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Abstract
We introduce a non-interleaving structural operational semantics for the applied π-calculus and prove
that it satisfies the properties expected of a labelled asynchronous transition system (LATS). LATS
have well-studied relations with other standard non-interleaving models, such as Mazurkiewicz traces
or event structures, and are a natural extension of labelled transition systems where the independence
of transitions is made explicit. We build on a considerable body of literature on located semantics for
process algebras and adopt a static view on locations to identify the parallel processes that perform
a transition. By lifting, in this way, work on CCS and π-calculus to the applied π-calculus, we lay
down a principled foundation for reusing verification techniques such as partial-order reduction
and non-interleaving equivalences in the field of security. The key technical device we develop is
the notion of located aliases to refer unambiguously to a specific output originating from a specific
process. This light mechanism ensures stability, avoiding disjunctive causality problems that parallel
extrusion incurs in similar non-interleaving semantics for the π-calculus.
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1 Introduction

The purpose of this paper is to give a principled foundation for methods from concurrency
theory that are gaining traction in the verification of security properties. Tools used in the
security domain have applied partial-order-based techniques, notably partial-order reduction
(POR), to improve their efficiency, thereby increasing the size of the systems that can be
analyzed [6, 7, 8, 17, 18, 21, 27, 38]. To date, much of that work is tool-driven and guided
by examples. However, without a solid foundation, we cannot be certain that the methods
employed are correct, and hence, if an untested example is presented, the tool might produce
incorrect results or fail to apply reductions where they might well have been applied.

This paper fulfils what we believe to be an important role: drawing from decades of theory
on the topic of non-interleaving semantics for process algebras, we bring essential concurrency
concepts to the security verification community. In particular, we aim for a semantics that is
operational, rather than denotational, to stay close to the existing semantics employed by
the main tools in the security community, so that our work may easily be adopted. As in the
non-interleaving tradition, we define a concept of event as an enhancement of actions. The
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30:2 A Non-Interleaving Operational Semantics for the Applied Pi-Calculus

notion of independence is then defined on events in a straightforward way using the structure
of the events only. This enables the implementation of techniques such as partial-order
reduction on the fly.

The applied π-calculus [1, 43] has become instrumental in leveraging theoretical process
calculi to certify and verify security protocols [4, 10, 14, 31, 33, 36]. Its syntax can describe
a variety of interactions between the processes involved in a security protocol, stressing the
study of the communication of complex messages. Abstracting away from cryptographic
primitives with an equational theory allows tools to focus on problems arising due to the
information flow in security protocols, while its flexibility allows a large variety of situations to
be modelled. Its inductive structure lends itself to automation of the analysis and verification
of protocols used in production thanks to tools such as ProVerif [10], DEEPSEC [17],
Akiss [16], Sapic [35], SAT-Equiv [19] and SPEC [46], which have flavours of the applied
π-calculus as their input language.

Labelled asynchronous transition systems (LATS) are a non-interleaving model of concur-
rency, which, because they extend transition systems in a natural way, are suited to being
the objects generated by our structural operational semantics for the applied π-calculus. The
word asynchronous does not refer to the type of communication between processes: it is a nod
to the Petri net literature, where independent transitions are said to act asynchronously [41].
LATS were introduced by Bednarczyk [9] and Shields [45], and have been well studied in the
concurrency literature [28, 29, 51]. They are generally required to satisfy properties such
as event determinism, and to provide an independence relation that satisfies what we call
concurrency diamonds. Developing a LATS is also an important prerequisite for further
methods to be developed such as non-interleaving process equivalences.

Endowing the applied π-calculus with a structural operational semantics that defines
a labelled asynchronous transition system gives us a concrete path towards applying non-
interleaving concurrency techniques to security problems such as the verification of security
protocols. This requires us to import and mix ideas from different communities and lines of
work, and to carefully design “the right fit” to prove seamlessly the desired properties of a
LATS. We believe our proposal to be not only elegant, but also enlightening in the way it
sidesteps “traditional” problems stemming from the π-calculus, such as the need to represent
some forms of extrusion with disjunctive causality [20, 30]. In particular, in our theory there
is never any ambiguity about which outputs an event is causally dependent on, in contrast to
the traditional semantics for the π-calculus [11] where, if two outputs concurrently extrude
the same name that is then later used, then the semantics does not record from which output
the name originates.

Our proposal is also lightweight – our events consist simply of a location (a binary string
indicating where in the binary tree of parallel and choice components the event originates)
and an action label – and provides event determinism almost for free. Avoiding disjunctive
causality will allow our model to be related to more standard concurrency models such as
safe Petri nets or prime event structures.

Outline. Sect. 2 recalls the abstract concept of a LATS. Sect. 3 introduces a syntax for the
applied π-calculus. Sect. 4 explains the design of our non-interleaving structural operational
semantics. Sect. 5 presents the main result: that our non-interleaving structural operational
semantics is a labelled asynchronous transition system. Sect. 6 situates this work in the
literature, particularly in relation to POR for the applied π-calculus. The appendices provide
example derivations and outline the key elements of the proof of the main theorem.
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2 Our Target Model: Labelled Asynchronous Transition Systems

A labelled asynchronous transition system is a labelled transition system enriched with an
independence relation on events I that satisfies what we call diamond properties. Standard
labelled transition systems, such as those obtained from structural operational semantics of
process algebras such as CCS, π-calculus, and applied π-calculus, are labelled with actions,
indicating, e.g., the input or output action of a process. Labelled asynchronous transition
systems (LATS), in contrast, are labelled with events, which contain more information,
sufficient to distinguish between events that are triggered in different ways but share the
same action label. We denote states (which usually in process algebras are process terms) by
capital letters, events by small letters, and transitions between states labelled with an event
as A

e−→ B. We illustrate the properties of LATS using standard π-calculus notation. The
reader familiar with the π-calculus may safely skip the following info box.

Key features of the π-calculus: We assume for now only some familiarity with
π-calculus features, some of which we informally recall here. Later, in Sect. 3, we extend
this to the applied π-calculus and define formally its semantics:

Name restriction νx.P binds occurrences of variable x in P , indicating that x is
a freshly generated name. Importantly, an observer (who may be an attacker)
cannot know (e.g., by guessing) which name was generated, without intercepting a
communication of this name on a public channel.
An output prefix x⟨y⟩.P indicates that the variable y is output on a channel x, before
continuing to execute process P . Such outputs may only be observed if the channel is
known to the observer, either because x is a free variable or is a fresh name that has
previously been output.
An input prefix x(y).P indicates that a channel x is used to receive a message, which
is always a variable representing a name in the π-calculus. Notably, a fresh name
may only be received if it has previously been output. The process then continues to
execute P , but with occurrences of variable y in P replaced by the variable received,
e.g., as P{z/y} if z was received along x.
Parallel composition P | Q indicates that processes P and Q execute in separate
locations, possibly communicating with each other by synchronising an input and
output on the same channel name, whether or not the channel is known to an
observer. The precise meaning of parallel composition is the main subject of the
interleaving/non-interleaving spectrum of process semantics.
The match prefix [x = y]P should be read as, “if x and y are the same variable (due
to a prior input action for example) then P can execute.”
The process 0 represents termination. We follow standard conventions such as omitting
the deadlock process 0 when it is preceded by an action (e.g., output or input) prefix.

A distinguishing feature of the π-calculus is that the scope of a name restriction is
mobile in the sense that it can expand when a message containing the variable it binds is
output. We assume that action prefixes and name restriction bind stronger than parallel
composition.

To begin with, a LATS must satisfy the following property, which ensures that, in any
given state, any two (co-initial) transitions labelled with the same event are actually the
same transition (up to some minimal congruence relation ≡, quotienting the set of states).

▶ Definition 1 (event determinism). A LATS satisfies event determinism whenever

If A0 ≡ A1, A0
e−→ B0 and A1

e−→ B1, then B0 ≡ B1.

CONCUR 2022
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For example, for a processes c⟨n⟩ | c⟨n⟩ consisting of two parallel threads both sending
n on channel c, a LATS must label the two output transitions differently, which is not
guaranteed by standard labelled transition systems.

The other two properties a LATS must satisfy are the diamond properties (sometimes
called “sideways diamond” [42] and “square property” [37]), which ensure that events
considered to be independent with respect to the independence relation I can permute. The
first diamond property ensures that two independent events labelling (co-initial) transitions
from the same state can be performed in either order without affecting the outcomes.

▶ Definition 2 (diamond property 1). A LATS satisfies diamond property 1 whenever

If e0 I e1, A
e0−→ B0, and A

e1−→ B1 then ∃C0, C1 s.t. B0
e1−→ C0, B1

e0−→ C1 and C0 ≡ C1.

The second diamond property concerns independent events labelling (composable) transi-
tions in consecutive states, ensuring such transitions may be permuted.

▶ Definition 3 (diamond property 2). A LATS satisfies diamond property 2 whenever

If e0 I e1, A
e0−→ B0, and B0

e1−→ C0, then ∃B1, C1 s.t. A
e1−→ B1, B1

e0−→ C1 and C0 ≡ C1.

