
Caching with Reserves
Sharat Ibrahimpur #

University of Waterloo, Canada

Manish Purohit #

Google Research, Mountain View, CA, USA

Zoya Svitkina #

Google Research, Mountain View, CA, USA

Erik Vee #

Google Research, Mountain View, CA, USA

Joshua R. Wang #

Google Research, Mountain View, CA, USA

Abstract
Caching is among the most well-studied topics in algorithm design, in part because it is such a
fundamental component of many computer systems. Much of traditional caching research studies
cache management for a single-user or single-processor environment. In this paper, we propose two
related generalizations of the classical caching problem that capture issues that arise in a multi-user
or multi-processor environment. In the caching with reserves problem, a caching algorithm is required
to maintain at least ki pages belonging to user i in the cache at any time, for some given reserve
capacities ki. In the public-private caching problem, the cache of total size k is partitioned into
subcaches, a private cache of size ki for each user i and a shared public cache usable by any user.
In both of these models, as in the classical caching framework, the objective of the algorithm is to
dynamically maintain the cache so as to minimize the total number of cache misses.

We show that caching with reserves and public-private caching models are equivalent up to
constant factors, and thus focus on the former. Unlike classical caching, both of these models turn
out to be NP-hard even in the offline setting, where the page sequence is known in advance. For
the offline setting, we design a 2-approximation algorithm, whose analysis carefully keeps track of a
potential function to bound the cost. In the online setting, we first design an O(ln k)-competitive
fractional algorithm using the primal-dual framework, and then show how to convert it online to a
randomized integral algorithm with the same guarantee.

2012 ACM Subject Classification Theory of computation → Caching and paging algorithms

Keywords and phrases Approximation Algorithms, Online Algorithms, Caching

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.52

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2207.05975 [11]

Acknowledgements We would like to thank Sungjin Im for suggesting the caching with reserves
problem and for useful discussions.

1 Introduction

Caching is one of the most well-studied problems in online computation and also one of the
most crucial components of many computer systems. In the classical caching (also referred
to as paging) problem, page requests arrive online and an algorithm must maintain a small
set of pages to hold in a cache so as to minimize the number of requests that are not served
from the cache. Caching algorithms have been widely studied through the lens of competitive
analysis and tight results are known [1, 10, 14]. Tight algorithms are also known for many

© Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 52; pp. 52:1–52:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sharat.ibrahimpur@uwaterloo.ca
mailto:mpurohit@google.com
mailto:zoya@google.com
mailto:erikvee@google.com
mailto:joshuawang@google.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.52
https://arxiv.org/abs/2207.05975
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Caching with Reserves

generalizations such as weighted paging [3, 4], generalized caching [2, 5] and paging with
rejection penalties [9]. Due to its practical importance, a large number of heuristic algorithms
have been proposed such as Least Recently Used (LRU), Least Frequently Used (LFU),
CAR [7], ARC [15], and many others. Although they do not provide the best worst-case
performance, they attempt to maximize the hit rate of the cache on practical instances.
However, such traditional caching policies (both theoretical and practical) attempt to optimize
the global efficiency of the system and are not necessarily suitable for cache management in
a multi-user or multi-processor environment. In many of today’s cloud computing services,
caches are shared among all the users utilizing the service and optimizing only for global
efficiency can lead to highly undesirable allocation for some users. For example, a user who
only accesses pages at long intervals may reap no benefit from the cache at all. In this paper,
we propose two generalizations of the classical caching problem that are suited for caching in
a shared multi-processor environment.

In a multi-user setting, a naive way to guarantee that all users benefit from the cache is
to partition the cache among them and effectively maintain separate caches for each user.
However, such a system can be extremely inefficient and lead to low overall throughput as
the cache can remain underutilized. Instead, a number of recent systems [12, 13, 16, 17] aim
to maximize the global efficiency of the cache while attempting to provide (approximate)
isolation guarantees to each user, i.e., the cache hit rate for each user is at least as much as
what it would be if the user was allocated its own isolated cache (of proportionally smaller
size). We model the multi-user scenario as the caching with reserves problem wherein a
caching algorithm is required to maintain at least ki pages belonging to user i in the cache
at any time for some input reserve capacities ki. As in the classical caching framework,
the objective of the algorithm is to dynamically maintain the cache so as to minimize the
total number of cache misses. The reserve capacities for users provide an implicit isolation
guarantee since ki cache slots are reserved for pages of user i. We remark that when the
reserve capacities are all zero, then the problem reduces to classical unweighted caching.

A similar issue arises in the multi-processor setting where we have different “levels” of
caches. Lower-level caches tend to be smaller and dedicated to a particular processor, while
higher-level caches can be used by multiple processors and are larger in size. Consider a
system with m separate processors, each of which has its own independent cache. In addition,
there is a separate public cache shared by all the processors. We model such a setting as
the public-private caching problem where a cache of total size k is partitioned into (m + 1)
subcaches, one private cache for each user and a shared public cache. In contrast with
classical caching, in this case cache slots themselves have identities and a page requested by
user i cannot be placed in a cache slot that belongs to the private cache of some other user j.

1.1 Our Contributions
We propose and study the caching with reserves and public-private caching problems. We
show that the two problems are equivalent up to constant factors (Section 3).

▶ Proposition 1. If A is a c-competitive online algorithm for caching with reserves, then
there exists an online algorithm A′ that is 2c-competitive for public-private caching. Similarly,
if B is a c-competitive online algorithm for public-private caching, then there exists an online
algorithm B′ that is 2c-competitive for caching with reserves.

Our next set of results considers the offline scenario where the entire request sequence
is known in advance. Recall that in the classical setting, there is a simple exact solution
(Belady’s algorithm [8], which evicts the page that is requested farthest in the future). In
our more complex setting, we show both variations are NP-hard.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 52:3

▶ Theorem 2. Both the offline caching with reserves problem and the offline public-private
caching problem are strongly NP-hard.

We defer the full proof of the NP-hardness to the full version of the paper [11] and note
here the key difficulty in our reduction from 3-SAT. A naive strategy to reduce 3-SAT to
our problem is to try to transform boolean variable assignments (e.g. x1 = T, x2 = F) into
the contents of cache at a particular point in time (e.g., agent 1 has its “true” page in cache
and agent 2 has its “false” page in cache). This runs into a stumbling block: to check that a
clause is satisfied, one needs to request the relevant pages. Since we only expect one of them
to actually be in cache, this provides the opportunity for a cheating solution to swap the
contents of cache. Our construction sidesteps this issue by embracing page swapping and
instead demanding that a variable assignment be encoded as a particular sequence of page
swaps.

