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Abstract
We consider two-player zero-sum games with winning objectives beyond regular languages, expressed
as a parity condition in conjunction with a Boolean combination of boundedness conditions on
a finite set of counters which can be incremented, reset to 0, but not tested. A boundedness
condition requires that a given counter is bounded along the play. Such games are decidable, though
with non-optimal complexity, by an encoding into the logic WMSO with the unbounded and path
quantifiers, which is known to be decidable over infinite trees. Our objective is to give tight or tighter
complexity results for particular classes of counter games with boundedness conditions, and study
their strategy complexity. In particular, counter games with conjunction of boundedness conditions
are easily seen to be equivalent to Streett games, so, they are CoNP-c. Moreover, finite-memory
strategies suffice for Eve and memoryless strategies suffice for Adam. For counter games with a
disjunction of boundedness conditions, we prove that they are in solvable in NP∩CoNP, and in
PTime if the parity condition is fixed. In that case memoryless strategies suffice for Eve while
infinite memory strategies might be necessary for Adam. Finally, we consider an extension of those
games with a max operation. In that case, the complexity increases: for conjunctions of boundedness
conditions, counter games are EXPTIME-c.
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1 Introduction

Games on graphs are a popular mathematical framework to reason on reactive synthesis
problems [2, 9]: the system to synthesize is seen as a protagonist which must enforce a given
specification (its winning objective) against any adversarial behaviour of its environment. In
this framework, executions of reactive systems are modelled as infinite sequences alternating
between actions of the systems and actions of its environment. In the ω-regular setting,
the set of correct executions of reactive systems is modelled as an automaton, for example,
a non-deterministic Büchi automaton, then determinized into a parity automaton. The
synthesis problem then boils down to solving a game played on the graph of the parity
automaton, where the goal of the protagonist (Eve) is to satisfy, in the long run, the parity
condition whatever her opponent (Adam) does. Motivated by the synthesis of more complex
systems, the literature is rich in extensions of this basic two-player zero-sum ω-regular setting:
multiple players, imperfect information, quantitative objectives, infinite graphs ... (see [2, 9]
for some references). In this paper, we follow this line of work and consider an extension of
two-player games beyond ω-regularity: counter games with boundedness conditions.
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21:2 Two-Player Boundedness Counter Games

Counter games. In this paper, a two-player counter game with boundedness objectives,
only called counter game hereafter, is given by a finite arena, called counter arena, whose
vertices are labelled by counter operations over a finite set of counters C. Those operations
can: increment a counter, reset it, or skip it (i.e. leave its value unchanged). We consider
objectives given as Boolean combinations of counter boundedness conditions. For c ∈ C, the
condition B(c) is satisfied by all infinite paths π = v0v1 . . . , called plays, such that for some
N ∈ N, the value of c along π is bounded by N . Note that the bound N is not uniform, in
the sense that it depends on π, and as a consequence, the set of plays satisfying B(c) is not
ω-regular in general. In this paper, we consider particular classes of Boolean combinations of
boundedness conditions. Since they do not necessarily capture all ω-regular objectives, we
also, by default, equip counter games with a parity condition.

Given an objective W , as a Boolean formula Φ over atoms B(c) for all c ∈ C, the goal of
the protagonist, Eve, is to enforce plays which satisfy W and the parity condition, whatever
the adversary, Adam, does. If she has a strategy to meet this objective, she is said to win
the game. Counter games are zero-sum, meaning that the goal of Adam is to enforce the
complementary objective. The goal of this paper is to build a fine understanding of counter
games, by studying the problem of deciding the winner for important classes of counter
games.

Motivations. On infinite words, classes of counter automata with boundedness conditions
have appeared in various papers, e.g. in [6, 15, 3, 8]. The most relevant models in the
context of counter games are the ωBS-automata of [6] and the max-automata of [8]. They
are equipped with the same counter operations as the counter games of this paper, plus
a max operation in the case of max-automata, and some boundedness conditions. As a
consequence, winning objectives in counter games can naturally be expressed with these
automata. However, while they are known to have decidable emptiness problem, not much is
known when they are used to define objectives in two-player games. A motivation for this
paper is to investigate this question, for games where the winning conditions is not given by
such an automaton but where counter operations are explicitly given in the arena.

In the same line of works, max-automata, which are deterministic, are known by [3] to
correspond to the logic WMSO+U, which extends weak MSO on infinite words with the
unbounded quantifier UX. A formula UX.ϕ(X) holds if there are arbitrarily large sets X
satisfying ϕ. An important and strong result by Bojańczyk states that the extension of
WMSO+U to infinite binary trees and with a path quantifier which allows to quantify over
infinite paths, has decidable satisfiability problem [7]. Since strategies are definable, modulo
a tree encoding, in this latter logic, a direct consequence of this result is that two-player
games with objectives given by max-automata are decidable (see also Example 2 of [7]).
As a consequence, counter games with boundedness conditions are decidable, though with
non-elementary complexity. We aim here at providing conceptually simpler arguments and
insights to prove decidability (with tighter complexity results), for particular instances of
boundedness conditions, instead of using the general result of [7].

Contributions. Our contributions are summarized in Fig. 1. We consider objectives given
as a conjunction of a parity condition and a formula over atoms B(c) in the following classes:
conjunctions, disjunctions, disjunctions of conjunctions, and negation-free formulas. We also
consider the extension of counter games with a max operator which can assign a counter with
the maximal value of several counters. The table also mentions the strategy complexity. For
conditions in

∧
B, counter games are easily proved to be interreducible in polynomial time



E. Filiot and E. Hamel-de le Court 21:3

to Streett games, yielding CoNP-completeness [22]. More interestingly, we prove that when
the number of counters is fixed, then, they are interreducible to parity games in polynomial
time, using another reduction (Thm 5).

We then prove, in it is our main contribution, that for conditions in
∨

B, counter games
are solvable in NP∩CoNP and in polynomial time when the index of the parity function
is fixed. To prove this result, we introduce the notion of finitely switching strategies which
are, to the best of our knowledge new, and we believe, interesting on their own. This notion
is specifically designed for disjunctions of prefix-independent objectives (which is the case
of counter boundedness conditions): in a finitely switching strategy, Eve announces which
objective from the disjunction she aims to satisfy, and she can change her mind along the
play, but only a finite number of times. Eventually, she is bound to satisfy one the objectives.
We give general conditions to decide whether Eve has a finitely switching strategy in a
two-player game with a disjunction of prefix-independent objectives, and prove that such
strategies are sufficient for Eve to win objectives in

∨
B and more generally in

∨∧
B.

Related works. Two-player games with boundedness conditions have been studied in the
literature, first as finitary parity and Streett games [12], then generalized to cost-parity and
cost-Streett games [20]. Finitary parity- and Streett-games are request-response games [13],
with the additional constraint that the delay (number of edges) between a request and its
response is bounded (by a bound which depends on the play). For cost-parity and cost-Streett,
instead of the number of edges, costs (including 0) label edges and the delay is defined as
the sum of the costs. Cost-parity and cost-Streett games can be encoded as counter games
with conditions in

∧
B, though with an exponential blowup. The difference between those

counter games and finitary- and cost-games can be seen in their complexity: counter games
with conditions in

∧
B are CoNP-c, finitary parity games are in PTime, cost-parity in

NP∩CoNP, and finitary Streett and cost-Streett are ExpTime-c.
Delay games with objectives given by a max-automaton have been proved to be decidable

in [26]. This result is orthogonal to ours: first, those games allow for some delay, here in
the sense that Eve has some look-ahead on Adam’s future actions. Second, the decision
procedure is non-elementary and rely on an encoding into WMSO+UP on infinite trees, some
argument we avoid here, but for less expressive boundedness objectives.

Infinite-state games with boundedness conditions have been considered in [11], over
pushdown arenas. Finitary games over these arenas are shown to be decidable, as well as
(pushdown) counter games with conditions in

∧
B, without complexity results. Interestingly,

it is shown that those games are equivalent to games where the objective of Eve is to uniformly
bound all counters, for a bound which only depends on her strategy, and not on the plays.
For counter games in

∧
B over a finite arena, this result can easily be seen as a consequence

that finite-memory strategies suffice for Eve.
Last but not least, counter boundedness games have appeared implicitly in some existing

works on synthesis [1, 19], though the classes considered in these papers are less general
and solved using specific techniques. In [19], the authors consider a synthesis problems
over infinite alphabets of data. In particular, they study the problem of synthesising Mealy
machines with registers satisfying specifications given as deterministic register automata over
(N, <, 0). It is shown that this problem is decidable in 2ExpTime, and, even though the
decidability proof is not based on counter games, it is proved that the synthesis problem
reduces to a game with winning conditions given as a (deterministic) max-automaton whose
acceptance is a disjunction of a parity condition and a disjunction of conditions of the form
“counter c is unbounded”. Although the main technical difficulty in [19] is to prove this
reduction, based on it, our results on counter games with max operation yields an alternative
procedure to decide the former synthesis problem (with same complexity).

CONCUR 2022
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Winning objective Complexity Memory of Memory of Theorem
parity∧ Eve Adam∧

B coNP-c Finite none Th 3∨
B NP ∩CoNP Parity Index Infinite Th 12

PTime for fixed index∨∧
B coNP-c Finite Infinite Th 13

Bool+(B) PSPACE,CoNP-h Finite Infinite Th 14∧
B +max EXPTIME-c Finite Finite Th 15

Bool(B) +max Decidable Infinite Infinite from [5]

Figure 1 Complexity of deciding whether Eve has a winning strategy in a counter game for
various winning objectives, always taken in conjunction with a parity objective. Bool+(B) means
any negation-free Boolean combination of objectives of the form B(c). Hardness results hold for any
parity function of fixed constant index. The notation +max indicates that counter games are also
equipped with a max operation. Since counter games with boundedness objectives are determined,
this yields the complexity of deciding whether Eve wins for the complementary objectives: for
example, it is NP-c for objectives parity ∨

∨
U and memoryless strategies are sufficient for Eve, and

in PTIME for parity ∨
∧

U but infinite memory might be necessary for Eve.