Observe that all of the above properties only concern co-initial or composable transitions,
i.e., transitions from the same state or adjacent states. We use the following example to
illustrate why this is significant: νn.

(
c⟨n⟩ | c(x).[x = n]ok⟨ok⟩

)
. For any execution of this

process in which the event corresponding to ok⟨ok⟩ occurs, the two events corresponding to
c⟨n⟩ and c(x) must have both occurred previously. Since we work with an early semantics,
strictly speaking we have one event for each possible instantiation of the variable x in the
input c(x). Structural (a.k.a. prefixing) causality ensures that the event corresponding to
ok⟨ok⟩ should not be independent from any of the input events corresponding to c(x), since
this part (or location) of the process must execute the latter to be able to access the former.
Link (a.k.a. name) causality ensures that the event corresponding to c⟨n⟩ should not be
independent from the input event corresponding to c(x) when x is instantiated with the
name n, which would also enable the guard x = n. Taken together, those two causalities
ensure that our expectations regarding the concurrency inherent in π-calculi are met.

In contrast to the above observations, although the events corresponding to c⟨n⟩ and
ok⟨ok⟩, in the above example, are causaly dependent on each other by transitivity, when
defining a LATS, we are free to allow them to be defined as “independent”, since these
events can never be executed concurrently or consecutively, and hence they will never be
considered together in a diamond property. This is a reason why LATS are suited for defining
a non-interleaving structural operational semantics, as there is no need to compute global
dependencies between events: local calculations are enough to determine whether consecutive
events are concurrent. If global dependencies are required, they are established by unfoldings
of LATS into event structures and Petri nets [39].

The relatively light requirements on the independence relation, as explained above, jus-
tifies why LATS offer an attractive take on structural operational semantics. A structural
operational semantics makes transitions easy to compute, and an easy to compute inde-
pendence relation facilitates partial-order reduction, that drastically reduces the number of
states to explore when verifying concurrent processes [3, 18]. An easily calculated indepen-
dence relation also facilitates the checking of non-interleaving variants of equivalences, e.g.,
distinguishing c⟨n⟩ | c⟨n⟩ from c⟨n⟩.c⟨n⟩ (the autoconcurrency problem). Causality in the
π-calculus has been explored in related work [11, 20, 22, 34, 40].
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Processes:
P, Q, R ::= 0 deadlock

| νx.P new
| P | Q parallel
| G guarded process
| !P replication

Guarded processes:
G, H ::= M(x).P input prefix

| M⟨N⟩.P output prefix
| [M = N ]G match
| [M ̸= N ]G mismatch
| G + H choice

Extended processes: A, B, C ::= σ | P active process
| νx.A new

Figure 1 Syntax of processes with guarded choice and of extended processes.

3 A Syntax for the Applied π-Calculus

We detail the syntax for the applied π-calculus we employ in Fig. 1 – which is close to the
one used in tools such as e.g., ProVerif [1, 10]. Variables are denoted by lowercase roman
letters such as x, y, z (generally reserved for input variables), a, b, c (generally reserved for
channel names) m, n, (generally reserved for nonces and keys). All variables are the same
syntactic category, but we are careful to distinguish variables from aliases, ranging over
α, β, γ. Traditionally in the applied π-calculus, aliases are also simply variables, but they
play a special role in this theory. We will explain the notion of alias properly in Sect. 4.2.

Variables, aliases and function symbols – discussed below – are used to build messages,
denoted by M, N, K. In processes, denoted by P, Q, R, variables, but not aliases, can be
bound by input prefix M(x).P or fresh name binders νx.P , where the latter is used to
indicate which variables – in this case, x – are treated as opaque names, such as private keys
hidden from an attacker observing the process. We use sequences of names νx⃗.P to abbreviate
multiple name binders defined inductively such that νϵ.P = P and νx, y⃗.P = νx.νy⃗.P , where
ϵ is the empty sequence.

As standard, a substitution σ, θ or ρ is a function with a domain (dom(σ) = {α : α ̸= ασ})
and a range (ran(σ) = {ασ : α ∈ dom(σ)}) that can be applied to messages as suffixes, e.g.,
fst(α)

{⟨m,n⟩/α

}
= fst(⟨m, n⟩). We write id for the identity substitution, with dom(id) =

ran(id) = ∅. Substitutions can be composed, notated σ ◦ θ, and are applied in reverse to
function composition, thus M(σ ◦ θ) = (Mσ)θ. When applied to processes, substitutions
are capture-avoiding with respect to processes νx.P and a(x).P that bind x in P . In this
work, active substitutions, which map aliases in their finite domain to messages containing
no aliases (hence are idempotent, i.e., σ ◦ σ = σ), play a central role.

The ability to choose any function symbols to construct messages is the real flexibility
of the applied π-calculus, allowing many message theories to be encoded, representing
cryptographic functions by defining an equational theory E, containing equations such as for
the decryption function dec({M}K , K)=E M or first projection of a pair fst(⟨M, N⟩)=E M .
This clean design allows us to separate problems related to the semantics of processes, as
explored in this paper, from problems associated with conducting proofs in the presence
of specific choices of message theories. Thus we never fix a specific message theory in this
paper, and any we provide is just to make examples more digestible.

Extended processes, ranging over A, B, C, offer a compact way of representing a process
along with the messages and names that have been sent. In extended processes, the messages
already sent are represented by active substitutions; and the scope of fresh name binders

CONCUR 2022
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are enlarged to include the substitution, so that they may bind variables in both the
substitutions representing messages that have been output and in the continuation processes.
In an extended process A = νx⃗.(σ | P ), we assume, in this work, a normal form, where
aliases do not appear in processes. This has the effect that the active substitution σ in the
extended process A has already been applied to P .

▶ Definition 4 (free variables and aliases). A variable x (resp. an alias α) is free in a message
M if x ∈ fv(M) (resp. α ∈ fa(M)) for

fv(f(M1, . . . Mn)) = ∪n
i=1fv(Mi) fv(x) = {x} fv(α) = ∅

fa(f(M1, . . . Mn)) = ∪n
i=1fa(Mi) fa(x) = ∅ fa(α) = {α} .

The fv function extends in the standard way to (extended) processes, letting fv(νx.P ) =
fv(P ) \ {x} and fv(M(x).P ) = fv(M) ∪ (fv(P ) \ {x}), and similarly for fv(A).

▶ Definition 5 (fresh). We say a variable x is fresh for a message M (resp. process P ,
extended process A), written x # M (resp. x # P , x # A) whenever x ̸∈ fv(M) (resp.
x /∈ fv(P ), x /∈ fv(A)), and similarly for aliases. Freshness extends point-wise to lists of
entities, i.e., x1, x2, . . . xm # M1, M2, . . . , Mn, denotes the conjunction of all xi # Mj for
all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

▶ Definition 6 (α-equivalence). We define α-equivalence (denoted ≡α) for variables only
(not aliases which are fixed “addresses”) as the least congruence (a reflexive, transitive,
and symmetric relation preserved in all contexts) such that, whenever z # νx.P , we have
νx.P ≡α νz.(P{z/x}) and M(x).P ≡α M(z).(P{z/x}). Similarly, for extended processes, we
have the least congruence such that, whenever z # νx.A, we have νx.A ≡α νz.(A{z/x}).

▶ Definition 7 (capture-avoiding substitutions). Restriction is such that θ↾α⃗(x) = θ(x) if
x ∈ α⃗ and x otherwise. Capture-avoiding substitutions are defined for processes such that for
any z # dom(σ) , ran(σ) , νx.P , we have (M(x).P )σ ≡α Mσ(z).P{z/x}σ and (νx.P )σ ≡α

νz.P{z/x}σ. For extended processes, it is defined such that (νx.A)ρ ≡α νz.(A({z/x} ◦ ρ)) and
(σ | P )ρ = (σ ◦ ρ↾dom(σ) | Pρ), for z # dom(ρ) , ran(ρ) , νx.A.

▶ Definition 8 (structural congruence). Our minimal structural congruence (denoted ≡) is the
least equivalence relation on extended processes extending α-equivalence such that whenever
σ = θ (i.e., the substitutions denote the same function), P ≡α Q and A ≡ B, we have:

σ | P ≡ θ | Q νx.A ≡ νx.B νx.νz.A ≡ νz.νx.A

Notice that we did not include equations such as P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R) or
P | 0 ≡ P , for reasons that will become clear in Sect. 4.2. Many similar systems (sometimes
called proved transition systems) miss a structural congruence altogether [15, 24, 26], or miss
the associativity and commutativity of the parallel composition [25, p. 242], since they can
alter the label of the transition and complicate tracking the source of an action, yet can be
recovered by a suitable observational equivalence (e.g., a non-interleaving bisimilarity).

