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Abstract
Consider a homogeneous degree d polynomial f = T1 + · · · + Ts, Ti = gi(ℓi,1, . . . , ℓi,m) where gi’s are
homogeneous m-variate degree d polynomials and ℓi,j ’s are linear polynomials in n variables. We
design a (randomized) learning algorithm that given black-box access to f , computes black-boxes for
the Ti’s. The running time of the algorithm is poly(n, m, d, s) and the algorithm works under some
non-degeneracy conditions on the linear forms and the gi’s, and some additional technical assumptions
n ≥ (md)2, s ≤ nd/4. The non-degeneracy conditions on ℓi,j ’s constitute non-membership in a variety,
and hence are satisfied when the coefficients of ℓi,j ’s are chosen uniformly and randomly from a
large enough set. The conditions on gi’s are satisfied for random polynomials and also for natural
polynomials common in the study of arithmetic complexity like determinant, permanent, elementary
symmetric polynomial, iterated matrix multiplication. A particularly appealing algorithmic corollary
is the following: Given black-box access to an f = Detr(L(1))+. . .+Detr(L(s)), where L(k) = (ℓ(k)

i,j )i,j

with ℓ
(k)
i,j ’s being linear forms in n variables chosen randomly, there is an algorithm which in time

poly(n, r) outputs matrices (M (k))k of linear forms s.t. there exists a permutation π : [s] → [s] with
Detr(M (k)) = Detr(L(π(k))).

Our work follows the works [22, 7] which use lower bound methods in arithmetic complexity to
design average case learning algorithms. It also vastly generalizes the result in [22] about learning
depth three circuits, which is a special case where each gi is just a monomial. At the core of our
algorithm is the partial derivative method which can be used to prove lower bounds for generalized
depth three circuits. To apply the general framework in [22, 7], we need to establish that the
non-degeneracy conditions arising out of applying the framework with the partial derivative method
are satisfied in the random case. We develop simple but general and powerful tools to establish
this, which might be useful in designing average case learning algorithms for other arithmetic circuit
models.
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21:2 Learning Generalized Depth Three Arithmetic Circuits in the Non-Degenerate Case

1 Introduction

Arithmetic circuits are a natural model for computing polynomials using basic arithmetic
operations like addition and multiplication. The problem of learning arithmetic circuits
a.k.a. reconstruction is an important and well studied problem. It can be defined for
various arithmetic circuit models. Unsurprisingly, there is enough evidence to point out
that the problem is likely to be hard in the worst case for most arithmetic circuit models
[14, 5, 23, 31].1 Hence, it is imperative to explore algorithms for learning arithmetic circuits
that are efficient and work in the average case. One classic example of a stark contrast
between the worst case and average case complexities is the tensor decomposition problem.
Let us focus on n × n × n tensors for simplicity. In the language of arithmetic complexity,
tensor decomposition corresponds to learning depth three set-multilinear circuits. We have
three sets of variables y = {y1, . . . , yn}, z = {z1, . . . , zn}, w = {w1, . . . , wn}. Then the
problem is to decompose a set-multilinear polynomial f(y, z, w) =

∑
j,k,ℓ Tj,k,ℓyjzkwℓ as

s∑
i=1

ℓi1(y) ℓi2(z) ℓi3(w)

for the smallest possible s (here ℓij ’s are linear forms). This is NP-hard in the worst case [14].
However, it is possible to design efficient algorithms for tensor decomposition which work
well under some mild assumptions. One such algorithm is due to Jennrich [13, 27] and states
that given f(y, z, w) we can find the above decomposition in polynomial time if s ≤ n and
(ℓ1a, . . . , ℓsa) are linearly independent for all a ∈ [3]. Note that the algorithm works under a
bound2 on s and also a mild assumption on the linear forms (which is satisfied when the
linear forms are chosen randomly). Our algorithms will also work under such non-degeneracy
conditions. Kayal and Saha [22] designed algorithms for learning depth three arithmetic
circuits in the non-degenerate case. That is, they design an algorithm for decomposing

f(x) =
s∑

i=1

d∏
j=1

ℓij(x)

assuming a bound on s and certain non-degeneracy conditions on the ℓij ’s. Note that the
above model is different from tensor decomposition or set-multilinear circuits since there
is no partitioning of variables into disjoint sets and the linear forms can depend on all the
variables. We prove a far-reaching generalization of the result of [22].

1.1 The model and our results
We study the model of generalized depth three circuits. A circuit in this class computing a
degree d polynomial f(x) is an expression of the following kind,

f(x) = g1(ℓ11, . . . , ℓ1m) + · · · + gs(ℓs1, . . . , ℓsm),

where gi’s are m-variate degree d homogeneous polynomials and ℓij ’s are linear forms in the
variables x = (x1, . . . , xn). Our main result is an algorithm for learning decompositions of
the above kind assuming certain non-degeneracy conditions.

1 Despite this, there has been much success in designing worst case reconstruction algorithms. This includes
reconstruction algorithms for the models of sparse polynomials [25], read-once algebraic branching
programs (ROABPs) [1, 24] and for models with bounded top fan-in [23, 17, 11, 32, 2, 3].

2 This bound usually corresponds to the best known lower bounds we can prove for the corresponding
model.
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▶ Theorem 1 (Learning generalized depth three circuits in the non-degenerate case). There
is a randomized algorithm that given black-box access to an n-variate degree d polynomial
f = T1 + · · · + Ts, where Ti = gi(ℓi1, . . . , ℓim) for a homogeneous m-variate polynomial gi,
outputs black-boxes for the individual summands Ti’s. The running time of the algorithm
is poly(n, m, d, s). The algorithm works under certain non-degeneracy conditions and also
under some additional technical assumptions such as n ≥ (md)2, s ≤ nd/4, |F| ≥ poly(nd, s)
and char(F) = 0 or char(F) > d.

The non-degeneracy conditions are mentioned explicitly in Section 2.1. These non-
degeneracy conditions are satisfied when the coefficients of the linear forms are chosen
uniformly and independently at random from a large enough set and when the gi’s are either
random or one of the well-known polynomials in arithmetic complexity such as determinant,
permanent, elementary symmetric polynomial etc. Let us mention one such appealing
corollary which follows from Theorem 1 and the algorithms for equivalence-testing of the
determinant [19, 6].

▶ Corollary 2 (Learning sums of random projections of determinants). Suppose n, r,F, s be
such that n ≥ r6, s ≤ nr/4, |F| ≥ poly(nr, s) and char(F) = 0 or char(F) > r. There is
a randomized poly(n, r) time algorithm that given black-box access to an f = Detr(L(1)) +
. . . + Detr(L(s)), where L(k) = (ℓ(k)

i,j )i,j with ℓ
(k)
i,j ’s being linear forms in n variables whose

coefficients are chosen independently and uniformly at random from an arbitrary set S ⊂ F
of size |S| ≥ poly(nr, s), it outputs matrices of linear forms (M (k))k s.t. there exists a
permutation π : [s] → [s] with Detr(M (k)) = Detr(L(π(k))).

Remarks
1. Once we have the black-boxes for the Ti’s as in Theorem 1, it is not hard to output

black-boxes for g̃i’s and also ℓ̃i1, . . . , ℓ̃im s.t. Ti = g̃i

(
ℓ̃i1, . . . , ℓ̃im

)
. This is done by finding

a invertible linear transformation on gi that restrict it to its “essential variables”, see
[18, Thm 4.1]. Note that we cannot hope to exactly recover the gi’s since there is some
redundancy. One can always apply a linear transformation to the input variables of gi’s
to obtain different decompositions.

2. We get a similar result (as in Corollary 2) with gi’s being the elementary symmetric
polynomial, permanent, iterated matrix multiplication, monomials etc. Note that it could
be a mixture of these. It might seem strange that we are able to handle permanent,
but note that we are only dealing with black-boxes and hence the complexity of the
permanent does not come into play. It is already known how to do equivalence-testing of
the permanent efficiently [19] which is similar in spirit to the s = 1 case.

3. The field size and the size of the set S in Theorem 1 and Corollary 2 depends exponentially
on the degree. This does not affect the runtime since one can do arithmetic in exponentially
large fields in polynomial time. It is possible to get a polynomial dependence on the
degree. We have not elaborated on this to preserve simplicity of analysis but we provide
a sketch of an argument to reduce the field size in Appendix C.

1.2 Techniques and proof overview
We follow the meta framework of [22, 7] for designing learning algorithms for arithmetic
circuits in the non-degenerate case via lower bounds. We note that while the meta framework
is quite general, still a lot of technical work is needed to carry it out for a particular circuit
class if one has lower bounds for that class. The same holds for this paper. We will not go
into the full generality of the framework and refer the reader to the exposition in [7]. Instead,
we will explain the details for our special case.