The work of [1] considers a parameterized synthesis problem called the population control
problem. In this problem, an arbitrary number of processes execute the same NFA, with the
goal of reaching an accepting state. The controller picks an action (a letter) common to all
of them, while the adversary resolves non-determinism for each of them individually. The
problem is to decide whether “controller wins for any number of processes”. It is shown that
this problem reduces to a finite graph game with a condition of the form “if the play has
bounded capacity – where this bound depends on the play –, then the play satisfies some
reachability condition” (see Sec 3.2 and Lemma 9 of [1]). Though the authors show that this
condition can be equivalently replaced by an ω-regular one, it could also be directly encoded
as a counter boundedness condition (with max operation). Our results combined with this
reduction would however not provide the optimal complexity found in [1].

While our results on counter games do not provide new decidability results (nor better
complexities) with respect to the two applications mentioned before, these two applications
show that counter games with boundedness conditions arise naturally in synthesis problems,
motivating our general study.

2 Preliminaries

For any set Σ, we denote by Σ∗ (Σω) the finite (infinite) sequences of elements of Σ.

Two-player arenas. A two-player arena is a tuple A = (V,E, V∃, V∀, v0), where V is finite
set, E ⊆ V × V , and V∃ and V∀ are two subsets of V such that {V∃, V∀} is a partition of
V , and v0 is an initial vertex. In this paper, we assume that arenas are deadlock-free, i.e.
that for any v ∈ V , there exists v′ ∈ V such that (v, v′) ∈ E. Given v ∈ V , we denote
A[v] = (V,E, V∃, V∀, v) the arena A where v0 has been substituted by v. A play ρ of A is a
mapping from N to V such that (ρ(i), ρ(i+ 1)) ∈ E, for all integers i ∈ N. The set of plays is
denoted by Plays(A). Any play can also be seen as an element of V ω, and we call a history
any finite prefix of a play, and denote by Hist(A) the set of histories of A.
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Strategies and finite-memory. A strategy for Eve (resp. Adam) is a function σ from
Hist(A) to V defined for all histories h = h0 · · ·hn with hn ∈ V∃ (resp. hn ∈ V∀), and
such that (hn, σ(h)) ∈ E. A play ρ is consistent with a strategy for Eve (resp. Adam) if,
for any integer n such that ρ(n) ∈ V∃ (resp. ρ(n) ∈ V∀), σ is defined on ρ(0) · · · ρ(n), and
ρ(n+ 1) = σ(ρ(0) · · · ρ(n)). We let Plays(A, σ) (or just Plays(σ) when A is clear from the
context) the set of plays consistent with σ.

A strategy σ of Eve (resp. Adam) is said to be finite-memory if there exists a finite set
M , an element mI ∈ M , a mapping δ from V ×M to V , and a mapping g from V ×M
to M such that the following is true. When h = v0v1 · · · vl is a prefix of a play consistent
with σ such that vl ∈ V∃ (resp. vl ∈ V∀), and the sequence m0,m1, ...,ml is determined by
m0 = mI and mi+1 = g(vi,mi), then σ(w) = δ(vl,ml). In that case, we say that (δ, g) is a
memory mapping pair of σ, and that ml is the memory state of g at move l. We also say
that σ is of memory |M |, and memoryless if it is of memory 1. Note that a memoryless
strategy can just be identified with a mapping from V to V .

Two-player games. A winning condition for A is a subset W ⊆ V ω. A strategy σ of Eve or
Adam is said to be winning for objective W if Plays(σ) ⊆W . A two-player game is a pair
G = (A,W ) where A is an arena and W is a winning condition. We say that a strategy (of
Eve or Adam) is winning in G if it is winning for W . A game G = (A,W ) is determined if
either Eve wins G or Adam wins (A, V ω\W ).

In this paper, we consider the problem of deciding, given a game G with a finitely
represented winning condition, whether Eve wins G. For a complexity class C and a class of
games G, we say that games in G are in C (resp. C-hard, C-complete) if the latter problem
for games G ∈ G is in C (resp. C-hard, C-complete).

We also consider the complexity of strategies sufficient or necessary for Eve and Adam to
win a game. We say that finite-memory strategies are sufficient for Eve (resp. Adam) to win
G if for all G ∈ G, whenever Eve (resp. Adam) wins G, she has (resp. he has) a finite-memory
winning strategy in G. We say that finite-memory is necessary for Eve (resp. Adam) to win
G if memoryless strategies do not suffice for Eve (resp. Adam) to win G. Finally, we say that
infinite-memory is necessary for Eve (resp. Adam) to win G if finite-memory strategies do
not suffice for Eve (resp. Adam) to win G.

Parity games. Let A be an arena with set of vertices V . Let Q ⊆ N be a finite set of
elements called colours and κ : V → Q a mapping from vertices to colours called parity
function or priority function. The size |Q| of Q is called the index of κ. The mapping κ
defines a winning condition denoted Parity(κ), called a parity condition, as follows: Parity(κ)
is the set of all infinite words w = w0w1 · · · ∈ V ω such that the greatest colour occurring an
infinitely often in κ(w0)κ(w1) · · · is even. A parity game is a game whose winning condition is
a parity condition. We refer to A′ = (A, Q, κ) as a coloured arena, and also denote Parity(κ)
as Parity(A′) to avoid an explicit mention of the colouring κ. Note that a coloured arena
A′ = (A, Q, κ) uniquely defines a parity game G = (A,Parity(A′)). It is well-known that
parity games are in NP ∩CoNP [17], and even solvable in quasi-polynomial time [10].

Counter operations. Our goal is now to define counter games. First, we introduce counter
operations and their semantics. In the rest of the paper, we fix a countable set C whose
elements are called counters. A counter operation is a mapping from a finite subset C of
C to {i, r, skip}. We let Op(C) denote the set of counter operations over C ⊆ C. A counter
valuation is a mapping ν from C to N. For any infinite word w ∈ Op(C)ω, we define λ(w)
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21:6 Two-Player Boundedness Counter Games

as the infinite sequence of counter valuations ν0, ν1, ν2, . . . such that for any counter c ∈ C,
ν0(c) = 0 and for any non-negative integer n, νn+1(c) = νn(c) + 1 if wn(c) = i, νn+1(c) = 0
if wn(c) = r and νn+1(c) = νn(c) if wn(c) = skip. We define λ(w) for w ∈ Op(C)∗. To ease
notations, we write λ(w, c)i instead of λ(w)i(c). We say that λ is the evaluation of w.

Counter games with boundedness objectives. Let A′ be an arena with set of vertices
V , C ⊆ C a finite set of counters, and ζ : V → Op(C) a mapping from vertices to counter
operations, called vertex labeling. Let Q be a set of colours and κ : V → Q be a colouring of
V . To avoid cumbersome notations, for any vertex v ∈ V and counter c ∈ C, we let ζc(v)
denote (ζ(v))(c). We refer to A = (A′, C, ζ,Q, κ) as a counter arena, to A′ as its underlying
arena and to (A, Q, κ) as its underlying coloured arena. We let Parity(A) = Parity(κ).

We consider a particular type of winning objective for counter games, called boundedness
conditions, always together with a parity condition. Let c ∈ C. We let B(c) be an atomic
formula which intuitively requires that counter c is bounded along a play, by some constant.
Formally, B(c) is interpreted in A by the set of plays ρ of A, denoted Plays (A,B(c)), such
that the sequence λ(ζ(ρ), c) is bounded, i.e.

Plays (A,B(c)) = {ρ ∈ Plays(A) | ∃N ∈ N,∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

The set Plays (A,B(c)) is called a boundedness condition. To ease readability, we may just
write B(c) to denote Plays (A,B(c)) when A is clear from the context. We let U(c) as
a shortcut for ¬B(c). A counter condition for A is a Boolean formula ϕ over the set of
propositions {B(c) | c ∈ C}. Its interpretation Plays (A, ϕ) ⊆ Plays(A) over A is defined
naturally.

Given a counter condition ϕ, the pair G = (A, ϕ) is called a counter game. The game
induced by G = (A, ϕ) is the game Gϕ = (A′, P lays (A, ϕ) ∩ Parity(A)), where A′ is the
underlying arena of A. Note that in a counter game, both the counter condition and the
parity condition must be satisfied. The notion of strategies and winning strategies carry over
to counter games by considering the games they induce. In particular, Eve wins G if she
wins Gϕ, i.e., she has a strategy winning for the objective Plays (A, ϕ) ∩ Parity(A).

In this paper, we consider several classes of counter conditions. The class of counter
conditions of the form

∧
c∈C B(c) for some finite set C ⊆ C is denoted

∧
B. Similarly, we

denote by
∨
B,
∨∧

B and Bool+(B) the classes of counter conditions which are respectively,
disjunctions of atoms B(c), disjunction of conjunctions of atoms B(c) (DNF), any negation-free
Boolean formula.

▶ Example 1. First, Fig. 2 illustrates an example (left) with a disjunction of boundedness
objectives (see the caption for details). Our second example is given by the 2-counter arena
at the right of Fig. 2, where Adam controls all states. Adam has a strategy to win the
objective

∧
i=1,2 U(ci). Indeed, he can alternate between q1 and q2 by cycling longer and

longer in one before cycling to the other. Notice that this strategy requires infinite memory.

▶ Lemma 2. Counter games (with Boolean combinations of boundedness objectives) are
determined and decidable.

