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Abstract
We study the journey planning problem for fully multimodal networks consisting of public transit
and an arbitrary number of non-schedule-based transfer modes (e.g., walking, e-scooter, bicycle).
Obtaining reasonable results in this setting requires multicriteria optimization, making the problem
highly complex. Previous approaches were either limited to a single transfer mode or suffered from
prohibitively slow running times. We establish a fully multimodal journey planning model that
excludes undesirable solutions and can be solved efficiently. We extend existing efficient bimodal
algorithms to our model and propose a new algorithm, HydRA, which enables even faster queries.
On metropolitan and mid-sized country networks with walking and e-scooter as transfer modes,
HydRA achieves query times of around 30 ms, which is fast enough for interactive applications.
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1 Introduction

In modern transportation systems, passengers can choose from a wide variety of different
transport modes, such as public transit, bike-sharing or e-scooters. Finding journeys that
reasonably combine these modes requires multimodal journey planning algorithms. While
efficient algorithms exist for each mode individually, the combined multimodal problem is
much more challenging [2]. Existing solutions are either prohibitively slow or can only handle
restricted scenarios (e.g., limiting the number of available modes). In this work we study
journey planning in a fully multimodal network consisting of public transit plus an arbitrary
number of non-schedule-based transfer modes (e.g., walking, cycling, e-scooter).

Related Work. State-of-the-art journey planning algorithms for public transit networks
include RAPTOR [6], Connection Scan Algorithm [7], and Trip-Based Routing (TB) [16].
These algorithms typically Pareto-optimize two criteria: arrival time and the number of
used public transit trips. While they support limited walking between nearby stations, they
cannot be considered fully multimodal. It has been shown that incorporating an unrestricted
transfer mode can significantly reduce travel times [15], but this comes at the cost of increased
discomfort for the passenger. In order to capture this tradeoff, it is necessary to add a third
criterion that measures the discomfort associated with using the transfer mode [11]. Without
this criterion, interesting alternatives that avoid excessive use of the transfer mode will not
be found [5]. When considering multiple transfer modes, a combined discomfort criterion
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for all modes is not sufficient, since some modes may not always be available (e.g., rented
bicycles), mode preferences vary between users, and users may have difficulties specifying
their preferences precisely [5]. Hence, multimodal journey planning requires one discomfort
criterion per transfer mode.

The most flexible multimodal multicriteria algorithm is MCR [5], an extension of
RAPTOR. It supports an arbitrary number of transfer modes and criteria, but becomes
prohibitively slow in complex scenarios. This is for two reasons: Firstly, the number of
Pareto-optimal solutions exhibits superlinear growth in the number of criteria. Secondly,
the transfer modes are explored using Dijkstra’s algorithm [8], which is comparatively slow.
Heuristics for MCR offer acceptable query speed but miss relevant journeys.

The first problem can be solved by computing the restricted Pareto set [4], which excludes
uninteresting journeys from the full Pareto set and can be computed quickly with a variant
of RAPTOR called BM-RAPTOR. The Dijkstra searches can be omitted by employing
ULTRA [3], a speedup technique which precomputes transfer shortcuts. In its original form, it
only supports bimodal networks (public transit plus one transfer mode) and two optimization
criteria (arrival time and number of trips). McULTRA [11] additionally optimizes the time
spent in the transfer mode as a third criterion. Multimodal restricted Pareto sets can be
computed with UBM-RAPTOR, which integrates BM-RAPTOR and McULTRA. Even faster
is UBM-TB, which replaces RAPTOR with McTB [11], an efficient three-criteria algorithm.
This allows the bimodal problem to be solved in milliseconds even on country-sized networks.

Contribution and Outline. We extend the results for bimodal networks in [11] to a more
general setting with an arbitrary number of transfer modes. Section 2 establishes basic
notation and introduces the algorithms which our work builds on. In Section 3, we establish
and discuss a realistic model for fully multimodal journey planning with an arbitrary number
of transfer modes, which we call the multimodal discomfort scenario. In addition to arrival
time and number of trips, we Pareto-optimize the time spent in each transfer mode as an
individual criterion. To ensure reasonable results, we exclude certain types of undesirable
solutions, such as journeys that switch between transfer modes in the middle of a transfer.

The multimodal discomfort scenario requires algorithms for an arbitrary number of criteria.
To enable efficient queries, we incorporate McULTRA transfer shortcuts. In Section 4, we
show that this can be done by running a three-criteria McULTRA shortcut computation
for each transfer mode individually, which only requires linear preprocessing effort in the
number of modes. We adapt existing query algorithms to our scenario in Section 5. This
enables the use of ULTRA-McRAPTOR to compute full Pareto sets and UBM-RAPTOR for
restricted Pareto sets. We do not adapt UBM-TB since there is no apparent way to extend
it to more than three criteria. Instead, Section 6 introduces UBM-HydRA, which combines
the advantages of RAPTOR and TB in scenarios with an arbitrary number of criteria. We
evaluate the performance of our algorithms on real-world multimodal networks with walking
and e-scooter as transfer modes in Section 7. On large metropolitan and mid-sized country
networks, UBM-HydRA achieves query times of around 30 ms, which is faster than the state
of the art by more than two orders of magnitude and enables interactive applications.