Despite this hardness result, we still provide constant-approximation algorithms in the
offline setting. Due to the equivalence of the two models, we focus on caching with reserves
problem for the rest of the paper. We give a 2-approximation algorithm in Section 4 for the
offline setting. It is a non-trivial adaptation of Belady’s algorithm to the multi-agent setting.
The analysis utilizes a potential function that was recently proposed to give an alternative
proof of optimality for Belady’s algorithm [6]. It tracks how far in the future the cached
pages are for the algorithm vs. the optimum.

▶ Theorem 3. There is a 2-approximation algorithm for offline caching with reserves.

In the online scenario, where the algorithm knows nothing about page requests until they
occur, we give a fractional algorithm (which may keep pages fractionally in cache) using the
primal-dual framework (Section 5).

▶ Theorem 4. There is a 2 ln(k + 1)-competitive fractional algorithm for online caching with
reserves.

We also show that the fractional solution can be rounded online in a way that preserves
the competitive ratio up to a constant, obtaining an online randomized (integral) algorithm
(Section 6).

▶ Theorem 5. There is an O(ln k)-competitive integral algorithm for online caching with
reserves.

2 Preliminaries and Notation

In the classical caching problem, we are given U , a universe of n pages, together with a cache
of size k. At each time step, at most k pages are in cache. We are presented a sequence of
page requests σ = ⟨p1, p2, . . .⟩, where each pt ∈ U . At time t, page pt arrives. If pt is not in
cache, then a cache miss occurs and the algorithm incurs unit cost. It must then fetch page
pt into the cache, possibly by evicting some other page from the cache. That is, if there
would be k + 1 pages in cache, the algorithm must remove some page other than pt from
cache. An online algorithm makes the eviction choice without knowing the future request
sequence, whereas an offline algorithm is assumed to know the entire request sequence in
advance.

Motivated by applications in multi-processor caching and shared cache systems, we define
two new related problems. Let I = {1, . . . , m} be a set of m agents and suppose that the
universe U is a disjoint union of pages belonging to each agent, i.e., U = ⊔i∈IU(i). In the

APPROX/RANDOM 2022

52:4 Caching with Reserves

public-private caching model, the cache of total size k is subdivided as follows: each agent
i ∈ I is allocated ki cache slots and the remaining k0 ≜ k−

∑
i∈I ki slots are public.∗ In this

model, only pages belonging to agent i can be placed in any of the ki cache slots allocated to
agent i, while any page can be held in the public slots. As in the traditional caching problem,
the goal of the algorithm is to minimize the total number of evictions. In the caching with
reserves model, the cache is not divided, but instead for each agent i ∈ I, the algorithm
is required to maintain at least ki pages from U(i) in the cache at any time. To avoid any
complications, we assume that we already have pages in cache that meet this constraint at
the start of the algorithm. (These may be dummy pages that are never requested during the
actual sequence.) Throughout, we let ni = |U(i)| denote the number of distinct pages owned
by agent i, and for any page p ∈ U(i), we let ag(p) = i be the agent that owns page p.

We analyze the online algorithm in terms of its competitive ratio. This is the maximum
ratio, over all possible problem instances, of the cost incurred by the algorithm over the cost
of the optimal offline solution of this instance.

3 Equivalence of Public-Private Caching and Caching with Reserves

We now prove Proposition 1 (restated below for convenience), showing that the two models
defined in the introduction are equivalent up to constant factors.

▶ Proposition 1. If A is a c-competitive online algorithm for caching with reserves, then
there exists an online algorithm A′ that is 2c-competitive for public-private caching. Similarly,
if B is a c-competitive online algorithm for public-private caching, then there exists an online
algorithm B′ that is 2c-competitive for caching with reserves.

Proof. We first explain how to convert back-and-forth between caching strategies for the
two problems. Note that both of the following conversions can be done online and we will
maintain that the cache states in the two problems are identical after every page request.

The easy direction is turning a public-private caching strategy into a caching with reserves
strategy. Suppose a page request p comes in. If p is in cache, then we do not evict any page
in either strategy. If it is not, then the public-private caching strategy evicts some page q

to make room for it. Our caching with reserves strategy makes precisely the same eviction,
which we show maintains the reserve constraints:

If evicted page q was in a private cache, then p is placed in that same private cache.
Hence, p and q have the same agent i. And agent i has the same number of pages before
and after the arrival of p, maintaining our reserve constraint.
If q was in a public cache, then let i be the agent that owns q. Agent i must have at least
ki pages in cache other than q, namely the ki pages in its private cache. So evicting q

does not put agent i below its reserve for our caching with reserves algorithm.

We now turn to the harder case of turning a caching with reserves strategy into a public-
private caching strategy. To keep the analysis clean, we permit the public-private caching
strategy to perform extra evictions at any step (but it is still charged for each one). Suppose
a page request p comes in. If p is in cache, then we do not evict in either strategy. If it is
not, then the caching with reserves strategy evicts some page q to make room for it, which
belongs to some agent i. We can handle this with at most two evictions, as the following
shows:

∗ We assume throughout the paper that
∑

i∈I ki < k. If
∑

i∈I ki = k, the problem can be solved as m

separate instances of classical caching.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 52:5

If q is currently in the public cache, then we evict it and replace it with p, making the
two caches match again.
If q is currently in a private cache and the agent of p is also i, then we again can evict it
and replace it with q, making the two caches match again.
If q is currently in a private cache and the agent of p is not i, then agent i must have at
least ki + 1 pages in cache at the start of this step since we’re about to evict q. Hence,
there must be some page q′ in public cache. “Move” q′ into private cache by evicting
both q and q′, then placing q′ into the slot previously occupied by q. We can then place
p into the slot previously occupied by q′ in public cache.

We now have conversions between the two problems that approximately preserve the
number of evictions, and are ready to prove the main claim. We will use τe to denote the first
transformation, from public-private caching strategies into caching with reserves strategies.
We will use τh to denote the second transformation, from caching with reserves strategies to
public-private caching strategies.

