
Maximum Matching Sans Maximal Matching:
A New Approach for Finding Maximum Matchings
in the Data Stream Model
Moran Feldman #

Department of Computer Science, University of Haifa, Israel

Ariel Szarf #

Department of Mathematics and Computer Science, Open University of Israel, Ra’anana, Israel

Abstract
The problem of finding a maximum size matching in a graph (known as the maximum matching
problem) is one of the most classical problems in computer science. Despite a significant body of
work dedicated to the study of this problem in the data stream model, the state-of-the-art single-pass
semi-streaming algorithm for it is still a simple greedy algorithm that computes a maximal matching,
and this way obtains 1/2-approximation. Some previous works described two/three-pass algorithms
that improve over this approximation ratio by using their second and third passes to improve the
above mentioned maximal matching. One contribution of this paper continues this line of work
by presenting new three-pass semi-streaming algorithms that work along these lines and obtain
improved approximation ratios of 0.6111 and 0.5694 for triangle-free and general graphs, respectively.

Unfortunately, a recent work [30] shows that the strategy of constructing a maximal matching in
the first pass and then improving it in further passes has limitations. Additionally, this technique
is unlikely to get us closer to single-pass semi-streaming algorithms obtaining a better than 1/2-
approximation. Therefore, it is interesting to come up with algorithms that do something else
with their first pass (we term such algorithms non-maximal-matching-first algorithms). No such
algorithms are currently known (to the best of our knowledge), and the main contribution of this
paper is describing such algorithms that obtain approximation ratios of 0.5384 and 0.5555 in two and
three passes, respectively, for general graphs (the result for three passes improves over the previous
state-of-the-art, but is worse than the result of this paper mentioned in the previous paragraph for
general graphs). The improvements obtained by these results are, unfortunately, numerically not
very impressive, but the main importance (in our opinion) of these results is in demonstrating the
potential of non-maximal-matching-first algorithms.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Graph algorithms analysis; Theory of computation →
Approximation algorithms analysis

Keywords and phrases Maximum matching, semi-streaming algorithms, multi-pass algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.33

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2109.05946 [20]

Funding Moran Feldman: Research supported in part by Israel Science Foundation (ISF) grant
number 459/20.

1 Introduction

The problem of finding a maximum size matching in a graph (known as the maximum
matching problem) is one of the most classical problems in computer science, and many
polynomial time algorithms have been designed for it over the years (see, e.g., [9, 15, 23]).
Due to its central role, the maximum matching problem is often one of the first problems

© Moran Feldman and Ariel Szarf;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 33; pp. 33:1–33:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moranfe@cs.haifa.ac.il
https://orcid.org/0000-0002-1535-2979
mailto:aszarf@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.33
https://arxiv.org/abs/2109.05946
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Maximum Matching Sans Maximal Matching

considered when new computational models are suggested. One such model is the data
stream model, which is motivated by Big-Data applications, and has been the subject of an
enormous amount of research over the last couple of decades.

In the data stream model, the algorithm receives the input in the form of a stream which
it can read sequentially, but due to memory restrictions, the algorithm can store only a
small part of this stream. This means that the algorithm has to process (in some sense) the
input stream while reading it, and never gets an opportunity to see all the parts of the input
at the same time. Traditional algorithms for this model, known as streaming algorithms,
are allowed only memory that is poly-logarithmic in the natural parameters of the problem.
Obtaining a streaming algorithm for a problem is very desirable, but is often not possible.
In particular, many graph problems provably do not admit streaming algorithms, and the
maximum matching problem is among these problems if one would like an algorithm for the
problem to output an (approximately) maximum matching because such a matching might
be of linear size in the number of vertices. Nevertheless, non-trivial streaming algorithms
have been designed for the maximum matching problem when only the (approximate) size of
a maximum matching is desired (see Section 1.1 for details).

The resistance of many graph problems to streaming algorithms has motivated Feigenbaum
et al. [19] to suggest semi-streaming algorithms, which are algorithms for the data stream
model that are allowed a space complexity of O(n logc n) for some constant c ≥ 0, where n

is the number of vertices in the graph. Such algorithms turn out to be a sweet-spot that
on the one hand allows many results of interest, and on the other hand, does not lead to
triviality because O(n logc n) is less than the space necessary for storing the input graph
(unless this graph is very sparse). In particular, Feigenbaum et al. [19] observed that one can
obtain 1/2-approximation for the maximum matching problem using a simple semi-streaming
algorithm that greedily constructs a maximal matching.1

The above 1/2-approximation semi-streaming algorithm for the maximum matching
problem also has the desirable property that it reads the input stream only once (i.e., it
makes a single pass over it). Surprisingly, no single-pass semi-streaming algorithm improving
over the approximation ratio of this simple algorithm was suggested in the decade and a half
that has already passed since the work of [19] (in contrast, Kapralov [26] showed that no
such algorithm can have an approximation ratio better than 1/(1 + ln 2) ≈ 0.59, improving
over previous inapproximability results due to [22, 25]). Given this lack of progress, interest
arose in obtaining improved approximation ratios for relaxed versions of the above problem.
Perhaps, one of the simplest such relaxations is to allow the algorithm to make a few (usually
two or three) sequential passes over the input stream.

The last line of work was introduced by Konrad et al. [29], and was later studied by [18].
The state-of-the-art results for it are summarized in Table 1. We note that beside the
state-of-the-art results for general input graphs, Table 1 also gives improved results for
bipartite and triangle-free graphs. All the known results in this line of work (to the best of
our knowledge) start by greedily constructing a maximal matching during the first pass over
the input stream, and then augmenting this matching in the subsequent passes. Recently,
Konrad and Naidu [30] showed that this technique has limitations (specifically, even for
bipartite graphs, a two-pass semi-streaming algorithm based on this technique cannot obtain
a better than 2/3-approximation, which is much more strict than the inapproximability
known for general two-pass semi-streaming algorithms [2]). Additionally, and arguably

1 A maximal matching is a matching that is inclusion-wise maximal, and it is well-known that the size of
any maximal matching is a 1/2-approximation for the size of a maximum matching.

M. Feldman and A. Szarf 33:3

Table 1 The state-of-the-art approximation ratios for semi-streaming algorithms using two or
three passes, and our improvements over these ratios (the number to the right of each improvement
is the number of the theorem formally stating it).

Number Type of State-of-the-Art This Paper Approachof Passes Graphs

Two-Pass
Bipartite 2 −

√
2 ≈ 1

2 + 1
11.66 [28] – –

≈ 0.5857
Triangle-Free 1

2 + 1
16 = 0.5625 [24] – –

General 1
2 + 1

32 = 0.53125 [24] 1
2 + 1

26 ≈ 0.5385 (1) non-MMF

Three-Pass

Bipartite 0.6067 ≈ 1
2 + 1

9.37 [28] 1
2 + 1

9 ≈ 0.6111 (3) MMF

Triangle-Free 1
2 + 1

10 = 0.6 [24] 1
2 + 1

9 ≈ 0.6111 (3) MMF

General
1
2 + 81

1600 ≈ 1
2 + 1

19.753 [24]
1
2 + 1

14.4 ≈ 0.5694 (4) MMF

≈ 0.5506 1
2 + 1

18 ≈ 0.5555 (2) non-MMF

more importantly, multi-pass algorithms that use their first pass for constructing a maximal
matching are unlikely to be a step towards a single-pass semi-streaming algorithm with a
better than 1/2-approximation guarantee.

Given the above observations, it is natural to believe that the future of the study of
semi-streaming algorithms for the maximum matching problem lies in algorithms that use
their first pass in a more sophisticated way than simply constructing the traditional maximal
matching. We term such algorithms non-maximal-matching-first algorithms (or non-MMF
algorithms for short). In this paper, we present the first non-MMF algorithms, which leads
to improvements over the state-of-the-art both for two and three passes. Admittedly, the
improvements we obtain are numerically not very impressive, but their main importance (in
our opinion) is in demonstrating the potential of non-MMF algorithms.

To intuitively understand our non-MMF algorithms, one should note that greedily con-
structing a maximal matching is equivalent to greedily constructing a graph whose connected
components are of size at most 2 (where the size of a connected component is defined as the
number of vertices in it). Therefore, a natural generalization is to greedily construct in the
first pass a graph whose connected components are of size at most 3. There are two intuitive
advantages for doing that compared to constructing a maximal matching.

A connected component of size 3 can contribute two edges to the output matching if
it is “augmented” during the next passes with a single additional edge. In contrast,
doing the same with a connected component of size 2 requires “augmenting” it with two
additional edges. It is important to note that there is a significant conceptual difference
between an augmentation of a connected component with one or two edges. Augmenting
a connected component with two edges requires finding pairs of edges that augment the
same connected component, while augmenting with a single edge does not require such a
synchronization.
If we are not able to enjoy the above advantage because many connected components end
up being of size 2 rather than 3. Then, the fact that this has happened despite us only
restricting the components to be of size at most 3 implies that few edges of a maximum
matching intersect only a single connected component of the constructed graph; and
therefore, the constructed graph must have many connected components compared to
the size of a maximum matching.

Using the above ideas, we prove the following two theorems. The proof of Theorem 1 appears
in Section 3, while the adaptation of this proof leading to Theorem 2 is deferred to the full
version of this paper [20].

