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—— Abstract

We study the problem of sampling almost uniform proper g-colourings in k- unlforrn simple hyper-

graphs with maximum degree A. For any 6 > 0, if £ > 20<1+6> and ¢ > 100A%—4/5-4% 4/5 4, the running

101y “\where n is the number of vertices. Our result requires

time of our algorithm is O(poly(Ak) - n
fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun,

and Wu, 2021), and does not require Q(logn) colours unlike the work of Frieze and Anastos (2017).
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1 Introduction

The past few years have witnessed a bloom in techniques targeted at approximate counting
and sampling problems, among which constraint satisfaction problems (CSPs) are probably
the most studied. In fact, many problems can be cast as CSPs, e.g., Boolean satisfiability
problems (SATS), proper colourings of graphs and hypergraphs, and independent sets, to
name a few. In general, even deciding if a CSP instance can be satisfied or not is NP-hard.
However, efficient algorithms become possible when the number of appearances of each
variable (usually referred to as the degree) is not too high. For these instances, the Lovész
Local Lemma [6] provides a fundamental criterion to guarantee the existence of a solution.
Although the original local lemma does not provide an efficient algorithm, after two decades
of effort [2, 1, 28, 5, 32, 29], the celebrated work of Moser and Tardos [30] provides an efficient
algorithm matching the same conditions as the local lemma.

Unfortunately, the output distribution of the Moser—Tardos algorithm does not suit the
need of approximate counting and sampling. This deficiency is fundamental, as it can be
NP-hard to (uniformly or near-uniformly) sample satisfying assignments even when the
criterion of the local lemma is satisfied and the corresponding searching problem lies in P
[3, 14].1 In other words, sampling problems are fundamentally more difficult than searching
problems in the local lemma regime. Part of the difficulty comes from the possibility that

1 As far as we are aware, all hardness results for sampling (including the ones mentioned in this paper)
allow errors in total variation distances. It is not clear if stronger hardness results exist for perfect
sampling (i.e. with no error).
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the state space can be disconnected from local moves, but traditional algorithmic tools like
Markov chain Monte Carlo rely on the connectivity. This barrier has been bypassed recently
by some exciting developments [27, 16, 17, 23], and in particular the projected Markov chain
approach [8, 9, 24, 19]. For searching problems, the local lemma is known to give a sharp
computational transition threshold from P to NP-hard [30, 15] as the degree increases.
Recent efforts aim to find and establish a similar threshold for sampling problems as well.

One very promising problem to establish such a threshold is (proper) g-colourings of
hypergraphs, which is the original setting where the local lemma was developed [6], and has
received considerable recent attention. A hypergraph H = (V, ) consists of a set of vertices
V and a set of hyperedges £ C 2¥. We say H = (V, &) is k-uniform, if every hyperedge e € £
satisfies |e] = k. A colouring of a hypergraph is proper if no hyperedge is monochromatic.
An efficient (perfect) sampler exists when ¢ > A%/ (*=%) (where > or < hides some constant
independent from ¢, k, and A) for k-uniform hypergraphs with maximum degree A [24, 19],
while the sampling problem is NP-hard whenever ¢ < A%/* for even ¢ [14]. For comparison,
the local lemma shows that a proper g-colouring exists if ¢ > AY*=1 (see also [35] for a
recent alternative approach leading to a slightly better constant).

On the other hand, before the recent wave of local lemma inspired sampling algorithms,
randomly sampling g-colourings in simple k-uniform hypergraphs? has already been studied
[12, 11]. In particular, Frieze and Anastos [11] gave an efficient sampling algorithm when
the number of colours satisfies ¢ > max{C} logn, 50()lc3Aﬁ}7 where n is the number of
vertices and C} depends only on k. Their algorithm is the standard Glauber dynamics with
a random initial (not necessarily proper) colouring. The logarithmic lower bound on the
number of colours is crucial to their analysis, as it guarantees that there is a giant connected
component in the state space so that connectivity is not an issue.

In this paper, we study the projected Markov chain for sampling g-colourings in simple
hypergraphs. Our result improves the bound of [24, 19] for general hypergraphs, and does
not require unbounded number of colours, unlike in [12, 11]. Let u denote the uniform
distribution over all proper colourings. Our main result is stated as follows.

» Theorem 1. For any § > 0, there is a sampling algorithm such that given any e € (0,1), a

k-uniform simple hypergraph H = (V, E) with mazimum degree A, where k > M, and an
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integer ¢ > 100A%=3/5=3  t Tetug"gis a random q-colouring that is e-close to p in total variation
distance in time O(k®A%n (%) ), wheren = |V| and O hides a polylog(n, A, q,1/¢€) factor.

A few quick remarks are in order. First of all, the exponent of n in the running time can
be made even closer to 1 if more colours are given. See Theorem 10 for the full technical
statement. Secondly, our algorithm can be modified into a perfect sampler by applying
the bounding chain method [21] based on coupling from the past (CFTP) [31], following
the same lines of [19]. Moreover, using known reductions from approximate counting to
sampling [25, 34, 22, 26] (see [8] for simpler arguments specialized to local lemma settings),
one can efficiently and approximately count the number of proper colourings in simple
hypergraphs under the same conditions in Theorem 1.