Proof. Given a counter arena A and a counter c of A, the set Plays (A,B(c)) is a Borel set.
Indeed, it is equal to the countable union for all N ≥ 0 of the sets

PlaysN (A,B(c)) = {ρ ∈ Plays(A) | ∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

which are ω-regular. Indeed, a Büchi automaton needs |V | × N × |C| states to recognize
PlaysN (A,B(c)). Since ω-regular sets are Borel, so is Plays (A,B(c)), as well as any Boolean
combination of the latter. By Martin’s determinacy theorem [24], the result follows.
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q3

(skip, i)

q4

(skip, i)

q1

(i, skip)

q2

(i, skip)

q1

(i, r)
q2

(r, i)

Figure 2 (Left) Counter arena A = (V, E, V∃, V∀, v) with V∃ = {q1, q3} and V∀ = {q2, q4}, v = 1.
There are two counters (c, d) whose updates are represented on the figure as pairs. We assume no
parity condition and a counter condition B(c) ∨ B(d). From vertex 3, Eve has a memoryless winning
strategy σ: always move to 4. Furthermore, she does not have a strategy from 1 to bound counter
c, neither does she have a strategy from 1 to bound d. However, she has a memoryless strategy
β winning for B(c) ∨ B(d): from 1, she moves to 2, and from 3 she moves to 4. If the play stays
in {1, 2}, then d is bounded, and if the play eventually moves to 3, then c is bounded. (Right) A
2-counter arena with all states controlled by Adam and no parity condition.

To prove decidability, it suffices to notice that winning strategies in counter games are
infinite trees such that all of their branches are accepted by a deterministic max-automaton as
defined in [3]. Deterministic max-automata corresponds exactly to the logic WMSO+U over
infinite words (weak MSO with the unbounding quantifier). WMSO+U has been extended to
WMSO+UP on infinite trees with an additional quantifier over infinite paths (P). Therefore,
winning strategies of two-player games with winning conditions definable in WMSO+U
over infinite words are definable in WMSO+UP (see Ex. 2 of [5]). The result follows since
WMSO+UP has decidable satisfiability problem [5]. ◀

3 Counter games with conjunctions of boundedness conditions

In this section, we study games with counter conditions in the class
∧

B. Such games are
easily shown to be decidable using known results. Indeed, we prove that they are equivalent
in polynomial time to Streett games, known to be CoNP-complete [18], and in PTIME for
a fixed number of Streett pairs [25]. This allows us to prove the following theorem:

▶ Theorem 3. Counter games with winning conditions in
∧
B are coNP-complete, and

in PTIME if both the index of the priority function and the number of counters are fixed
constants. Finite memory suffices for Eve and memoryless strategies suffice for Adam.
coNP-hardness holds even if the index of the parity function is any fixed constant.

Sketch of proof. First, we define Streett games. Given an arena A with set of vertices V ,
and a set of k pairs S = {(Ei, Fi) | 1 ≤ i ≤ k,Ei, Fi ⊆ V }, we let Streett(S) be the set of
words w ∈ V ω such that for all i = 1, . . . , k, if w contains infinitely many occurrences of
some e ∈ Ei, then it must contain infinitely many occurrences of some f ∈ Fi. A Streett
game is a pair G = (A,W ) where W is given as set of k Streett pairs S, i.e., W = Streett(S).
We prove that

∧
B-counter games are interreducible to Streett games in polynomial time.

From any counter game G, we construct a Streett game Ψ(G) with the same arena and
for each counter c a pair (Ec, Fc) such that Ec is the set of vertices where c is incremented
while Fc is the set of vertices where c is reset. The parity function of the counter game can
also be split up into Streett pairs. If Eve wins G, it is obvious that Eve wins Ψ(G) with
the same winning strategy. For the converse, we use the fact that finite-memory strategies
suffice to win Streett games (and memoryless strategies suffice for Adam) as shown in [25].
Any finite-memory Eve’s strategy σ winning for Ψ(G) is also winning for G. Indeed, if σ
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21:8 Two-Player Boundedness Counter Games

has some play with some unbounded counter c, then c is necessarily incremented and reset
infinitely often. Adam could then find a cycle (both on the arena and the memory structure
of σ) containing at least one increment of c and no reset, iterate this cycle ad infinitum, and
make Eve lose the Streett game if she plays σ. This contradicts that σ is winning. As a
consequence, Eve wins G iff she wins Ψ(G). To get the CoNP lower bound, we use the fact
that Ψ is actually reversible, in polynomial time. ◀

Theorem 3 does not cover the case where only the number of counters is fixed. We prove
that in this case, the complexity is at most NP ∩ coNP. Any Streett pair can be seen as
a parity condition over colors {0, 1, 2}. Therefore, if in the latter transformation Ψ we use
{0, 1, 2}-parity conditions instead of Streett pairs and keep exactly the parity condition of
G, we obtain that any

∧
B-counter game with a fixed number ℓ of counters, is equivalent

(in the sense that it preserves the winner) to a game with a winning condition which is a
conjunction of a fixed number ℓ of {0, 1, 2}-parity conditions and a single arbitrary parity
condition. We prove that such games are in turn reducible in polynomial time to parity
games for ℓ = 1 in the following lemma, later on applied recursively to show the result the
result for any fixed ℓ (Theorem 5).

▶ Lemma 4. Games of the form G = (A,W ) where W = Parity(κ) ∩ Parity(κ3) for κ an
arbitrary colouring of index k and κ3 a colouring in {0, 1, 2}, reduce in polynomial time to
parity games of index 2k + 1. Moreover, finite-memory strategies of memory size equal to k
are sufficient for Eve to win G.

Note that Lemma 4 entails that games with a conjunction of a parity condition of index
k and a fixed number N of parity conditions over colors {0, 1, 2} are solvable in NP∩CoNP.
Indeed, by iterating Lemma 4 N times, the latter games reduce to parity games of index
2N (k + 1)− 1 (and number of states exponential in N). Games with Boolean combinations
of parity objectives have been studied in [14]. However, the former complexity result is not
covered by [14]. As explained before, Lemma 4 implies the following theorem:

▶ Theorem 5. For any fixed positive integer N , counter games of parity index k (which is
not supposed to be fixed) with winning conditions in

∧
B and at most N counters, are in

NP ∩CoNP (and parity-hard). Finite memory strategies with memory size 2N−1(k + 1)− 1
suffice for Eve and Adam.

4 Finitely switching strategies for games with disjunction of
prefix-independent objectives

Let A be an arena, let V be its set of vertices, and letW be a finite set of prefix-independent1

winning conditions for A, i.e., W ⊆ 2V ω . We let
∨
W =

⋃
{W | W ∈ W}. In this section,

we consider a class of strategies for Eve, called finitely switching, whose existence entail that
she wins (A,

∨
W). We characterize the existence of finitely switching strategies via a least

fixpoint and, for some particular classes of winning objectives
∨
W of interest in this paper,

prove that such strategies suffice for Eve to win (A,
∨
W). The complexity of computing the

fixpoint for those particular classes of objectives is deferred to Section 5.
Let us first give intuition on the notion of finitely switching strategies. In such a strategy,

Eve announces an initial goal W ∈ W she wants to satisfy, but she may change her mind
during the play, i.e., announce another goal W ′ ∈ W, depending on what Adam does. She

1 A winning condition W is prefix-independent if, for all (w, u) ∈ (V ω, V ⋆), w ∈ W iff uw ∈ W .
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can do this only a finite number of times and eventually keep the same goal forever and
satisfy it. Formally, for k ≥ 0, a k-switching strategy for Eve is a strategy σ such that there
exists a mapping goal from finite histories of σ toW such that for all π = v1v2 · · · ∈ Plays(σ),
there exists W1, . . . ,Wk+1 ∈ W such that π ∈Wk+1 and

goal(v0)goal(v0v1)goal(v0v1v2) · · · ∈W ∗
1W

∗
2 . . .W

∗
kW

ω
k+1

The goal Wk+1 is called the ultimate goal of π. We say that σ is finitely switching if it is
k-switching for some k ≥ 0.

▶ Example 6. Consider the example of Fig. 2. The described strategy β is 1-switching for
W = {B(c),B(d)}: initially, her goal is B(d). If Adam ever tries to make it so that counter d
gets unbounded, by going to vertex 3 from vertex 2, Eve can now set her new goal to B(c).

Consider now the 2-state arena of Example 1 in which Eve wants to satisfy
∨

c=1,2 U(c).
She has no finitely switching strategy: whenever she announces she wants to satisfy U(ci) for
some i, Adam loops on state q3−i until Eve changes her mind. If her ultimate goal is U(ci)
for some i, then Adam will loop forever on q3−i and ci will be bounded, so that Eve does
not meet the ultimate goal she announced. By seeing operations on c1 and c2 as priority
functions, this example also shows that finitely switching strategies are not sufficient to win
disjunctions of parity objectives in general. More precisely, for i = 1, 2, we can define the
priority functions pi which colors qi by 0 and q3−i by 1. If she ultimately announces her goal
is to satisfy priority pi, then Adam takes transition q3−i forever and pi sees infinitely many
times color 1.

Since in a finitely switching strategy, any play consistent with that strategy must satisfy
its ultimate goal, the following result is immediate:

▶ Lemma 7 (Soundness). Any finitely switching strategy for Eve in A is winning for (A,
∨
W).

We will see later on that the converse holds for some particular classes of boundedness
objectives, but for now, let us characterize the existence of finitely switching strategies
via some least fixpoint. For a set X ⊆ V , we denote the objective of reaching X by
Reach(X) = V ∗XV ω. We let f be the function which associates any X ⊆ V to the set of
vertices u from which Eve can win the objective W ∪ Reach(X) for some W ∈ W. Formally,
f(X) = {u ∈ V | ∃W ∈ W, Eve wins (A[u],W ∪ Reach(X))}. Note that X ⊆ f(X) for
all X ⊆ V . Indeed, if u ∈ X, then Eve has a trivial strategy from u to reach X, and so
u ∈ f(X). Since (2V ,⊆) is a complete lattice, by Knaster–Tarski theorem, f has a unique
least fixpoint denoted SW . To compute SW , it suffices to compute the following sequence of
sets until it stabilizes:

SW
0 = ∅,

for i ≥ 0, SW
i+1 = {u ∈ V | ∃W ∈ W, Eve wins (A[u],W ∪ Reach(SW

i ))}.
For all i ≥ 1 and u ∈ SW

i (if it exists), we denote by σu,i a strategy for Eve winning in the
game (A[u],W ∪ Reach(SW

i−1)) for some W ∈ W. It exists by definition of SW
i .