APPROX/RANDOM 2022

33:4 Maximum Matching Sans Maximal Matching

▶ Theorem 1. There exists a non-MMF 2-pass (7/13 = 1/2+1/26)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

▶ Theorem 2. There exists a non-MMF 3-pass (5/9 = 1/2 + 1/18)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

As mentioned above, both Theorems 1 and 2 represent an improvement over the state-of-
the-art. However, it turns out that we can further improve over Theorem 2 using new MMF
algorithms (i.e., algorithms that construct a maximal matching in their first pass). This leads
to the following theorems whose proofs appear in Section 4 and Appendix A, respectively.

▶ Theorem 3. There exists a 3-pass (11/18 = 1/2 + 1/9)-approximation semi-streaming
algorithm for finding a maximum size matching in a triangle-free graph.2

▶ Theorem 4. There exists a 3-pass (1/2 + 1/14.4)-approximation semi-streaming algorithm
for finding a maximum size matching in a general graph.

The algorithms used to prove Theorems 3 and 4 are strongly based on the algorithms
suggested by Kale and Tirodkar [24]. For example, the first two passes of the algorithm
suggested by Theorem 3 are identical to a two-pass algorithm presented by [24], and the
third pass of this algorithm is very similar to the third pass of the three-pass algorithm
of [24]. Our novelty, however, is in our ability to analyze the algorithm obtained by putting
these two components together.

1.1 Related Work
As mentioned in Section 1, streaming algorithms are not appropriate for the maximum
matching problem when the algorithm is required to output an (approximately) maximum
matching. However, some non-trivial streaming algorithms are known for this problem when
the algorithm is only required to estimate the size of the maximum matching. Kapralov et
al. [27] designed a poly-log approximation streaming algorithm for this problem under the
assumption that the edges in the input stream are ordered in a uniformly random order.
A different line of work [13, 17, 32] considered graphs of bounded arboricity α, comulating
with the work of McGregor and Vorotnikova [33], who designed (α + 2)(1 + ε)-approximation
streaming algorithm for this problem requiring only O(ε−2 log n) space. In contrast, Assadi
et al. [5] showed that (1− ε)-approximation of the size of the maximum matching cannot be
obtained by a single pass algorithm, even if this algorithm is allowed a semi-streaming space
complexity, and [6, 8] lower bounded the number of passes required to obtain such a good
approximation using a sub-polynomial space complexity.

Recall that, to date, the best single-pass semi-streaming algorithm for the maximum
matching problem is still the natural greedy algorithm, which guarantees 1/2-approximation.
Chitnis et al. [12] presented an exact single-pass algorithm for this problem. However, this
algorithm requires Õ(k2) memory, where k is an upper bound on the size of the maximum
matching (which the algorithm needs to know upfront), and thus, this algorithm is a
semi-streaming algorithm only when k = Õ(

√
n). Given the difficultly to improve over

the guarantee of the greedy algorithm using single-pass semi-streaming algorithms, people

2 We recall that every bipartite graph is triangle-free, and therefore, the same result is obtained also for
bipartite graphs.

M. Feldman and A. Szarf 33:5

consider also relaxed versions of the maximum matching problem. One standard relaxation
is to allow the algorithm to make multiple passes over the input stream. Section 1 surveys
algorithms of this kind that use two or three passes. Another line of work considers algorithms
that assume a constant (but possibly large) number of passes. The first result of this kind
was presented by Feigenbaum et al. [19] (in the same paper that also introduced the notion
of semi-streaming algorithms), and guaranteed (2/3− ε)-approximation using O(ε−1 log ε−1)
passes for bipartite graphs. Later [31] showed how to obtain (1−ε)-approximation for general
graphs using (ε−1)O(ε−1) passes, and the number of passes necessary to obtain this guarantee
was improved by many further works (see, e.g., [1, 4, 7, 21]). Another standard relaxation for
the maximum matching problem is to assume that the edges of the input stream appear in a
uniformly random order. The state-of-the-art for this relaxation is a (2/3+ε0)-approximation
single-pass semi-streaming algorithm, where ε0 > 0 is some absolute constant [3, 10] (see
also the references therein for previous works on this relaxation).

The related maximum weight matching problem was also studied heavily in the context
of the data stream model. Here, it is not immediately clear that one can obtain a constant
approximation ratio using a single-pass semi-streaming algorithm. However, Feigenbaum et
al. [19] presented the first such algorithm guaranteeing 1/6-approximation, and this ratio was
improved in series of works [14, 16, 31, 35]. The current state-of-the-art for the problem is
(1/2− ε)-approximation due to Paz and Schwartzman [34]. Since this approximation ratio is
essentially identical to the state-of-the-art for the (unweighted) maximum matching problem,
any further progress on the maximum weight matching problem (beyond removing the ε)
will imply an improvement over the guarantee of the greedy algorithm for the (unweighted)
maximum matching problem. It is also worth mentioning that a recent reduction due to
Bernstein et al. [11] shows that the reverse is also true in a sense. More specifically, any
semi-streaming algorithm for bipartite unweighted graphs can be translated into such an
algorithm for weighted graphs with the same number of passes and a loss of only 1− ε in
the approximation guarantee. Naturally, this reduction automatically extends some of our
results to the weighted case.

2 Preliminaries

In this section we present the problem that we study more formally, and also introduce
the notation used throughout the rest of the paper. We are interested in semi-streaming
algorithms for the problem of finding a maximum size matching in a graph G = (V, E)
of n vertices. A semi-streaming algorithm for this problem is an algorithm with a space
complexity of O(n logc n) (for some constant c ≥ 0) that initially has no knowledge about
the edges of E. Instead, the edges of E appear sequentially in an “input stream”, and the
algorithm may make one or more passes over this input stream. In each pass the algorithm
sees the edges one by one, and may do arbitrary calculations after viewing each edge. It is
important to note that the space complexity allowed for the algorithm does not suffice for
storing all the edges of the graph (unless the graph is very sparse), and this is the reason
that the algorithm might benefit from doing multiple passes over the input stream. It is
standard to assume that the vertices of V are known upfront, and that each vertex of V can
be stored using O(log n) bits (which implies that every edge of E can also be stored using
this asymptotic number of bits).

Throughout the paper, we consider only unweighted graphs and matchings. We also
denote by M∗ an arbitrary maximum matching of G (i.e., an arbitrary optimal solution for
our problem). Notation-wise, we treat M∗ (and any other matching considered in the paper)

APPROX/RANDOM 2022

33:6 Maximum Matching Sans Maximal Matching

as a set of the edges included in it. Similarly, when considering a connected component C of
a graph, we treat it as a set of the vertices in it, which in particular, implies that |C| is the
number of such vertices.

Given a set of edges S or a path P in a graph, we denote by V (S) and V (P) the set of
vertices intersecting any edge of S or P , respectively. Similarly, the set of edges included in
the path P is denoted by E(P). Often we need to consider collections of paths (or triangles)
in a given graph. For clarity, such collections are always denoted using calligraphic letters,
and we extend the above notation to such collections. In other words, if P is a collection of
paths, then V (P) and E(P) is the set of vertices and edges, respectively, that are included
in these paths. Finally, given a set S of edges and a vertex v, we use degS(v) to denote the
degree of the vertex v in the subgraph (V, S).

3 Two-Pass Non-MMF Algorithm

In this section we prove Theorem 1, which we repeat below for convenience.

▶ Theorem 1. There exists a non-MMF 2-pass (7/13 = 1/2+1/26)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

The algorithm whose existence is guaranteed by Theorem 1 appears as Algorithm 1. In
its first pass, this algorithm greedily grows a set P of edges that form either triangles or
partial triangles (i.e., isolated edges or paths of length 2). For simplicity, we refer below
to the connected components of (V, P) that are not isolated vertices as partial triangles
although, technically, they can also be full triangles. In the second pass of Algorithm 1, the
algorithm tries to convert the partial triangles of P into more involved structures in one of
two ways. To understand these ways, we need to define some terms. First, we designate
some of the vertices of every partial triangle as “connection vertices”. Specifically, all the
vertices of a triangle are considered connection vertices; in a path of length 2 only the two
end points are considered to be connection vertices; and finally, in an isolated edge there are
no connection vertices. We refer to a partial triangle that was not converted yet into a more
involved structure as a “naïve” partial triangle. The first way in which Algorithm 1 tries to
convert the partial triangles of P into more involved structures is by greedily adding edges
that connect a connection vertex of a naïve partial triangle with an isolated vertex. The set
A1 in the algorithm includes the edges that were added in this way. In parallel, the algorithm
also tries a second way to convert the partial triangles of P into more involved structures,
which is to greedily add edges that connect a connection vertex of a naïve partial triangle
either to a connection vertex of another naïve partial triangle or to an isolated vertex. The
set A2 in the algorithm includes the edges that were added in this way. Upon termination,
Algorithm 1 outputs a maximum matching in the set of all the edges that it kept. We recall
that given a connected component C of a graph, the notation |C| represents the number of
vertices in C.

We begin the analysis of Algorithm 1 by noting that it is indeed a semi-streaming algorithm.
The proof of the next observation can be found in the full version of this paper [20].

▶ Observation 5. Algorithm 1 is a semi-streaming algorithm.