Our algorithm follows the recent projected Markov chain approach [8] with state compres-
sion [9]. Roughly speaking, instead of assigning colours to vertices, we split [¢] into /g buckets
of size \/q each and assign buckets to vertices. We run a (systematic scan) Markov chain on
these bucket assignments to generate a sample, and then conditional on this sample to draw
a nearly uniform g-colouring. The benefit of this bucketing is that, under the conditions of

2 A hypergraph is simple if any two hyperedges intersect in at most one vertex. Simple hypergraphs are
also known as linear hypergraphs.
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Theorem 1, conditional on the assignments of all but one vertices, the assignment of the
remaining vertex is close to uniformly at random. This implies that any atomic event? is
exponentially unlikely in the number of distinct vertices it depends on. In order to show
that this approach works, we need to show two things: 1) the projected Markov chain is
rapidly mixing; 2) each step of the Markov chain can be efficiently implemented. For general
hypergraphs, the previous ¢ > A%/ (*=4) hound comes from balancing the conditions so that
the two claims are true simultaneously. However, there is no room left for relaxation on
either claim. This means that, for our improvements in simple hypergraphs, new ingredients
are required for both claims.

For rapid mixing, we take the information percolation approach [20, 24, 19], where the
main effort is to trace discrepancies through a one-step greedy coupling, and to show that
they are unlikely after a sufficient amount of time. In simple hypergraphs, an individual
discrepancy path through time has more distinct updates of vertices than in the general
case, and are thus more unlikely. This allows us to relax the condition. Our mixing time
analysis is largely inspired by the work of Hermon, Sly, and Zhang [20], although we do
need to handle some new complicacies, such as hyperedges whose vertices are consecutively
updated in the discrepancy path.

For efficient implementation, we use rejection sampling. Here we want to sample the
colour /bucket of a vertex conditional on the buckets of all other vertices. We can safely prune
hyperedges containing vertices of different buckets. The remaining connected component
containing the update vertex needs to have logarithmic size to guarantee efficiency of our
rejection sampling. The standard approach to bound its size is to do a union bound over
certain combinatorial structures with sufficiently many distinct vertices. Most previous

analysis is based on enumerating so-called “2-trees”, a notion first introduced by Alon [1].

Unfortunately, under the conditions of Theorem 1, there are too many “2-trees” to our
need. Instead, we introduce a new structure called “2-block-trees” (see Definition 15). Here
each “block” is a collection of 8 connected hyperedges, and these blocks satisfy connectivity
properties similar to a 2-tree. Since the hypergraph is simple, a block has at least 0k — (g)
distinct vertices. As long as 6 < k, we have a good lower bound on the number of distinct
vertices, which in turn implies a good upper bound on the probability of these structures
showing up. To finish off with the union bound, we give a new counting argument for the
number of 2-block-trees, which is based on finding a good encoding of these structures.
The exponent (roughly 2/k) of A in Theorem 1 is unlikely to be tight, although it
appears to be the limit of current techniques. In fact, we conjecture that the computational
transition for sampling g-colourings in simple hypergraphs happens around the same threshold
of the local lemma (namely, the exponent should be roughly 1/k). This conjecture is
supported by the hardness result of Galanis, Guo, and Wang [14] for general ¢, and by the
algorithm of Frieze and Anastos [11] for ¢ = Q(logn). Note that for a simple k-uniform
hypergraph with maximum degree A, Frieze and Mubayi [10] showed that the chromatic

1
number x(H) < Cy, (ﬁ) "' Where C}, depends only on k. Their bound is asymptotically
better than the bound given by the local lemma. Thus there may still be a gap between the
searching threshold and the sampling threshold.

A final remark is that our method would still work as long as the overlap of hyperedges
is much smaller than k. The condition on the parameters will deteriorate slightly but would

still be better than those for general hypergraphs. In light of this, our method can potentially

3 An event is atomic if each variable it depends on must take one particular value. In discrete spaces, any
event can be decomposed into atomic ones.
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be applied to improve the constant of [13] on sampling solutions to random CNF formulas,
where the overlaps are at most 2 with high probability. On the other end of the spectrum,
if any two intersecting hyperedges intersect at at least k/2 vertices, the algorithm by Guo,
Jerrum, and Liu [16] almost matches the hardness result [14]. It is an intriguing question
how the size of overlaps affects the complexity of these sampling problems, or whether it is
possible to improve sampling algorithms via a better use of the overlap information.

Due to space limitation, we omit many proofs and only give sketches for a few important
results. Complete proofs can be found in the full version.

2 Preliminaries

In this section we gather some preliminary definitions and results for later use. We generally
use the bold font to denote vectors, matrices, and/or random variables. The notation [g]
stands for {1,2,--- ,q}.

2.1 Graph theory

Throughout this paper, we use the following notations for a graph G = (V, E):
G[A]: the induced subgraph of G on the vertex subset A C V.
dist (A, B): the distance between two vertex sets A C V and B C V on G, which is
defined by distg(A, B) := minyea vep distg(u,v) and distg(u,v) is the length of the
shortest path between u and v in G.
I'L,(A): the set of vertices u such that distg(A,u) = . Specifically, when i = 1, this
notation represents the neighbourhood of the given set A C V', and is also denoted by
Ta(A).
We sometimes do not distinguish u and the singleton set {u} in sub- or sup-scripts. For the
sake of convenience, we may drop the subscript G when the underlying graph is clear from
the context.
We need some more definitions for later use.

» Definition 2 (Graph power). Let G be an undirected graph. The i-th power of G, denoted
by G, is another graph that has the same vertex set as G, and {u,v} is an edge in G* iff
1 < distg(u,v) <i.

» Definition 3 (Line graph). Let H = (V, &) be a hypergraph. Its line graph Lin(H) = (V,, Er)
is given by Vi, =&, and {e,e'} € Er iffene’ # (.

