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—— Abstract

We consider the problem of sampling from the ferromagnetic Potts and random-cluster models

on a general family of random graphs via the Glauber dynamics for the random-cluster model.
The random-cluster model is parametrized by an edge probability p € (0,1) and a cluster weight
q > 0. We establish that for every g > 1, the random-cluster Glauber dynamics mixes in optimal
O(nlogn) steps on n-vertex random graphs having a prescribed degree sequence with bounded
average branching v throughout the full high-temperature uniqueness regime p < pu(q,7).

The family of random graph models we consider includes the Erdés—Rényi random graph
G(n,v/n), and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts
model on Erdés—Rényi random graphs for the full tree uniqueness regime. We accompany our results
with mixing time lower bounds (exponential in the largest degree) for the Potts Glauber dynamics,
in the same settings where our ©(nlogn) bounds for the random-cluster Glauber dynamics apply.
This reveals a novel and significant computational advantage of random-cluster based algorithms for
sampling from the Potts model at high temperatures.
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1 Introduction

The ferromagnetic Potts model is a classical spin system model in statistical physics and
computer science. It is defined on a finite graph G = (V, E), by a set of spins (or colors)
[q) ={1,...,q} and an edge weight or inverse temperature parameter 5 > 0. A configuration
o€ {1,...,q}" of the model is an assignment of spins to the vertices of V. The probability
of o is given by the Gibbs distribution:

1G,6,4(7) exp(=fD(0)), (1)

Z¢.p.q
where D(0) = [{{v,w} € E : 0(v) # o(w)}| is the number of edges whose endpoints have
different spins in ¢, and Zg g,4 is a normalizing factor known as the partition function. The
Ising model of ferromagnetism corresponds to the case where ¢ = 2.
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Sampling from Potts on Random Graphs of Unbounded Degree

Sampling from the Potts Gibbs distribution (1) is one of the most frequently encountered
problems when running simulations in statistical physics or when solving a variety of inference
tasks in computer science; see [33, 32, 54, 52, 25, 24, 49] and the references therein for a
sample of these applications. There is a family of powerful sampling algorithms for the Potts
model based on its random-cluster representation, defined subsequently. Such algorithms,
which include the Glauber dynamics of the random-cluster model and the widely-used
Swendsen—Wang dynamics [55], are an attractive option computationally since they are
often efficient at “low-temperatures” (large [3), where standard Markov chains for the Potts
model (including the canonical Glauber dynamics) often converge exponentially slowly; see,
e.g., [13, 14, 18, 11, 38).

To be more precise, the random-cluster model on a finite graph G = (V, E), is defined by
an edge probability parameter p € (0,1) and a cluster weight ¢ > 0. The set of configurations
of the model is the set of all subsets of edges w C E. The probability of each configuration w
is given by the Gibbs distribution:

1
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where ¢(w) is the number of connected components (also called clusters) in the subgraph (V, w),
and Zg p 4 is the corresponding partition function. The random-cluster model was introduced
by Fortuin and Kasteleyn [26] as a unifying framework for studying random graphs, spin
systems, and electrical networks, and it is also known as the FK-representation of the Ising
and Potts model.

For integer ¢ > 2, a sample w C F from the random-cluster Gibbs distribution m¢ ;4
can be easily transformed into one for the ferromagnetic g-state Potts model with inverse
temperature 5(p) = —In(1 — p), by independently assigning a random spin from {1,...,q}
to (all vertices in) each connected component of (V,w) [26, 23, 37]. As such, any sampling
algorithm for the random-cluster model yields one for the ferromagnetic Potts model with
essentially no computational overhead. This has led to significantly improved sampling
algorithms for the Potts model in various low-temperature settings [55, 29, 47, 12, 57, 42]
and more generally, to a broad interest in dynamics for the random-cluster model [15, 38, 7,
6, 3, 8, 5].

In this paper, we focus on the Glauber dynamics of the random-cluster model, which for
easy distinction we will henceforth call the FK-dynamics. From a configuration w; C F, one
step of this Markov chain transitions to a new configuration wy4; C E as follows:

1. Choose an edge e¢; € F uniformly at random;
p if e; is a “cut-edge” in (V, w;);

P
2. Set wyy1 = wy U {e;} with probability P iyt )
P otherwise;

3. Otherwise set w1 = we \ {et}.
Here, we say e is a cul-edge in (V,w;) if changing the state of e; changes the number
of connected components c¢(w;) in (V,w;). The probabilities in step (2) are exactly the
conditional probabilities of e; being in the configuration w; given the remainder of w;. As
such, this Markov chain is reversible with respect to mg p 4 and converges to it. We are
interested in its mizing time ty,x; i.e., the number of steps until the dynamics is within total
variation distance 1/4 of mq p 4, starting from the worst possible initial configuration.