In the rest of this section we analyze the approximation ratio of Algorithm 1. Recall that
we use M∗ to denote some maximum matching of G. Our first objective in the analysis of the
approximation ratio of Algorithm 1 is to lower bound the number of edges of M∗ that can
potentially be added either to A1 or to A2. Towards this goal, we define a charging scheme

M. Feldman and A. Szarf 33:7

Algorithm 1 Maximum Matching via Greedy Triangles – Two Passes.

// First Pass
1 Let P ← ∅.
2 for every edge e that arrives do
3 if every connected component of the graph (V, P ∪ {e}) is either an isolated vertex,

a path of length at most 2 or a triangle (cycle of size 3) then Add e to P .

// Second Pass
4 Let A1 ← ∅ and A2 ← ∅.
5 for every edge (u, v) ̸∈ P that arrives do
6 Let Cu and Cv be the connected components of u and v, respectively, in (V, P).

We assume without loss of generality that |Cu| > 1, otherwise we swap the
roles of u and v. // Note that we cannot have |Cu| = |Cv| = 1 because
the edge (u, v) was not added to P in the first pass.

7 if no edge of A1 intersects Cu and Cv, |Cv| = 1 and u is a connection vertex of
Cu then Add the edge (u, v) to A1.

8 if no edge of A2 intersects Cu and Cv, |Cv| = 1 and u is a connection vertex of
Cu then Add the edge (u, v) to A2.

9 else if no edge of A2 intersects Cu and Cv, and u and v are connection vertices
of Cu and Cv, respectively then Add the edge (u, v) to A2.

10 return a maximum matching in the graph (V, P ∪A1 ∪A2).

π. Under the charging scheme π, every edge (u, v) ∈M∗ charges the connected components
of u and v in (V, P). Each one of these connected components is charged one unit by (u, v),
unless it is an isolated edge or an isolated vertex, in which case it is charged only half a unit
or nothing by (u, v), respectively. We note that when u and v belong to the same connected
component of (V, P), then this connected component is charged twice by (u, v).3

The following observation provides an upper bound on the total charged by all the edges
of M∗ together. Let (#single) be the number of isolated edges in P , (#double) be the
number of connected components in (V, P) that are paths of length 2 and (#triangle) be the
number of triangles in P .

▶ Observation 6. The total charge according to π is at most (#single) + 3(#double) +
3(#triangle).

Proof. Every positive amount charged by π is charged to some connected component of
(V, P) which is not an isolated vertex. Therefore, to prove the observation we only need to
show that every isolated edge of (V, P) is charged at most one unit, and every connected
component of (V, P) that is either a path of length 2 or a triangle is charged at most 3 units.
Below we are argue that this is indeed the case.

Each connected component C of (V, P) can be charged at most once for every one of
its vertices since the fact that M∗ is a matching implies that every vertex of C can appear
in at most a single edge of M∗. For isolated edges of (V, P), this implies that they can be

3 Intuitively, the charge assigned to the connected components of u and v is proportional to the “blame”
that can be assigned to them if (u, v) ends up to be outside P . For example, an isolated edge could
not alone prevent (u, v) from being added to P , but two such edges (one intersecting u and the other
intersecting v) could, together, prevent (u, v) from being added to P . Therefore, we assign a charge of
1/2 to isolated edges. Observation 7 is based on this intuition.

APPROX/RANDOM 2022

33:8 Maximum Matching Sans Maximal Matching

charged at most twice, and therefore, they are charged at most one unit because they are
charged half a unit in each charge. Similarly, connected components of (V, P) that are either
paths of length 2 or triangles contain 3 vertices, and therefore, can be charged at most three
times. Since every one of these charges is of a single unit, the total charge to each connected
component of these kinds is at most 3. ◀

To complement the last observation, let us now describe a simple lower bound on the
total charging done by all the edges of M∗ according to π. Let (#component-free) be the
number of edges of M∗ that connect a connection vertex of a connected component of (V, P)
to an isolated vertex of (V, P), (#component-component) be the number of edges of M∗ that
connect connection vertices of two different connected components of (V, P), (#single-single)
be the number of edges of M∗ whose two end points belong to (not necessarily distinct)
isolated edges of (V, P), (#single-component) be the number of edges of M∗ that connect
a vertex of an isolated edge of (V, P) with a connection vertex of some (other) connected
component of (V, P) and (#middle) be the number of edges that either intersect the middle
vertex of a length 2 path connected component of (V, P) or are included within a triangle
connected component of (V, P). For convenience, the definitions of the notation we use are
summarized in Appendix B.

▶ Observation 7. The total charge of all the edges of M∗ according to the charging
scheme π is at least (#component-free) + 2(#component-component) + (#single-single) +
1.5(#single-component) + (#middle).

Proof. Since the edges of M∗ counted by (#component-free) intersect a connection vertex,
they must intersect a connected component of (V, P) which is not an isolated vertex or an
isolated edge, and therefore, they charge this connected component one unit. Hence, the total
charge by all the edges counted by (#component-free) is at least (#component-free). Similar
logic shows that the total charge by all the edges counted by (#component-component),
(#single-single), (#single-component) and (#middle) is at least 2(#component-component),
(#single-single) , 1.5(#single-component) and (#middle), respectively. The observation now
follows since the edges of M∗ counted by (#component-free), (#component-component),
(#single-single), (#middle) and (#single-component) are distinct. ◀

Combining Observations 6 and 7, we get the following inequality.

(#component-free) + 2(#component-component) + (#single-single) (1)
+ 1.5(#single-component) + (#middle) ≤ (#single) + 3(#double) + 3(#triangle) .

In its current form, Inequality (1) is not very useful. We later derive from it a more
convenient inequality, but before doing this we need to prove a few other inequalities. Let
(#non-M∗-triangles) denote the number of triangle connected components of (V, P) that do
not include any edge of M∗ within them.

▶ Lemma 8. The following inequalities hold

(#component-free) + (#component-component) + (#single-single)
+(#middle) + (#single-component) ≥ |M∗| ,

(2)

(#double) + (#triangle)− (#non-M∗-triangles) ≥ (#middle) , (3)
2(#single-single) + (#single-component) ≤ 2(#single) , (4)

M. Feldman and A. Szarf 33:9

and they imply together

(#component-free) + (#component-component) + 2(#single)
+ (#double) + (#triangle)− (#non-M∗-triangles) ≥ |M∗| .

Proof. Since every edge that is included in a connected component of (V, P) which is a
path of length 2 must include the middle vertex of this path, every edge e ∈ M∗ that
is not counted by either (#component-free), (#component-component), (#single-single),
(#single-component) or (#middle) must either connect a vertex of an isolated edge of (V, P)
to an isolated vertex or connect two isolated vertices of (V, P). However, such edges cannot
exists. Specifically, assume towards a contradiction that (u, v) is an edge of M∗ such that u

is an isolated vertex of (V, P) and v is either another isolated vertex of (V, P) or belongs
to an isolated edge of this graph. Then, the edge (u, v) should have been added by Algo-
rithm 1 to P upon arrival, which contradicts the fact that its end point u ended up as an
isolated vertex of (V, P). Hence, every edge e ∈M∗ is counted by either (#component-free),
(#component-component), (#single-single), (#single-component) or (#middle), which im-
plies Inequality (2).

Recall that every edge counted by (#middle) must either be included in a triangle
connected component of (V, P) or intersect the middle vertex of a path of length 2 connected
component of (V, P). Since M∗ is a matching, only one edge of M∗ can intersect the middle
vertex of a given length 2 path or be included in a given triangle, and therefore, every edge
counted by (#middle) can be associated with a distinct path of length 2 or triangle component
of (V, P) that is not counted by (#non-M∗-triangles), which implies Inequality (3).

Every edge counted by (#single-single) touches two end-points of isolated edges of (V, P).
Similarly, every edge counted by (#single-component) intersects an end-point of an isolated
edge of (V, P). Since every end-point of an isolated edge of (V, P) can be touched by at most
a single edge of M∗ because M∗ is a matching, this implies that the number of end points
of the isolated edges of (V, P) is at least 2(#single-single) + (#single-component). However,
this number is also equal to 2(#single), which implies Inequality (4). ◀

The last inequality in the previous lemma provides a lower bound on (#component-free)+
(#component-component), and one can view (#component-free)+(#component-component)
as a count of edges of M∗ that have potential to be added to A2 in Algorithm 1. The next
lemma is the promised derivative of Inequality (1), and it provides a lower bound on
(#component-free). Observe that (#component-free) is a count of edges of M∗ that have
the potential to be added to A1.

▶ Lemma 9. 2|M∗| ≤ (#component-free)−(#non-M∗-triangles)+2(#single)+4(#double)+
4(#triangle).

Proof. Adding twice Inequality (2) to Inequality (1), we get

2|M∗| − (#component-free)− (#single-single)− 0.5(#single-component)− (#middle)
≤ (#single) + 3(#double) + 3(#triangle) .

The lemma now follows by adding Inequality (3) and half of Inequality (4) to the last
inequality. ◀

So far we have shown lower bounds on the size of the sets of edges that have a potential
to be added to A1 or A2 by Algorithm 1. Our next step is to lower bound the size of the
sets A1 and A2 that Algorithm 1 ends up constructing using this potential.

