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Abstract
Molecular phylogenetics is a fundamental branch of biology. It studies the evolutionary relationships
among the individuals of a population through their biological sequences, and may provide insights
about the origin and the evolution of viral diseases, or highlight complex evolutionary trajectories.

In this paper we develop a method called phyBWT, describing how to use the extended Burrows-
Wheeler Transform (eBWT) for a collection of DNA sequences to directly reconstruct phylogeny,
bypassing the alignment against a reference genome or de novo assembly. Our phyBWT hinges on the
combinatorial properties of the eBWT positional clustering framework. We employ eBWT to detect
relevant blocks of the longest shared substrings of varying length (unlike the k-mer-based approaches
that need to fix the length k a priori), and build a suitable decomposition leading to a phylogenetic
tree, step by step. As a result, phyBWT is a new alignment-, assembly-, and reference-free method
that builds a partition tree without relying on the pairwise comparison of sequences, thus avoiding
to use a distance matrix to infer phylogeny.

The preliminary experimental results on sequencing data show that our method can handle
datasets of different types (short reads, contigs, or entire genomes), producing trees of quality
comparable to that found in the benchmark phylogeny.
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1 Introduction

Molecular phylogenetics are a key tool for understanding the evolutionary relationships
among biological sequences. Phylogenies, in the form of rooted or unrooted trees, can be used
for several purposes: to reconstruct the ancestry of the species (or other taxa) on the tree of
life, to understand the epidemiological dynamics of pathogens, and to identify and study
complex evolutionary events such as hybridisation [17, 34], introgression [12], and horizontal
gene transfer [33]. Thus, they are successfully employed in almost every branch of biology,
including e.g. population genomics and metagenomics, ecology, and biogeography [40].

A vast array of techniques for inferring phylogeny have been developed over the years [37].
Sequence-based methods analyze the DNA or RNA sequences of the taxa, and are based
on their similarity or dissimilarity detection. Most of them rely on a distance matrix
by computing the pairwise evolutionary distances between every pair of input sequences.
Standard algorithms, such as the neighbour-joining algorithm [32], are then applied to the
distance matrix to perform the tree reconstruction.

A crucial component is how to compute these evolutionary distances. Sequence alignment
is a central task in distance computation, which is performed on either entire sequences
or parts of them, with the optional usage of a reference genome. With the advent of new
sequencing technologies and the completion of various genome projects, the number of
whole-genome sequence data available has increased and a new era for phylogeny started.
Owing to the rising cost of the alignment task, alignment-free approaches for quantifying
the similarity/dissimilarity between sequences have been introduced: an advantage of these
approaches is that they are robust for recombination and shuffling events [36, 35, 42]. As
the majority of alignment-free approaches for phylogenetic reconstruction transforms each
sequence into a multiset of k-mers, i.e. substrings of length k extracted from the input
sequences, they can also work directly on the reads obtained from the sequencing platforms,
without the need of performing a preliminary assembly of these reads.

In this paper we introduce phyBWT, which combines many features in a single new method
to reconstruct a phylogenetic tree. Firstly it is alignment-, assembly-, and reference-free.
Second, it does not need a distance matrix as it does not rely on the pairwise comparison
of sequences. Third, it exploits the combinatorial properties of the positional clustering
framework recently introduced in [28], overcoming the limitations of employing k-mers with
fixed size k a priori.

The contribution of this paper is twofold, theoretical as well as practical. To the best
of our knowledge, phyBWT is the first method that applies the properties of the Extended
Burrows-Wheeler Transform (eBWT), employed in the positional clustering, to the idea
of decomposition for phylogenetic inference. Moreover, phyBWT not only is oblivious to
extra information such as reference sequences or read mappings, but it also avoids any
assembly or alignment of input sequences. Finally, phyBWT infers the tree structure by
comparing all the sequences simultaneously and efficiently, instead of performing their
pairwise comparisons. We present a preliminary experimental evaluation of phyBWT for
reconstructing phylogenetic trees using different types of biological sequences (short reads
and de novo assemblies/genomes) and different taxa. The phylogenetic trees produced by
phyBWT are of high quality according to the benchmarks in the literature.

State of the art

The Burrows-Wheeler Transform (BWT) [9] of a string (and the eBWT of a set of strings [25,
5]) is a suitable permutation of the symbols of the string(s), whose output shows a local simil-
arity, i.e. symbols preceding similar contexts tend to occur in clusters. Both transformations
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have been intensively studied with important and successful applications in several areas. For
instance, the eBWT has been used for defining alignment-free methods based on a pairwise
distance matrix [25, 26, 39, 19] in order to build up a phylogenetic tree for mitochondrial
DNA genomes. The positional clustering detects “interesting” blocks in the output of the
eBWT [25, 5], so that the requirement on the fixed size k in k-mers is relaxed and becomes
of variable-order, not fixed a priori, in an adaptive way according to the contexts. This
framework has already been used in other bioinformatics tasks, such as for detecting SNPs
and INDELs in short-read datasets [29] and for lossy compression of FASTQ datasets [18].

We observe that phyBWT exploits the underlying properties of the eBWT: (i) the clustering
effect, i.e., the fact that the eBWT tends to group together equal symbols in the transformed
string that occur in similar contexts in the input string collection; (ii) the fact that if a
substring x occurs in one or more strings, then the suffixes of the input dataset starting with
x-occurrence are close in the sorted list of suffixes. In other words, the greater the number
of these substrings shared by two taxa is, the more they are similar.