As mentioned, the FK-dynamics is by now well-studied in its own right, though sharp
analyses of its mixing time are only available on certain structured graphs like the complete
graph [6, 36, 8], boxes in the infinite integer lattice graph Z< [7, 5, 34, 35, 40, 31, 14], and
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trees [1]. Recently, in [3], the authors studied the FK-dynamics on random regular graphs and
established an optimal ©(nlogn) mixing time bound throughout the entire high-temperature
tree uniqueness regime.

Our aim in this paper is to study the FK-dynamics in settings in which the maximum
degree of the underlying graph is much larger than its average degree. Such settings introduce
hard technical challenges and have been well-studied for other models; see [20] for some early
work. For instance, high-degree vertices are an obstruction to the fast convergence of the
Ising/Potts Glauber dynamics. We later prove (see Section 1.2) that on a general class of
random graphs on n vertices with maximum degree dy,x, the Ising/Potts Glauber dynamics
requires n - exp(£2(dyax)) steps to converge at high temperatures.

We reveal here that, for the same general family of random graphs, random-cluster based
algorithms are not affected by the presence of high-degree vertices; both their mixing times
and fast mixing parameter regimes are determined instead by the average degree of the
graph. This reveals a novel and significant computational advantage of random-cluster based
algorithms for sampling from the ferromagnetic Potts model at high temperatures. Indeed,
prior to this work, random-cluster based sampling algorithms were only found to be more
efficient than Ising/Potts Glauber dynamics at low temperatures.

More precisely, we study the mixing time of the FK-dynamics on random graphs of

average branching v > 0 in the full uniqueness (high-temperature) regime p < p,(q,7).

At integer ~, the threshold p,(q,7v), formally defined in (4), was identified in [39] as a
uniqueness/non-uniqueness phase transition point of the random-cluster model on the wired

~y-ary tree, i.e., where the leaves are externally wired to be in the same connected component.

For us, pyu(q,7) is the natural extension of that function to non-integer v, which we prove
corresponds to the high-temperature uniqueness threshold of the random-cluster model on
general trees of average branching « for all ¢ > 1. (This result could be of independent
interest.)

Before we describe our general results for random graph models with fixed degree sequence
(which we define in the next subsection) we present a special case of our main result of
particular interest concerning the FK-dynamics on sparse Erdés—Rényi random graphs.

» Theorem 1. Fiz g > 1, v >0 and p < pu(q,7). If G is an Erdés—Rényi random graph
G ~ G(n,v/n), then with probability 1 — o(1), G is such that the FK-dynamics on G satisfies
tax = @(TL IOg n)

This yields a sampler for the Potts distribution on Erdés—Rényi random graphs with
near-optimal running time. Let 8,(q,v) = —In(1— p,(g,7)) be the corresponding uniqueness
point for the Potts model.

» Corollary 2. Fiz g > 2, v >0 and 8 < Bu(q,7). There is a sampling algorithm that, with
probability 1 — o(1) over the choice of an Erdés—Rényi random graph G ~ G(n,~y/n), outputs
a configuration whose distribution is within total-variation distance 6 > 0 of pg g,q in time

O(n(logn)3log(1/4)).

Corollary 2 is a direct consequence of Theorem 1 and the aforementioned connection
between the random-cluster model and the ferromagnetic Potts model. The extra O((logn)?)
factor in the running time of the algorithm comes from the (amortized) cost of checking
whether the chosen edge is a cut-edge in each step of the FK-dynamics (see [43, 56]).

To the best of our knowledge, this is the first polynomial-time sampling algorithm for
the Potts model on Erddés—Rényi random graphs for ¢ > 3 and 8 = Q(1). Even for the
better understood ¢ = 2 case (i.e., the Ising model), Corollary 2 provides the fastest known
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Sampling from Potts on Random Graphs of Unbounded Degree

sampling algorithm for this parameter regime, improving upon the running time of samplers
based on the Glauber dynamics for the Ising model which converges in 1t (egioen) steps
for all 8 < B,(2,7) [51].

We mention that the thresholds p,(q,v) and £,(g,7) should be sharp, in the sense that
the FK-dynamics is conjectured to undergo polynomial or exponential slowdowns (depending
on ¢) at the point p,(q,v) (and when ¢ > 2 in a whole critical window (p,,p},)). This is by
analogy with the FK-dynamics on the complete graph [36] and on random regular graphs [17];
see also [30, 42, 19].