APPROX/RANDOM 2022

33:10 Maximum Matching Sans Maximal Matching

M
∗

M
∗

(a) Path of length 2.

M
∗

M∗

(b) M∗-triangle.

M
∗

M
∗

M
∗

(c) Non-M∗-triangle.

Figure 1 A graphical study of the maximum number of M∗ edges that can intersect connection
vertices of various types of partial triangles. Sub-figures (a) and (b) show that at most two such
edges can intersect the connection vertices of a path of length 2 and an M∗-triangle (i.e., a triangle
that includes an edge of M∗). Sub-figure (c) shows that the connection vertices of a non-M∗-triangle
can intersect up to 3 edges of M∗.

▶ Lemma 10. 3|A1| ≥ (#component-free)− (#non-M∗-triangles).

Proof. We say that an edge e of M∗ counted by (#component-free) is excluded by an edge
f ∈ A1 if e and f intersect the same connected component of (V, P). One can observe
that every edge e counted by (#component-free) is excluded by some edge of A1 (possibly
itself) when Algorithm 1 terminates because otherwise Algorithm 1 would have added e

to A1, which would have resulted in e excluding itself. Therefore, we can upper bound
(#component-free) by counting the number of edges excluded by the edges of A1.

Let (u, v) be an edge of A1, and assume without loss of generality that v is the end point
of this edge which is an isolated vertex of (V, P). This implies that u is a connection vertex of
a connected component Cu of (V, P) which is either a path of length 2 or a triangle. If Cu is
a path of length 2, then the edge (u, v) can exclude only edges counted by (#component-free)
that intersect either v or a connection vertex of Cu, and there can be only 3 such edges
because M∗ is a matching (see Figure 1a). Next, consider the case in which Cu is a triangle
which is not counted by (#non-M∗-triangles). In this case there can be at most 2 edges of
M∗ intersecting Cu (see Figure 1b), and since (u, v) can exclude only edges that intersect
either Cu or v, we get that it can exclude at most 3 edges.4 It remains to consider the case
in which Cu is a triangle counted by (#non-M∗-triangles). In this case, (u, v) can again
exclude every edge of M∗ that intersects Cu or v, and this time there can be at most 4 such
edges (see Figure 1c). Combining all the above, we get that the number of edges excluded
by all the edges of A1 is at most

3|A1|+ |{e ∈ A1 | e intersects a triangle counted by (#non-M∗-triangles)}| .

As explained above, this expression is an upper bound on (#component-free). Furthermore,
since A1 includes at most a single edge intersecting every connected component of (V, P), the
second term in this expression is upper bounded by (#non-M∗-triangles). Therefore, we get

(#component-free) ≤ 3|A1|+ (#non-M∗-triangles) .

The lemma now follows by rearranging this inequality. ◀

4 One of the two M∗ edges intersecting Cu is guaranteed to be an edge of the triangle itself since the triangle
is not counted by (#non-M∗-triangles). Since such edges cannot be counted by (#component-free), we
get that the edge (u, v) can exclude at most 2 edges of (#component-free) rather than 3. However, we
ignore this observation as it does not lead to a better approximation guarantee.

M. Feldman and A. Szarf 33:11

The next corollary now follows by combining Lemmata 9 and 10.

▶ Corollary 11. 2|M∗| ≤ 3|A1|+ 2(#single) + 4(#double) + 4(#triangle).

▶ Lemma 12. It holds that 4|A2| ≥ (#component-component) + (#component-free) −
(#non-M∗-triangles).

The proof of Lemma 12 is quite similar to the proof of Lemma 10. Therefore, and due to
space constrained, we defer it to Appendix C. The next corollary now follows by combining
Lemma 12 and the final inequality in Lemma 8.

▶ Corollary 13. |M∗| ≤ 4|A2|+ 2(#single) + (#double) + (#triangle).

Let us now denote L = (#single) + (#double) + (#triangle) + max{|A1|, |A2|}. We argue
below that L is a lower bound on the size of the solution produced by Algorithm 1. However,
before proving this, let us show first that L is large.

▶ Lemma 14. L ≥ 7/13|M∗|.

Proof. Plugging the definition of L into Corollaries 11 and 13 yields the inequalities 2|M∗| ≤
3L − (#single) + (#double) + (#triangle) and |M∗| ≤ 4L − 2(#single) − 3(#double) −
3(#triangle). Adding the first of these inequalities three times to the second one gives
7|M∗| ≤ 13L − 5(#single) ≤ 13L, where the second inequality holds since (#single) is
non-negative by definition. The lemma now follows by rearranging the above inequality. ◀

As promised, we now argue that Algorithm 1 produces a matching of size at least L.

▶ Lemma 15. Algorithm 1 outputs a matching of size at least L.

Proof. Since Algorithm 1 outputs a maximum matching in (V, P ∪ A1 ∪ A2), to prove
the lemma it suffices to show that the graph (V, P ∪ A1) includes a matching of size
(#single) + (#double) + (#triangle) + |A1| and the graph (V, P ∪A2) includes a matching
of size (#single) + (#double) + (#triangle) + |A2|. We prove below only the claim regarding
(V, P ∪A2). The claim regarding (V, P ∪A1) can be proved analogously.

Let H be the number of edges in A2 that connect two non-isolated vertices of (V, P).
Then, we classify the connected components of (V, P ∪A2) as follows, and show how to build
a large matching M based on this classification.

(V, P ∪A2) includes (#single)+(#double)+(#triangle)−|A2|−H connected components
that are (i) not an isolated node, and (ii) appear also in (V, P). Each one of these connected
components contains at least one edge, and therefore, can contribute some edge to M .
(V, P ∪A2) includes |A2|−H connected components that consist of a connected component
C of (V, P) that has connection vertices and an edge e connecting a connection vertex
of C to an isolated vertex of (V, P). One can observe that the combination of C and e

must be either a path of length 3 or a triangle and an edge attached to one of its vertices,
and in both cases this combined connected component contains two vertex disjoint edges
which it can contribute to the matching M .
(V, P ∪A2) includes H connected components that consist of two connected components
C1, C2 of (V, P) that have connection vertices and an edge e connecting a connecting
vertex of C1 with a connecting vertex of C2. There are three shapes that the connected
component obtained in this way can take: a path of length 5, a triangle with a path of
length 3 attached to one of its vertices or two triangles and an edge connecting them.
However, one can observe that all these shapes include three vertex disjoint edges that
can be contributed to the matching M .

APPROX/RANDOM 2022

33:12 Maximum Matching Sans Maximal Matching

By collecting from every connected component of (V, P ∪A2) the edges that it can contribute
to M according to the above analysis, we get a matching in (V, P ∪A2) of size at least

[(#single) + (#double) + (#triangle)− |A2| −H] + 2[|A2| −H] + 3H

= (#single) + (#double) + (#triangle) + |A2| . ◀

Lemmata 14 and 15 imply together the following corollary. Together with Observation 5,
this corollary implies Theorem 1.

▶ Corollary 16. Algorithm 1 is a 7/13-approximation algorithm.

Before concluding this section, we note that Theorem 2 is proved in the full version of
this paper [20] by splitting the second pass of Algorithm 1 into two passes. One pass that
constructs A1, and a second pass that constructs A2, while making sure not to use again
connected components of (V, P) already used by A1.

4 Three-Pass Algorithm for Triangle-Free Graphs

In this section we prove Theorem 3, which we repeat here for convenience.

▶ Theorem 3. There exists a 3-pass (11/18 = 1/2 + 1/9)-approximation semi-streaming
algorithm for finding a maximum size matching in a triangle-free graph.

We refer to the algorithm whose existence is guaranteed by Theorem 3 as Triangle-
FreeAlg. In its first pass, TriangleFreeAlg constructs a maximal matching M0 of G.
Formally, the pseudocode for this pass appears as Algorithm 2.

Algorithm 2 TriangleFreeAlg – First Pass.

1 Let M0 ← ∅.
2 for every edge e that arrives do
3 Add e to M0 if it does not intersect any edge that already belongs to M0.

We say that an edge e ∈ E is a wing if e includes exactly one vertex of V (M0). Intuitively,
the reason we are interested in wings is that one can obtain an augmenting path5 for M0
by combining an edge (u, v) ∈M0 with two wings: one wing that intersects u and one wing
that intersects v. The second pass of TriangleFreeAlg grows a set W of wings. Since we
hope to construct multiple augmenting paths using these wings, the algorithm makes sure to
limit the number of wings in W that intersect any given vertex u (specifically, the algorithm
allows only a single wing in W to intersect u if u ∈ V (M0), and otherwise it allows up to
two wings of W to intersect u). The pseudocode of this second pass appears as Algorithm 3.

Algorithm 3 also includes a post-processing step in which a set P1 of augmenting paths
(with respect to M0) is constructed using W . This is done by constructing an auxiliary
multi-graph GA over the vertices of V \ V (M0) in which there is an edge between two nodes
u, v ∈ V \ V (M0) for every path Pu,v of length 3 in W ∪M0 between them. One can note
that every such path Pu,v must be an augmenting path consisting of an edge e ∈ M0 and
two wings from W : one intersecting u and an end-point of e, and the other intersecting v

and the other end-point of e. Algorithm 3 finds a maximum size matching MA in GA, and
then sets P1 to be the collection of (augmenting) paths corresponding to the edges of MA.

