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Abstract
We study the Minimum Sum Vertex Cover problem, which asks for an ordering of vertices in a
graph that minimizes the total cover time of edges. In particular, n vertices of the graph are visited
according to an ordering, and for each edge this induces the first time it is covered. The goal of the
problem is to find the ordering which minimizes the sum of the cover times over all edges in the
graph.

In this work we give the first explicit hardness of approximation result for Minimum Sum Vertex
Cover. In particular, assuming the Unique Games Conjecture, we show that the Minimum Sum
Vertex Cover problem cannot be approximated within 1.014. The best approximation ratio for
Minimum Sum Vertex Cover as of now is 16/9, due to a recent work of Bansal, Batra, Farhadi, and
Tetali.

We also revisit an approximation algorithm for regular graphs outlined in the work of Feige,
Lovász, and Tetali, and show that Minimum Sum Vertex Cover can be approximated within 1.225
on regular graphs.
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1 Introduction

In the Minimum Sum Vertex Cover problem, as an input we are given a graph G = (V, E),
and the goal is to find an ordering of vertices which minimizes the total cover time of edges in
E. In particular, we visit vertices in |V | steps, one at each step, and an edge e is considered
to be covered at the time t ∈ {1, . . . , |V |} if the first time one of its endpoints is visited by
the ordering is t.

The Minimum Sum Vertex Cover (MSVC) problem was introduced by Feige, Lovász, and
Tetali [9], as a special case of the Minimum Sum Set Cover problem, which was of primary
interest in that work. The same work showed that MSVC can be approximated within a
factor of 2 using linear programming. That work also studied MSVC on regular graphs,
and observed that a greedy algorithm approximates the optimal value within a factor of
4/3. In addition to this, it was shown that 4/3 factor can be improved using semidefinite
programming to some non-explicit constant β smaller than 4/3.
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The 2-approximation algorithm was subsequently improved by Barenholz, Feige, and
Peleg [7], who gave a 1.999946-approximation algorithm for this problem. This was then
substantially improved by Bansal, Batra, Farhadi, and Tetali, who, using linear programming
with fairly involved rounding procedure, showed that MSVC can be approximated within
a factor of 16/9. Furthermore, the same work gives a linear programming integrality gap
matching the approximation ratio.

So far explicit hardness of approximation results for this problem have been lacking, and
to the best knowledge of the author, the only inapproximability result [9] gives hardness of
1 + ε, for some small non-explicit ε > 0, using a reduction from the Minimum Vertex Cover
problem on bounded degree graphs [1, 4]. In this work we give the first explicit hardness for
MSVC, which we state in the following theorem.

▶ Theorem 1. Assuming the Unique Games Conjecture, Minimum Sum Vertex Cover is
NP-hard to approximate within 1.014.

We use the Unique Games Conjecture introduced by Khot [10] as our hardness assumption.
This conjecture has been the central open problem in the hardness of approximation area
since its introduction, and many already known (and optimal) hardness of approximation
results rely on the validity of this conjecture [15, 2, 13, 6].

Furthermore, our hardness reduction outputs regular graphs, for which better approxima-
tion algorithms are known compared to the general case.

Further to this, we will also revisit the approximation algorithm of Feige, Lovász, and
Tetali [9] for regular graphs. Our contribution can be described as follows. The algorithm
for regular graphs outlined in [9] uses an approximation algorithm for a problem called
Max-k-VC in a “black box” manner. Max-k-VC problem is the problem of finding k vertices
in a graph that cover as many edges as possible. The approximation ratio of the algorithm
for regular graphs in [9] depends on the approximation ratio α for Max-k-VC problem. Due
to the developments since the publication of [9] on Max-k-VC, a better value of α can be
achieved, and hence by using this value we can obtain stronger approximation. Furthermore,
a certain bound1 used in an argument outlined in [9] for the approximation algorithm on
regular graphs is incorrect, which we show by giving a counterexample in the appendix.
We correct this by proving the optimal bound, and observe that the rest of the argument
still holds. Let us remark that the sharpness of the bound affects the approximation ratio,
and hence finding the optimal bound is desirable in this case. In conclusion, we obtain the
following result

▶ Theorem 2. Minimum Sum Vertex Cover can be approximated within 1.225 on regular
graphs.

1.1 Techniques and Proof Ideas
In this section we give an overview of the proof and briefly discuss techniques used.

The starting point of our reduction are Unique Games, which we formally describe in
Section 2. More precisely, we use regular Affine Unique Games as an input to our reduction.
Regular Affine Unique Games are Unique Games in which the alphabet is understood as
an additive group ZL, and the constraints are of form xu − xv = ce for an edge e = (u, v),
while the word regular indicates that the constraint graph is regular. Interestingly, in this

1 We do not discuss what this bound exactly is here, for the sake of clarity.
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work the structure of Affine Unique Games actually helps us achieve better completeness
and therefore a stronger inapproximability result. The property of Affine Unique Games
that we use can be described as follows. Let us consider the completeness case, in which we
have some assignment z of labels to the vertices in the Affine Unique Games, which satisfies
almost all the constraints. Then, for any a ∈ ZL, the assignment za = z + a gives another
assignment which satisfies almost all the constraints. Furthermore, if we let Va, a ∈ ZL, to
be the vertex subset in the label extended graph comprised of vertex labels “selected” by the
map za, then the sets Va are disjoint, and this gives us enough structure to find an ordering
with a low sum set cover value.