4 The Design of a Non-interleaving Structural Operational Semantics

The located structural operational semantic rules introduced in Figs. 2 and 3 adapt the
recent semantics developed for the applied π-calculus in [31, 32], which can be obtained
from the one here by simply ignoring the information in red and any other information
beneath the arrow in labelled transitions. To obtain a structural operational semantics for
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M =E K
Inp

K(x).P M N−−−→
[]

id | P
{

N/x

} M =E K
Out

K⟨N⟩.P M(λ)−−−→
[]

{
N/λ

}
| P

P
π−→
u

νx⃗.(σ | R) x⃗ # Q
Par-L

P | Q
π−→

0u
νx⃗.(σ | R | Q)

Q
π−→
u

νx⃗.(σ | R) x⃗ # P
Par-R

P | Q
π−→

1u
νx⃗.(σ | P | R)

P
π−→
u

A x # fv(π)
Extrude

νx.P
π−→
u

νx.A

A
π−→
u

B x # fv(π)
Res

νx.A
π−→
u

νx.B

P
Mσ(λ)−−−−→

s[s′]
νx⃗.

({
N/λ

}
| Q

)
x⃗ # ran(σ) fa(M) ⊆ dom(σ) sλ # dom(σ)

Alias-out
σ | P

M(sλ)−−−−→
s[s′]

νx⃗.
(
σ ◦

{
N/sλ

}
| Q

)
P

πσ−−→
u

νx⃗.(id | Q) x⃗ # ran(σ) fa(π) ⊆ dom(σ)
Alias-free

σ | P
π−→
u

νx⃗.(σ | Q)

G
π−→
[t]

A

Sum-L
G + H

π−−→
[0t]

A

H
π−→
[t]

A

Sum-R
G + H

π−−→
[1t]

A

P | !P π−→
u

A
Bang

!P π−→
u

A

P
π−→
u

A M =E N
Mat

[M = N ]P π−→
u

A

P
π−→
u

A M ̸=E N
Mismat

[M ̸= N ]P π−→
u

A

Figure 2 An early located non-interleaving structural operational semantics.

the π-calculus in this style, simply assume that all messages M , N , etc., are variables, and
that two variables are equal only if they are the same variable. After briefly introducing our
structural operational semantics, we explain our design choices in the subsections that follow.

Action labels range over π. A free input action label M N indicates the input of message
N on channel M . A bound output action label M(α) indicates the output of something on
channel M where the message we output is assigned the alias α, which can be used to refer
to that message in the future by the observer, or a direct communication τ that the observer
does not intercept. This is the reason why the substitution is applied to the continuation
in the Inp rule, but “stored” in the substitution in the Out rule. The label τ denotes an
internal communication, and is used in the synchronisation rules presented in Fig. 3.

The functions for free variables and free aliases extend to labels as follows.

fv(π) =


fv(M) ∪ fv(N) if π = M N

fv(M) if π = M(α)
∅ if π = τ

fa(π) =


fa(M) ∪ fa(N) if π = M N

fa(M) if π = M(α)
∅ if π = τ

Readers familiar with labelled transition systems will immediately notice the additional
annotation below transitions, that uses prefixes composed of 0s and 1s. This indicates the
location of the parallel sub-process (a.k.a. component or thread) performing the action:

CONCUR 2022
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P
M(λ)−−−→

ℓ0
νy⃗.

({
N/λ

}
| P ′) Q

M N−−−→
ℓ1

νw⃗.(id | Q′) y⃗ # Q w⃗ # P, y⃗

Close-L
P | Q

τ−−−−−→
(0ℓ0,1ℓ1)

νy⃗, w⃗.(id | P ′ | Q′)

P
M N−−−→

ℓ0
νy⃗.(id | P ′) Q

M(λ)−−−→
ℓ1

νw⃗.
({

N/λ

}
| Q′) w⃗ # P y⃗ # Q, w⃗

Close-R
P | Q

τ−−−−−→
(0ℓ0,1ℓ1)

νy⃗, w⃗.(id | P ′ | Q′)

Figure 3 Rules for communication.

▶ Definition 9 (locations). A location ℓ is of the form s[t], where s ∈ {0, 1}∗ and t ∈ {0, 1}∗.
If s or t is empty, we omit it (hence, we write ϵ[ϵ] as []).

The colour coding above is to emphasise everywhere, what we call, the location prefix used
to indicate the parallel component from which a transition originates, and the “t part” of a
location serves to identify which operand of the sum triggered the transition, as indicated in
the Sum-L and Sum-R rules in Fig. 2.

To handle τ -transitions that originate from a synchronisation between an input and an
output in two different locations, location labels, used to annotate transitions with events,
may be pairs of locations, as employed in Fig. 3.

▶ Definition 10 (location labels). A location label u is either a location ℓ or a pair of
locations (ℓ0, ℓ1), and we let c(ℓ0, ℓ1) = (cℓ0, cℓ1) for c ∈ {0, 1}.

Events are pairs of action labels and location labels, as they appear above and below
labelled transitions in Fig. 2 and 3. The role of the aliases and the usefulness of their prefix
location is justified in Sec. 4.1 and 4.2. The rules Sum-L and Sum-R, and Bang rules have
also been carefully designed, as explained in Sec. 4.3, 4.4 and 4.5. We will return, in those
sections, to these rules to provide more detailed insight.

The only significant modification that we make to the standard syntax of applied π-
calculus is that aliases have more structure than variables. Aliases, ranging over α, β, γ, are
variables, extended with a, possibly empty, prefix of 0s and 1s representing the location of
the process producing them. For convenience, we use λ, λ′, . . . to range over variables used as
aliases where the prefix is empty, and assume they are of a separate syntactic category from
variables used for names and input binders, allowing us to drop some side conditions in rules.

We illustrate throughout the article how some transitions are derived. We sometimes apply
the Extrude or Res rules “in batch”, omit the id substitution, and list some hypothesis
below the derivation. The derivation presented in Fig. 4 illustrates those conventions, but
it also explicitly lists the occurrences of ϵ to help with readability. Indeed, this instance of
Alias-out is trivial, since it turns the process on the left into an extended process with the
identity substitution that records that nothing has yet been output.

Letting Pok = νm, n.(a⟨⟨m, n⟩⟩| m(x).[x = n]ok⟨ok⟩), we leave to the reader to convince
themselves that the following transition is similarly derivable, using the Par-L rule:

id | Pok
a(0λ)−−−→

0[]
νm, n.(

{
⟨m,n⟩/0λ

}
| 0 | m(x).[x = n]ok⟨ok⟩).
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Out

c⟨⟨m,n⟩⟩ c(λ)−−→
ϵ[ϵ]

{⟨m,n⟩/λ
}
| 0 n,m # fv(c(λ))

Extrude (×2)

νm.νn.c⟨⟨m,n⟩⟩ c(λ)−−→
ϵ[ϵ]

νm.νn.
({⟨m,n⟩/λ

}
| 0

)
(⋆)

Alias-out

id | (νm.νn.c⟨⟨m,n⟩⟩) c(ϵλ)−−−→
ϵ[ϵ]

νm.νn.
({⟨m,n⟩/λ

}
| 0

)
m,n # ran(id) = ∅ fa(c) = ∅ ⊆ dom(id) = ∅ ϵλ # dom(id) = ∅ (⋆)

Figure 4 First, simple example of derivation.

We discuss the next transition of Pok in Sect. 4.1, and the dependence of the two events in
Sect. 5. Another interesting example is given by the τ -transitions of the following process.

Pτ = νz.((νx.a⟨⟨x, z⟩⟩| νy.b⟨⟨y, z⟩⟩) | (a(x1).P | b(x2).Q))

This process can perform two different (and, as we will discuss in Sect. 5, independent)
synchronizations whose location labels are (00[], 10[]) and (01[], 11[]). The following execution
sequences illustrates how our semantics gracefully handles the two (parallel) sources of
extrusions of the name z without any additional machinery.

id | Pτ
τ−−−−−−→

(00[],10[])
νz.νx.(id | (0 | νy.b⟨⟨y, z⟩⟩) | (P

{
⟨x,z⟩/x1

}
| b(x2).Q)

τ−−−−−−→
(01[],11[])

νz.νx.νy.(id | (0 | 0) | (P
{

⟨x,z⟩/x1

}
| Q

{
⟨y,z⟩/x2

}
))

The full derivation trees for the above transitions are presented in Appendix A, Fig. 6. The
derivation trees for the alternative sequence of transitions below are similar.

id | Pτ
τ−−−−−−→

(01[],11[])
νz.νy.(id | (νx.a⟨⟨x, z⟩⟩| 0) | (a(x1).P | Q

{
⟨y,z⟩/x2

}
))

τ−−−−−−→
(00[],10[])

νz.νy.νx.(id | (0 | 0) | (P
{

⟨x,z⟩/x1

}
| Q

{
⟨y,z⟩/x2

}
))

We reuse this process Pτ in Sect. 4.3 to illustrate the need for equivariance.

4.1 The Modern Applied π-Calculus Avoids Disjunctive Causality
The input and output prefixes M(x).P and M⟨N⟩.P , respectively, indicate the channel as
a message M , which is the modern approach to the applied π-calculus handling extruded
messages [1]. Looking back at id | Pok

a(0λ)−−−→
[]

νm, n.(
{⟨m,n⟩/0λ

}
| 0 | m(x).[x = n]ok⟨ok⟩),

note that the active substitution
{⟨m,n⟩/0λ

}
can be used in subsequent events. For example,

we may refer to the private name m by using the message fst(0λ), which is then instantiated
with the above active substitution, as illustrated by the following derivation of a transition
(assuming a message theory featuring equation fst(⟨m, n⟩) =E m):

Referring to channels that were extruded inside messages was not possible in early versions
of the applied π-calculus [2]. This approach to extrusion is important to emphasise since
adopting this modern approach significantly simplifies our labelled asynchronous transition
system, as we explain next.