2 Preliminaries

Following the notation in [3, 13, 11], a multimodal network is a 5-tuple (S, T ,R, G,F)
consisting of a set of stops S, a set of trips T , a set of routes R, a directed, weighted transfer
graph G = (V, E), and a set of free transfers F . A stop v ∈ S is a location where passengers
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can board or disembark a vehicle. A trip T = ⟨ϵ0, . . . , ϵk⟩ ∈ T represents the ride of a
vehicle as a sequence of stop events. Each stop event ϵi represents a visit of the vehicle at
a stop v(ϵi) ∈ S with arrival time τarr(ϵi) and departure time τdep(ϵi). If passengers are
required to observe a departure buffer time before entering T via ϵi, this can be represented
by reducing τdep(ϵi) accordingly [17]. The i-th stop event of a trip T is denoted by T [i]. The
trips are partitioned into a set of routes R such that all trips of a route follow the same stop
sequence and no trip overtakes another. The unrestricted transfer graph G = (V, E) consists
of a set of vertices V with S ⊆ V, and a set of edges E ⊆ V × V. It can be traversed with
one of m different transfer modes. Traveling along an edge e = (v, w) in mode i requires
the transfer time τt(e, i). To ease notation, we represent all modes in a single graph instead of
using one graph per mode. If an edge e cannot be traversed with mode i, we set τt(e, i) =∞.
Additionally, the set F ⊆ S × S contains transfers which are “free” in the sense that the
time spent using them is not penalized via an optimization criterion. These represent short
transfers between nearby stops, e.g., to connect platforms belonging to the same station,
which are considered an unavoidable part of the public transit network. We require that F is
transitively closed and fulfills the triangle inequality. We also refer to the set of free transfers
as mode 0, but do not count it as one of the m transfer modes. The transfer time for a free
transfer e ∈ F is denoted by τt(e, 0).

Given source and target vertices s, t ∈ V, an s-t-journey represents the movement of a
passenger from s to t. A journey is an alternating sequence of trip legs (i.e., subsequences of
trips) and transfers (i.e., free transfers or paths in the transfer graph). It begins with an
initial transfer between s and the first trip leg, and ends with a final transfer connecting
the final trip leg to t. In between, trip legs are connected by intermediate transfers. Each
transfer is associated with the mode in which it is traversed. Switching between modes
within a transfer is not permitted. To represent the time overhead required by some modes
(e.g., renting and returning an e-scooter), a mode overhead ω(i) is added to the travel time
of each transfer in mode i ̸= 0.

Problem Statement. An s-t-journey J is evaluated with respect to m + 2 criteria: the
arrival time τarr(J) at t, the number of used trips |J |, and for each transfer mode, the transfer
time spent using that mode. A journey J weakly dominates another journey J ′ if J is not
worse than J ′ according to any criterion. If J is also strictly better than J ′ in at least one
criterion, we say that J strongly dominates J ′. For source and target vertices s, t ∈ V and a
departure time τdep, the objective is to compute a Pareto set of s-t-journeys that depart no
earlier than τdep. A full Pareto set J is a set of minimal size such that every feasible journey
is weakly dominated by a journey in J . An anchor Pareto set JA is a Pareto set for the two
criteria arrival time and number of trips. For each journey J ∈ J , its anchor journey A(J)
is the journey in JA with the highest number of trips not greater than |J |. Given a trip
slack σtr ≥ 1 and an arrival slack σarr ≥ 1, the restricted Pareto set [4] is defined as

JR := {J ∈ J | |J | ≤ |A(J)| · σtr and τarr(J)− τdep ≤ (τarr(A(J))− τdep) · σarr} .

This set contains all journeys from the full Pareto set whose arrival time and number of trips
do not exceed their respective slack compared to their anchor journey. Following [11], the
slacks are relative to the overall length of the journey rather than absolute values as in [4].

Algorithms. We conclude this section with an overview of the algorithms which our work
builds on. RAPTOR [6] Pareto-optimizes the two criteria arrival time and number of trips
in a public transit network with a transitively closed transfer graph. It operates in rounds,
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where round i finds journeys with i trips by extending Pareto-optimal journeys with i− 1
trips. Each round consists of two phases: The route scanning phase collects and scans all
routes that visit stops which were updated in the previous round. This is followed by the
transfer relaxation phase, which relaxes the outgoing transfer edges of all stops that were
updated in the route scanning phase.

McRAPTOR [6] is a variant of RAPTOR that can optimize an arbitrary number of
criteria. For each stop v and round i, it maintains a bag Bi(v) of labels representing Pareto-
optimal journeys ending at v. Additionally, a best bag B∗(v) contains all Pareto-optimal
labels across all rounds. When a new label is found at a stop v in round i, it is compared
to B∗(v). If it is not dominated, it is merged into B∗(v) and Bi(v). During the scan for a
route R, the algorithm maintains a route bag Broute of labels which represent journeys that
end with a trip of R. Associated with each label ℓ ∈ Broute is its active trip T (ℓ), which
is the trip of R used by the corresponding journey. When the route scan visits a stop v,
journeys exiting the route at v are found by merging Broute into Bi(v). Then, for each label
in Bi−1(v), the algorithm finds the earliest trip T that can be entered at v, creates a label
with active trip T and merges it into Broute.

MCR [5] extends McRAPTOR for multimodal networks, replacing the transfer relaxation
phases with multicriteria Dijkstra searches on the unrestricted transfer graphs. For each
mode j and each vertex v, the algorithm maintains a Dijkstra bag Bj

Dij(v). When a label is
added at a stop v in the route scanning phase, it is also merged into Bj

Dij(v) and inserted
into the Dijkstra priority queue. When the Dijkstra search adds a label to the Dijkstra
bag Bj

Dij(v) of a stop v in round i, the label is also inserted into Bi(v).
Restricted Pareto sets can be computed with BM-RAPTOR [4], which operates in three

steps: First, a forward pruning search is run using two-criteria RAPTOR. This computes the
anchor set and, for each stop v and round i, an earliest arrival time −→τarr(v, i). The backward
pruning search performs one backward RAPTOR search per anchor journey in order to
compute a latest departure time ←−−τdep(v, i) per stop v and round i. These are used for pruning
by the McRAPTOR main search. Let K denote the maximum number of trips among all
anchor journeys. Any journey that arrives at a stop v with i trips later than←−−τdep(v, K ·σtr− i)
is discarded because it cannot be extended to a journey that meets the slack requirements.