Let us elaborate. Our reduction uses the same standard long code dictatorship testing
as the celebrated paper of Khot, Kindler, Mossel, and O’Donnell [11], which among other
results gave the optimal hardness of Max-Cut assuming the Unique Games Conjecture. This
is the same reduction that appeared in [4, 5], and hence the graphs that are output by the
reduction satisfy the same properties as outlined in these works, which turns out to be useful
for studying soundness. In particular, in the soundness case, for each r ∈ (0, 1), and each
vertex subset of fractional size r, we have a lower bound b := b(r) on the number of edges
with both endpoints in this subset. Therefore, no matter which order of visiting the vertices
we choose, after t ∈ {1, . . . , n} steps, we have not covered edges which have both endpoints in
vertices visited after the time t, and hence at the time t we have at least b(1 − t/n) uncovered
edges. This gives us a lower bound of form

∑n
i=1 b(1 − r/n) ≈

∫ 1
0 b(x)dx.

In the completeness case, we are supposed to specify an ordering of the vertices in each
of k ∈ N long codes. Given this ordering, in the first pass we would pick first vertex in each
of the k long codes, after which we would pick the second vertex in each long code, etc. The
order in which we visit k long codes will not be impactful. Hence, it is very important to
pick order of visiting vertices in each long code well. This is where the affine structure of
Unique Games proves to be useful. In the case we have only one good labeling (as it is the
case with “classical” Unique Games), an obvious observation is that we can take first all
vertices with 0 in the coordinate fixed by a good labelling z = z0, and then all vertices with 1
in the same coordinate. However, there are many vertices in a long code which have 0 in the
coordinate fixed by a good labelling, and hence many orderings can be chosen. Therefore,
the question is which order should one pick the vertices with in this subset? Since in Affine
Unique Games we have a second satisfying assignment, namely z1, there is a natural ordering
among these. We iterate through vertices that have 0 in the coordinate fixed by z1, and after
visiting the whole subgraph, visit vertices that have 1 in the coordinate fixed by z1. We can
repeat this idea and visit smaller and smaller subgraphs, the last of which will consist only
of two vertices and for which we will use zL−1.

The idea of using multiple good assignments in reductions from Unique Games already
appeared in [8], but it is still fairly uncommon. Hence, it would be interesting to see whether
it would be useful for some other problems as well.

As we mentioned in the introduction, the output of the hardness reduction is a weighted
graph, and we need to remove its weights. The idea for this is simple: we replace each vertex
v with m new vertices which we group in a set Av, for m is sufficiently large. We then replace
each edge e = (u, v) by sampling edges between Au and Av at a correct density. This graph
indeed looks like the initial graph and is almost regular, however, proving that it preserves
soundness and completeness properties, and making it exactly regular, requires some effort.
Due to the size limitation, we defer the details of this part to the full version of this paper.

APPROX/RANDOM 2022
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1.2 Organization
In Section 2 we introduce the notation used in this work, recall some well known facts, and
formally introduce the Minimum Sum Vertex Cover problem. Then, in Section 3, we give
our hardness reduction which outputs weighted graphs and discuss how it can be used to
show Theorem 1.

Then, in Section 4 we show how Minimum Sum Vertex Cover on regular graphs can
by approximated within a factor of 1.225, by recalling the algorithm from [9] and making
necessary changes.

2 Preliminaries

For n ∈ N we use [n] to denote [n] = {1, 2, . . . , n}. In this paper we work with undirected
(multi)graphs G = (V, E). For a set S ⊆ V of vertices we use Sc to denote its complement
Sc = V \ S, and write U ⊔ V for a disjoint union of sets U and V .

The initial graph output by our reduction will be edge weighted. The weights of edges
are given by a function w : E → [0, 1]. For a subset K ⊆ E we interpret w(K) as the sum
of weights of edges in K. Furthermore, we will typically normalize the weights so that
w(E) = 1. For S, T ⊆ V , we write w(S, T ) for the total weight of edges from E which have
one endpoint in S, and other in T . Note that, since we work with undirected graphs, the
order of endpoints is not important, and therefore w(S, T ) = w(T, S). We remark that the
sets S, T, do not need to be disjoint. We also use N(S, T ) to denote the set of all edges with
one endpoint in S and other endpoint in T . For a vertex v ∈ V , we use N(v) to denote the
set of its neighbours.

The following definition will be useful in discussing properties of our reduction.

▶ Definition 3. A graph G is (r, h)-dense if every subset S ⊆ V with w(S) = r satisfies
w(S, S) ≥ h.

Minimum Sum Vertex Cover is arguably more natural in an unweighted setting, i.e., the
setting in which the weights of all edges are equal. Let us now introduce the Min Sum Vertex
Cover problem for unweighted graphs.

▶ Definition 4. Consider an unweighted graph G = (V, E), and let n = |V |. For an ordering
of vertices represented as a bijection σ : [n] ↔ V , and an edge (u, v) = e ∈ E, let us denote
with cσ,e the “time” at which edge e is covered, that is

cσ,e = min(σ−1(u), σ−1(v)).

Then the Sum Vertex Cover under scheduling σ, which we denote by SVCG(σ), is given as

SVCG(σ) = 1
|E|

∑
e∈E

cσ,e. (1)

The value of Min Sum Vertex Cover is the minimal value of SV CG(σ) over all possible
permutations σ, that is

MSVC(G) = min
σ : [n]↔V

SVCG(σ). (2)

We have normalized the expression for SVCG(σ) by 1
|E| for the sake of writing convenience.