5 A path P is an augmenting path for a matching M if M ⊕ E(P) is a valid matching of size |M | + 1.

M. Feldman and A. Szarf 33:13

Algorithm 3 TriangleFreeAlg – Second Pass.

1 Let W ← ∅.
2 for every edge e that arrives do
3 if e intersects exactly one vertex u ∈ V (M0) then
4 Let v denote the other end-point of e (i.e., the end-point that is not u).
5 if degW (u) < 1 and degW (v) < 2 then Add e to W .

// Post-processing
6 Let GA be a multi-graph over the vertices V \ V (M0). For every path Pu,v of length

3 in W ∪M0 between two vertices u, v ∈ V \ V (M0), we add an edge (u, v) to the
graph GA. // This is a multi-graph because there might be multiple
such paths between a pair of vertices of V \ V (M0).

7 Find a maximum size matching MA in GA.
8 Let P1 ← {Pu,v | (u, v) ∈MA}.

Consider now an edge e ∈M0 that does not appear in any path of P1 and is connected
by some wing w ∈ W to some vertex u ̸∈ V (M0) ∪ V (P1). The pair e, w can be extended
into an augmenting path if one can find another wing w′ connecting the other end of e (the
end that does not intersect w) to a vertex v ̸∈ V (M0) ∪ V (P1) that is not u. The third pass
of TriangleFreeAlg greedily constructs a collection P2 of augmenting paths in this way.
A pseudocode of this pass appears as Algorithm 4. After completing the pass, Algorithm 4
returns the matching obtained by augmenting M0 with the augmenting paths of P1 and P2.

Algorithm 4 TriangleFreeAlg – Third Pass.

1 Let P2 ← ∅.
2 for every edge w′ that arrives do
3 if there exist 4 vertices u, a, b, v ∈ V \ (V (P1) ∪ V (P2)) such that: (i) u ̸∈ V (M0),

(ii) w′ = (u, a), (iii) (a, b) ∈M0 and (iv) (b, v) ∈W then
4 Add the path u, a, b, v to P2. // Note that u ̸= v because otherwise

u, a, b, v would have been a triangle.

5 return M0 ⊕
(⋃

P ∈P1∪P2
E(P)

)
.

We begin the analysis of TriangleFreeAlg with the following lemma, which shows
that this algorithm returns a matching, and also gives a basic lower bound on the size of this
matching. Due to space constraints, the proof of this lemma is deferred to Appendix C.

▶ Lemma 17. The paths in P1 and P2 are vertex disjoint, and therefore, the output of
TriangleFreeAlg is a matching of size |M0|+ |P1|+ |P2|.

Using the last lemma we can also bound the space complexity of Algorithm 4. The
technical proof of the next corollary can be found in the full version of this paper [20].

▶ Corollary 18. TriangleFreeAlg is a semi-streaming algorithm.

It remains to analyze the approximation ratio of TriangleFreeAlg. Our analysis
roughly follows the flow of the algorithm, and thus, we begin by observing that the matching
M0 constructed in the first pass of this algorithm is of size at least |M∗|/2 (recall that M∗ is
a maximum size matching of G) because M0 is a maximal matching of G by construction.

APPROX/RANDOM 2022

33:14 Maximum Matching Sans Maximal Matching

In its second pass, TriangleFreeAlg constructs the set W of wings. Our next objective
is to lower bound the size of W . Towards this goal, we need to define WM to be the set of
all edges of M∗ that are wings (we recall that an edge e is a wing if exactly one of its end
points appear in V (M0)).

▶ Observation 19. |WM | ≥ 2(|M∗| − |M0|).

Proof. Since M0 is a maximal matching, every edge of M∗ intersects at least one edge of M0.
Hence, every edge of WM includes a single end-point of an edge of M0, and every edge of
M∗\WM includes two end-points of edges of M0 (the two end-points might belong to different
edges or to the same edge), which implies |M0| ≥ (|WM |+ 2|M∗ \WM |)/2 = |M∗| − |WM |/2.
Rearranging this inequality completes the proof of the observation. ◀

▶ Lemma 20. |W | ≥ 2
3 |WM | ≥ 4

3 (|M∗| − |M0|).

Proof. Let I = V (M0) ∩ V (WM), and let IF be the set of vertices in I that do not appear
in any edge of W . Every vertex a ∈ IF ⊆ I must belong to some wing w(a) ∈ WM by the
definition I. However, this wing was not added to W (because a ∈ IF), which implies that
the condition in Line 5 of Algorithm 3 evaluated to FALSE when w(a) arrived. Since a is
not covered by any edge of W (i.e., degW (v) = 0), the fact that this condition evaluated
to FALSE implies that the end point of w(a) that does not belong to V (M0) must have a
degree of 2 under W . Formally, if we denote by u(a) the end point of w(a) that does not
belong to V (M0), then we must have degW (u(a)) = 2.

We now observe that (i) every wing in WM contains a disjoint vertex of V \ V (M0)
because WM is a subset of the optimal matching M∗, and (ii) every wing in W contains only
one vertex of V \ V (M) because it is a wing. These two observations imply together

|W | ≥
∑

a∈IF

degW (u(a)) = 2|IF | . (5)

In contrast, since (i) every wing in W contains a single vertex of V (M0), and (ii) all the
vertices of I \ IF ⊆ V (M0) appear in some wing of W ,

|W | ≥ |I| − |IF | = |WM | − |IF | , (6)

where the equality holds since every edge of WM is a wing, and therefore, intersects a
single vertex of V (M0). The lemma now follows by adding two copies of Inequality (6) to
Inequality (5). ◀

We now get to the analysis of the third pass of TriangleFreeAlg, and our first goal
in this analysis is to identify a set of paths that have a potential (in some sense) to end up
in P2. Let P ′ be the set of paths of length 3 in G that consist of a wing of WM followed
by an edge of M0 and then a wing of W . We think of the paths in P ′ as directed from
their WM to their W edge, and consider two paths that differ only in their direction to be
different paths. This is important because if there is an edge e ∈M0 incident to two edges
w1, w2 ∈ W ∩WM , then the path w1, e, w2 fulfills the requirements to belong to P ′ both
when w1 is considered the first edge in it and when w2 is considered the first edge of the
path. Thus, the fact that we treat the direction of the path as part of the path’s definition
allows both the paths w1, e, w2 and w2, e, w1 to appear in P ′.

▶ Observation 21. |P ′| ≥ 10
3 |M

∗| − 16
3 |M0|.

M. Feldman and A. Szarf 33:15

Proof. Since degW (a) ≤ 1 for every vertex a ∈ V (M0), there are |W | end-points of M0
that intersect an edge of W . Let us denote these end-points by VW , and for every end-
point a ∈ VW , we denote by b(a) the other end-point of the same edge of M0. Formally,
VW = V (M0) ∩ V (W), and b(a) is the single element of the set {b | (a, b) ∈M0}. One can
now observe that P ′ includes a (distinct) path for every wing of WM that intersect b(a) for
some vertex a ∈ VW . Therefore,

|P ′| = |{b(a) | a ∈ VW } ∩ V (WM)}|
≥ |{b(a) | a ∈ VW }|+ |V (WM) ∩ V (M0)}| − |V (M0)| = |W |+ |WM | − |V (M0)|
≥ 4

3 (|M∗| − |M0|) + 2(|M∗| − |M0|)− |V (M0)| = 10
3 |M

∗| − 16
3 |M0| ,

where the first equality holds since {b(a) | a ∈ VW } is a subset of V (M0), and the last
inequality follows from Observation 19 and Lemma 20. ◀

A path in P ′ has a potential to be added to P2 only if none of its vertices appears in
P1. Let P ′′ be the set of such paths (formally, P ′′ = {P ∈ P ′ | V (P) ∩ V (P1) = ∅}). The
following lemma lower bounds the size of P ′′.

▶ Lemma 22. |P ′′| ≥ |P ′| − 6|P1| ≥ 10
3 |M

∗| − 16
3 |M0| − 6|P1|.

Proof. The second inequality of the lemma follows from Observation 21, and therefore, we
concentrate on proving the first inequality. Towards this goal, assume that P ′ ∈ P ′ is a
path that intersects with a path P1 ∈ P1 on an internal vertex. Since the middle edge of
both paths is an edge of M0, this implies that the two paths intersect on both their internal
vertices. Furthermore, since both end-edges of P1 and one end-edge of P ′ belong to W , there
must be an internal vertex a ∈ V (M0) of both paths that intersects an edge of W in both
paths. However, since degW (a) ≤ 1, the edges of W intersecting a in both paths must be
identical, which implies that the paths P ′ and P1 intersect also on some end-point. Since
P ′ and P1 where chosen as general paths of P ′ and P1, respectively, that intersect on an
internal node, this implies that the difference |P ′| − |P ′′| is equal to the number of paths in
P ′ that intersect a path of P1 in an end-point. The rest of the proof is devoted to proving
that the last number is at most 6|P1|.

Since each path of P1 has only two end points, to prove that the paths of P1 intersect at
most 6|P1| paths of P ′ at an end-point, it suffices to show that every vertex of V \ V (M0)
can appear in at most 3 paths of P ′. To see why that is the case, consider an arbitrary vertex
u ∈ V \ V (M0). If u belongs to some path P ′ ∈ P ′, then it must be in one of two roles as
follows.