1.1 Results on random graphs with general degree sequences

We next provide our main results on random graph models with a fixed degree sequence. Let
d, = (di,...,d,) be the degree sequence giving the degree of each vertex v € {1,...,n}. Our
results will hold for uniform random graphs with degree sequence d,, under certain mild
conditions on this degree sequence. The first condition we make on d,, is that the sequence
is graphical: i.e., that there exists at least one simple graph having degree sequence d,.

Given a graphical sequence d,, we define Pgq,) as the uniform distribution over all
simple graphs on n vertices having degree sequence d,,. The governing quantity in this degree
sequence, in terms of the uniqueness thresholds for the Potts and random-cluster models
on G ~ Pygq,), will be what we call the effective offspring distribution Pq,. In words, the
distribution Pq, will correspond to choosing d — 1 with probability proportional to the total
degree of vertices having degree d. This determines the offspring distribution corresponding
to the random trees one obtains when looking at balls of small radius around a vertex of
a random graph G ~ Ppqq,). Specifically, a vertex of degree d is selected to be the next
vertex added to the random tree with probability proportional to the total degree of all such
vertices, and once it is selected and connected to its parent, it has d — 1 available edges to
connect to other randomly chosen vertices. Formally, Pq, is defined as the distribution over
the set M(d,,) = {d, —1:v € {1,...,n}} where z € M(d,,) is assigned probability:

Z’U (l‘ + 1)1{dv:I+1}
ZU dU .

Our results apply to graphical degree sequences where Pq_ has bounded finite moments, as
we detail next.

Pq, (x) = (3)

» Definition 3. Let D, . be the set of graphical degree sequences (dy,)y such that D ~ Pq, has
mean that is uniformly bounded away from ~v and uniformly bounded k-th moment. Formally,
1. There exists € > 0 such that Eq,[D] < v — ¢ for all sufficiently large n; and
2. There exists finite K > 0 such that Eq, [D"] < K for all sufficiently large n.

This framework is fairly standard in the random graphs literature [10] and is similar to
e.g., the setting of [28] for studying sampling from Potts on random graphs with fixed degree
sequences at sufficiently low temperatures. While Definition 3 yields a fairly general family
of random graphs, we draw attention to some well-studied examples which fall under its
umbrella.

» Example 4. A-regular random graph. In this case, d,, = (4,...,A) and the effective
offspring distribution simply assigns probability 1 to A — 1; thus (d,), € D, for every
v > A —1 and every k.

» Example 5. Erdds—Rényi random graph G(n,\/n). It was shown in [45] that if d,, is
drawn as an i.i.d. sequence of Poisson random variables of mean A, then Prqq,,) is contiguous
with respect to G(n, A/n). (Two random graph models are contiguous when any sequence of
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events that has a probability of 1 — o(1) in one has a probability of 1 — o(1) in the other
model as well.) Hence, it suffices to prove the desired results with high probability over such
d,,. Standard concentration estimates for Poisson random variables then give that for every
v > X and every k, with high probability, (d,), € D, k.

Our main result is an optimal mixing time bound for the FK-dynamics on G ~ Pygq,,),
which applies to all the examples above and more generally to random graphs with degree
sequences in D, .

» Theorem 6. Fiz ¢ > 1, v >0, and p < pu(q,7). There ezists & such that if (dy)n € Doy s,
then with probability 1 — o(1), G ~ Prga,) is such that the FK-dynamics on G satisfies
tax = @(TL IOg n)

This parameter regime in Theorem 6 is tight as FK-dynamics have been very recently
shown [17] to exponentially slow down as soon as p > py,(q, ) for random regular graphs
(Example 4) at integer ¢ > 2.

The proof of the upper bound in Theorem 6 is the main content of this paper. As
mentioned, the special case of the A-regular random graph (i.e., d,, = (4, ..., A)) was the
content of an earlier paper [3]. However, as soon as the degree sequence is not homogeneous,
substantial further obstacles arise.

First, the uniqueness threshold for the random-cluster model on wired heterogeneous
trees (specifically, with offspring distribution Pq,) had not been established. In our proof
of Theorem 6 we in fact require something much stronger; namely, an exponential decay of
connectivities with the correct rate (see Lemma 17). The fact that p,(g,~) is the uniqueness
threshold in the regular case goes back to the work of Haggstrom [39] (see also [44, 2]).
The exponential decay rate was established in [3]. To establish analogous results for the
heterogeneous case, we combine the approach of [48] (which considered the special case of
the Ising model ¢ = 2) with ideas from [2], so as to recurse, not on the marginal of an edge
of the tree, but rather on a functional of its probability of downwards connection to infinity.

