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Abstract
Constraint satisfaction problems (CSPs) are ubiquitous in theoretical computer science. We study
the problem of Strong-CSPs, i.e. instances where a large induced sub-instance has a satisfying
assignment. More formally, given a CSP instance G(V, E, [k], {Πij}(i,j)∈E) consisting of a set of
vertices V , a set of edges E, alphabet [k], a constraint Πij ⊂ [k] × [k] for each (i, j) ∈ E, the goal of
this problem is to compute the largest subset S ⊆ V such that the instance induced on S has an
assignment that satisfies all the constraints.

In this paper, we study approximation algorithms for UniqueGames and related problems
under the Strong-CSP framework when the underlying constraint graph satisfies mild expansion
properties. In particular, we show that given a StrongUniqueGames instance whose optimal
solution S∗ is supported on a regular low threshold rank graph, there exists an algorithm that runs
in time exponential in the threshold rank, and recovers a large satisfiable sub-instance whose size is
independent on the label set size and maximum degree of the graph. Our algorithm combines the
techniques of Barak-Raghavendra-Steurer (FOCS’11), Guruswami-Sinop (FOCS’11) with several
new ideas and runs in time exponential in the threshold rank of the optimal set. A key component
of our algorithm is a new threshold rank based spectral decomposition, which is used to compute
a “large” induced subgraph of “small” threshold rank; our techniques build on the work of Oveis
Gharan and Rezaei (SODA’17), and could be of independent interest.
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1 Introduction

An instance of a 2-Constraint Satisfaction Problem (2-CSP) G(V,E, [k], {Πij}(i,j)∈E) consists
of a set of vertices V , a set of edges E, alphabet [k], and a constraint Πij ⊆ [k]× [k] for each
(i, j) ∈ E. The goal of this problem is to compute an assignment f : V → [k] such that the
fraction of constraints satisfied is maximized; this optimal fraction is also called the value
of this instance, and is formally denoted by Val(G). Many common optimization problems
such as Max Cut, Unique Games, Graph Coloring, 2-SAT, etc. are 2-CSPs. Designing
approximation algorithms for specific CSPs are central problems in the study of algorithms
and have been studied extensively, for e.g., Max-Cut [20], Unique Games [11, 12], etc. There
is also a long line of work which deal with algorithms for general CSPs (see [35, 36, 8, 21]).
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43:2 Approximating CSPs with Outliers

A particular parameter regime of interest is when the CSP instance is “almost” fully
satisfiable. There are several ways for quantifying this, one of which is by asking the value
of the CSP instance be close to 1. This can also be viewed as the setting where deleting a
small number of edges from the instance results in an instance that is fully satisfiable. There
has been extensive work on designing algorithms for CSPs in this regime; we give a brief
survey in Section 1.2. Another way a CSP can be almost satisfiable is if a small number of
outlier vertices can be deleted (all the edges incident on these vertices would also be deleted)
to obtain an instance which is fully satisfiable. The main focus of our work is to study
algorithms for CSPs in this model; we define it below formally.

▶ Problem 1 (Strong-CSP). Given an instance G(V,E, [k], {Πij}(i,j)∈E) consisting of a
set of vertices V , a set of edges E, alphabet [k], and a constraint Πij ⊆ [k] × [k] for each
(i, j) ∈ E, compute the largest subset S ⊆ V such that the instance induced on S has value 1.

We refer to an optimal set of vertices for Problem 1 as good vertices1, and denote them
by Vgood. A naturally arising such instantiation of Strong-CSP’s is the OddCycleTrans-
versal problem. Here, given a graph G = (V,E) as input, the objective is to delete the
smallest fraction of vertices so that the graph induced on the remaining vertices is bipartite.
This is easily seen as an instance of a Strong-CSP – here the predicate on the edges is
the “Not Equals” predicate on the label set {0, 1}. OddCycleTransversal is a well
studied problem. In general, it is known be constant factor inapproximable [7] (assuming
the Unique Games Conjecture), and the best known upper bounds (in terms of fraction of
vertices deleted) are O(δ

√
log |V |) [1] and O(

√
δ log d) [18] – where δ is the optimal fraction

of vertices to be deleted and d is the maximum degree of the graph – the latter bound
is also tight upto constant factors assuming the Unique Games Conjecture [18]. Given
these worst case bounds, one might ask if there are natural classes of instances under which
OddCycleTransversal admits better approximation?

For the specific setting of OddCycleTransversal, there are several such classes which
exhibit improved approximation guarantees. For instance, for the setting of planar graphs,
the natural linear programming relaxation is known to be exact [14], and therefore admits
an exact polynomial time algorithm. Furthermore, for Kr-minor closed graphs, Alev and
Lau [2] gave an O(r)-approximation algorithm. On the other hand, since OddCycle-
Transversal is fixed parameter tractable with respect to treewidth [26], it admits exact
polynomial time algorithms for graphs with bounded treewidth. Note that these also happen
to be characterizations which end up implying easy instances for Max-CSPs. Motivated by
this connection, we investigate whether there are spectral characterizations under which
OddCycleTransversal (and more generally, Strong-CSP’s) admit improved approxim-
ation. In particular, we study instances which are expanding, or more generally, have low
threshold rank. Formally, the threshold rank of a graph is defined as follows.

▶ Definition 2 (Threshold rank). Given an undirected graph G = (V,E), let A denote its
weighted adjacency matrix G and let D denote the diagonal matrix where D(i, i) is the
weighted degree of vertex i. The (1 − ε) threshold rank of G, denoted by rank≥1−ε(G) is
defined as the number of eigenvalues of D− 1

2AD− 1
2 that are greater than or equal to 1− ε.