APPROX/RANDOM 2022



21:4 Learning Generalized Depth Three Arithmetic Circuits in the Non-Degenerate Case

Let us first see how one would prove a lower bound (on the number of summands s)
for the model of generalized depth three circuits. Consider the set of all partial differential
operators of order k i.e. L = ∂ = k

x . These are linear maps from F[x]d to F[x]d−k, where F[x]t
denote the ring of homogeneous degree t polynomials in F[x]. Note that

dim(⟨L ◦ Ti⟩) ≤
(

m + k − 1
k

)
,

if Ti is of the form gi(ℓi1, . . . , ℓim). This is easy to verify if Ti were equal to gi(x1, . . . , xm).
Then one can use the fact that the dimension of the partial derivative space doesn’t change
upon an invertible linear transformation of the variables. Also note that

⟨L ◦ f⟩ ⊆ ⟨L ◦ T1⟩ + · · · + ⟨L ◦ Ts⟩ (1)

dim(⟨L ◦ f⟩) ≤
s∑

i=1
dim(⟨L ◦ Ti⟩) ≤ s

(
m + k − 1

k

)
.

It is not too hard to design an f for which dim(⟨L ◦ f⟩) ≈
(

n+k−1
k

)
(when k ≤ ⌊d/2⌋) and

for such an f we get a lower bound ≈ (n/m)k. We can choose k = ⌊d/2⌋ to get the highest
lower bound.

It is natural to wonder what is the connection to learning, if there is any at all. Consider
Equation 1. One can hope that in the generic case, one would get

⟨L ◦ f⟩ = ⟨L ◦ T1⟩ ⊕ · · · ⊕ ⟨L ◦ Ts⟩. (2)

That is the inclusion becomes an equality and the sum becomes a direct sum. Furthermore,
let us assume that it holds for L′ = ∂

= (k+1)
x as well. That is,

⟨L′ ◦ f⟩ = ⟨L′ ◦ T1⟩ ⊕ · · · ⊕ ⟨L′ ◦ Ts⟩. (3)

So we have U := ⟨L ◦ f⟩, V := ⟨L′ ◦ f⟩ and the linear maps ∂=1
x from U to V . Let

Ui := ⟨L ◦ Ti⟩ and Vi := ⟨L′ ◦ Ti⟩. Note that the linear maps ∂=1
x map Ui into Vi. So one is

naturally led towards the following vector decomposition problem.

▶ Problem 3 (Vector space decomposition). Given the triple (M, U, V ) consisting of vector
spaces U and V and a set of linear maps M from U to V , decompose U and V as

U = U1 ⊕ · · · ⊕ Us V = V1 ⊕ · · · ⊕ Vs

s.t. ⟨M ◦ Ui⟩ ⊆ Vi for all i ∈ [s].

For our setting, one such decomposition is described in Equations (2) and (3). Once one
has access to Ui’s (black-box access to a basis), it is not hard to obtain black-boxes for the
Ti’s. So the only thing remains to prove is the uniqueness of vector space decomposition
(in addition to (2) and (3) themselves). There are many efficient algorithms to solve the
vector space decomposition problem. Please refer to Appendix A for specialized algorithms
that work for our setting, and [7] for a thorough discussion on the general problem and
related work. Let us now describe our approaches to prove Equations (2) and (3) and also
the uniqueness of decomposition.

For proving uniqueness of decomposition, we employ the use of the notion of an adjoint
algebra, following [7]. The adjoint algebra essentially captures “homomorphisms” of the
triple (M, U, V ). That is,

Adj(M, U, V ) = {(D, E) : D : U → U, E : V → V linear maps and LD = EL ∀ L ∈ M}
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Suppose the triple (M, U, V ) admits a vector space decomposition U = U1 ⊕ · · · ⊕ Us,
V = V1 ⊕ · · · ⊕ Vs. Then the projection maps (ΠUi

, ΠVi
) (which are identity on Ui, Vi

respectively and map other vector spaces in the direct sum to 0) lie in the adjoint. We
say that the adjoint algebra is trivial if it is spanned by these projectors. It is not hard
to show that if the adjoint algebra is trivial, then the above vector space decomposition is
unique (Lemma 34). Note that one can always combine blocks in an arbitrary way, but the
decomposition is unique among all “finest” decompositions where one cannot decompose any
block further. So we are left with proving the uniqueness of the decomposition in Equations
(2) and (3). We prove that the adjoint algebra is trivial in this case (proof of Theorem 5)
using a non-degeneracy condition on the gi’s (Item 3 in Section 2.1; also see Section 3.3).

So now let us see how to prove Equations (2) and (3). Showing the direct sum U1 +
· · · + Us = U1 ⊕ · · · ⊕ Us (and the same for Vi’s) is done in a similar way to [22], Schwartz-
Zippel lemma yields the direct sum once one can show the existence of some set of linear
forms satisfying the direct sum property. This is done using a design construction based on
Nisan-Wigderson designs. This construction is inspired from [22] but more general. We differ
significantly from previous works [22, 7] in our technique for showing that U = U1 + · · · + Us.
The previous works relied on intricate design constructions to exhibit linear forms which
satisfy this property (followed by a use of Schwartz-Zippel lemma). For our setting, one can
get away with the above design based approach, but this can become more cumbersome and
challenging as the circuit models become more complicated. Hence, we devise a general way
of proving statements of the form

⟨L ◦ f⟩ = ⟨L ◦ T1⟩ + · · · + ⟨L ◦ Ts⟩

for f = T1 + · · · + Ts, which is conceptually more appealing. It is useful to have the linear
maps L from a subspace of the operators (so for our case think of L = ⟨∂ = k

x ⟩). Since

⟨L ◦ f⟩ ⊆ ⟨L ◦ T1⟩ + · · · + ⟨L ◦ Ts⟩,

it suffices to prove that ⟨L ◦ Ti⟩ ⊆ ⟨L ◦ f⟩ for all i. Let us consider the operators annihilating
a particular term Ti.

Lnull
i := {L ∈ L : L ◦ Ti = 0}

Now note that for any L ∈ ∩j ̸=iLnull
j , L ◦ f = L ◦ Ti. If the subspace of operators ∩j ̸=iLnull

j

was rich enough, at least to the extent relevant to Ti, then we would be done. We are able to
show this by moving to the duals of the vector spaces Lnull

i (with respect to an appropriate
bilinear form) and proving a direct sum property there (the proof of which turns out to be
almost identical to the proof we have for the direct sum of the Ui’s!). For more details, see
Section 2.

Comparison with previous works. Our work closely follows the papers [22, 7] on learning
arithmetic circuits in the non-degenerate case via lower bounds. However, there are substantial
differences as well. Firstly, as explained above, we devise a general technique for proving
statements of the kind ⟨L ◦ f⟩ = ⟨L ◦ T1⟩ + · · · + ⟨L ◦ Ts⟩. Secondly, ours is the first paper
that uses the full machinery of the learning from lower bounds framework in [22, 7]. In
[22], the framework was present in a rudimentary form and that made the analysis more
cumbersome. While the framework was fully laid out in [7], for their application of learning
sums of powers of low degree polynomials, they eventually implement a somewhat ad hoc
approach. Without this learning framework, it seems rather challenging to get such a general
result as in Theorem 1.

APPROX/RANDOM 2022
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1.3 Related work
[9] proved a lower bound for the more general model of generalized depth-four circuits
(bounded bottom-fanin). [17] study the worst case learning algorithms for a model which
is similar to our model in many ways, but their parameters are different (they also call
their model generalized depth three circuits). There has been a lot of work on worst case
reconstruction algorithms which includes reconstruction algorithms for the models of sparse
polynomials [25], read-once algebraic branching programs (ROABPs) [1, 24] and for models
with bounded top fan-in [23, 17, 11, 32, 2, 3].

In [10], a randomized polynomial-time proper learning algorithm was given for non-
degenerate3 multilinear formulas having fan-in two. A randomized polynomial-time proper
learning algorithm for non-degenerate regular formulas having fan-in two was given in [12].
An efficient randomized reconstruction for non-degenerate homogeneous ABPs of width at
most

√
n

2 is presented in [20]. [22] designed algorithms for learning non-degenerate depth
three circuits which is a special case of our model with the gi’s being a monomial. [7],
following [22], developed a meta framework for learning non-degenerate arithmetic circuits
via lower bounds. They implemented it to learn sums of powers of low degree polynomials in
the non-degenerate case.