Suppose we have some algorithm A for caching with reserves, and let A′ ≜ τh(A).
Furthermore, let the optimal solutions to caching with reserves and public-private caching
be Ocr and Oppc, respectively.

evictions(A′) ≤ 2 · evictions(A) Transformation Guarantee
≤ 2c · evictions(Ocr) A is a c-approximation
≤ 2c · evictions(τe(Oppc)) Ocr Optimality
≤ 2c · evictions(Oppc) Transformation Guarantee

Similarly, suppose we have some algorithm B for public-private caching and let B′ ≜ τe(B).
Again, let the optimal solutions to caching with reserves and public-private caching be Ocr

and Oppc, respectively.

evictions(B′) ≤ evictions(B) Transformation Guarantee
≤ c · evictions(Oppc) B is a c-approximation
≤ c · evictions(τh(Ocr)) Oppc Optimality
≤ 2c · evictions(Ocr) Transformation Guarantee

This completes the proof. ◀

4 Offline Caching with Reserves

In this section, we present a 2-approximation algorithm for the offline caching with reserves
problem. The algorithm itself can be thought of as a generalization to Belady’s classic
Farthest-in-Future algorithm [8]. Indeed, the algorithm we present reduces to it in the trivial
case that ki = 0 for all i. However, in general, in our setting, there are cases where the
farthest-in-future page cannot be evicted due to the reserve constraints.

Our algorithm maintains a partition of the pages in cache into sets Ni. For i > 0, the set
Ni consists only of pages for agent i; further, we maintain |Ni| = ki at the beginning of each
time step. The set N0 contains the remaining cached pages. When a page p associated with
agent i arrives and is not already in cache, we insert it into Ni. This causes |Ni| = ki + 1, so
we move the farthest-in-future page from Ni to N0. This, in turn, causes N0 to be too large.
So we evict the farthest-in-future page from N0. Notice that we are always allowed to evict
such a page, since we maintain ki pages of agent i in each Ni. In the case that p arrives but
is already in N0, we first move it to Ni, then proceed similarly. In this way, an arriving page
always “passes through” Ni. The full details are in Algorithm 1.

APPROX/RANDOM 2022

52:6 Caching with Reserves

Algorithm 1 Offline algorithm for caching with reserves.

Let N ← set of pages in the cache initially
Partition N = ⊔m

i=0Ni where each Ni (for i ≠ 0) contains some arbitrary ki pages belonging
to agent i and N0 contains all the remaining pages

Set rank(q), for each page q, to the time of q’s first request
for each requested page p do

Let i = ag(p)
if p ∈ Ni then /* Cache hit in a set reserved for i. */

Serve page p from cache
else if p ∈ N0 then /* Cache hit in a set not reserved for i. */

Serve page p from cache
/* Move p from N0 to Ni. */
Ni ← Ni ∪ {p} and N0 ← N0 \ {p}
/* Move highest-ranked page from Ni to N0. */
Let qi ∈ Ni be the page in Ni with maximum rank (if ki = 0, this will be p)
Ni ← Ni \ {qi} and N0 ← N0 ∪ {qi}

else /* Cache miss. */
/* Add p to Ni, then move highest-ranked page from Ni to N0. */
Ni ← Ni ∪ {p}
Let qi ∈ Ni be the page in Ni with maximum rank (if ki = 0, this will be p)
Ni ← Ni \ {qi} and N0 ← N0 ∪ {qi}
/* Evict highest-ranked page from N0. */
Let q be the page in N0 with maximum rank (q ̸= p even if qi = p)
N0 ← N0 \ {q}
Evict page q, fetch page p into cache and serve it

Set rank(p) to the time of p’s next request (if none, set it later than the last request)

Our analysis proving the 2-approximation generalizes a potential argument for Belady’s
algorithm (proposed recently [6]), but is technically more complicated due to the multi-tiered
approach we take. The proof compares our sets Ni with sets N∗

i for the optimal algorithm.
(To be more precise, the optimal algorithm maintains a certain set of pages in cache at each
time step. We define a partition of these pages into the N∗

i such that each N∗
i consists only

of pages from agent i, and |N∗
i | = ki at the beginning of each time step.) We call any page’s

next request time its rank. We define, for any rank s, the value ni(s) to be the number of
pages in the set Ni with rank at least s at a given time. Similarly, n∗

i (s) is the number of
pages in the set N∗

i with rank at least s.†

We define our potential function as

Φ =
m∑

i=0
ϕi , where ϕi = max

s
[ni(s)− n∗

i (s)].

Notice that ϕi ≥ 0 for every i, because when s is larger than the rank of any page in cache,
we have ni(s) = n∗

i (s) = 0. Hence Φ ≥ 0.
We show that Algorithm 1 satisfies the requirements of Theorem 3 (restated below).

▶ Theorem 3. There is a 2-approximation algorithm for offline caching with reserves.

† The sets Ni and N∗
i and the quantities ni(s) and n∗

i (s) vary over time, but we suppress the dependence
on t in the notation for brevity.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 52:7

The proof requires repeated reasoning about how the potential Φ changes with each
step. For example, adding a page to Ni will increase ϕi by at most 1 (and possibly leave
it unchanged). However, adding a page p to Ni whose rank is higher than anything in N∗

i

guarantees that ϕi will increase by exactly 1 (since ni(s) increases by 1 for every s ≤ rank(p)).
Initially let N∗

i = Ni for all i from 0 to m (the sets Ni are initialized by Algorithm 1).
Let ALG be the cost incurred by Algorithm 1 and OPT be the cost incurred by an opti-
mal algorithm. Let ∆(ALG), ∆(Φ), ∆(OPT) be incremental changes in ALG, Φ, OPT ,
respectively, with older value subtracted from the newer value.

▶ Lemma 6. The runs of Algorithm 1 and of the optimal algorithm on a given sequence of page
requests can be partitioned into steps such that for each step, ∆(ALG) + ∆(Φ) ≤ 2 ·∆(OPT).

Knowing Lemma 6, the approximation factor of 2 now follows from summing over all the
incremental steps indexed by t, where ·(t) is the value of each function after step t. We have
ALG(0) = Φ(0) = OPT (0) = 0 initially. By Lemma 6, for each t,

ALG(t)−ALG(t− 1) + Φ(t)− Φ(t− 1) ≤ 2 · (OPT (t)−OPT (t− 1)).