Although phyBWT does not use the distance matrix, it has some resemblance with split
decomposition methods when reconstructing the tree from the information gathered through
the eBWT. We recall that split decomposition relies on a solid mathematical ground [2, 4],
and has been successfully applied to phylogeny [3]. The idea is to score the possible splits (i.e.
bipartitions) of the taxa, and assign an isolation index to each split based on the distances in
the given matrix. Compatible splits are those with an empty intersection on one of the parts
in the splits, and the isolation index is treated as a priority weight in making a (greedy)
choice among the splits. Compatible splits induce a tree and vice versa. However, a residual
error is generated on real-world data, and a notion of weak split compatibility is preferred to
create a weighted phylogeny network instead of a phylogeny tree: the shortest weighted part
between any two nodes in this network gives the isolation index in the corresponding split.
For ℓ taxa, only O(ℓ2) splits are needed for split decomposition instead of 2ℓ ones [2].

As the original algorithm in the seminal papers on split decomposition [2, 3] requires
O(ℓ6) comparisons, further papers have addressed efficiency and extended these ideas. The
recent alignment-free method SANS [38, 31] uses the notions of the split decomposition
theory to greedily build a list of weakly compatible splits from which to infer phylogenies.
In the list, each split has its own weight computed by counting k-mers that are stored in
a colored de Bruijn graph [38] (this has been improved later by hashing [31], leaving the
colored de Bruijn graph as input option). The calculated list of splits ordered by weight is
then filtered according to two strategies that are described and implemented in the software
tool SplitsTree [20]. In our experimental study, we compare the trees obtained by SANS and
phyBWT. It should be noted that SANS is also able to reconstruct phylogenetic networks
whereas phyBWT focuses on phylogenetic trees only.

As previously mentioned, a plethora of methods have been designed for phylogeny
(e.g. DBLP reports over 500 papers having “phylogeny” in the title). We refer the reader
to [21, 22, 37] for a complete and detailed review of various methods for phylogeny estimation.
We briefly mention here that among the alignment-based approaches are character-based
methods [40], that generally produce alignments of the input sequences and compare all
sequences simultaneously considering one character per time (e.g. using maximum parsimony
or maximum likelihood). The alignment-free tree reconstruction comes from computing some
distribution within and among k-mers by using a distance matrix or not. For instance, the
method in [14] reconstructs a phylogeny from whole-genome short-read sequencing data on
the basis on a matrix of pairwise genetic distances, without assembling the reads.

WABI 2022
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2 Notation and background

2.1 Notation
Let s be a string (also called sequence) of length n on the alphabet Σ. We denote the i-th
symbol of s by s[i]. A substring of any s is denoted as s[i, j] = s[i] · · · s[j], with s[1, j] being
called a prefix and s[i, n + 1] a suffix of s. A k-mer is a string of length k.

Let S = {s1, s2, . . . , sℓ} be a collection of ℓ strings. We assume that each string si ∈ S
has length ni and is followed by a special end-marker symbol Si[ni + 1] = $i, which is
lexicographically smaller than any other symbol in S, and does not appear in S elsewhere2.

2.2 Basic data structures
The Burrows-Wheeler Transform (BWT) [9] is a well-known widely used reversible string
transformation that can be extended to a collection of strings. Such an extension, intro-
duced in [25], is a reversible transformation whose output string (denoted by ebwt(S)) is
a permutation of the symbols of all strings in S. In [5], the authors introduced a variant
of this transformation for string collection in which a distinct end-marker is appended to
each string, making the collection ordered. Such transformations are known as eBWT or
multi-string BWT.

The length of ebwt(S) is denoted by N =
∑ℓ

i=1(ni +1), and ebwt(S)[i] = x, with 1≤ i≤N ,
if x circularly precedes the i-th suffix Sj [k, nj + 1] (for some 1 ≤ j ≤ ℓ and 1 ≤ k ≤ nj +1),
according to the lexicographic sorting of the suffixes of all strings in S.

Usually the output string ebwt(S) is enhanced with the document array (DA) and longest
common prefix (LCP) array of S.

The document array of S (denoted by da(S)) is the array of length N such that da(S)[i] = j,
with 1 ≤ j ≤ ℓ and 1 ≤ i ≤ N , where ebwt(S)[i] is a symbol of the string sj .

The longest common prefix (LCP) array [24] of S is the array lcp(S) of length N + 1,
such that lcp(S)[i], with 2 ≤ i ≤ N , is the length of the longest common prefix between the
suffixes associated with the positions i and i−1 in ebwt(S), and lcp(S)[1] = lcp(S)[N +1] = 0
by default. The set S can be omitted when it is clear from the context.

The following is an important property of the BWT, and thus of the related data structures
DA and LCP, that will be used in our method:

▶ Remark 1. One can obtain the DA of a subset of S by scanning the DA(S). In [5], the
authors prove that given a collection S = {S1, S2, . . . , Sℓ} of strings and ebwt(S), one can
obtain the eBWT of a subset R of S by removing all the characters not in R, without
constructing the eBWT from scratch, as the relative order of suffixes holds. Similarly, one
can obtain the LCP of a subset of S by using the properties of the LCP array.

Let R ⊂ S. We denote by ebwt(S)|R (resp. da(S)|R, lcp(S)|R) the restriction of the data
structure ebwt(S) (resp. da(S), lcp(S)) to the set of strings R.