As already mentioned, the problem of tensor decomposition is a special case for our
model. Tensor decomposition is widely studied in the machine learning community as well
(also known as CP decomposition), e.g. see the surveys [26, 4, 15]. Another kind of tensor
decomposition, Tucker decomposition is also widely studied, see Section 4 in [26]. Tensor
decomposition roughly corresponds to the m = 1 case in our model4 Tucker decomposition
roughly corresponds to s = 1 in our model.5 Given the wide variety of applications of these
two problems in machine learning, we hope that (noise-resilient versions of) our algorithms
will handle much more challenging problems in machine learning.

1.4 Roadmap of the paper
In Section 2, we present our algorithm for learning non-degenerate generalized depth three
circuits, the corresponding non-degeneracy conditions and the analysis of the algorithm
assuming the non-degeneracy conditions. In Section 3, we prove that the non-degeneracy
conditions are satisfied for random circuits. Section 4 contains the summary of the work and
some of the open problems that arise from this work. Section A contains some basic facts
about the vector space decomposition problem. Finally, Section B contains some facts about
how to perform linear algebra given black boxes.

2 The learning algorithm and its analysis

In this section, we describe our algorithm for learning non-degenerate generalized depth
three circuits and the analysis assuming the non-degeneracy conditions. Since we are aiming
for poly(s) time-complexity, we can assume that we know s. For a field F and d ∈ N, let
F[x]d denote the ring of homogeneous degree d polynomials in F[x]. Consider a homogeneous

3 The papers [10, 12] state the results for random formulas, but it is not difficult to state the non-degeneracy
conditions by taking a closer look at the algorithms.

4 Strictly speaking m = 1 would be symmetric tensor decomposition and exactly modeling general tensor
decomposition would require higher m but in spirit tensor decomposition is closer to the m = 1 case
than higher m.

5 Again, ignoring some symmetry considerations here.
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degree d polynomial f ∈ F[x]d which is computed by a homogeneous generalized depth three
circuit i.e., f = T1 + · · · + Ts, where Ti = gi(ℓi1, . . . , ℓim) for i ∈ [s]. Here ℓij ’s are linear
forms.

2.1 Non-degeneracy conditions
We impose the following non-degeneracy conditions on f (or more precisely the circuit
computing it):
1. For each i ∈ [s], the linear forms (ℓi1, . . . , ℓim) are linearly independent. Also the vector

spaces W
(d−k)
1 := F[ℓ11, . . . , ℓ1m]d−k, . . . , W

(d−k)
s := F[ℓs1, . . . , ℓsm]d−k form a direct sum

i.e.

W
(d−k)
1 + · · · + W (d−k)

s = W
(d−k)
1 ⊕ · · · ⊕ W (d−k)

s .

The same assumption for the vector spaces W
(d−k−1)
i ’s.

2. We will use ∂ = k to denote the set of order-k partial differential operators in the variables
x. Consider the vector spaces U := ⟨∂ = kf⟩, V := ⟨∂ = (k+1)f⟩, Ui := ⟨∂ = kTi⟩, Vi =
⟨∂ = (k+1)Ti⟩. We will assume that

U = U1 ⊕ · · · ⊕ Us

and

V = V1 ⊕ · · · ⊕ Vs.

3. For the polynomials gi ∈ F[z]d, z = (z1, . . . , zm), the triple
(

∂ = 1
z , ⟨∂ = k

z gi⟩, ⟨∂ = (k+1)
z gi⟩

)
has a trivial adjoint algebra for all i ∈ [s] (see Definitions 30 and 32). That is, if
D : ⟨∂ = k

z gi⟩ → ⟨∂ = k
z gi⟩ and E : ⟨∂ = (k+1)

z gi⟩ → ⟨∂ = (k+1)
z gi⟩ are linear maps s.t.

∂zj
D(p) = E(∂zj

p) for all j ∈ [m] and all p ∈ ⟨∂ = k
z gi⟩ , then D, E are both identity

maps (up to a scalar multiplication). Note that Corollary 39 implies that this condition
is preserved if we apply an invertible linear transformation to the z variables.

The algorithm is stated in Algorithm 1. We will need the following lemma in the proof of
the main theorem.

▶ Lemma 4. Let h ∈ F[x]d be a homogeneous degree d polynomial and ℓ1, . . . , ℓm ∈ F[x]1 be
linearly independent linear forms. Then h ∈ F[ℓ1, . . . , ℓm]d iff

∑n
j=1 αj∂xj

h(x) = 0 for all
α ∈ Fn s.t. ℓi(α) = 0 for all i ∈ [m].

Proof. Let ℓi =
∑n

j=1 ℓijxj . In one direction, suppose h ∈ F[ℓ1, . . . , ℓm]d so that h =
g(ℓ1, . . . , ℓm) for g ∈ F[z], z = (z1, . . . , zm). Then

n∑
j=1

αj∂xj
h(x) =

n∑
j=1

αj

m∑
i=1

ℓij∂zi
g(z)|z=(ℓ1,...,ℓm)

=
m∑

i=1
ℓi(α)∂zig(z)|z=(ℓ1,...,ℓm)

= 0

for all α ∈ Fn s.t. ℓi(α) = 0 for all i ∈ [m]. In the other direction, suppose
∑n

j=1 αj∂xj
h(x) = 0

for all α ∈ Fn s.t. ℓi(α) = 0 for all i ∈ [m]. Extend ℓ1, . . . , ℓm to a full basis of F[x]1, ℓ1, . . . , ℓn

(in an arbitrary way). We can write h as g(ℓ1, . . . , ℓn) for some g ∈ F[w], w = (w1, . . . , wn).
Our goal now is to prove that ∂wig(w) = 0 for all i ∈ {m + 1, . . . , n}. Now

APPROX/RANDOM 2022
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n∑
j=1

αj∂xj
h(x) =

n∑
j=1

αj

n∑
i=1

ℓij∂wi
g(w)|w=(ℓ1,...,ℓn)

=
n∑

i=1
ℓi(α)∂wi

g(w)|w=(ℓ1,...,ℓn).

For i ∈ {m + 1, . . . , n}, we can choose an α s.t. ℓj(α) = 0 for all j ̸= i and ℓi(α) ̸= 0. Then
from the assumption and the above calculation we get that ∂wi

g(w)|w=(ℓ1,...,ℓn) = 0. Since
ℓ1, . . . , ℓn are linearly independent, we get that ∂wig(w) = 0 for all i ∈ {m + 1, . . . , n}. ◀

Algorithm 1 Learning generalized depth three circuits.

Input: black-box access to an f ∈ F[x]d that is computed by a non-degenerate homogeneous
generalized depth three circuit i.e., f = T1 + · · · + Ts, where Ti = gi(ℓi1, . . . , ℓim) for i ∈ [s].
Output: s black-boxes B1, . . . , Bs such that there exists a permutation π : [s] → [s] s.t.
Bi provides black-box access to Tπ(i).
Subroutines:
1. Computing black-boxes for partial derivatives from the black-box for a polynomial.

(Fact 29)
2. Vector space decomposition (Algorithm 2 and Corollary 41).
Parameters: The order of partial derivatives: k.

1: Compute black-boxes for a basis of the vector spaces U := ⟨∂ = kf⟩ and V := ⟨∂ = (k+1)f⟩
using Subroutine 1.

2: Using Subroutine 2, obtain a vector space decomposition U = U ′
1 ⊕ · · · ⊕ U ′

s′ and
V = V ′

1 ⊕ · · · ⊕ V ′
s′ for the triple

(
∂ = 1, U, V

)
. If s′ ̸= s, then abort. Otherwise continue.

3: For each α s.t.
∑n

i=1 αi = k, write the corresponding differential operator acting on f ,
∂αf , as u′

α1 + · · · + u′
αs with u′

αi ∈ U ′
i (note that there is a unique such representation).

We only obtain black-boxes for the polynomials u′
αi’s. This step can be carried out using

Corollary 41.
4: The black-box Bi on input x will output (d−k)!

d!
∑

α

(
k

α1,...,αn

)
xα u′

αi(x).

The next theorem states the correctness of Algorithm 1 assuming the non-degeneracy
conditions.

▶ Theorem 5. Suppose the non-degeneracy conditions stated above are satisfied. Then
Algorithm 1 never aborts. Suppose B1, . . . , Bs be the black-boxes output by the algorithm.
Then there exists a permutation π : [s] → [s] s.t. Bi is a black-box for Tπ(i).