We now prove the following characterization.

▶ Lemma 8 (Fixpoint characterization of finitely switching strategies). Let A be an arena with
set of vertices V and W a finite set of prefix-independent winning conditions for A. For all
u ∈ V , the following are equivalent:
1. Eve has a finitely switching strategy from u

2. Eve has a |V |-switching strategy from u

3. u ∈ SW

CONCUR 2022
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Proof. Clearly 2⇒ 1. We first prove 1⇒ 3 and then 3⇒ 2.
Let σ be a k-switching strategy for some k ≥ 0. By induction on k, we prove that

u ∈ SW
k+1. This implies the claim as SW

k+1 ⊆ SW .
If k = 0, then Eve never changes her mind and therefore all plays of Plays(σ) are in

goal(u) (the history with only the vertex u), so, u ∈ SW
1 . Suppose that k > 0. We take

W = goal(u). Let π ∈ Playsσ. We prove that π ∈W ∪ Reach(SW
k ). If Eve never changes her

mind during π, then π ∈W . Otherwise, let h the smallest prefix of π such that goal(h) ̸= W .
Let v be the last vertex of h. Note that the strategy2 σ|h is a (k− 1)-switching strategy from
v. By IH, v ∈ Reach(SW

k ), which means that π ∈ Reach(SW
k ) and we are done.

We now prove 3⇒ 2. Let u ∈ SW . Let i be smallest index such that u ∈ SW
i . Note that

i ≤ |V |. We prove by induction on i that Eve has an (i− 1)-switching strategy βu,i witnessed
by a goal function goalu,i. If u ∈ SW

1 , then σu,1 wins (A[u],W ) for some W ∈ W and so we
let goalu,1(h) = W for any history h of σu,1.

Suppose that i > 1 and u ∈ SW
i . Remind that the strategy σu,i wins (A[u],W ∪

Reach(SW
i−1)). We modify σu,i into a strategy βu,i as follows: βu,i is the same as σu,i as long

as SW
i−1 has not been reached. If eventually SW

i−1 is reached, say at a vertex v, then βu,i plays
according to βv,i−1 (which exists by IH).

We prove that βu,i is (i− 1)-switching. We let goalu,i(h) = W for any history h which
does not visit SW

i−1. For any history h = h1vh2 such that |h1| is minimal and v ∈ SW
i−1, we

let goalu,i(h) = goalv,i−1(vh2). Let π ∈ Plays(βu,i). If π = v0v1 . . . never visits SW
i−1, then

goal(v0)goal(v0v1) · · · ∈ Wω, and π ∈ Wω. If there exists j minimal such that vj ∈ SW
i−1,

then, by HI, there exists W1, . . . ,Wi ∈ W such that goalvj ,i−1(vj)goalvj ,i−1(vjvj+1) · · · ∈
W ∗

1 . . .W
∗
i−1W

ω
i . By definition of goalu,i, we obtain that goalu,i(v0)goalu,i(v0v1) · · · ∈

W ∗W ∗
1 . . .W

∗
i−1W

ω
i . Finally, it remains to prove that π ∈Wi: by IH, its suffix vjvj+1 . . . is

in Wi, and since Wi is prefix-independent, so is π, concluding the proof. ◀

According to Lemma 8, when Eve has a finitely switching strategy, then she has a
|V |-switching strategy. Interestingly, observe that the number of times she possibly needs to
change her mind does not depend on the number of winning objectives in W.

The proof of Lemma 8 constructs, for all 1 ≤ i ≤ |V | and u ∈ SW
i , a finitely switching

strategy βu,i, which either mimics σu,i or switch to a strategy βv,i−1. So, Eve needs to
remember the current vertex u and index i, in order to know whether she must play according
to σu,i or to switch to a strategy βv,i−1. So, even if for some N , all the strategies σu,i are
finite-memory of size at most N , βu,i needs memory O(N.|V |2) in general. We now prove
that Eve can do better.

▶ Lemma 9 (Memory transfer). Let A be a counter arena, V be its set of vertices, and W a
finite set of prefix-independent winning conditions for A. Let N ∈ N and suppose that for
all X ⊆ V , u ∈ V and W ∈ W, strategies of memory size at most N suffice for Eve to win
(A[u],W ∪ Reach(X)). Then for all u ∈ SW , Eve wins (A[u],

∨
W) with memory at most N .

The converse of Lemma 7 does not hold in general, as illustrated in Example 1 for
disjunction of unboundedness objectives. However, we show here that it holds for disjunctions
of conjunctions of boundedness objectives.

▶ Lemma 10 (Completeness for boundedness conditions in DNF). Let A be a counter arena
and C its set of counters. Let W be a finite subset of counter conditions for A in

∧
B. If Eve

wins the counter game (A,
∨
W), then she has a finitely switching strategy from the initial

vertex v0.

2 The restriction σ|h is defined by σ|h(h′) = σ(hh′) for all h′.
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Proof. Let C1, . . . , Cp be subsets of C such that W is the set of all counter conditions∧
c∈Ci

B(c), for i ∈ {1, . . . , p}. Suppose that Eve does not have a finitely switching strategy
from the initial vertex v0. This means, by Lemma 8, that v0 ̸∈ SW . We construct a strategy for
Adam winning the complementary objective Comp =

⋂
i∈{1,...,p}

(⋃
c∈Ci

U(c) ∪ Parity(A)
)
.

By definition of SW , f(SW) = SW . Therefore, by definition of f , for any v ∈ V \SW and
i ∈ {1, . . . , p}, Eve does not win the game (A[v], (Parity(A[v]) ∩

⋂
c∈Ci

B(c)) ∪ Reach(SW)).
Moreover, notice that since Parity(A[v]) ∩

⋂
c∈Ci

B(c) is a Borel set, so is (Parity(A[v]) ∩⋂
c∈Ci

B(c)) ∪ Reach(SW). Thus, by Martin’s theorem, Adam has a winning strategy σv,i

in A[v] for the complementary objective (
⋃

c∈Ci
U(c) ∪ Parity(A[v])) ∩ Reach(SW), for all

i ∈ {1, . . . , p}. Let us now explain how intuitively we build a strategy for Adam winning for
Comp. It is defined by breaking it down into the following steps:

Adam begins by step (1, 1): he follows strategy σv0,1 until the play of the game reaches a
vertex where the value of a counter of C1 is 1. If that is never the case, then Adam follows
σv0,1 ad. infinitum. Notice that, if the value of every counter of C1 is bounded by a
certain integer, Adam wins, since the play does not belong to Parity(A[v0]) = Parity(A).
After completing step (i, j) in a vertex v, two cases arise:

If j < p, then Adam carries out step (i, j + 1) by following σv,j+1 until the play of
the game reaches a vertex where the value of a counter of Cj+1 is i. If that is never
the case, Adam follows σv,j+1 ad. infinitum, and he wins since the play then satisfies
Parity(A[v]) starting from v, and thus Parity(A) globally.
If j = p, then Adam carries out step (i+ 1, 1) by following σv,1 until the play of the
game reaches a vertex where the value of a counter of C1 is i+ 1. If that is never the
case, Adam follows σv,1 ad. infinitum. ◀

5 Complexity of games with disjunctions of boundedness conditions

The next result gives sufficient conditions on a class of games G, to guarantee decidability of
the problem of deciding if Eve has a finitely switching strategy for a disjunction of objectives
in the class. In this result, we assume that the winning objectives of G are finitely represented
in some way. This is the case of all classes to which we apply this lemma in the paper.

▶ Lemma 11. Let C ∈ {PTIME,NP,coNP,EXPTIME}. Let G be a class of games with
prefix-independent objectives, such that deciding whether, given (A,W ) ∈ G, a vertex v of A,
and a subset X of vertices of A, Eve wins (A[v],W∪Reach(X)), is in C. Then, deciding, given
an arena A and a finite subset of winning conditions W such that {(A,W ) |W ∈ W} ⊆ G,
whether Eve has a winning finitely switching strategy for (A,

∨
W), is in C.

Proof. Suppose first that C = PTIME. From Lemma 8, Eve has a winning finitely switching
strategy for (A,

∨
W) if and only if the initial vertex v0 of A is in SW . Thus, we can decide

whether Eve has a finitely switching strategy by recursively computing the SW
i , one after

the other, until SW
i = SW

i+1 = SW . In order to compute SW
i+1 from SW

i , we check for every
vertex v of A whether Eve wins the game (A[v],W ∪ Reach(SW

i )). Thus, since SW
|V | = SW ,

in order to compute SW , we only need to check, in ptime, whether Eve wins a game of the
form (A[v],W ∪Reach(X)) at most |V | × |V | × |W| times. As a consequence, the problem of
deciding whether Eve has a winning finitely switching strategy for (A,

∨
W) is in PTIME.

We present this generic fixpoint algorithm in Algorihtm 1, as it is useful to treat the other
complexity cases. In that figure, slv is an algorithm that terminates in polynomial time, and
such that slv(A, v,W,H) returns true if and only if Eve wins (A[v],W ∪ Reach(H)). The
case where C = EXPTIME is similar to the case where C = PTIME.
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Algorithm 1 Generic algorithm to check v ∈ SW .