The second technical obstacle concerns establishing that the FK-dynamics on G ~ Prg(a,,)
shatters, i.e., that its components have size at most O(n®) after O(n) steps of the dynamics.
This is proved using a delicate revealing procedure for the random graph with the FK-dynamics
configuration on top of it, a technique introduced in [3] for the case of random regular graphs.
The heterogeneity of the degrees in the current setting, however, introduces extra correlations
between the underlying graph and the FK-dynamics configuration, necessitating substantial
modifications to the revealing procedure from [3].

The changes we make to deal with the above-described dependencies include: (i) modific-
ations to the revealing process so that it is based on half-edges rather than vertices and the
dynamics is run in continuous time, and (ii) a new criteria to truncate potentially unbounded
increments in the revealing procedure. The more robust procedure yields a notable further
improvement: we show that the shattering time is O(n) (as opposed to O(nlogn) in [3]).
Though this improvement has no impact on the eventual mixing time bound, the more precise
understanding of the shattering phase may be useful in other settings. A more detailed proof
sketch of this theorem and the new complications that arise is provided in Section 2.

1.2 Slowdown for the Ising/Potts Glauber dynamics

Returning to the advantage of FK-dynamics in the presence of high-degree vertices, the
following theorem shows that, in the same setting as Theorem 6, the mixing time of the
Ising/Potts Glauber dynamics depends exponentially on the maximum degree.
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» Theorem 7. Fiz g > 2, v > 0 and B8 < Bu(q,7). Then there exists k such that if
(dn)n € Dy k, then with probability 1 — o(1), G ~ Pyga,,) is such that the Glauber dynamics
for the ferromagnetic Potts model on G has tyx = n - exp(Q(||dn||))-

Intuitively, the slowdown comes from the fact that the neighborhood of a vertex of degree
lld. ||, is a star graph, where the Ising/Potts Glauber dynamics mixes slowly for § >
1/||dn|l - In random graphs at high temperatures (5 < f,(g,7)) there is no interference
with this effect from the rest of the graph. In contrast, the FK-dynamics in the star graph is
fast mixing at all temperatures, so this obstruction is not present.

» Remark 8. We remark that under various decay of correlation conditions (see, e.g., [21, 41,
22, 16]) the mixing time of the Ising/Potts Glauber dynamics is known to be poly(n) when
(roughly) 8 < 1/||d,||,,- This does not contradict Theorem 7, which holds when g = €(1).
In fact, if one tracks the dependence on J in our proof, it gives tyx = n - exp(Q(5%[|dnl ).

1+2(mzt55w) slowdown of the Ising/Potts Glauber dynamics on the Erdés—

The known n
Rényi random graph [50, 51], where ||d,|[|,, = @(log)ign), is a special case of Theorem 7.
Below are a few examples where this slowdown is more dramatic, indeed stretched exponential

in the total number of vertices.

» Example 9. Power-law degree distributions. Consider graphical sequences (d,,),, satisfying
item (1) in Definition 3, and for which the fraction of degrees of size £ is ©(£~¢). For every
K, if ¢ > K + 2, one would have (d,,),, € D,,. In such situations, ||d,||,, = ©(n'/¢) and
tax = exp(Q(nl/C))'

» Example 10. Planted high-degree vertices. Consider a random A-regular random graph
and change the degree of one vertex to ©(n®). If ¢ < 1/(k + 1) and v > A — 1, then
(dy) € Dy and tyix = exp(Q(n°)).

In the above instances where the maximum degree is polynomial in n but the average
degree is constant, there is an exponential vs. polynomial difference in the high-temperature
mixing times of the Ising/Potts Glauber dynamics and of the FK-dynamics. At this level, the
computational benefits of random-cluster based sampling methods also extend to the often
implemented Swendsen—Wang dynamics [55]. In particular, using the comparison inequalities
from [57] the upper bounds of Theorems 1 and 6 translate into O(n?logn) upper bounds on
the mixing time of the Swendsen—Wang dynamics in those settings.

2 Proof outline

In this section, we present our technical contributions about random graphs (Section 2.1),
the exponential decay of correlations and uniqueness on hetereogeneous trees (Section 2.2),
and the shattering phenomenon of the FK-dynamics (Section 2.3), all of which we combine in
Section 2.4 to yield our main result: the mixing time upper bound of Theorem 6. Throughout
the paper, a subset w C F is naturally identified with an assignment of {0, 1}, or closed and
open, to F, via w(e) = 1 if and only if e € w. All our results should also be understood to
hold uniformly over all sufficiently large n.