2.2 Coupling and Markov chains

Consider a discrete state space €2 and two distributions p and v over it. The total variation
distance between p and v is defined by

1
drv(p,v) =5 > ln(z) = v(@)].
€N
A coupling between p and v is a joint distribution (X,Y) € Q2 such that its marginal
distribution over X (resp. Y') is u (resp. v). The next lemma, usually referred to as the
coupling lemma, bounds the total variation distance between p and v by any of their couplings.

» Lemma 4 (Coupling lemma). For any coupling (X,Y) between between p and v, drv(u,v) <
Pr[X #Y]. Moreover, there exists an optimal coupling reaching the equality.
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Given a finite state space ©, a discrete-time Markov chain is a sequence {X;};>¢ where
the probability of each possible state of X;;; only depends on the state of X;. The
transition of the chain is represented by the transition matrizx P : Q% — R(,1], where
P(i,j) = Pr[X:11 = j | Xt = i]. When the state space ) is clear from context, we simply
denote the chain by its transition matrix. A Markov chain P is:

irreducible, if for any X,Y € Q, there exists ¢t > 0 such that P*(X,Y) > 0;
aperiodic, if for all X € €, it holds that ged{t | P*(X,X) > 0} = 1; and

reversible with respect to a distribution 7, if VX,V € Q, n(X)P(X,Y) = n(Y)P(Y, X).

This equation is usually known as the detailed balance condition.
A distribution 7 is stationary for P, if 7P = 7 (regarding m as a row vector). The

detailed balance condition actually implies that the corresponding distribution is stationary.

Furthermore, if a Markov chain is both irreducible and aperiodic, then it converges to a
unique stationary distribution 7. The speed of convergence towards 7 is characterised by its
mizing time, defined by

. — 1 t .
tmix (P, €) := min {t | I}I(lgédTv(P (X,),m) < e}.

The joint process (Xy,Y;)i>0 is a coupling of Markov chain P if (X;);>0 and (Y2)i>0
individually follow the transition rule of P, and if X; =Y, then X; =Y for all j > 7. By the
coupling lemma, for any coupling (X¢,Y:)¢>0 of P, it holds that drvy (P! (Xo,-), P! (Y, ")) <
Pr[X; # Y;]. Hence, the mixing time of P can be bounded by

(P < i Pr| X Y] <e€l. 1
i ( ,6)_X£I,1{‘%)éﬂmln{t‘ r[X: £ Yi] <€} (1)

2.3 Lovasz Local Lemma

Let R ={Ry, -, Rn} be a set of mutually independent random variables. Given an event
A, denote the set of variables that determines A by vbl(A) C R. Let B={B;,---,B,} bea
collection of “bad” events. For any event A (not necessarily in B), let I'(A) :={B € B | B #

A, vbl(B) Nvbl(A) # 0}. We will use the following version of Lovdsz Local Lemma from [18].

» Theorem 5 ([6, 18]). If there exists a function x : B — (0,1) such that for any bad event
B e B,

PriB] <z(B) [[ (1-=(B)), (2)
then it holds that

Pr| /\ B| = [[(1-x(B))>o0.

BeB

Moreover, for any event A,

Al \ B

BeB

Pr <Prfd] [ a-=(B)" (3)

BeT'(A)

25:5
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2.4 List hypergraph colouring and local uniformity

In our algorithm and analysis, we consider the general list hypergraph colouring problem.
Let H = (V,£) be a k-uniform hypergraph with maximum degree A. Let (Q,)scv be a
set of colour lists. We say X € ®,cv @, is a proper list colouring if no hyperedge in H is
monochromatic with respect to X. Let u denote the uniform distribution of all proper list
hypergraph colourings. The following local uniformity property holds for the distribution pu.
Its proof follows from the argument in [17].

» Lemma 6 (local uniformity [17]). Let ¢o = min,ey |Qy| and ¢1 = maxyey |Qy|. For any
r>k>2,if ¢ >eqrA, then for anyv €V and ¢ € Q,,

|QU|eXp( i) < po(e) < Qvexp(z),

where , is the marginal distribution on v induced by p.

3 Algorithm

Let H = (V, &) be a k-uniform hypergraph and [g] a set of colours. Let u denote the uniform
distribution of proper hypergraph colourings. Our algorithm is a variant of the projected
dynamics from [8], using a particular projection scheme from [9]. We first introduce some
basic definitions and notations, and then describe the sampling algorithm.

3.1 Projection scheme, projected distribution and conditional
distribution

Our sampling algorithm is based on the following projection scheme introduced in [9].

» Definition 7 (projection scheme [9]). Let 1 < s < ¢ be an integer. A (balanced) projectz'on
scheme with image size s is a function h : [q] — [s] such that for any j € | ! =[4]
or |h1(5)] = 4]

For any X € [q]V, define the projection image Y € [s]" of X by
Yo eV, Y,=h(X,).

For simplicity, we often denote Y = h(X), and for any subset A C V, we denote Yy = h(X,).
Given a projection scheme, the following projected distribution can be naturally defined.

» Definition 8 (projected distribution). Given a projection scheme h, the projected distribution
v is the distribution of Y = h(X), where X ~ p.

Given an image of the projection, we can define the following conditional distribution
over [q]V.
» Definition 9 (conditional distribution). Let A C V be a subset of vertices. Given a (partial)
image o € [s]*, the conditional distribution u’» is the distribution of X ~ p conditional on
h(XA) — OA.

By definition, ;4 is a distribution over [¢]V. We use pug* to denote the marginal distribution
on S C V projected from p?4, and we simply denote ,u}f;\} by pga.
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Algorithm 1 Sampling algorithm for hypergraph colouring.