This does not affect our results, since the normalization factor will be cancelled out when
studying approximation ratios. We can also reformulate the expression (1), stating the value
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of Sum Vertex Cover under scheduling σ, as follows. At the time t ∈ [n], the total number of
edges not covered2 is w(σ([t])c, σ([t])c), and let us assign them the cost of 1 at that time.
The cost cσ,e of an edge e under σ is exactly the number of times t the edge was not covered,
and hence we can write

SVCG(σ) = 1
|E|

n∑
t=1

w(σ([t])c, σ([t])c). (3)

We remark that this allows us to define Mininimum Sum Vertex Cover for edge weighted
graphs, by replacing 1

|E| above with 1
w(E) , i.e., for weighted graphs we have

SVCG(σ) = 1
w(E)

n∑
t=1

w(σ([t])c, σ([t])c).

We can also discuss Minimum Sum Vertex Cover for weighted graphs in the sense of definitions
(1) and (2) by letting

SVCG(σ) = 1
w(E)

∑
e∈E

wecσ,e.

As mentioned in the introduction, we can extend this definition in a natural way to include
vertex weights. However, we have not found vertex weights to be useful for hardness reduction,
and hence we omit further discussing this for the sake of simplicity.

In order to state the quantities appearing in our result, it is necessary to introduce some
more notation. We use ϕ(x) = 1√

2π
e−x2/2 to denote the density function of a standard normal

random variable, and Φ(x) =
∫ x

−∞ ϕ(y)dy to denote its cumulative distribution function
(CDF). We also work with bivariate normal random variables, and to that end introduce the
following function.

▶ Definition 5. Let ρ ∈ [−1, 1], and consider two jointly normal random variables X, Y, with

mean 0, and covariance matrix Cov(X, Y ) =
[
1 ρ

ρ 1

]
. We define Γρ : [0, 1]2 → [0, 1] as

Γρ(x, y) = Pr
[
X ≤ Φ−1(x) ∧ Y ≤ Φ−1(y)

]
.

We also write Γρ(x) = Γρ(x, x).

The hardness result stated in this paper is based on the Unique Games Conjecture. In order
to state this conjecture, we first introduce Unique Games.

▶ Definition 6. A Unique Games instance Λ = (U , V, E , Π, [L]) consists of an unweighted
bipartite multigraph (U ⊔ V, E), a set Π = {πe : [L] → [L] | e ∈ E and πe is a bijection}
of permutation constraints, and a set [L] of labels. The value of Λ under the assignment
z : U ⊔ V → [L] is the fraction of edges satisfied, where an edge e = (u, v), u ∈ U , v ∈ V, is
satisfied if πe(z(u)) = z(v). We write Valz(Λ) for the value of Λ under z, and Opt(Λ) for
the maximum possible value over all assignments z.

Let us remark that we require Unique Games instance graph (U , V, E) to be regular. Since
Unique Games belong to the class of problems known as Constraint Satisfaction Problems
(CSPs), without loss of generality we can assume regularity, as shown in [16].

The Unique Games Conjecture [10] can be stated as follows ([12], Lemma 3.4).

2 We interpret σ([t]) as σ([t]) = {σ(i) | i ∈ [t]}.

APPROX/RANDOM 2022
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▶ Conjecture 7 (Unique Games Conjecture). For every constant γ > 0 there is a sufficiently
large L ∈ N, such that for a Unique Games instance Λ = (U , V, E , Π, [L]) with a regular
bipartite graph (U ⊔ V, E), it is NP-hard to distinguish between

Opt(Λ) ≥ 1 − γ,
Opt(Λ) ≤ γ.

The starting point of hardness result in this work are Affine Unique Games, which are a type
of Unique Games defined as follows.

▶ Definition 8. An Affine Unique Games instance Λ = (U , V, E , Π, [L]) is a Unique Games
Instance Λ in which all permutation constraints πe are affine constraints. Furthermore, the
alphabet [L] is identified with an additive group ZL, and for each E ∋ e = (u, v) we have
πe(x) = x − ce, where ce ∈ ZL is a constant.

We remark that approximating Affine Unique Games is equally hard as approximating Unique
Games, in the sense stated by the lemma below which was proved in [11].

▶ Lemma 9 (Affine Unique Games Hardness). Assuming the Unique Games Conjecture, the
following statement holds. For every constant γ > 0, there is a sufficiently large L ∈ N, such
that for an Affine Unique Games instance Λ = (U , V, E , Π, [L]) with a regular bipartite graph
(U ⊔ V, E), it is NP-hard to distinguish between

Opt(Λ) ≥ 1 − γ,
Opt(Λ) ≤ γ.

3 Hardness Reduction

In this section we state and prove our main result. In Section 3.1 we give a reduction from
Affine Unique Games to weighted graphs which satisfy properties sufficient for showing
hardness of approximating Min Sum Vertex Cover.

3.1 Reduction from Unique Games to Weighted Graphs
We remark that we use the same type of reduction as in [11, 4, 5], with the only difference
being that we now use Affine Unique Games as the starting point, and compared to [5]
we are here interested only3 in the unbiased setting (q = 1/2). The main challenge lies in
proving completeness, since we will reuse the soundness property of the reduction in the
aforementioned results.

