
On an Invariance Problem for Parameterized
Concurrent Systems
Marius Bozga
Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France

Lucas Bueri
Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France

Radu Iosif
Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France

Abstract
We consider concurrent systems consisting of replicated finite-state processes that synchronize
via joint interactions in a network with user-defined topology. The system is specified using a
resource logic with a multiplicative connective and inductively defined predicates, reminiscent of
Separation Logic [19]. The problem we consider is if a given formula in this logic defines an invariant,
namely whether any model of the formula, following an arbitrary firing sequence of interactions,
is transformed into another model of the same formula. This property, called havoc invariance, is
quintessential in proving the correctness of reconfiguration programs that change the structure of
the network at runtime. We show that the havoc invariance problem is many-one reducible to the
entailment problem ϕ |= ψ, asking if any model of ϕ is also a model of ψ. Although, in general,
havoc invariance is found to be undecidable, this reduction allows to prove that havoc invariance is
in 2EXP, for a general fragment of the logic, with a 2EXP entailment problem.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases parameterized verification, invariant checking, resource logics, reconfigurable
systems, tree automata

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.24

Related Version Full Version: https://arxiv.org/abs/2204.12117

1 Introduction

The parameterized verification problem asks to decide whether a system consisting of an
arbitrary number of finite-state processes that communicate via synchronized (joint) actions
satisfies a specification, such as deadlock freedom, mutual exclusion or a temporal logic
property e.g., every request is eventually answered. The literature in this area has a wealth
of decidability and complexity results (see [3] for a survey) classified according to the
communication type (e.g., rendez-vous, broadcast) and the network topology e.g., rings where
every process interacts with its left/right neighbours, cliques where each two process may
interact, stars with a controller interacting with unboundedly many workers, etc.

As modern computing systems are dynamically adaptive, recent effort has been put into
designing reconfigurable systems, whose network topologies change at runtime (see [12] for a
survey) in order to address maintenance (e.g., replacement of faulty and obsolete components
by new ones, firmware updates, etc.) and internal traffic issues (e.g., re-routing to avoid
congestion in a datacenter [18]). Unfortunately the verification of dynamic reconfigurable
systems (i.e., proving the absence of design errors) remains largely unexplored. Consequently,
such systems are prone to bugs that may result in e.g., denial of services or data corruption1.

1 Google reports on a cascading cloud failure due to reconfiguration: https://status.cloud.google.
com/incident/appengine/19007.

© Marius Bozga, Lucas Bueri, and Radu Iosif;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2022.24
https://arxiv.org/abs/2204.12117
https://status.cloud.google.com/incident/appengine/19007
https://status.cloud.google.com/incident/appengine/19007
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 On an Invariance Problem for Parameterized Concurrent Systems

Proving correctness of parameterized reconfigurable networks is tackled in [1], where
a Hoare-style program logic is proposed to write proofs of reconfiguration programs i.e.,
programs that dynamically add and remove processes and interactions from the network
during runtime. The assertion language used by these proofs is a logic that describes sets of
configurations defining the network topology and the local states of the processes. The logic
views processes and interactions as resources that can be joined via a separating conjunction,
in the spirit of Separation Logic [19]. The separating conjunction supports local reasoning,
which is the ability of describing reconfigurations only with respect to those components and
interactions that are involved in the mutation, while disregarding the rest of the system’s
configuration. Moreover, the separating conjunction allows to concisely describe networks of
unbounded size, that share a similar architectural style (e.g., pipelines, rings, stars, trees) by
means of inductively defined predicates.

Due to the interleaving of reconfigurations and interactions between components, the
annotations of the reconfiguration program form a valid proof under so-called havoc invariance
assumptions, stating global properties about the configurations, that remain, moreover,
unchanged under the ongoing interactions in the system. These assumptions are needed
to apply the sequential composition rule that infers a Hoare triple {ϕ} P; Q {ψ} from two
premisses {ϕ} P {θ} and {θ} Q {ψ}, where P and Q are reconfiguration actions that add
and/or remove processes and communication channels. Essentially, because the states of the
processes described by the intermediate assertion θ might change between the end of P and
the beginning of Q, this rule is sound provided that θ is a havoc invariant formula.

This paper contributes to the automated generation of reconfiguration proofs, by a giving
a procedure that discharges the havoc invariance side conditions. The challenge is that a
formula of the configuration logic (that contains inductively defined predicates) describes an
infinite set of configurations of arbitrary sizes. The main result is that the havoc invariance
problem is effectively many-one reducible to the entailment problem ϕ |= ψ, that asks if
every model of a formula ϕ is a model of another formula ψ. Here ψ is the formula whose
havoc invariance is being checked and ϕ defines the set of configurations γ′ obtained from a
model γ of ψ, by executing one interaction from γ. The reduction is polynomial if certain
parameters are bounded by a constant (i.e., the arity of the predicates, the size of interactions
and the number of predicate atoms is an inductive rule), providing a 2EXP upper bound
for a fragment of the logic with a decidable (2EXP) entailment problem [4, §6]. Having a
polynomial reduction motivates, moreover, future work on the definition of fragments of lower
(e.g., polynomial) entailment complexity (see e.g., [9] for a fragment of Separation Logic with
a polynomial entailment problem), that are likely to yield efficient decision procedures for
the havoc invariance problem as well. In addition, we provide a 2EXP-hard lower bound
for the havoc invariance problem in this fragment of the logic (i.e., assuming predicates of
unbounded arity) and show that havoc invariance is undecidable, when unrestricted formulæ
are considered as input.

Related Work. Specifying parameterized concurrent systems by inductive definitions is
reminiscent of network grammars [20, 16, 13], that use inductive rules to describe systems
with linear (pipeline, token-ring) architectures obtained by composition of an unbounded
number of processes. In contrast, we use predicates of unrestricted arities to describe network
topologies that can be, in general, more complex than trees. Moreover, we write inductive
definitions using a resource logic, suitable also for writing Hoare logic proofs of reconfiguration
programs, based on local reasoning [8].



M. Bozga, L. Bueri, and R. Iosif 24:3

Verification of network grammars against safety properties (unreachability of error config-
urations) requires the synthesis of network invariants [21], computed by rather costly fixpoint
iterations [17] or by abstracting (forgetting the particular values of indices in) the composition
of a small bounded number of instances [14]. In previous work, we have developped an
invariant synthesis method based on structural invariants, that are synthesized with little
computational effort and prove to be efficient in many practical examples [5, 6].

The havoc invariance problem considered in this paper is, however, different from safety
checking and has not been addressed before, to the best of our knowledge. An explanation is
that verification of reconfigurable systems has received fairly scant attention, relying mostly
on runtime verification [7, 10, 15, 11], instead of deductive verification, reported in [1]. In [1]
we addressed havoc invariance with a set of inference rules used to write proofs manually,
whereas the goal of this paper is to discharge such conditions automatically.

1.1 A Motivating Example
Consider, for instance, a system consisting of a finite but unbounded number of processes,
called components in the following. The components execute the same machine with states
T and H, denoting whether the component has a token (T) or a hole (H). The components
are placed in a ring, each component having exactly one left and one right neighbour, as in
Fig. 1 (a). A component without a token may receive one, by executing a transition H in−→ T,
simultaneously with its left neighbour, that executes the transition T out−−→ H, as in Fig. 1 (a).
Note that there can be more than one token, moving independently in the system, such that
no token overtakes another token. The configurations of the token ring system are described
by the following inductive rules:

ringh,t()← ∃x∃y . ⟨x.out, y.in⟩ ∗ chainh,t(y, x)
chainh,t(x, y)← ∃z. [x]@q ∗ ⟨x.out, z.in⟩ ∗ chainh′,t′(z, y), for both q ∈ {H,T}
chain0,1(x, x)← [x]@T chain1,0(x, x)← [x]@H chain0,0(x, x)← [x]

where h′ def=
{

max(h− 1, 0) , if q = H
h , if q = T and t′

def=
{

max(t− 1, 0) , if q = T
t , if q = H

The predicate ringh,t() describes a ring with at least h (resp. t) components in state H (resp.
T). The ring consists of an interaction between the ports out and in of two components x
and y, respectively, described by ⟨x.out, y.in⟩ and a separate chain of components between
x and y, described by chainh,t(y, x). Inductively, a chain consists of a component [x]@q in
state q ∈ {H,T}, an interaction ⟨x.out, z.in⟩ and a separate chainh′,t′(z, y), where h′ and t′

are the least numbers of components in state H and T, respectively, after the removal of the
component x. Fig. 1 (b) depicts the unfolding of the inductive definition of ringh,t() with
the existentially quantified variables z from the above rules α-renamed to z1, z2, etc.