Input: A hypergraph H = (V, &), a set of colours [¢], an error bound 0 < € < 1, and
a balanced projection scheme & : [q] — [s], where s = [,/q]

Output: A random colouring X € [¢]V
1 sample Y € [s]V uniformly at random;
2 for t from 1 to T = [50nlog 2227 do
3 | let v be the vertex with label (¢ mod n);
4 | X} < Sample (H,h,{v},Yi\(0}, 15);

/* The Sample subroutine is given in Algorithm 2. */

5 | Y, ¢+ h(X));

6 return X < Sample (H7 h, V.Y, ﬁ);

3.2 The sampling algorithm

In this section and what follows, we always assume that all vertices in V' are labeled by
{0,1,...,n — 1}. We also fix the parameter s = (\/(ﬂ Given a projection scheme h with
image size s, our sampling algorithm first samples Y € [s]v from the projected distribution v,
and then uses it to sample a random hypergraph colouring from the conditional distribution
uY . The pseudocode is given in Algorithm 1.

The main ingredient of Algorithm 1 is the part that samples Y (Line 1 to Line 5). It
is basically a systematic scan version of the Glauber dynamics for v. In order to update
the state of a particular vertex, we invoke a subroutine Sample, given in Algorithm 2, to
sample X, first from the distribution conditional on Yy ¢,}. Also, Sample is used to generate
the random colouring conditional on Y in Line 6. The subroutine Sample in fact returns
an approximate sample with high probability. Here we have to settle with some small
error because exactly calculating the conditional distribution is intractable. To implement
Sample, we use standard rejection sampling, which is described in Algorithm 3. Showing the

correctness and efficiency of Algorithm 2 and Algorithm 3 is one of our main contributions.

In the following we flesh out the outline above. Let A C V and Y, € [s]*. Note that
during the execution of Algorithm 1, Y} is a random input to Sample. Let S C V and
¢ € (0,1). The subroutine Sample (H, h, S, Yy, () in Algorithm 1 returns a random sample
X € [q] such that with probability at least 1 — (, the total variation distance between X g
and u?‘ is at most ¢, where the probability is taken over the randomness of the input Yj.

In the ¢-th step of the systematic scan in Algorithm 1, we pick the vertex v with label (¢
mod n), and use Line 4 and Line 5 to update the value of Y,,. Ideally, we want to resample
the value of Y,, according to the conditional distribution ng VMY wwhere v is the distribution
projected from p. However, exactly computing the conditional distribution is not tractable,
and we approximate it by projecting from the random sample X € [¢] given by Sample in

Line 4. It is straightforward to verify that Y, approximately follows the law of 1/3, VMY as

long as X approximately follows the law of ,uUYV\‘”}

approximate samples from the conditional distribution ¥ .

. In the last step, we use Sample to draw

We explain the details of Sample (H, h, S, Y3, () next. First we need some notations.

Given a partial image Y,, we say an hyperedge e € & is satisfied by Y, if there exists
u,v € eN A such that Y, # Y,. In other words, for all X € [q]" such that Y = h(X}), the
hyperedge e is not monochromatic with respect to X, and thus e is always “satisfied” given

25:7
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Algorithm 2 Sample (H, h, S, Y4, ().

Input: A hypergraph H = (V, ), a projection scheme h : [q] — [s], a subset S C V|
a (partial) image Y, € [s]* where A C V, and an error bound ¢ € (0,1)
Output: A random (partial) colouring X5 € [q]°
1 remove all hyperedges in H that are satisfied by Y, to obtain H¥A» = (V,E¥»);
2 let H; = (Vl-,SiYA) for 1 < i </ be the connected components such that V; NS # ();
s if 31 < i < 0 such that |EX*| > 4AK? log (%) then
4 L return Xg € [¢]® uniformly at random;

5 for i from 1 to £ do
1
6 X + RejectionSampling(H;, h, Yanv;, R), where R = {10 (%) oo log 2-‘7

/* The RejectionSampling subroutine is given in Algorithm 3. */
7 if X; =1 then
L return Xg € [¢]° uniformly at random ;

9 return Xg where X = &szl Xi;

Y. Let HYA = (V,EYA) be the hypergraph obtained from H by removing all hyperedges
satisfied by Y. Let HIYA,HQYA, ..., HY» denote the connected components of HYA | where
HZ-Y A =(V,, SiY 4). The following fact is straightforward to verify

Y Yanv, Yanv, %

=M X Ho

Yanv,,
m

1 X p

)

where p; is the uniform distribution over proper g-colourings of the sub-hypergraph H7Y A

nv;

Y,

(namely, p; “""* is the uniform distribution over list colourings of HZY A conditional on
Yanv;). Without loss of generality, we assume SNV; # 0 for 1 < j < £. To draw a
random sample from /,L}.;A, it suffices to draw a random sample from the product distribution

nv;

* individually

Yan . . . Y,
pfmvl X u?mvz X ... x """, which we will do by drawing from each y; *

using standard rejection sampling (given in Algorithm 3).

One final detail about Algorithm 2 and Algorithm 3 is about their efficiency. Basically
we set some thresholds to guard against two unlikely bad events. We break out from the
normal execution immediately and return an arbitrary random sample if one of the following
two bad events occur:

for some 1 < i < ¢, [E*] > 4Ak log (%);

for some 1 < i < ¢, the rejection sampling for u; “""" fails after R trials, where

o (rAY™ 0 _LlayT
R := ’710< R > logc-‘ and n= X (100) . (4)

In the analysis (see Lemma 13), we will show that both of the two bad events above occur with
low probability, and thus with high probability the Sample subroutine returns an approximate
sample with desired accuracy.
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Algorithm 3 RejectionSampling(H, h, Y, R).