SOLVE(A,W)
//v0 is the initial vertex of A
//V = {v1, . . . , vn}
//W = {W1, . . . ,Wp}
1. N ← n2 × p
2. α← 0
3. H0, H1, . . . ,HN ← ∅
4. While α < n

5. For i = 1, . . . , n
6. For j = 1, . . . , p
7. If slv(A, vi,Wj , Hα)
8. Hα+1 ← {vi} ∪Hα+1
9. α← α+ 1

10. Return (v0 ∈ Hα)

In the case where C = NP, we transform the algorithm SOLVE into an ptime algorithm
VERIF, which is defined as the algorithm SOLVE, except that line 7 is replaced by a call to
a ptime verifier that Eve wins (A[vi],Wj ∪ Reach(Hα)) given a certificate. Notice that the
algorithm given is directly written as an algorithm in NP, i.e. an algorithm that verifies if
Eve wins given a certificate, and not as an algorithm in P with oracle NP. All the certificates
needed for each call at line 7 are taken as input of the algorithm VERIF. This approach works
because the algorithm VERIF returns True if and only if the answers to some well-chosen
questions of the type “Does Eve win (A[v],W ∪ Reach(X))?” are true. The case where
C = CoNP is done in a similar way, but this time by guessing the complement of SW . ◀

We are now ready to prove complexity results for solving counter games with disjunction
of boundedness objectives. We start with the case of

∨
B.

▶ Theorem 12. Counter games with counter conditions in
∨

B are in NP ∩ coNP, and are
in PTIME if the index of the colouring is fixed. A memory of size equal to the index of the
colouring suffices for Eve, and infinite memory is required for Adam.

Proof. Let G be a game over counter arena A with set of counters C, initial vertex v0 and
objective

∨
W where W = {Parity(A) ∩ B(c) | c ∈ C ′} for some C ′ ⊆ C. It should be

clear that those conditions are prefix-independent, therefore, by Lemma 8 and Lemma 10,
Eve wins G iff she has a finitely switching strategy iff v0 ∈ SW . So, to check whether Eve
wins G, it suffices to compute the fixpoint SW . We prove that each step of the fixpoint
computation (line 7 in algorithm SOLVE) is done in NP ∩ coNP, and in PTIME if the
index of the colouring is fixed. By Lemma 11, the complexity statement of the theorem
follows. It remains to show that for all subset X ⊆ V , any vertex u ∈ V and any counter
c ∈ C ′, it is decidable in NP ∩ coNP (and in ptime for fixed parity) whether Eve wins the
game (A[u], (Parity(A) ∩ B(c)) ∪ Reach(X)). First, we evacuate the reachability condition,
i.e., reduce in ptime the latter problem to solving a game (A′,Parity(A′) ∩ B(c)). This is
easily done by adding a sink state to A reached whenever X is visited, with operation skip
on c and priority 0. This reduction works for more general boundedness conditions. Finally,
the game (A′,Parity(A′) ∩ B(c)) is solvable in NP ∩ coNP by Theorem 5, and in ptime for
fixed parity, which is the case of A′ when the index of A is fixed, because they have the same
colours.
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For Adam, infinite memory might be necessary to enforce the complementary objective,
as illustrated by Example 1. For Eve, Theorem 5 states that a memory of size the index
of the parity function is sufficient to solve the “local” games (A′,Parity(A′) ∩ B(c)), which
can be translated back to strategies of same size in (A[u], (Parity(A) ∩ B(c)) ∪ Reach(X)).
Therefore, the memory transfer lemma (Lemma 9) yields the result. ◀

We now turn to games on arenas A with conditions in
∨∧

B, i.e., whereW = {Parity(A)∧∧
c∈Ci

B(c) | i = 1, . . . , n} for C1, . . . , Cn finite subsets of counters. The same reasoning as in
the proof of Theorem 12 applies. The only difference here is that, to solve the “local” games
of the fixpoint computation (line 7 of algorithm SOLVE), we rely on Theorem 3.

▶ Theorem 13. Counter games with winning conditions in
∨∧

B are coNP-complete.
Finite memory suffices for Eve, and infinite memory is required for Adam.

We conclude this section by the case of Boolean combination of boundedness objectives.

▶ Theorem 14. Counter games with winning conditions in Bool+(B) are in PSPACE and
CoNP-hard. Finite memory suffices for Eve, and infinite memory is required for Adam.

Proof. Any counter condition which is a positive boolean combination ϕ ∈ Bool+(B) can be
written in disjunctive normal form ψ =

∨
i∈{1,...,p}

∧
c∈Ci

B(c), where the Ci are subsets of C.
Let W = {Parity(A) ∧

∧
c∈Ci

B(c) | i = 1, . . . , n}. A direct application of Theorem 13 yields
a CoNExpTime, because p might be exponential. Instead, we do not construct ψ explicitely.
Recall that, from Theorem 3, counter games with counter conditions in

∧
B are in coNP,

and thus in PSPACE. Thus, since it is well-known that, even if p may be exponential in the
size of ϕ, we can enumerateW in polynomial space, we can use this enumeration algorithm at
line 6 of algorithm SOLVE in Algorithm 1 to compute the fixpoint SW in polynomial space.
As a consequence, the problem of deciding whether Eve has a winning finitely switching
strategy for counter games with winning conditions in Bool+(B) is in PSPACE. Hence, the
result follows because, as for Theorem 13, these strategies suffice for Eve. ◀

6 Extensions of counter games with max operation

In this section, we consider counter games where the players can, in addition, put into a
counter the maximum value of a subset of counters. In other words, max-counter games are
defined in the same exact way as counter games, the only difference being counter operations
are now mappings from a finite subset C of C to {i, r, skip} ∪ {max

c∈S
(c) | S ⊆ C}.

▶ Theorem 15. Let G be the class of counter games G with counter condition
∧

c∈C B(c),
where C is the set of counters of G. Given a game G in G, the problem of deciding whether
Eve wins G is EXPTIME-c. Finite memory is sufficient for Eve and Adam.

Proof. For hardness, we reduce the emptiness problem of the intersection of n deterministic
top-down tree automata, which is known to be EXPTIME-hard [16]. We first show PSPACE-
hardness in the case of arenas where Adam plays no role, i.e., V∀ = ∅. The proof is by
reduction from the emptiness problem of the intersection of n DFA. The latter reduction
is inspired from the proof that deterministic min-automata have PSPACE-c emptiness
problem [8]. Using the fact that strategies are trees, we lift the latter reduction to tree
automata. It is non-trivial but standard. The detailed proof is in Appendix, in Lemma 16.

It remains to show that solving a game in G can be done in exponential time. The
difficulty for solving a game G of G comes from the fact that counters interact with each
other, since the value of counters can “flow” from one to another via the max operation.
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That was not case for
∧
B-counter games without max, which are CoNP-c, and we could

track each counter separately, replacing each boundedness condition by a condition of the
form “if c is incremented infinitely often, then it is reset infinitely often”. Here, we need to
track sequences of counters that flow one into another, called traces. We rather solve games
with the complementary objective, which is correct since max-counter games are determined
(see Lemma 19 in Appendix). To formalize this idea, we use the notion of U-automata, i.e.
automata with counters accepting some positive boolean combination of unboundedness
conditions, that is a notion very close to the notion of S-automata described in [6]. We define
a (non-deterministic) U-automaton B with a single counter d and acceptance condition U(d)
that guesses either a new trace, or a valid continuation to the current trace, at every move of
a play of G. Every operation on the counters of the trace are mimicked on d, and it accepts
a play iff there exists a run such that d is unbounded. That same idea is already used in
the proof of Theorem 1 of [4], from which this proof is inspired. So, solving G boils down to
solving a game on the same arena but with objective given by the language L(B).

We show that the class of games G with an objective given by a non-deterministic
U-automaton with an acceptance condition of the form

∨
U is in EXPTIME. To that end,

we convert B into a non-deterministic parity automaton T , which does not preserve the
language, but preserves the existence of winning strategy for Eve: when playing on the arena
of G, Eve wins the objective L(B) if and only if she wins the objective L(T ). Correctness
is ensured by a pumping-like argument based on the fact that finite-memory strategies are
sufficient to win ω-regular games. The automata B and T are constructed in ptime from G.
Then we determinize T in exponential time, take its product with G, and obtain a classical
parity game of exponential size and linear index. We can conclude since parity games with
m edges, n vertices and index k can be solved in O(mnk) (see e.g. [14]). The detailed proof
is in the Appendix, in Lemma 15. ◀

7 Future work

In this paper, we have proved new complexity results for important classes of counter games,
with the aim of finely understanding why they are decidable. We observe that they are
mainly two types of boundedness conditions, which require different techniques: conjunc-
tions of boundedness conditions, which are equivalent to Streett games, and disjunction
of boundedness conditions (for which we introduce the notion of finitely switching strate-
gies). To emphasize this dichotomy, we note that even for a parity function of fixed index,
counters games with conjunctions of boundedness conditions are CoNP-c, while they are
in PTime for disjunctions. By determinacy, those results also yield complexity bounds for
the complementary classes of unboundedness objectives. For example, we get that games
with conjunctions of objectives of the form U(c) can be solved in NP∩CoNP and that
infinite memory is required. However, note that our counter games are always taken in
conjunction with a parity condition. Therefore, in the complementary objectives, this parity
condition is now taken in disjunction. We leave conjunction of parity and unboundedness
objectives as future work. Another important direction is to consider classes of conditions
that mix boundedness and unboundedness objectives. Since the techniques used to solve
them individually are different, this would require new techniques. More generally, the
only known upper bound for any Boolean combination (not necessarily negation-free) of
boundedness objective is non-elementary. We believe there is space for improvement.



E. Filiot and E. Hamel-de le Court 21:15

References
1 Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert, and Adwait Amit Godbole.

Controlling a population. Log. Methods Comput. Sci., 15(3), 2019. doi:10.23638/LMCS-15(3:
6)2019.

2 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and
reactive synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 921–962. Springer, 2018.
doi:10.1007/978-3-319-10575-8_27.

3 Mikolaj Bojanczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,
48(3):554–576, 2011. doi:10.1007/s00224-010-9279-2.

4 Mikolaj Bojanczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,
48(3):554–576, 2011.

5 Mikolaj Bojanczyk. Weak MSO+U with path quantifiers over infinite trees. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages 38–49.
Springer, 2014. doi:10.1007/978-3-662-43951-7_4.

6 Mikolaj Bojanczyk and Thomas Colcombet. Bounds in w-regularity. In 21th IEEE Symposium
on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings,
pages 285–296. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.17.