Proof. It suffices to prove uniqueness of decomposition for the triple
(
∂ = 1, U, V

)
(see

Definition 33). Assuming uniqueness of decomposition, s′ = s and there exists a permutation
π : [s] → [s] s.t. U ′

i = Uπ(i) and V ′
i = Vπ(i). Since the U ′

i ’s form a direct sum, there is a
unique way of writing each element u ∈ U as u = u′

1 + · · · + u′
s with u′

i ∈ U ′
i . For u = ∂αf ,

u = ∂αTπ(1) + · · · + ∂αTπ(s) is one such decomposition and hence the only one. Thus
u′

αi = ∂αTπ(i) in which case Bi computes the black-box for Tπ(i) by Lagrange’s formula,

h(x) = (d − k)!
d!

∑
α

(
k

α1, . . . , αn

)
xα ∂αh(x)

for a homogeneous degree d polynomial h.
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To prove uniqueness of decomposition, it suffices to prove that the adjoint algebra for the
triple

(
∂ = 1, U, V

)
is trivial because of Lemma 34. Consider linear maps D : U → U and

E : V → V s.t. ∂xj
D(u) = E(∂xj

u) for all u ∈ U . Then we need to prove that D(Ui) ⊆ Ui,
E(Vi) ⊆ Vi for all i ∈ [s] and that (D, E) are scalar multiples of identity when restricted to
(Ui, Vi) respectively. The latter follows from Item 3 in the non-degeneracy conditions, so we
only need to prove the former. To prove the former, consider (D, E) in the adjoint algebra.
Note that Ui ⊆ F[ℓi1, . . . , ℓim]d−k and Vi ⊆ F[ℓi1, . . . , ℓim]d−k−1. Hence if u ∈ Ui, then

n∑
j=1

αj∂xj u(x) = 0

for all α s.t. ℓi1(α) = · · · = ℓim(α) = 0, by Lemma 4. Because of the relation ∂xj
D(u) =

E(∂xj u), we get that
n∑

j=1
αj∂xj D(u)(x) = 0

for all α s.t. ℓi1(α) = · · · = ℓim(α) = 0. Hence by Lemma 4, we get that D(u) ∈
F[ℓi1, . . . , ℓim]d−k. Hence D(u) ∈ U ∩ F[ℓi1, . . . , ℓim]d−k = Ui (because of the direct sum
structure of the vector spaces F[ℓi1, . . . , ℓim]d−k in Item 1). This completes the proof that
D(Ui) ⊆ Ui. Now the space Vi has a basis which consists of a subset of polynomials from
∂βTi as β varies over monomials of degree k + 1. We can write ∂βTi as ∂xj

∂αTi for some
j ∈ [n] and some α of degree k. Then

E(∂βTi) = E(∂xj
∂αTi) = ∂xj

D(∂αTi).

Since D(∂αTi) ∈ Ui, we get that E(∂βTi) ∈ Vi. This completes the proof that E(Vi) ⊆ Vi. ◀

We will now proceed to proving Theorem 1.

Proof of Theorem 1. We will run Algorithm 1 on the given black-box with the parameter
k being set to ⌈ 2 log s

log n ⌉. Notice that, by Fact 29, the time complexity of subroutine 1 is
poly(dk, n) = poly(s, n). See Remark 6. Since Theorem 5 guarantees the correctness of our
output, we just have to verify its running time. Note that the time complexity of remaining
steps is poly(nk, s) = poly(n, s), which concludes the proof. ◀

3 Non-degeneracy of random circuits

In this section we will show that if n > (md)2, s ≤ nd/4 and k = ⌈ 2 log s
log n ⌉, then a random

(n, d, s, {gi}i∈[s]) homogeneous generalized depth three circuit is non-degenerate with high
probability. To better understand the regime of parameters, we record a few relations among
the parameters n, d, s and k in the following easy to verify remark.
▶ Remark 6. If s ≤ nd/4, md ≤

√
n and k = ⌈ 2 log s

log n ⌉ then k ≤ d/2 and
(

m+k−1
k

)
≤ ns.

We will proceed by showing that each of our non-degeneracy conditions is satisfied for
random circuits, and then the result will hold directly by the union bound. We also show
that (n, d, s, {gi}i∈[s]) homogeneous generalized depth three circuits are non-degenerate if the
gi’s belong to special polynomial families like Detd, Permd, IMMr,d, Symr,d and only ℓi,j ’s are
chosen randomly. This is because non-degeneracy condition 1 and 2 just depend6 on ℓi,j ’s

6 Strictly speaking, non-degeneracy condition 2 does depend on gi’s, but we show that it holds if we just
pick ℓi,j ’s randomly. See Lemma 16
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and non-degeneracy condition 3 depends on the gi’s, and we can show that aforementioned
polynomial families satisfy these mild technical conditions required to show non-degeneracy
condition 3.

3.1 Non-degeneracy of random circuits: Condition 1
Let’s begin by restating our first non-degeneracy condition for a generalized depth three
circuit

s∑
i=1

gi(ℓi,1, ℓi,2, . . . , ℓi,m).

Non-degeneracy condition 1. The vector spaces W
(d−k)
1 := F[ℓ11, . . . , ℓ1m]d−k, . . . ,

W
(d−k)
s := F[ℓs1, . . . , ℓsm]d−k form a direct sum i.e.

W
(d−k)
1 + · · · + W (d−k)

s = W
(d−k)
1 ⊕ · · · ⊕ W (d−k)

s .

And, the same assumption for the vector spaces W
(d−k−1)
i ’s.

We will show that if m ≤
√

n
t and s ≤ nt/2 then a random choice of {ℓi,j}(i,j)∈([s],[m]) sat-

isfies the equality
∑s

i=1 W
(t)
i = ⊕W

(t)
i . To show this we will need the notion of combinatorial

designs.

▶ Definition 7 (Nisan-Wigderson designs [29]). A family of sets A = {A1, . . . , As} is said to
be an (n, m, d) design if Ai ⊆ [n] with |Ai| = m for all i ∈ [s]. And, for i ̸= j, |Ai ∩ Aj | < d.

We will be using a standard construction of such designs based on the Reed-Solomon
codes.

▶ Lemma 8 (Explicit Design). Let m ≤
√

n. There exists an (n, m, d)-design {A1, . . . , As}
for s ≤ md.

▶ Lemma 9. Let S ⊆ F be a finite set. If m ≤
√

n
t and s ≤ nt/2 then for a random choice

of {ℓi,j}(i,j)∈([s],[m]) linear forms over S,

s∑
i=1

W
(t)
i = ⊕i∈[s]W

(t)
i

with probability at least 1 − s·(m+t−1
t )·t

|S| .

For proof of the above lemma see the full version.
As a direct consequence of Lemma 9 for t = d − k − 1 and t = d − k we get that the

non-degeneracy condition 1 holds with high probability.

▶ Corollary 10. If (md)2 ≤ n, k = ⌈2 log s
log n ⌉, s ≤ nd/4 and |S| ≥ poly(nd) then for a random

choice of {ℓi,j}(i,j)∈([s],[m]) linear forms over a set S,
∑s

i=1 W
(d−k)
i = ⊕i∈[s] W

(d−k)
i and∑s

i=1 W
(d−k−1)
i = ⊕i∈[s] W

(d−k−1)
i with probability 1 − o(1).

3.2 Non-degeneracy of random circuits: Condition 2
Our next non-degeneracy condition for f(x) =

∑s
i=1 gi(ℓi,1, ℓi,2, . . . , ℓi,m) requires that the

vector spaces U := ⟨∂ = kf⟩ and V := ⟨∂ = (k+1)f⟩ have a direct sum structure. That is,

U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs, (4)
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where Ui := ⟨∂ = kTi⟩ and Vi := ⟨∂ = (k+1)Ti⟩ where Ti := gi(ℓi,1, ℓi,2, . . . , ℓi,m). Note that
as Ui ⊆ W

(d−k)
i , the direct sum structure of W

(d−k)
i directly gives U1 + U2 + . . . + Us =

U1 ⊕ U2 ⊕ . . . ⊕ Us. Indeed for the regime of parameters we are interested in, W
(d−k)
i do have

a direct sum structure for random ℓi,j ’s by Lemma 9. Thus in order to show non-degeneracy
condition 2 for random circuits, it suffices to show

U = U1 + U2 + . . . + Us. (5)

Clearly, U ⊆ U1 + U2 + . . . + Us. To show the other direction, it suffices to show that
U ⊇ Ui for all i ∈ [s]. We show this via a novel technique of studying the space of partial
derivative operators (i.e. ⟨∂ = k⟩) themselves, as opposed to the space when they are applied
to a polynomial (i.e. ⟨∂ = kf⟩). Interestingly, our proof is very general and works for action
of any general linear operators on a space! Thus, we state and prove it in full generality and
later instantiate the setting needed for our work.

