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Abstract
Timetabling is a classical and complex task for public transport operators as well as for railway
undertakings. The general question is: Which vehicle is taking which route through the transportation
network in which order? In this paper, we consider the special setting to find optimal timetables for
railway systems under a moving block regime. We directly set up on our work of [8], i.e., we consider
the same model formulation and real-world instances of a moving block headway system. In this
paper, we present a repair heuristic and a lazy-constraint approach utilizing the callback features
of Gurobi, see [3]. We provide an experimental study of the different algorithmic approaches for
a railway network with 100 and up to 300 train requests. The computational results show that
the lazy-constraint approach together with the repair heuristic significantly improves our previous
approaches.
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1 Introduction

We consider the general timetabling problem GTTP presented in [8]. In this problem the
decisions to make are:

Which train request is cancelled and not routed?
Which route over time does a train take through the network to meet its requested time
intervals?
Where and how does overtaking take place, i.e., where does deceleration, waiting on a
side track, and acceleration take place?

The literature on timetabling is overwhelming as the numerous Chapters in [1] document,
see the surveys by [4] and [2] and the significant and recent works [5] and [6]. However, for
moving block systems, i.e., trains running in braking distance, less papers are published,
e.g., [9] and [8]. In this paper, we consider the model formulation presented in [8] without
modifications. We directly setup on the multi-layer graph structure based on a velocity
expansion and the definition of competitions in order to resolve conflicts between trains, i.e.,
by using disjunctive tandem and opposite headway constraints. We will give a very compact
presentation of the mixed-integer programming model in Section 2, see [8] for the details.
In the current follow-up paper, we exclusively focus on the solution methodology. The
contribution of this paper is to discuss and compare different algorithmic approaches that we
present in Section 3, i.e., using lazy-constraints and a primal repair heuristic. In particular,
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11:2 A Lazy-Constraint Approach to Timetabling

in Section 4 we show the effects of these enhancements on the entire solution process. We
provide computational results for a railway network with 100, 200 and 300 requested trains.
The results demonstrate that the new algorithmic add-ons halve the runtime on average and
allow to solve larger instances to optimality.

2 Model

Let us revive the notation used in [8] for the binary variables: ya, a ∈ A to represent routing
decision via arcs of the velocity-expanded graph D = (V, A), xr1≺r2

e for the order of two
trains r1, r2 on an infrastructure edge e, slacks u to allow cancelling train requests, and
the continuous variables t to model departure and arrival times. Let A, B, C, D, I, N, G be
appropriate matrices and d, f, g vectors, respectively, to represent the MIP model for the
GTTP defined in [8]. A compact MIP formulation is then:

min cT
u u+cT

t t + cT
y y (1)

Iu + Ny = d (routing) (2)
At + By ≤ f (timing) (3)
Ct + Dy +Gx ≤ g (headway) (4)

The constraints partition into three parts: the routing part (2) that models train
cancellations and the y-flow throw the velocity-expanded graph; the timing part (3) that
combines time and flow variables to model running times meeting departure and arrival
time windows at requested stops; the headway constraints (4) that ensure the minimal safety
headway distances between the train’s paths.

The headway constraints are the crucial part that couples the different train requests
into one integrated optimization problem. Without these the problem decomposes into
independent routing problems for each train.

In reality, most of the headway constraints are automatically satisfied by the network’s
shape and the request set. In fact, only a few of those constraints become intrusive, which
motivate their handling by a lazy-constraint approach.

Consider the following example representation of a headway constraint:

tr1 +
∑
...

ha yr1
a ≤ tr2 + M ·

(
3 − xr1≺r2

e −
∑
...

yr1
a −

∑
...

yr2
a

)
(5)

The constraint (5) is defined for the request pair (r1, r2) and the infrastructure edge
e. The big-M constraint becomes active if and only if r1 goes first (xr1≺r2

e = 1) and both
requests route via edge e, i.e.,

∑
ya

r1 = 1 and
∑

ya
r2 = 1. The minimal required headway

time between time variables tr1 and tr2 is denoted by ha. Thus, enough spacing between
different train events is triggered if the constraint becomes active.

In that construction, three nearly independent situations, i.e., the specific request order
on e and the two routing decisions need to come together, to activate the constraint. We
exploit this structure by releasing one of three situations to deactivate, i.e., repair, a violated
headway constraint. The repair heuristic presented in Section 3 is based on this idea.