7 Mikolaj Bojanczyk, Tomasz Gogacz, Henryk Michalewski, and Michal Skrzypczak. On
the decidability of MSO+U on infinite trees. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part II, volume 8573 of Lecture Notes in Computer Science, pages 50–61. Springer, 2014.
doi:10.1007/978-3-662-43951-7_5.

8 Mikolaj Bojanczyk and Szymon Torunczyk. Deterministic automata and extensions of weak
MSO. In Ravi Kannan and K. Narayan Kumar, editors, IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, De-
cember 15-17, 2009, IIT Kanpur, India, volume 4 of LIPIcs, pages 73–84. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2308.

9 Véronique Bruyère. Computer aided synthesis: A game-theoretic approach. In Émilie
Charlier, Julien Leroy, and Michel Rigo, editors, Developments in Language Theory - 21st
International Conference, DLT 2017, Liège, Belgium, August 7-11, 2017, Proceedings, volume
10396 of Lecture Notes in Computer Science, pages 3–35. Springer, 2017. doi:10.1007/
978-3-319-62809-7_1.

10 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In STOC, pages 252–263, 2017.

11 Krishnendu Chatterjee and Nathanaël Fijalkow. Infinite-state games with finitary conditions.
In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013,
September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 181–196. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.181.

12 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in omega-
regular games. ACM Trans. Comput. Log., 11(1):1:1–1:27, 2009. doi:10.1145/1614431.
1614432.

13 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. The complexity of request-
response games. In LATA, volume 6638, pages 227–237, 2011.

14 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized parity games.
In Helmut Seidl, editor, Foundations of Software Science and Computational Structures, 10th
International Conference, FOSSACS 2007, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007, Braga, Portugal, March 24-April 1, 2007,
Proceedings, volume 4423 of Lecture Notes in Computer Science, pages 153–167. Springer,
2007. doi:10.1007/978-3-540-71389-0_12.

CONCUR 2022

https://doi.org/10.23638/LMCS-15(3:6)2019
https://doi.org/10.23638/LMCS-15(3:6)2019
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/s00224-010-9279-2
https://doi.org/10.1007/978-3-662-43951-7_4
https://doi.org/10.1109/LICS.2006.17
https://doi.org/10.1007/978-3-662-43951-7_5
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2308
https://doi.org/10.1007/978-3-319-62809-7_1
https://doi.org/10.1007/978-3-319-62809-7_1
https://doi.org/10.4230/LIPIcs.CSL.2013.181
https://doi.org/10.1145/1614431.1614432
https://doi.org/10.1145/1614431.1614432
https://doi.org/10.1007/978-3-540-71389-0_12


21:16 Two-Player Boundedness Counter Games

15 Thomas Colcombet and Christof Löding. The non-deterministic mostowski hierarchy and
distance-parity automata. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and
Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track
C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science,
pages 398–409. Springer, 2008.

16 Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications, 2008.
URL: https://hal.inria.fr/hal-03367725.

17 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.

18 E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of
programs. SIAM J. Comput., 29(1):132–158, 1999.

19 Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov. Church synthesis on register automata
over linearly ordered data domains. In Markus Bläser and Benjamin Monmege, editors,
38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021,
March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages
28:1–28:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

20 Nathanaël Fijalkow and Martin Zimmermann. Cost-parity and cost-streett games. In Deepak
D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012,
December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 124–135. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.124.

21 Emmanuel Filiot and Edwin Hamel-de Le Court. Two-player Boundedness Counter Games.
working paper or preprint, March 2022. doi:10.4230/LIPIcs.

22 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics, and Infinite
Games: A Guide to Current Research. Springer-Verlag, Berlin, Heidelberg, 2002.

23 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Pushdown specifications. In LPAR,
volume 2514, pages 262–277, 2002.

24 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
25 Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett games. In LICS, pages

275–284, 2006.
26 Martin Zimmermann. Delay games with WMSO+U winning conditions. RAIRO Theor.

Informatics Appl., 50(2):145–165, 2016. doi:10.1051/ita/2016018.

A Detailed proofs of Section 6

In this section, we prove the following theorem:

▶ Theorem 15. Let G be the class of counter games G with counter condition
∧

c∈C B(c),
where C is the set of counters of G. Given a game G in G, the problem of deciding whether
Eve wins G is EXPTIME-c. Finite memory is sufficient for Eve and Adam.

The proof of Theorem 15 is split into two parts, each covered by a different lemma.
Lemma 16 gives the EXPTIME-hardness, and Lemma 22 gives the EXPTIME-easyness.

▶ Lemma 16. Max-counter games with a single winning condition B(c) for some counter c,
and no parity condition, are EXPTIME-hard.
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Proof of Lemma 16. We prove EXPTIME-hardness of max-counter games with no parity
condition and a conjunction of boundedness conditions

∧
c∈C B(c). This entails the result

because one can always add a counter cm which takes the maximal value of all other counters
c ∈ C at each step, so that

∧
c∈C B(c) is satisfied iff B(cm) is satisfied.

To prove the theorem for conjunctions of boundedness conditions, we reduce the problem,
called

⋂
n DTOP , of deciding if the intersection of n languages recognized by deterministic

top-down tree automata (DTOP) is empty, which is known to be EXPTIME-c [23]. Before
giving the EXPTIME-hardness proof, we first prove PSPACE-hardness for the particular
class of counter games where V∀ = ∅, i.e., where Adam plays no role. We reduce the problem
of deciding if the intersection of n languages recognized by deterministic finite-automata
(DFA) is empty. We call the latter problem

⋂
n DFA. The proof is inspired by a PSPACE-

hardness proof of deciding non-emptiness of the language recognized by a deterministic
min-automaton [8]. Then we lift the reduction from

⋂
n DFA to the problem

⋂
n DTOP ,

i.e., to trees, by using the branching nature of counter games induced by Adam.
Consider an alphabet Σ and n complete DFA Di = (Σ, Qi, q

i
0, Fi, δi) such that all Qi are

pairwise disjoint. We construct a counter arena A[D1, . . . , Dn] with V∀ = ∅ and a set C of
n+ 1 counters, and no parity condition, such that Eve has a strategy to satisfy objective∧

c∈C B(c) iff
⋂

i L(Di) ̸= ∅. This construction is similar to that of [8], which is a reduction
from the universality problem for NFA. We assume that Σ contains a symbol # ∈ Σ and
for all i, L(Di) ⊆ (Σ−#)∗#. The counter arena A[D1, . . . , Dn] is defined by V∃ = Σ and
V∀ = ∅, and the set of transitions is E = V∃×V∃. The vertex # is initial. The set of counters
is C = {c0} ∪ {cq | q ∈ Qi, i = 1, . . . , n}, and they are updated as follows for i = 1, . . . , n,
where max(∅) = 0:

on vertex f ̸= #: for all q ∈ Qi, cq := max{cq′ +1 | ∃q′ ∈ Qi, δ(q′, f) = q} and c0 := c0 +1
on vertex #: cqi

O
:= max{cq | q ∈ Qi′ for some i′ and δi′(q,#) ̸∈ Fi′}, and the counters

cq for all q ∈ Qi \ {qi
0} are reset, as well as c0.

Note that for f ̸= #, two operations are performed at once: increment counters cq′ and take
the max. This is done to simplify the presentation and can be simulated by doubling the
number of vertices of the arena.

Now, observe that Plays(A[D1, . . . , Dn]) = #Σω and a strategy for Eve is nothing but
an infinite word w in #Σω. We prove the following claims:

▷ Claim 17. For all non-empty finite set X ⊆
⋂n

i=1 L(Di), any play in #.Xω satisfies∧
c∈C B(c).

▷ Claim 18. No play in #.(
⋃n

i=1((Σ−#)∗#)\L(Di))ω satisfies
∧

c∈C B(c).

Proof of Claim 17. Let m = max{|u| | u ∈ X}. Let w = #u1u2 . . . such that for all j ≥ 1,
uj ∈ X. We prove that w, which is a play of A[D1, . . . , Dn]) satisfies that all the counters
are bounded by 2m. First, note that each uj is of the form vj#, because uj ∈

⋂
i L(Di) and

the DFA Di are assumed to accept words where # is an endmarker. First, consider counter
c0: it is reset every time # is read, so, its maximal value is bounded by m. Now, for all j ≥ 1
and q ∈

⋃
i Qi, we let inj,q be the value of counter cq after prefix #u1 . . . uj−1 and outj,q is

value after prefix #u1 . . . uj−1vj . By definition of the counter updates, we have:
1. inj,q = 0 for all j ≥ 1 and q not initial
2. inj,qi

0
= max{outj−1,q | q ∈ Qi′ for some i′ and δi′(q,#) ̸∈ Fi′} for all j ≥ 1

3. outj,q = inj,qi
0

+ |vj | if q ∈ Qi for some i and there exists a run of Di from qi
0 to q on vj

4. otherwise, outj,q = |r| where r is a run of maximal length on a prefix of vj , ending in q.
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Let q ∈ Qi for some i such that δi(q,#) ̸∈ Fi. For all j ≥ 1, there is no run from qi
0 to q

on vj , since uj = vj# ∈ L(Di). So, we are in case 4 above and we have outj,q ≤ |vj | ≤ m.
From the latter fact and 2, we get that inj,qi

0
≤ m for all i, j. From that and 3, we get that

outj,q ≤ m + |vj | ≤ 2m for all j. So, all the counter have value at most 2m after each vj ,
which concludes the proof that they are bounded. ◁

Proof of Claim 18. Let w be a play of A[D1, . . . , Dn] in #.(
⋃n

i=1((Σ−#)∗#)\L(Di))ω. Then,
w = #w1#w2#w3# . . . such that wj ∈ (Σ−#)∗ for all j ≥ 1. Moreover, for all j ≥ 1, there
exists ij ∈ {1, . . . , n} such that wj# ̸∈ L(Dij

) and there exists a run of Dij
on wj from q

ij

0
to some non-accepting state qij . Denote by in(ij) the value of counter c0

qij
before reading

wj#wj+1 . . . in w, and by out(ij) the value of counter cqij
before reading #wj+1#wj+1 . . . in

w. By definition of the counter updates, we have out(i1) ≥ in(i1) + |u|, out(i2) ≥ in(i2) + |u|,
and so on. Moreover, in(i2) ≥ out(i1), in(i3) ≥ out(i2), and so on, since the states qij are
non-accepting. This yields that the sequence (in(ij))j is unbounded, concluding the proof.