The key problem is to define a “stable” semantic in the presence of “link causality”. This
means that, if multiple output events extrude the same name, we must record which output
was used when that name appears in future events. An established approach to dealing with
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fst(⟨m,n⟩) =E m
Inp

m(x).[x = n]ok⟨ok⟩ fst(⟨m,n⟩) snd(⟨m,n⟩)−−−−−−−−−−−−−−→
[]

id | [x = n]ok⟨ok⟩
{
snd(⟨m,n⟩)/x

}
ϵ # 0

Par-R

0 | m(x).[x = n]ok⟨ok⟩ fst(⟨m,n⟩) snd(⟨m,n⟩)−−−−−−−−−−−−−−→
1[]

id | 0 | [snd(⟨m,n⟩) = n]ok⟨ok⟩ (⋆)

Alias-Free

σ | 0 | m(x).[x = n]ok⟨ok⟩ fst(0λ) snd(0λ)−−−−−−−−−−→
1[]

σ | 0 | [snd(⟨m,n⟩) = n]ok⟨ok⟩ (⋆⋆)

Ext.

νm, n.
(
σ | 0 | m(x).[x = n]ok⟨ok⟩

) fst(0λ) snd(0λ)−−−−−−−−−−→
1[]

νm, n.
(
σ | 0 | [snd(⟨m,n⟩) = n]ok⟨ok⟩

)
Letting σ =

{⟨m,n⟩/0λ
}
, since fst(0λ) snd(0λ)σ = fst(⟨m,n⟩) snd(⟨m,n⟩),

ϵ # ran(σ) = {m,n} fa(fst(0λ) snd(0λ)) = {0λ} ⊆ dom(σ) = {0λ} (⋆)

n,m # fv(fst(0λ) snd(0λ)) = ∅ (⋆⋆)

this “disjunctive dependency” is to extend the labels of transitions to record explicitly the
set of output events each input depends on (by recording the source and target processes of
the transition) [30, Def. 2.18]. Another established approach is to represent the disjunctive
link causality in an “inclusive way” [20, p. 227], that “ensures that whenever an action with
a bound subject is executed, at least one extrusion of that bound name must have been
already executed”, but without recording which output was the real extruder that influenced
another event. These additional mechanisms, used in related work, are used to acknowledge
the difference between two extrusion events and recognise them as separate events.

The use of aliases avoids the disjunctive dependency problem entirely. Consider the
process νn.(a⟨n⟩ | (a⟨n⟩ | n(x).P )) for example. This process can trigger both the output
events (a(0λ), 0[]) and (a(10λ), 10[]) :

id | νn.(a⟨n⟩| (a⟨n⟩| n(x).P )) a(0λ)−−−→
0[]

νn.({n/0λ} | 0 | (a⟨n⟩| n(x).P ))

a(10λ)−−−−→
10[]

νn.({n/0λ} ◦ {n/10λ} | 0 | (0 | n(x).P ))

and, afterwards, only one of the input events (0λ M, 11[]) or (10λ M, 11[]) (letting M ′ =
M{n/0λ}◦{n/10λ}):

νn.({n/0λ} ◦ {n/10λ} | 0 | (0 | n(x).P )


0λ M−−−→
11[]

νn.({n/0λ} ◦ {n/10λ} | 0 | (0 | P
{

M ′
/x

}
)

10λ M−−−−→
11[]

νn.({n/0λ} ◦ {n/10λ} | 0 | (0 | P
{

M ′
/x

}
)

It is clear that input 0λ M is dependent on the output originating from the first thread in
location 0, while the input with alias 10λ M is dependent on the output in location 10. Thus
there is no need to perform event splitting, since there is no ambiguity about the source of
the extrusion used to refer to channel n. The derivations of the transitions producing these
events are presented in Appendix A.

4.2 Applied π-Calculus With Located Aliases

Recall that located aliases are variables prefixed with a string indicating the location in which
the corresponding output occurred. The idea of prefixing aliases with a string representing a
location is a novelty, which is necessary for the development of our LATS, as explained here.
The strings themselves are, however, inherited from earlier work on LATS for CCS [39], where
such strings are used to annotate labelled transitions and are used to determine whether
actions are independent.
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This modification to the syntax of the applied π-calculus serves two purposes: it enables
us to define the independence relation only based on information from the events that label
the transitions (Def. 12), and provides each location with a separate pool of aliases. Let
us illustrate this latter purpose by picturing two execution sequences, with the locations
omitted for now:

id | νm, n.(a⟨m⟩| a⟨n⟩)

νm, n.({m/α} | 0 | a⟨n⟩)
a(α)

νm, n.({n/α} | a⟨m⟩| 0)
a(α)

νm, n(? | 0 | 0)

a(β)

a(β)

(rough diamond)

The challenge stems from needing to satisfy diamond property 1, as the two transitions
are clearly independent: in the initial process νm, n.(a⟨m⟩| a⟨n⟩), traditional semantics of
the applied π-calculus allow us to use alias α for both initial transitions, whether the up
or down transition is triggered. This freedom, unfortunately, violates diamond property 1,
since taking the top or bottom transitions yields distinct substitutions, represented by ?.
Of course, this difference in aliasing is irrelevant provided α and β are both fresh in every
process involved, hence we “localise” the generation of fresh aliases.

To “localise” the generation of fresh aliases, we add a prefix to aliases, similarly to location
labels, i.e., a (possibly empty) string of 1s and 0s, representing where an alias originates
from within the binary tree of parallel locations. Those locations become genuine parts of
the aliases, so that, e.g., 10λ and 11λ are distinct aliases (and of course 10λ and 10λ′ are
also distinct aliases, so there is an infinite supply of aliases for each location). Since our
structural operational semantics does not assume that the parallel operator is commutative
or associative, the bracketing of processes composed in parallel remains stable throughout an
execution; and locations do not disappear as they would if we had included P | 0 ≡ P .

Going back to our example (rough diamond), this modification allows us to satisfy
diamond property 1 (ignoring the location label from under the arrows):

id | νm, n.(a⟨m⟩| a⟨n⟩)

νm, n.({m/0λ} | 0 | a⟨n⟩)
a(0λ)

νm, n.({n/1λ} | a⟨m⟩ | 0)
a(1λ)

νm, n({m/0λ} ◦ {n/1λ} | 0 | 0)

a(1λ)

a(0λ)

(smooth diamond)

4.3 The Need for Equivariance

The order in which threads can be triggered can have an effect on the order of fresh
name binders. Therefore, we consider states up to equivariance, that is, our structural
congruence (Def. 8) extends α-equivalence such that νx.νy.A ≡ νy.νx.A. To see why we
require equivariance, consider the following diamond of output transitions:
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νm.νk.a⟨⟨m, k⟩⟩| νn.a⟨h(n)⟩

νm.νk.(
{⟨m,k⟩/0λ

}
| 0 | νn.a⟨h(n)⟩)

a(0λ)

νn.(
{

h(n)/1λ

}
| νm.νk.a⟨⟨m, k⟩⟩| 0)

a(1λ)

νm.νk.νn.(
{⟨m,k⟩/0λ

}
◦
{

h(n)/1λ

}
| 0 | 0)

νn.νm.νk.(
{

h(n)/1λ

}
◦
{⟨m,k⟩/0λ

}
| 0 | 0)

a(1λ)

a(0λ)

≡

(Diamond upto equivariance)

Without taking the quotient, both transitions would reach different states, and any indepen-
dence relation making the consecutive events a(0λ) and a(1λ) independent could not satisfy
diamond property 2. This is also because the substitutions are the same function, hence the
order in which composition is applied does not distinguish the extended processes.

Equivariance is also essential for identifying states that are the same after independent
synchronisations. For example, the two execution sequences of id | Pτ discussed earlier would
not reach equivalent states without equivariance. More explicitly, after two τ transitions
id | Pτ can either reach the state νz.νy.νx.(id | (0 | 0) | (P

{⟨x,z⟩/x1

}
| Q

{⟨y,z⟩/x2

}
)) or the

state νz.νx.νy.(id | (0 | 0) | (P
{⟨x,z⟩/x1

}
| Q

{⟨y,z⟩/x2

}
)) depending on which synchronisation

is applied first. Observe how these extended processes only differ in that the binders for x

and y are swapped, and hence are the same state up to equivariance.

4.4 Distinguishing Events in Conflict
The event determinism property of LATS requires more care in defining the semantics for the
choice operator. Since event determinism is more fine-grained than the concept of “action
determinism” in works on POR [5, Definition 4.1], our work is useful there too.