ULTRA [3, 13] enables public transit algorithms that normally require a transitively closed
transfer graph to operate on a bimodal network with a single unrestricted transfer graph. To
this end, it employs a preprocessing phase which computes transfer shortcuts representing all
required intermediate transfers. This is done by enumerating journeys with at most two trips.
Journeys with exactly two trips and no initial or final transfer are called candidates, while all
journeys with at most two trips are called witnesses. If a candidate is not dominated by any
witness, a shortcut representing its intermediate transfer is generated. The algorithm used
to enumerate candidates and witnesses resembles performing an MCR search restricted to
two rounds for each source stop s ∈ S and each possible departure time at s. Additional
pruning rules are integrated to make the search more efficient. ULTRA can compute two
varieties of shortcuts: stop-to-stop shortcuts connecting pairs of stops are sufficient for most
query algorithms, while TB [3] requires event-to-event shortcuts between pairs of stop events.
While ULTRA only optimizes arrival time and number of trips, McULTRA [11] additionally
optimizes transfer time as a third criterion. A (Mc)ULTRA query explores initial and final
transfers with Bucket-CH [10, 9], a technique for one-to-many searches on road networks.
Then, a public transit algorithm of choice is run, using the precomputed shortcuts as the
transfer graph. Integrating BM-RAPTOR with McULTRA yields UBM-RAPTOR [11],
which computes restricted Pareto sets in a network with an unlimited transfer graph.
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3 Multimodal Discomfort Scenario

To ensure that our algorithms compute reasonable solutions, we define the multimodal
discomfort scenario. We assume that public transit is generally the fastest and most
comfortable available mode. Its main disadvantage is limited availability in rural areas and
outside of peak hours. The transfer modes can bridge gaps in poorly serviced areas, but
using them incurs discomfort, either because they are cumbersome (e.g., walking) or costly
(e.g., e-scooter, bike-sharing). Accordingly, passengers prefer to use public transit unless
using a transfer mode improves the arrival time or reduces the number of trips. As discussed
in Appendix A, this assumption excludes car-based modes. We capture the discomfort
associated with a transfer mode by penalizing the time spent using it. This requires one
additional criterion per mode. It is well known [5, 1, 4] that full Pareto sets for more than
two criteria are extremely large and contain many uninteresting journeys which are small
variations of other solutions. In practice, it is not sensible to show more than a few journeys
to the user. This motivates the approach of defining a subset of the full Pareto set (e.g., the
restricted Pareto set) which excludes some, but not necessarily all undesirable journeys and
can be computed quickly. Relevant solutions can then be selected in a post-processing step.

Supporting multiple transfer modes introduces new types of undesirable journeys. Most
crucially, allowing mode changes within a transfer would vastly increase the number of
Pareto-optimal journeys. Already in a single transfer with two available modes, it is possible
to switch between the two modes at any vertex along the transfer, and none of these options
dominates the others. Besides bloating the Pareto set with nearly identical journeys, this
would lead to an infeasibly high number of ULTRA transfer shortcuts. In practice, such
journeys are not attractive because changing modes in the middle of a transfer is cumbersome.
We therefore prohibit mode changes in order to remove uninteresting solutions from the
Pareto set and enable ULTRA as a speedup technique. One pattern which could be considered
a desirable mode change is walking between public transit stops and pickup/dropoff locations
for rented vehicles, such as e-scooters or bicycles. We do not treat this as a mode change
but rather a part of the overall e-scooter/bicycle transfer. Access and egress for these more
complex modes can be modeled directly in the transfer graph. For our experiments, we
assume that rented vehicles can be picked up and dropped off at any location. Access and
egress are modeled via the mode overhead, which is added to every transfer in the respective
mode. This prevents solutions with unrealistically short scooter or bicycle transfers.

Finally, we discuss the inclusion of the free transfer mode, which is intended for short,
“unavoidable” transfers. These transfers are still penalized indirectly via the number of
trips, but the (negligible) time spent using them is not counted towards the walking transfer
time. Modeling these transfers as part of the walking mode would lead to nonsensical
Pareto-optimal journeys, in which very short transfers are circumvented via detours to other
stops where no such transfers are necessary.

4 Adapting McULTRA

MCR can be easily adapted for the multimodal discomfort scenario, as we will show in
Section 5. In order to obtain faster algorithms, we omit the costly Dijkstra searches by
integrating ULTRA. So far, the most general ULTRA variant is McULTRA [11], which
supports one transfer mode and optimizes transfer time as a third criterion. A naive approach
for generalizing this to the multimodal discomfort scenario would be to extend ULTRA
to support an arbitrary number of criteria. To show that this is not necessary, consider a
candidate Jc processed by McULTRA. By definition, Jc includes at most one transfer leg and
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Figure 1 Construction of the virtual transfer graph to represent mode overheads. Public transit
trips are drawn in black, transfers of mode j in purple.

therefore uses at most one transfer mode i. Witnesses with non-zero transfer time in any mode
besides 0 or i cannot dominate Jc. This means we can decompose the preprocessing into one
three-criteria McULTRA computation per transfer mode, making the overall preprocessing
effort linear in m. The McULTRA computation for mode i only considers transfers in modes 0
and i. It is guaranteed to find all relevant candidates, as well as all witnesses except those
that use transfers of length 0 in a mode other than 0 or i. It is reasonable to assume that if
a transfer leg of length 0 exists in any transfer mode, then a corresponding free transfer also
exists in F . If this is not the case, McULTRA will fail to find some witnesses and potentially
generate superfluous shortcuts, but queries will remain correct.