2.3 LCP-interval and k-mer vs Positional cluster
The LCP-intervals [1] of lcp-value k, or k-intervals, are maximal intervals [i, j] that satisfy
lcp(S)[r] ≥ k for i < r ≤ j. In other words, the suffixes associated with k-intervals have a
common k-mer as prefix.

2 Note that, in the implementations, one can use a single symbol as end-marker for all strings, but
end-markers from different strings are then sorted on the basis of the index and the relative order of the
strings in the set they belong to.
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In any string collection, thus, LCP-intervals of lcp-value k are in a one-to-one correspond-
ence with the set of all k-mers.

Note that the common prefix w in a LCP-interval is of length at least k, but it could
be longer. So, to overcome the limitation of strategies based on LCP-intervals that require
to fix the length k, the authors of [28, 29] introduced a new framework called “positional
clustering”. In this framework the intervals do not depend on a value k fixed a-priori, but
they are enclosed between two “local minima” in the LCP-array (thus, their boundaries are
data-driven).

Crucially, the length k of the common prefix w of the suffixes inside such intervals is not
the same, but it differs interval by interval. Hence, there is no one-to-one correspondence
between such intervals and the set of k-mers.

However, as to exclude intervals corresponding to some short random contexts w, one
needs to set a minimum length for w, which we denote by km.

According to [29], an eBWT positional cluster eBWTclust[i, j] is a maximal substring
ebwt[i, j] where lcp[r] ≥ km, for all i < r ≤ j, and none of the indices r, i < r ≤ j, is a local
minimum of the LCP array.

By definition, we have that:
▶ Remark 2. Any two eBWT positional clusters, eBWTclust[i, j] and eBWTclust[i′, j′],
such that i ̸= i′ are disjoint, i.e. it holds that either j < i′ or j′ < i.

Here, we define a local minimum of the LCP array (of length N) any index i, 1 < i < N

such that lcp[i − 1] > lcp[i] and lcp[i] < lcp[i + j], where j > 1 is the number of adjacent
occurrences of the value lcp[i] from position i. For instance, let lcp = [2, 1, 3, 3, 5, 4, 2, 2, 7].
The local minima are indices 2 and 7.

Note that the above definition differs from that in [29], where local minima in the LCP
array (of length N) are detected searching for indices r such that lcp[r−1] ≥ lcp[r] < lcp[r+1],
for all 1 < r ≤ N . According to such definition, local minima can be detected in any non-
increasing sequence where some values are repeated. For instance, for the second occurrence
of 4 in the sequence 5, 4, 4, 2 yields the definition of local minimum. Therefore, the slightly
different notion of local minima we use is to maximize the length of the non-increasing
sequence described in the following Remark 3.
▶ Remark 3 ([28], Thm 3.3). In any eBWT positional cluster, the lcp-values form a sequence
of non-decreasing values followed by a (possibly empty) sequence of non-increasing values.

From the above remark follows that the length l of the longest common prefix shared by
the suffixes associated with a eBWT positional cluster ebwt[i, j] is given by the minimum
value in lcp[i + 1, j], which could be simply obtained by taking the minimum between the
values lcp[i + 1] and lcp[j].

In general, if we set the minimum length km equal to k, the set of eBWT positional
clusters forms a refinement of the set of ebwt[i, j] with [i, j] LCP-interval of lcp-value k.

In fact, any ebwt[i, j], where [i, j] is a LCP-interval, can be subdivided in correspondence
of the local minima of lcp[i, j], thus giving rise to a sequence of consecutive eBWT positional
clusters (see Figure 1). Clearly, such subdivision depends only on the trend of the LCP
values inside the LCP-interval [i, j]. Hence, more than one positional cluster can be related
to the same LCP-interval, and equivalently, to the same k-mer.

▶ Example 4 (running example). In Figure 1, we represent the data structures used in our
tool (cda, ebwt, lcp), the auxiliary array da and the sorted list of suffixes, for the sake of
clarity. The LCP-intervals of lcp-value k = 1 correspond to the following intervals: [4, 10],
[11, 17], [18, 28], [29, 34]. Whereas the horizontal lines delimit eBWTclust for kmin = 1.

WABI 2022
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i cda da lcp ebwt Sorted suffixes i cda da lcp ebwt Sorted suffixes

1 1 1 0 A $ 18 3 3 0 C GACT$
2 2 2 0 T $ 19 3 3 2 C GAGTACGACT$
3 3 3 0 T $ 20 1 1 1 G GCGTACCA$
4 1 1 0 C A$ 21 2 2 5 G GCGTATT$
5 1 1 1 T ACCA$ 22 1 1 1 $ GGCGTACCA$
6 3 3 2 T ACGACT$ 23 2 2 6 G GGCGTATT$
7 3 3 4 $ ACGAGTACGACT$ 24 2 2 2 G GGGCGTATT$
8 3 3 2 G ACT$ 25 2 2 3 $ GGGGCGTATT$
9 3 3 1 G AGTACGACT$ 26 1 1 1 C GTACCA$
10 2 2 1 T ATT$ 27 3 3 4 A GTACGACT$
11 1 1 0 C CA$ 28 2 2 3 C GTATT$
12 1 1 1 A CCA$ 29 2 2 0 T T$
13 3 3 1 A CGACT$ 30 3 3 1 C T$
14 3 3 3 A CGAGTACGACT$ 31 1 1 1 G TACCA$
15 1 1 2 G CGTACCA$ 32 3 3 3 G TACGACT$
16 2 2 4 G CGTATT$ 33 2 2 2 G TATT$
17 3 3 1 A CT$ 34 2 2 1 A TT$

Figure 1 Extended Burrows-Wheeler Transform (EBWT), LCP array, and the auxiliary data
structures DA and CDA for the set S = {GGCGTACCA, ACGAGTACGACT, GGGGCGTATT}.