In the setting of CSPs, low threshold rank instances have been studied extensively –
the study of such instances was instrumental in the development of sub-exponential time
algorithms for UniqueGames and SmallSetEdgeExpansion [24, 3, 8]. In particular, for

1 Note that such a set of vertices may not be unique, in which case, we will fix such a collection of vertices,
and call it the set of good vertices.
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the edge deletion analogue of OddCycleTransversal i.e., Max-Cut, [8] gave a (1/λt)-
approximation algorithm running in time npoly(t), where λt is the tth largest eigenvalue of
the normalized Laplacian. Surprisingly, to the best of our knowledge, no such analogous
results are known for OddCycleTransversal. Furthermore, random instances of CSPs
are expanding, and naturally have low threshold rank. This motivates us to explore the
approximability of OddCycleTransversal and other Strong-CSP’s in low threshold
instances. In fact, we study them under the more stringent setting where only the graph
induced on good vertices (constituting the fully satisfiable sub-instance) is assumed to have
low threshold rank, as opposed to the full graph having low threshold rank.

Max-CSPs vs. StrongCSPs. This choice of the setting, in addition to making the task more
challenging, is also motivated by our wish to exhibit a separation between the approximability
of edge deletion and vertex deletion problems, i.e., namely Max-CSPs and Strong-CSP’s.
We point out that under an identical setting (where only a (1 − δ)-sized subset has low
threshold rank), Max-CSPs can be arbitrarily hard to approximate. Indeed, consider a Max-
CSP instance where the (1− δ)-sized subset Vgood induces a constant degree expander with
trivially satisfiable constraints, and the edges going across Vgood, V

c
good encode a denser hard

to approximate Unique Game instance with large gap and larger vertex degrees. It is easy
to see that such instances do not admit efficient constant factor approximation guarantees
with respect to the edge satisfaction objective i.e., that of finding an assignment that satisfies
the maximum fraction of constraints. On the other hand, our results in the current work
show that the same instances when interpreted as Strong-CSP’s are easy (i.e, with respect
to the vertex deletion objective, see Definition 1). Therefore, it is not immediately obvious if
the conditions under which Max-CSPs are easy also translate to conditions under which
Strong-CSP’s are easy, and vice versa. Consequently, the broader agenda of identifying
clean characterizations under which there is a separation in the approximability of the two
classes of problems might yield useful insights towards understanding the limitations of the
approximation techniques for problems from either class.

Connection to Fortification. A final motivation for studying Strong-CSP’s in the above
setting is that the problem of finding slightly smaller sub-instances with better “local”
approximation guarantees is closely related to notion of fortification. Informally, a Max-CSP
instance is said to be fortified if every large sub-instance of the CSP has (relative) optimal
value no larger than the global optimal. Fortification is widely studied in the context of
parallel repetition [32, 9, 33], and in particular, recent works [33] show that fortified Unique
Game instances with hypercontractive small set expansion profiles can be used to bypass
bottlenecks towards establishing strong parallel repetition for Unique Game instances.
Consequently, this reduces the task of establishing UGC to that of showing that a family
of fortified Boolean CSPs on small-set-expanders are hard. Given that Strong-CSP’s can
be re-interpreted as the task of deciding whether an instance is fortified (in the perfect
completeness regime), and the tight connections between small-set-expansion and threshold
rank (e.g., [3, 25, 28]), these considerations further motivate the study of Strong-CSP’s
even in the simpler setting where the full underlying constraint graph has low threshold rank.
Motivated by the above considerations, we study the StrongUniqueGames and related
problems in this setting:

▶ Problem 3 (StrongUniqueGames). Given an instance G(V,E, [k], {Πij}(i,j)∈E) con-
sisting of a set of vertices V , a set of edges E, alphabet [k], and a bijection πij ⊆ [k]× [k]
for each (i, j) ∈ E, the goal of this problem is to compute the largest S ⊆ V such that the
instance induced on S has value 1.

APPROX/RANDOM 2022



43:4 Approximating CSPs with Outliers

The StrongUniqueGames problem is a natural variant of UniqueGames, it and its
variants express several well studied problems such as OddCycleTransversal, among
others. There have been extensive work on the above problems, see Section 1.2 for a detailed
review. Our main results in this paper are improved approximation algorithms for these
problems in the setting where the induced graph on the good vertices has low threshold rank.

1.1 Our Results
Our main result is a new approximation algorithm for the StrongUniqueGames problem
where the induced sub-graph on the satisfiable set has low threshold rank. In order to make
the theorem statements concise, we will define the notion of a subset being λ∗-good.

▶ Definition 4 (λ∗-good). Given a CSP constraint graph G = (V,E), a subset V ∗ ⊆ V is
said to be λ∗-good if the following conditions hold.
1. rank≥1−λ∗ (G[V ∗]) ≤ (1/λ∗)10. 2

2. G[V ∗] is regular.

The above is a quantitative characterization of induced low-rank instances studied in
this paper – all of our results are based on the above setting. Our first result is for
StrongUniqueGames instances with small vertex induced low threshold rank, as stated in
the following theorem.

▶ Theorem 5. Let δ, λ∗ ∈ (0, 1) be such that δ ≤ (λ∗)100. Let G(V,E, [k], {πe}e∈E) be a
StrongUniqueGames instance such that there exists3 a λ∗-good subset Vgood of size at
least (1− δ)n such that Val (G[Vgood]) = 1. Then there exists a randomized algorithm that
runs in time npoly(k/δ) and outputs a subset Ṽ ⊆ V of size at least (1− δ1/12)n and a partial
labeling σ : Ṽ → [k] such that σ satisfies all induced constraints in G[Ṽ ].