To explore mode 0, McULTRA relaxes the outgoing free transfers of all updated stops
before each Dijkstra search. Since F is already transitively closed, no stop-to-stop shortcuts
need to be computed for it. Accordingly, journeys with free intermediate transfers are
considered witnesses. Event-to-event shortcuts for F can be computed with two-criteria
ULTRA using (S,F) as the transfer graph. Mode overheads are incorporated by constructing
a virtual transfer graph, as shown in Figure 1. Each stop v is split into a route vertex vr

and a transfer vertex vt. The two vertices are connected by directed edges −→ev = (vr, vt)
with τt(−→ev , j) = ω(j) and←−ev = (vt, vr) with τt(←−ev , j) = 0. Each edge (v, w) ∈ E in the original
transfer graph is replaced with an edge (vt, wt) between the respective transfer vertices.

To ensure correctness, ULTRA requires that every query can be answered with a Pareto-
optimal journey J such that every candidate subjourney of J is also Pareto-optimal. As
shown by Figure 2, this is no longer the case if mode changes within a transfer are prohibited.
In this example, the candidate Jc is dominated by a witness Jw that begins with an initial
transfer in some mode i. However, adding a transfer in another mode j ̸= i as a prefix
induces a mode change in Jw, making it infeasible and leaving Jc as the only alternative.
ULTRA will not generate a shortcut for the intermediate transfer of Jc and therefore fail
to find journeys that include this transfer. However, note that this only affects journeys
which would not be Pareto-optimal if mode changes were allowed. Since journeys with mode
changes are undesirable, the same is true of the journeys which they dominate. Typically,
such journeys include superfluous trip detours which only serve to circumvent the forbidden
mode change. Hence, while ULTRA in the multimodal discomfort scenario cannot guarantee
to find all Pareto-optimal journeys, the missed journeys are known to be undesirable.

5 RAPTOR-Based Query Algorithms

Existing McRAPTOR-based algorithms, namely MCR, ULTRA-McRAPTOR and UBM-
RAPTOR, can be applied in the multimodal discomfort scenario with some minor changes.
First, because mode changes within a transfer are prohibited, the pruning rules of
McRAPTOR must be adjusted. Journeys that end with a trip may dominate journeys
that end with a transfer, but not vice versa. This is because a transfer in mode i cannot be
followed by a transfer in any mode other than i, whereas a trip can always be followed by a
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Figure 2 An example where McULTRA misses a necessary shortcut in the multimodal discomfort
scenario. Public transit trips are drawn in black, and transfers of two different modes in purple
and green, respectively. Journey J1 = ⟨u, v, w, x, y⟩ is optimal because the dominating journey J2 =
⟨u, v, v2, w2, x2, y2, y⟩ includes a prohibited mode change at v. However, the candidate J c =
⟨v, w, x, y⟩ for the shortcut (w, x) is dominated by the witness Jw = ⟨v, v2, w2, x2, y2, y⟩.

transfer. McRAPTOR can take this into account by maintaining two bags per vertex v and
round i: a trip bag Bi

trip(v) for labels ending with a trip, and a transfer bag Bi
trans(v) for

labels ending in a transfer. Accordingly, the algorithm also maintains two best bags B∗
trip(v)

and B∗
trans(v) per vertex v. When a route scan in round i generates a new label ℓ at a

vertex v, it is compared to B∗
trip(v), but not B∗

trans(v). If ℓ is not dominated by B∗
trip(v), it

is merged into Bi
trip(v). At the start of the transfer phase, Bi

trip(v) is merged into Bi
trans(v)

for each updated stop v. This represents a direct transfer between trips at v without using a
transfer mode. Finally, when a label at a vertex v is generated in the transfer phase, it is
compared to both B∗

trip(v) and B∗
trans(v). If it is not dominated by either bag, it is merged

into Bi
trans(v).

Incorporating free transfers and mode overheads is straightforward. Since the set F of
free transfers is transitively closed, no Dijkstra or Bucket-CH searches are required. It can be
explored simply by relaxing the outgoing transfers of all updated stops in each round, as done
by McRAPTOR. In ULTRA-based queries, the shortcuts already include the overheads. For
the initial and final transfers, they are added when evaluating the results of the Bucket-CH
searches. In MCR, the overhead is added when the Dijkstra searches are initialized: After
inserting a label into the trip bag Bi

trip(v) of a stop v in round i, the mode overhead ω(j) is
added before merging the label into the Dijkstra bag Bj

Dij(v) for mode j.
Computing restricted Pareto sets requires adapting the pruning searches of UBM-

RAPTOR to multiple transfer modes. Since they only optimize arrival time and number of
trips, a transfer is always traversed with the fastest available mode. Due to overheads and
limited availability of some modes, this is not necessarily the same mode for all transfers.
The pruning searches therefore identify the fastest mode for each transfer individually. For
initial and final transfers, this is done by merging the results of the Bucket-CH searches for
each mode, choosing the minimum distance for each stop. For the intermediate transfers, the
shortcut sets of all modes are merged, keeping the shortest shortcut in case of duplicates.