3 Algorithmic Add-Ons

Due to the constantly evolving power of MIP solvers, solving sequences of relaxed MIP
formulations, in that we temporarily give up some missing constraints, are a way to solve
large scale models. In each MIP iteration we resume at least one or more of the missing
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constraints if we detect violations. See, e.g., [7] for the TSP. A similar concept is the iterative
MIP approach used in [8] applied to timetabling. This seems to be a promising approach if
two key properties are present:

the missing set of constraints is too large (or even exponentially growing w.r.t. the input
size) to be handled directly and
only a few of the missing constraints are relevant to cut-off enough infeasibilities to obtain
a feasible primal solution within only some MIP iterations.

In this Section we present a straight-forward enhancement of this approach by using lazy-
constraints. The obvious motivation behind this is that if several MIP iterations are needed,
the explored branch-and-bound trees sum up and the computational effort

3.1 Recall the Iterative MIP Approach (BC)
Let us briefly recall the branch-and-cut motivated sequential MIP approach (BC) used in [8]:
The method starts with the MIP formulation as presented in Section 2, but without the
ordering variables xr1≺r2

e and without the headway constraints (4). We denote this relaxed
MIP by RMIP. Solving RMIP always provides an integer feasible routing which may violate
some headway constraints. If no headway constraint is violated, we already found an optimal
solution of GTTP. Otherwise, we determine all violated headway constraints including
required train ordering variables and add them to the model (simultaneous constraint and
variable generation). A violation, i.e., a headway conflict, belongs to a specific location
(node or edge) and velocity. To save iterations, we always add all headway constraints for all
possible velocity levels. We call the subset of headway constraints for a location and request
pair with all possible velocity combinations a competition. We then continue solving the
resulting RMIP and repeat the process until an optimal solution to GTTP is found. The
computational results in [8] already shown that this approach terminates much faster and
with a much smaller model than the full GTTP model.

3.2 Lazy-Constraint Approach (LAZY)
The lazy-constraint approach makes use of the Gurobi lazy-constraint callback. The method
starts with the MIP formulation GTTP without the headway constraints (4). We denote
these relaxed sub-models with only restricted subsets of headway constraints by RMIP. In
contrast to BC, for technical reasons all ordering variables xr1≺r2

e are added in advance (even
if they have effect). Whenever Gurobi determines a feasible integer solution for RMIP in
its branch-and-bound algorithm (or already at the root node), the lazy-constraint callback is
called. In the callback we check the current solution and determine the violated headway
constraints in the same manner as described in 3.1 for the BC case. If no violated headway
constraint is found then the solution is feasible for GTTP. Otherwise, all headway constraints
of the superordinate competitions are added as lazy-constraints to RMIP. This procedure
proceeds and terminates with an optimal solution for the GTTP.

3.3 Primal Repair Heuristic (PRH)
Both of the previous approaches check a given feasible solution of the relaxation RMIP
and add violated headway constraints. We observed that after a couple of iterations the
number of violated headway constraints decrease significantly. Nevertheless, the solution of
the previous iteration is cut off and the MIP solver has problems to find a feasible primal
solution satisfying the newly added headway constraints. To give a little help, we implement
the following primal repair heuristic PRH that derives a global primal feasible solution as
follows.

ATMOS 2022
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Let (u′, y′, x′, t′) be a feasible solution fo the relaxation RMIP and V be the set of train
requests for that a violated headway constraint was detected. Let H be set of the violated
headway constraints. We construct a conflict graph with a node for all train requests and an
edge between two nodes if there exists a constraint in H for the corresponding train request
pair. We chose a maximal stable set S in this graph. Then the following applies:

each isolated node of the conflict graph is an element of S,
for each pair r1, r2 ∈ V that is part of the same headway constraint in V at most one of
the corresponding nodes is an element of S.

If we cancel all train requests, i.e, by setting the slack variable ur to 1, that are not in the
stable set S, then a primal feasible solution (u, y, x, t) of GTTP is defined as follows:

t = t′, x = x′, y =
{

yr
a = (yr

a)′, r ∈ S

yr
a = 0, otherwise

, u =
{

ur = (ur)′, r ∈ S

ur = 1, otherwise
(6)

It is easy to see that the routing and timing constraints are satisfied. In Section 2 we
already mentioned that a headway constraint can be deactivated if the variables ya of one of
the involved requests are set to zero. This is guaranteed by the stable set construction and
hence all determined headway constraints are satisfied. Since all violated headway constraints
are determined the constructed solution is also globally feasible.

4 Computational Results

In this section we discuss the computational results and give answers to the following
questions:

What is the impact of the primal repair heuristic PRH?
Does the lazy-constraint callback outperform the iterative approach?