The above theorem illustrates the tractability of the StrongUniqueGames problem in
the setting where just the instance induced on the satisfiable set has low threshold rank. To
put the above result in perspective, [18] showed that given a StrongUniqueGames instance
with value (1 − δ), it is Unique Games hard to output a satisfiable subset of relative size
(1− Ω(

√
δ log d log k)), where d is the maximum degree of the graph and k is the label set

size. We remark that the exponent in the fraction of vertices deleted (i.e., δ1/12) might
be improvable and we have not made further attempts towards optimizing it. Theorem 5
almost directly leads to quantitatively similar results for the OddCycleTransversal and
BalancedVertexSeparator problems, stated as corollaries.

▶ Corollary 6. Let δ, λ∗ ∈ (0, 1) be such that δ ≤ (λ∗)100. Let G = (V,E) be a graph for
which there exists a λ∗-good subset Vgood ⊆ V of size at least (1− δ)n such that G[Vgood] is
bipartite. Then there exists an algorithm which runs in times npoly(1/δ) which outputs a set
V ′ ⊆ V of size at least (1− δ1/12)n such that G[V ′] is bipartite.

▶ Theorem 7. Let δ, λ∗ ∈ (0, 1) be such that δ ≤ (λ∗)100. Let G = (V,E) be a graph
for which there exists a λ∗-good subset Vgood ⊆ V of size at least (1 − δ)n such that the
following holds. There exists a partition Vgood = A ⊎B such that EG[Vgood](A,B) = ∅ i.e, A
is disconnected from B in G[Vgood]. Then there exists a randomized algorithm which runs in
time npoly(1/δ) and outputs a set S of size at most O(δ1/12n) and a partition A′, B′ of V \ S
such that (a) EG[V \S](A,B) = ∅ and (b) (γ − δ1/12)n ≤ min(|A′|, |B′|) ≤ (γ + δ1/12)n where
γ = min(|A|, |B|)/n.

2 The constant 10 in the exponent is arbitrary, and can be chosen to any large constant C, at the cost of
loss in poly(C)-multiplicative factors in the fraction of vertices deleted by the algorithm. We instantiate
it to be 10 for ease of notation.

3 We do not assume that such a set is unique, we just need the existence at least one such subset.
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For both OddCycleTransversal as well as BalancedVertexSeparator, the best
known approximation algorithm for general instances have an approximation guarantee of
O(

√
log |V |) [13, 1]. Furthermore, [18] showed that given a (1 − δ)-satisfiable instance of

OddCycleTransversal, assuming UGC, it is NP-Hard to find set of size (1−Ω(
√
δ log d))

which induces a bipartite graph. It is important to note that our results hold for more
restrictive setting where we assume the low threshold rank guarantee on the good set. In
particular, the technical core of our results is a spectral decomposition theorem which can
be used to find a large subset that induces a sub-graph with relatively small threshold rank.
We state an informal version of it here for reference.

▶ Theorem 8 (Informal version of Theorem 4.2 [19]). The following holds for every 0 < δ ≤ 0.1.
Let G = (V,E) be a d-regular graph on n-vertices such that there exists a set Vgood ⊆ V of
size at least (1−δ)n such that rank≥1−δ0.1(G[Vgood]) ≤ K. Furthermore, suppose K ≤ 1/δ100.
Then there exists an efficient algorithm outputs a set V ′′ ⊆ V of size at least (1−O(δ1/10))n
such that rank≥1−δ0.1(G[V ′′]) ≤ poly(1/δ). Moreover, the subset V ′′ itself is a disjoint union
of constant number of Ω(n)-sized subsets, each of which induces an expander.

The above decomposition result adds to the already extensive literature on spectral
decomposition – however, the above decomposition result is incomparable in terms of its
setting and guarantees to the ones existing in the literature. For comparison, we describe
the two previous such results which are closest to this work in terms of the setting and the
guarantees:

In [3], Arora, Barak and Steurer show that any n-vertex graph can be decomposed
into non-expanding subsets which induce sub-graphs of (1− ε5)-threshold rank at most
nε. While their result does not require the graph to contain a large low threshold rank
sub-graph, their decomposition result can only guarantee a substantially weaker threshold
rank bound of nε (as opposed to the constant bounds guaranteed in Theorem 8). We
clarify that their n-dependent bound on the threshold rank is indeed unavoidable, since
they make no assumptions on the threshold rank structure of the graph [34].
In [15], Oveis Gharan and Rezaei show that given a regular graph which contains a κn-
sized spectral expander, one can efficiently find subset of size at least 3κn/8 with spectral
gap multiplicatively comparable to that of the optimal induced expander. Again, their
result is not directly comparable to ours since even in graphs which contain a (1−δ)n-sized
induced expander, their algorithm is only guaranteed to output a 3(1− δ)n/8-sized subset
which induces an expander. In comparison, for similar instances, Theorem 8 guarantees
a (1 − δ0.1)-sized subset which induces a “low threshold rank graph” – which itself is
guaranteed to be a union of linear sized expanders. On the other hand, our result only
applies in the setting κ→ 1, whereas their result holds for any constant κ ∈ (0, 1).