6 HydRA

In a bimodal scenario, event-to-event shortcuts enable the use of McTB, which is faster than
RAPTOR. McTB avoids maintaining Pareto sets by representing arrival time and number
of trips implicitly, leaving transfer time as the only remaining criterion. In the multimodal
discomfort scenario with an arbitrary number of criteria, this approach is no longer applicable.
We therefore propose HydRA (Hybrid Routing Algorithm), a new algorithm which is based
on McRAPTOR but incorporates some aspects of McTB. In particular, it uses event-to-event
shortcuts to reduce the search space and performs simpler, more cache-efficient route scans.
Since HydRA is intended for scenarios with four or more criteria, where full Pareto sets are
impractically large, we only design a variant for restricted Pareto sets, called UBM-HydRA.

ATMOS 2022
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Like UBM-TB [11], UBM-HydRA uses two-criteria TB to perform the pruning searches.
For each trip T and round i, these compute a forward reached index −→r (T, i) and a backward
reached index ←−r (T, i). The forward reached index −→r (T, i) indicates the index of the first
stop along T that is reachable from s with i trips. The backward reached index←−r (T, i) is the
index of the last stop along T which can be entered such that t is reachable with i additional
trips and without exceeding the slack of the respective anchor journey. Additionally, for each
stop v and round i, the forward search computes the earliest arrival time −→τarr(v, i) among all
journeys that arrive at v via a trip and use i trips. Unlike the UBM-TB backward search, the
UBM-HydRA backward search also computes an analogous latest departure time ←−−τdep(v, i).

The main search is based on McRAPTOR but incorporates event-to-event shortcuts.
Initial and final transfers are handled as in ULTRA-McRAPTOR. Route scans in round 0
are mostly unchanged but incorporate the backward reached indices for pruning. Consider
a label ℓ with active trip T (ℓ) that is generated when entering a route R at its j-th stop.
If ←−r (T (ℓ), K · σtr) < j holds, ℓ cannot be extended to an s-t-journey without exceeding the
slack values, so it is discarded. When ℓ exits the route at a stop v with index k, the label
that is merged into the trip bag of v stores its exit event T (ℓ)[k]. Transfers in round i are
explored as follows. For each updated stop v and each newly added label with exit event ϵ

in Bi
trip(v), all outgoing shortcuts of ϵ are relaxed. For each shortcut (ϵ, ϵ′), a new label ℓ

is created which stores ϵ′ as its entry event. As in UBM-RAPTOR, ℓ is discarded if its
arrival time exceeds ←−−τdep(v(ϵ′), K · σtr − i). Otherwise, it is merged into Bi

trans(v(ϵ′)). The
dominance rules of both trip and transfer bags are adjusted: if two labels are equivalent in
all criteria but have different exit/entry events, both are kept.

The route scans for all rounds i > 0 make use of the computed entry events. For each
updated stop v and each newly added label with entry event T [j] in Bi−1

trans(v), T is scanned.
The last stop index where T can be entered without exceeding the slack is k :=←−r (T, K ·σtr−i).
Accordingly, T can be exited at all stop indices x with j + 1 ≤ x ≤ k + 1. For each such stop
index x, a new label with exit event T [x] is created and merged into the trip bag of v(T [x]).

Shortcut Augmentation. To compute correct reached indices, the TB pruning searches
replace the event-to-event shortcuts E t with a set E t

aug of augmented shortcuts. We briefly
restate a simplified version of the augmentation step introduced in [11]: For two trips T1, T2 of
the same route R ∈ R, we write T1 ⪯ T2 if τarr(T1[i]) ≤ τarr(T2[i]) for every index i along R.
Trips from different routes are not comparable via ⪯. An augmented shortcut (Ta[i], Tb[j])
is added to E t

aug if there is a shortcut (Tc[i], Tb[j]) ∈ E t with Tc ⪰ Ta. Especially for fast
transfer modes, this augmented shortcut set can become impractically large. We therefore
propose a limited shortcut augmentation step: Let Tc be the trip directly succeeding Ta in
the respective route. Then an augmented shortcut (Ta[i], Tb[j]) is inserted if (Tc[i], Tb[j]) ∈ E t.
Even later trips Td of the route are not checked for potential shortcuts. Thus, if a Pareto-
optimal journey J uses the shortcut (Td[i], Tb[j]) and the pruning search reaches Ta[i], it may
fail to enter Tb at j. However, since Td[i] has a significantly higher arrival time than Ta[i],
J is likely to exceed the arrival slack of its anchor journey. Therefore, we expect the error
caused by limiting the shortcut augmentation to be very small.

Furthermore, we add a filtering step that removes superfluous shortcuts which are created
by the augmentation procedure as introduced in [11]. A shortcut (Ta[i], Tb[j]) is superfluous
if there is another shortcut (Ta[k], Td[ℓ]) such that k ≥ i, Td ⪯ Tb and ℓ ≤ j. Consider a TB
pruning search with reached indices r(·). For each trip T , the search upholds the invariant
that r(T ′) ≤ r(T ) for all T ′ ⪰ T . If the search reaches Ta[i], it will also reach T [k] and relax its
outgoing shortcuts, including (Ta[k], Td[ℓ]). Thus, Td[ℓ] is entered and r(Tb) ≤ r(Td) ≤ ℓ ≤ j

will hold after the search.
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Table 1 Sizes of the multimodal networks, including public transit, free transfers, unrestricted
transfer graphs, and transitive transfer graphs for evaluating the solution quality of McULTRA.