Summing over all t (up to the last step T) and telescoping,

ALG(T)−ALG(0) + Φ(T)− Φ(0) ≤ 2 · (OPT (T)−OPT (0))
ALG(T) ≤ 2 ·OPT (T),

where the last inequality uses Φ(T) ≥ 0.

Proof of Lemma 6. To prove Lemma 6, we break the runs of Algorithm 1 and the optimal
algorithm (together with updates to sets N∗

i) into steps, and for each step show that
∆(ALG) + ∆(Φ) ≤ 2 ·∆(OPT). All the steps below constitute the processing of one request
for a page p belonging to agent i. Let δi(s) = ni(s)− n∗

i (s), so that ϕi = maxs δi(s).

Step 1 (Add p to both Ni and N∗
i)

Update Ni ← Ni ∪ {p} and N∗
i ← N∗

i ∪ {p}.
Neither ALG nor OPT changes in this step, since we don’t evict anything. In addition,

the potential Φ doesn’t increase. To see this, we’ll use the fact that the rank of p is the
smallest among any page in cache (for our algorithm as well as for the optimal algorithm),
since it is the page that has just arrived. We consider four cases based on whether Ni and
N∗

i contained p before this step.
If both Ni and N∗

i contained p already, then nothing changes.
If neither contained it, then both ni(s) and n∗

i (s) increase by 1 for all s ≤ rank(p), so
their difference is unchanged.
If p was newly added only to N∗

i , then Φ can only decrease.
The remaining case is that p was newly added only to Ni. Note that since p is the page
that was just requested (and its rank hasn’t been updated to the next occurrence yet), it
has the minimum rank of all pages. We prove that Φ doesn’t increase by showing that
before this step, ϕi ≥ 1, and after this step, any δi(·) that might have changed are at most
1. Specifically, before this step, |Ni| = |N∗

i | = ki. Since Ni did not contain p, and all other
pages have higher rank, before this step we had ni(rank(p) + 1) = ki. Since N∗

i contained
p, we had n∗

i (rank(p) + 1) = ki − 1. Thus, before this step, ϕi ≥ δi(rank(p) + 1) = 1.
After this step, ni(s) = ki + 1, n∗

i (s) = ki, and δi(s) = 1 for s ≤ rank(p) (and δi(s) is
unchanged for s > rank(p)). Thus, Φ doesn’t increase.

APPROX/RANDOM 2022

52:8 Caching with Reserves

Step 2 (Remove p from both N0 and N∗
0)

Update N0 ← N0 \ {p} and N∗
0 ← N∗

0 \ {p}.
Again, ALG and OPT don’t change since we make no evictions. Further, removing p –

the lowest-ranked page in cache for both our algorithm and the optimal algorithm – does not
increase Φ; the reasoning is similar to above.

If neither N0 nor N∗
0 changes, then Φ remains the same.

If p is newly removed from both, then n0(s) and n∗
0(s) decrease by 1 for all s ≤ rank(p),

and δ0(s) for all s are unchanged.
If p is newly removed only from N0, Φ can only decrease.
The remaining case is that p was newly removed only from N∗

0 . Before this step, |N0| =
|N∗

0 | = k0. Since p is the page with minimum rank, before the step, n0(s) = n∗
0(s) = k0 for

s ≤ rank(p). Also, since before the step p /∈ N0 and p ∈ N∗
0 , we had n0(rank(p)+1) = k0

and n∗
0(rank(p) + 1) = k0 − 1, implying Φ ≥ δ0(rank(p) + 1) = 1. After the removal of p,

n0(s) = k0, n∗
0(s) = k0 − 1 and δ0(s) = 1 for s ≤ rank(p). Thus, Φ doesn’t increase.

Step 3 (Ensure |Ni| = |N∗
i | = ki)

In Step 1, we added p to Ni (resp., N∗
i). If it wasn’t already there, we increased the size by

1. If that happened, then in this step, we move a page from Ni to N0 to ensure |Ni| = ki

(resp., move from N∗
i to N∗

0 to ensure |N∗
i | = ki). Let qi be the page in Ni with maximum

rank. If |Ni| = ki + 1, then qi is moved to N0, consistent with Algorithm 1. We choose which
page to move from N∗

i to N∗
0 based on the cases below. It could be the page p itself if it

is the only one available, the page q ∈ N∗
i with minimum rank other than p (so it actually

has the second-minimum rank in N∗
i), or the page q∗

i ∈ N∗
i with maximum rank. ALG and

OPT don’t change in this step, and in each case we show that Φ doesn’t increase.
If ki = 0, then Ni = N∗

i = {p}. Move p from Ni to N0 and from N∗
i to N∗

0 .
Φ is unaffected in this case because for any s, ni(s) changes by the same amount as n∗

i (s),
and n0(s) changes by the same amount as n∗

0(s).
All the cases below assume that ki > 0.
If |Ni| = ki + 1 but |N∗

i | = ki, move qi from Ni to N0.
We show that when qi is removed from Ni, ϕi decreases by 1. Since Ni had more pages
than N∗

i , before this step ϕi ≥ 1. Also before this step, δi(s) ≤ 0 for s > rank(qi) (since
ni(s) = 0 for those s), so the maximum was not achieved for those values of s. And for
s ≤ rank(qi), δi(s) decreases by 1 after this step, leading to the decrease of ϕi. Now,
when qi is added to N0, ϕ0 increases by at most 1. But this is compensated by the
decrease in ϕi, showing that overall Φ doesn’t increase.
If |Ni| = ki but |N∗

i | = ki + 1, move the second-lowest-ranked page q ∈ N∗
i to N∗

0 . Note
that by our assumption that ki > 0, N∗

i has at least two pages.
Adding a page to N∗

0 can only decrease the potential. Now we consider the effect on
ϕi of removing q from N∗

i . We show that for any s for which δi(s) could have changed,
it was negative before this step. For any s > rank(q), δi(s) doesn’t change. Note that
page p has minimum rank in both Ni and N∗

i . So, before this step, for s ≤ rank(p),
n∗

i (s) = |N∗
i | = ki + 1 and ni(s) = |Ni| = ki, so δi(s) < 0. For s ∈ (rank(p), rank(q)],

n∗
i (s) = ki and ni(s) ≤ ki − 1, so again δi(s) < 0. Thus when δi(s) for s ≤ rank(q)

increases by 1, it remains at most 0, and does not increase Φ (which is always at least 0).
Recall that qi ∈ Ni and q∗

i ∈ N∗
i are the pages with maximum ranks in the respective

sets. If |Ni| = |N∗
i | = ki + 1 and rank(qi) ≤ rank(q∗

i), move qi from Ni to N0 and q∗
i

from N∗
i to N∗

0 .