If u is the last vertex of the path, then the last edge of the path is an edge e ∈W that
includes u, and the other edges of the path P ′ are the single edge of M0 intersecting e

and the single edge of WM intersecting e. Note that this means that the identity of the
entire path is determined by the edge e, and therefore, the number of paths of P ′ in
which u is the last vertex can be upper bounded by degW (u) ≤ 2.
If u is the first vertex of the path, then the first edge of the path is the single edge
e ∈ WM that includes u, and the other edges of the path are the single edge e′ ∈ M0
that intersect e and the single edge e′′ ∈W that intersects e′. Hence, the entire path is
determined by the fact that u is its first vertex, and therefore, there can be only a single
path in P ′ in which u is the first vertex. ◀

Originally, all the paths of P ′′ can be picked in the third pass of TriangleFreeAlg
(Algorithm 4) since they are vertex disjoint from the paths of P1. However, as Algorithm 4
starts to add paths to P2, it stops being possible to add some paths of P ′′ to P2. Still, we

APPROX/RANDOM 2022

33:16 Maximum Matching Sans Maximal Matching

can lower bound the size of P2 in terms of the size of P ′′. The proof of the next lemma is
based on a logic similar to the one used in the previous proof. Thus, we defer this proof to
Appendix C.

▶ Lemma 23. |P2| ≥ 1
6 |P

′′| ≥ 5
9 |M

∗| − 8
9 |M0| − |P1|.

▶ Corollary 24. The size of the output of TriangleFreeAlg is |M0| + |P1| + |P2| ≥
11
18 |M

∗| = (1
2 + 1

9)|M∗|.

Proof. The size of the output of TriangleFreeAlg is |M0|+ |P1|+ |P2| by Lemma 17,
thus, we only need to lower bound this sum. To do this, note that

|M0|+ |P1|+ |P2| ≥ |M0|+ |P1|+ { 5
9 |M

∗| − 8
9 |M0| − |P1|}

= 5
9 |M

∗|+ 1
9 |M0| ≥ 5

9 |M
∗|+ 1

18 |M
∗| = 11

18 |M
∗| ,

where the first inequality follows from Lemma 23, and the second inequality follows from the
observation made at the beginning of this section (namely, that |M0| is a 1/2-approximation
for |M∗| because M0 is a maximal matching). ◀

Theorem 3 now follows from Corollaries 18 and 24.

5 Conclusion and Future Work

We have presented in this paper a new approach for semi-streaming algorithms for the
maximum matching problem, and showed that this approach can be used to improve the
state-of-the-art in two and three passes. Our approach calls for a more sophisticated logic
in the first pass rather than simply building a maximal matching in a greedy fashion, as is
done by previous algorithms. In our implementation of this approach, we greedily built in
this pass connected components of size 3 (recall that greedily building a maximal matching
is equivalent to greedily building connected components of size 2). Similarly, one can try to
greedily construct in the first pass larger connected component, which we believe is likely to
yield even better approximation guarantees. However, the analysis of algorithms based on
such a first pass is likely to be inelegant, and to require a lot of case analysis since larger
components allow many more configurations compared to smaller components. It might
also be interesting to try to come up with an interesting algorithm that uses a completely
different kind of logic in its first pass.

In addition to the above, we have used in this paper the traditional technique to improve
over the state-of-the-art for three passes. Further improving the approximation ratio of
two-pass and three-pass algorithms (or proving that this is not possible), is a nice question
that is still open. We conclude by recalling that the most basic open question in this field of
research is still breaking the (almost trivial) 1/2-approximation for single-pass algorithms.
We hope that our new approach will lead to progress on both the above open questions.

References
1 Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal

algorithms for maximum matching under resource constraints. ACM Trans. Parallel Comput.,
4(4):17:1–17:40, 2018. doi:10.1145/3154855.

2 Sepehr Assadi. A two-pass (conditional) lower bound for semi-streaming maximum matching.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 708–742. SIAM, 2022. doi:10.1137/1.9781611977073.32.

https://doi.org/10.1145/3154855
https://doi.org/10.1137/1.9781611977073.32

M. Feldman and A. Szarf 33:17

3 Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-order streaming matching.
In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021,
July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages
19:1–19:13, 2021. doi:10.4230/LIPIcs.ICALP.2021.19.

4 Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming
bipartite matching in fewer passes and optimal space. arXiv e-prints, pages arXiv–2011, 2020.

5 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 1723–1742. SIAM, 2017. doi:10.1137/1.9781611974782.113.

6 Sepehr Assadi, Gillat Kol, Raghuvansh R. Saxena, and Huacheng Yu. Multi-pass graph
streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In
Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 354–364. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00041.

7 Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. An auction algorithm for bipartite matching
in streaming and massively parallel computation models. In 4th Symposium on Simplicity in
Algorithms (SOSA), pages 165–171, 2021. doi:10.1137/1.9781611976496.18.

8 Sepehr Assadi and Vishvajeet N. Graph streaming lower bounds for parameter estimation
and property testing via a streaming XOR lemma. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 612–625. ACM, 2021. doi:10.1145/3406325.
3451110.

9 Michel L. Balinski and Jaime Gonzalez. Maximum matchings in bipartite graphs via strong
spanning trees. Networks, 21(2):165–179, 1991. doi:10.1002/net.3230210203.

10 Aaron Bernstein. Improved bounds for matching in random-order streams. In Artur Czumaj,
Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 12:1–12:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.12.

11 Aaron Bernstein, Aditi Dudeja, and Zachary Langley. A framework for dynamic matching
in weighted graphs. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 668–681. ACM, 2021. doi:10.1145/3406325.3451113.

12 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1326–1344, 2016. doi:10.1137/1.9781611974331.ch92.

13 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
volume 87 of LIPIcs, pages 29:1–29:15, 2017. doi:10.4230/LIPIcs.ESA.2017.29.

14 Michael S. Crouch and Daniel M. Stubbs. Improved streaming algorithms for weighted
matching, via unweighted matching. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM), volume 28 of LIPIcs, pages
96–104, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

15 Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965.

16 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees
for weighted matching in the semi-streaming model. SIAM J. Discret. Math., 25(3):1251–1265,
2011. doi:10.1137/100801901.

APPROX/RANDOM 2022

https://doi.org/10.4230/LIPIcs.ICALP.2021.19
https://doi.org/10.1137/1.9781611974782.113
https://doi.org/10.1109/FOCS46700.2020.00041
https://doi.org/10.1109/FOCS46700.2020.00041
https://doi.org/10.1137/1.9781611976496.18
https://doi.org/10.1145/3406325.3451110
https://doi.org/10.1145/3406325.3451110
https://doi.org/10.1002/net.3230210203
https://doi.org/10.4230/LIPIcs.ICALP.2020.12
https://doi.org/10.1145/3406325.3451113
https://doi.org/10.1137/1.9781611974331.ch92
https://doi.org/10.4230/LIPIcs.ESA.2017.29
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.1137/100801901

33:18 Maximum Matching Sans Maximal Matching

17 Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and
beyond. ACM Trans. Algorithms, 14(4):48:1–48:23, 2018. doi:10.1145/3230819.

18 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large
matchings in semi-streaming. In Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi,
Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, IEEE
International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15,
2016, Barcelona, Spain, pages 608–614. IEEE Computer Society, 2016. doi:10.1109/ICDMW.
2016.0092.

19 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

20 Moran Feldman and Ariel Szarf. Maximum matching sans maximal matching: A new approach
for finding maximum matchings in the data stream model. CoRR, abs/2109.05946, 2021.
arXiv:2109.05946.

21 Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. Deterministic (1+ϵ)-approximate
maximum matching with poly(1/ϵ) passes in the semi-streaming model and beyond. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 248–260. ACM, 2022.
doi:10.1145/3519935.3520039.

22 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 468–485, 2012. doi:10.1137/
1.9781611973099.41.

23 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

24 Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes
over graph streams. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, volume 81 of LIPIcs, pages 15:1–15:21, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.
2017.15.

25 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1679–1697, 2013. doi:10.1137/1.9781611973105.121.

26 Michael Kapralov. Space lower bounds for approximating maximum matching in the edge
arrival model. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1874–1893, 2021. doi:
10.1137/1.9781611976465.112.

27 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 734–751, 2014. doi:10.1137/1.9781611973402.55.

28 Christian Konrad. A simple augmentation method for matchings with applications to streaming
algorithms. In 43rd International Symposium on Mathematical Foundations of Computer
Science (MFCS), volume 117 of LIPIcs, pages 74:1–74:16, 2018. doi:10.4230/LIPIcs.MFCS.
2018.74.

29 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012.
Proceedings, volume 7408 of Lecture Notes in Computer Science, pages 231–242, 2012.
doi:10.1007/978-3-642-32512-0_20.

https://doi.org/10.1145/3230819
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1016/j.tcs.2005.09.013
http://arxiv.org/abs/2109.05946
https://doi.org/10.1145/3519935.3520039
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1137/0202019
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611976465.112
https://doi.org/10.1137/1.9781611976465.112
https://doi.org/10.1137/1.9781611973402.55
https://doi.org/10.4230/LIPIcs.MFCS.2018.74
https://doi.org/10.4230/LIPIcs.MFCS.2018.74
https://doi.org/10.1007/978-3-642-32512-0_20

M. Feldman and A. Szarf 33:19

30 Christian Konrad and Kheeran K. Naidu. On two-pass streaming algorithms for maximum
bipartite matching. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of
Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages
19:1–19:18, 2021. doi:10.4230/LIPIcs.APPROX/RANDOM.2021.19.