Note that when kmin = k, the eBWTclust can refine the LCP-intervals. For example the
LCP-interval [18, 28] includes five positional clusters: eBWTclust[18, 19], eBWTclust[20, 21],
eBWTclust[22, 23], eBWTclust[24, 25], eBWTclust[26, 28].

3 Method

In this section, we describe the proposed method for building a phylogenetic tree where each
leaf, representing an organism, is a set of strings (e.g. sequencing reads, contigs, genome).

The idea of our method is to reconstruct the tree through a series of partitions performed
on groups of organisms. As these partitions isolate groups of organisms from each other, we
proceed in both directions: we divide each part in one direction, and we group the parts
together in the other direction. Each part corresponds to a node of the phylogeny tree. When
it is not possible to further divide or group together, we draw the edges of the tree from
those groups to a node corresponding to their union.

The partitions generated by our method are intended to estimate phylogenetic signals; in
particular, each part produces evidence of separations among the input set of nodes.

More formally, we denote the set of leaves as S = {S1, S2, . . . , Sℓ}, where each leaf Si ∈ S
contains mi strings including their reverse-complement, i.e. Si = {si,1, . . . , si,mi

}, where
si,

mi
2

, . . . , si,mi
are strings in the reverse-complement form. Each node of the tree identifies

a set of organisms (i.e. it is a subset of S).
Subsection 3.1 describes how the partitioning procedure is iteratively called to infer

a phylogeny tree for S, while Subsection 3.2 provides the details of the inner partition
algorithm.

The idea behind the partitioning algorithm, described in Subsection 3.2, is to group
together nodes whose associated strings share long common substrings of varying length
which are not present in other nodes, and we interpret the presence of such substrings as a
common feature of the group that differentiates it from the others.

To perform partitions we do not use any external information, such as reference sequences
or annotations, and in addition, we do not perform assembly or alignment.

Finally, we recall that, in any tree, a cut of a given subset of its edges determines a
partition of the set of its leaves. Therefore, the notion of partition of S we use slightly differs
from the one of split, as a split of the set of leaves is obtained by removing a single edge
from the corresponding tree. Thus, splits are essentially bi-partitions of S.
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Algorithm 1 TreeReconstruction(S).

input :S = {S1, . . . , Sℓ}
output : A tree whose leaves are the elements of S

1 Initialize Q ← {{S1}, . . . , {Sℓ}}
2 Queue.push(Q)
3 while Queue is not empty do
4 {Q1, . . . , Qq} ← Queue.pop()
5 for i ∈ {1, . . . , q} do Create node Qi if it does not exists
6 if q > 1 then
7 P ← partition({Q1, . . . , Qq})
8 p← P.size()
9 if p = q then /* the partitioning cannot aggregate further */

10 Create node Q =
⋃
{Q1, . . . , Qq} if it does not exists

11 Draw edges from the node Q to nodes Qi, for all i ∈ {1, . . . , q}
12 else
13 Queue.push({

⋃
P1, . . . ,

⋃
Pp}) /* link partitions to each other */

14 for i ∈ {1, . . . , p} do
15 Queue.push(Pi) /* link elements within the partition */

3.1 Partitioning-based tree reconstruction

We here describe a method that, given a partitioning algorithm for sets of strings as a
blackbox, is able to reconstruct a tree by applying the partitioning step by step.

The blackbox for partitioning is described in Subsection 3.2, and denoted here by
partition. Given a set Q = {Q1, . . . , Qq}, the output of partition is a non-empty
collection P of subsets of Q, i.e. P = {P1, . . . , Pp}, such that
1.

⋃ p
i=1 Pi = Q, i.e., the union of all Pi ∈ P is Q.

2. Pi ∩ Pj = ∅ for all i ̸= j, i.e., every pair of sets in P has empty intersection.
The input set Q is a collection of sets of organisms. The key in this procedure is that each
part Pi of Q generated by partition groups sets of organisms that share similarity to each
other and divergence from the others. As the trivial partition P = {Q} provides no significant
information, we assume partition is such that each part Pi will be a proper subset of Q.

Formally, each element Qi will identify a node of the tree, and thus, a set of organisms
(i.e. a subset of S). In particular, each leaf Qi = {Si}, will be a singleton set containing a
single organism, while each internal node Qi will be the union of the leaves of its subtree.

For the sake of clarity, we explicitly create the nodes of the tree (by their corresponding
set of organisms) while reconstructing it (see Algorithm 1).

For convenience, given a collection of sets Q = {Q1, . . . , Qq}, we will use the notation⋃
Q as a shorthand for Q1 ∪ . . . ∪Qq, i.e., the set of all elements of the sets of Q.

Algorithm structure. To give an intuitive overview, the algorithm iteratively considers
several sets of organisms Q = {Q1, . . . , Qq} and aggregates them into groups of sets of
organisms by means of partition, obtaining a partition P = {P1, . . . , Pp} with each Pi ⊂ Q.
At each call of partition, if the output P is not the finest partition on Q (i.e. p < q), then
it proceeds in two directions:

WABI 2022
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Figure 2 A possible execution of Algorithm 1 on a set of organisms S = {1, 2, 3, 4, 5, 6}. Each
panel shows an iteration of the algorithm: the rectangle at the top is the element taken from the
queue, and the arrows points to the elements generated from the queue; dashed sets within the
queue elements represent the sets of organisms. Iterations II,IV,V and VI meet the condition in
Line 9: no new element of the queue is produced (we only show the result of partition) and edges
are generated. To the right is the resulting tree.