Before giving the full proof of the result, we will sketch the ideas behind studying the
completeness case now. Consider having a labelling z which satisfies almost all the edges. Let
us describe what happens locally on two vertices u, v, with a common neighbour w, which
are chosen such that (u, w) and (v, w) edges are satisfied by z. For the sake of simplicity,
let us assume that the affine constraints on e1 = (u, w), and e2 = (v, w), are trivial, that
is, ce1 = ce2 = 0, so that the labels xu and xv are matched by z if and only if xu = xv.
Then, we replace both u and v with 2L strings of length L. Let us call the sets of strings
which replaced u and v as R and S, respectively. We drop indices u, v here for the sake of
readability. Hence, we have

S = {(s1, . . . , sL) | si ∈ {0, 1} , i ∈ [L]} , R = {(r1, . . . , rL) | ri ∈ {0, 1} , i ∈ [L]} .

3 We remark that one could also consider using a reduction with biased bits, i.e., the reduction from [5]
with q ̸= 1/2. However, this does not yield better inapproximability.
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Edges between S and R are created as follows. The reduction first fixes some negat-
ive correlation parameter ρ ∈ (−1, 0), samples L times pairs of unbiased, ρ correlated
bits, (si, ri), i = 1, . . . , L, and then adds an edge between s = (s1, . . . , sL) ∈ S and
r = (r1, . . . , rL) ∈ R. Let us use ν to denote the probability distribution of two ρ cor-
related, unbiased bits, i.e.,

ν(0, 0) = ν(1, 1) = 1 + ρ

4 , ν(0, 1) = ν(1, 0) = 1 − ρ

4 ,

and study Minimum Sum Vertex Cover on this graph. We will upper bound the value of
MSVC on this graph GL by4 some TL, by exhibiting an ordering σL. Actually, we build
our ordering for vertices in GL by using the ordering on GL−1, which is a graph that would
have been created with an alphabet size L − 1. In particular, we observe that the induced
subgraph of GL obtained by fixing s1 = r1 = 0 is isomorphic to GL−1. Hence, if we use
σL−1 to visit vertices in this subgraph, edges with both endpoints in it will be visited by the
time TL−1 on average. Since the total weight of edges in this subgraph is ν(0, 0), the cost of
covering edges in this subgraph is at most

ν(0, 0) · TL−1.

We have spent 2L steps in visiting this subgraph. Observe that we also covered the edges
between strings s, r, which have (s1, r1) ∈ {(0, 1), (1, 0)}. In particular, we will show that
they are covered by the time 2L/2 on average, which intuitively can be seen by observing
that we visit GL−1 in 2L steps, and an average edge will be visited in half that time. This
gives us a cost

(ν(0, 1) + ν(1, 0)) · 2L−1.

Finally, the subgraph with s, r such that s1 = r1 = 1 is also isomorphic to GL−1, and once
again use the ordering σL−1 to traverse it in 2L steps. In this case, we have a delay of 2L

due to visiting vertices with r1 = 0 or s1 = 0, and hence the edges are covered by the time
2L + TL−1, and their total cost is

ν(1, 1) · (2L + TL−1).

Hence, we have that

TL ≤ ν(0, 0) · TL−1 + (ν(0, 1) + ν(1, 0)) · 2L−1 + ν(1, 1) · (2L + TL−1).

Letting tL = TL/2L+1 and replacing the values of ν yields

tL ≤ 1 + ρ

4 tL−1 + 1
4 ,

which is a recurrence relation, and solving it shows that tL → 1
3−ρ , regardless of t1. Hence,

for sufficiently large L we should expect to get MSVC close to 1
3−ρ .

With this intuition in mind, we now state and prove the theorem which gives the hardness
reduction from Affine Unique Games to weighted graphs.

▶ Theorem 10. For any ε > 0, ρ ∈ (−1, 0), γ > 0, there is a sufficiently large alphabet size
L ∈ N and a reduction from regular Affine Unique Games instances Λ = (U , V, E , Π, [L]) to
weighted multigraphs G = (V, E) with the following properties:

4 Without loss of generality, we assume that weights of edges sum up to 1 here.

APPROX/RANDOM 2022
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Completeness: If Opt(Λ) ≥ 1 − γ, then MSVC(G) ≤
(

1
3−ρ + ε + 3γ

)
|V |.

Soundness: If Opt(Λ) ≤ γ, then for every r ∈ [0, 1], G is (r, Γρ(r) − ε)-dense.
Moreover, the running time of the reduction is polynomial in |U|, |V|, |E|, and exponential in
L. If we use D to denote the degree of the regular Unique Games instance, then the weights
of edges in G belong to the set

{( 1+ρ
4
)i ( 1−ρ

4
)L−i

}L

i=0
. The size of |V | is at least 2L. Finally,

the output graph G is also regular, in the following two senses. First, if we consider G as an
unweighted graph, every vertex is of degree D2. The graph G is also regular in the weighted
sense, i.e., the value WE(u, N(u)) is uniform across all u ∈ V , and it equals D22−L+1.

Proof. Let ν : {0, 1}2 → [0, 1] be the probability distribution over correlated uniformly
distributed bits with negative correlation coefficient ρ < 0. In other words, we have

ν(0, 0) = ν(1, 1) = 1 + ρ

4 , ν(0, 1) = ν(1, 0) = 1 − ρ

4 .

Let us now describe how the multigraph G can be constructed from Λ. We define the
vertex set of G to be V = V × {0, 1}L = {(v, x) | v ∈ V, x ∈ {0, 1}L}. In particular, for
every vertex v ∈ V we create 2L vertices of G, which we identify with L-bit strings in {0, 1}L.
We also write vx for a vertex (v, x) of the graph G. The edges of G are constructed in the
following way. For every u ∈ U , and for every two v1, v2 ∈ N(u), we create an edge between
vertices vx

1 , vy
2 with weight

ν⊗L(x ◦ πe1 , y ◦ πe2), where e1 = (u, v1), e2 = (u, v2).