Input: A hypergraph H = (V, &), a projection scheme h : [g] — [s], a (partial) image
Y, € [s]* where A C V and an integer R

Output: A random colouring X € [¢]V or a special symbol L
for each v € V, let Q, + h=1(Y,) if v € A, and Q, + [q] if v ¢ A;
for i from 1 to R do

sample X, € Q,, uniformly at random for all v € V and let X = (X,,)pev;

if X is a proper hypergraph colouring of H then

L return X;

R W N R

6 return | ;

4  Proof of the main theorem

Let H = (V,€) be a simple k-uniform hypergraph with maximum degree A. Let [q] be a set

of q colours. Recall s = [\/ﬂ, where s is the parameter of projection scheme h (Definition 7).

To construct h, we partition [¢] into s intervals, where the first (¢ mod s) of them contains
[q/s] elements each while the rest contains |g/s] elements each. For each i € [¢], set

h(i) = j where i belongs to the j-th interval. (5)

Note that this h satisfies Definition 7. In our algorithm, h is implemented as an oracle,
supporting the following two types of queries.
Evaluation: given 4, the oracle returns h(3).
Inversion: given j, the oracle returns a uniform element in h=1(j).
Obviously, each query can be answered in time O(log ¢) because of the construction of h.
The next theorem is a stronger form of Theorem 1. It shows that our algorithm can run
in time arbitrarily close to linear in n, the number of vertices, as long as sufficiently many
colours are available.

» Theorem 10. The following result holds for any § > 0 and 0 < a < 1. Given any
e € (0,1), any g-colouring instance on k-uniform simple hypergraph H = (V,E) with

2465
mazimum degree A, and a balanced projection scheme, if k > M and g > 100 (%) k—da/o-4

Algorithm 1 returns a random colouring that is e-close to p in total variation distance in
time O (A2k5n (@)a/loo log? (—"Aq>).
€ €

» Remark 11. The parameter o captures the relation between the local lemma condition and
the running time of the algorithm. If o becomes smaller, the condition is more confined, and
the running time is closer to linear. In particular, Theorem 1 is implied by setting oo = 1.

We need two lemmas to prove Theorem 10. The first lemma analyses the mixing time of
the idealised systematic scan. Let v be the projected distribution. The idealised systematic
scan chain Py, for v is defined as follows. Initially, let X, € [S]V be an arbitrary initial
configuration. In the ¢t-th step, the systematic scan does the following update steps.

Pick the vertex v € V' with label (¢ mod n) and let X:(V '\ {v}) + X;—1(V \ {v}).

Sample X;(v) ~ vt (VMD,

» Lemma 12. Ifq > 40AFT and k > 20, the systematic scan chain Pscqy for v is irreducible,
aperiodic and reversible with respect to v. Furthermore, the mizing time satisfies

A
VO <e<1l, Tmix(Pieanse) < {5071 log ”W .
€

25:9
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Lemma 12 is shown in Section 6.

Our next lemma analyzes the Sample subroutine. Let (Y;)Z_, denote the sequence of
random configurations in [s]" generated by Algorithm 1, where Yy € [s]V is the initial
configuration and Y; is the configuration after the ¢-th iteration of the for-loop. For any
1 <t <T+1, consider the t-th invocation of Sample and define the following two bad events:

Beom(t): in the ¢-th invocation, Xg is returned by Line 4 in Algorithm 2;

Biej(t): in the t-th invocation, Xg is returned by Line 8 in Algorithm 2.

Note that the (7' + 1)-th invocation of the subroutine Sample is in Line 6 in Algorithm 1.
Let H = (V, &) denote the input hypergraph of Algorithm 1.

» Lemma 13. For 1 <t < T+1, the t-th invocation of the subroutine Sample (H, h, S, Y}y, (),
where h is given by (5), satisfies

1
1. the running time of the subroutine is bounded by O <S|A2k5 (%) 1000 log® <"?q>> :

2. conditional on neither Beom () nor Byej(t) occurs, the subroutine returns a perfect sample
from u%;

3. if ¢ > 100A%5 and k > 20, then PrB.(t)] < ¢;

4. for any 6 >0, if k > %, q> 100A’~'3J§*3 , and H is simple, then Pr[Beom(t)] < C.

Properties 1, 2 and 3 are very standard and hold in general hypergraphs. They can be
established by mimicking the argument in [8, 9]. The challenge here is to prove Property 4,
which is established in Section 5.

Given Lemma 12 and Lemma 13, it is straightforward to establish Theorem 10. Lemma 12
shows that the idealized systematic scan chain is rapidly mixing, and Lemma 13 shows that
our implementation of the chain is efficient. Lemma 13 also shows that the exceptions and
errors in our implementation have low probability to happen. Thus, by a coupling argument
and the coupling lemma, Lemma 4, the output of our algorithm is within € total variation
distance to the desired one.