Each part Pi will be a node of the tree (identified by the union of its contained Qj sets),
and the set P is recursively fed to partition.
Within each single part Pi, each set Qj ∈ Pi is a node, and these nodes will be recursively
aggregated by calling partition on Pi to induce a tree structure.

Otherwise, if the output P is the partition of singletons (i.e. each Pi is a singleton), that
means partition is not able to further aggregate the elements of Q (for instance, when
called on 1 or 2 sets of organisms), then it traces edges between the node Q and those
corresponding to the sets Qi.

At the very beginning, the set Q is made of all singletons corresponding to the leaves,
i.e., the single organisms in S, so Q = {{S1}, . . . , {Sℓ}}. The set Q is inserted into a queue.
The algorithm will iteratively process elements of the queue and will generate new elements
for the queue, as described above (i.e., one with the set P of parts, and one for each Pi).

The pseudocode in Algorithm 1 describes the method in detail. An example run is
provided in Figure 2.

3.2 Inner Partitioning algorithm

In this subsection, we describe the approach we use as inner function within the algorithm
described in Subsection 3.1 in order to obtain a partition P = {P1, . . . , Pp} of disjoint subsets
from Q = {Q1, . . . , Qq}, where q ≥ p > 1.

According to Subsection 3.1, the set Q to be partitioned comprises some (not necessarily
all) organisms, which are distributed among Q1, . . . , Qq.

Before describing the inner partitioning procedure, we introduce some notation.
We recall that the set S contains ℓ sets of strings, as for each organism we can have

multiple strings (like reads, contigs, a genome, and so on). So, S = {S1, S2, . . . , Sℓ} and
each set Si ∈ S contains mi strings, i.e. Si = {si,1, . . . , si,mi

}. Note that the definitions of
eBWT, LCP and DA apply also to this case, e.g. ebwt(S) = ebwt({S1, S2, . . . , Sℓ}) =
ebwt({s1,1, . . . , s1,m1 , . . . , sℓ,1, . . . , sℓ,mℓ

}), lcp(S) = lcp({S1, S2, . . . , Sℓ}) = lcp({s1,1, . . . ,

sℓ,mℓ
}) and da(S) = da({S1, S2, . . . , Sℓ}) = da({s1,1, . . . , sℓ,mℓ

}). These data structures
are well known in string processing, so their construction is outside the scope of this paper
(see Section 4 for a collection of methods and tools to construct them).
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We extend the above, commonly used, notion of DA to Color Document Array (CDA),
where cda(S)[i] = r if da(S)[i] = u and su belongs to the set Sr. In other words, we assign a
same color to the strings belonging to the same set Sr, so we have a distinct color r for each
set Sr ∈ S.

▶ Example 5 (running example). In Figure 1, cda coincides with da assuming that each
organism is a single string.

Let Q = {Q1, . . . , Qq}, where each Qi represents a node of the phylogeny tree, and thus,
it identifies a non-empty set of organisms. We define a map χQ that associates any organism
to the element of Q to which it belongs (if there exists).

▶ Definition 6. Given Q = {Q1, . . . , Qq}, we define χQ from {1, . . . , ℓ} to {Q1, . . . , Qq}∪{∅},
such that

χQ(r) =
{

Qs if there exists Qs ∈ Q s.t. r belongs to Qs

∅ otherwise.

Recall that we denote by eBWTclust[i, j] the concatenation of the symbols in the
eBWT associated with the range [i, j] (i.e. ebwt(S)[i, j]), where [i, j] is a positional cluster,
unless otherwise specified.

Then, for each eBWTclust[i, j], the corresponding interval in the CDA, cda(S)[i, j],
determines the organisms (or colors) to which the symbols in eBWTclust[i, j] belong.

▶ Definition 7. An eBWTclust[i, j] is γQ-colored if γQ is the set of elements of Q appearing
in cda(S)[i, j], i.e. γQ = {χQ(r) : r ∈ cda(S)[i, j]}.

Note that if eBWTclust and CDA are restricted to the strings in Q (see Remark 1),
then γQ contains only non-empty sets.

▶ Example 8. Let Q = {{S1, S3, S4}, {S2}, {S5}} and eBWTclust[i, j] = ACAAGT with
cda[i, j] = [1 2 1 1 3 4]. Then, eBWTclust[i, j] is γQ-colored and γQ = {{S1, S3, S4}, {S2}}.

The main idea is to detect and analyze only eBWT positional clusters associated with
left-maximal contexts shared by some Qi:

▶ Definition 9. A γQ-colored eBWTclust[i, j] is relevant, if ebwt[i, j] is not a concatenation
of a same symbol (i.e. it is not a run) and 1 < card(γQ) < q holds.

▶ Example 10 (running example). We highlight in bold, in Figure 1, the relevant eBWTclust,
that are eBWTclust[11, 14] and eBWTclust[22, 23]. Every other eBWTclust is either a
run of a same symbol or the associated cda contains only one color or all of them.