A reconfiguration action is an atomic creation or deletion of a component or interaction.
A reconfiguration sequence is a finite sequence of reconfiguration actions that takes as input a
mapping of program variables to components and executes the actions from the sequence, in
interleaving with the interactions in the system. For instance, the reconfiguration sequence
from Fig. 1 (c) takes as input the mapping of x and y to two adjacent components in the token
ring, removes the interaction ⟨x.out, y.in⟩ by executing disconnect(x.out, y.in) and creates
a new component in state H (by executing new(x,H)) that is connected in between x and y
via two new interactions created by executing connect(z.out, y.in) and connect(x.out, z.in),
respectively. Fig. 1 (c) shows a proof (with annotations in curly braces) of the fact that
the outcome of the reconfiguration of a ring of components is a ring whose least number of
components in state H is increased from one to two. This proof is split into several subgoals:

CONCUR 2022



24:4 On an Invariance Problem for Parameterized Concurrent Systems

out· · ·

(a)

in

out

in

out
T

in

out
T

in
in out

in

out
T

cncn−1

inin

c2

(b)

H

T

H H H

[x]@H [z1]@T

c1

⟨y.out, x.in⟩

⟨x.out, z1.in⟩ ⟨z1.out, z2.in⟩

out out

{ring1,1()}
{⟨x.out, y.in⟩ ∗ chain1,1(y, x)}
disconnect (x.out, y.in);
{chain1,1(y, x)} (‡)
new(H,z);
{z@H ∗ chain1,1(y, x)} (‡)
connect (z.out,y.in);
{z@H ∗ ⟨z.out, y.in⟩ ∗ chain1,1(y, x)}
{chain2,1(z, x)} (‡)
connect (x.out,z.in)
{chain2,1(z, x) ∗ ⟨x.out, z.in⟩}
{ring2,1()}

(c)

Figure 1 Inductive Specification and Reconfiguration of a Token Ring.

1. Entailments required to apply the consequence rule of Hoare logic e.g., ring1,1() |=
∃x∃y . ⟨x.out, y.in⟩ ∗ chain1,1(y, x). The entailment problem has been addressed in [4,
§6], with the definition of a general fragment of the configuration logic, for which the
entailment problem is decidable in double exponential time.

2. Hoare triples that describe the effect of the atomic reconfiguration actions e.g.,
{⟨x.out, y.in⟩∗chain1,1(y, x)}disconnect(x.out, y.in){chain1,1(y, x)}. These are obtained
by applying the frame rule to the local2 specifications of the atomic actions. The local
specification of reconfiguration actions and the frame rule for local actions are described
in [1, §4.2].

3. Havoc invariance proofs for the annotations marked with (‡) in Fig. 1 (c). For instance, the
formula chain1,1(y, x) is havoc invariant because the interactions in a chain of components
will only move tokens to the right without creating more or losing any, hence there will
be the same number of components in state H (T) no matter which interactions are fired.

2 Definitions

We denote by N the set of positive integers, including zero. For a set A, we denote A1 def= A,
Ai+1 def= Ai × A, for all i ≥ 0, where × denotes the Cartesian product, and A+ def=

⋃
i≥1 A

i.
The cardinality of a finite set A is denoted by ||A||. By writing A ⊆fin B we mean that A is a
finite subset of B. Given integers i and j, we write [i, j] for the set {i, i+ 1, . . . , j}, assumed
to be empty if i > j. For a function f : A→ B, we denote by f [ai ← bi]i∈[1,n] the function
that maps ai into bi for each i ∈ [1, n] and agrees with f everywhere else.

2.1 Configurations
We model a parallel system as a hypergraph, whose vertices are components (i.e., the nodes
of the network) and hyperedges are interactions (i.e., describing the way the components
communicate with each other). The components are taken from a countably infinite set C,
called the universe. We consider that each component executes its own copy of the same
behavior, represented as a finite-state machine B = (P,Q,−→), where P is a finite set of

2 A Hoare triple {ϕ} P {ψ} is local if it mentions only those components and interactions added or
deleted by P. Local specifications are plugged into a global context by the frame rule that infers
{ϕ ∗ F} P {ψ ∗ F} from {ϕ} P {ψ} if the variables modified by P are not free in F .



M. Bozga, L. Bueri, and R. Iosif 24:5

ports, Q is a finite set of states and −→⊆ Q×P ×Q is a transition relation. Intuitively, each
transition q p−→ q′ of the behavior B is triggerred by a visible event, represented by the port p.
The universe C and the behavior B = (P,Q,−→) are considered to be fixed in the following.

A configuration is a snapshot of the system, describing the topology of the network
(i.e., the set of present components and interactions) together with the local state of each
component, formally defined below (see also [4]):

▶ Definition 1. A configuration is a tuple γ = (C, I, ϱ), where:
C ⊆fin C is a finite set of components, that are present in the configuration,
I ⊆fin (C × P)+ is a finite set of interactions, where each interaction is a sequence
(ci, pi)i∈[1,n] ∈ (C× P)n that binds together the ports p1, . . . , pn of the pairwise distinct
components c1, . . . , cn, respectively. The ordered sequence of ports (p1, . . . , pn) is called
an interaction type and we denote by P+ the set of interaction types.
ϱ : C → Q is a state map associating each (possibly absent) component, a state of the
behavior B, such that the set {c ∈ C | ϱ(c) = q} is infinite, for each q ∈ Q.

We denote by Γ the set of configurations.

The last condition requires that there is an infinite pool of components in each state q ∈ Q;
since C is infinite and Q is finite, this condition is feasible.

▶ Example 2. The configurations of the system from Fig. 1 (a) are ({c1, . . . , cn}, {(ci, out,
c(i mod n)+1, in) | i ∈ [1, n]}, ϱ), where ϱ : C→ {H,T} is a state map. The ring topology is
given by components {c1, . . . , cn} and interactions {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}. ⌟

Note that Def. 1 allows configurations with interactions that involve absent components
i.e., not from the set C of present components in the given configuration. The following
definition distinguishes such configurations:

▶ Definition 3. A configuration γ = (C, I, ϱ) is said to be tight if and only if for any
interaction (ci, pi)i∈[1,n] ∈ I we have {ci | i ∈ [1, n]} ⊆ C and loose otherwise.

For instance, every configuration of the system from Fig. 1 (a) is tight and becomes loose if
a component is deleted.

2.2 Configuration Logic
Let V and A be countably infinite sets of variables and predicates, respectively. For each
predicate A ∈ A, we denote its arity by #A. The formulæ of the Configuration Logic (CL)
are described inductively by the following syntax:

ϕ := emp | [x] | ⟨x1.p1 , . . . , xn.pn⟩ | x@q | x = y | x ̸= y | A(x1, . . . , x#A) | ϕ ∗ ϕ | ∃x . ϕ

where x, y, x1, . . . ∈ V, q ∈ Q and A ∈ A. A formula [x], ⟨x1.p1 , . . . , xn.pn⟩, x@q and
A(x1, . . . , x#A) is called a component, interaction, state and predicate atom, respectively. We
use the shorthand [x]@q def= [x] ∗ x@q. Intuitively, a formula [x]@q ∗ [y]@q′ ∗ ⟨x.out, y.in⟩ ∗
⟨x.in, y.out⟩ describes a configuration consisting of two distinct components, denoted by the
values of x and y, in states q and q′, respectively, and two interactions binding the out port
of one to the in port of the other component.

A formula with no occurrences of predicate atoms (resp. existential quantifiers) is called
predicate-free (resp. quantifier-free). A qpf formula is both predicate- and quantifier-free. A
variable is free if it does not occur in the scope of a quantifier and fv(ϕ) is the set of free
variables of ϕ. A substitution ϕ[xi/yi]i∈[1,n] replaces simultaneously every free occurrence of
xi by yi in ϕ, for all i ∈ [1, n]. The size of a formula ϕ is the total number of occurrences of
symbols needed to write it down, denoted by size(ϕ).