5 Analysis of connected components

In this section, we provide a proof sketch for Property 4 in Lemma 13. Note that this
property needs the input hypergraph H being simple. Fix 1 < ¢ < T 4 1. Consider the
t-th invocation of the subroutine Sample. If 1 < ¢t < T, we use v; to denote the vertex
picked by the t-th step of the systematic scan, i.e. v; is the vertex with label (¢ mod n),
and let A := V \{w}. If t = T+ 1, let A := V. Recall that Y; € [s]V is the random
configuration generated by Algorithm 1 after the ¢-th iteration of the for-loop. To simplify
the notation, we define Y = Y;_1(A), so that the input partial configuration to Sample is
Y (see Algorithm 1). Hence, we consider the subroutine Sample (H, h,S,Y, (). Note that
Y € [s]* is a random configuration, and therefore HY is a random hypergraph, where HY is
obtained by removing all the hyperedges in H satisfied by Y. Fix an arbitrary vertex v € V.
We use HY = (V.Y ,EY) to denote the connected component in HY that contains the vertex
v. Note that £Y can be an empty set. A hyperedge e € £ is incident to v in the hypergraph
H if v € e. We prove the following lemma, which implies Property 4 by a straightforward
union bound.

» Lemma 14. For any 6 >0, if k > %ﬁré), q> 100Ak*17;*3, and H is simple, then for

any v € V, any e incident to v in H, it holds that

A
Pry |e € ¥ AN|EY| > 4AK3 log ne gi.
¢ nA
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Denote by Ly = (Vi,, Er) = Lin(H) the line graph of H (recall Definition 3). Let e be
the hyperedge in Lemma 14 and let u = u. be the vertex in Ly corresponding to e. Let
LY, = (V¥ , EY) denote the line graph of HY . Note that LY is random, and the randomness
of LY, is determined by the randomness of Y.

Let C C Vi, denote the random set of all vertices in the connected component of LE that
contains the vertex u. If u ¢ VLY , let C = (). Define an integer parameter # := {%]. To prove
Lemma 14, it suffices to show that

1\ 26875 1
WM >0, Pry([C|> M]< (2) . (6)

This is because k > M > {%] +1 =6 +1, and setting M = 4Ak>log (%) proves
Lemma 14.
Define the following collection of subsets

Con,(M):={CCV,|ueC AN|C|=M A Ly[C] is connected} .
It is straightforward to verify that

Pry [|C| > M] < Pry [3C € Con, (M) s.t. C C VY.

In our proof, we partition the set Con, (M) into two disjoint subsets Con'! (M) and
Conq(f) (M), and bound their corresponding probabilities separately, by showing

1\ 25

Pry [3C € Con (M) st. C VY] < (2) = (7)
1 M

Pry [3 C e Con® (M) st. CC VLY} < (2) : (8)

We use Algorithm 4 to partition the set Con, (M). Taking as an input any C' € Con, (M),
Algorithm 4 outputs an integer ¢ = ¢(C) and disjoint sets C1,Cs,...,Cp C C. The set
C falls into C' € ConV (M) if £(C) > x> and Con? (M) otherwise. We remark that
Algorithm 4 is only used for analysis, and we do not need to implement this algorithm.

To characterise the output of Algorithm 4, we introduce a notion called “2-block-tree”.

» Definition 15 (2-block-tree). Let § > 1 be an integer. Let G = (V, E) be a graph. A set
{C1,C4,...,C} is a 2-block-tree with block size 6 and tree size £ in G if

1. forany1<i<¢, C; CV, |C;| =6, and the induced subgraph G[C;] is connected;

2. for any distinct 1 < i,j < {, distq(C;, Cj) > 2;

3. {Cy, -+ ,Cy} is connected on G?. (Recall Definition 2 of graph powers.)

One can easily observe that the notion of 2-block-trees is a generalisation of 2-trees
in [1] by setting # = 1. According to the next proposition, the output of Algorithm 4 is a
2-block-tree in Ly. This explains the name “2-block-tree generator”.

» Proposition 16. The output {C1,Cs,...,C¢} of Algorithm 4 satisfies that

1. {C1,Cy,...,Cs} is a 2-block-tree in Ly with block size 0 satisfying u € C and UleCi -
C;

2. if all vertices in T'¢(C;) are removed from G, where G = Ly[C], then the resulting

graph G[C'] is a collection of connected components whose sizes are at most 0, where
C'=C\ (U Ta(Cy)).

25:11
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Algorithm 4 2-block-tree generator.

Input: the parameter 6 € (0,1) in Lemma 14, the line graph Ly, an integer M > 0,
a vertex u in Ly, and a subset C' € Con,, (M)
Output: an integer ¢ and connected subgraphs C1,--- ,Cy C C
1 let G = Ly [C] = (C, E¢) be the subgraph of Ly induced by C;
2 0 [3], 040,V +C;

3 Whileé|V| >0 do

4 L— 0+ 1;

5 if / =1 then uy < u;

6 if £ > 1 then let u; be an arbitrary vertex in T'g(C'\ V);

7 let Cy C V be an arbitrary connected subgraph in G such that |Cy| = 6 and

ug € Cy;
V VA (C,UTe(Cr));
for each connected component G' = (V' E’) in G[V] such that |V'| < 6 do
10 L V<« VAV,

© @

11 return ¢, {C1,Cs,...,Co};

To prove (7), it is not hard to see that for any C € Con{! (M), there is a 2-block-tree
tree {C1,Cy,...,Cp} in the line graph Ly with block size § and tree size ¢ satisfying

we(CiUCU...UC, and C;UCU...UC, CC 9)

where { = (%] We denote a 2-block-tree tree with block size 6 and tree size ¢ by
(0, £)-2-block-tree. This implies that

Pry [3 C e ConV(M)st. CCVY }
< Pry [3(0, £)-2-block-tree {C;} in Ly satisfying (9) s.t. V1 <i < ¢,C; C VLY] .