2.1 Random graphs

We start by describing the locally treelike structure and exponential rate of volume growth
of random graphs with fixed degree sequence (d,), € D . It will be convenient to work
with the configuration model, a useful and standard tool for studying random graphs with
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fixed degree sequence. The configuration model Pgygq,) is a distribution over multigraphs
on n vertices with degree sequence d,,. It is defined by giving d,, half-edges to every vertex
v and drawing a uniform random perfect matching on the ) d, many half-edges to form
the 1> d, edges of the graph [9]. It is a standard fact that for any (d,,), € D
sequence of sets A,, of simple graphs on n vertices, we have

v,y and any

Pra(a,)(G € An) = o(1) if and only if Per(an) (G € An) = o(1) :

see [9, 27]. It thus suffices to prove Theorems 6-7 for G ~ Pqyq,.)-
For a graph G = (V, E) and a vertex v € V, we define the ball of radius R around v as:

Br(v) :={w eV :d(w,v) < R},
where d(-,-) is the graph distance. For a set B C V define E(B) = {{v,w} € E : v,w € B}.

» Definition 11. We say that a graph G = (V, E) is L-Treelike if there is a set H C E with
|H| < L such that the graph (V, E\ H) is a tree. We say that G is (L, R)-Treelike if for every
v €V the subgraph (Br(v), E(Br(v)) is L-Treelike.

The following lemma says that small balls of the random graph G ~ Pqy(q,,) are tree-
like. Indeed, Br(v) in G ~ Puyq,) is typically a random tree with offspring distribution
approximately Pq,, defined in (3).

» Lemma 12. There exists £ such that if (dn)n € D, the following holds. For
every & > 0, there exists L = L(8) such that if 1 < R < (3 — d)log,n, we have
Peaa,) (G is (L, R)-Treelike) = 1 — o(n™19).

Using standard concentration estimates for the volume of Galton—Watson trees, we also
establish that if (d,), € Do, then G ~ Pcy(a,) has average exponential rate « of volume
growth.

» Definition 13. A graph G = (V, E) on n vertices is said to have (7, ¢€)-volume growth if
for every v € V' and every integer r € [elog, n, z log,, n] the graph has |B.(v)| <"

» Lemma 14. Fize € (0,3). There exists k(e) such that if (dy,)y € Dy, then

Pon(dn) (g has (’y,e)-growth) >1—o(n™19).

2.2 Exponential decay and uniqueness on general trees and treelike
graphs

Given the local tree structure of the random graphs from Peyq,,), to control the decay rate
of connectivities of the random-cluster model on G ~ Pcy(q,,), we need to first understand
how these connectivities decay on heterogeneous (i.e., non-regular) trees. The relevant
random-cluster measure on the tree requires the addition of boundary conditions mimicking
the possible presence of open edges in the random graph outside of the treelike ball. Towards
this, let us formally define boundary conditions.

» Definition 15. A random-cluster boundary condition £ on G = (V, E) is a partition of V,
such that the vertices in each element of the partition are identified with one another. The
random-cluster measure with boundary conditions £, denoted ﬂ'é%q, is the same as in (2)
except the number of connected components c(w) = c(w; &) would be counted with this vertex
identification, i.e., if v,w are in the same element of £, they are always counted as being in
the same connected component of w in (2). The boundary condition can alternatively be seen
as external “wirings” of the vertices in the same element of €.
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» Remark 16. The free boundary condition, £ = 0, corresponds to the case of no external
wirings; i.e., its partition is the one consisting of only of singletons. For a subset 9V C V,
the wired boundary condition on 9V, denoted £ = 1, is the one whose partition has
all vertices of OV in the same element (and all vertices of V' \ 9V as singletons); i.e.,
E={0V}IUU{v:v e V\9V}. For boundary conditions &, & we say £ < & if € is a finer
partition than £. When ¢ > 1, the random-cluster model has the following monotonicity
property: for any two boundary conditions £ > £/, Wé)p) ¢ 7 ﬂg)p) q where = denotes stochastic
domination [37].