Expressed formally, the edge set E is

E = {(ex
1 , ey

2) | e1 = (u, v1), e2 = (u, v2), u ∈ U , v1, v2 ∈ V, x, y ∈ {0, 1}L}.

The number of vertices in G is |V|2L, and the number of edges is |V|D22L, so the construction
is indeed polynomial in |U|, |V| and |E|, and exponential in L. Also, since V ≠ ∅ we have
|V | ≥ 2L, and the weights of the edges indeed belong to the set specified in the statement of
the theorem. Finally, the total weight of edges incident upon each vertex vx is the same for
any vx, and since WE(E) = D2|V|, we have that wE(vx, N(vx)) = 2D2|V| 1

|V | = D22−L+1

for all vx ∈ V .
We are using the same reduction5 as the one used in Theorem 3.1. from [5], and the

only difference is that we are starting from Affine Unique Games instead of (general) Unique
Games. Since we are using the same reduction and Affine Unique Games are subsumed by
the Unique Games, our graph G satisfies the same soundness property as the one expressed
by Theorem 3.1. in [5], and this is exactly the soundness property stated above. Hence, we
only need to show completeness.

For the completeness case let us assume Opt(Λ) ≥ 1 − γ. Therefore, there is a labelling
z : U ⊔ V → ZL such that Valz(Λ) ≥ 1 − γ. In particular, there is Ê ⊆ E , |Ê | ≥ (1 − γ)|E|,
such that for each e = (u, v) ∈ Ê we have z(u) − z(v) = ce. Let us use Ê ⊆ E to denote
the set

Ê := {(ex
1 , ey

2) ∈ E | e1, e2 ∈ Ê}.

Observe that |Ê| ≥ |E| · (1 − 2γ). Since the complement of Ê is of small fractional size,
i.e., smaller than 2γ, in the analysis we will focus on cover times of edges in Ê, and we will

5 This is the same as the Max-Cut hardness reduction in [11]. Same reduction and soundness result also
appeared in [4], albeit with biased bits.



A. Stanković 50:9

trivially upper bound the cover time of edges in Êc by |V |. In particular, let us denote with
Ĝ the graph Ĝ = (V, Ê) and find an ordering σ such that SV CĜ(σ) ≤ ( 1

3−ρ + ε + γ)|V |. As
discussed this would then give us the stated completeness

SV CG(σ) ≤
(

1
3 − ρ

+ ε + 3γ

)
|V |,

by bounding the cover time of edges in Êc by |V |.
Before explaining how σ is constructed, let us first introduce some notation. We use

z1, . . . , zL : U → ZL to denote the mappings defined by

zi(u) : = z(u) + i, for i ∈ [L].

Let us then define sets F 0
i , F 1

i ⊆ V , as the sets in which, for every v ∈ V, inside the long
code (v, x) we fix the zi(v)-th coordinate to 0 or 1, respectively. In particular, we have

F 0
i =

{
(v, x) ∈ V | xzi(v) = 0

}
, F 1

i =
{

(v, x) ∈ V | xzi(v) = 1
}

.

Intuitively, the sets F 0
i (or F 1

i ) for a fixed i fix the values at the coordinates in which labels
“agree”. Then, we use the sets F 0

i and F 1
i to construct ordering inductively. First, we define

the ordering on CL−1 = F 0
1 ∩ F 0

2 ∩ . . . F 0
L−1, then using this ordering we define ordering on

CL−2 = F 0
1 ∩ F 0

2 ∩ . . . F 0
L−2, and so on until we construct an ordering on C1 = F 0

1 and finally
on C0 which we define to be C0 := V . As we are defining orderings on Ci, i = 0, . . . , L − 1,
we will be expressing an upper bound Ti for the average time edges Ei with both endpoints
endpoints in Ci are covered by the ordering. Before discussing our ordering, let us make an
observation that |Ci| = 2 · |Ci+1|, since Ci has one more free coordinate for each v ∈ V.

We discuss the ordering for CL−1 first. Before that, let us remark that the particular
ordering and the cost of covering edges in CL−1 will be inconsequential for the final value
that we get in this theorem. The main reason we discuss this case here is because we believe
it will be a good preparation for discussing the inductive step that will follow. Let us first
normalize the weights of edges in EL−1 so that they sum up to 1. In the first step, we iterate
through v ∈ V in a random order6, and pick (v, x) ∈ CL−1 such that7 xzL(v) = 0. Then, we
iterate through v ∈ V in a random order and pick the remaining vertex at each (v, x), i.e.,
the vertex with xzL(v) = 1. Let us upper bound the average time an edge e ∈ EL−1 with
both endpoints in CL−1 is visited by this schedule. Observe that we spent 1

2 |CL−1| time
in the first step, and 1

2 |CL−1| in the second step. Thus, if an edge with both endpoints in
CL−1 has at least one endpoint with a label 0 at xzL(v), then this point will be picked in
the first step on average by the time 1

4 |CL−1|. Otherwise, if the edge e has both endpoints
vx

1 , vy
2 picked in the second step, i.e. xZL(v1) = 1, yZL(v2) = 1, then it will be picked on

average by the time 3
4 |CL−1|. Since the weight of edges from EL−1 picked in the first step is

ν(0, 0) + ν(0, 1) + ν(1, 0) = 3−ρ
4 , and the weight of the remaining edges that we consider is

ν(1, 1) = 1+ρ
4 , the average cover time is

TL−1 = 3 − ρ

4 · 1
4 |CL−1| + 1 + ρ

4
3
4 |CL−1| = 3 + ρ

8 |CL−1|.