Our mechanism giving a located semantics to choice is similar to proved transtions [12] in
the sense that our locations s[t] contain information not only about the parallel structure
(given by s), but also about the structure of choices (given by t). For instance, in transition

id | (((P1 + a(x).P ) + P2) | (P3 + a⟨n⟩)) | P4
τ−−−−−−−→

0(0[01],1[1])
id | (P{n/x} | 0) | P4 ,

(derived in Fig. 5) the first choice label [01] indicates that a(x).P was responsible for the
input action in (P1 + a(x).P ) + P2. Our choice labels diverge, however, from [39] where each
location contains the source and target processes involved in that transition. We found that
this established approach for CCS does not appear to work for applied π-calculus extended
processes, such as νm, n. ({m/λ0} | c⟨⟨m, n⟩⟩+c⟨⟨n, m⟩⟩), for which transitions c(λ1)−−−−−−−−→

[c⟨⟨m,n⟩⟩][0]

and c(λ1)−−−−−−−−→
[c⟨⟨n,m⟩⟩][0]

could be made by either branch of the choice upto equivariance, unless we

add information that would break diamond properties.
Besides providing a more concise notation, our location labels unambiguously indicate

which output in the non-deterministic choice was triggered in the following two co-initial
transitions:

νm, n.({m/λ0} | c⟨⟨m, n⟩⟩+c⟨⟨n, m⟩⟩)


c(λ1)−−−→

[1]
νm, n.

(
{m/λ0} ◦

{⟨n,m⟩/λ1

}
| 0

)
c(λ1)−−−→

[0]
νm, n.

(
{m/λ0} ◦

{⟨m,n⟩/λ1

}
| 0

)
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Inp
a(x).P

an−−→
[]

id | P{n/x}
Sum-R

P1 + a(x).P
an−−→
[1]

id | P{n/x}
Sum-L

(P1 + a(x).P ) + P2
an−−→
[01]

id | P{n/x}

Out

a⟨n⟩ a(λ)−−−→
[]

{n/λ} | 0
Sum-R

P3 + a⟨n⟩ a(λ)−−−→
[1]

{n/λ} | 0 (⋆)

Close-R
((P1 + a(x).P ) + P2) | (P3 + a⟨n⟩) τ−−−−−−−→

(0[01],1[0])
id | P{n/x} | 0 P4 # ∅

Par-L
(((P1 + a(x).P ) + P2) | (P3 + a⟨n⟩)) | P4

τ−−−−−−−→
0(0[01],1[0])

id | (P{n/x} | 0) | P4 (⋆⋆)

Alias-Free
id | (((P1 + a(x).P ) + P2) | (P3 + a⟨n⟩)) | P4

τ−−−−−−−→
0(0[01],1[0])

id | (P{n/x} | 0) | P4

ϵ # (P1 + a(x).P ) + P2 ϵ # P3 + a⟨n⟩, ∅ (⋆)

ϵ # ran(id) = ∅ fa(τ) = ∅ ⊆ dom(id) = ∅ (⋆⋆)

Figure 5 Derivation example involving sum and synchronisation.

Moreover, identifying the events would violate event determinism, as the resulting extended
processes are different. Notice that we do not record name binders in the events, since, unlike
CSS, names move around in a way that would violate diamonds. Instead, name binders are
handled by mechanisms used inside the proofs of diamond properties.

4.5 Addressing the Location of Replicated Processes
As usual, the replication operator ! is used to represent an unbounded number of sessions.
Recording more structure than the labels when defining events prevents the rule Bang
from creating image-finiteness problems that the same rule creates for an action-based LTS.
Indeed, since we have event determinism, the image of any extended process and event is a
singleton upto structural congruence. This design decision gives to every replicated process
an infinite pool of explicit location names, and allows each of these locations to be triggered
in any order. This is important to satisfy diamond property 2.

To explain this, consider the following example that use the process a⟨y⟩.b⟨z⟩.Q = Pb,
which can perform the following transitions:

id | !Pb
a(0λ)−−−→

0[]
{y/0λ} | b⟨z⟩.Q | !Pb

b(0λ′)−−−−→
0[]

{y/0λ}◦{z/0λ′} | Q | !Pb

Our definition of independence relation (Def. 11) – and, we believe, any reasonable location-
based definition of independence – would ensure that the two events (a(0λ), 0[]) and (b(0λ′), 0[])
are not independent – they are treated as coming from the same location, even if that location
“did not exist” when Pb started its execution. Hence diamond property 2 cannot apply and
these events cannot permute, as expected. This mechanism echoes e.g., the dependency
relation that can be developed to accommodate replication for CCS [23].

In contrast, consider the following transitions, also originating from the same process !Pb:

{y/0λ} | b⟨z⟩.Q | !Pb

{y/10λ} | Pb | (b⟨z⟩.Q | !Pb)

id | !Pb {y/0λ} ◦ {y/10λ} | b⟨z⟩.Q | (b⟨z⟩.Q | !Pb)

a(0λ)

0[]

10[]

a(10λ)

a(10λ)
10[]

0[]
a(0λ)

(Diamond with a bang)
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The events on the left-hand side of the diamond above are expected to be independent.
Fortunately, by triggering Bang twice, we can permute these transitions as required by
diamond property 2. That is, the right side of the above diamond exists.

An alternative solution could be to use explicit names to label locations, and partially
ordering those labels to reflect the hierarchy of locations, and then minting fresh names for
each transition of a replication [13, 44]. Using opaque names as locations, however, would
have forced us to record them in the syntax of processes, that would have become e.g., of the
form ℓ1 :: b⟨z⟩.Q | (ℓ2 :: b⟨z⟩.Q | !P ) [12]. The intent is however the same.

5 The Independence Relation and the Main Result

In this section, we define what it means for two events to be independent. To do this, firstly,
we define structural independence, which ensures that two events occur in different locations
by checking that it is not the case that one location prefix is a prefix (as a string) of the
other event’s location prefix.

▶ Definition 11 (structural independence). Define Loc on location labels such that Loc(ℓ) = {ℓ}
and Loc(ℓ0, ℓ1) = {ℓ0, ℓ1}. The structural independence relation Iℓ on location labels is the
least relation defined by u0 Iℓ u1 whenever for all locations ℓ0 ∈ Loc(u0) and ℓ1 ∈ Loc(u1),
there exist a string s ∈ {0, 1}∗ and locations ℓ′

0, ℓ′
1, such that either: ℓ0 = s0ℓ′

0 and ℓ1 = s1ℓ′
1;

or ℓ0 = s1ℓ′
0 and ℓ1 = s0ℓ′

1.

For example, consider the locations of the four output events in a⟨a⟩ | b⟨b⟩.(c⟨c⟩ | d⟨d⟩).
The output on channel a (location prefix 0) is structurally independent from all other outputs.
The output on channel b (location prefix 1) is not structurally independent with respect to
the outputs on channels c or d; which will have location prefixes 10 and 11 respectively, both
with 1 as a common prefix. However, the outputs on channel c and d are independent, since
neither 10 nor 11 are prefixes of each other.

Independence on events in addition detects whether an output influences another action.
That is, in addition to structural independence, we have link independence.

▶ Definition 12 (independence of events). Events e = (π, u) are pairs of labels π and location
labels u. The independence relation I on events is the least symmetric relation such that
(π0, u0) I (π1, u1) whenever u0 Iℓ u1 and if π0 = M(α), then α # π1.

Remember that Pok from Sect. 4 and 4.1 can trigger the event (a(0λ), 0) followed by
(fst(0λ) snd(0λ), 1). Even if the locations are independent (as 0 Iℓ 1), the two events are
not independent, since 0λ is not fresh in (fst(0λ) snd(0λ)).

▶ Theorem 13. The structural operational semantics in Fig. 2 and 3 generates a labelled
asynchronous transition system with respect to the independence relation I from Def. 12, i.e.,
it respects Def. 1 – 3, where events are the pairs of action and location labels (π, u), as they
appear on the labels of transitions, and states are extended processes modulo the structural
congruence from Def. 8. [see proof in Appendix B]

Link independence is only required to permute an output event followed by an independent
event, when establishing diamond property 2. The main intricacy compared to CCS is to
ensure that the name restrictions occurring along any common prefix of two independent
transitions are handled correctly – this is how the parallel extrusion problem in related
theories manifests itself in this theory. We handle this problem entirely within the proof, via
variables accumulated in a function that picks out the component of a process corresponding
to a location prefix, rather than within the semantics as in related work [30, 50].
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6 Related Work

The earliest papers on partial-order reduction for security are not working with the applied
π-calculus, but rely on constructing execution DAGs (or Mazurkiewicz traces) recording
all input-output dependencies; as a result, the protocols considered in [18, 21, 27, 38] are
essentially threads of inputs and outputs, disregarding channels.

Our paper is closer to more recent approaches to POR for the applied π-calculus [6, 7, 8].
However, one limitation of these works is that they require processes to be of a particular
form. In that related line of work, structural independence is based on the channel of an
input and output action, thus considering events structurally independent only when they
employ distinct channels. Thus, their scope is restricted to processes in which every location
is a single thread of sequential actions (e.g., cannot spawn parallel threads in a location) and
if-then-else branches that employ a unique channel. While many finite protocol problems
can be formulated with a fixed number of threads, each employing separate channels, this
is still a significant restriction. In contrast, we base the structural independence on the
components’ addresses, which allows us to consider the “full” applied π-calculus.