Now define the threshold

v _ W=Dy +q-1)
T4 ity 7(y) where h(y) == o . (4)

pulg,y) =1

The work [39] studied the random-cluster measure on homogeneous, d-ary trees, with wired
boundary conditions and identified p,(q,d) as the uniqueness threshold such that whenever
p < pu(q,d), the probability that the root is connected to a distance h in the wired d-ary tree
goes to zero as h — oo; a different proof was given in [2]. In [3], it was shown that this decay
is in fact exponential with rate p = p/(p+q(1 —p)). However, the methods of those papers do
not easily extend to the non-regular setting, where there may be vertices of unbounded degree,
but one would expect the threshold for connectivity decay to only depend on the average
branching rate. In [48], it was shown that the analogue £,(2,7) of (4) gives the correct
uniqueness threshold in the case of the Ising model ¢ = 2, for general (non-homogenous)
trees of average branching v. However, the argument there recursed over the single-site spin
marginals, and relied on the fact that it was an Ising model whose interactions are nearest-
neighbor. In the case of the random-cluster model, interactions between edge-marginals are
non-local, and we therefore have to work with a more complicated functional encoding the
probability of an edge being downward connected to the wired boundary. Combining ideas
from [48] and [2], we are then able to establish uniqueness, and that connectivities decay
exponentially with rate p on general heterogenous trees of average branching factor ~ for all
g >1and all p < p,(q,v). When p < p,(q,7), we have p < 1/v (see e.g., [39, Theorem 1.5]);
this indicates by a union bound why there will typically be no connections to the boundary
in a tree of average branching -y.

More formally, let 7, = (V(Tr), E(Tr)) be an arbitrary finite tree, rooted at p, and of
height h. Let 0T, C V(Ty) be the set of vertices of T, at distance exactly h from p. For
v € V(Ty), let T, be the subtree of Tj, rooted at v, let h(v) denotes the height of 7, and let
0T, = 0Tn N T,. For a random-cluster configuration w on 7, let C,(w) denote the connected
component of w that contains the root p of Tj,. Finally, let (1,0) denote the boundary
condition that wires all vertices of 97, together, and also wires them up to the root, and let
W(Tlh’o) be the random-cluster measure with this boundary condition.

» Lemma 17. Fizg>1, v > 1, p < pu(q,7), and € € [0,1). Suppose that |0T,| < ") for
every v € V(Ty,) with h(v) > eh. Then, there exists a constant C = C(p, q,7) such that for
any u € 97Ty,

W%L’o)(w cu € Cp(w)) < cplt—oh

We note that the condition that [07,| < 4") for every v € V(7;,) with h(v) > eh in the
lemma holds with high probability for random trees with averaging branching ~. In addition,
the exponential decay rate in Lemma 17 is essentially optimal, and together with Lemmas 12—
14, allows us to derive precise estimates on the exponential decay of connectivities on the
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treelike balls around each vertex of the random graph G ~ Pcy(q,). We will actually need a
sharp bound on the rate of influence decay between the boundary and the center of the ball
Bpr(v); we find that this is the square of the rate of connectivity decay on a corresponding
tree of depth R. (Intuitively, this is because two disjoint paths are required to reach the
center of the ball in order for the boundary to have any effect on it.) To be more precise, let
G = (V, E) be a graph and for v € V, let E, C E denote the set of edges incident to v.

» Definition 18. A random-cluster boundary condition £ on a graph H is said to be K -Sparse
if the number of vertices in non-trivial (non-singleton) boundary components of £ is at
most K.

» Theorem 19. Fizy >0, ¢ > 1, and p < py(q,7). Suppose G is (L, R)-Treelike for some L
and some R < %logw n. Also suppose G has (7, e)-volume growth for some ¢ > 0 sufficiently
small. There exists a constant C > 0 such that for every v € G, and any two K-Sparse
boundary conditions £ and T on Bgr(v):

175y @) € +) = T oy (@(B) € )llav < CPETORVIR,

2.3 Shattering of the FK-dynamics

With Theorem 19 in hand, the core of our argument becomes establishing that the boundary
conditions induced by the FK-dynamics chains on the small balls around each vertex are
shattered. This is formalized as follows.

» Definition 20. A random-cluster configuration w on G = (V(G), E(Q)) is (K, R)-Sparse
if, for every v € V(G), the boundary conditions induced on Br(v) by w(E(G) \ E(B,(v)))
are K-Sparse.

» Remark 21. It will be technically convenient to prove our results in continuous time instead
of discrete time. In the continuous-time FK-dynamics, each edge of the graph has a rate-1
Poisson clock and every time a clock rings, the corresponding edge is updated as in the
discrete-time version of the FK-dynamics; that is, according to the conditional distribution
given the configuration off of this edge. It is a standard fact (see e.g., [46, Theorem 20.3])
that the discrete-time mixing time is comparable to |E(G)| times the continuous-time mixing
time. It therefore suffices for us to establish the mixing time bounds of Theorems 1 and 6 as
O(logn) bounds for the continuous-time version of the FK-dynamics. From this point on,
we let X;° denote the continuous-time FK-dynamics on G initialized from the configuration
Zo, and use the superscripts 1 and 0 to denote the full (all-open) and empty (all-closed)
configurations, respectively.