London Switzerland Stuttgart

Stops 19 682 25 125 13 584
Routes 1 955 13 786 12 351
Trips 114 508 350 006 91 304
Stop events 4 508 644 4 686 865 1 561 972
Free transfers 42 928 12 806 37 383
Vertices 181 642 603 691 1 166 604
Unrestricted edges 575 364 1 853 260 3 682 232
Transitive edges (Walking) 3 212 206 2 639 402 1 369 928
Transitive edges (Scooter) 2 374 294 2 432 366 1 558 234

7 Experiments

All algorithms were implemented in C++17 compiled with GCC 10.3.0 and optimization flag
-O3. Shortcut computations were run on a machine with two 64-core AMD Epyc Rome 7742
CPUs clocked at 2.25 GHz, with a turbo frequency of 3.4 GHz, 1024 GiB of DDR4-3200 RAM,
and 256 MiB of L3 cache. All other experiments were conducted on a machine with two
8-core Intel Xeon Skylake SP Gold 6144 CPUs clocked at 3.5 GHz, with a turbo frequency
of 4.2 GHz, 192 GiB of DDR4-2666 RAM, and 24.75 MiB of L3 cache.

Networks. We evaluated our algorithms on multimodal networks representing Switzerland,
Greater London and the greater region of Stuttgart, which were previously used to evaluate
ULTRA [3, 13] and McULTRA [11]. An overview of the networks is given in Table 1. The
public transit networks and free transfers for London and Switzerland networks were sourced
from Transport for London1 and a publicly available GTFS feed2, respectively. The Stuttgart
network was introduced in [14] and is based on proprietary data. To generate its free transfers,
we connected all stops within a geographical distance of up to 400 m and computed the
transitive closure. Unrestricted transfer graphs were taken from OpenStreetMap3, following
the methodology in [3, 13, 11]. We used walking and e-scooter as the available transfer
modes, assuming a constant speed of 4.5 km/h for walking and 15 km/h for scooter. We chose
mode overheads of 0 s for walking and 300 s for scooter. To evaluate the solution quality of
McULTRA, we compared it to using transitively closed intermediate transfer graphs, which
we created using the methodology described in [15]: We connected all pairs of stops whose
transfer time lies below a certain threshold with an edge and then computed the transitive
closure. As thresholds, we chose 9 min of walking and 3 min of scooter time for Stuttgart
and Switzerland, and 4 min of walking and 80 s of scooter time for London.

Preprocessing. Table 2 reports the results of the McULTRA shortcut computation, using
the same settings as in [11]. Because many short transfers are now covered by the free
transfer mode, the number of shortcuts per mode is slightly lower than in the bimodal setting.

1 https://data.london.gov.uk
2 https://gtfs.geops.ch/
3 https://download.geofabrik.de/
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Table 2 Multimodal McULTRA shortcut computation results. Times are formatted as h:mm:ss.

Network Variant Free Walking Scooter

Time # Shortcuts Time # Shortcuts Time # Shortcuts

London Stop – – 0:22:45 115 036 2:22:33 8 163 962
Event 0:00:27 10 404 923 0:29:33 11 422 382 2:36:58 126 877 333

Switzerland Stop – – 0:05:58 214 872 0:15:35 1 063 575
Event 0:00:09 5 884 998 0:07:09 13 193 976 0:17:44 26 446 770

Stuttgart Stop – – 0:03:46 110 199 0:09:57 739 022
Event 0:00:07 4 151 859 0:04:28 4 203 492 0:11:20 9 552 810

Table 3 Number |
−−→
E t

aug| of augmented forward shortcuts and |
←−−
E t

aug| of augmented backward
shortcuts. All values given in millions of shortcuts. Lim. refers to limited shortcut augmentation.

Network Lim. Free Walking Scooter

|
−−→
E t

aug| |
←−−
E t

aug| |
−−→
E t

aug| |
←−−
E t

aug| |
−−→
E t

aug| |
←−−
E t

aug|

London ◦ 33 36 31 36 1 545 1 643
• – – – – 223 220

Switzerland ◦ 13 14 44 44 157 155
Stuttgart ◦ 8 8 11 11 46 46

The preprocessing times are slightly higher because exploring the free transfer mode requires
additional time and incorporating the mode overheads increases the size of the network. The
number of augmented event-to-event shortcuts is listed in Table 3. As reported in [11], the
augmentation time is negligible compared to the shortcut computation time. For e-scooters
on the London network, the preprocessing time and the number of shortcuts are extremely
high. This is caused by the high number of Pareto-optimal labels per vertex bag. To reduce
this number, we implemented a heuristic version of McULTRA that discretizes the transfer
time criterion into buckets for the purpose of testing dominance. Let τt be the transfer time
of a label. Instead of using τt as the criterion for testing dominance, we use ⌊ τt

x ⌋, where x is
the bucket size. For our experiments, we set x = 300 s. As shown in Table 4, discretization
reduces the preprocessing time and the number of event-to-event shortcuts by a factor of 3.

Table 4 Impact of transfer time discretization on the McULTRA shortcut computation for
e-scooters on the London network. Times are formatted as h:mm:ss. |

−−→
E t

aug| and |
←−−
E t

aug| are the number
of augmented forward and backward shortcuts, respectively, measured in millions of shortcuts.

Variant Disc. Time # Shortcuts Full aug. Limited aug.

|
−−→
E t

aug| |
←−−
E t

aug| |
−−→
E t

aug| |
←−−
E t

aug|

Stop ◦ 2:22:33 8 163 962 – – – –
Stop • 0:43:33 3 971 836 – – – –
Event ◦ 2:36:58 126 877 333 1 545 1 643 223 220
Event • 0:48:03 48 942 757 585 637 84 82
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Table 5 Coverage of the exact Pareto sets by our algorithms for 10 000 random queries. ULTRA-
McRAPTOR is compared to the full Pareto set, all others to the restricted Pareto set. For each
metric, we report the mean coverage across all queries and the coverage of the 5th percentile. Disc.
refers to shortcut discretization.