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 52:9

N∗
i

p q q∗
i

Ni

p qi

Figure 1 Illustration for the last case of Step 3 in the proof of Lemma 6.

We first consider the removal of qi from Ni and of q∗
i from N∗

i . For s ≤ rank(qi), both
ni(s) and n∗

i (s) decrease by 1, so δi(s) doesn’t change. For s > rank(q∗
i), ni(s), n∗

i (s),
and δi(s) are unchanged. For s ∈ (rank(qi), rank(q∗

i)], before this step we had ni(s) = 0
and n∗

i (s) ≥ 1, with δi(s) ≤ −1. So increasing δi(s) by 1 for these s does not change Φ.
Now we consider the addition of qi to N0 and of q∗

i to N∗
0 . For any s, n∗

0(s) increases at
least as much as n0(s) does, so Φ does not increase.
If |Ni| = |N∗

i | = ki + 1 and rank(q∗
i) < rank(qi), move qi to N0 and the second-lowest-

ranked page in N∗
i (call it q) to N∗

0 . Note again that N∗
i has at least two pages.

In this case ϕ0 may increase by 1, but we show that this is offset by a decrease in ϕi. We
analyze what happens for values of s in the intervals separated by three values: rank(p) <

rank(q) < rank(qi) (see Figure 1). Before this step, δi(rank(qi)) = ni(rank(qi)) −
n∗

i (rank(qi)) = 1− 0 = 1, so ϕi ≥ 1. Page p is the page with minimum rank in both Ni

and N∗
i . For s ≤ rank(p), before the step δi(s) = 0, and it stays 0 after the step. For

s ∈ (rank(p), rank(q)], before the step n∗
i (s) = |N∗

i | − 1 = ki and ni(s) ≤ |Ni| − 1 = ki,
so δi(s) ≤ 0, and it stays that way. For s > rank(qi), also δi(s) = 0 and stays 0. Thus,
the maximum δi(s) was achieved for some s ∈ (rank(q), rank(qi)). But in this interval,
ni(s) decreases by 1, while n∗

i (s) stays the same. Thus, the maximum δi(s) decreases by
1, causing ϕi to also decrease.

Step 4 (OPT moves)

If p was in cache, then the optimal algorithm doesn’t do anything. Note that in this case,
based on previous rearrangements, |N∗

0 | = k0. Neither OPT nor Φ changes. If p was not in
cache, the optimal algorithm fetches p and evicts some page, say q ∈ N∗

j . Then ∆(OPT) = 1.
Also note that in this case the previous steps added p to

⋃
ℓ N∗

ℓ , resulting in |N∗
0 | = k0 + 1.

If j = 0, delete q from N∗
0 . This restores |N∗

0 | = k0 and increases Φ by at most 1. If j ̸= 0,
then there must be some q′ ∈ N∗

0 belonging to agent j (otherwise it would mean that agent
j had only kj pages in cache, and the optimal algorithm violated reserve sizes by evicting
agent j’s page). Move q′ from N∗

0 to N∗
j and delete q from N∗

j . This increases Φ by at most
2, satisfying the desired inequality.

Step 5 (ALG moves)

If p was in cache, then do nothing. Otherwise, fetch p and evict the page q with maximum
rank in N0, also deleting it from N0. In this case, ∆(ALG) = 1. We show that this is
compensated by ∆(Φ) = −1. Before this step, we had |N0| = k0 + 1 but |N∗

0 | = k0, so ϕ0 ≥ 1.
For s > rank(q), we had δ0(s) ≤ 0, and this doesn’t change. So the maximum must have
been achieved for s ≤ rank(q), and δ0(s) for those s decreases by 1.

Step 6 (Update the rank of p)

At this point, if ki = 0, then p ∈ N0 ∩N∗
0 ; otherwise, p ∈ Ni ∩N∗

i . In either case, changing
rank(p) preserves δ0(s) and δi(s) for all s, so Φ is unchanged. ◀

This completes the proof of Lemma 6 and the proof of Theorem 3.

APPROX/RANDOM 2022

52:10 Caching with Reserves

5 Online Caching with Reserves

In this section, we design an O(log k)-competitive fractional online algorithm for caching
with reserves. In particular, we prove Theorem 4, which is restated here for convenience.
In Section 6, we show that any fractional algorithm for online caching with reserves can
be rounded to obtain a randomized integral algorithm by losing only a constant factor in
the competitive ratio. We remark that our rounding algorithm does not necessarily run in
polynomial time.

▶ Theorem 4. There is a 2 ln(k + 1)-competitive fractional algorithm for online caching with
reserves.

The fractional algorithm is based on the primal-dual framework and closely follows the
analysis of [4]. As page requests arrive, the algorithm maintains a feasible solution to the
primal LP, which corresponds to its eviction decisions, and an approximately feasible solution
to the dual LP. The costs of these two solutions are within a factor 2 of each other. Using
LP duality, this results in a bound on the cost of the algorithm compared to the optimum.

5.1 Notation
Consider some fixed page p ∈ U , and let tp,1 < tp,2 < ... be the time steps when page p is
requested in the online sequence. For any a ≥ 0, define I(p, a) = {tp,a + 1, . . . , tp,a+1 − 1} to
be the time interval between the ath and (a + 1)st requests for page p (assume that tp,0 = 0
for all pages). Let a(p, t) be the number of requests to page p that have been seen until
time t (inclusive). Hence, by definition, for any time t, and any page p ∈ U \ {pt}, we have
t ∈ I(p, a(p, t)). At any time t, an agent i ∈ I is said to be tight if exactly ki pages of agent
i are held in cache. Let T denote the set of tight agents.‡

5.2 Formulation
We use the variable x(p, a) ∈ {0, 1} to denote whether page p is evicted between its ath and
(a + 1)th request, i.e., in the interval I(p, a) (where 1 denotes an eviction). We have the
following linear programming relaxation and its dual formulation.§

Primal LP

min
∑
p∈U

∑
a≥1

x(p, a)

subject to:∑
p∈U,p̸=pt

x(p, a(p, t)) ≥ n− k ∀t (1)