CONCUR 2022



24:6 On an Invariance Problem for Parameterized Concurrent Systems

The only connective of the logic is the separating conjunction ∗. Intuitively, ϕ1 ∗ ϕ2
means that ϕ1 and ϕ2 hold separately, on disjoint parts of the same configuration. Its formal
meaning is coined by the following definition of composition of configurations:

▶ Definition 4. The composition of two configurations γi = (Ci, Ii, ϱ), for i = 1, 2, such that
C1 ∩ C2 = ∅ and I1 ∩ I2 = ∅, is defined as γ1 • γ2

def= (C1 ∪ C2, I1 ∪ I2, ϱ). The composition
γ1 • γ2 is undefined if C1 ∩ C2 ̸= ∅ or I1 ∩ I2 ̸= ∅.

▶ Example 5. Let γi = ({ci}, {(ci, out, c3−i, in)}, ϱ) be configurations, for i = 1, 2. Then
γ1 • γ2 = ({c1, c2}, {(c1, out, c2, in), (c2, out, c1, in)}, ϱ). ⌟

The meaning of the predicates is given by a set of inductive definitions:

▶ Definition 6. A set of inductive definitions (SID) ∆ consists of rules of the form
A(x1, . . . , x#A) ← ϕ, where x1, . . . , x#A are pairwise distinct variables, called paramet-
ers, such that fv(ϕ) ⊆ {x1, . . . , x#A}. We say that the rule A(x1, . . . , x#A)← ϕ defines A and
denote by def∆(A) the set of rules from ∆ that define A and by Def(∆) def= {A | def∆(A) ̸= ∅}
the set of predicates defined by ∆.

Note that having distinct parameters in a rule is without loss of generality, as e.g., a rule
A(x1, x1) ← ϕ can be equivalently written as A(x1, x2) ← x1 = x2 ∗ ϕ. As a convention,
we shall always use the names x1, . . . , x#A for the parameters of a rule that defines A. An
example of a SID is given in §1.1.

The size of a SID is size(∆) def=
∑

A(x1,...,x#A)←ϕ∈∆ size(ϕ) + #A + 1. Other parameters,
relevant for complexity evaluation, are the maximal
(1) arity #(∆) def= max{#A | A(x1, . . . , x#A)← ϕ ∈ ∆} of a defined predicate,
(2) size of an interaction type N(∆) def= max{n | ⟨y1.p1 , . . . , yn.pn⟩ occurs in ∆}, and
(3) number of predicate atoms H(∆) def= max{h | A(x1, . . . , x#A) ← ∃y1 . . . ∃ym . ϕ ∗
∗ h

ℓ=1Bℓ(zℓ), ϕ is a qpf formula}.

The semantics of CL formulæ is defined by a satisfaction relation γ |=ν
∆ ϕ between

configurations and formulæ. This relation is parameterized by a store ν : V→ C mapping
the free variables of a formula into components from the universe (possibly absent from γ)
and an SID ∆. The definition of the satisfaction relation is by induction on the structure of
formulæ, where γ = (C, I, ϱ) is a configuration (Def. 1):

γ |=ν
∆ emp ⇐⇒ C = ∅ and I = ∅

γ |=ν
∆ [x] ⇐⇒ C = {ν(x)} and I = ∅

γ |=ν
∆ ⟨x1.p1 , . . . , xn.pn⟩ ⇐⇒ C = ∅ and I = {(ν(x1), p1, . . . , ν(xn), pn)}

γ |=ν
∆ x@q ⇐⇒ γ |=ν

∆ emp and ϱ(ν(x)) = q

γ |=ν
∆ x ∼ y ⇐⇒ γ |=ν

∆ emp and ν(x) ∼ ν(y), for all ∼∈ {=, ̸=}
γ |=ν

∆ A(y1, . . . , y#A) ⇐⇒ γ |=ν
∆ ϕ[x1/y1, . . . , x#A/y#A], for some rule

A(x1, . . . , x#A)← ϕ from ∆
γ |=ν

∆ ϕ1 ∗ ϕ2 ⇐⇒ there exist γ1 and γ2, such that γ = γ1 • γ2 and
γi |=ν

∆ ϕi, for all i = 1, 2
γ |=ν

∆ ∃x . ϕ ⇐⇒ γ |=ν[x←c]
∆ ϕ, for some c ∈ C

If γ |=ν
∆ ϕ, we say that the pair (γ, ν) is a ∆-model of ϕ. If ϕ is a predicate-free formula, the

satisfaction relation does not depend on the SID, written γ |=ν ϕ. A formula ϕ is satisfiable
if and only if it has a model. A formula ϕ ∆-entails a formula ψ, written ϕ |=∆ ψ, if and only
if any ∆-model of ϕ is a ∆-model of ψ. Two formulæ are ∆-equivalent, written ϕ ≡∆ ψ if and
only if ϕ |=∆ ψ and ψ |=∆ ϕ. A formula ϕ is ∆-tight if γ is tight (Def. 3), for any ∆-model
(γ, ν) of ϕ. We omit mentioning ∆ whenever it is clear from the context or not needed.



M. Bozga, L. Bueri, and R. Iosif 24:7

2.3 The Havoc Invariance Problem
This paper is concerned with the havoc invariance problem i.e., the problem of deciding
whether the set of models of a given CL formula is closed under the execution of a sequence
of interactions. The execution of an interaction (ci, pi)i∈[1,n] synchronizes transitions labeled
by the ports p1, . . . , pn from the behaviors (i.e., replicas of the state machine B) of c1, . . . , cn,
respectively. This joint execution of several transitions in different components of the system
is formally described by the step relation below:

▶ Definition 7. The step relation =⇒ ⊆ Γ× (C× P)+ × Γ is defined as:

(C, I, ϱ)
(ci,pi)i∈[1,n]========⇒ (C, I, ϱ′) if and only if (ci, pi)i∈[1,n] ∈ I and ϱ′ = ϱ[ci ← q′i]i∈[1,n]

where ϱ(ci) = qi and qi
pi−→ q′i is a transition of B, for all i ∈ [1, n]

The havoc relation⇝∗ is the reflexive and transitive closure of the relation⇝⊆ Γ2: (C, I, ϱ)⇝

(C, I, ϱ′) if and only if (C, I, ϱ)
(ci,pi)i∈[1,n]========⇒ (C, I, ϱ′), for some interaction (ci, pi)i∈[1,n] ∈ I.

▶ Example 8. Let γi = ({c1, c2, c3}, {(ci, out, ci mod 3+1, in) | i ∈ [1, 3]}, ϱi), for i ∈ [1, 3] be
configurations, where ϱ1(c1) = ϱ1(c2) = H, ϱ1(c3) = T, ϱ2(c1) = T, ϱ2(c2) = ϱ2(c3) = H,
ϱ3(c1) = ϱ3(c3) = H, ϱ3(c2) = T. Then we have γi ⇝∗ γj , for all i, j ∈ [1, 3]. ⌟

Two interactions (c1, p1, . . . , cn, pn) and (ci1 , pi1 , . . . , cin
, pin

) such that {i1, . . . , in} =
[1, n], are equivalent from the point of view of the step relation, since the set of executed
transitions is the same; nevertheless, we chose to distinguish them in the following, for reasons
of simplicity. Note, moreover, that the havoc relation does not change the component or the
interaction set of a configuration, only its state map.

▶ Definition 9. Given an SID ∆ and a predicate A, the problem HavocInv[∆,A] asks whether
for all γ, γ′ ∈ Γ and each store ν, such that γ |=ν

∆ A(x1, . . . , x#A) and γ ⇝∗ γ′, it is the case
that γ′ |=ν

∆ A(x1, . . . , x#A)?