For modelling infinite protocols (or protocols where the same, or multiple, actors can
engage in multiple parallel sessions) one normally uses replication, and thus parallel extrusion
appears naturally. Some of the above related works [7] approximate replication by creating
fresh channels manufactured every time a parallel component is created. However, since
these works do not have mechanisms for dealing with disjunctive causality (which in these
settings is required because of the use of a different mechanism for extrusion, similar to
the standard π-calculus), channel extrusion is only supported for processes where parallel
extrusion of channels never occurs. In contrast, our approach, where channels are extruded
like any other message and aliases resolve the aforementioned disjunctive causality problem,
supports all forms of processes including replication and parallel extrusion.

A further difference compared to the above work concerns τ transitions. In the related
work we are discussing, there is not enough information to determine whether two τ transitions
are independent, and hence such parts of a protocol’s behaviour cannot be considered for POR
optimisation. In our semantics, we resolve this problem using our structural independence
relation based on the recorded locations responsible for the input and output actions involved
in a τ transition. Our solution simply lifts classic work on CCS [39] to this security setting,
while taking care to handle parallel extrusion correctly (recall the Pτ example from Sect. 4).

All the above work does not follow the non-interleaving tradition in the sense that they
do not feature diamond property 1. It is possible in the semantics of [6, 8, 17] that two
transitions that we deem independent and are enabled from some process will disable each
other, since their executions change the substitution on which the other depends. This is the
key problem our located aliases address. The only diamond property that related approaches
obtain (and for a limited subset of processes, as explained above) is the “reordering of
sequential independent transitions”, which is our diamond property 2. However, this property
alone can be achieved without located aliases since, anyway, two sequential outputs would be
named differently by the regular constraints of the applied π-calculus, which simply ensure
that an extruded alias is globally fresh.

Event determinism can be achieved in works such as [7, 8] only for choice of the type
if-then-else. By borrowing from proved transitions [12], our events record the precise
branch of a general non-deterministic choice from which they originate, thereby achieving
event-determinism for all types of processes. This problem has been acknowledged [6], and an
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alternative approach to POR using sleep sets has been proposed. This approach essentially
defines independence in terms of events satisfying our diamond property 1, but since the
semantics they employ allows two concurrently enabled outputs on the same channel to use
the same label, such events would incorrectly be considered not independent.

We see a good opportunity in adopting (concepts from) our semantics in the settings and
tools of the above papers. This possibility has been one of our goals all along, and guided
our decisions to consider a syntax very close to the standard applied π-calculus and to define
a structural operational semantics that just extends previous semantics for applied π [32].
Even the choice of LATS was guided by our wish to stay within the realm of transition
systems, yet to go over from interleaving to non-interleaving semantics. Hence, we expect it
to be possible to upgrade tools from the above mentioned papers, so that they may fully
support POR for all processes.

7 Conclusion

The work we build on incorporates elements of the modern applied π-calculus [1] – aliases
for extrusion of channels as messages – into a structural operational semantics [31, 32].
Our semantics in Fig. 2 and 3 transforms this established semantics into a non-interleaving
structural operational semantics by recording on transitions also the location from which an
event originates as well as the location from where an alias representing an output originates.
The former is a standard device, coming from non-interleaving semantics for CCS [12, 39]
and π-calculus [30], while the latter “located alias” is the key technical innovation required to
ensure that our structural operational semantics defines a LATS (Theorem 13). In this way
we obtain a genuine operational semantics, with a remarkably simple independence relation
(Def. 12) for such a powerful calculus. Moreover, this paper can also be seen as proposing
LATS as the semantic objects for applied π-calculi, instead of transition systems, so as to
bridge other non-interleaving models to which LATS have been related in the literature.

Because LATS have been shown [28] to be exactly the higher-dimensional automata of
dimension 2, we can reuse the definitions for higher-dimensional automata of the classical
concurrency bisimulations (i.e., of ST-, history preserving-, and hereditary history preserving-
bisimulations) for LATS [47]. Moreover, through relations of LATS with configuration
structures [49] and event structures [51] we can reuse also other concurrency bisimulations [48].
In related work, partial-order semantics have been employed in tools for optimising verification
of equivalence properties [17]. Making precise the connection between the equivalences
employed in such tools and the above non-interleaving equivalences for LATS is future work.
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A Derivations for selected example transitions

We present the derivations of the transitions used to illustrate stability in Sect. 4.1. We are
explicit, in the input transitions, about the source of the extruded name.
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B Proof outline: event determinism, decomposition, & composition

We prove each condition event determinism, diamond property 1 and diamond property 2
separately. For event determinism, we first establish a slightly stronger lemma for processes
only (Lemma 14), before covering extended processes. The two diamond properties are
more involved. For both, we make use of a function (Def. 16) that, for each location prefix,
“localises” in a process the corresponding “component”. This is used to pick out components of
a process that are active or inactive in a transition. The function also calculates the variables
that are to be extruded along the path to the component to be picked out. The decomposition
lemmas (Lemmas 18 and 20) use the above function, to pull apart the derivation tree of
transitions to get to the exact part of the tree that concerns the component(s) independent
from the component(s) of another transition. In both diamond properties, we have two
independent transitions, and hence by decomposition, we can identify the common parts of
the derivation of both transitions, and the parts of the derivation where the transitions differ.
We then appeal to composition lemmas (Lemmas 22 and 23), that construct transitions where
we swap the beginning and end of derivations, thereby completing the missing face of each
diamond, modulo some permutations of name binders (enabled by equivariance, Sect. 4.3)
and substitutions.

We first establish event determinism for processes only, below. The permutation on
variables is used to cope with the Extrude rules that possibly applies α-equivalence to
rename bound variables.

▶ Lemma 14 (determinism for processes). Assuming ρ is a permutation (bijective operator)
on variables such that dom(ρ) # π we have, if P ≡α Qρ and P

π−→
u

B and Q
π′

−→
u

C then:

if π = M(λ), then π′ = K(λ′) and M =E K and, furthermore, given that we have
C = νy⃗.

({
N/λ′

}
| Q′) we have also that B ≡α (νy⃗.

({
N/λ

}
| Q′))ρ;1

if π = π′, we have B ≡α Cρ.

Then we extend the above lemma to extended processes, from which event determinism
follows by taking the permutation to be the identity.

▶ Lemma 15 (determinism for extend processes). Assuming ρ is a permutation on variables
such that dom(ρ) # π, we have, if A0 ≡ A1ρ and A0

π−→
u

B0 and A1
π−→
u

B1 then B0 ≡ B1ρ.

The proofs of the diamond properties rely on the following function selecting the component
of a process corresponding to a location prefix.

▶ Definition 16 (components). Writing Proc the set of processes and Vars the set of
variables, we define inductively a partial function Comp : {0, 1}∗ → (Vars∗ × Proc) ⇀

(Vars∗ × Proc) such that Comp(ϵ)(y⃗, P ) = (y⃗, P ) and if s ̸= ϵ then it is defined as follows:

Comp(0s)(y⃗, P0 | P1) = Comp(s)(y⃗, P0)
Comp(1s)(y⃗, P0 | P1) = Comp(s)(y⃗, P1)

Comp(s)(y⃗, νx.P ) = Comp(s)(y⃗x, P )
Comp(s)(y⃗, !P ) = Comp(s)(y⃗, P | !P )

1 This means outputs may only differ in the choice of alias (λ v.s. λ′) or in that an equivalent recipe (M
v.s. K) may be used, and, furthermore, we are free to rename the alias. This clause is a trick used to
determine whether the Close-L or Close-R rule applied in an interaction, by looking at the output
action and without being required to record additional information in the interaction event.
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The decomposition lemmas below select the part of a derivation tree that concerns a
single component. We first establish decomposition for simple prefixes consisting of 0 or 1.
In what follows, we write ¬ : {0, 1} → {0, 1} for Boolean negation.

▶ Lemma 17 (decomposing prefixed transitions). For all c ∈ {0, 1}, if P
π−→
cu

νz⃗.(θ | Q), then:

Comp(c)(ϵ, P ) = (y⃗, P ′) and z⃗ = y⃗, x⃗ and P ′ π−→
u

νx⃗.(θ | Q′) and Comp(c)(ϵ, Q) = (ϵ, Q′).
In addition, Comp(¬c)(ϵ, P ) = (y⃗, R) and Comp(¬c)(ϵ, Q) = (ϵ, R) and x⃗ # R.2

We then appeal to the fact that Comp(s)(Comp(s′)(h, P )) = Comp(s′s)(h, P ) and make
use of Lemma 17 repeatedly to generalise decomposition to an arbitrary string.

▶ Lemma 18 (decomposing process transitions). For all s ∈ {0, 1}∗ and P
π−→
su

νz⃗.(θ | Q)
then we have the following:

Comp(s)(ϵ, P ) = (y⃗, P ′) and z⃗ = y⃗, x⃗ and P ′ π−→
u

νx⃗.(θ | Q′) and Comp(s)(ϵ, Q) = (ϵ, Q′);
for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, if s = s′cs′′ then Comp(s′¬c)(ϵ, P ) = (w⃗, R) and
Comp(s′¬c)(ϵ, Q) = (ϵ, R) and Comp(s′c)(ϵ, P ) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, P ′),
and also v⃗, x⃗ # R.