Network Algorithm Disc. Exact coverage [%] Fuzzy coverage [%]

5th perc. Mean 5th perc. Mean

London

ULTRA-McRAPTOR ◦ 97.29 99.47 99.99 99.97
BM-RAPTOR ◦ 63.63 93.65 92.68 98.61
UBM-RAPTOR ◦ 100.00 99.74 100.00 99.95
UBM-RAPTOR • 93.02 98.93 99.98 99.94
UBM-HydRA ◦ 94.11 99.17 99.99 99.98
UBM-HydRA • 82.90 97.21 99.80 99.93

Switzerland

ULTRA-McRAPTOR ◦ 93.01 98.70 99.35 99.77
BM-RAPTOR ◦ 53.22 91.35 81.37 97.14
UBM-RAPTOR ◦ 95.13 99.28 99.98 99.94
UBM-HydRA ◦ 93.32 99.04 99.95 99.92

Stuttgart

ULTRA-McRAPTOR ◦ 83.09 96.39 94.34 99.06
BM-RAPTOR ◦ 52.85 91.74 81.43 97.29
UBM-RAPTOR ◦ 100.00 99.52 100.00 99.96
UBM-HydRA ◦ 69.98 96.16 99.95 99.78

Result Coverage. As shown in Section 4, McULTRA-based queries fail to find some Pareto-
optimal journeys which are dominated by journeys with mode changes. We already argued
that these journeys are undesirable. Nevertheless, we analyze the impact that their exclusion
has on the computed results by evaluating how well the exact Pareto set is covered by our
algorithms. We consider two coverage metrics. Exact coverage is the percentage of journeys
in the (full or restricted) Pareto set that are found by the algorithm, whereas fuzzy coverage
also accounts for similarity between journeys. If the algorithm does not find a journey J but
another journey J ′ that is almost as good or better in all criteria, we consider J well covered.
As in [5], we measure similarity using fuzzy logic. Given two parameters χ ∈ (0, 1) and ε > 0,
the fuzzy coverage of a journey J by another journey J ′ for a criterion c is defined as

cov(J, J ′) :=

exp
(

ln(χ)
ε2 (c(J)− c(J ′))2

)
if c(J) < c(J ′)

1 else.

The overall fuzzy coverage cov(J1, J2) is the minimum coverage across all criteria. The fuzzy
coverage of a journey J by a set of journeys J is cov(J,J ) := max

J′∈J
cov(J, J ′). Finally, the

fuzzy coverage cov(J ,J ′) of a set of journeys J by another set of journeys J ′ is the mean
coverage by J ′ across all journeys in J . Following [5], the fuzzy parameters (χ, ε) are set
to (0.8, 60 s) for arrival time, (0.1, 1) for number of trips, and (0.8, 300 s) for transfer time.

Coverage results are reported in Table 5. Limited shortcut augmentation did not affect
the results in any of our experiments. For full Pareto sets, ULTRA-McRAPTOR achieves
an exact coverage above 96% and a fuzzy coverage above 99%. For restricted Pareto sets,
UBM-RAPTOR achieves an exact coverage above 99% on all networks and nearly perfect
fuzzy coverage. UBM-HydRA exhibits slightly lower coverage because it uses event-to-event
shortcuts, which are more fine-grained and therefore more prone to missing journeys. In
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Table 6 Query performance for full Pareto sets, averaged over 10 000 random queries. Rnd. is
the number of performed rounds, while Jrn. refers to the number of computed journeys.

Network Algorithm Rnd. Jrn.
Time [ms]

Routes Transfers Total
Free Walking Scooter

London MCR 10.9 130.1 307.6 89.3 1 235.2 1 943.8 3 600.6
ULTRA-McRAPTOR 10.9 129.4 218.6 91.3 126.0 2 602.4 3 052.6

Switzerland MCR 18.5 209.4 1 785.3 101.4 3 874.0 4 462.8 10 264.0
ULTRA-McRAPTOR 18.5 206.2 1 641.6 119.2 449.4 1 528.4 3 775.0

Stuttgart MCR 12.0 215.3 1 249.2 343.3 6 605.8 8 259.3 16 481.3
ULTRA-McRAPTOR 12.0 206.9 1 005.3 414.9 579.1 2 686.6 4 701.4

stop-to-stop ULTRA, even if a candidate is missed, its shortcut is often represented by
another candidate which is found. This is less likely in the event-to-event variant. Still, on
London and Switzerland the exact coverage remains above 99% and the fuzzy coverage is
barely affected. The values are slightly lower for Stuttgart, but the fuzzy coverage remains
extremely high at 99.8%. Altogether, these results justify of our choice of prohibiting mode
changes in order to reduce the number of irrelevant solutions. While doing so introduces
some new, undesirable Pareto-optimal solutions, they are often discarded by McULTRA and
our experiments show that they are rare and well covered by other, more relevant solutions.

Another possibility to reduce the Pareto set and speed up queries would be to limit the
length of intermediate transfers. This would enable the use of a transitively closed transfer
graph and remove the need for a preprocessing step such as ULTRA. To demonstrate that
this negatively impacts the solution quality, we evaluated the coverage of BM-RAPTOR
using transitive intermediate transfers but unlimited initial and final transfers. The exact
coverage is still above 90% because most optimal journeys do not include long intermediate
transfers. Still, we observe a significant number of optimal journeys with long intermediate
transfers which are not well covered by other solutions with limited transfers.