▶ Example 10. Consider a model γ = ({c1, . . . , cn}, {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}, ϱ)
of the formula ring1,1() i.e., having the property that ϱ(ci) = H and ϱ(cj) = T for at least
two indices i ̸= j ∈ [1, n], where the SID that defines ring1,1() is given in §1.1. Similar to
Example 8, in any configuration γ′ = ({c1, . . . , cn}, {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}, ϱ′)
such that γ ⇝∗ γ′, we have ϱ′(ck) = H and ϱ′(cℓ) = T, for some k ̸= ℓ ∈ [1, n], hence γ′ is a
model of ring1,1(), meaning that ring1,1() is havoc invariant. Examples of formulæ that are
not havoc invariant include e.g., [x]@T ∗ ⟨x.out, y.in⟩ ∗ [y]@H. ⌟

Without loss of generality, we consider the havoc invariance problem only for single
predicate atoms. This is because, for any formula ϕ, such that fv(ϕ) = {x1, . . . , xn}, one may
consider a fresh predicate symbol (i.e., not in the SID) Aϕ and add the rule Aϕ(x1, . . . , xn)← ϕ

to the SID. Then ϕ is havoc invariant if and only if Aϕ(x1, . . . , xn) is havoc invariant.

3 From Havoc Invariance to Entailment

We describe a many-one reduction of the havoc invariance (Def. 9) to the entailment problem,
following three steps. Given an instace HavocInv[∆,A] of the havoc invariance problem, the
SID ∆ is first translated into a tree automaton recognizing trees labeled with predicate-free
formulæ, that symbolically encode the set of ∆-models of the predicate atom A(x1, . . . , x#A).

CONCUR 2022



24:8 On an Invariance Problem for Parameterized Concurrent Systems

Second, we define a structure-preserving tree transducer that simulates the effect of executing
exactly one interaction from such a model. Third, we compute the image of the language
recognized by the first tree automaton via the transducer, as a second tree automaton, which
is translated back into another SID ∆ defining one or more predicates A1, . . . ,Ap, among
other. Finally, we prove that HavocInv[∆,A] has a positive answer if and only if each of the
entailments {Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A)}p

i=1 produced by the reduction, holds.
For the sake of self-containment, we recall below the definitions of trees, tree automata

and (structure-preserving) tree transducers. Let (Σ,#) be a ranked alphabet, where each
symbol α ∈ Σ has an associated arity #α ≥ 0. A tree over Σ is a finite partial function
t : N∗ ⇀fin Σ, whose domain dom(t) ⊆fin N∗ is both prefix-closed i.e., u ∈ dom(t), for all
u, v ∈ N∗, such that u · v ∈ dom(t), and complete i.e., {n ∈ N | u · n ∈ dom(t)} = [1,#t(u)],
for all u ∈ dom(t). Given u ∈ dom(t), the subtree of t rooted at u is the tree t|u, such that
dom(t|u) def= {w | u · w ∈ dom(t)} and t|u(w) def= t(u · w). We denote by T(Σ) the set of trees
over a ranked alphabet Σ.

A tree automaton (TA) is a tuple A = (Σ,S,F , δ), where Σ is a ranked alphabet,
S is a finite set of states, F ⊆ S is a set of final states and δ is a set of transitions
α(s1, . . . , s#a) −→ s; when #α = 0, we write α −→ s instead of α() −→ s. A run of A over
a tree t is a function π : dom(t) → S, such that, for all u ∈ dom(t), we have π(u) = s if
(t(u))(π(u · 1), . . . , π(u ·#t(u))) −→ s ∈ δ. Given a state q ∈ S, a run π of A is q-accepting if
and only if π(ϵ) = q, in which case A is said to q-accept t. We denote by Lq(A) the set of
trees q-accepted by A and let L(A) def=

⋃
q∈F Lq(A). A language L is recognizable if and only

if there exists a TA A, such that L = L(A).
A tree transducer (TT) is a tree automaton over an alphabet of pairs T = (Σ2,S,F , δ),

such that #α = #β = n, for each transition (α, β)(s1, . . . , sn) −→ s ∈ δ. Intuitively, a
transition of the transducer reads a symbol α from the input tree and writes another symbol
β to the output tree, at the same position. Cleary, any tree t : N∗ ⇀fin Σ2 with labels from
the set of pairs {(α, β) ∈ Σ2 | #α = #β} can be viewed as a pair of trees (t1, t2) over Σ, such
that dom(t1) = dom(t2) = dom(t). In order to define the image of a tree language via a
transducer, we define

(i) projection L↓i
def= {ti | (t1, t2) ∈ L}, for all i = 1, 2, where L ⊆ T(Σ2), and

(ii) cylindrification L↑i def= {(t1, t2) | ti ∈ L}, for all i = 1, 2, where L ⊆ T(Σ).
The image of a language L ⊆ T(Σ) via a transducer T is the language T (L) def=

(
L↑1 ∩ L(T )

)
↓2.

It is manifest that T (L) is recognizable whenever L is recognizable.

3.1 From SID to Tree Automata and Back

We define a two-way connection between SIDs and TAs, as follows:
1. Given a finite SID ∆ we define a TA A∆, whose states qA are named after the predicates

A that occur in ∆ and whose alphabet consists of the predicate-free formulæ from the
rules of ∆, with variables mapped to canonical names, together with a tuple of arities,
needed for later bookkeeping. Each tree t ∈ LqA(A∆) defines a unique predicate-free
formula Φ(t), such that the ∆-models of a predicate atom A(x1, . . . , x#A) are exactly the
models of some Φ(t), for t ∈ LqA(A∆).

2. Conversely, given a TA A over an alphabet of formulæ annotated with arities, the tuple of
arities associated with each alphabet symbol allows to define a SID ∆A, whose predicates
Aq are named after the states q of the TA, such that the models of the formulæ Φ(t),
such that t ∈ Lq(A) are exactly the ∆A-models of the predicate atom Aq(x1, . . . , x#Aq

).



M. Bozga, L. Bueri, and R. Iosif 24:9

[x̃1]@q0

∃n1∃r1∃n2∃ℓ2 . [x̃1] ∗ ⟨x̃1.req, x̃2.reply, x̃3.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩
z̃

(1)
1 = n1 ∗ z̃

(1)
2 = x̃2 ∗ z̃

(1)
3 = r1 ∗ z̃

(2)
1 = n2 ∗ z̃

(2)
2 = ℓ2 ∗ z̃

(2)
3 = x̃3

∃n1∃r1∃n2∃ℓ2 . [x̃1] ∗ ⟨x̃1.req, x̃2.reply, x̃3.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩

z̃
(1)
1 = n1 ∗ z̃

(1)
2 = x̃2 ∗ z̃

(1)
3 = r1 ∗ z̃

(2)
1 = n2 ∗ z̃

(2)
2 = ℓ2 ∗ z̃

(2)
3 = x̃3

∃n1∃r1∃n2∃ℓ2 . [x̃1] ∗ ⟨x̃1.req, x̃2.reply, x̃3.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩

z̃
(1)
1 = n1 ∗ z̃

(1)
2 = x̃2 ∗ z̃

(1)
3 = r1 ∗ z̃

(2)
1 = n2 ∗ z̃

(2)
2 = ℓ2 ∗ z̃

(2)
3 = x̃3

β β

[x̃1]@q0 [x̃1]@q0[x̃1]@q0

β β

[x̃1]@q1 [x̃1]@q0[x̃1]@q0 [x̃1]@q0

∃n∃ℓ∃r . ⟨r.out, ℓ.inp⟩ ∗ z̃
(1)
1 = n ∗ z̃

(1)
2 = ℓ ∗ z̃

(1)
3 = r

Figure 2 Tree Labeled with Formulæ Encoding a System from Example 12.