A richer decomposition lemma is needed for τ -transitions, so that we can identify the
two components – for the input and output transition involved in the communication – that
are both structurally independent of another transition.

▶ Lemma 19 (interaction decomposition). If P
τ−−−−−→

(0ℓ0,1ℓ1)
νz⃗.(θ | Q) then we have

Comp(0)(ϵ, P ) = (y⃗, P0) and Comp(1)(ϵ, P ) = (y⃗, P1) and Comp(0)(ϵ, Q) = (ϵ, Q0) and
Comp(1)(ϵ, Q) = (ϵ, Q1) and z⃗ = y⃗, x⃗0, x⃗1 and x⃗0 # Q1 and x⃗1 # Q0 and x⃗0 # x⃗1 and one
of the following hold:

P0
M(λ)−−−→

ℓ0
νx⃗0.

({
N/λ

}
| Q0

)
and P1

M N−−−→
ℓ1

νx⃗1.(id | Q1).

P0
M N−−−→

ℓ0
νx⃗0.(id | Q0) and P1

M(λ)−−−→
ℓ1

νx⃗1.
({

N/λ

}
| Q1

)
.

Again appealing to that fact that Comp(s)(Comp(s′)(h, P )) = Comp(s′s)(h, P ) we can
generalise decomposition of interactions to an arbitrary prefix string.

▶ Lemma 20 (full decomposition of interactions). For all s, s0, s1 ∈ {0, 1}∗ such that we have
P

τ−−−−−−−−−→
s(0s0ℓ0,1s1ℓ1)

νz⃗.(θ | Q), the following hold:

we have Comp(s0s0)(ϵ, P ) = (y⃗z⃗0, P0) and Comp(s1s1)(ϵ, P ) = (y⃗z⃗1, P1) and, also we
have Comp(s0s0)(ϵ, Q) = (ϵ, Q0) and Comp(s1s1)(ϵ, Q) = (ϵ, Q1) and z⃗ = y⃗, z⃗0, x⃗0, z⃗0, x⃗1
and z⃗0, x⃗0 # Q1 and z⃗1, x⃗1 # Q0 and z⃗0, x⃗0 # z⃗1, x⃗1 and one of the following hold:

P0
M(λ)−−−→

ℓ0
νx⃗0.

({
N/λ

}
| Q0

)
and P1

M N−−−→
ℓ1

νx⃗1.(id | Q1),

P0
M N−−−→

ℓ0
νx⃗0.(id | Q0) and P1

M(λ)−−−→
ℓ1

νx⃗1.
({

N/λ

}
| Q1

)
;

for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1} and s′ ̸= s, we have the following: if s0s0 = s′cs′′

or s1s1 = s′cs′′ then Comp(s′¬c)(ϵ, P ) = (w⃗, R) and Comp(s′¬c)(ϵ, Q) = (ϵ, R) and also
Comp(s′c)(ϵ, P ) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, P ′), and we have v⃗, x⃗0, x⃗1 # R.

2 This states that the locations independent from P ′ are unchanged by the transition stemming from
P ′, except that the common name binders will be extruded. Generalisations of this statement carry
through to the other decomposition lemmas.

CONCUR 2022



30:24 A Non-Interleaving Operational Semantics for the Applied Pi-Calculus

Composition lemmas are required to remember the part of the derivation tree picked out
by the decomposition lemmas, when constructing a new transition. As for decomposition,
we first establish composition for a single-character prefix: 0 or 1.

▶ Lemma 21 (composing in one-step). For any s ∈ {0, 1}, if Comp(s)(P ) = (y⃗, P ′) and we
have P ′ π−→

u
νz⃗.(σ | Q′) and, furthermore, Comp(¬s)(P ) = (y⃗, R) and z⃗ # R, then, for some

Q, we have P
π−→
su

νy⃗, z⃗.(σ | Q) and Comp(s)(ϵ, Q) = (ϵ, Q′).

As for decomposition, we extend composition to any prefix.

▶ Lemma 22 (composing transitions). Assume s ∈ {0, 1}∗, and Comp(s)(P ) = (y⃗, P ′) and
we have P ′ π−→

u
νz⃗.(σ | Q′), and, furthermore, for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1} such

that s = s′cs′′, we have Comp(s′¬c)(ϵ, P ) = (w⃗, R) and Comp(s′c)(ϵ, P ) = (w⃗, S) and
Comp(s′′)(ϵ, S) = (v⃗, P ′), and also v⃗, x⃗ # R. Given these assumptions, we have that, for
some Q, we have P

π−→
su

νy⃗, z⃗.(σ | Q) and Comp(s)(ϵ, Q) = (ϵ, Q′).

Interactions can also be composed.

▶ Lemma 23 (composing interactions). Assume s, s0, s0 ∈ {0, 1}, are such that we have
Comp(s0)(ϵ, P ) = (y⃗, Q0) and Comp(s1)(ϵ, P ) = (y⃗, Q1) and Comp(s0)(ϵ, Q0) = (x⃗0, P0)
and Comp(s1)(ϵ, Q1) = (x⃗1, P1) and either of the following hold:

P0
M(λ)−−−→

ℓ0
νz⃗.

({
N/λ

}
| P ′

0
)

and P1
M N−−−→

ℓ1
νw⃗.(id | P ′

1),

P0
M N−−−→

ℓ0
νz⃗.(id | P ′

0) and P1
M(λ)−−−→

ℓ1
νw⃗.

({
N/λ

}
| P ′

1
)
;

and also assume we have, for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, such that s′ ̸= s and
either s0s0 = s′cs′′ or s1s1 = s′cs′′, we have that Comp(s′¬c)(ϵ, P ) = (w⃗, R) and also
Comp(s′c)(ϵ, P ) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, P ′), and v⃗, z⃗, w⃗ # R. Under those
assumptions, for some P ′, we have the transition P

π−→
su

νy⃗, x⃗0, z⃗, x⃗1, w⃗.(σ | P ′) and also we
have Comp(s0s0)(ϵ, P ′) = (ϵ, P ′

0) and Comp(s1s1)(ϵ, P ′) = (ϵ, P ′
1).

Using the decomposition and composition lemmas, we can now construct the transitions
required to complete the two diamond properties.

▶ Lemma 24 (diamond property 1). If (π0, u0) I (π1, u1), A
π0−→
u0

B0 and A
π1−→
u1

B1, then

∃C0, C1 s.t. B0
π1−→
u1

C0 and B1
π0−→
u0

C1 and C0 ≡ C1.

In both diamond properties, there are several cases depending on what combination of
τ and output labelled events we are considering to be independent. Below we present the
top-level breakdown of the case analysis, which applies to both diamond properties. We
also provide the details of one of the most interesting cases, where two independent output
transitions occur.

▶ Lemma 25 (diamond property 2). If (π0, u0) I (π1, u1), A
π0−→
u0

B0 and B0
π1−→
u1

C0, then

∃B1, C1 s.t. A
π1−→
u1

B1 and B1
π0−→
u0

C1 and C0 ≡ C1.

Proof. Assume we have (π0, u0) I (π1, u1), and the two transitions A
π0−→
u0

B0 and B0
π1−→
u1

C.
For two transitions from the same state we have (π0, u0) I (π1, u1) iff for all ℓ0 ∈ Loc(u0)

and for all ℓ1 ∈ Loc(u1), we have ℓ0 Iℓ ℓ1 (i.e., there is no structural causality), and,
furthermore, if π0 = M0(α0), then α0 # π1 (i.e., there is no link causality). The structural
independence ensures that, without loss of generality, we have one of the following.
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Both location labels have a largest common prefix s ∈ {0, 1}∗ and hence are of the form
s0u′

0 = u0 and s1u′
1 = u1.

At least one transition is labelled with a τ action (without loss of generality let π0 = τ),
and so u0 = s0(0ℓ0, 1ℓ1) and there is a string s1 ∈ {0, 1}∗, characters c, d ∈ {0, 1} and
prefix location ℓ′ such that s0ds1cu′

1 = u1 and s1¬cℓ′ = ℓd. That is, one transition is an
interaction, and the other transition is entirely located within one of the locations from
which either interacting input or the interacting output emanated.
Both are τ transitions with a common prefix s ∈ {0, 1}∗ such that u0 = s

(
0ℓ0

0, 1ℓ1
0
)

and
u1 = s

(
0ℓ0

1, 1ℓ1
1
)

and there are strings s1 ∈ {0, 1}∗ such that ℓ0
0 = s00ℓ′0

0 and ℓ0
1 = s01ℓ′0

1
and ℓ1

0 = s10ℓ′1
0 and ℓ1

1 = s11ℓ′1
1 . That is, we have two interactions, where the interaction

occurs in the same location (even though the inputs and outputs involved are independent).