We point out that our actual spectral decomposition theorem (see Theorem 4.2 of [19])
differs from the informal version stated above (i.e., Theorem 8) in a couple of crucial ways.
Firstly, we only assume that only the underlying good graph G[Vgood] is regular (as opposed to
the full graph being regular) and make no assumptions on the degree distribution of the set of
outlier vertices V \Vgood – indeed, these assumptions allow us to include instances which show
a separation between the approximability of the Max-CSP and Strong-CSP objectives.
Secondly, our actual guarantee is slightly more robust in the following sense: given any
(1− δO(1))-sized subset V ′ ⊆ V (where V ′ ̸⊂ Vgood), one can find another subset V ′′ ⊆ V ′ of
size (1− δO(1)) such that rank1−δO(1)(G[V ′′]) ≤ poly(1/δ). The structural fact that we can
still recover a large low threshold rank subgraph within any large subset V ′ is interesting on its
own, we are not aware of similar results in the previous literature on spectral decomposition.

APPROX/RANDOM 2022



43:6 Approximating CSPs with Outliers

▶ Remark 9 (On the regularity assumption). We point out that our threshold rank decom-
position result, and more generally the approximation guarantees from Theorem 5 and its
corollaries also hold as is as long as Vgood is λ∗-good (Definition 4) and is contained in any
subset Ṽ (where Ṽ may strictly contain Vgood) for which G[Ṽ ] induces a regular subgraph –
this naturally subsumes the more commonly studied setting where the full graph has low
threshold rank and is regular [3, 8]. As in these works, our results will also hold for the setting
where the graph is non-regular; in that setting, the guarantees of the threshold decomposition
result and our algorithm will involve bounds on the volume of the subset deleted by the
algorithm (as opposed to bounds on the size of the subset).

Hardness of STRONG-CSPs
Given our algorithmic results hold for structured instances i.e., the subgraph induced by
the good set has low threshold rank, an immediate question is if it is possible to obtain
quantitatively similar approximation guarantees without making any assumptions. Towards
that, our first observation is that arbitrary Strong 2-CSPs can be almost polynomially hard
to approximate, as stated by the following fact.

▶ Observation 10 (Hardness of General Strong 2-CSPs). The following holds for any small
ε > 0. Given a 2-CSP Ψ(V,E, {ψ}e∈E) over label set {0, 1}, it is NP-Hard to find a subset
V ′ ⊆ V of size |V ′| ≥ n1−ε|V ∗| such that all induced constraints on V ′ are satisfiable. Here
V ∗ is a set of largest cardinality for which there exists a labeling which satisfies all the induced
constraints on V ∗.

The fact follows simply by using the observation that the Maximum Independent Set
problem can be modeled as Strong-CSP on label set {0, 1} with arity 2 (see Appendix B of
the full version [19] for a formal explanation). On the other hand, it is known that all general
2-CSPs admit constant factor approximation (when the label set size is a constant). For
e.g., for any 2-CSP on {0, 1} just a random assignment itself satisfies at least 1/4-fraction
of constraints in expectation. This shows that Strong-CSP’s can be strictly harder that
Max-CSPs. Clearly, one can expect general Strong-CSP’s to only get harder for larger
arities, so we choose to relax the requirements of Strong-CSP’s and ask the following
question. Consider a Max-CSP which is known to be hard to approximate to a factor of α.
Then it is natural to ask, if given such an instance, can we delete a few vertices, and then
output a labeling on the remaining instance which has approximation factor strictly better
than α. The following theorem answers the question in the negative for the specific setting
where the CSP is Max-4-Lin.

▶ Theorem 11. The following holds for any constants α, η, ν ∈ (0, 1). Given a system of
equations Ψ of arity 4, on variables X1, X2, . . . , Xn taking values in F2, it is NP-Hard to
distinguish between the following cases:

There exists an assignment to the variables which satisfies at least (1 − η)-fraction of
constraints in Ψ.
No subset S ⊆ V of size at least αn induces a system of equations for which there exists
an assignment which satisfies at least (1/2 + ν) fraction of the induced constraints.

The above can be thought of as an instance of approximation resistance in a Strong-
CSP sense; it is a strengthening of (1/2 + ν)-inapproximability for Max-3-Lin shown by
Håstad in the seminal work [23]. We prove the above hardness result by combining the
techniques from [23] with novel application of expansion properties of the inner and outer
verifiers. In particular, Theorem 11 says that one cannot hope to do slightly better than its
inapproximability factor (which is matched by the naive random guessing algorithm) on any
smaller sub-instance for approximation resistant predicates.
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1.2 Related Work
Strong Unique Games

Ghoshal and Louis [18] gave an algorithm that takes as input an instance of StrongU-
niqueGames having a satisfiable set of size (1 − ε)n, and outputs a satisfiable subset of
size at least

(
1− Õ

(
k2)

ε
√

logn
)
n. In a similar setting, they also gave another algorithm

which outputs satisfiable subsets of size
(
1− Õ

(
k2)√

ε log d
)
n, where d is the largest vertex

degree of the instance. Complementing these upper bounds, they also showed that it is
Unique Games hard (in certain regimes of parameters) to compute a set of size larger
than 1 − O(

√
ε log d log k) such that the induced instance on this set is satisfiable. These

results were obtained via a connection between StrongUniqueGames and small-set vertex
expansion in graphs, and used the machinery (hypergraph orthogonal separators) developed
in the context of approximation algorithms for small-set vertex expansion in graphs and
hypergraph small-set expansion [27] in obtaining their approximation algorithms.