We consider three sets of instances with an increasing number of train requests from 100
to 300. The OneHND testset is exactly the same as in [8] and consists of 10 scenarios with
100 trains. The TwoHND and ThreeHND testsets consist of 5 scenarios with 200 trains
and 3 scenarios with 300 trains, respectively. The testsets have the same data basis with an
increasing time horizon. Concrete numbers and more details on the railway application can
be found in [8]. All tests were executed on a Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz
with 90 GB RAM. We use Gurobi 9.51 as MIP solver with up to 4 threads. The time limit
was 12 hours. The maximal optimality gap is set to 10−4.

We compare four algorithms. These are the approaches BC and LAZY without the primal
repair heuristic and its variants with the primal repair heuristic PRH. The variants with
PRH are denoted by BC-P and LAZY-P, respectively. Table 1 shows the aggregated results
for the different algorithm variants and all testsets. The first column lists the considered
algorithm followed by the testset in column two. The third column indicates the number of
scenarios that could be solved to optimality and the number of scenarios in the testset. The
next four columns give the minimum, maximum, average and summed up computation times
in seconds. Finally, the last two columns denote the average number of branch-and-bound
nodes and the average number of generated headway constraints. In the case of BC the
number of branch-and-bound nodes is the sum over all BC iterations.

The results of Table 1 highlight the performance boost by the primal repair heuristic, i.e,
comparing the summed up and average computation time in seconds of BC with BC-P and
LAZY with LAZY-P, respectively. We restrict the evaluation of the repair heuristic to the
OneHND testset because without PRH the major part of the greater scenarios could not
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Table 1 Summary of the results for the different algorithm variants and testsets.
al

go
rit

hm

te
st

se
t

#
op

tim
al

computation time #
B

&
B

no
de

s

#
he

ad
w

ay
s

min max average sum average average

BC OneHND 10/10 6 837 207 2070 3731 2293
BC-P OneHND 10/10 6 389 111 1111 1760 2042
LAZY OneHND 10/10 7 862 261 2606 22485 3270
LAZY-P OneHND 10/10 8 151 99 991 4463 2393

BC-P TwoHND 4/5 127 43201 8125 48753 123623 8651
LAZY-P TwoHND 5/5 217 17247 3765 22589 68415 10691

BC-P ThreeHND 2/3 1857 43201 13701 54804 201874 15471
LAZY-P ThreeHND 3/3 1203 12691 5147 20587 70133 17334

be solved to optimality within the 12 hour time limit. Both approaches benefit from using
PRH, so that the total and average runtime is halved. For the lazy-constraint approach the
repair heuristic is crucial, since LAZY is notable slower than BC. In all scenarios where BC
wins Gurobi needs a reasonable time to provide a primal feasible solution and therefore the
branch-and-bound tree becomes large. The repair heuristic fixes this issue and significantly
reduces the tree size especially for the larger and more complex scenarios.

The superiority of the lazy-constraint approach increases with the problem size. LAZY-P
is 12 seconds faster on average for the OneHND testset. For the TwoHND and ThreeHND
testset LAZY-P requires less than half of the computing time of BC-P. Furthermore LAZY-
P is able to solve all scenarios to optimality. This is not the case for BC-P with two scenarios
that cannot be solved to optimality within the time limit. The number of generated headway
constraints are in the same range for both approaches. In comparison to BC-P the number
of branch-and-bound nodes of LAZY-P is on average 45% smaller for the TwoHND testset
and 65% smaller for the ThreeHND testset. Since the iterative branch-and-cut approach
restarts the branch-and-bound procedure at each iteration the restart overhead sums up
with the problem size. The lazy-constraints approach add the generated headway constraints
within the branch-and-bound procedure and do not have to create already explored subtrees
again.

The detailed results for the single scenarios can be found in Table 2 and Table 3. The first
column gives the unique scenario id. It follows the algorithm; the average computation time
in seconds; the number of routed requests; the final objective value; the final optimality gap
in percent and; the number branch-and-cut iterations. Finally, the last two columns denote
the number of branch-and-bound nodes and the number of generated headway constraints.
As before the number of branch-and-bound nodes is the sum over all iterations of BC.

The following two extreme cases give a hint when which algorithm should be used.
Considering scenario 35 in Table 3 the number of iterations and the number of branch-and-
bound nodes for algorithm BC-P is 19. This means Gurobi can find the optimal solution of
the relaxed problem at the root node of each iteration and is therefore faster than LAZY-P.
In contrast to that scenario 42 could be solved by LAZY-P within the time limit and needs
less than 25% of the branch-and-bound nodes of BC-P. Furthermore BC-P only provides a
solution with a gap of about 25% within the time limit.