Let us fix a countably infinite set of variables Ṽar def= {x̃i | i ≥ 1} ∪ {z̃(ℓ)
i | i, ℓ ≥ 1}, with the

understanding that x̃i are canonical names for the variables from the left-hand side and
z̃

(ℓ)
i are canonical names for the variables occurring in the ℓ-th predicate atom from the

right-hand side of a rule. An alphabet symbol α = ⟨ψ, a0, . . . , ah⟩ consists of a predicate-free
formula ψ and a tuple of positive integers a0, . . . , ah ∈ N, such that fv(ψ) = {x̃i | i ∈ [1, a0]}∪
{z̃(ℓ)

i | ℓ ∈ [1, h], i ∈ [1, aℓ]}. We take the arity of such a symbol to be #α def= h and denote
by Σ̃ the (infinite) set of alphabet symbols. Trees labeled with symbols from Σ̃ define
predicate-free characteristic formulæ, as follows:

▶ Definition 11. Given a tree t ∈ T(Σ̃), where t(ϵ) = ⟨∃y1 . . . ∃ym . ϕ, a0, . . . , ah⟩ with ϕ a
qpf formula, and a node u ∈ N∗, we define the qpf characteristic formula:

Ψu(t) def= ϕ[x̃j/x
u
j ]

j∈[1,a0][z̃
(ℓ)
j /xu·ℓ

j ]
ℓ∈[1,h],j∈[1,aℓ][yj/y

u
j ]

j∈[1,m] ∗ ∗ℓ∈[1,h] Ψu·ℓ(t|ℓ)

Assuming that t(v) = ⟨∃y1 . . . ∃ymv . ϕv, av
0, . . . , a

v
h⟩, for all v ∈ dom(t), we consider also the

predicate-free formula Φu(t) = (∃xu·v
j )v∈dom(t)\{ϵ}, j∈[1,av

0 ](∃yu·v
j )v∈dom(t), j∈[1,mv ] . Ψu(t).

▶ Example 12. We consider a system whose components form a tree, in which each parent
sends a request (req) to and receives replies (reply) from both its children. In addition, the
leaves of the tree form a ring, with the out port of each leaf connected to the in port of its
right neighbour. The system is described by the following inductive definitions:

Root()←∃n∃ℓ∃r . ⟨r.out, ℓ.in⟩ ∗Node(n, ℓ, r) (1)
Node(n, ℓ, r)←∃n1∃r1∃n2∃ℓ2 . [n] ∗ ⟨n.req, n1.reply, n2.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩ ∗

Node(n1, ℓ, r1) ∗Node(n2, ℓ2, r) (2)
Node(n, ℓ, r)←[n]@q0 Node(n, ℓ, r)← [n]@q1 (3)

Fig. 2 shows a tree t ∈ T(Σ̃) describing an instance of the system, where Σ̃ = {α, β, γ0, γ1}:

α
def=⟨∃n∃ℓ∃r . ⟨r.out, ℓ.in⟩ ∗ z̃(1)

1 = n ∗ z̃(1)
2 = ℓ ∗ z̃(1)

3 = r, 0, 3⟩

β
def=⟨∃n1∃r1∃n2∃ℓ2 . [n] ∗ ⟨n.req, ℓ.reply, r.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩ ∗

z̃
(1)
1 = n1 ∗ z̃(1)

2 = ℓ ∗ z̃(1)
3 = r1 ∗ z̃(2)

1 = n2 ∗ z̃(2)
2 = ℓ ∗ z̃(2)

3 = r, 3, 3, 3⟩

γ0
def=⟨[x̃1]@q0, 3⟩ γ1

def= ⟨[x̃1]@q1, 3⟩

For simplicity, Fig. 2 shows only the formulæ, not the arity lists of the alphabet symbols. ⌟

CONCUR 2022



24:10 On an Invariance Problem for Parameterized Concurrent Systems

The models of the characteristic formula Ψϵ(t) of a tree t ∈ T(Σ̃) define walks in the
tree that correspond to chains of equalities between variables. Formally, a walk in t is a
sequence of nodes u1, . . . , un ∈ dom(t), such that ui is either the parent or a child of ui+1,
for all i ∈ [1, n− 1]. Note that a walk can visit the same node of the tree several times. In
particular, if the characteristic formula Ψϵ(t) is tight (i.e., has only tight models in the sense
of Def. 3) there exist equality walks between the node containing an interaction atom and
the nodes where these variables are instantiated by component atoms. For instance, walks
between the root containing ⟨r.out, ℓ.in⟩ and the left- and right-most leafs, labeled with
component atoms that associate elements of C to the variables ℓ and r are shown in Fig. 2.

▶ Lemma 13. Let t ∈ T(Σ̃) be a tree, such that Ψϵ(t) is tight, (γ, ν) be a model of Ψϵ(t)
and yv, zw be two variables that occur in a component and interaction atom of Ψϵ(t),
respectively. Then ν(yv) = ν(zw) if and only if there exists a walk u1, . . . , un in t and
variables yv = xu1

i1
, . . . , xun

in
= zw, such that either xuj

ij
and xuj+1

ij+1
are the same variable, or

the equality atom x
uj

ij
= x

uj+1
ij+1

occurs in Ψϵ(t), for all j ∈ [1, n− 1].

Let ∆ be a fixed and finite SID in the following. We build a TA A∆ that recognizes the
∆-models of each predicate atom defined by ∆, in the sense of Lemma 16 below.

▶ Definition 14. We associate each rule r : A(x1, . . . , x#A) ← ∃y1 . . . ∃ym . ϕ ∗
∗ ℓ∈[1,h] Bℓ(zℓ

1, . . . , z
ℓ
#Bℓ

) ∈ ∆, where ϕ is a qpf formula, with the alphabet symbol:

αr
def=

〈
∃y1 . . . ∃ym .

(
ϕ ∗∗ ℓ∈[1,h], i∈[1,#Bℓ] z̃

(ℓ)
i = zℓ

i

)
[xj/x̃j ]j∈[1,#A],#A,#B1, . . . ,#Bh

〉
Let A∆

def= (Σ∆,S∆, δ∆) be a TA, where Σ∆
def= {αr | r ∈ ∆}, S∆

def= {qA | A ∈ Def(∆)} and
δ∆

def= {αr(qB1 , . . . , qBh
)→ qA | r ∈ ∆}.

▶ Example 15 (contd. from Example 12). The TA corresponding to the SID in Ex-
ample 12 is A∆ = (Σ̃,S∆, δ∆), where Σ̃ = {α, β, γ0, γ1}, S∆ = {qRoot , qNode} and
δ∆ = {α(qNode)→ qRoot , β(qNode, qNode)→ qNode, γ0 → qNode, γ1 → qNode}. ⌟

The following lemma proves that the predicate-free formulæ corresponding (in the sense
of Def. 11) to the trees recognized by A∆ in a state qA define the ∆-models of the predicate
atom A(x1, . . . , x#A):

▶ Lemma 16. For any predicate A ∈ Def(∆), configuration γ, store ν and node u ∈ N∗, we
have γ |=ν

∆ A(xu
1 , . . . , x

u
#A) if and only if γ |=ν Φu(t), for some tree t ∈ LqA(A∆).

Conversely, given a tree automaton A = (Σ,S, δ), we construct a SID ∆A that defines
the models of the predicate-free formulæ corresponding (Def. 11) to the trees recognized
by A (Lemma 19). We assume that the alphabet Σ consists of symbols ⟨ψ, a0, . . . , ah⟩ of
arity h, where ψ is a predicate-free formula with free variables fv(ψ) = {x̃i | i ∈ [1, a0]} ∪
{z̃(ℓ)

i | ℓ ∈ [1, h], i ∈ [1, aℓ]} and that the transitions of the TA meet the requirement:

▶ Definition 17. A TA A is SID-compatible iff for any transitions
⟨ψ, a0, . . . , ah⟩(q1, . . . , qh) −→ q0 and ⟨ψ′, a′0, . . . , a′h⟩(q′1, . . . , q′h) −→ q′0 of A, we have
qi = q′i only if ai = a′i, for all i ∈ [0, h].

Let us fix a SID-compatible TA A = (Σ,S, δ) for the rest of this section.

▶ Definition 18. The SID ∆A has a rule:
Aq0 (x1, . . . , xa0 )←∃y1

1 . . .∃yh
ah

. ϕ[x̃i/xi]i∈[1,a0][z̃
(ℓ)
i /yℓ

i ]ℓ∈[1,h], i∈[1,aℓ] ∗ ∗ ℓ∈[1,h]Aqℓ (yℓ
1, . . . , y

ℓ
aℓ

)

for each transition ⟨ϕ, a0, . . . , ah⟩(q1, . . . , qh) −→ q0 of A and those rules only.



M. Bozga, L. Bueri, and R. Iosif 24:11

The following lemma states that ∆A defines the set of models of the characteristic formulæ
(Def. 11) of the trees recognized by A.