31 Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-
tion and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX) and 9th
International Workshop on Randomization and Computation (RANDOM), pages 170–181,
2005. doi:10.1007/11538462_15.

32 Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM), pages 17:1–17:12, 2016. doi:10.4230/LIPIcs.APPROX-RANDOM.2016.17.

33 Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms (SOSA),
volume 61 of OASICS, pages 14:1–14:4, 2018. doi:10.4230/OASIcs.SOSA.2018.14.

34 Ami Paz and Gregory Schwartzman. A (2 + ϵ)-approximation for maximum weight matching
in the semi-streaming model. ACM Trans. Algorithms, 15(2):18:1–18:15, 2019. doi:10.1145/
3274668.

35 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20,
2012. doi:10.1007/s00453-010-9438-5.

A Three-Pass Algorithm for General Graphs

In this section we prove Theorem 4, which we repeat here for convenience.

▶ Theorem 4. There exists a 3-pass (1/2 + 1/14.4)-approximation semi-streaming algorithm
for finding a maximum size matching in a general graph.

The algorithm that we use to prove Theorem 4 is given as Algorithm 5. Since this
algorithm is very similar to the algorithm TriangleFreeAlg presented in Section 4, we
use below the terminology and notation defined in the last section.

Intuitively, the reason why TriangleFreeAlg does not apply to general graphs is that
given an edge (a, b) ∈M0, a wing (u, a) ∈WM and a wing (b, v) ∈W , we are not guaranteed
that these three edges form an augmenting path for the matching M0 because they might
represent a triangle. To overcome this hurdle, Algorithm 5 constructs two sets of edges in
its second pass: a set W1 constructed exactly like the set W in TriangleFreeAlg, and a
set W2 constructed in the same way, but while excluding the edges of W1. Since W1 and
W2 are disjoint, given an edge (a, b) ∈M0 and a wing (u, a) ∈WM , at most one of the sets
W1 or W2 can contain a wing that forms a triangle together with these two edges, which
intuitively allows us to bound the deterioration in the approximation guarantee resulting
from the existence of such triangles.

We note that the analysis of TriangleFreeAlg up to Lemma 20 applies to Algorithm 5
with a single modification. Namely, Lemma 20 provides a lower bound on the size of the set
W , which translates into an identical lower bound on the size of the corresponding set W1 in
Algorithm 5.

In the rest of this section, it will be convenient to work with the set W ′
2 constructed by

Algorithm 6 (note that Algorithm 6 is used for analysis purposes only). Intuitively, W ′
2 is

constructed in the same general way in which W1 and W2 are constructed; however, while all
the edges of the input stream are considered in the construction of W1, and only the edges of
E \W1 are considered in the construction of W2, the construction of W ′

2 takes into account
the edges of (E \W1) ∪WM .

APPROX/RANDOM 2022

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19
https://doi.org/10.1007/11538462_15
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.17
https://doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.1145/3274668
https://doi.org/10.1145/3274668
https://doi.org/10.1007/s00453-010-9438-5

33:20 Maximum Matching Sans Maximal Matching

Algorithm 5 Maximum Matching via Augmenting Paths – General Graphs.

// First Pass
1 Let M0 ← ∅.
2 for every edge e that arrives do
3 Add e to M0 if it does not intersect any edge that already belongs to M0.

// Second Pass
4 Let W1 ← ∅, W2 ← ∅.
5 for every edge e that arrives do
6 if e intersects exactly one vertex u ∈ V (M0) then
7 Let v denote the other end-point of e (i.e., the end-point that is not u).
8 if degW1(u) < 1 and degW1(v) < 2 then Add e to W1.
9 else if degW2(u) < 1 and degW2(v) < 2 then Add e to W2.

// Post-processing
10 Let GA be a multi-graph over the vertices V \V (M0). For every path Pu,v of length 3

in W1 ∪W2 ∪M0 between two distinct vertices u, v ∈ V \ V (M0), we add an edge
(u, v) to the graph GA. // This is a multi-graph because there might be
multiple such paths between a pair of vertices of V \ V (M0).

11 Find a maximum size matching MA in GA.
12 Let P1 ← {Pu,v | (u, v) ∈MA}.

// Third Pass
13 Let P2 ← ∅.
14 for every edge w′ that arrives do
15 if there exist 4 vertices u, a, b, v ∈ V \ (V (P1) ∪ V (P2)) such that: (i) u ̸∈ V (M0),

(ii) w′ = (u, a), (iii) (a, b) ∈M0, (iv) (b, v) ∈W1 ∪W2 and (v) u ̸= v then
16 Add the path u, a, b, v to P2.

17 return M0 ⊕
(⋃

P ∈P1∪P2
E(P)

)
.

Since W ′
2 is a subset of W1 ∪W2 by construction, the set W1 ∪W2 that is often referred

to by Algorithm 5 is identical to the set W1 ∪W ′
2. Furthermore, one can observe that the

lower bound proved by Lemma 20 for W1 applies also to W ′
2 because all the edges of WM

are considered for addition to W ′
2 at some point (either during the construction of W2 or in

Algorithm 6). This implies the following observation.

▶ Observation 25. |W1|+ |W ′
2| ≥ 4

3 |WM |.

We now define a multi-set P ′ similar to the set of the same name used in the analysis of
TriangleFreeAlg. Specifically, P ′ includes every triangle or path obtained by combining
an edge (u, a) ∈WM , an edge (a, b) ∈M0 and an edge (b, v) of either W1 or W ′

2. Moreover,
if there are multiple options to obtain a path or triangle in this way, then the multiplicity of
the path or triangle in P ′ will be equal to the number of these options. To make this point
clearer, we provide a pseudocode for constructing P ′ as Algorithm 7 (again, Algorithm 7 is
used for analysis purposes only).

▶ Observation 26. |P ′| ≥ 20
3 |M

∗| − 32
3 |M0|.

M. Feldman and A. Szarf 33:21

Algorithm 6 Construction of W ′
2.

1 Let W ′
2 ←W2.

2 for every edge (u, v) ∈W1 ∩WM do
3 Assume without loss of generality that u is the end point of (u, v) that belongs to

V (M0).
4 if degW ′

2
(u) < 1 and degW ′

2
(v) < 2 then Add (u, v) to W ′

2.

Algorithm 7 Construction of P ′.

1 Let P ′ ← ∅.
2 for every edge (u, a) ∈WM do
3 for every edge (a, b) ∈M0 do
4 for every edge (b, v) ∈W1 do Add the path/triangle (u, a), (a, b), (b, v) to P ′.
5 for every edge (b, v) ∈W ′

2 do Add the path/triangle (u, a), (a, b), (b, v) to P ′.

Proof. Repeating the proof of Observation 21, we get that at least |W1|+ |WM | − |V (M0)|
paths are added to P ′ in Line 4 of Algorithm 7, and at least |W ′

2|+ |WM | − |V (M0)| paths
are added to P ′ in Line 5 of Algorithm 7. Therefore,

|P ′| ≥ |W1|+ |W ′
2|+ 2|WM | − 2|V (M0)| ≥ (4

3 + 2)|WM | − 2|V (M0)|
≥ 2(4

3 + 2)(|M∗| − |M0|)− 2|V (M0)| = 20
3 |M

∗| − 32
3 |M0| ,

where the second inequality follows from Observation 25, and the last inequality follows from
Observation 19. ◀

An element (path or triangle) of P ′ has a potential to be added to P2 by Algorithm 5
only if it is a path (i.e., not a triangle) and none of its vertices appears in P1. Let P ′′ be the
multi-set of such paths. The following lemma lower bounds the size of P ′′.

▶ Lemma 27. |P ′′| ≥ |P ′| − 12|P1| − |M0| ≥ 20
3 |M

∗| − 35
3 |M0| − 12|P1|.

Proof. The second inequality of the lemma follows from Observation 26, and therefore, we
concentrate on proving the first inequality. Let P̃ ′ be the multi-set of paths/triangles from
P ′ that do not intersect any vertex of P1. Repeating the proof of Lemma 22, we get that
P̃ ′ contains all the paths/triangles added to P ′ by Line 4 of Algorithm 7 except for up to
6|P1| paths/triangles, and the same is true for the paths/triangles added to P ′ by Line 5 of
Algorithm 7. Since every path/triangle in P ′ was added to this mutli-set by either Line 4 or
Line 5 of Algorithm 7, we get |P̃ ′| ≥ |P ′| − 12|P1|.