On the London network, discretizing transfer time when testing dominance significantly
reduced the preprocessing time and the number of shortcuts. As expected, this noticeably
reduces the exact coverage, although it remains much higher than with transitive intermediate
transfers. The fuzzy coverage, however, remains excellent because missing shortcuts caused
by discretization are guaranteed to have similar alternatives.

Query Performance. We now evaluate the running times of our query algorithms, beginning
with ULTRA-McRAPTOR for full Pareto sets in Table 6. On Switzerland and Stuttgart,
ULTRA-McRAPTOR achieves a speedup of 3–4 over MCR. Since the performance gain of
ULTRA comes from speeding up the transfer phases, this is higher than the speedup of 2
observed in the bimodal scenario, where the transfer phase takes up a smaller share of the
running time. In the scooter mode, the speedup is limited due to the high number of stop-to-
stop shortcuts. For London, relaxing scooter shortcuts is in fact slower than a Dijkstra search,
causing the overall speedup to be marginal. Overall, the results demonstrate that computing
full Pareto sets is not practical due to the extremely high number of Pareto-optimal journeys.

We therefore investigate the performance for restricted Pareto sets, which is shown in
Table 7. The number of computed journeys is reduced to less than 30, which is manageable
for the algorithm but still more than can be shown to users. On Switzerland and Stuttgart,
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Table 7 Query performance for restricted Pareto sets with slack values σarr = σtr = 1.25, averaged
over 10 000 random queries. Rnd. is the number of performed rounds, while Jrn. refers to the
number of computed journeys. Disc. refers to shortcut discretization, Lim. to limited shortcut
augmentation.

Network Algorithm Disc. Lim. Rnd. Jrn. Time [ms]

Forward Backward Main Total

London

UBM-RAPTOR ◦ ◦ 2.2 25.4 60.3 12.3 41.3 113.8
UBM-RAPTOR • ◦ 2.2 25.4 33.9 7.3 26.1 67.3
UBM-HydRA ◦ ◦ 2.2 25.1 43.6 25.8 11.2 80.6
UBM-HydRA ◦ • 2.2 25.1 12.5 5.3 9.2 27.1
UBM-HydRA • • 2.2 24.9 9.3 3.6 7.4 20.3

Switzerland UBM-RAPTOR ◦ ◦ 3.5 27.0 28.8 4.3 22.5 55.6
UBM-HydRA ◦ ◦ 3.5 26.9 18.1 2.6 9.8 30.5

Stuttgart UBM-RAPTOR ◦ ◦ 2.6 18.0 22.2 5.4 22.0 49.5
UBM-HydRA ◦ ◦ 2.6 17.5 14.3 3.7 9.8 27.7

UBM-RAPTOR achieves a speedup of more than two orders of magnitude over MCR. On
London, the speedup is only 32, again due to the high number of scooter shortcuts.

HydRA significantly speeds up the main search due to its more efficient route scans.
Additionally, by using the more fine-grained event-to-event shortcuts, the number of explored
shortcuts per label is significantly reduced. For Switzerland and Stuttgart, the pruning
searches are also around 50% faster because they use TB instead of RAPTOR. On London,
this is not the case with full augmentation because the number of shortcuts becomes extremely
high. Limited augmentation solves this problem, improving the speedup over UBM-RAPTOR
to 4 without affecting the computed results. Shortcut discretization further improves the
query times by 41% for UBM-RAPTOR and 25% for UBM-HydRA, at the cost of a slight loss
in solution quality. Overall, the speedup of UBM-HydRA over MCR ranges from around 130
for London, where MCR performs the best, to 600 for Stuttgart. With query times of
around 30 ms, the performance is good enough for interactive applications.

8 Conclusion

We developed journey planning algorithms for fully multimodal networks with an arbitrary
number of transfer modes. To ensure reasonable results, we established the multimodal
discomfort scenario, which optimizes one discomfort criterion per transfer mode and prohibits
mode changes within a transfer. We showed that McULTRA can be adapted to this scenario
in a scalable fashion by preprocessing each mode independently. Besides adapting existing
query algorithms, we proposed HydRA, which carries over the advantages of TB into a
setting with an arbitrary number of criteria. Our experimental evaluation shows that our
algorithms achieve query times which are fast enough for interactive applications. Future
work could involve incorporating more complex transfer modes such as bike-sharing, which
require additional modelling [12]. Furthermore, HydRA is a promising candidate for efficiently
solving journey planning problems with other criteria, such as fare or vehicle occupancy.
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A Car-Based Modes

Car-based modes such as park and ride (i.e., using a private car for the first or last leg
of a journey), taxi or car-sharing do not fit the assumption of the multimodal discomfort
scenario that public transit is the fastest and most comfortable mode. Since these modes are
generally faster than using public transit, the solution that optimizes arrival time and number
of trips is usually a direct car journey. Since usage of the fastest mode is now penalized,
interrupting it in order to reduce car time always leads to a non-dominated solution. This
causes a combinatorial explosion in the number of optimal journeys, as observed previously
by Delling et al. [5] when including taxis in a multimodal network. The resulting journeys
tend to be undesirable combinations of long car rides and short public transit detours. In
practice, users are either willing to use a car for the entire journey (which yields a unimodal
journey planning problem) or they are only willing to use it in a very limited capacity. In
the latter case, there is no need for techniques designed for unrestricted transfer modes, such
as ULTRA. In fact, because using a car incurs a large time overhead (e.g., for hailing a ride),
short intermediate car transfers are typically not useful. Thus, cars should not be considered
a transfer mode but rather an access/egress mode that connects the source and target vertex
to the public transit network. Since such modes can be handled with existing techniques, we
consider them out of scope for this work.
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