The following theorem says that after O(1) continuous time, the configuration of the FK-
dynamics from the all wired, and by monotonicity from any, initialization is (K, R)-Sparse,
for R < %log,y n and constant K.

» Theorem 22. Fiz g > 1, v > 0 and p < pu(q,7). For every § > 0, there exists k such
that if (dn)n € D, there exists T = T(p,q,7v) and K = K(p,q,7,0) such that for any
t > T, and every R < (% — d)log., n, with probability 1 — o(1), G ~ Peya,) is such that
P(X} is (K, R)-Sparse) > 1—o(n™?).

Our proof of Theorem 22 relies on a delicate simultaneous revealing procedure for the
random graph, along with the connected component of a vertex v in X}, showing that after
a burn-in period, the configuration X} is shattered. This technique was introduced for
random regular graphs in [3]. The revealing scheme for the component of a vertex v in the
FK-dynamics chain X} roughly proceeds as follows (see Figure 1). First set the starting
vertex v as “exposed”, and iteratively, for each exposed vertex u do the following:
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Figure 1 Three “generations” of the revealing procedure. In each figure, the purple vertices
are the current generation of exposed vertices; the revealing procedure reveals the ball of radius r
around such a vertex v, and a dominating localized FK-dynamics configuration &(B,(v)) on that
ball. The next generation of exposed vertices (blue) consists of those on the boundary B;(v) that
are in the connected component of v in the configuration @(B,(v)). Exposed vertices from previous
generations are then colored black.

1. Reveal the ball B,(u) in the random graph for a large r = O(1);

2. Reveal a configuration &(B,(u)) that dominates the configuration of the FK-dynamics at
time ¢ on B, (u). This configuration will come from simulating the FK-dynamics that
ignores all updates outside of B,.(u) (effectively inducing the wired boundary condition
on B,.(u)) and thus can be obtained independently of the dynamics on the rest of the
graph;

3. Add to the set of exposed vertices all vertices of B, (u) that get connected to u in
&(Br(u)).

The key point of the argument is then to stochastically dominate the exposed vertices by a
branching process, which can be shown to be sub-critical (see Lemma 17). In our setting,
the heterogeneity of the degrees causes substantial complications to the argument from [3],
because in balls where the branching rate is locally larger than «, the overlayed FK-dynamics
configuration will actually be highly connected. The presence of high degrees also destroys
the O(1) bounds on the maximum number of new vertices that could possibly get exposed in
step (3) above; this complicates relevant concentration arguments, as our branching process
martingale will no longer have bounded increments.

2.4 Proof of main result

We end this section by proving the mixing time upper bound of Theorem 6. The proofs of all
other results are deferred to the full version of this paper [4]. It suffices to prove the result
for v > 1 since lim~ 1 p,(¢,7) =1, and if v > +/, then D, . C D, .

Proof of Theorem 6: upper bound. Fix ¢ > 1, v > 1 and p < pu(g,7). Let R = (3 —
9) log., n, where ¢ > 0 is a small constant we choose later. For K and L fixed positive
constants, € € (0,1/2) and ¢t > 0, let Ty = T't(L, K, d,,7) be the subset of (multi)graphs on
n vertices with degree sequence d,, given by:

Iy ={G :G is (L, R)-Treelike, has (v, ¢)-volume growth,
and P(Xéi is (K, R)-Sparse) > 1 —n"°}.
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By Lemmas 12 and 14, as well as Theorem 22, for every § € (0,1/2) and ¢ € (0,1/2),
there exist constants x(p, q,7,9), L(0), K(p,q,7,0), and T(p, q,7y) such that if (d,)n € D«
then Peya,)(I'7) = o(1). Hence, it suffices for us to prove that the mixing time of the
FK-dynamics on any G € I'r is O(log n).