General CSPs

There have been several works which give approximation algorithms for 2-CSPs. [5] were
the first to study UniqueGames in the setting where the underlying constraint graph is an
expander; they gave an algorithm with the approximation factor depending on only the second
largest eigenvalue of the normalized Laplacian matrix of the instance. Subsequent works by
Barak, Raghavendra and Steurer [8] and Guruswami and Sinop [21] extended this framework
to general 2-CSPs when the underlying constraint graph and the label extended graph have low
threshold rank respectively, with the algorithms running time exponential in threshold rank.
On the other hand, Kolla [24] gave spectral approximation algorithms for UniqueGames and
SmallSetEdgeExpansion. Building on this, Arora, Barak and Steurer [3] gave sub-
exponential time algorithms for UniqueGames and SmallSetEdgeExpansion. In a recent
work, [6] give efficient algorithms for UniqueGames based on the Sum Of Squares (SoS)
hierarchy, when the underlying constraint graph is an SoS certifiable small set expander.

Graph Partitioning and CSPs with Cardinality Constraints

Graph partitioning with vertex/edge expansion objectives has been extensively studied
under the lens of approximation algorithms. Feige, Lee and Hajhiyaghayi [13] and Louis,
Raghavendra and Vempala [29] give approximation algorithms for finding small size balanced
vertex separators and minimizing vertex expansion respectively. Guruswami and Sinop
[21, 22] gave improved approximation algorithms for several graph partitioning problems
dealing with edge expansion for low threshold rank instances. [30] studied a planted model
of instances where the graph induced on either side of the planted cut satisfies a lower bound
requirement on its spectral gap in addition to satisfying some other properties; they gave
exact and constant factor bi-criteria approximation algorithms for balanced vertex expansion
for various ranges of parameters. They also gave a constant factor bi-criteria approximation
algorithm for balanced vertex expansion for instances where one side of the optimal cut has
a subgraph on Ω(n) vertices satisfying a lower bound requirement on its spectral gap. [31]
gave some similar results for k-way edge expansion and k-way vertex expansion.

The problem of decomposing a graph into expanders is also a well studied problem and has
several applications to approximation algorithms. In [38], Trevisan gave a decomposition of
a graph into non-expanding set which induce expanders. There have been several subsequent
works [3, 16, 17] which deal with the problem of partitioning a graph into expanding/low

APPROX/RANDOM 2022



43:8 Approximating CSPs with Outliers

threshold rank graphs. Oveis Gharan and Rezeai [15] study the problem of finding a large
subset of vertices such that the graph induced on them is an expander; we discuss this more
in Section 2.

2 Overview and Techniques

We begin by reviewing the by now standard Propagation Rounding based framework which was
introduced informally in [5] and then later developed in [8, 21]. For simplicity, we shall restrict
our discussion to the setting of UniqueGames. Consider the following convex program
which is the R-level Sum-of-Squares (SoS) lifting of SDP relaxation for UniqueGames:

min
µ is a degree-R

pseudo-distribution4

E(i,j)=e∼E Pr
(Xi,Xj)∼µ

[Xi ̸= πj→i(Xj)] . (1)

The above convex program is intended to minimize the number of unsatisfied edges by the
(pseudo)-distribution. The algorithm proceeds along the following steps.

1. Solve the R-round Lasserre relaxation for the SDP where R is chosen large enough as
a function of the error to be tolerated, and the threshold-rank of the instance. Let
µ := {µS,α} be the degree-R pseudo-distribution corresponding to the optimal value of
the relaxation.

2. Choose a subset S appropriately, sample an assignment xS to the variables in S from the
local distribution µS .

3. Label the remaining vertices i ∈ V \ S by sampling from their respective conditional
distributions µi|xS

independently.

The main idea used in the aforementioned works for relating the expected value of the
rounded solution to the SDP objective is the so called local-to-global correlation property
[8, 21], which has the following key consequence. If the underlying constraint graph has
constant threshold rank, then conditioning on constant levels of the SoS solution should
result in pseudo-distributions that have small average local correlation i.e.,

E(i,j)∼E

[
Corrµ|xS

(Xi, Xj)
]
≤ o(1).

Consequently, independent sampling from the marginals of conditional pseudo-distribution
µ|xS will results in labelings that which have value close to optimal of the lifted SDP. While
this recipe and its variants has been remarkably successful in dealing with Max-CSPs
[8, 21, 6], it is easy to see that the this framework does not translate well to the framework
of Strong-CSP’s studied in this paper, as we briefly describe below.

Firstly, note that in the setting of Strong-CSP’s, the emphasis is on deleting vertices to
ensure that all surviving constraints are simultaneously satisfiable. This is in direct contrast to
the aforementioned results where the algorithms are allowed to output labelings which satisfy
“almost all”, but not necessarily, “all”, constraints. A naive approach towards extending the
above to our setting would be to first find a good labeling that satisfies almost all edges, and
then delete the vertices corresponding to the violated edges. However, doing so might result
in approximation guarantees that are worse by a factor of the max-degree. Furthermore, this

4 Informally, a degree-R pseudo-distribution is a collection of local distributions {µS}S for every subset
S ⊆ V of size at most R, which are pairwise consistent up to all variables sets of size at most R (see
Section 3.2 of the full version [19] for more details).
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approach can fail badly in instances where the induced sub-instance on the good vertices
G[Vgood] is sparse (i.e, constant degree), but the full graph is relatively dense and almost
non-satisfiable, since these algorithms are designed to compete against the global optimum
for the edge-satisfaction version of the problem. A final hurdle is that the local-to-global
correlation guarantee, which was the key property used to guarantee the goodness of the
rounding algorithm, might not hold for the full constraint graph of G since in our setting, the
constant threshold-rank guarantee may only hold for the constraint graph induced on Vgood.
In fact, the threshold rank of the full graph can be as large as Ω(|V \ Vgood|) which implies
that conditioning on constant levels of the SoS solution might result in pseudo-distributions
that don’t guarantee any local-to-global correlation like property. These issues taken together
guide our approach to the design of our algorithm (described informally in Figure 1); we
describe and motivate the various steps of the algorithm details in the remainder of this
section.