Now, we use the notion of relevant eBWTclust to obtain a partition P = {P1, . . . , Pp}
of disjoint subsets from Q = {Q1, . . . , Qq}, with q ≥ p > 1. Recall that p > 1, because the
trivial partition P = {Q} provides no significant information. The partitioning strategy is
summarized in the following three phases:
1. we scan our data structures computed on S, and we detect the relevant eBWTclust of

eBWT(S)|Q (denoted by eBWTclustQ[i, j], for some i < j);
2. we analyze each eBWTclustQ[i, j] in order to build a list L(Q) of subsets of Q, called

candidate parts, and we incrementally assign a score to each candidate part;
3. we build P from the list L(Q) by selecting compatible candidates with the highest score.
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Note that, by using Remark 1, it is easy to verify that the relevant eBWTclustQ of the
first step can be obtained by a linear scan of the input data structures.

At step 2), while analyzing any relevant eBWTclustQ[i, j], we require that any element
Qs in γQ is a representative, i.e. the number of colors of Qs appearing in [i, j] is sufficiently
large. We denote by τ (0 < τ ≤ 1) such support threshold that determines the minimum
required portion for each Qs ∈ γQ. Intuitively, the support threshold guarantees that all the
elements of Q appearing in the eBWTclust are sufficiently represented. In fact, when the
support threshold approaches 1, all the elements of the subset Qs considered are required to
be in the cluster. In other words, we aim at measuring how similar the shared history of the
phylogeny is in terms of shared substrings. On the other hand, when the support threshold
approaches 0, at least one of the elements of the subset Qs is required to be in the cluster
considered. Thus, we are observing how similar all the evolution events are, providing two
different viewpoints of their phylogeny. More formally,

▶ Definition 11. Let Q = {Q1, . . . , Qq} and eBWTclustQ[i, j] be relevant. Given a support
threshold value τ in (0, 1], we define the candidate part of eBWTclustQ[i, j], and we denote
it by L[i,j], the set γQ only if it holds card(cda[i, j] ∩Qs) ≥ τ · card(Qs), for all Qs ∈ γQ.

In general, any relevant γQ-colored eBWTclustQ[i, j] may not have an associated
candidate part L[i,j]. That is the case in which some Qs ∈ γQ are not sufficiently represented
in the interval [i, j].

The list L(Q) of all candidate parts L[i,j] ⊂ Q is built up by analyzing all eBWTclustQ.
Any eBWTclustQ[i, j] contributes to the score of its candidate part L[i,j] ⊂ Q by the
minimum value in lcp[i + 1, j]. So, the elements of the list L(Q) appear as pairs (L, y), where
L is a proper subset of Q and y its associated score incrementally obtained.

Intuitively, we use the score to determine the order in which the candidate parts must be
taken into account to build P . Since P is a partition of Q, we cannot take all the candidate
parts with a high score, but we must select, step by step, only those that are somehow
compatible with each other. In fact, by partition definition, if X is a part of P and Y has
non-empty intersection with X, then Y cannot be a part of P.

▶ Example 12 (running example). Let us consider the first call of partition for the toy
example in Figure 1, where Q = {Q1, Q2, Q3} and Qi = {Si}. Let τ be any value in (0, 1],
eBWTclust[11, 14] contributes to increase the score of its candidate part {Q1, Q3} by 1
(being the minimum lcp-value in [12, 14]), while eBWTclust[22, 23] contributes to increase
the score of its candidate part {Q1, Q2} by 6. So, at the end of the cluster analysis, we have
that L(Q) contains ({Q1, Q2}, 6), ({Q1, Q3}, 1). The output partition P is {{Q1, Q2}, {Q3}},
as {Q1, Q2} has a higher score than {Q1, Q3}.

We use a greedy algorithm to select a list (denoted by LC) of compatible candidate parts
that will constitute the parts of the output partition P.

In our selecting procedure, we choose to consider only elements of L(Q) having high
scores. In particular, we denote by t the number of elements with the highest scores such
that the difference with the previous higher score does not form a local minimum and at
least t highest scores are considered.

In addition to the list LC of compatible subsets, during the scan of such t subsets with
the highest scores, we build a second list (denoted by LE) of compatible extensions of LC .

Both lists LC and LE are initially empty. A subset V is compatible, and we add it to
LC , if it is disjoint from all the elements already in LC , and moreover, if either it has empty
intersection with all the elements in the list LE , or it is strictly contained in the first element
with non-empty intersection. We define a set V compatible extension, and we add it to LE ,
if it is a superset of all the elements already in LC .
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Intuitively, the list LE contains those subsets that warn us from selecting next compatible
subsets that separate its elements. In fact, the order in which subsets are processed is given
by their score, so when checking if V is compatible, all the elements already in LC and in
LE show a score higher than V .

The output partition P contains all the compatible subsets in LC as parts, and any other
element of Q not appearing in any subset in LC , as a singleton part.

3.3 Complexity

Partitioning. We observe here how the partitioning procedure described in Subsection 3.2
can be computed in O(N) time and space, where N corresponds to the sum of lengths of
all strings within the organisms in Q. Indeed, the eBWT can be computed in linear time
in its length, which is N , including the identification of all positional clusters [28]. Given
an element of a eBWTclust[i, j] and τ , we can determine in O(1) time its color using the
CDA; as we can pre-compute the size of all Qi, this lets us easily determine the γQ-coloring
of the cluster and the associated L[i,j] (Definitions 7 and 11) in time proportional to the
cluster’s length, for a total cost of O(N) over the whole BWT to obtain L(Q).

While potentially there could be up to 2q ≤ 2ℓ candidate parts L[i,j], observe that each
positional cluster can in fact define at most one candidate, of size not greater than the length
of the cluster; it follows that L(Q) has < N elements, and the sum of sizes of all L[i,j] is too
at most N .