We start by elaborating on our abstract setting. Let f = T1 + T2 + . . . + Ts where
Ti ∈ Ci and L is a vector space of linear operators from F[x] to W . Here, Ci is a circuit
class consisting of polynomials in F[x]. Also, let B : L × L → F be a non-degenerate bilinear
form, that is for any non-zero u ∈ L there exists a v ∈ L s.t. B(u, v) ̸= 0. Furthermore, let
L⊥

i := {L ∈ L | Lh = 0, ∀ h ∈ Ci}. Using the bilinear product B and any subspace U of
L, we define U⊥B as the linear operators (in L) s.t. for all u ∈ U the bilinear product is 0.
Formally, U⊥B := {L ∈ L | ∀ u ∈ U, B(L, u) = 0}.

Our next lemma shows that under a direct sum structure of
∑

i∈[s]
(L⊥

i )⊥B , L(f) =
∑

i∈[s]
L(Ti).

▶ Lemma 11. Let L, B, f(x), and Ti’s be as defined above. If
∑

i∈[s]
(L⊥

i )⊥B = ⊕i∈[s](L⊥
i )⊥B

then L(f) =
∑

i L(Ti).

For proof of the above lemma see the full version.
For our application of showing U ⊃ Ui, we set L = ⟨∂ = k⟩, Ci is the class of polynomials

gi(ℓi,1, ℓi,2, . . . , ℓi,m) where gi is an m-variate degree d polynomial and ℓi,1, ℓi,2, . . . , ℓi,m are
random n-variate linear forms. Also, L⊥

i = D⊥
i := {D ∈ ⟨∂ = k⟩| Dh = 0, ∀h ∈ W

(d)
i }. Note

that in order to apply Lemma 11 in our setting, we have to come up with a non-degenerate
bilinear map B, s.t.

∑
i(D⊥

i )⊥B = ⊕i(D⊥
i )⊥B . Let’s first note that if (D⊥

i )⊥B does satisfy
the direct sum property then we are done! Indeed, on setting, L = ⟨∂ = k⟩ and L⊥

i = D⊥
i to

L(f) =
∑

i L(Ti) gives ⟨∂ = k(f)⟩ =
∑

i⟨∂ = k⟩(Ti), thus implying (5).
In the rest of the section, we will focus on coming up with a bilinear form and showing

that it is indeed non-degenerate. And later, via another application of Lemma 9, show the
direct sum structure of (D⊥

i )⊥B . For two polynomials f and g, define

B(f, g) := f( ∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
) · g.

This inner product among two polynomials is known as apolar inner product, and is a
fundamental notion with a lot of applications, see [30] and the references therein. It is easy
to see that B(ℓ1, ℓ2) = vℓ1 · vℓ2 ; where ℓ1(x), ℓ2(x) are two linear forms, vℓ1 , vℓ2 are canonical
vectors associated with them and vℓ1 · vℓ2 is the standard dot product among vectors. The
non-degenerate bilinear map needed for our purpose acts on L × L instead of polynomials as
defined above. But in our case L = ⟨∂=k⟩ is nothing but polynomials of degree k with ∂

∂xi

as variables, thus the definition of B extends naturally.
In order to show that our bilinear map is non-degenerate, it will be convenient to work

with an orthogonal basis of ℓi,j ’s. We will therefore need the following lemma.
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▶ Lemma 12. When char(F) ̸= 2, there exists an orthogonal basis of any finite dimensional
vector space over F with respect to any non-degenerate bilinear (dot) product.

For proof of the above lemma see the full version.
Let V be the space of some linear forms in F[x], then by the above lemma one can assume

that there exist an orthogonal basis of V as long as char(F) ̸= 2. Now, we will state an
observation on what is B(f, ·) when f and g are expressed as polynomials in an orthogonal
basis.

▶ Observation 13. If ℓ1(x), . . . , ℓn(x) is an orthogonal basis of F[x]1 then if g =
∑

α cα ℓα

and f =
∑

α dα ℓα are degree d polynomials. Then

B(f, g) =
∑

α

cα · dα α!.

Here α! =
∏

i∈[n]
αi! and α as an index varies over exponent vector of n-variate monomials of

degree exactly d.

The above observation follows directly by observing it when g is a monomial and extending
by linearity. Now, if char(F) > d or 0, then using this observation we directly get that B(f, g)
is non-degenerate.

▶ Lemma 14. The bi-linear map B(f, g) over F[x]d is non-degenerate if char(F) > d or 0.
That is for all non-zero g ∈ F[x]d there exist f ∈ F[x]d s.t. B(f, g) ̸= 0.

Proof. Let ℓ1(x), . . . , ℓn(x) be an orthogonal basis of F[x]1. Now, for any g =
∑

α cαℓα ̸= 0,
let αo be an exponent vector s.t. cαo

̸= 0. On choosing f = ℓαo we get B(f, g) = cαo
αo! ̸= 0

if char(F) > d or 0. ◀

3.2.1 Direct sum structure of (D⊥
i )⊥B

The only thing left to show non-degeneracy condition 2 is a direct sum structure on derivative
operators (D⊥

i )⊥B . We will first study the space D⊥
i , as it will help us show the required

direct sum structure. Let’s assume (WLOG) that ℓi,1, . . . ℓi,m, qi,1, . . . qi,n−m is an orthogonal
basis of Fn w.r.t. B. That is, for i ̸= j ⟨ℓ1,i, ℓ1,j⟩ = 0, ⟨ℓ1,i, q1,j⟩ = 0 and ⟨ℓ1,i, ℓ1,i⟩ ̸= 0.
Notice that,

D⊥
i ⊇ qi,1 · ⟨∂ = (k−1)⟩ + qi,2 · ⟨∂ = (k−1)⟩ + . . . + qi,n−m · ⟨∂ = (k−1)⟩. (6)

▷ Claim 15. Let char(F) > d or char(F) = 0, then W
(k)
i := F[ℓi,1, ℓi,2, . . . ℓi,m]k ⊇ (D⊥

i )⊥B .

Proof. For brevity we will denote the space (qi,1 · ⟨∂ = (k−1)⟩ + qi,2 · ⟨∂ = (k−1)⟩ + . . . + qi,n−m ·
⟨∂ = (k−1)⟩) by Q. We have that D⊥

i ⊇ Q, thus (D⊥
i )⊥B ⊆ Q⊥B . The proof concludes by

showing that Q⊥B = W
(k)
i . Clearly, Q⊥B ⊇ W

(k)
i . For the other direction, let p ∈ Q⊥B

s.t. p /∈ W
(k)
i . We can write, p = w + q where w ∈ W

(k)
i and q ∈ Q s.t. q ≠ 0. Now,

since p ∈ Q⊥B , B(p, q′) = 0 ∀q′ ∈ Q. Notice that for any q′ ∈ Q, B(w, q′) = 0. Thus,
B(p, q′) = B(q+w, q′) = B(q, q′). Now, just like in the proof of Lemma 14 we can choose q′ ∈ Q

s.t. B(q, q′) ̸= 0. That is, pick q′ to be any monomial in F[ℓi,1, ℓi,2, . . . ℓi,m, qi,1, . . . qi,m]d with
non-zero coefficient in q and by observation 13 we get that B(q, q′) ̸= 0. This implies p ∈ Q

and B(p, q′) ̸= 0 p(∂̄) · p(x̄) ̸= 0, thus contradicting p ∈ Q⊥B . ◁
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▶ Lemma 16. For homogeneous degree d polynomials {gi}i∈[s], let f =∑s
i=1 gi(ℓi,1, ℓi,2, . . . , ℓi,m) ∈ F[x]d and U := ⟨∂ = kf⟩, V := ⟨∂ = (k+1)f⟩, Ui := ⟨∂ = kTi⟩,

Vi = ⟨∂ = (k+1)Ti⟩. If char(F) > d or char(F) = 0, (md)2 ≤ n, k = ⌈2 log s
log n ⌉ and s ≤ nd/4

then for a random choice of {ℓi,j}(i,j)∈([s],[m]) linear forms over a set S ⊂ F such that
|S| ≥ poly(nd) , U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs with probability at least 1 − o(1).