Input: A UniqueGames instance G(VG , EG , [k], {πe}e∈E) satisfying the conditions of
Theorem 5.
Algorithm:
▶ Threshold Rank Decomposition. As a first step, we compute a (1−O(δc))-sized

subset V ′′ of VG with low threshold-rank and bounded degree using our spectral
decomposition algorithm.

▶ SDP with Slack Variables. We solve the R-level SoS relaxation of a modified
SDP for UniqueGames instance induced on V ′′ with the extended label set [k]∪{∗},
where the label ∗ is meant to indicate vertices which are to be deleted.

▶ Low Variance Rounding. We sample an assignment α for an appropriately chosen
subset S, and then label the vertex i ∈ V with the label with the largest probability
in the conditional marginal µi|XS=α.

Figure 1 StrongUG-Informal.

Finding a large bounded-degree low threshold-rank graph

Since the full instance in our setting can have arbitrarily large threshold rank (due to the
edges incident on the set of outlier vertices), a natural way to overcome this issue would be
to zoom into a large (i.e, (1− oδ(1)-sized) subset of vertices which induces a subgraph with
(comparably) low threshold rank. We do this by using a new threshold rank based spectral
decomposition algorithm with the following guarantee: given a graph G = (V,E) for which
there exists a (1− δ)|V | sized subset that induces a regular low threshold rank sub-graph,
the algorithm returns a (1 − δO(1))-sized subset with threshold5 rank at most poly(1/δ).
This algorithm is the main technical contribution of this paper; in particular, it combines
a classical approximation algorithm for the partial vertex cover problem and extensions of
spectral partitioning primitives from Oveis Gharan and Rezaei [15] to the setting of low
threshold rank graphs. We defer a more detailed discussion of this step to Section 2.1 for
now and proceed with our discussion of the subsequent steps of the full algorithm.

5 Here the threshold parameter is dependent on δ and the optimal value of the StrongUniqueGames in-
stance.
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43:10 Approximating CSPs with Outliers

Solve SoS relaxation with Slack Variables

In the next step, we consider the SDP for UniqueGames modified with slack variables.
Specifically, let G(V,E, [k], {πe}e∈E) be the UniqueGames instance. Due to the above
step, we can directly assume that the full graph has low threshold-rank and bounded vertex
degrees. Furthermore, since the previous step only removes a tiny fraction of vertices, we can
assume that there exists a subset Vsat ⊆ V such that |Vsat| ≥ (1− 2δ)|V | and G[VSat] is fully
satisfiable6. Now given G, we consider a partial7 Unique Game G′(V,E, [k] ∪ {∗}, {Πe}e∈E)
with the global constraint that the fraction of vertices that can be labeled ′∗′ is at most 2δ.
Here the label ∗ is meant to indicate vertices that are supposed to be deleted. Consequently,
for any edge e ∈ E, we define the extended constraint set Πe = πe ∪ ({∗} × Σ) ∪ (Σ× {∗}).
Note that this constraint is no longer a “unique game” constraint. The final SoS relaxation
used is almost identical to Eq. 1, along with the following modifications:
C1: The pseudo-distribution is now over assignments to variables from the extended label

set [k] ∪ {∗}.
C2: We add the global cardinality constraint Pri∼V PrXi∼µ[Xi = ∗] ≤ 2δ.
C3: We also add the constraint

Pr
(Xi,Xj)∼µ

[πi→j(Xi) ̸= Xj ] ≤ Pr
Xi∼µ

[Xi = ∗] + Pr
Xj∼µ

[Xj = ∗],

for every edge (i, j) ∈ E

The cardinality constraint (C2) is intended to ensure that conditioned on any assignment
that is assigned a non-zero probability mass by the SDP solution, the fraction of vertices that
are labeled ∗ under the resulting conditional distribution is at most δ. The edge violation
constraints (C3) are intended to ensure that an edge constraint is allowed to be violated only
when one of the end points is labeled ∗. It is easy to verify that this SDP is feasible for G′.
Furthermore, since the previous step guarantees that the max-degree of the surviving graph
is at most a constant times the average degree, this implies that the optimal value of the
SoS relaxation is at most δO(1).

Low Variance Rounding

In the final step, we have to round the SDP solution to output a large set with the correspond-
ing labeling which satisfies all induced constraints. As mentioned above, the local-to-global
correlation argument in itself is not sufficient for this purpose, as it can only guarantee that
a labeling which violates a small fraction of edges. However, it is well known that for certain
kinds of CSPs e.g,. UniqueGames, 3-Coloring, the low threshold-rank guarantee implies
the stronger property of “conditioning reduces variance” [8, 21, 4]8, which says that for an
appropriately chosen subset S ⊆ V we have

EXS∼µS

[
Ei∼V Var

[
Xi|XS

]]
≤ SDP

λm
, (2)

whenever rank≥1−λm
(G) ≤ m. Note that this is a strictly stronger property than local-to-

global correlation (see Appendix D of [19] for an example which separates the two properties).
To see why this property is useful in constructing labelings which satisfy all induced constraints,

6 Note that Vsat may be a strict subset of Vgood since the previous step may remove a few vertices from
Vgood.

7 The nomenclature “partial” Unique Game was introduced in [37] and refers to a Unique Game with the
additional property that a fixed fraction of vertices are allowed to be left as unlabeled.