ATMOS 2022



11:6 A Lazy-Constraint Approach to Timetabling

Table 2 Detailed results for the OneHND testset.
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25 BC 35 99 12657.77 0.00 15 15 869
25 BC-P 16 99 12657.83 0.00 7 7 791
25 LAZY 184 99 12662.75 0.04 8579 2177
25 LAZY-P 83 99 12660.46 0.02 2887 1434
26 BC 6 96 41821.69 0.46 5 3 131
26 BC-P 6 96 41821.69 0.46 5 2 131
26 LAZY 7 96 41821.69 0.00 168 290
26 LAZY-P 8 96 41821.69 0.00 157 441
27 BC 69 98 22049.13 0.27 15 10 1449
27 BC-P 46 98 22049.13 0.00 15 13 1401
27 LAZY 98 98 22050.33 0.01 4581 2638
27 LAZY-P 118 98 22051.19 0.01 6221 2323
28 BC 137 98 22112.66 0.00 23 1572 2471
28 BC-P 25 98 22116.17 0.02 10 10 1592
28 LAZY 94 98 22113.25 0.00 3577 2545
28 LAZY-P 141 98 22114.91 0.01 7201 3270
29 BC 63 97 32025.42 0.01 16 16 2530
29 BC-P 87 97 32022.49 0.00 24 23 2833
29 LAZY 91 97 32024.66 0.01 6116 2664
29 LAZY-P 72 97 32023.32 0.01 2526 2079
30 BC 234 96 42241.08 0.01 25 5358 2695
30 BC-P 389 96 42238.54 0.00 39 9975 2895
30 LAZY 251 96 42239.90 0.00 16111 3798
30 LAZY-P 107 96 42238.75 0.00 5310 2784
31 BC 119 97 32001.54 0.00 22 1946 1853
31 BC-P 25 97 32003.22 0.01 10 10 1305
31 LAZY 622 97 32004.12 0.01 65958 5313
31 LAZY-P 120 97 32006.99 0.02 6624 2724
32 BC 520 96 42086.50 0.01 43 8344 5604
32 BC-P 110 96 42081.67 0.00 24 144 4016
32 LAZY 328 96 42085.64 0.01 28405 5405
32 LAZY-P 116 96 42081.06 0.00 4968 3552
33 BC 49 98 22120.64 0.00 15 244 1724
33 BC-P 108 98 22120.52 0.00 21 1117 2052
33 LAZY 70 98 22121.11 0.00 2880 2200
33 LAZY-P 75 98 22123.11 0.01 3006 2205
34 BC 837 97 32249.30 0.01 32 19800 3604
34 BC-P 297 97 32249.54 0.01 23 6299 3399
34 LAZY 862 97 32252.74 0.02 88479 5668
34 LAZY-P 151 97 32251.90 0.02 5730 3121
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Table 3 Detailed results for the TwoHND and ThreeHND testset.
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35 BC-P 127 194 65095.85 0.01 19 19 1761
35 LAZY-P 217 194 65096.47 0.00 3782 2061
36 BC-P 1133 194 64318.40 0.00 24 15660 6480
36 LAZY-P 1577 194 64318.14 0.00 30173 9938
37 BC-P 1701 191 94415.08 0.00 27 23445 6291
37 LAZY-P 1306 191 94414.63 0.00 28094 8543
38 BC-P 2038 192 84379.15 0.00 35 24424 8097
38 LAZY-P 1597 192 84382.17 0.00 34120 9792
39 BC-P 43201 193 74940.93 13.31 55 554568 20628
39 LAZY-P 17247 194 64974.44 0.01 245908 23121

40 BC-P 3664 291 96779.69 0.00 29 44368 9585
40 LAZY-P 1731 291 96789.00 0.01 21190 10995
41 BC-P 6083 286 146914.49 0.00 26 79033 13465
41 LAZY-P 4962 286 146910.75 0.00 60731 17082
42 BC-P 43201 289 117369.01 25.42 55 482222 23363
42 LAZY-P 12691 292 87548.56 0.01 128479 23926

Finally, we answer the question: Does Laziness Pay Off? Our computational experiments
indicate that the answer is yes with two minor restrictions. First, the problem size or
complexity must be large enough and second a primal heuristic is needed, such as the
presented simple repair heuristic PRH. Under these conditions, we conclude that the lazy-
constraint approach outperforms the iterative branch-and-cut approach on the large instances
considered.
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