kcal/mol) in metastable states of F⁻ complexes in bulk water.^a

Ligand	Generic					NBFIX			
	r_1	PMF1	r_2	PMF2	r_1	PMF1	r_2	PMF2	
NMA	-	-	-	-	2.7	-0.3	-	-	
Acetamide	-	-	-	-	2.7	-0.9	-	-	
Methylamine	-	-	-	-	-	-	-	-	
Methanol	2.7	-0.9	-	-	2.7	-0.5	6.8	-0.1	
Ethylene glycol	2.2	-1.4	4.1	-0.1	2.4	-0.4	-	-	
Acetic acid	2.1	-1.6	-	-	2.7	-1.1	-	-	
Methanethiol	-	-	-	-	3.3	-0.6	-	-	
Benzene	-	-	-	-	4.6	-0.5	7.3	-0.1	
Phenol	2.7	-0.9	-	-	2.7	-2.4	4.3	-0.3	
Indole	-	-	-	-	2.7	-0.8	4.1	-0.9	
Imidazole	2.8	-0.3	-	-	2.7	-1.3	6.4	-0.1	

Ligand	Generic				NBFIX			
	r_1	PMF1	r_2	PMF2	r_1	PMF1	r_2	PMF2
NMA	-	-	-	-	3.2	-0.7	-	-
Acetamide	3.3	-0.2	-	-	3.2	-1.0	-	-
Methylamine	-	-	-	-	3.2	-0.3	-	-
Methanol	3.2	-0.6	5.1	-0.1	3.1	-1.9	5.2	-0.1
Ethylene glycol	-	-	4.4	-0.4	2.6	-1.4	3.8	-1.2
Acetic acid	3.1	-0.7	-	-	3.0	-2.2	-	-
Methanethiol	-	-	-	-	3.7	-1.1	-	-
Benzene	-	-	-	-	5.1	-1.2	7.7	-0.2
Phenol	3.2	-0.8	7.6	-0.1	3.0	-3.3	5.0	-0.3
Indole	3.3	-0.3	-	-	3.1	-2.3	4.9	-0.5
Imidazole	3.3	-0.2	-	-	3.1	-2.3	6.7	-0.1

Table S16. Ion-ligand distance (r_1 and r_2 in Å) and potential of mean force (PMF1 and PMF2, in kcal/mol) in metastable states of Cl⁻ complexes in bulk water.^a

Table S17. Ion-ligand distance (r_1 and r_2 in Å) and potential of mean force (PMF1 and PMF2, in kcal/mol) in metastable states of Br⁻ complexes in bulk water.^a

Ligand	Generic					NBFIX			
	r_1	PMF1	r_2	PMF2	r_1	PMF1	r_2	PMF2	
NMA	3.6	-0.2	5.4	-0.1	3.3	-0.7	-	-	
Acetamide	3.6	-0.4	6.3	-0.1	3.3	-1.1	6.3	-0.2	
Methylamine	-	-	5.2	-0.1	3.4	-0.4	5.2	-0.1	
Methanol	3.3	-0.5	5.1	-0.2	3.1	-1.8	5.1	-0.2	
Ethylene glycol	-	-	4.7	-0.2	2.7	-1.6	3.9	-1.6	
Acetic acid	3.3	-0.5	-	-	3.1	-2.2	-	-	
Methanethiol	-	-	-	-	3.7	-0.9	-	-	
Benzene	5.4	-0.2	-	-	5.2	-1.2	7.9	-0.1	
Phenol	3.3	-0.6	7.4	-0.1	3.1	-3.1	5.4	-0.4	
Indole	3.4	-0.3	-	-	3.3	-1.5	5.1	-0.5	
Imidazole	3.4	-0.4	6.2	-0.1	3.2	-1.8	6.7	-0.1	

^aDashes indicate absence of a metastable free-energy minimum.

Ligand	Generic				NBFIX			
-	r_1	PMF1	r_2	PMF2	r_1	PMF1	r_2	PMF2
NMA	3.8	-0.3	5.4	-0.2	3.6	-1.0	-	-
Acetamide	3.8	-0.6	6.4	-0.2	3.6	-1.4	6.6	-0.2
Methylamine	3.9	-0.3	5.4	-0.3	3.6	-0.6	5.3	-0.1
Methanol	3.6	-0.3	5.3	-0.3	3.3	-2.1	5.3	-0.3
Ethylene glycol	-	-	4.9	-0.3	2.9	-1.8	4.2	-1.6
Acetic acid	-	-	6.2	-0.2	3.3	-2.2	6.6	-0.1
Methanethiol	4.6	-0.2	-	-	3.9	-1.3	-	-
Benzene	5.4	-0.4	-	-	5.3	-1.6	8.1	-0.1
Phenol	3.6	-0.3	7.7	-0.3	3.3	-3.3	5.6	-0.6
Indole	3.7	-0.4	-	-	3.4	-1.6	5.2	-0.6
Imidazole	3.8	-0.5	-	-	3.4	-1.8	6.3	-0.1

Table S18. Ion-ligand distance (r_1 and r_2 in Å) and potential of mean force (PMF1 and PMF2, in kcal/mol) in metastable states of I⁻ complexes in bulk water.^a