8 [4] actually showed a variant of this statement tailored towards finding large independent sets.
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consider a constraint (i, j) ∈ EG such that for some partial assignment XS ← α, the
conditional marginals of vertices i and j have low variance i.e,. Var[Xi|XS = α] ≤ 0.1 and
Var[Xj |XS = α] ≤ 0.1. Therefore, it follows that there exists labels a, b ∈ [k] ∪ {∗} for which
µi=a|XS=α ≥ 0.9 and µj=b|XS=α ≥ 0.9. Furthermore, suppose we assume that a, b ∈ [k].
Then we claim that the SDP constraints imply that πi→j(a) = b. This is because for any
(a′, b′) ∈ [k]× [k] which violates the edges (i, j), using the edges violation constraints (C3)
and a union bound we get that

Pr
(Xi,Xj)∼µ|XS=α

[
Xi = a′, Xj = b′

]
≤ 0.2.

On the other hand, our choice of labels a and b for vertices i and j (respectively) imply that

Pr
(Xi,Xj)∼µ|XS=α

[
Xi = a,Xj = b

]
≥ 1− Pr

Xi∼µ|XS=α

[
Xi ̸= a

]
− Pr

Xj∼µ|XS=α

[
Xj ̸= b

]
≥ 0.8.

Therefore, it must be that πj→i(a) = b i.e, the labeling (a, b) satisfies the edge (i, j). In
summary, low variance vertices whose leading labels are not ′∗′ induce a satisfiable instance.
We point out that a similar observation was also made by Arora and Ge [4] who used it to
find large independent sets in low threshold-rank graphs. The above discussion naturally
suggests the following rounding process:
1. Let S be the subset for which Eq. 2 holds. Sample an assignment α ∼ µS for XS

2. Delete the vertices for which Varµ|XS=α[Xi] > 0.1.
3. For the remaining vertices i ∈ V , assign the maximum likelihood labeling

σ(i) = argmax
a∈[k]∪{∗}

Pr
Xi∼µ|XS=α

[
Xi = a

]
.

4. Delete the vertices labeled as ∗ and output the surviving vertices with the corresponding
labeling.

The above discussion ensures that the set output by the rounding scheme is satisfiable.
Combining (2) with the SDP bound and the threshold-rank bound established in the previous
steps imply that O(δO(1)) vertices get deleted in step 3. Furthermore, the global cardinality
constraint ensures that the fraction of vertices labeled ′∗′ (and hence deleted in the round
step) is O(δ). This with the bound on the vertices deleted in the previous steps imply that
the total fraction of vertices deleted is δO(1), which concludes the analysis of the algorithm.

2.1 Threshold Rank based Spectral Partitioning
As mentioned above, the first step of our algorithm (i.e, the threshold rank decomposition step)
is the key technical contribution of this work. Formally, our objective here is the following:
given a graph G = (V,E) which contains a (1− δ)-sized subset Vgood that induces a regular
subgraph with low threshold rank, the objective is to recover a (1− oδ(1))-sized subset that
has relatively small threshold rank (say poly(1/δ)). This in itself is a well motivated question
and various versions of it have been studied in the design of approximation algorithms for
UniqueGames and SmallSetEdgeExpansion (see [3] and references therein). However,
we point out that the techniques from these earlier works do not immediately apply to our
setting as in these works, the emphasis there is rather on finding sub-linear sized sets which
induce graphs with threshold rank growing with the number of vertices (with of course, no
assumption on the spectrum of the full graph). In our setting, we instead want to design
algorithms that exploit the “almost low threshold” structure of the instance and output
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43:12 Approximating CSPs with Outliers

sets that satisfy the stronger guarantees of being ≈ (1 − o(1))-sized and having constant
threshold rank. In the remainder of this section, we motivate and describe the design of such
an algorithm.

Finding a Linear Sized Low Rank Set. To begin with, let us first consider the simpler
setting where we assume that the max-degree of the graph is at most a constant times
the degree of the induced good graph G[Vgood] (we shall later discuss how to achieve this
condition at the cost of deleting a few additional vertices). Furthermore, let us first address
the even simpler goal of finding a linear (say n/1000) sized subset which induces a low
threshold rank graph. Again, this in itself is a well motivated problem, and several previous
works [38, 15] study the related question when the induced subgraph has to be an expander9.
Most of these works build on the following basic spectral partitioning primitive that also
forms the basis of our algorithm:

▷ There exists an efficient algorithm that given a graph G = (V,E),
outputs a partition P := (S, T ) of V such that either |S| ≥ 3n/4

and G[S] is an expander, or (S, T ) is balanced10and has small expansion. (3)