We apply a union bound on the RHS over all possible 2-block-trees. The probability of
any 2-block-tree is bounded by

1 1 0(k—0)
PI‘Y [Vl < 1 < é, Cz - ng} < (68)0 (S + q) . (10)

To bound the number of 2-block-trees, we use the following lemma.

» Lemma 17. Let 0 > 1 be an integer. Let G = (V, E) be a graph with mazimum degree d.
For any integer £ > 1, any vertex v € V, the number of 2-block-trees {Cy,Ca,...,Cy} with
block size 0 and tree size £ such that v € Uf_,C; is at most (fe?d?+1)".

One may attempt Lemma 17 using the count of connected components with a degree
bound in [4] based on [33]. However, it is too loose to our need, and our refined estimation
in Lemma 17 is shown by a more complicated encoding argument. Our encoding has ¢ + 1
components. The first one encodes how C;’s are connected in G2, and the rest encodes each
individual C;. To encode, we need to carefully perform a depth-first-search (DFS) in G and
generate an encoding for C; whenever we meet one. The DFS generates a tree encoding how
C;’s are connected in G?. This way, we can uniquely recover the original 2-block-tree and
map each component to some subtree of a suitable infinite tree to bound their numbers.
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The inequality (7) follows directly from (10) and Lemma 17.

To prove (8), we take a union bound directly over connected components of size M. Using
Algorithm 4, we can get a good lower bound on the number of distinct vertices in the original
hypergraph for a component. This implies that each component in Conf)(M ) happens with
probability much smaller than the total number of such components, and the union bound
succeeds.

6 Mixing of systematic scan

In this section, we give the proof sketch of the mixing lemma for the projected systematic
scan Markov chain of hypergraph colourings (Lemma 12). It is straightforward to verify
that the systematic scan is aperiodic and reversible with respect to v. Irreducibility follows
from the local lemma, Theorem 5. More precisely, Theorem 5 implies that for any 7 € [s]",
v(t)>0if ¢ > 40AF7 and k > 20. Hence, the systematic scan has the unique stationary
distribution v.

For the mixing time, the analysis is based on an information percolation argument. Define
a coupling C of the systematic scan (Xy, Y;)i>0. Let Xo, Yy € [s]V be two arbitrary initial
configurations. In the ¢-th transition step,

let v € V be the vertex with label (¢ mod n) and set (X;(u), Yi(u)) < (Xi—1(w), Yi—1(u))

for all other vertices u € V' \ {v};

sample (X¢(v),Y:(v)) from the optimal coupling between it AN g e (VD)
We prove the following lemma in this section.

» Lemma 18. Suppose k > 20 and ¢ > A0AF=3 . For any initial configurations Xo, Yy € [s]V,
any e € (0,1), let T = [5071 log %1 , it holds that

YveV, Pre [XT(’U) 75 YT(U)} <

3a

By Lemma 18, a union bound over all vertices and the coupling lemma (Lemma 4), it holds
that maxx, y,e[s]v drv(Xr, Yr) < Pre [ X7 # Yr] < ¢, which proves the mixing time part
of Lemma 12 via (1). In the rest of this section, we use the information percolation technique
to analyse the coupling C and prove Lemma 18.

Consider the coupling procedure (X, Y;);>o. For each t > 1, let v; denote the vertex

picked in the ¢-th step of systematic scan, namely, v; is the vertex with label (¢ mod n).

Counsider the t-th transition step, where ¢t > 0. Define the set of agreement vertices when
updating v; at time t by A; := {v € V\{w:} | Xi—1(v) = Y;_1(v)}. We say a hyperedge e € €
is satisfied by A; if there exist two distinct vertices u,v € eN A; such that X1 (u) # X;—1(v)
(and hence Y;_1(u) # Yi;—1(v) ). We remove all the hyperedges e € £ satisfied by A; to
obtain a sub-hypergraph H;. Let H; denote the connected component in H; containing v.

» Lemma 19. If X;(v:) # Yi(vs) for somet > 1, then there exists w # vy in H{* such that
Xi—1(u) # Yio1(u).

Lemma 19 can be proved by contradiction. Note that X;(v;) (resp. Y;(v:)) depends only
on the configuration of X; 1 (resp. Y;_1(v;)) restricted on the vertices in H;*. If X; 1 and

Y;_1 are the same on the vertices in H;*, then X;(v;) and Y;(v;) must be coupled perfectly.

We say that a hyperedge sequence eq,es, ..., e, is a path in a hypergraph if for each
1<i<{ e_1Ne; #0and e;_1 # e;. The following result is a straightforward corollary of
Lemma 19.

25:13
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» Corollary 20. Let t > 1. If X¢(vi) # Yi(ve), then there exists a vertexr u # vy satisfying
Xi—1(u) #Yi_1(u) and a path ey, e, ..., ep in hypergraph H such that
v Eer and u € ey;
for any hyperedge e; in the path, there exists ¢ € [s] such that for all vertex w € e; and
w # vy, either Xi_1(w) = Yi_1(w) = ¢ or Xp—1(w) # Vi1 (w).

Corollary 20 is a key result for the information percolation analysis. For any time 0 < ¢t <
T, any vertex v € V, define the set of previous update times by S(¢,v) := {1 < i <t |v; = v},
where v; is the vertex picked in the i-th transition step. Define the last update time for v up
to t by

timeyq(t,v) :=

) {maxies(t,v)i if S(t,v) # 0;
0

otherwise.