We observe that this also shows that there is an ordering σL−1 which covers an edge in EL−1
on average by the time TL−1.

6 As we have said, the value obtained in the first step is not relevant as it will be seen later. Hence, we
can also choose to visit v ∈ V in any fixed order in which case we can also use a trivial upper bound of
|VL−1| on TL−1.

7 Due to symmetry it is not important whether we pick xzL(v) = 0 or xzL(v) = 1 in the first iteration, as
long as we keep that choice fixed.
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Let us now fix i = 0, . . . , L − 2, and assume that we have an ordering σi+1 of vertices in
Ci+1 such that the edges in Ei+1 are covered by the time Ti+1 on average, and let us use this
procedure to construct an ordering of the vertices in Ci and derive a suitable upper bound
on Ti. We assume that the weights of the edges Ei are normalized so that they sum up to 1.
The ordering in Ci works as follows. First, using σi+1 we visit vertices in Ci+1 = Ci ∩ F 0

i .
The total weight of the edges with both endpoints in Ci ∩ F 0

i is ν(0, 0), and they are covered
by σi+1 until Ti on average. Hence, the cost for these edges is

Ti+1 · ν(0, 0). (4)

Furthermore, during this pass, we have also visited all the edges with one endpoint in Ci ∩ F 0
i

and another endpoint in Ci ∩ F 1
i , and their total weight is ν(0, 1) + ν(1, 0). Also, these covers

are disjoint (each one of these edges will be visited only once in the first pass). Since the
starting Unique Games instance was regular and we removed at most 2γ edges, the edges
will be covered by the time

1 + 2γ

2 |Ci+1| (5)

at most. Hence, the cost for these edges is

(ν(0, 1) + ν(1, 0))1 + 2γ

2 |Ci+1|. (6)

Finally, we pass through the vertices in Ci ∩ F 1
i . The graph induced by this vertex set is

actually isomorphic to Ci+1 = Ci ∩ F 0
i , and hence we can once again use the ordering σi+1.

Then, the edges in this graph are visited on average by the time

|Ci+1| + Ti+1,

where the |Ci+1| term is due to the delay coming from the first pass. Hence, the cost of these
edges is at most

ν(1, 1)(|Ci+1| + Ti+1). (7)

Adding up (4),(6) and (7) we get that

Ti ≤ 1 + ρ

4 Ti+1 + 1 − ρ

2
1 + 2γ

2 |Ci+1| + 1 + ρ

4 · (|Ci+1| + Ti+1). (8)

If we let ti = Ti/|Ci| and divide both sides by |Ci| = 2|Ci+1|, we can write (8) as

ti ≤ 1 + ρ

8 ti+1 + 1 − ρ

4
1 + 2γ

2 + 1 + ρ

4

(
1 + ti+1

2

)
,

which can be simplified to

ti ≤ 1
4 + 1 + ρ

4 ti+1 + 1 − ρ

4 γ. (9)

Let us show that ti ≤ 1
3−ρ + γ + 2−L+i as follows. Let us define ri = ti − γ − 1

3−ρ . By
substituting ti = 1

3−ρ + γ + ri into (9) we obtain

γ

2 + ri ≤ 1 + ρ

4 ri+1. (10)
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Since ρ ∈ (−1, 0) and γ > 0 we have

ri ≤ 1
2ri+1. (11)

Hence, since by calculation for TL−1 we have rL−1 ≤ 1
2 , which with (11) implies that

ri ≤ 2−L+i, and therefore t0 ≤ 1
3−ρ + γ + 2−L. By letting L be large enough so that 2−L ≤ ε

and recalling that t0 = T0/|V | we get

T0 ≤ ( 1
3 − ρ

+ γ + ε)|V |,

which is what we wanted to prove. ◀

This reduction outputs a weighted graph. In the full version of this paper we will show
how this weighted graph can be transformed into an unweighted graph with essentially the
same properties using a polynomial time reduction. For now, let us briefly discuss how the
soundness and completeness properties stated in the theorem above are useful for studying
Min Sum Vertex Cover.

For completeness, we will get that MSVC(G) ≤
(

1
3−ρ + ε + 3γ

)
|V |. On the other hand,

in the soundness case we have that for any ordering σ and given any η > 0 we have

SVCG(σ) =
|V |∑
t=1

w(σ([t])c, σ([t])c) ≥
n−⌈ηn⌉∑

t=1
w(σ([t])c, σ([t])c) ≥

n−⌈ηn⌉∑
t=1

Γρ(1 − t/n) − ε

=
(∫ 1−η

0
Γρ(1 − r)dr − ε

)
· |V | + O(1) =

(∫ 1

η

Γρ(r)dr − ε

)
· |V | + O(1).

Hence, by letting η → 0, γ → 0, ε → 0, |V | → ∞, we get an inapproximability ratio of∫ 1
0 Γρ(r)dr

1
3−ρ

.

This expression is minimized for ρ ≈ −0.52, for which the inapproximability ratio is approx-
imately 1.014.

Numerical simulations show that the best ratio we can get with these techniques is 1.014,
and it is obtained for ρ = −0.52.

4 Approximating Min Sum Vertex Cover on Regular Graphs

In this section we will revisit an approximation algorithm for Minimum Sum Vertex Cover on
regular graphs introduced in [9], in Theorem 11. The authors in that work did not explicitly
state the approximation ratio obtained by that algorithm, since their primary interest was
showing that 4/3-approximation achieved by the greedy algorithm can be beaten by more
advanced techniques.