∑
p∈U(i),p ̸=pt

x(p, a(p, t)) ≤ ni − ki ∀t, ∀i (2)

x(p, a) ≤ 1 ∀p,∀a (3)
x ≥ 0 (4)

Dual LP

max
∑

t

(n− k)α(t)−
∑

t,i

(ni − ki)β(t, i)

−
∑
p,a

γ(p, a)

subject to:∑
t∈I(p,a)

(
α(t)− β(t, ag(p))

)
− γ(p, a)

≤ 1 ∀p,∀a (5)
α, β, γ ≥ 0 (6)

‡ The set of tight agents varies with the time t, but we suppress the dependence on t for convenience.
§ We assume without loss of generality that the algorithm is aware of the total number of pages belonging

to each agent, ni = |U(i)|.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 52:11

The primal objective simply measures the total number of evictions. The first constraint
enforces that at any time t at least n− k pages apart from pt are outside the cache, which
implies that at most k pages (including pt) are inside the cache. The second constraint
enforces that at any time, at most (ni − ki) pages of agent i are outside cache (which implies
that at least ki pages are inside the cache). Note that this is true even if pt ∈ U(i), since then
we know that pt must be in cache, so of the remaining ni − 1 pages, at least ki − 1 must be
in the cache, so the total amount outside cache must be at most (ni − 1)− (ki − 1) = ni − ki.

5.3 Algorithm
For convenience, we assume without loss of generality that the cache is initialized to an
arbitrary feasible configuration, i.e., each agent i has some arbitrary ki pages in the cache,
and the rest of the cache has k0 other arbitrary pages. The LP variables are also initialized
to reflect this initial configuration. At each time step, as a new page request arrives online,
a new set of constraints for the primal LP are revealed, along with the corresponding new
variables in the dual. All newly introduced variables are initialized to zero. Note that after
the arrival of a new page request at time t, only the primal constraint (1) may now be
unsatisfied; however, (2) and (3) remain feasible. So to maintain a feasible primal solution, we
modify the primal (and dual) variables until Constraint (1) is satisfied. The online algorithm
is required to maintain that all the primal variables x(p, a) only monotonically increase over
time. We remark that the dual solution that we maintain will always be approximately
feasible. The violation in (5) is at most O(log k) at all times (Claim 8).

Algorithm 2 Fractional Online Algorithm for Caching with Reserves.

Let η ← 1
k

foreach request for page p at time t do
Initialize x(p, a(p, t))← 0, α(t)← 0, γ(p, a(p, t))← 0 and ∀i ∈ I, β(t, i)← 0
while primal constraint (1) is unsatisfied do

Increase dual variable α(t) by dα

foreach tight agent i ∈ T do
Increase dual variable β(t, i) by dα

foreach page q ∈ U do
if ag(q) ∈ T then

Do nothing
else if x(q, r(q, t)) = 1 then

Increase γ(q, r(q, t)) by dα

else
Increase x(q, r(q, t)) by dx = (x(q, r(q, t)) + η)dα

5.4 Analysis
First, we note that the primal solution that we construct is feasible by design.

▷ Claim 7. At all times t, we maintain the inequality: Primal Objective ≤ 2 · Dual Objective.

Proof. At time t = 0, both the primal and dual solutions are initialized to have an objective
of zero. Since the algorithm increases the primal and dual variables in a continuous fashion,
consider any infinitesimal time step and let ∆P and ∆D denote the change in the primal
and dual objectives in this step respectively. It suffices to show that ∆P ≤ 2 ·∆D holds at
all times.

APPROX/RANDOM 2022

52:12 Caching with Reserves

Let T denote the set of agents that are tight during this step. Also partition the set
U \ {p} into three parts: T is the set of pages belonging to tight agents, E = {q ∈ U \ T |
x(q, r(q, t)) = 1} is the set of pages of non-tight agents that have been fully evicted, and S is
the remaining set of pages. So we have |T |+ |S|+ |E| = n− 1, and |T | =

∑
i∈T ni. We also

define k′ := k −
∑

i∈T ki.
The change in the dual objective is given by:

∆D = (n− k)dα−
∑
i∈T

(ni − ki)dα− |E|dα =
(

n− k − |T |+
∑
i∈T

ki − |E|
)

dα

=
(
|S| −

(
k −

∑
i∈T

ki

)
+ 1

)
dα = (|S| − k′ + 1)dα

On the other hand, the change in primal objective is given by:

∆P =
∑
q∈S

(
x(q, r(q, t)) + η

)
dα

=
(∑

q∈U\{p}

x(q, r(q, t))−
∑
q∈T

x(q, r(q, t))−
∑
q∈E

x(q, r(q, t)) + |S|η
)

dα

Since the variables are updated only as long as constraint (1) is not satisfied, we can bound
the first term in the above expression by n− k. All pages in T belong to tight agents, so we
have

∑
q∈T x(q, r(q, t)) =

∑
i∈T (ni − ki). Lastly, all pages in E have x(q, r(q, t)) = 1. So

∆P ≤
(

n− k −
∑
i∈T

(ni − ki)− |E|+ |S|η
)

dα =
(
|S| −

(
k −

∑
i∈F

ki

)
+ 1 + |S|η

)
dα

≤
(
|S| − k′ + 1 + |S|/k′)dα (since η = 1/k ≤ 1/k′)

≤ 2(|S| − k′ + 1)dα = 2 ·∆D

It remains to justify the final inequality, which is equivalent to showing that |S| ≥ k′. By
definition, we have |S| = n− 1− |E| − |T |. Since (1) is violated and (2) is tight for i ∈ T ,
the following strict inequality holds:∑

q∈S

x(q, r(q, t)) + |E|+
∑
i∈T

(ni − ki) =
∑

q∈S∪T ∪E

x(q, r(q, t)) < n− k.

Combining the above, we get |S| > k′ − 1, which implies that |S| ≥ k′. ◁

▷ Claim 8. Dual solution maintained by the algorithm is ln(k + 1)-approximately feasible.