Proof. By Lemma 9 we get that for a finite set S ⊆ F, if m ≤
√

n
d and s ≤ nd/4 then

for a random choice of {ℓi,j}(i,j)∈([s],[m]) linear forms over S,
∑s

i=1 W
(k)
i = ⊕W

(k)
i with

probability at least 1 − o(1). Now, since W
(k)
i has a direct sum structure, the same will

hold for their respective subspaces. Thus,
∑

i∈[s](D⊥
i )⊥B = ⊕i∈[s](D⊥

i )⊥B . Now, using
Lemma 11 with L = ⟨∂ = k⟩ and L⊥

i = D⊥
i := {D ∈ ⟨∂ = k⟩| Dh = 0, ∀h ∈ W

(d)
i } implies

U = U1 + U2 + . . . + Us. And, as Ui ⊆ W
(d−k)
i , the direct sum structure of W

(d−k)
i directly

gives U1 + U2 + . . . + Us = U1 ⊕ U2 ⊕ . . . ⊕ Us. Notice that, W
(d−k)
i have direct sum structure

by corollary 10 as m ≤
√

n
d and s ≤ nd/4. The proof for V = V1 ⊕ · · · ⊕ Vs is identical. ◀

3.3 Non-degeneracy condition 3: Adjoint algebra is trivial
We will start by restating non-degeneracy condition 3.

Non-degeneracy condition 3. For a generalized depth 3 circuit f =
∑s

i=1 gi(ℓi,1, ℓi,2, . . . , ℓi,m)

where gi ∈ F[z]d, z = (z1, . . . , zm), the triple
(

∂ = 1
z , ⟨∂ = k

z gi⟩, ⟨∂ = (k+1)
z gi⟩

)
has a trivial

adjoint algebra for all i ∈ [s]. That is, if D : ⟨∂ = k
z gi⟩ → ⟨∂ = k

z gi⟩ and E : ⟨∂ = (k+1)
z gi⟩ →

⟨∂ = (k+1)
z gi⟩ are linear maps s.t. ∂zj

D(p) = E(∂zj
p) for all p ∈ ⟨∂ = k

z gi⟩, then D, E are both
identity maps (up to a scalar multiple).

We will show this for random gi’s as well as various interesting polynomial families like
monomials, determinant, permanent, elementary symmetric polynomial and iterated matrix
multiplication. This is done by observing that under mild technical conditions on g, the
triple

(
∂ = 1

z , ⟨∂ = k
z g⟩, ⟨∂ = (k+1)

z g⟩
)

has a trivial adjoint algebra. Define {∂ = k
z g} := {∂ = k

m g |
∀ m degree k monomials in F[z]}. And, let var(f) denote the set of variables f depends on.
We start by stating our technical condition:

▶ Technical condition 17. Let g ∈ F[z]d, we need var(p) ̸= var(p′) for any non-zero
(and distinct) p, p′ ∈ {∂ = k

z g}. And all non-zero elements of {∂ = k+1
z g} to be F-linearly

independent.

▶ Lemma 18. Let g ∈ F[z]d that satisfies condition 17 and D : ⟨∂ = k
z g⟩ → ⟨∂ = k

z g⟩ and
E : ⟨∂ = (k+1)

z g⟩ → ⟨∂ = (k+1)
z g⟩ be two linear maps. If ∀j ∈ [m] and all p ∈ ⟨∂ = k

z g⟩,
∂zj D(p) = E(∂zj p) , then D(p) = cp · p for all p ∈ {∂ = k

z g} , where cp ∈ F which could
depend on p.

For proof of the above lemma see the full version.
Note that, the above lemma doesn’t imply that the adjoint algebra is trivial, as cpi could

possibly depend on gi. To show that the adjoint algebra is trivial, we need to prove that
cpi is the same constant for all pi’s. In order to do that we will need the following notion of
graph associated with a polynomial.

▶ Definition 19. For a polynomial g ∈ F[z]d, let Gk
g be the graph whose vertices are degree

k multilinear monomials m s.t. ∂=k
m g ̸= 0 and the edge set consist of pairs of monomials

(m1, m2) with ∆(m1, m2) = 2 and ∂=k+1
lcm(m1,m2)g ̸= 0. Here ∆(m1, m2) is the hamming

distance among the exponent vectors of m1 and m2.
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▶ Lemma 20. Let g ∈ F[z]d be a polynomial s.t. it satisfies condition 17. Additionally, if
Gk

g is connected, then the triple
(

∂ = 1
z , ⟨∂ = k

z g⟩, ⟨∂ = (k+1)
z g⟩

)
has a trivial adjoint algebra.

For proof of the above lemma see the full version.
It is an easy exercise to see that for a random multilinear g condition 17 is satisfied and

Gk
f is connected. We will now show the same holds for various polynomial families which

includes monomials, determinant, permanent, elementary symmetric polynomial and iterated
matrix multiplication. The argument for showing connectivity of Gk

g stems from this simple
observation.

▶ Observation 21. If m1 and m2 are degree k monomials with ∆(m1, m2) = δ and let m1 =
m(0), m(1), . . . , m(δ) = m2 be a path made of distance two monomials (i.e. ∆(m(i−1), m(i)) = 2
for i ∈ [δ]) from m1 to m2 s.t. ∂m̃(i)g ̸= 0 (m̃(i) := lcm(m(i), m(i+1))) then m1 and m2 are
connected.

▶ Lemma 22. If g is one of the following polynomials Detd, Permd (with 3k ≤ d); Symr,d,
monomial (with k + 1 < d) or IMMr,d (with 3k ≤ d) then Gk

g is connected and condition 17
is satisfied.

For proof of the above lemma, see the full version.

3.4 Adjoint algebra for random gi’s
We will now show that the adjoint algebra is trivial for random gi’s. This is done by showing
that the adjoint algebra is trivial if the space spanned by k-th order partial derivatives
applied to g have full dimension. Followed by observing that random gi’s have this property.

▶ Lemma 23. Let g ∈ F[z]d be a polynomial such that dim
(
⟨∂=k g⟩

)
=

(
k+m−1

k

)
. Also, let

Ug = ⟨∂ = kg⟩, Vg = ⟨∂ = k+1g⟩ and D : Ug → Ug and E : Vg → Vg be any linear maps. If for
all j ∈ [m] and p ∈ Ug, ∂zj

D(p) = E(∂zj
p), then D and E are identity maps up to a scalar

multiple. That is, the triple
(
∂ = 1, ⟨∂ = kg⟩, ⟨∂ = (k+1)g⟩

)
has a trivial adjoint algebra.

For proof of the above lemma see the full version.
We can instantiate the above lemma for random gi’s. Indeed, the condition

dim
(
∂ = (k) g

)
=

(
k+m−1

k

)
boils down to showing that the determinant of a matrix with di-

mension
(

k+m−1
k

)
is non-zero. And, there exist standard constructions of explicit polynomials

with this property (see [8]). Thus, via the Schwartz-Zippel lemma, we get the following
corollary.

▶ Corollary 24. For a random choice of degree d homogeneous polynomials {gi}i∈[s] over
a set S, the triple

(
∂ = 1

z , ⟨∂ = k
z gi⟩, ⟨∂ = (k+1)

z gi⟩
)

has a trivial adjoint algebra for all i ∈ [s],

with probability at least 1 − sd·(m+k−1
k )

|S| .

Now, we can combine corollary 10, 24 and Lemma 22, 16 to show that a random generalized
depth 3 circuit is non-degenerate with high probability.

▶ Lemma 25 (Random generalized depth 3 circuits are non-degenerate). Let C ≡
s∑

i=1
gi(ℓi,1, ℓi,2, . . . , ℓi,m) be a homogeneous generalized depth 3 circuit, where {gi}i∈[s] are

homogeneous degree d polynomials, and n ≥ (md)2. Suppose the coefficients of ℓi,j’s are
chosen uniformly and independently at random from a set S ⊂ F of size |S| ≥ poly(nd, s).
Additionally, suppose one of the following cases is true:
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1. gi’s belong to one of the polynomial families: Detd, Permd, IMMr,d, Symr,d, monomials
with s ≤ nd/6.

2. Coefficients of all gi’s are chosen uniformly and independently at random from S and
s ≤ nd/4.

Then, with probability 1 − o(1), C is non-degenerate.

The proof is immediate using union bound along with Remark 6 and hence omitted. As a
direct consequence of Lemma 25 and Theorem 5, we get the following theorem about learning
random generalized depth circuits.

▶ Theorem 26 (Learning random generalized depth 3 circuits). Let C ≡
s∑

i=1
gi(ℓi,1, ℓi,2, . . . , ℓi,m)

be a homogeneous generalized depth 3 circuit, where {gi}i∈[s] are homogeneous degree d

polynomials, and n ≥ (md)2. Suppose the coefficients of ℓi,j’s are chosen uniformly and
independently at random from a set S ⊂ F of size |S| ≥ poly(nd, s) and char(F) > d or
char(F) = 0. Additionally, suppose one of the following cases is true:
1. gi’s belong to one of the polynomial families: Detd, Permd, IMMr,d, Symr,d, monomials

with s ≤ nd/6.
2. Coefficients of all gi’s are chosen uniformly and independently at random from S and

s ≤ nd/4.
Then, given black-box access to C we can reconstruct it in randomized poly(n, m, d, s) time.