◁

As a side note, observe that the two claims imply the following:
⋂n

i=1 L(Di) ̸= ∅ iff there
exists a word w ∈ #Σω which satisfies

∧
c∈C B(c). Indeed, if there exists u ∈

⋂n
i=1 L(Di),

then it suffices to apply Claim 1 to X = {u}. Conversely, if
⋂n

i=1 L(Di) = ∅, then
(
⋃n

i=1(Σ∗\L(Di)))ω = Σω and Claim 2 implies that no word of Σω satisfy
∧

c∈C B(c).
We now lift the latter reduction to (binary) trees. We let Σ be a finite alphabet containing

a symbol # called a constant symbol, and all other symbols are called binary symbols. We
let Σ2 = Σ−# be the set of binary symbols. A Σ-tree is defined as a term where terms t
are inductively defined by t, t1, t2 ::= # | f(t1, t2), f ∈ Σ2. The set of branches of a Σ-tree t
is inductively defined as br(#) = {#}, and br(f(t1, t2)) = {(f, d).b | d ∈ {1, 2}, b ∈ br(td)}.

A deterministic top-down tree automaton is a tuple T = (Q, q0, F, δ) where Q is a finite set
of states, q0 ∈ Q the initial state, F ⊆ Q the final states, and δ : Q×({#}∪(Σ2×{1, 2}))→ Q

is a (total) transition function. We see T as a DFA DFA(T ) recognizing a language
in (Σ2 × {1, 2})∗# naturally as follows: DFA(T ) = (Q, q0, F, δ

′) where for all q ∈ Q,
for all (f, d) ∈ Σ2 × {1, 2}, δ′(q, f) = projd(δ(q, f)), with projd the dth projection, and
δ′(q,#) = δ(q,#), and we denote by Lbr(T ) the language recognized by this DFA. The
language of Σ-trees accepted by T is the set

L(T ) = {t ∈ TreesΣ | br(t) ⊆ Lbr(T )}

Deciding3, given n DTOP T1, . . . , Tn, whether
⋂n

i=1 L(Ti) = ∅ is EXPTIME-c [16].
Given T1, . . . , Tn such that Ti = (Qi, q

i
0, Fi, δi) for all i, we construct a max-counter game

G winnable by Eve iff
⋂n

i=1 L(Ti) ̸= ∅. The main idea of the proof is construct a game where
Adam picks a direction d ∈ {1, 2} (1 means left and 2 right), while Eve picks the labels in Σ.
The arena A[T1, . . . , Tn] of G (without the counters) is depicted on Fig. 3.

We now define counter conditions which make sure that if Eve has a strategy to keep
all the counters bounded iff there exists t ∈

⋂
i L(Ti). For all i, let Ti = (Qi, q

i
0, Fi, δi).

The set of counters is C = {cq | q ∈
⋃

i Qi} ∪ {c0} (we assume wlog that all the sets Qi

are pairwise disjoint). Let us define counter updates. They are defined as for the arena
A[DFA(T1), . . . , DFA(Tn)]. To simplify the presentation (and in particular the structure
of the arena), we perform several operations at once. Let us define the updates, for all
1 ≤ i ≤ n:

3 In [16], the definition of DTOP is slightly different, but less general: there are no accepting states but
the transition function can be partial. A tree is accepted if there is a run on it which traverses the
whole tree (it is not in an inner node). Those automata can easily be encoded into (our) DTOP by
completing the transition function into a sink state qs, declaring all states to be final but qs.
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Figure 3 Arena for the proof of Theorem 16, where Σ = {#, f1, . . . , fm}. Transitions in bold are
in both directions. Square vertices are controlled by Adam, and the initial vertex is #. When Adam
picks a direction d ∈ {1, 2}, then Eve is forced to pick a vertex in Σ2 × {d}, or #.

on vertex (f, j) ∈ Σ2 ×{1, 2}: for all qj ∈ Qi, cqj := max{cq + 1 | ∃q, q3−j ∈ Qi, δ(q, f) =
(q1, q2)} and c0 := c0 + 1
on vertex #: cqi

O
:= max{cq | q ∈ Qi′ for some i′ and δi′(q, λ) ̸∈ Fi′}, and the counters

cq for all q ∈ Qi \ {qi
0} are reset, as well as c0.

on vertices i ∈ {1, 2}: counters are unchanged.

There is no parity condition and the counter condition is that the counters in C must
be bounded. Let G be the constructed max-counter game. Before showing correctness, let
us introduce some useful notation. Note that the histories and plays of G are elements of
{#} ∪ Σ2 × {1, 2} alternating with directions in {1, 2}. The following function removes the
intermediate directions. Given w = λ1d1λ2d2 . . . λndn such that for all i, λi ∈ {#}∪Σ2×{1, 2}
and di ∈ {1, 2}, we let lab(w) = λ1λ2 . . . λn.

We now show correctness of the reduction. Suppose that there exists some t ∈
⋂

i L(Ti).
We first define a strategy σt for Eve and then show it is winning in G. The strategy σt just
mimics t: it plays as t dictates when a leaf of t is reached, its behaviour is reset to the root
of t. Formally, the construction of σt satisfies the following invariant: all histories ending
with an Eve vertex are words of the form h = #h1h2 . . . hkpd where:

all hi are such that lab(hi) ∈ br(t),
lab(p) is a prefix of a branch of t
d ∈ {1, 2}

Given such a history h, we consider two cases: if lab(p) ∈ br(t), then σt is reset to the root of t,
which means that σt(h) = (f, d) such that f is the label of the root of t. Otherwise, σt(h) = #
if lab(p)# ∈ br(t), and σt(h) = (f, d) if lab(p)(f, d) ∈ br(t). Let us show that σt is winning.
Let π ∈ Plays(σt). First, we observe that lab(π) is a play of A[DFA(T1), . . . , DFA(Tn)].
Let C ′ be the set of counters of the latter arena. By definition of σt, lab(π) is of the form
#b1#b2# . . . with infinitely many # such that for all j ≥ 1, bj# is a branch of t. Since
t ∈

⋂
i L(Ti), we also get that bj# ∈

⋂
i L(DFA(Ti)). The set X = {bj# | j ≥ 1} is

finite since its elements correspond to branches of t. Therefore, by Claim 1, π satisfies∧
c∈C′ B(c). We conclude by observing that C = C ′, that A[T1, . . . , Tn] has the same vertices

as A[DFA(T1), . . . , DFA(Tn)] plus the two vertices 1 and 2, with the same counter updates
for their common vertices and no update on 1 and 2. Therefore, π satisfies

∧
c∈C B(c) in

A[T1, . . . , Tn].
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Conversely, suppose that
⋂

i L(Ti) = ∅. Take an arbitrary strategy σ of Eve. We show
it is not winning. Intuitively, σ can be seen as an infinite tree. If there is a branch of the
tree which visits # finitely many times, then σ is not winning because by following the
directions corresponding to that branch, Adam can guarantee that counter c0 is unbounded.
So, we can assume that σ is such that all plays consistent with it sees infinitely many #. We
construct a play π of the form #h1#h2# . . . such that for all j ≥ 1, there exists i such that
lab(hj)# ̸∈ L(DFA(Ti)), and we conclude by Claim 2.

Consider the set of histories H1 of σ which contains a # symbol only at their end.
Clearly, H1 can be identified with a Σ-tree t1. Since t1 ̸∈

⋂
i L(Ti), there exists i such

that t1 ̸∈ L(Ti) and therefore, a history h1# ∈ H1 such that lab(h1)# ̸∈ L(DFA(Ti)). To
construct h2, h3, . . . , we proceed similarly. Let us explain how to construct h2. We let H2 be
the set of histories of the form h1#g2# such that h1#g2# is a history of σ such that g2 does
not contain #. The set (h1#)−1H2 can be identified with a Σ-tree t2. Now, it suffices to
take h2# ∈ (h1#)−1H2 such that lab(h2#) ̸∈ L(DFA(Ti)) for some i = 1, . . . , n. It exists
since t2 ̸∈

⋂
i L(Ti). This concludes the proof. ◀

In order to prove Lemma 22, we first prove the following, in a very similar way to the
proof of Lemma 2.

▶ Lemma 19. Max-counter games (with Boolean combinations of boundedness objectives)
are determined.

Proof. Given a counter arena A and a counter c of A, the set Plays (A,B(c)) is a Borel set.
Indeed, it is equal to the countable union for all N ≥ 0 of the sets

PlaysN (A,B(c)) = {ρ ∈ Plays(A) | ∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

which are ω-regular. Indeed, a Büchi automaton that stores, in every state, the maxi-
mums between N and the value of each counter of C needs |V | ×N |C| states to recognize
PlaysN (A,B(c)). Since ω-regular sets are Borel, so is Plays (A,B(c)), as well as any Boolean
combination of the latter. By Martin’s determinacy theorem [24], the result follows. ◀

Furthermore, to make the proof of Lemma 22 clearer, we now define two models of
automata: non-deterministic U-automata, and Parity-Rabin automata.