Fix any G € I'r. Let ((X[°)1>0)z, be the family of FK-dynamics initialized from all
possible configurations xg, coupled via the standard grand coupling for the FK-dynamics; i.e.,
using the same clock rings and the same uniform random variables to make the edge updates
while running the chain from different initializations. Recall that this coupling is monotone
when ¢ > 1 so that for every ¢ > 0, if X;7° < X}°, then X;)° < X}° for all ¢’ > ¢. Using the
standard fact that the coupling time provides a bound on the mixing time (see e.g., [46]), by
a union bound over the edges, it suffices to show that under this grand coupling,

P(X}(e) # X1 (e)) = o(1/|E(G)|) for every e € E(G). (5)

Now fix any such e = {u,v} and for ease of notation, set B, = FE(Bg(v)) and BS =
E(G)\ B,. Consider two auxiliary copies of the FK-dynamics Y;' and Y,? that censor (ignore)
all updates on edges of B¢ after time T'. The censoring inequality from [53] applied to the
FK-dynamics [35, Theorem 2.5] implies that Y;! = X} and Y}? < X} for all ¢ > 0 and thus

P(X} (e) £ XP(e) = P(X{(e) = 1) ~B(XP(e) = 1) < B(V}(e) = 1) ~ B(Y2(e) = 1).

Let H, be the set of configurations on B¢ such that the boundary conditions they induce
on B, are K-Sparse. (Here and throughout the paper, the boundary condition induced by
a configuration w(B¢) on a set B wires two vertices w,w’ € V(B) if they are in the same
connected component of w(B¢).) By definition of I'r and monotonicity, we have for every
G e Tp, P(Y2(BS) ¢ Hy) < P(YA(BS) ¢ Hy) < n°, because up to time 7' there is no
censoring, and so Y}, Y have the same distribution as X+, X%, respectively. Therefore,
P(Yi(e) =1) —P(Y(e) = 1) is bounded by

[P () = 1| YA(BE) = 0!) — BV (e) = 1| YR(BE) = ¢°)] + 207"

Fix any ¢!, ¢ € H,, and let t = T + s. By the triangle inequality, the difference in the
brackets is at most

[P(Y7y(e) = 1| Y7(B) = ¢') — mg(w(e) = 1| w(B}) = ¢)| (6)
+|mg(wle) =1 w(B)) = ¢') — mg(w(e) = 1 | w(B}) = ¢")] (7)
+[P(Ypya(e) = 1| Y2(BY) = ¢°) — mg(w(e) = 1| w(By) = ¢)|. (®)

Observe that the chain (Y7, ,)s>o may be viewed as an FK-dynamics on B, with the
boundary condition induced by ¢!, initialized from the (random) configuration Y} (B,) and
with stationary distribution mg(w(B,) € - | w(BS) = ¢') = w%i ; the analogous statement is
true for (Y, ,)s>0 and W%i.

In order to bound (6) and (8), we use as an input a bound on the rate of convergence
of FK-dynamics on treelike graphs with sparse boundary conditions. This bound comes
from a straightforward (Dirichlet form) comparison to the FK-dynamics on a tree with free
boundary conditions, and its proof is deferred to the full version [4].

» Lemma 23. Consider an L-Treelike graph G = (V, E) with a K-Sparse boundary condition £.
Let Ty = mingeq wé(w) For every p € (0,1) and q¢ > 0, there exists ag = ap(p,q, L, K) >0
such that

maxg,cq [[P(X7° € ) — g llo < €720 /21og(1/mu) -
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Setting 7' = T + S,, where S,, = C'logn for a constant C’(p, q,7, L, K) sufficiently large,
since B, is L-Treelike and ¢! is K-Sparse, by Lemma 23, we obtain the following, and its
analogue for (8):

[P(Yz(e) = 1] Yp(By) = ¢') — mg(w(e) =1 | w(B}) = ¢")[ <n™>.

Finally, since both ¢! and ¢" induce K-Sparse boundary conditions on B, and G is (L, R)-
Treelike with (7, £)-volume growth, by Theorem 19 there exists C = C(p, ¢, L, K,v) > 0 such
that (7) is at most

1 0
7, (@(E,) € ) = 7§, ((E,) € Yl < CFI-COVIR < cp1-2001-CvDlon,

where E, is the set of edges incident to v, and we used R = (5 — §) log., n. Setting
0= (1-20)(1 - CVE),

1 0 R n —0 1770‘}
7% (B € ) = 7% (W(By) € ey < CpPo2 ™ = o~ 7 9)

Since p < 1/7, log,, v < 0, there is some ¢, ,, > 0 such that the right-hand side is Cn~=00+ep),
By taking ¢, § sufficiently small, # can be made arbitrarily close to 1, so that (9) is o(1/n).

Now notice that |E(G)] = O(n). To see this, observe that by Jensen’s inequality
(13, dy)? <13 d2, and since (d,) € D, we also have Y, d2 < (14 7)), d,. Com-

v v
bining these two inequalities we find that |E(G)| < W Therefore, each of (6)—(8) are
o(1/|E(G)|), implying (5) as desired. <
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