Note that, the m subsumes the dependence on r in the above theorem. Also, the
reconstruction algorithm of Theorem 26 is proper, i.e. it outputs a homogeneous generalized
depth 3 circuit.

3.5 From black-box access to learning generalized depth three circuits
Theorem 5 gives a black-box for each gi’s under the technical conditions discussed. It is
natural to ask if we can find ℓi,j ’s and a generalized depth 3 representation as well. This
is related to the well studied equivalence-testing problem, specifically to the search version
of it. The equivalence-testing question is the following: given polynomials f and g, find
an invertible linear transformation A on variables such that f = g(Ax), if such A exists.
Observe that if gi belongs to a family for which we can solve the equivalence-testing problem,
then we can find ℓi,j ’s as well. This follows directly by seeing each blackbox as an instance of
equivalence-testing (search version). Note that in our non-degenerate setting, ℓi,j ’s are linearly
independent for each i ∈ [s] thus satisfies the requirement that the linear transformation has
to be invertible. As a direct consequence of this we get the following corollary.

▶ Corollary 27. Suppose we are given black-box access to f , an n-variate, homogeneous degree
d polynomial computable by a generalized depth 3 circuit of size s, s.t. the non-degeneracy
condition 1, 2 and 3 hold. Additionally, if each gi belongs to a family of polynomials for
which there exist a poly(n, m, d) time equivalence-testing algorithm. Then there exist a
poly(s, n, d, m) time algorithm that learns a generalized depth 3 representation of f .

Note that if gi is just a monomial (the special case for depth 3 circuits) then equivalence-
testing follows directly from black-box factoring [16]. Hence, when gi’s are monomials the
previous corollary along with Lemma 22 (monomials satisfy non-degeneracy condition 3)
gives an algorithm for learning non-degenerate homogenous depth three circuits! Thus, our
result is truly a generalization of the result by [22].

In general, equivalence-testing is considered to be a very hard problem (see [19, 18])
but it has been solved in several interesting cases, we list some of them below. For ease of
representation, let us define some notation representing the complexity of the search version of
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the polynomial equivalence problem over a particular field. Given m, d, r ∈ N and black-box
access to an m-variate polynomial g of degree d, let EqvF(r, d, m, f) denote the randomized
time complexity of finding an invertible linear transformation A s.t. g(x) = f(Ax) if it exists,
otherwise output “no-solution”.

▶ Theorem 28. Following results are known for equivalence-testing of special families of
polynomials:
1. EqvF(r, d, m, Symr,d) = poly(r, d, m), if char(F) > d or 0. See [19].
2. EqvF(r, d, m, Permr) = poly(r, d, m). See [19].
3. EqvF(r, d, m, Detr) = poly(r, d, m) if char(F) ∤ r(r − 1) or F = C . See [19, 6].
4. EqvF(r, d, m, IMMr,d) = poly(r, d, m) if char(F) = 0 or greater than dc (c some fixed

constant). See [21].

Thus, corollary 27 along with Theorem 28 and 26 gives a randomized poly(n, d, m, s)-time
algorithm that outputs a generalized depth three representation, assuming ℓi,j ’s are chosen ran-
domly, gi’s belong to one of the polynomial families: Detd, Permd, IMMr,d, Symr,d, monomials
and the corresponding assumptions on F holds.

4 Conclusion and open problems

We design an algorithm for learning generalized depth three circuits in the non-degenerate
case. We follow the learning from lower bounds framework of [22, 7] and design new tools
for proving that non-degeneracy conditions hold for random circuits, which could be useful
for other such problems. Our model captures widely applicable problems such as tensor
decomposition and Tucker decomposition as special cases. We are hopeful that our algorithms
will find powerful applications in machine learning. We list some of the most interesting
open problems next.

1. Going beyond tensor decomposition. Can we capture more general and powerful
problems in machine learning via the model of generalized depth three circuits?

2. Making the algorithms noise-resilient. Can we make our algorithms robust to noise?
That is, if one is given (explicitly or black box access) f(x) =

∑s
i=1 gi(ℓi1, . . . , ℓim)+E(x),

for some error term E(x), can we approximately recover the summands? Such a noise-
resilient version is relevant for machine learning applications. While our algorithm may
seem too algebraic to be made robust, it is in fact linear algebraic and there is a good
chance it can be made noise-resilient using standard tools such as SVD etc.

3. Learning other arithmetic circuit models. Can we learn other arithmetic circuit
models in the non-degenerate case, for which we already have lower bounds? Perhaps the
most appealing model to go for next is that of constant depth set-multilinear circuits.
There are even new lower bounds for this model now [28].
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A Adjoint algebra and vector space decomposition

In this section, we prove some basic facts about the adjoint algebra and vector space
decomposition, for completeness. We will start by stating that we can compute black-box
access to partial derivatives of f from black-box access to f .

▶ Fact 29. Given black-box access to a (n, d) polynomial f and a monomial xα, a black-box
access to ∂=k

α f can be computed in deterministic poly(n, dk) time.

This follows from the fact that black-box access to a first-order derivative of f can be
computed in deterministic polynomial time from black-box access to f .

Next, we define the adjoint algebra.

▶ Definition 30 (Adjoint algebra). Consider a collection of linear maps L from vector space
U to vector space V (over a field F). The adjoint algebra for this collection of linear maps is
defined as follows:

Adj(L, U, V ) = {(D, E) | D : U → U, E : V → V are linear maps s.t. LD = EL for all L ∈ L}.

Next we define the notion of a vector space decomposition.

https://doi.org/10.1109/FOCS.2019.00053
https://doi.org/10.1109/FOCS.2019.00053
http://arxiv.org/abs/1611.01559
http://arxiv.org/abs/1611.01559
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▶ Definition 31 (Vector space decomposition). Consider a collection of linear maps L from
vector space U to vector space V . We say that U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs

is a vector space decomposition for the triple (L, U, V ) if L(Ui) ⊆ Vi for all i ∈ [s] (and
at least one of Ui, Vi is a non-trivial subspace). We say that the decomposition is further
indecomposable if the triples (L, Ui, Vi) are indecomposable for all i.

The next definition is about when the adjoint algebra is trivial.

▶ Definition 32 (Trivial Adjoint algebra). Consider a collection of linear maps L from vector
space U to vector space V . Also consider a decomposition, U = U1⊕· · ·⊕Us, V = V1⊕· · ·⊕Vs

that is further indecomposable. We say that the adjoint algebra is trivial if

Adj(L, U, V ) = {(D, E) : ∃scalars λ1, . . . , λs s.t. D|Ui
= λi1Ui

, E|Vi
= λi1Vi

for all i ∈ [s]}.

Next we define what we mean by uniqueness of decomposition.

▶ Definition 33 (Uniqueness of decomposition). Consider a collection of linear maps L
from vector space U to vector space V . Also consider a decomposition, U = U1 ⊕ · · · ⊕ Us,
V = V1 ⊕ · · · ⊕ Vs that is further indecomposable. We say that the decomposition is unique if
for any other further indecomposable decomposition, U = U ′

1 ⊕ · · · ⊕ U ′
s′ , V = V ′

1 ⊕ · · · ⊕ V ′
s′ ,

it turns out that s = s′ and there exists a permutation π : [s] → [s] s.t. U ′
i = Uπ(i) and

V ′
i = Vπ(i) for all i ∈ [s].

The next lemma states the uniqueness of decomposition in the case when the adjoint
algebra is trivial. The uniqueness of decomposition holds in a much more general setting by
a reduction to the Krull-Schmidt theorem (see [7]) but here we only focus on a special case
that is relevant to us.

▶ Lemma 34. Consider a collection of linear maps L from vector space U to vector space V .
Also consider a decomposition, U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs that is further indecom-
posable. Suppose the adjoint algebra is trivial. Then the above is the unique decomposition
that is further indecomposable.

For proof of the above lemma see the full version.
Next we state an algorithm for vector space decomposition. While an algorithm in a

much more general setting follows from known algorithms for module decomposition (see [7]),
the algorithm we state here has the advantage that it is simpler and works for large enough
fields (as opposed to algebraically closed fields). This algorithm is also present in [7] but not
in a very explicit form, so we restate it here for completeness as well.

▶ Lemma 35. Algorithm 2 with parameter ℓ computes the correct decomposition when the
adjoint algebra is trivial, with probability at least 1 −

(
s
2
)
/ℓ.