▶ Lemma 19. For any state q ∈ S, configuration γ, store ν and node u ∈ N∗, we have
γ |=ν

∆A
Aq(xu

1 , . . . , x
u
#Aq

) if and only if γ |=ν Φu(t), for some tree t ∈ Lq(A).

3.2 Encoding Havoc Steps by Tree Transducers
The purpose of this section is the definition of a transducer that simulates one havoc step.
Before giving its definition, we note that the havoc invariance problem can be equivalently
defined by considering the transformation induced by a single havoc step, instead of an
arbitrary sequence of steps. The following lemma can be taken as an equivalent definition:

▶ Lemma 20. HavocInv[∆,A] has a positive answer if and only if, for all γ, γ′ ∈ Γ and each
store ν, such that γ |=ν

∆ A(x1, . . . , x#A) and γ ⇝ γ′, it is the case that γ′ |=ν
∆ A(x1, . . . , x#A).

We fix a SID ∆ for the rest of this section and recall the existence of a fixed finite-state
behavior B = (P,Q,−→) with ports P, states Q and transitions q p−→ q′ ∈ Q × P ×Q. We
define a transducer Tτ parameterized by a given interaction type τ = (p1, . . . , pn) ∈ P+. The
havoc step transducer is the automata-theoretic union of the typed transducers over the set
of interaction types that occurs in ∆.

Given a tree t ∈ T(Σ̃), an interaction-typed transducer Tτ

(1) guesses an interaction atom ⟨z1.p1 , . . . , zn.pn⟩ that occurs in some label of t,
(2) tracks the equality walks (Lemma 13) between each variable zi and the component atom

[xi]@qi that defines the store value of zi and its current state, and
(3) replaces each state component atom [xi]@qi by [xi]@q′i, where qi

pi−→ q′i is a transition
from B, for each i ∈ [1, n].

The output of the transducer is a tree t′ ∈ T(Σ̃), that symbolically encodes the effect of
executing some interaction of type τ over t. The main challenge in defining Tτ is that the
equality walks between an interaction atom ⟨z1.p1 , . . . , zn.pn⟩ and the component atoms
instantiating the variables z1, . . . , zn may visit a tree node more than once. To capture
this, the transducer will guess at once the equalities summarizing the different fragments of
the walk that lie in the currently processed subtree of t. Accordingly, the states of Tτ are
conjunctions of equalities, with special variables b̃i (resp. ẽi) indicating whether a component
(resp. interaction) atom has already been encountered in the current subtree, intuitively
marking the beginning (resp. end) of the walk.

For an interaction type τ = (p1, . . . , pn), let T̃Varτ
def= {x̃i | i ∈ [1,#(∆)]} ∪

{b̃i, ẽi | i ∈ [1, n]} and let Eq(T̃Varτ ) be the set of separating conjunctions of equality atoms
i.e., φ def= ∗i∈I xi = yi, such that fv(φ) ⊆ T̃Varτ . Note that ∃x . φ, for φ ∈ Eq(T̃Varτ ), is
equivalent to a formula from Eq(T̃Varτ ) obtained by eliminating the quantifier: either x
occurs in an atom x = y for a variable y distinct from x then (∃x . φ) ≡ φ[x/y], or x ̸∈ fv(φ),
in which case (∃x . φ) ≡ φ.

▶ Definition 21. The transducer Tτ
def= (Σ2

∆,Sτ ,Fτ , δτ ), where τ = (p1, . . . , pn), is as follows:
Sτ = {φ ∈ Eq(T̃Varτ ) | φ ̸|= (b̃i = b̃j), φ ̸|= (ẽi = ẽj), φ ̸|= (b̃i = ẽj), for any i ̸= j},
Fτ = {φ ∈ Sτ | φ |=∗ i∈[1,n](b̃i = ẽi)}, and
δτ contains transitions of the form (α, α′)(φ1, . . . , φh) −→T φ where:
α = (∃y1 . . . ∃ym . ψ, a0, . . . , ah) and α′ = (∃y1 . . . ∃ym . ψ′, a0, . . . , ah), where ψ and
ψ′ are qpf formulæ such that fv(ψ) = fv(ψ′) ⊆ T̃Varτ ∪ {y1, . . . , ym},

CONCUR 2022



24:12 On an Invariance Problem for Parameterized Concurrent Systems

(β, β)

emp(γ0, γ0) emp(γ0, γ0) emp(γ0, γ0) emp(γ0, γ0) b̃1 = x̃1(γ0, γ1)

b̃2 = x̃2 emp

b̃2 = x̃2

b̃2 = x̃2 ∗ b̃1 = x̃3

b̃2 = ẽ2 ∗ b̃1 = ẽ1

emp b̃1 = x̃3

b̃1 = x̃3

emp(γ0, γ0)b̃2 = x̃1(γ1, γ0) emp(γ0, γ0)

(β, β) (β, β)

(β, β)

(β, β)

(α, α)

(β, β) (β, β)

Figure 3 Tree Transducer for the Interactions of Type (out, in) in the System from Fig. 2.

there exists a set I = {i1, . . . , ir} ⊆ [1, n], variables ξ1, . . . , ξr ∈ fv(ψ) and transitions
q1

pi1−−→ q′1, . . . , qr
pir−−→ q′r in B, such that ψ = (∗ k∈[1,r][ξk]@qk) ∗ η and ψ′ =

(∗ k∈[1,r][ξk]@q′k) ∗ η, for some qpf formula η,
there exists a set J ∈ {∅, [1, n]}, such that ψ contains an interaction atom
⟨ζ1.p1 , . . . , ζn.pn⟩ if J = [1, n],
the sets I and {i ∈ [1, n] | b̃i ∈ fv(φℓ)}ℓ∈[1,h] are pairwise disjoint,
at most one of the sets J , {i ∈ [1, n] | ẽi ∈ fv(φℓ)}ℓ∈[1,h] is not empty,
φ is the result of eliminating the quantifiers from the separating conjunction of equalities:

∃z̃(1)
1 . . .∃z̃(h)

ah
∃y1 . . .∃ym . ∗ℓ∈[1,h]φℓ[x̃j/z̃

(ℓ)
j ]j∈[1,aℓ] ∗ ∗ k∈[1,r]b̃ik = ξk ∗ ∗ ℓ∈J ẽℓ = ζℓ ∗ ψeq

where ψeq is the separating conjunction of the equality atoms from ψ.

▶ Example 22. (contd. from Examples 12 and 15) Fig. 3 shows a run of the transducer
T(out,in), that describes the symbolic execution of the interaction corresponding to the
⟨r.out, ℓ.in⟩ interaction atom from the root of the tree in Fig. 2. The states of the transducer
are separating conjunctions of equality atoms, enclosed within square boxes. The transducer
replaces the component atoms γ1 = ⟨[x̃1]@q1, 3⟩ with γ0 = ⟨[x̃1]@q0, 3⟩ (resp. γ0 with γ1) in
the left-most (resp. right-most) leaf of the tree. ⌟

Let L ⊆ T(Σ̃) be an arbitrary language. The following lemmas prove that the transducer
Tτ from Def. 21 correctly simulates a havoc step produced by an interaction of type τ .

▶ Lemma 23. For each tree t ∈ L, such that Φϵ(t) is tight, configurations γ = (C, I, ϱ), γ′ ∈ Γ

and store ν, such that γ |=ν Φϵ(t) and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some c1, . . . , cn ∈ C and

(ci, pi)i∈[1,n] ∈ I, there exists a tree t′ ∈ T(p1,...,pn)(L), such that γ′ |=ν Φϵ(t′).

Note that the condition of Φϵ(t) having only tight models is necessary to avoid in-
teractions (ci, pi)i∈[1,n] that fire by “accident” i.e., when the interaction is created by
an atom ⟨ζ1.p1 , . . . , ζn.pn⟩, with the components c1, . . . , cn created by component atoms
[ξ1]@q1, . . . , [ξn]@qn, such that the equality ξi = ζi is not the consequence of Φϵ(t), for some
i ∈ [1, n]. The effect of such interactions is not captured by the transducer introduced by Def.
21. Tightness is, moreover, a necessary condition of Lemma 13, that ensures the existence
of equality walks between the variables occurring in an interaction atom and those of the
atoms creating the components to which these variables are mapped, in a model of Φϵ(t).