Next, the algorithm sorts L(Q) by score, which using a bucket sort takes O(N) time.
Finally, we need to scan L(Q) to obtain LC : using bit-vectors (or other standard data
structures) we can keep track in constant time of which Qi have been added to LC or to
LE ; thus we can check if an L[i,j] is compatible (or if it generates a compatible extension) in
time proportional to its size, meaning the total cost of this step is once more O(N), and so
are the running time and space requirements of the partitioning procedure.

Tree reconstruction. While we omit a more detailed analysis, it is relatively straightforward
to see that each Q placed in the queue corresponds to one node of the tree (see Line 10 in
Algorithm 1).

Since partition always splits the input in at least two parts, the number of internal
nodes are at most the number of leaves (ℓ); as such, the complexity is bounded by ℓ times
the cost of partition. As described above, the latter is bound by the sum of lengths of
the strings in the Q partition is called upon, which is at most the size of the input O(N)
(although this is a worst case). As for the space requirement, it is that of partition plus
the maximum size of the queue: the queue holds up to O(ℓ) elements (one for each node of
the tree), and each has size at most ℓ. The following holds:

▶ Lemma 13. Given a set S of ℓ organisms, whose total length is N , phyBWT reconstructs
a phylogenetic tree for S in O(Nℓ) time and O(N + ℓ2) space.

We observe that N is the dominant factor in this complexity, as the length of the strings
representing a taxon is -in known applications- many orders of magnitude greater than the
number ℓ of taxa. Moreover, letting n = N/ℓ be the average length of a taxon, the time cost
O(Nℓ) can be equivalently seen as O(nℓ2), so quadratic in the number of taxa.

WABI 2022



23:12 phyBWT: Alignment-Free Phylogeny via eBWT Positional Clustering

4 Preliminary experiments

In this section we assess our partitioning-based method, phyBWT, for reconstructing phylo-
genetic trees from short-reads and de novo assembled sequences. Indeed, phyBWT is not
limited to a particular type of input, and it is able to manage both types of data. However,
the diversity in the type of input data needs a tuning of the parameters described in the
method section.

In the literature, features similar to phyBWT are shared by the tool SANS [38, 31] which,
as our tool, is an alignment- and reference-free approach that is whole-genome based, and in
addition, it does not produce a pairwise comparison of the sequences or their characteristics.
Differently from phyBWT, SANS is based on the computation of all k-mers, which are either
directly extracted or read in a colored de Bruijn graph, and then used to build a list of splits.
The first implementation of SANS [38] post-processed the list of splits according to two
filtering strategies that are described in the software tool SplitsTree [20]: (i) a greedy weakly
approach that allows to display the output as a network, and (ii) a greedy tree approach
that displays the output as a tree. In fact, according to the phylogenetic splits model [3], the
reconstructed phylogenies are mesh-like graph and they are not restricted to trees.

The latest version3 of the tool SANS [31] is a stand-alone re-implementation that intro-
duces some new features and improves the runtime and the memory usage. It has mainly
three filtering options that allow to limit the output splits in order to reduce the complexity
of the network or calculate a subset of the splits representing a tree.

We show experiments carried out by such new version of the tool SANS by applying the
filtering approach for drawing trees.

Drawing phylogeny tree. Our tool reconstructs a tree by means of partitions and outputs
can be visualized by using well-known existing tools. In this paper, all the trees are drawn
by using the PHYLIP package by Joe Felsenstein4 and manually annotated.

Data Structure building. We observe that we take in input the following data structures
eBWT, LCP and DA that can be built independently from our tool, e.g. [5, 10, 13, 7, 23, 30, 8].
One also could build them for each Si, then, one could merge them to get the data structures
of the union of some Si.

Datasets. To show the effectiveness of our method, we have chosen three datasets with
a similar number of organisms but with a diverse composition and different length of the
strings. More in details, we used three different types of datasets: i) Illumina sequencing
data (short reads) for seven S. cerevisiae and five S. paradoxus strains from the study in [41];
ii) assemblies from 12 species of the genus Drosophila from the FlyBase database (largely
accepted phylogeny shown in [11]); iii) viral complete genomes from the Prasinovirus genus
(benchmark phylogeny trees reported in [15]). The datasets ii) and iii) are also analyzed
in [38].

Running time. While our implementation of phyBWT is not yet optimized, we observe that
the running time of our prototype is dominated by the cost of computing eBWT, LCP and
DA. When the latter cost is stripped down, the running time of phyBWT is lower compared

3 https://gitlab.ub.uni-bielefeld.de/gi/sans
4 https://evolution.genetics.washington.edu/phylip/, version 3.698 for 64-bit Windows systems.

https://gitlab.ub.uni-bielefeld.de/gi/sans
https://evolution.genetics.washington.edu/phylip/
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(a) Tree by phyBWT. (b) Tree by SANS.

Figure 3 Yeasts phylogeny by phyBWT (a) and by SANS (b).

Figure 4 Benchmark phylogeny for the yeasts dataset. Figure redrawn from [41].

to that of SANS. However, as it is often the case, eBWT, LCP and DA (or a subset of them)
might be already available from some other applications. For example, for the medium-size
Drosophila dataset, phyBWT infers the phylogenetic tree in 2 minutes by using 25 GB of
internal memory, and SANS runs in 26 minutes using 28 GB of internal memory.