We will here give an explicit constant, also taking into account progress in the approx-
imation of the so called Max-k-VC problem, which is used in that approach, and for which
better algorithms exist since the publication of the aforementioned article.

Before discussing the algorithm, let us define the Max-k-VC problem. In this problem
a graph G = (V, E) is given as an input, and the goal is to find S ⊆ V, |S| = k, such that
w(S, V ) is as big as possible. Austrin, Benabbas and Georgiou [3] show that Max-2-Sat with
a bisection constraint, that is, Max-2-Sat in which admissible assignments have exactly half

APPROX/RANDOM 2022
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of the variables set to 1, and the other half to 0, can be approximated within αLLZ ≈ 0.9401.
Let us remark that αLLZ is the optimal8 approximation ratio for Max-2-Sat problem [14, 2].
Since this problem subsumes Max-k-VC when k = n/2, we can approximate Max-n/2-VC
within αLLZ ≈ 0.9401.

Let us also recall the following two facts for regular graphs:
The greedy algorithm on regular graphs covers edges on average by the time 1

3 |V |,
The optimal solution covers an edge on average by the time at least 1

4 |V |.

Let us now discuss the algorithm introduced in [9]. We will closely follow the argument
outlined there. Let ε > 0 be some constant that we will fix later. In case the optimal solution
covers an edge by the time ( 1

4 + ε)|V | later, the greedy algorithm approximates the optimal
value within a factor of

1/3
1
4 + ε

= 4
3 + 3

4 ε
.

Otherwise, the optimal solution covers an edge on average at the time ( 1
4 + δ)|V |, for some

δ ∈ (0, ε). In this case, we have the following lemma.

▶ Lemma 11. Let G = (V, E) be a regular graph, let n := |V |, and let the optimal solution
of Minimum Sum Vertex Cover be ( 1

4 + δ)|V |. Then the optimal solution covers at least
(1 −

√
δ) fraction of edges in the first n/2 steps.

Proof. Let us denote the degree of the graph with D ∈ N, and with m the number of edges
m = nD/2. We argue by contradiction, and assume that the optimal solution covers less
than (1 −

√
δ) fraction of edges in the first n/2 steps. Let us use ui, i = 1, . . . , n, to denote

the number of uncovered edges at the time step i, and let s := un/2. Then by assumption
s >

√
δm. Furthermore, the value of the minimum sum vertex cover is 1

m

∑n
i=1 ui. Let us

show that 1
m

∑n
i=1 ui > ( 1

4 + δ)n yielding a contradiction to the assumption that the optimal
solution of Minimum Sum Vertex Cover is ( 1

4 + δ)n.
Let us use ci = ui − ui−1 to denote the number of additionally covered edges at step i.

Since we are considering the optimal solution to MSVC, the sequence ci is non-increasing
(otherwise changing the order would yield a smaller solution). Furthermore, let us use c to
denote cn/2.

Now, assuming that cn/2 = c, un/2 = s, let us calculate the smallest possible value of
MSVC. We know that after i steps, we can cover at most i · D edges (this happens if all the
edges chosen are disjoint). Furthermore, since we assumed that after n/2 steps we leave s

edges uncovered, and since c = cn/2 and c is non-increasing, we have that at the step i we
leave at least s + (n/2 − i) · c edges uncovered. This shows that

ui ≥ max
(

nD

2 − iD, s + (n/2 − i) · c, 0
)

, i ∈ [n].

In particular, the right hand side is a maximum of three linear functions, and therefore, the
following scenario for covering the edges will lower bound ui. In the first t fraction of steps,
edges get covered at the optimal rate (at each step we cover D new edges), where t is a
parameter calculated later. Then, after t fraction of steps, we cover c edges, until we cover
all the edges9.

8 Assuming the Unique Games Conjecture
9 In the last step we might cover less than c edges, but we will ignore this case for the sake of simplicity.
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Since we spend t fraction of time covering D edges in each step, the cost of edges covered
in this time is

1
m

t·n∑
i=1

Dn

2 − iD ≥ nt(1 − t).

The remaining time x · n, for some x ∈ (0, 1), is spent on covering c edges at each step. Since
after x fraction of steps we covered all the edges, we have

m = t · n · D + x · n · c,

and since m = nD/2 we have that

x = D

2 · 1 − 2t

c
. (12)

Hence, the average cost of edges incurred in the remaining time is

1
m

x · n · (m − t · n · D)1
2 = xn

(
1
2 − t

)
,

which with (12) yields the cost

D

2 · 1 − 2t

c
n

(
1
2 − t

)
= n

D

4c
(1 − 2t)2.

Hence, the total cost is

nt(1 − t) + n
D

4c
(1 − 2t)2 (13)

Let us now calculate the value of t in terms of s and c. We use the fact that after t fraction
of steps we covered t · n · D edges, and after n/2 steps we covered m − s edges. Since we are
covering c edges at each step i ∈ [tn, n/2] we have that

m − s = tnD + (n

2 − tn) · c,

and from here we get

t =
m − s − n·c

2
n · D − n · c

= 1
2 − s

n(D − c) .