▶ Lemma 24. For each tree t′ ∈ T(p1,...,pn)(L), configuration γ′ ∈ Γ and store ν, such that
γ′ |=ν Φϵ(t′), there exists a configuration γ = (C, I, ϱ) and a tree t ∈ L, such that γ |=ν Φϵ(t)

and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some c1, . . . , cn ∈ C and (ci, pi)i∈[1,n] ∈ I.



M. Bozga, L. Bueri, and R. Iosif 24:13

3.3 The Main Result
We establish the main result of this section, which is a many-one reduction of the havoc
invariance to the entailment problem. The result is sharpened by proving that the reduction

(i) preserves the class of the SID (see Def. 25 below), and
(ii) is polynomial when several parameters of the SID are bounded by constants and simply

exponential otherwise.
In particular, a class-preserving polynomial reduction ensures that the decidability and
complexity upper bounds of the entailment problem carry over to the havoc invariance
problem.

▶ Definition 25. For two predicate-free formulæ ϕ and ψ, we write ϕ ≃ ψ if and only if
they become equivalent when dropping the state atoms from both. For an arity-preserving
equivalence relation ∼ ⊆ A × A (i.e., #A = #B, for all A ∼ B), for any two rules r1 and
r2, we write r1 ≈ r2 if and only if r1 = A(x1, . . . , x#A) ← ∃y1 . . . ∃ym . ϕ ∗ ∗ ℓ∈[1,h]Bℓ(zℓ),
r2 = A′(x1, . . . , x#A′) ← ∃y′1 . . . ∃y′p . ψ ∗ ∗ ℓ∈[1,h]B′ℓ(uℓ), ∃y1 . . . ∃ym . ϕ ≃ ∃y′1 . . . ∃y′p . ψ,
A ∼ A′ and Bℓ ∼ B′ℓ, for all ℓ ∈ [1, h]. For two SIDs ∆1 and ∆2, we write ∆1 ⪯ ∆2 if and
only if for each rule r1 ∈ ∆1 there exists a rule r2 ∈ ∆2, such that r1 ≈ r2. We denote by
∆1 ≈ ∆2 the conjunction of ∆1 ⪯ ∆2 and ∆2 ⪯ ∆1.

If A1 ∼ A2 and ∆1 ≈ ∆2 then ∆1-models of A1(x1, . . . , x#A1) differ from the ∆2-models
of A2(x1, . . . , x#A1) only by a renaming of the states occurring within state atoms. This is
because any derivation of the satisfaction relation γ |=ν

∆1
A1(x1, . . . , x#A1) can be mimicked

(modulo the state atoms that may change) by a derivation of γ |=ν
∆2

A2(x1, . . . , x#A2), and
viceversa. We are now in the position of stating the main result of this section:

▶ Theorem 26. Assuming that A(x1, . . . , x#A) is a ∆-tight formula, each instance
HavocInv[∆,A] of the havoc invariance problem can be reduced to a set {Ai(x1, . . . , x#A) |=∆∪∆
A(x1, . . . , x#A)}p

i=1 of entailments, where ∆ ≈ ∆, for an arity-preserving equivalence relation
∼ ⊆ A× A, such that Ai ∼ A, for all i ∈ [1, p]. The reduction is polynomial, if #(∆), N(∆)
and H(∆) are bounded by constants and simply exponential, otherwise.

4 Decidability and Complexity

We prove the undecidability of the havoc invariance problem (Def. 9) using a reduction from
the universality of context-free languages, a textbook undecidable problem [2].

▶ Theorem 27. The HavocInv[∆,A] problem is undecidable.

The undecidability proof for the havoc invariance problem uses an argument similar to
the one used to prove undecidability of the entailment problem [4, Theorem 4]. We leverage
further from this similarity and carve a fragment of CL with a decidable havoc invariance
problem, based on the reduction from Theorem 26. For self-containment reasons, we recall
the definition of a CL fragment for which the entailment problem is decidable (see [4, §6]
for more details and proofs). This definition relies on three, easily checkable, syntactic
restrictions on the rules of the SID and a decidable semantic restriction on the models of a
predicate atom defined by the SID. The syntactic restrictions use the notion of profile:

▶ Definition 28. The profile of a SID ∆ is the pointwise greatest function λ∆ : A→ pow(N),
mapping each predicate A into a subset of [1,#A], such that, for each rule A(x1, . . . , x#A)← ϕ

from ∆, each atom B(y1, . . . , y#B) from ϕ and each i ∈ λ∆(B), there exists j ∈ λ∆(A), such
that xj and yi are the same variable.

CONCUR 2022



24:14 On an Invariance Problem for Parameterized Concurrent Systems

The profile identifies the parameters of a predicate that are always replaced by a variable
x1, . . . , x#A in each unfolding of A(x1, . . . , x#A), according to the rules in ∆; it is computed
by a greatest fixpoint iteration, in polynomial time.

▶ Definition 29. A rule A(x1, . . . , x#A)← ∃y1 . . . ∃ym . ϕ ∗ ∗ h
ℓ=1Bℓ(zℓ

1, . . . , z
ℓ
#Bℓ

), where ϕ
is a qpf formula, is said to be:
1. progressing (P) if and only if ϕ = [x1]∗ψ, where ψ consists of interaction atoms involving

x1 and (dis-)equalities, such that
⋃h

ℓ=1{zℓ
1, . . . , z

ℓ
#Bℓ
} = {x2, . . . , x#A} ∪ {y1, . . . , ym},

2. connected (C) if and only if, for each ℓ ∈ [1, h] there exists an interaction atom in ψ that
contains both zℓ

1 and a variable from {x1} ∪ {xi | i ∈ λ∆(A)},
3. equationally-restricted (e-restricted or R) if and only if, for every disequality x ̸= y from

ϕ, we have {x, y} ∩ {xi | i ∈ λ∆(A)} ≠ ∅.
A SID ∆ is progressing (P), connected (C) and e-restricted (R) if and only if each rule in ∆
is progressing, connected and e-restricted, respectively.

▶ Example 30. For example, the rules for the chainh,t(x1, x2) predicates from the SID in
§1.1 are PCR, but not the rules for ringh,t() predicates, that are neither progressing nor
connected. The latter can be replaced with the following PCR rules:

ringh,t(x)← ∃y∃z . [x]@q ∗ ⟨x.out, z.in⟩ ∗ chainh′,t′(z, y) ∗ ⟨y.out, x.in⟩, for all h, t ∈ N

Similarly, rule (2) for the Node predicate is PCR, but not rules (1) and (3), from Example 12.
In order to obtain a SID that is PCR, these rules can be replaced with, respectively:

Root(n)←∃n1∃ℓ1∃r1∃n2∃ℓ2∃r2 . [n] ∗ ⟨n.req, n1.reply, n2.reply⟩ ∗ ⟨r1.in, ℓ2.out⟩ ∗
Node(n1, ℓ1, r1) ∗Node(n2, ℓ2, r2)

Node(n, ℓ, r)←[n] ∗ ⟨n.req, ℓ.reply, r.reply⟩ ∗ ⟨ℓ.in, r.out⟩ ∗ Leaf (ℓ) ∗ Leaf (r) Leaf (n)← [n] ⌟

A first property is that PCR SIDs define only tight configurations (Def. 3), a prerequisite
for the reduction from Theorem 26:

▶ Lemma 31. Let ∆ be a PCR SID and let A ∈ Def(∆) be a predicate. Then, for any
∆-model (γ, ν) of A(x1, . . . , x#A), the configuration γ is tight.

The last restriction for the decidability of entailments relates to the degree of the models
of a predicate atom. The degree of a configuration is defined in analogy with the degree of a
graph as the maximum number of interactions involving a component:

▶Definition 32. The degree of a configuration γ = (C, I, ϱ) is defined as δ(γ) def= maxc∈C δc(γ),
where δc(γ) def= ||{(c1, p1, . . . , cn, pn) ∈ I | c = ci, i ∈ [1, n]}||.