Proof. Consider any page p and interval I(p, a) = {tp,a + 1, . . . , tp,a+1 − 1}. We show that
the following inequality holds at all times:∑

t∈I(p,a)

(α(t)− β(t, ag(p)))− γ(p, a) ≤ ln(k + 1),

which implies dual feasibility of the solution (α, β, γ) scaled down by a factor ln(k + 1).
We analyze the changes that occur in the LHS of the above inequality. We interpret the

set I(p, a) in an online fashion: time t ∈ {tp,a + 1, . . . , tp,a+1 − 1} is included in I(p, a) at
the start of time step t. Note that x(p, a) = 0 and the LHS is 0 at the start of time tp,a + 1.
Over time, as page requests pt(̸= p) arrive during times t ∈ {tp,a + 1, . . . , tp,a+1 − 1}, the
LHS increases whenever the α(t) variable increases, but there is no corresponding increase

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 52:13

in the β(t, ag(p)) or γ(p, a) variables. We couple such increases to increases in the primal
variable x(p, a). Note that x(p, a) gets capped at 1, and after that γ(p, a) is coupled with
α(t).

At any infinitesimal step, if some α(t) increases by dα, then we have one of three cases.
Case 1: Agent ag(p) is tight and β(t, ag(p)) increases by dα; Case 2: x(p, a) = 1 and γ(p, a)
increases by dα; Case 3: x(p, a) increases by dx = (x(p, a) + η)dα. In the first two cases, the
LHS does not change at all, while in the second case, the LHS changes by dα. So overall

d(LHS) =
(

1
x(p, a) + η

)
dx(p, a)

A straightforward integration gives:

LHS =
∫ X

0

(
1

x(p, a) + η

)
dx(p, a) (where X is the final value of x(p, a))

≤
∫ 1

0

(
1

x(p, a) + η

)
dx(p, a)

= [ln(x(p, a) + η)]10 = ln
(1 + η

η

)
= ln(k + 1) ◁

Proof of Theorem 4. The proof follows directly from the two claims above. Let (x, α, β, γ)
denote the primal and dual variables constructed by Algorithm 2, and (x∗, α∗, β∗, γ∗) be the
corresponding variables in the optimal solutions. Using LP duality for the last step, we have:∑

p∈U

∑
a≥1:

tp,a≤T

x(p, a) ≤ 2
(∑

t

(n− k)α(t)−
∑
t,i

(ni − ki)β(t, i)−
∑
p,a

γ(p, a)
)

(by Claim 7)

≤ 2 ln(k + 1)
(∑

t

(n− k)α∗(t)−
∑
t,i

(ni − ki)β∗(t, i)−
∑
p,a

γ∗(p, a)
)

(by Claim 8)

≤ 2 ln(k + 1)
(∑

p∈U

∑
a≥1:

tp,a≤T

x∗(p, a)
)

◀

6 Rounding

We now describe an O(1)-approximate rounding scheme for the fractional algorithm of
Section 5, thus proving Theorem 5.

▶ Theorem 5. There is an O(ln k)-competitive integral algorithm for online caching with
reserves.

Proof. For any time t = 1, 2, . . ., the randomized integral algorithm will maintain a distribu-
tion µt of cache states such that for any page p, the probability that p is not in the cache (of
the randomized algorithm) at time t is exactly xt(p, r(p, t)), where xt denotes the value of
LP variable x at time t. By the design of our primal-dual algorithm, the x-variables never
decrease, so the cost incurred by the fractional algorithm to serve page pt is given by:

cost(t) :=
∑

p∈U,p̸=pt

(
xt+1(p, r(p, t))− xt(p, r(p, t))

)
.

APPROX/RANDOM 2022

52:14 Caching with Reserves

We will shortly describe how the integral algorithm moves from the distribution µt to µt+1

while ensuring that the expected number of fetches and evictions is at most O(cost(t)). We
remark that our rounding algorithm does not necessarily run in polynomial time. This is
because the support size of µt can be super-polynomial in |U| and k. This is not an issue for
competitive analysis of online algorithms, so we simply assume that we are maintaining a
probability distribution over

(|U|
k

)
cache states.

Fix some time t. For each page p ∈ U \ {pt}, define y(p) := 1 − xt(p, r(p, t)) and
y′(p) := 1− xt+1(p, r(p, t)) to be the portion of page p that is in the cache at the start of
times t and t + 1, respectively. Also define y(pt) = 1− xt(pt, r(pt, t)) and y′(pt) := 1; note
that the fractional algorithm pays cost 1− y(pt) to fully fetch pt into the cache by the end of
time step t. With the above notation, for any page p ∈ U , we have PrC∼µt [p ∈ C] = y(p)
and PrC∼µt+1 [p ∈ C] = y′(p).

To simplify the description of our rounding scheme, we further assume that the changes
that occur in the primal solution between states xt and xt+1 do so through a sequence of
smaller changes where the x-value changes for exactly two pages (and hence the y-value also
changes for exactly two pages). Let p, q ∈ U and ϵ ∈ [0, 1] be such that y′(p) = y(p) + ϵ,
y′(q) = y(q) − ϵ, and y′(p′) = y(p′) for all p′ ∈ U \ {p, q}.¶ Let µ, µ′ denote distributions
over integral cache states that agree with y and y′, respectively. The cost incurred by the
fractional algorithm to move from y to y′ is exactly ϵ (because it only pays for evictions).
We now describe how the integral algorithm moves from µ to µ′ by incurring a cost of at
most 6ϵ. To modify a δ probability measure of the cache-state from C to C ′, the integral
algorithm pays a cost of δ · |C \ C ′|. We divide the modification steps into three phases:
1. Fixing the marginals: In this phase, we modify the distribution µ so that for any

page p′ ∈ U , PrC∼µ[p′ ∈ C] changes from y(p′) to y′(p′). We accomplish this by: (i)
adding p to an ϵ probability measure of cache states from µ that do not contain p; and (ii)
removing q from an ϵ measure of cache states from µ that contain q. The cost incurred
in this step is exactly ϵ.
By the end of this phase, for any (possibly infeasible) cache state C in µ, we have
|C| ∈ {k − 1, k, k + 1}. Let 0 ≤ ϵ1 ≤ ϵ denote the probability measure of cache states
with exactly k − 1 pages. By the description of the modification step, it is clear that
exactly ϵ1 measure of cache states have cardinality k + 1. Further, let 0 ≤ ϵ2 ≤ ϵ denote
the measure of cache states that violate the reserve constraint for some agent. Since only
removing the page q could lead to a constraint violation, we must have |C| ∈ {k − 1, k}
for any such violating cache state.