Replacing this in (13) we get that the total cost is at least

n

(
1
4 − s2

n2(D − c)2 + D

4c

(
2 s

n(D − c)

)2
)

which reduces to

n

(
1
4 + s2

n2
1

(D − c)c

)
Now, by our contradiction hypothesis we have s >

√
δm, and 1

(D−c)c ≥ 4 1
D2 (since c ∈ (1, D)),

we have that the total cover time is strictly greater than

n

(
1
4 + δm2

n2
4

D2

)
= n

(
1
4 + δ

)
,

which contradicts the fact that the optimal solution to MSVC on the graph G has value
n( 1

4 + δ). This concludes our proof. ◀
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In [9] it is claimed that in the setup of Lemma 11, the optimal solution covers (1 − δ) fraction
of edges. However, this is not correct, and we illustrate that with a counterexample provided
in the appendix. Nevertheless, this does not greatly change the conclusion in [9], as using
the correct version of the lemma just replaces one unspecified constant below 4/3 by another
unspecified constant below 4/3.

Let us now fix k = n/2, and use the Max-k-VC algorithm. This will give us a set S ⊆ V

such that w(S, V ) ≥ αLLZ(1 −
√

δ). We next consider the following ordering of vertices in V

and calculate Minimum Sum Vertex Cover for it. We first pick vertices from S in a random
order, and then take the remaining vertices in random order as well. Then, the vertices
in N(S, S) are covered by the time |V |/4 in expectation, while the remaining vertices are
covered by the time |V |

2 + 1
3

|V |
2 . Hence, we can find an ordering for which Sum Vertex Cover

has value

w(S, V ) |V |
4 + w(Sc, Sc)( |V |

2 + |V |
6 ) ≤ αLLZ(1 −

√
δ) |V |

4 +
(

1 − αLLZ(1 −
√

δ)
)

· 2|V |
3 .

We can simplify this expression as(
−5αLLZ + 5αLLZ

√
δ

12 + 2
3

)
|V |.

Hence, we get an approximation ratio of
−5αLLZ+5αLLZ

√
δ

12 + 2
3

1
4 + δ

.

In conclusion, for fixed ε we have that the approximation ratio is given as

max
(

4
3 + 3

4 ε
, sup

δ∈(0,ε]

−5αLLZ +5αLLZ

√
δ

12 + 2
3

1
4 + δ

)
.

Optimizing over different values of ε gives us that the approximation ratio of this algorithm
is approximately 1.225.
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A Addressing Argument in Theorem 11 in [9]

Let δ > 0. We construct a 2-regular graph G = (V, E) with |V | = n, |E| = m, such that the
minimum sum vertex cover has value(

1
4 + δ

)
n,

while any set S ⊆ V, |S| = n
2 , satisfies |w(S, V )| ≤ (1 −

√
δ). This shows that the factor

(1 −
√

δ) in Lemma 11 can not be replaced by a sharper (1 − δ), as it was done in [9].
Let t = ( 1

2 − 3
√

δ)n and s = 2
√

δ · n, where n ∈ N is chosen such that t, s ∈ N (we also
approximate

√
δ by a rational number), and such that t is even. Then, we construct the

graph G by taking t/2 disjoint copies of K2,2 and s disjoint copies of K3. Let V1 be the set
composed of only “the left sides” of t/2 disjoint copies of K2,2, V2 the set composed of only
“the right sides” of t/2 disjoint copies of K2,2, and let V3 be composed of the vertices from s

disjoint copies of K3.
Then, the optimal solution for MSVC will work in the following three stages:
Stage 1: Pick vertices from V1 in any order.
Stage 2: Pick one vertex from each K3 in V3.
Stage 3: Pick another vertex from each K3 in the set V3.
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It is clear that this is the minimum sum vertex cover. The total cost is then split into the
following costs:

Edges covered in the first stage. In this case we pick t · 2 edges, and an edge is picked on
average at the time t/2, so the cost is

t

2 · 2 · t = t2.

Edges covered in the second stage. We pick s · 2 edges, and each edge is picked on average
at the time t + s/2, where the factor t exists because this step happens after the first
stage. We have the cost of

2 · s(t + s/2) = 2 · s · t + s2.

Edges covered in the third stage. We pick s edges, and each edge is picked on average at
the time t + s + s/2, where the factor t + s exists because this step happens after the
second stage. We have the cost of

s(t + s + s/2) = st + s2 + s2/2.

Hence, the total cost is

t2 + 2 · s · t + s2 + st + s2 + s2/2 = t2 + 3st + 5s2

2 .

Now, recalling that t = ( 1
2 − 3

√
δ)n and s = 2

√
δ · n, we have that the cost is

n2 ·
(

1
4 − 3

√
δ + 9δ

)
+ 3 · 2

√
δ · n ·

(
1
2 − 3

√
δ

)
· n + 5 · 4δ · n2

2

= 1
4n2 − 3

√
δn2 + 9δn2 + 3

√
δn2 − 18δn2 + 10δn2

= 1
4n2 + δn2.

Now, since our graph is 2-regular graph on n = 2t + 3s vertices, we have that m = n, and we
can write the total cost as

n

(
1
4 + δ

)
,

as claimed. It remains to show that for any set S ⊆ V with |S| = n/2 we have

|E(S, V )| ≤ (1 −
√

δ) · m.

It is obvious that the worst case S is exactly the set of vertices picked in the first n/2 steps
in the algorithm above. In this case, the number of edges not covered is s/2, since after n/2
steps we are left with one edge uncovered in exactly half of the K3 triangles. Hence, the
number of uncovered edges is

s

2 =
√

δ · n =
√

δ · m,

and hence

|E(S, V )| ≤ (1 −
√

δ) · m,

as required.
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