For instance, the configuration of the system from Fig. 1 (a) has degree two. The degree
boundedness problem DegreeBound[∆,A] asks, given a predicate A and a SID ∆, if the set
{δ(γ) | γ |=∆ ∃x1 . . . ∃x#A . A(x1, . . . , x#A)} is finite. This problem is decidable [4, Theorem
3]. The entailment problem A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B) is known
to be decidable for PCR SIDs ∆, provided, moreover, that DegreeBound[∆,A] holds:

▶ Theorem 33 ([4]). The entailment problem

A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B),

where ∆ is PCR and DegreeBound[∆,A] has a positive answer, is in 2EXP, if #(∆) and N(∆)
are bounded by constants and in 4EXP, otherwise.



M. Bozga, L. Bueri, and R. Iosif 24:15

Back to the havoc invariance problem, we give first a lower bound using a reduction from
the entailment problem A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B), where ∆ is a
PCR SID and HavocInv[∆,A] has a positive answer. To the best of our efforts, we could not
prove that the entailment problem is 2EXP-hard under the further assumption that #(∆) is
bounded by a constant, which leaves the question of a matching lower bound for the havoc
invariance problem open, in this case.

▶ Lemma 34. The HavocInv[∆,A] problem for PCR SIDs ∆, such that DegreeBound[∆,A]
has a positive answer, is 2EXP-hard.

The main result of this section is a consequence of Theorems 26 and 33. In the absence
of a constant bound on the parameters #(∆), N(∆) and H(∆), the entailment resulting
from the reduction (Theorem 26) is of simply exponential size in the input and the time
complexity of solving the entailments is 4EXP(Theorem 33), yielding a 5EXP upper bound:

▶ Theorem 35. The HavocInv[∆,A] problem, for PCR SIDs such that DegreeBound[∆,A]
has a positive answer is in 2EXP, if #(∆), N(∆) and H(∆) are bounded by constants and in
5EXP, otherwise.

5 Conclusions

We have considered a logic for describing sets of configurations of parameterized concurrent
systems, with user-defined network topology. The havoc invariance problem asks whether
a given formula in the logic is invariant under the execution of the system starting from
each configuration that is a model of a formula. An algorithm for this problem uses a
many-one reduction to the entailment problem, thus leveraging from earlier results on the
latter problem. We study the decidability and complexity of the havoc invariance problem
and show that a doubly-exponential algorithm exists for a fairly general fragment of the logic,
that encompasses all our examples. This result is relevant for automating the generation of
correctness proofs for reconfigurable systems, that change the network topology at runtime.

References
1 Emma Ahrens, Marius Bozga, Radu Iosif, and Joost-Pieter Katoen. Local reasoning about

parameterized reconfigurable distributed systems. CoRR, abs/2107.05253, 2021. arXiv:
2107.05253.

2 Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir. On formal properties of simple phrase
structure grammars. Sprachtypologie und Universalienforschung, 14:143–172, 1961.

3 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and
Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2015.

4 Marius Bozga, Lucas Bueri, and Radu Iosif. Decision problems in a logic for reasoning about
reconfigurable distributed systems. In International Joint Conference on Automated Reasoning,
to appear, 2022. arXiv:2202.09637.

5 Marius Bozga, Javier Esparza, Radu Iosif, Joseph Sifakis, and Christoph Welzel. Structural
invariants for the verification of systems with parameterized architectures. In Tools and
Algorithms for the Construction and Analysis of Systems - 26th International Conference,
TACAS 2020, volume 12078 of LNCS, pages 228–246. Springer, 2020.

6 Marius Bozga and Radu Iosif. Specification and safety verification of parametric hierarchical
distributed systems. In Formal Aspects of Component Software - 17th International Conference,
FACS 2021, Virtual Event, October 28-29, 2021, Proceedings, volume 13077 of Lecture Notes
in Computer Science, pages 95–114. Springer, 2021.

CONCUR 2022

http://arxiv.org/abs/2107.05253
http://arxiv.org/abs/2107.05253
http://arxiv.org/abs/2202.09637


24:16 On an Invariance Problem for Parameterized Concurrent Systems

7 Antonio Bucchiarone and Juan P. Galeotti. Dynamic software architectures verification using
dynalloy. Electron. Commun. Eur. Assoc. Softw. Sci. Technol., 10, 2008.

8 Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract
separation logic. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007),
10-12 July 2007, Wroclaw, Poland, Proceedings, pages 366–378. IEEE Computer Society, 2007.
doi:10.1109/LICS.2007.30.

9 Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James Worrell.
Tractable reasoning in a fragment of separation logic. In CONCUR, volume 6901 of Lecture
Notes in Computer Science, pages 235–249. Springer, 2011.

10 Julien Dormoy, Olga Kouchnarenko, and Arnaud Lanoix. Using temporal logic for dynamic
reconfigurations of components. In Luís Soares Barbosa and Markus Lumpe, editors, Formal
Aspects of Component Software - 7th International Workshop, FACS 2010, volume 6921 of
Lecture Notes in Computer Science, pages 200–217. Springer, 2010.

11 Antoine El-Hokayem, Marius Bozga, and Joseph Sifakis. A temporal configuration logic for
dynamic reconfigurable systems. In Chih-Cheng Hung, Jiman Hong, Alessio Bechini, and
Eunjee Song, editors, SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing,
Virtual Event, Republic of Korea, March 22-26, 2021, pages 1419–1428. ACM, 2021. doi:
10.1145/3412841.3442017.

12 Klaus-Tycho Foerster and Stefan Schmid. Survey of reconfigurable data center networks:
Enablers, algorithms, complexity. SIGACT News, 50(2):62–79, 2019.

13 Dan Hirsch, Paolo Inverardi, and Ugo Montanari. Graph grammars and constraint solving for
software architecture styles. In Proceedings of the Third International Workshop on Software
Architecture, ISAW ’98, pages 69–72, New York, NY, USA, 1998. Association for Computing
Machinery. doi:10.1145/288408.288426.

14 Yonit Kesten, Amir Pnueli, Elad Shahar, and Lenore D. Zuck. Network invariants in action. In
CONCUR 2002 - Concurrency Theory, 13th International Conference, volume 2421 of LNCS,
pages 101–115. Springer, 2002.

15 Arnaud Lanoix, Julien Dormoy, and Olga Kouchnarenko. Combining proof and model-checking
to validate reconfigurable architectures. Electron. Notes Theor. Comput. Sci., 279(2):43–57,
2011.

16 Daniel Le Metayer. Describing software architecture styles using graph grammars. IEEE
Transactions on Software Engineering, 24(7):521–533, 1998. doi:10.1109/32.708567.

17 David Lesens, Nicolas Halbwachs, and Pascal Raymond. Automatic verification of paramet-
erized linear networks of processes. In The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 346–357. ACM Press, 1997.

18 Mohammad Noormohammadpour and Cauligi S. Raghavendra. Datacenter traffic control:
Understanding techniques and tradeoffs. IEEE Commun. Surv. Tutorials, 20(2):1492–1525,
2018.

19 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings, pages 55–74. IEEE Computer Society, 2002. doi:10.1109/LICS.2002.
1029817.

20 Ze’ev Shtadler and Orna Grumberg. Network grammars, communication behaviors and
automatic verification. In Joseph Sifakis, editor, Automatic Verification Methods for Finite
State Systems, International Workshop, volume 407 of LNCS, pages 151–165. Springer, 1989.

21 Pierre Wolper and Vinciane Lovinfosse. Verifying properties of large sets of processes with
network invariants. In Automatic Verification Methods for Finite State Systems, International
Workshop, volume 407 of LNCS, pages 68–80. Springer, 1989.

https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1145/3412841.3442017
https://doi.org/10.1145/3412841.3442017
https://doi.org/10.1145/288408.288426
https://doi.org/10.1109/32.708567
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817

	1 Introduction
	1.1 A Motivating Example

	2 Definitions
	2.1 Configurations
	2.2 Configuration Logic
	2.3 The Havoc Invariance Problem

	3 From Havoc Invariance to Entailment
	3.1 From SID to Tree Automata and Back
	3.2 Encoding Havoc Steps by Tree Transducers
	3.3 The Main Result

	4 Decidability and Complexity
	5 Conclusions