2. Fixing the size: In this phase, we match an ϵ1 measure of cache-states of size k − 1
with an ϵ1 measure of cache-states of size k + 1. Let C and C ′ denote page-sets of size
k − 1 and k + 1, respectively, that are matched with some positive measure α. Pick an
arbitrary page p′ ∈ C ′ \ C. We remove p′ from an α measure of state C ′, and add it to
an α measure of state C. The total cost incurred in this phase is exactly ϵ1 ≤ ϵ.
By the end of this phase, all cache-states have cardinality exactly k. However, the removal
of the page p′ above may cause violations of the reserve constraint. Let ϵ3 ∈ [0, 1] denote
the measure of cache states that satisfied all reserve constraints at the end of the first
phase, but now violate some reserve constraint. By the above discussion, such cache
states arise from the removal of page p′ ∈ C ′ \C from C ′ (that had size k + 1), so ϵ3 ≤ ϵ1.
Overall, exactly ϵ2 + ϵ3 measure of cache states violate some reserve constraint. In fact,
every violated cache state violates a single reserve constraint.

¶ Here, p plays the role of page pt that is fetched into the cache, and q plays the role of pages in U \ {pt}
that are evicted to make space for pt.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 52:15

3. Fixing the violated reserve constraint: We now fix all violated reserve constraints
by matching an ϵ2 + ϵ3 measure of cache states with exactly an ϵ2 + ϵ3 measure of cache
states that have an excess in that reserve constraint. More precisely, if C is a cache state
that violates the reserve constraint for agent i ∈ I, then we match an α > 0 measure
of C with another cache state C ′ that satisfies |C ′ ∩ U(i)| ≥ ki + 1. Such a matching
exists because the fractional solution y′ satisfies all reserve constraints and (by the end
of the first phase we ensured that) the distribution µ satisfies the reserve constraint in
expectation: for every cache state C with |C ∩ U(i)| < ki, there must exist another cache
state C ′ with |C ′ ∩ U(i)| > ki. We move an arbitrary page p′ ∈ U(i) ∩ (C ′ \ C) from
C ′ to C. In exchange for p′, we move an arbitrary page q′ ∈ (U \ U(i)) ∩ (C \ C ′) from
C to C ′ that does not violate any reserve constraints for the state C. The choice of
q′ is well-defined because the size of C is k + 1 right after p′ is moved from C ′ to C,
and we also have |C ∩ U(i)| = ki, so there must exist some other agent j ̸= i satisfying
|C ∩ U(j)| > kj . The cost incurred in this phase is at most 2(ϵ2 + ϵ3) ≤ 4ϵ.
At the end of this step, all cache states have size exactly k and satisfy all reserve constraints.
The marginal probabilities in the resulting distribution µ′ matches y′.

This completes the description of our rounding scheme. In the first step, we incurred a
total cost of exactly ϵ while in the second and third steps, we incurred a total cost of at most
ϵ1 ≤ ϵ and 2(ϵ2 + ϵ3) ≤ 4ϵ. Since the fractional algorithm incurs a cost of ϵ, the theorem
follows. ◀

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized

paging algorithms. TCS, 234(1-2):203–218, 2000.
2 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An O(log k)-

competitive algorithm for generalized caching. In SODA, pages 1681–1689, 2012.
3 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Towards the randomized k-server conjecture:

A primal-dual approach. In SODA, pages 40–55, 2010.
4 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for

weighted paging. Journal of the ACM (JACM), 59(4):1–24, 2012.
5 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive algorithms for

generalized caching. SICOMP, 41(2):391–414, 2012.
6 Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Learning-

augmented weighted paging. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 67–89. SIAM, 2022.

7 Sorav Bansal and Dharmendra S. Modha. CAR: Clock with adaptive replacement. In
3rd USENIX Conference on File and Storage Technologies (FAST 04), San Francisco, CA,
March 2004. USENIX Association. URL: https://www.usenix.org/conference/fast-04/
car-clock-adaptive-replacement.

8 L. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems
Journal, 5(2):78–101, 1966.

9 Leah Epstein, Csanád Imreh, Asaf Levin, and Judit Nagy-György. Online file caching with
rejection penalties. Algorithmica, 71(2):279–306, 2015.

10 Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator, and Neal E
Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.

11 Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. Caching
with reserves, 2022. arXiv:2207.05975.

APPROX/RANDOM 2022

https://www.usenix.org/conference/fast-04/car-clock-adaptive-replacement
https://www.usenix.org/conference/fast-04/car-clock-adaptive-replacement
http://arxiv.org/abs/2207.05975

52:16 Caching with Reserves

12 Wu Kan, Tu Kaiwei, Patel Yuvraj, Sen Rathijit, Park Kwanghyun, Arpaci-Dusseau Andrea,
and Remzi Arpaci-Dusseau. NyxCache: Flexible and efficient multi-tenant persistent memory
caching. In 20th USENIX Conference on File and Storage Technologies (FAST 22), pages
1–16, Santa Clara, CA, February 2022. USENIX Association. URL: https://www.usenix.
org/conference/fast22/presentation/wu.

13 Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. Robus: fair cache
allocation for data-parallel workloads. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 219–234, 2017.

14 Lyle A McGeoch and Daniel D Sleator. A strongly competitive randomized paging algorithm.
Algorithmica, 6(1-6):816–825, 1991.

15 Nimrod Megiddo and Dharmendra S Modha. {ARC}: A {Self-Tuning}, low overhead re-
placement cache. In 2nd USENIX Conference on File and Storage Technologies (FAST 03),
2003.

16 Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. {FairRide}:{Near-Optimal},
fair cache sharing. In 13th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 16), pages 393–406, 2016.

17 Yinghao Yu, Wei Wang, Jun Zhang, and Khaled Ben Letaief. Lacs: Load-aware cache
sharing with isolation guarantee. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pages 207–217. IEEE, 2019.

https://www.usenix.org/conference/fast22/presentation/wu
https://www.usenix.org/conference/fast22/presentation/wu

	1 Introduction
	1.1 Our Contributions

	2 Preliminaries and Notation
	3 Equivalence of Public-Private Caching and Caching with Reserves
	4 Offline Caching with Reserves
	5 Online Caching with Reserves
	5.1 Notation
	5.2 Formulation
	5.3 Algorithm
	5.4 Analysis

	6 Rounding