The above algorithm is a simple recursive application of the spectral partitioning algorithm
from Cheeger’s inequality (see Lemmas 3.1, 5.1 from the full version [19] for more details).
Note that the above algorithm may either output a large set which induces an expander
(in which case we are done), or a balanced partition (say P0) with small expansion. How
do we proceed if the latter is the case? Following an idea from [15], we again apply the
spectral partitioning (i.e, (3)) to each set in the partition in partition P0 to construct a
refinement of the partition, say P1. Again, if P1 contains a linear sized subset which induces
an expander, then we are done – otherwise, we again keep repeating the above process. We
iteratively continue constructing a sequence of refinements P0 ⊆ P1 ⊆ · · · ⊆ Pt until one
of the partitions contains a linear sized set which induces an expander. But then one can
ask that how can we guarantee that the process terminates? This is where the higher order
Cheeger’s inequality [28, 25] comes to the rescue i.e., we show that if the process continues
beyond some iteration t = t(δ), then Pt is a balanced K := 2t−1- partition of the vertex set.
In particular, using the higher order Cheeger inequality and the fact that G[Vgood] as low
threshold rank, we can show that at least one of the K-sets in the partition must have large
edge boundary i.e.,

max
i∈[K]

|∂G(Si)| ≥ Ω(εdn) (by an appropriate instantiation of parameters for (3).) (4)

On the other hand, note that since the algorithm proceeds beyond iteration t, it follows that
for each application of (3) in each of the t iterations, the spectral partitioning algorithm
returns a non-expanding partition (using the “or” guarantee from (3)), and hence the fraction
of edges crossing the various sets in the partition Pt must be small i.e.,∑

i∈[K]

|∂G(Si)| ≤ O(ε2dn), (5)

9 Here we refer to any graph whose spectral gap is at least a constant as an expander.
10 Here we say a partition V = S ⊔ T is balanced if |S|, |T | ∈ [|V |/4, 3|V |/4].
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which contradicts the upper bound on the expansion from (4). In summary, the above
arguments taken together imply that the above process must terminate during some iteration
t′ ≤ t, resulting in a subset of size at least 2−t′ · n = Ω̃(n)11 which induces an expander.

Finding Many Low Rank Sets. Now that we have an algorithm that finds a Ω(n)-sized
set (say S1) which induces an expander, the next step is to find many such vertex disjoint
sets in the graph. This is easily achieved by deleting the first such subset S1 recovered by
the above algorithm, and then again running the above algorithm on the graph G[V \ S1] to
recover a linear sized subset S2 ⊆ V \ S1 which again induces an expander in G. However,
note that the induced sub-graph G[V \ S1] does not automatically inherit the structural
properties of G[Vgood] and hence, additional care is need to ensure that the above algorithm
will still succeed on the smaller induced sub-graph G[V \ S1]. In particular, we shall again
need to establish an analogue of (4) where we show that any balanced K-way partition P of
the smaller set V \ S1 will still have one expanding set. This is done by showing that any
balanced K-way partition of V \ S1 can be carefully extended to a balanced K-way partition
P ′ of V such that

max
S∈P

∣∣∂G[V \S1](S)
∣∣ ≳ max

S′∈P′

∣∣∂G[V ](S′)
∣∣ , (6)

Note that the above immediately implies the desired K-way expansion bound for P since the
latter term can again be lower bounded by combining the higher order Cheeger’s inequality
with the threshold rank guarantee of the full graph G[V ]. We point out that establishing (6)
is precisely where the bounded degree assumption on the graph comes in handy. The above
(i.e., (6)), along with an appropriately tailored version of (5) will allow us to establish that
the algorithm will again find a linear sized subset S2 ⊂ V1 \ S1 which induces an expander.
Overall, we keep iteratively finding and removing linear sized subsets S2, S3, . . . , – each of
which induces an expander – until only oδ(1)-vertices remain; this results in an almost12

partition P := {Si}i∈[N ] of the vertex set where each of the subsets in partition has small
edge boundary, is linear sized, and induces an expander in the full graph G.

Stitching the sets together. Recall that our final objective is not to find an almost partition
consisting of induced low threshold rank subgraphs, but to find one large (1− oδ(1))-subset
V ′ that induces a low threshold rank subgraph. To that end, we just show that the set
V ′ := ∪i∈[N ]Si is itself such a set. To see this, observe that the adjacency matrix A[V ′] of
induced subgraph G[V ′] is almost block diagonal (since the above step guarantees that only
few edges cross the partition {Si}i∈[N ]). Hence with some additional work we can conclude
that the number of large eigenvalues in A[V ′] must be at most the sum of number of large
eigenvalues in each of the blocks A[S1], . . . , A[SN ], each of which is again small on account
of G[Si]’s being expanders i.e., we can conclude rank1−δO(1)(G[V ′]) ≤ O(N). Furthermore,
since each of the sets in the partition P is linear sized, this establishes that N is at most
a constant (possibly depending on δ), which implies that the threshold rank of G[V ′] is at
most Oδ(1).

Reducing to the Bounded Degree Setting. Lastly, we address the issue that in general
the max degree of the underlying constraint graph can be arbitrarily large compared to
the degree d of the underlying good graph G[Vgood]. Towards addressing this, we introduce

11 Here Ω̃ hides poly-logarithmic in δ factors.
12 An almost partition of a set [n] is a collection of disjoint sets whose union contain (1 − o(1))-fraction of

the elements.
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an additional pre-processing step which reduces the average degree of the remaining graph
to O(d) by deleting a small number of vertices, and then additionally deletes the vertices
in the remaining subgraph which have degree larger than d/δO(1). For the first part, we
use a 2-factor approximation algorithm for the Partial Vertex Cover problem [10] that can
be used to identify a small number of vertices that hits ≈ (davg(G))− d)n/2 edges (where
davg denotes the average degree). The subsequent deletion step again just removes a small
number of vertices; this follows from a simple application of Markov’s inequality. Finally, we
remark that this again perturbs the spectral structure of the graph used that is used in the
subsequent steps, and hence additional care is needed to make all of the above arguments go
through.
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