By Corollary 20, if the coupling on vertex v failed at time ¢, then there must exist a
vertex u such that the coupling on u failed at time ¢’ = time,q(t, u). We apply Corollary 20
recursively until we find a vertex w such that Xo(w) # Yp(w). This gives us an update time
sequence t = t1 >ty > ... > ty = 0 such that the coupling of each ¢;-th transition fails,
together with a set of paths satisfying the properties in Corollary 20. We will show that such
an update time sequence and the set of paths occur with small probability, which bounds
the probability of X;(vs) # Yi(v¢). For this analysis, we will use the notions of extended
hyperedges and extended hypergraphs introduced by He, Sun, and Wu [19].

Fix an integer 7' > 1 to be the total number of transitions of the systematic scan. Define
the set of extended vertex V<t by

Vet = {(t,n) |1 <t <TYU{(0,v) | v eV},

where v; is the vertex with label (¢t mod n). Each vertex (¢,u) € V°** represents an update,
i.e. wu is updated at the t-th transition step. We regard all vertices “updated” at the
initial step (¢ = 0). Consider the systematic scan process (X;);>o. For any hyperedge
e € &, the configuration X;(e) of e at time ¢ satisfies for all u € e, X¢(u) = Xy (u), where
t' = timeyqy(t, u), namely, the value of v at time ¢ is the same as the value of u at time
t' = timeyq (¢, u). Besides, the configuration of hyperedge e remains unchanged until some
vertex in e is updated. This motivates the following definition.

» Definition 21. The set £ of extended hyperedges is defined by £ := UL (£, where

& = [J{(0,0) v e},
ec&
Vi<t<T, &= ) {(t',v)|veent =timeq(tv)}.

evt€e
The extended hypergraph is H®t = (Vext gext),

At the beginning, each hyperedge e € £ takes its initial value, and thus we add all the
extended hyperedges with ¢ = 0 to £&**. For each update at time 1 <t < T, only the value
of v; is updated. Thus the configurations of only the hyperedges containing v; are updated,
and we add only those to £™*.

Corollary 20 shows that for any ¢ > 1, if the coupling in the ¢-th transition step fails (i.e.
Xi(ve) # Yi(vy)), then we can find a specific path in the hypergraph H. Our next lemma
lifts such a path to H®*. Note that there is a slight difference regarding v; comparing to
Corollary 20.
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» Lemma 22. Let 1 <t <T be an integer. Suppose Xi(v;) # Yi(v). There exist a vertex
(t',u) € VU satisfying t' <t and Xy (u) # Yy (u), together with a path e, e$**, ... 5" in
H®* such that

(t,vr) € €' and (', u) € e5**;

for any hyperedge e$** in the path, there exists ¢ € [s] such that for all (j,w) € e$**, either

X,(w) =Y;(w) =c or X;(w) #Y;(w).
We may repeatedly apply Lemma 22 to trace a discrepancy from some time ¢ to time 0.

By pruning “cycles” (in some hypergraph sense) from such a path from ¢ to 0 in H*', we
can find a path satisfying the properties in the following lemma.

» Lemma 23. Let 1 <t <T be an integer. Suppose X;(vy) # Yi(v). There exists a path
es*t, eSt, ..., ef* in the extended hypergraph H®* such that
(t,v) € €Y, min{j | (j,w) € e**} > 0 for all i < £ and min{j | (j,w) € e*'} = 0;
for any 1 <14, <{ satisfying |i —i'| > 2, e** Ne$*t = 0;
for any hyperedge e$** in the path, there exists ¢ € [s] such that for all (j,w) € e$*
X;(w) =Y;(w) =c or X;j(w) #Y;(w).

t either

Finally, we give the proof sketch of Lemma 18.

Proof sketch of Lemma 18. Let t = timeyq (T, v) > [40nlog 2]. We only need to bound

the probability of X;(v) # Y;(v). Fix a path P = e, e5*", ..., e5** satisfying the first two

properties in Lemma 23. Call P bad if P satisfies the third property in Lemma 23. We

bound the probability of P being bad, and then take a union bound over all possible paths.
ext

To bound the probability, we truncate the last extended hyperedge ef** in P to obtain a
new path P’ of length ¢ — 1. By using the local lemma, we can show that

N(P")
Pr[P is bad] < (116 <1 + 5)) ,
Vi k

where N(P’) denotes the number of distinct extended vertices in P’ and the constant 1.16
comes from comparing s = [,/q] and /q.

In our analysis, we need to use some detailed structure of the extended hypergraph.
Each e € £°*' corresponds to a unique hyperedge edge (¢®**) € £ in the input hypergraph,
or more formally, edge (") := {v | (t,v) € e*'}. For two adjacent extended hyperedges
eoxt | fext ¢ gext  oext i an out-neighbor of fe*' if edge (e**) # edge (f¢**), and et is a
self-neighbor of ft if edge (') = edge (f°**). For each e®**, the number of out-neighbours
is at most Ak?, whereas the number of self-neighbours is at most 2k.

Back to the path P’. Consider two adjacent extended hyperedges e$** and e§% in P’.
and €X' share at most one extended vertex
because the input hypergraph is simple. In this case, P’ has many distinct extended
vertices. Hence, we can control the probability that P is bad.

ext
7

ext

If " is an out-neighbour of e§%, then e

ext ext

i
In this case we have to choose non-consecutive hyperedges to bound the number of distinct

extended vertices. However, thankfully, given e**, there are at most 2k choices for e?fl,

and there are not very many paths with many self-neighbours inside.

If e$** is an self-neighbour of §%, then e

With these two cases analysed, to apply the union bound and finish the proof, we parametrise
the number of self-neighbours in a path and show that the number of all paths does not
outweigh the probability of them being bad. <

and ef} may share a lot of extended vertices.
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