Since P ′′ includes every path of P̃ ′, to complete the proof of the lemma it remains to
show that P̃ ′ contains at most |M0| triangles. To see this, we recall that every triangle (or
path) in P̃ ′ must include a single edge of M0, and we claim that no two triangles in P̃ ′ can
share this edge (and therefore, the number of triangles is upper bounded by the number of
edges in M0). Assume towards a contradiction that this claim does not hold, i.e., that there
exist two triangles T1, T2 ∈ P̃ ′ sharing an edge e ∈ M0. Each one of these triangles must
include one edge of WM . Let e1 and e2 denote the edges of WM in T1 and T2, respectively,
and let e′

1 the single edge of T1 which is not e or e1 and e′
2 be the single edge of T2 which is

not either e or e2. We now need to consider two cases. The first case is when e1 = e2. In this
case e′

1 and e′
2 must be also identical, and cannot belong to WM because e1 = e2 belongs to

APPROX/RANDOM 2022

33:22 Maximum Matching Sans Maximal Matching

WM and WM is a subset of the matching M∗. However, this leads to a contradiction because
one of the edges e′

1 or e′
2 must belong to W1, and the other of these edges must belong to

W ′
2, and the sets W1 and W ′

2 can intersect only on edges of WM .
It remains to consider the case in which e1 ̸= e2. Let u1, u2 be the end-points of these

edges, respectively, that do not belong to the edge e of M0. Since e1 ̸= e2 are edges of the
WM , which is a subset of the matching M∗, u1 and u2 must be distinct. Consider now the
path e′

1, e, e′
2. One can observe that this is indeed a path because (i) u1 ≠ u2 and (ii) the

fact that e1 and e2 are vertex disjoint implies that e′
1 and e′

2 intersect different end-points of
e. Furthermore, since T1, T2 ∈ P̃ ′, this path does not intersect any vertex of P1, and thus,
its existence contradicts the maximality of the matching MA constructed by Algorithm 5
because both e′

1 and e′
2 belong to W1 ∪W ′

2 = W1 ∪W2. ◀

We are now ready to lower bound the number of augmenting paths found by Algorithm 5
during its third pass.

▶ Lemma 28. |P2| ≥ |P ′′|/12 ≥ 5
9 |M

∗| − 35
36 |M0| − |P1|.

Proof. The proof of the lemma is very similar to the proof of Lemma 23, except that now
every path of P2 might get a charge of up to 12 because the paths of P ′′ originally added to
P ′ by Line 4 of Algorithm 7 can contribute up to 6 to this charge, and the same goes for the
paths of P ′′ originally added to P ′ by Line 5 of this algorithm. ◀

Theorem 4 now follows from Corollary 18 and the next corollary.

▶ Corollary 29. The size of the matching produced by Algorithm 5 is at least (1
2 + 1

14.4)|M∗|.

Proof. By Lemma 17, the size of the matching produced by Algorithm 5 is at least

|M0|+ |P1|+ |P2| ≥ 5
9 |M

∗|+ 1
36 |M0| ≥ 5

9 |M
∗|+ 1

72 |M
∗| = (1

2 + 1
14.4)|M∗| ,

where the first inequality holds by Lemma 28, and the second inequality holds since M0 (as
a maximal matching) is of size at least 1

2 |M
∗|. ◀

B Notation Summary

The next table summarizes the notation used in the analyses of our non-MMF algorithms.

Notation Explanation
(#single) The number of isolated edges in (V, P).

(#double) The number of connected components in (V, P) that are paths of
length 2.

(#triangle) The number of triangles in (V, P).

(#component-free) The number of edges of M∗ that connect a connection vertex of a
connected component of (V, P) to an isolated vertex of (V, P).

(#component-component) The number of edges of M∗ that connect connection vertices of two
different connected components of (V, P).

(#single-single) The number of edges of M∗ whose two end points belong to (not
necessarily distinct) isolated edges of (V, P).

(#single-component)
The number of edges of M∗ that either connect a vertex of an
isolated edge of (V, P) with a connection vertex of some (other)
connected component of (V, P).

(#middle)
The number of edges that either (i) intersect the middle vertex of a
length 2 path connected component of (V, P), or (ii) are included
within a triangle connected component of (V, P).

M. Feldman and A. Szarf 33:23

C Omitted Proofs

▶ Lemma 12. It holds that 4|A2| ≥ (#component-component) + (#component-free) −
(#non-M∗-triangles).

Proof. The proof of Lemma 12 is very similar to the proof of Lemma 10, and therefore,
we only sketch it. We first define that an edge e ∈ A2 excludes an edge f of M∗ counted
by either (#component-component) or (#component-free) if they both intersect the same
connected component of (V, P). Like in the proof of Lemma 10, it can be argued that
(#component-component) + (#component-free) is upper bounded by the total number of
edges of M∗ excluded by the edges of A2, and on the other hand, every edge e of A2 excludes
up to 4 + T (e) edges, where T (e) is the number of triangles counted by (#non-M∗-triangles)
that intersect e. Therefore,

(#component-component) + (#component-free) ≤
∑

e∈A2

[4 + T (e)]

≤ 4|A2|+ (#non-M∗-triangles) ,

where the second inequality holds since every connected component of (V, P) intersects only
a single edge of A2. The lemma now follows by rearranging the last inequality. ◀

▶ Lemma 17. The paths in P1 and P2 are vertex disjoint, and therefore, the output of
TriangleFreeAlg is a matching of size |M0|+ |P1|+ |P2|.

Proof. Given the above discussion, it is clear that all the paths in P1 ∪P2 are augmentation
paths with respect to M0, which implies that the first part of the lemma indeed implies
the second part. Furthermore, one can observe that the condition in Line 3 of Algorithm 4
guarantees that the paths in P2 are vertex disjoint from each other and from the paths of
P1. Thus, to complete the proof of the lemma, it remains to argue that the paths in P1 are
also vertex disjoint.

Recall that the end-points of every path in P1 belong to V \V (M0) and the internal points
of these paths belong to V (M0). Hence, to show that the paths in P1 are vertex disjoint, it
suffices to argue this separately for their end-points and their internal nodes. Every path
Pu,v ∈ P1 corresponds to an edge (u, v) in the matching MA. Since the end-points of the
path Pu,v are also the end-points of this edge, we get that the paths in P1 must have disjoint
end-points because MA is a matching. Consider now some path Pu,v ∈ P1, and let us denote
the internal nodes of this path by a and b. Since a and b appear only in the edge (a, b) of M0
(because M0 is a matching), we get that if one of them belongs to a path of P1, then the other
belongs to this path as well. Furthermore, by Line 5 of Algorithm 3, degW (a) = degW (b) = 1,
which implies that any path of P1 that includes the nodes a and b as internal nodes must in
fact be identical to Pu,v itself. Hence, no two paths in P1 share internal nodes. ◀

▶ Lemma 23. |P2| ≥ 1
6 |P

′′| ≥ 5
9 |M

∗| − 8
9 |M0| − |P1|.

Proof. We begin the proof by observing that no edge e ∈ M0 is connect by two distinct
wings w1, w2 ∈W to vertices of V \ (V (M0) ∪ V (P1)). Assume towards a contradiction that
this is not true, then there is an edge e in GA corresponds to the path P defined as w1, e, w2.
Since MA is a maximum matching in GA, it must include at least one edge that contains
some end-point of P (otherwise, the edge corresponding to P could be added to MA, which
violates its maximality); which contradicts the definition of either w1 or w2.

For every path P ′′ ∈ P ′′, let us charge a cost of 1 to some path of P2 that intersects
it. To see why such a path must exist, let us denote by eM the edge of P ′′ that belongs to
WM (the first edge of P ′′). When eM arrives, the path P ′′ was one candidate to be added

APPROX/RANDOM 2022

33:24 Maximum Matching Sans Maximal Matching

to P2 by Algorithm 4. If this candidate was still feasible at this time (in the sense that it
was vertex disjoint from P2), then Algorithm 4 must have added either P ′′ to P2 or another
path that includes eM . In either case, following the arrival of eM , some path intersecting P ′′

(which is possibly P ′′ itself) appears in P2 – and can be charged.
Our next goal is to show that the total cost charged to any single path of P2 is at most 6,

which implies the lemma because the total cost charged to all the paths of P2 is exactly |P ′′|.
We do that by making two observations.

Since P ′′ ⊆ P ′, we get by the proof of Lemma 22 that at most 3 paths of P ′′ can include
any given vertex u ∈ V \ V (M0).
Our second observation is that, if a path P ′′ ∈ P ′′ intersects a path P2 ∈ P2, then they
must intersect on an end-point of P2. Assume towards a contradictions that they only
intersect on an internal node a. Since the middle edges of both paths are edges of M0
that include a, both internal edges must be the same. Let us denote this internal edge
by e. Furthermore, as explained above, there can be only a single edge w ∈ W that
intersects e and does not include a vertex of V (P1). This edge must belong also to both
paths, and therefore, the end-point of w that does not belong to V (M0) is an end-point
of both P ′′ and P2.

Combining the above two observations, we get that, for every path P2 ∈ P2, only paths of
P ′′ intersecting an end-point of P2 can charge a cost to P2, and there can be at most 3 paths
of P ′′ intersecting each such end-point. Since P2 has only two end-points, this implies that
at most 6 paths of P ′′ can charge P2. ◀

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Two-Pass Non-MMF Algorithm
	4 Three-Pass Algorithm for Triangle-Free Graphs
	5 Conclusion and Future Work
	A Three-Pass Algorithm for General Graphs
	B Notation Summary
	C Omitted Proofs