We break down further the first case above, where the two independent transitions have
a common prefix. Due to differences between Alias-out or and Alias-free, we should
consider separately the cases where the first transition is an output transition or a free
transition. We consider only the most interesting case, where we appeal to the absence of link
causality, which is only relevant when π0 = M0(α0) is an output transition. That case itself
breaks down into two cases, where π1 is either another output transition or a free transition.
We provide only the case when π1 is an output transition such that π1 = M1(α1) below.

Without loss of generality (0 and 1 can be reversed without changing the proof), assume
there exists s such that u0 = ℓ0 = s0s0[t0] and u1 = ℓ1 = s1s1[t1].

Thus, by the Res rule, repeatedly, we have A = νx⃗.(σ | P ) and α0 = s0s0λ0 and
x⃗ # M0 and B0 = νx⃗, y⃗0.

(
σ ◦

{
N0/s0s0λ0

}
| Q0

)
, and, also by the Alias-out rule we have

the following.

P
M0σ(λ0)−−−−−→
s0s0[t0]

νy⃗0.
({

N0/λ0

}
| Q0

)
y⃗ # ran(σ) fa(M0) ⊆ dom(σ) s0s0λ0 # dom(σ)

σ | P
M0(s0s0λ0)−−−−−−−→

s0s0[t0]
νy⃗0.

(
σ ◦

{
N0/s0s0λ0

}
| Q0

)
=======================================
νx⃗.(σ | P ) M0(s0s0λ0)−−−−−−−→

s0s0[t0]
νx⃗, y⃗0.

(
σ ◦

{
N0/s0s0λ0

}
| Q0

)
Now, since we have P

M0σ(λ0)−−−−−→
s0s0[t0]

νy⃗0.
({

N0/λ0

}
| Q0

)
, by Lemma 18, we have the following:

P0
M0σ(λ0)−−−−−→

s0[t0]
νz⃗0.

({
N0/λ0

}
| Q′

0
)

and Comp(s0)(ϵ, P ) = (y⃗, P0) and y⃗0 = y⃗, z⃗0 and

Comp(s0)(ϵ, Q0) = (y⃗, Q′
0).

for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, if s0 = s′cs′′ then Comp(s′¬c)(ϵ, P ) = (w⃗, R) and
Comp(s′¬c)(ϵ, Q0) = (ϵ, R) and Comp(s′c)(ϵ, P ) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, P0),
and also v⃗, x⃗ # R.

Now since B0 = νx⃗, y⃗0.
(
σ ◦

{
N0/s0s0λ0

}
| Q0

)
and B0

π1−→
ℓ1

C, by the Res rule repeatedly

and the Alias-out rule, we have the following, where x⃗, y⃗0 # M1 and θ0 = σ ◦
{

N0/s0s0λ0

}
and C0 = νx⃗, y⃗0, z⃗1.

(
θ0 ◦

{
N1/s1s1λ1

}
| R0

)
.

Q0
M1σ(λ1)−−−−−→
s1s1[t1]

νz⃗1.
({

N1/λ1

}
| R0

)
z⃗1 # ran(θ0) fa(M1) ⊆ dom(θ0) s1s1λ1 # dom(θ0)

θ0 | Q0
M1(s1s1λ1)−−−−−−−→

s1s1[t1]
νz⃗1.

(
θ0 ◦

{
N1/s1s1λ1

}
| R0

)
==============================================
νx⃗, y⃗0.(θ0 | Q0) M1(s1s1λ1)−−−−−−−→

s1s1[t1]
νx⃗, y⃗0, z⃗1.

(
θ0 ◦

{
N1/s1s1λ1

}
| R0

)
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Since Q0
M1σ(λ1)−−−−−→
s1s1[t1]

νz⃗1.
({

M1/λ1

}
| R0

)
, by Lemma 18, we have the following:

Comp(s1)(ϵ, Q0) = (s1, Q′
0) and Q′

0
M1σ(λ1)−−−−−→

s1[t1]
νz⃗1.

({
M1/λ1

}
| R′

0
)

and Comp(s1)(ϵ, R0) =

(ϵ, R′
0).

for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, if s1 = s′cs′′ then Comp(s′¬c)(ϵ, Q0) = (w⃗, R) and
Comp(s′¬c)(ϵ, R0) = (ϵ, R) and Comp(s′c)(ϵ, Q0) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, Q′

0),
and also v⃗, x⃗ # R.

From the above we have that Comp(s1)(ϵ, P ) = (y⃗, Q′
0) and Comp(s1)(ϵ, Q0) =

(ϵ, Q′
0). We also have that, for any s′, s′′ ∈ {0, 1}∗, and c ∈ {0, 1}, if s = s′cs′′ then

Comp(s′¬c)(ϵ, P0) = (w⃗, R) and Comp(s′¬c)(ϵ, Q0) = (ϵ, R) and Comp(s′¬c)(ϵ, R0) = (ϵ, R)
and Comp(s′c)(ϵ, Q0) = (w⃗, S) and Comp(s′′)(ϵ, S) = (v⃗, Q′

0), and also v⃗, x⃗ # R.
We now appeal to the absence of link causality, so we know that s0s0λ0 # M1, and hence

M1θ0 = M1σ, and so Q′
0

M1σ(λ1)−−−−−→
s1[t1]

νz⃗1.
({

N1/λ1

}
| R′

0
)
. Therefore by Lemma 22, we have

P
M1σ(λ1)−−−−−→
s1s1[t1]

νy⃗, z⃗1.
({

N1/λ1

}
| Q1

)
and Comp(s1)(ϵ, Q1) = (ϵ, R′

0). Since we know fa(M1) ⊆

dom(θ0) and s0s0λ0 # M1 we know that fa(M1) ⊆ dom(σ). Since s1s1λ1 # dom(θ0) we
have s1s1λ1 # dom(σ). Thus, by Alias-out and Res repeatedly, we have the following.

P
M1σ(λ1)−−−−−→
s1s1[t1]

νy⃗, z⃗1.
({

N1/λ1

}
| Q1

)
fa(M1) ⊆ dom(σ) y⃗, z⃗1 # ran(σ) s1s1λ1 # dom(σ)

σ | P
M1σ(s1s1λ1)−−−−−−−−→

s1s1[t1]
νy⃗, z⃗1.

(
σ ◦

{
N1/s1s1λ1

}
| Q1

)
==========================================
νx⃗.(σ | P ) M1σ(s1s1λ1)−−−−−−−−→

s1s1[t1]
νx⃗, y⃗, z⃗1.

(
σ ◦

{
N1/s1s1λ1

}
| Q1

)
Recall that A = νx⃗.(σ | P ), hence we have the first of our desired transitions.

It remains to show that νx⃗, y⃗, z⃗1.(θ1 | Q1) π0−→
u0

C1, where θ1 = σ ◦
{

N1/s1s1λ1

}
, and also

C0 ≡ C1. Since fa(M0) ⊆ dom(σ) ⊆ dom(θ1), we have M0σ = M0θ1, thus P0
M0θ1(λ0)−−−−−−→

s0[t0]

νz⃗0.
({

N0/λ0

}
| Q′

1
)
. Therefore, since we know (via Lemma 18) that Comp(s0)(ϵ, Q1) = (ϵ, P0),

by Lemma 22, Q1
M0θ1(λ0)−−−−−−→

s0[t0]
νz⃗0.

({
N0/λ0

}
| R1

)
and Comp(s0)(ϵ, R1) = (ϵ, Q′

0).

By the Res rule repeatedly and the Alias-out rule, we have that x⃗, y⃗, z⃗1 # M0 and we
have the following transition, and so C1 = νx⃗, y⃗, z⃗1, z⃗0.

(
θ1 ◦

{
N0/s0s0λ0

}
| R1

)
.

Q1
M0(λ0)−−−−−→
s0s0[t0]

νz⃗0.
({

N0/s0s0λ0

}
| R1

)
fa(M0) ⊆ dom(θ1) z⃗0 # ran(θ1) s0s0λ0) # dom(θ1)

θ1 | Q1
M0(s0s0λ0)−−−−−−−−→

s0s0[t0]
νz⃗0.

(
σ ◦

{
N1/s1s1λ1

}
◦

{
N0/s0s0λ0

}
| R1

)
=============================================================
νx⃗, y⃗, z⃗1.(θ1 | Q1) M0(s0s0λ0)−−−−−−−−→

s0s0[t0]
νx⃗, y⃗, z⃗1, z⃗0.

(
σ ◦

{
N1/s1s1λ1

}
◦

{
N0/s0s0λ0

}
| R1

)
Now since for all s′, s′′ ∈ {0, 1} and c, d ∈ {0, 1} such that s′cs′′ = sd we have

Comp(s′¬c)(ϵ, R0) = Comp(s′¬c)(ϵ, R1) (via Lemma 18 and the above), clearly it is the case
that R0 = R1. Furthermore, we have the following, as required.

C0 = νx⃗, y⃗, z⃗0, z⃗1.
(
σ ◦

{
N0/s0s0λ0

}
◦

{
N1/s1s1λ1

}
| R0

)
≡ νx⃗, y⃗, z⃗1, z⃗0.

(
σ ◦

{
N1/s1s1λ1

}
◦

{
N0/s0s0λ0

}
| R1

)
= C1

Other cases follow a similar pattern of applying to decomposition and composition. ◀
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