Proof. Since the adjoint algebra is trivial,

Adj(L, U, V ) = {(D, E) : ∃ λ1, . . . , λs s.t. D|Ui
= λi1Ui

, E|Vi
= λi1Vi

for all i ∈ [s]}

Let (λ(j)
1 , . . . , λ

(j)
s ) be the tuple corresponding to (Dj , Ej). Then

D′|Ui
=

 s∑
j=1

µjλ
(j)
i

1Ui
.
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Algorithm 2 Vector space decomposition when adjoint algebra is trivial.

Input: Set of linear maps L between vector spaces U and V s.t. the triple (L, U, V ) admits
a further indecomposable decomposition U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs. Also the
adjoint algebra is trivial.
Output: s vector spaces U ′

1, . . . , U ′
s s.t. there exists a permutation π : [s] → [s] s.t.

U ′
i = Uπ(i).

Subroutine: Diagonalizing a diagonalizable linear map D : U → U .
Parameters: Randomness parameter ℓ.

1: Compute a basis (D1, E1), . . . , (Ds, Es) of the adjoint algebra Adj(L, U, V ) (this is a
system of linear equations). (If dimension is not s, then abort).

2: Pick µ1, . . . , µs uniformly at random from a set of size ℓ. Set D′ = µ1D1 + · · · µsDs.
3: Compute the eigenvalues of D′. If it has s distinct eigenvalues, call them λ1, . . . , λs. If

not (or it is not diagonalizable), abort.
4: Set U ′

i to be the eigenspace of D′ corresponding to λi.

We know that the vectors (λ(j)
1 , . . . , λ

(j)
s ), for j ∈ [s], are linearly independent. Hence the

vectors (λ(1)
i , . . . , λ

(s)
i ), for i ∈ [s], are also linearly independent. Hence for i ≠ i′, the linear

polynomial (in the µj ’s)
∑s

j=1 µj(λ(j)
i − λ

(j)
i′ ) is non-zero and hence if the µj ’s are chosen at

random from a set of size ℓ, then with probability at least 1 − 1/ℓ,

s∑
j=1

µj(λ(j)
i − λ

(j)
i′ ) ̸= 0.

By a union bound, with probability at least 1 −
(

s
2
)
/ℓ, for any i ̸= i′,

s∑
j=1

µj(λ(j)
i − λ

(j)
i′ ) ̸= 0.

Thus there are s distinct eigenvalues of D′, one each corresponding to the eigenspace Ui.
This completes the proof. ◀

We next define the concept of isomorphism between tuples (L, U, V ) and (L′, U ′, V ′), and
relate the adjoint algebras for isomorphic tuples.

▶ Definition 36 (Isomorphic tuples). We say that (L, U, V ) and (L′, U ′, V ′) are isomorphic
if there is an invertible linear transformation ϕ : ⟨L⟩ → ⟨L′⟩ and invertible linear maps
T : U → U ′, S : V → V ′ s.t. ϕ(L)T = SL for all L ∈ L.

▶ Proposition 37 (Adjoint algebras under isomorphism). Let (L, U, V ) and (L′, U ′, V ′) be
isomorphic tuples. Then (D, E) ∈ Adj(L, U, V ) iff (TDT −1, SES−1) ∈ Adj(L′, U ′, V ′).

Proof. It suffices to prove one direction because of symmetry. Suppose (D, E) ∈ Adj(L, U, V )
i.e. LD = EL for all L ∈ L.Then

ϕ(L)TDT −1 = SLDT −1 = SELT −1 = SES−1ϕ(L)

for all L ∈ L. Since {ϕ(L)}L∈L span ⟨L′⟩, we get that L′TDT −1 = SES−1L′ for all L′ ∈ L′.
That is (TDT −1, SES−1) ∈ Adj(L′, U ′, V ′). ◀
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This yields the following corollary:

▶ Corollary 38. Let (L, U, V ) and (L′, U ′, V ′) be isomorphic tuples. Then Adj(L, U, V ) is
trivial iff Adj(L′, U ′, V ′) is trivial.

Next we state an instantiation of the above corollary which we need for our analysis.

▶ Corollary 39. Let g ∈ F[z]d, z = (z1, . . . , zm). Also h = g(ℓ1, . . . , ℓm), where ℓ′
is linearly

independent linear forms in the z variables. Then Adj
(

∂ = 1
z , ⟨∂ = k

z g⟩, ⟨∂ = (k+1)
z g⟩

)
is trivial

iff Adj
(

∂ = 1
z , ⟨∂ = k

z h⟩, ⟨∂ = (k+1)
z h⟩

)
is trivial.

For proof of the above lemma see the full version.

B Linear algebra with black boxes

In Algorithm 1, we need to perform linear algebra given black boxes for polynomials. We
give references for how to do this here. We will need the following lemma from [18].

▶ Lemma 40 (Section A.1 in [18]). Given black boxes for the polynomials f1, . . . , fℓ ∈ F[x]d,
there is a randomized poly(n, ℓ, d) time algorithm that computes a basis for the following
vector space

(f1, . . . , fℓ)⊥ := {(α1, . . . , αℓ) :
ℓ∑

i=1
αifi = 0}.

In particular, we get the following corollary.

▶ Corollary 41. Given black boxes for the polynomials f1, . . . , fℓ ∈ F[x]d which are linearly
independent and for a p ∈ F[x]d which linearly depends on f1, . . . , fℓ, there is a randomized
poly(n, ℓ, d) time algorithm that computes β1, . . . , βℓ s.t.

p =
ℓ∑

i=1
βifi.

Using Corollary 41, one can compute the matrices corresponding to the linear maps L in
Algorithm 2 if one is given only black boxes for bases of U and V . One can also carry out
the Step 3 in Algorithm 1 using Corollary 41.

C Reducing the field size

In this section, we provide a sketch of how to reduce the field size in Theorem 1. For this, we
will have to change the non-degeneracy conditions slightly. We state the new non-degeneracy
conditions next for the circuit f =

∑s
i=1 gi(ℓi1, . . . , ℓim).

1. For each i ∈ [s], the linear forms (ℓi1, . . . , ℓim) are linearly independent. Let us denote
by di,k := dim

(
∂ = k

z gi(z)
)
. Consider the vector spaces U := ⟨∂ = kf⟩, V := ⟨∂ = (k+1)f⟩

(here the partials are w.r.t. the x variables). We impose dim(U) =
∑s

i=1 di,k and
dim(V ) =

∑s
i=1 di,k+1.

2. We impose that Adj(∂ = 1, U, V ) is trivial i.e. dim
(
Adj(∂ = 1, U, V )

)
= s.

3. This is the same as the Item 3 in Section 2.1.
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Let us first compare these conditions with the conditions in Section 2.1. It can be verified
that Item 1 is the same as U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs i.e. Item 2 in Section
2.1. Item 2 here is new and assuming this implies uniqueness of decomposition and this can
be used directly in the proof of Theorem 5 (instead of Item 1 in Section 2.1).

We now sketch the argument on why random ℓi,j ’s would satisfy these conditions. In
Sections 3.1 and 3.2, we provide a particular setting of ℓi,j ’s s.t. Items 1 and 2 in Section 2.1)
are satisfied. These imply that Items 1 and 2 stated here are satisfied (for Item 2, one
would need to combine the proof of Theorem 5 and Item 3). So we just need the Schwartz-
Zippel argument. First consider Item 1. The condition about U , for example, is about the
rank of a matrix whose dimensions are

(
n+k−1

k

)
×

(
n+d−k−1

d−k

)
and entries are homogeneous

polynomials of degree k in the coefficients of ℓi,j ’s. We know that the rank is always atmost
D :=

∑s
i=1 di,k and also that the rank is equal to D for a particular setting of ℓi,j ’s. This

implies the existence of a D × D minor which has full rank for a particular setting of ℓi,j ’s.
Hence by Schwartz-Zippel lemma, we get that this minor is full rank for a random choice of
ℓi,j ’s if the field size is atleast poly(D, k) = poly(s

(
m+k−1

k

)
, k) which is poly(n, d, s) since we

choose Θ(log(s)/ log(n)).
Regarding the condition on the adjoint, note that adjoint is the solution to a linear

system of equations. Hence dim
(
Adj(∂ = 1, U, V )

)
= s is equivalent to the corank of a

matrix being atmost s (it is atleast s by definition). The dimensions of the matrix are
(dim(U)2 + dim(V )2) × (n · dim(U) · dim(V )) and the entries are homogeneous polynomials
of degree O(k) in the coefficients of ℓi,j ’s. Again here the Schwartz-Zippel argument can be
carried out over a field of size poly(dim(U), dim(V ), n, k) which is poly(n, d, s) because of
the choice of k.
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