A (non-deterministic) U-automaton B is a nine-tuple (Σ, S, si,∆, Q, κ, C, ζ, C1), where
Σ is an alphabet, S is a finite set of states, si ∈ S is the initial state, ∆ ∈ S × S × Σ is a
transition function, Q is finite set of colors, κ is an alphabet colouring from Σ to Q, C is
a finite set of counters, ζ is a state labeling from S to Op(C), and C1 is a subset of C. A
run in B is an infinite word π = y0y1 · · · ∈ ∆ω such that y0 = si, and such that the second
element of each yi is the first element of yi+1 for any non-negative integer i. We let States(π)
denote the word v0v1 · · · , where each vi is the first element of yi, and we let Input(π) denote
the word z0z1 · · · , where each zi is the third element of yi (i.e. the label of the edge yi). A
word w is accepted by B if either w ∈ Parity(κ) (i.e. if the greatest color seen infinitely often
in w is even), or if there exists a run π of B such that Input(π) = w and such that States(π)
satisfies

∨
c∈C1

U(c). The language accepted by B is the set of accepted words.
A (non-deterministic) Parity-Rabin automaton D is a variant of a Rabin automaton, and

is defined as a seven-tuple (Σ, S, qi,∆, Q, κ, {κi}i∈{1,...,ℓ}) where Σ, S, qi, ∆, Q and κ are
defined in the same way as in the the case of U-automata, where and {κi}i∈{1,...,ℓ} is a finite
set of colourings from S to {1, 2, 3}. Furthermore, a word w is accepted by D if and only
if either w is in Parity(κ), or there exists an integer i ∈ {1, . . . , ℓ} and a run ρ of D such
that Input(ρ) = w and such that States(ρ) is in Parity(κi). The language recognized by D,
denoted L(D), is the set of words accepted by D.
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▶ Lemma 20. The language recognized by a non-deterministic Parity-Rabin automaton is
ω-regular. Furthermore, games with an objective given by a non-deterministic Parity-Rabin
automaton are solvable in EXPTIME.

Proof. A Parity-Rabin automaton D can be converted into a non-deterministic automaton
D1, with ℓ+ 1 colours whose domains are the set of states, by copying each state for every
transition that goes to it, and transferring the colour κ to the states depending on which
incoming transition the copy represents. The acceptation condition of D1 is expressed by the
union of the parity conditions induced by its colourings. The automaton D1 can be further
converted into a non-deterministic parity automaton D2 with a single colouring, by copying
it for every colouring it has, colouring the first copy with the first colouring, the second copy
with the second colouring, etc. Thus, there exists a parity automaton D2 that recognizes the
same language as D, with a size polynomial in the size of D. One of the consequences of that
statement is that L(D) is thus an ω-regular language. Furthermore, it is well-known that
we can determinize D2 into a deterministic parity automaton D3 with exponential size and
linear index, in exponential time. In addition, if G′ is the game obtained from the product
of a game G and the deterministic parity automaton D3, G′ is a parity game of exponential
size in the size of G and D, and index linear in the number of colours of D, such that Eve
wins G′ if and only if Eve wins G. Thus, since parity games with m edges, n vertices and
index k can be solved in O(mnk) (see e.g. [14]), the class of games with an objective given
by a non-deterministic Parity-Rabin automaton is in EXPTIME. ◀

We now show that the class of counter games with a counter condition given by a non-
deterministic U-automaton with an acceptance condition of the form

∨
U is also decidable in

EXPTIME, by converting them into Parity-Rabin automata.

▶ Lemma 21. Let B be a non-deterministic U-automaton with acceptance condition of the
form

∨
c∈C1

U(c), and A be a two-player arena. We can decide if Eve wins (A,L(B)) in
EXPTIME.

Proof. Let B = (S,∆, i, ζ,
∨

c∈C1
U(c), κ). We construct in polynomial time a Parity-Rabin

automaton D such that Eve wins (A,L(B)) if and only if Eve wins (A,L(D)). The idea is
to keep the same automata structure as B, the same parity function, and to replace each
atom U(c) by a parity function which is satisfied iff there is infinitely many increase of c and
finitely many reset of c. So, for each counter c we introduce the parity function κc defined
by:

κc(x) =


1 if ζc(x) = skip
2 if ζc(x) = i
3 if ζc(x) = r

We show that Eve wins (A,L(B)) if and only if Eve wins (A,L(D)). If Eve wins (A,L(D)),
then she wins (A,L(B)) with the same winning strategy, as L(D) ⊆ L(B). Suppose now
that σ is a winning strategy of Eve for (A,L(B)), and that Eve does not win (A,L(D)).
However, by Lemma 20, L(D) is ω-regular and (A,L(D)) is thus determined. Therefore,
Adam has a finite memory winning strategy τ for (A,L(D)). We exhibit a contradiction. Let
ρ be a play of A consistent with σ and τ . Then ρ satisfies both of the following properties:
1. ρ /∈ Parity(κ), and for any run π of D over ρ, for any counter c, if π sees infinitely many

increase of c, then it sees infinitely many reset of c (because τ is winning)
2. either ρ ∈ Parity(κ), or there exists a counter c0 ∈ C1, and there exists a run π of B over

ρ such that States(π) satisfies U(c) (it is because σ is winning)
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Now, since ρ /∈ Parity(κ) from property 1, along ρ, c0 is unbounded from property 2, so it
sees infinitely many increase, and by property 1 it must see infinitely many reset. Intuitively,
it implies that they are longer and longer segments in between two consecutive resets with
more and more increase of c0. Since τ is finite-memory, Eve can find a cycle (both cycling
on the arena, the memory-structure of the strategy and the automaton B) which contains at
least one increase of c0 and no reset. By iterating this cycle ad infinitum, she creates a play
which is consistent with τ and a run of D over that new play, which sees infinitely many
increase of c0 but finitely many reset, contradicting Property 1.

Since D can be computed in polynomial time from B, and since the class of games with
an objective given by a non-deterministic Parity-Rabin automaton is in EXPTIME, we can
decide if Eve wins (A,L(B)) in EXPTIME. ◀

▶ Lemma 22. Given a game in G, the problem of deciding whether Eve wins G is in
EXPTIME. Finite memory is sufficient for Eve and Adam.

Proof. We show that counter games G with counter condition of the form

Plays

(
A,
∨

c∈C

U(c)
)
∪ Parity(A),

where C is the set of counters of G, and A its underlying two-player arena, can be solved in
EXPTIME, which implies the lemma by Lemma 19.

We construct, from a max-counter game G, a game G′ whose acceptance condition is
U-automaton D of size polynomial in the size of G.

Let G be a counter game with underlying two-player arena A = (V,E, V∃, V∀, v), vertex
labeling ζ, set of colors Q, colouring κ, and winning condition Plays

(
A,
∨

c∈C U(c)
)
∪

Parity(A). We construct a U-automaton B, of size polynomial in |C|, with a single counter
denoted d (we assume d ̸∈ C), that recognizes the language of all words w ∈ V ω such that
either w ∈ Parity(κ), or ζ(w) satisfies the condition

∨
c∈C U(c). To make the construction

more easily understood, we first introduce the notion of trace. A trace of a word w =
z0z1 · · · ∈ Op(C)ω is a mapping θ from {i, . . . , j} to C, where i ≤ j are two integers, such
that, for any l ∈ {i, . . . , j − 1},

either θ(l) = θ(l + 1) and zl(θ(l)) ∈ {i, r, skip},
or θ(l + 1) ̸= θ(l) and zl(θ(l + 1)) = max

c∈S
(c) with S ⊆ C and θ(l) ∈ S.

The value of θ at move t ∈ {i, . . . , j} is defined inductively as 0 if t = i, one plus the value at
move t− 1 if zt−1(θ(t− 1)) = i, 0 if zt−1(θ(t− 1)) = r, and the value at move t− 1 otherwise.
If a counter c reaches a value N ≥ 1 at some point in w, then it is always possible to “track
back”, with a trace of w, the sequence of counter operations which led to c having that value,
by choosing, every time we go back to a previous counter operation of the type c′ = max

d∈S
(d)

with S ⊆ C, the good counter d of S (the one with the maximum value), until reaching a
counter whose value is 0. Thus, there exists a counter c ∈ C and two integers t and N such
that λ(w, c)t = N if and only if there exists a trace θ of w, such θ(t) = c, and such that
the value of θ at move t is N . As a consequence, there exists counter c such that λ(w, c) is
unbounded if and only if the values of the traces of w are unbounded.

This result allows us to define B in the following way. The U-automaton B works, on
input w, by guessing all the possible traces of ζ(w), by using non-determinism. The value of
a trace is stored inside the counter d. More precisely, every time B reads a letter, it either
guesses a new trace, or guesses the next counter c′ of C of the trace it is following, while
applying, if c′ is equal to the current counter c of the trace, the operation over c induced by
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the letter read, to counter d. Thus, the U-automaton B is constructed so that the value of d is
unbounded if and only if there are traces of its input of arbitrarily large values. Moreover, we
set the colouring of B as κ. Thus, B recognizes the language of all words w ∈ V ω such that
either w ∈ Parity(κ), or ζ(w) satisfies the condition

∨
c∈C

U(c), i.e. the language recognized

by B is the winning condition of the game G. The precise definition of B is given below.
We let V1 = C × {i, r, skip}, and v1 = (c, r) where c is any counter in C. Furthermore, we

let ζ1 denote the mapping from V1 to Op({d}) such that (ζ1(c, α))(d) = α, and E1 denote
the the smallest subset of V1 × V1 × V such that, for any α ∈ {i, r, skip} and any v ∈ V , we
have

for any c, c′ ∈ C, ((c, α), (c′, r), v) ∈ E1 (this comes from the fact that B should be able
to guess a new trace at any time),
for any c ∈ C, if ζc(v) ∈ {i, skip}, ((c, α), (c, ζc(v)), v) ∈ E1 (the trace follows the increment
or skip operation of a counter while updating d),
for any c ∈ C, if ζc(v) = max

c′∈S
(c), then ((c′, α), (c, skip), v)) ∈ E1, for any c′ ∈ S (the trace

changes counters on a max operation while leaving d unchanged).
The U-automaton B is the U-automaton (V, V1, v1, E1, Q, κ, {d}, ζ1, {d}). By Lemma 21 and
Lemma 20, since B can be computed in a polynomial time from G, and since Eve wins G if
and only if Eve wins (A,L(B)), we can decide if Eve wins G in EXPTIME. ◀
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