4.1 Yeasts dataset
This dataset comprises 12 Illumina sequencing experiments obtained from the study in [41],
and deposited in the public repository SRA (Short Reads Archive) under accession code
PRJNA340312. The 12 datasets from [41] include seven sequencing experiments for the S.
cerevisiae strains and five for the S. paradoxus strains. According to [41], for each sequencing
experiment, comprising 151-bp paired-end reads, we performed adaptor-removing and quality-
based trimming using trimmomatic [6]. For each sample, we extracted 5 million of 151-bp
paired-end reads to form the yeasts dataset with a total size of 26 GB.

WABI 2022
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(a) Tree by phyBWT (b) Benchmark phylogeny. Figure redrawn from [11].

Figure 5 Drosophila phylogeny: (a) by our method; (b) benchmark redrawn from[11].

We ran both phyBWT and SANS on such short reads dataset. The tree depicted in Figure
3a is produced by phyBWT for any km > 13, τ = 0.6 and t = 12 (as the number of taxa).
For SANS, we used default parameters that corresponds to a k-mer length of 31, and we set
the parameter -f strict to output a tree in the Newick format (see Figure 3b).

The benchmark tree reported in Figure 4 is the one obtained in the original study [41].
Remarkably, the benchmark was built using nuclear one-to-one orthologs, i.e. blocks of
nuclear genes which are shared among (1) the seven S. cerevisiae, (3) the five S. paradoxus
strains sequenced in the study, and (3) six outgroups from the Saccharomyces genus.

Both phyBWT and SANS correctly group the S. cerevisiae and the S. paradoxus strains
which show an average whole-genome sequence divergence of ∼ 10%. As expected by taking
into account the relatively high divergence among S. paradoxus strains (0.5% - 4.5%), also
the same S. paradoxus partition is obtained. On the other hand, a few differences are
shown in the S. cerevisiae partition which groups strains with a sequence divergence ∼ 0.5%.
Compared to SANS, phyBWT produces a tree which is closer to the benchmark although
the differences with the benchmark shown by both SANS and our method can be explained
considering the relatively low divergence among S. cereviasiae strains as well as the partially
admixed genomes of some of the trains (e.g. S288C and DBVPG6044) [27].

4.2 Drosophila dataset
Drosophila data are downloaded from the FlyBase database (http://flybase.org/). This
dataset includes assemblies from 12 species of the genus Drosophila: D. melanogaster (mel),
D. ananassae (ana), D. erecta (ere), D. grimshawi (gri), D. mojavensis (moj), D. persimilis
(per), D. pseudoobscura (pse), D. sechellia (sec), D. simulans (sim), D. virilis (vir), D.
willistoni (wil), and D. yakuba (yak). Nine of these species fall within the Sophophora
subgenus, which includes members of the melanogaster, obscura and willistoni groups.

The number of strings for each species varies: it ranges from 1, 870 for D. melanogaster to
17, 440 for D. grimshawi. The obtained dataset is a medium-sized input with a total number
of symbols of more than 2, 161 Mbp.

http://flybase.org/
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(a) Tree by phyBWT. (b) Tree by SANS.

Figure 6 Prasinovirus by phyBWT and by SANS.

(a) Redrawn reference tree [15, Figure 3]. (b) Redrawn reference tree [15, Figure 4].

Figure 7 Benchmark phylogeny for Prasinovirus dataset. Figures redrawn from [15].

phyBWT produces the tree depicted in Figure 5a for any km in [23, 72], τ = 0.5 and
t = 12 (as the number of taxa). The Sophophora subgenus as well as the Drosophila subgenus
are correctly detected, and inside the Sophophora subgenus, the melanogaster subgroup is
correctly isolated. The only difference with respect to the benchmark tree by [11] is the
organism D. ananassae that represents the ananassae subgroup. Such subgroup is part of
the melanogaster group together with D. melanogaster, D. sechellia, D. simulans, D. erecta
and D. yakuba. However, our method places D. ananassae closer to the obscura group rather
than the melanogaster subgroup. SANS was run with default values as described in [38].
The output tree obtained by setting -f strict is topological equivalent to the benchmark
reference tree in [11], which has reported in Figure 5b for completeness.
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4.3 Prasinovirus dataset
This dataset comprises 13 genomes from the viral genus Prasinovirus studied in [15] and
infecting the genera Ostreococcus (OtV1, OtV2, OtV5, OtV6, OlV1), Bathyococcus (BpV1,
BpV2), Micromonas (MpV1, MpV-12T, MpV-PL1, MpV-SP1), and Chlorella (PBCV1,
AR158).

Phylogenetic reconstruction of viral genomes is challenging due to their small genome
size and the high variability of their genome content.

In [15], the authors reported two different phylogenetic trees: one is based on the
presence/absence of shared putative genes [15, Figure 3] and the other is a maximum
likelihood estimation based on a marker gene (DNA polymerase B) [15, Figure 4]. The two
benchmark trees are depicted in Figure 7.

The complete prasinovirus genomes used in this dataset are 213 Kbp on average: in
particular, the genome sizes range from 173, 350 bp for MpV-SP1 to 205, 622 bp for MpV-12T.

phyBWT produces the tree depicted in Figure 6a for km = 13, τ = 0.5 and t = 13 (as
the number of the taxa), while Figure 6b depicts the output tree by SANS generated by
using parameters -k 11 -t 130 -f strict (recommended parameter for such dataset, see
https://gitlab.ub.uni-bielefeld.de/gi/sans).

The only main difference of the tree produced by SANS with respect to the benchmark
trees is that the former shows a subtree with MpV1 and OtV6 as leaves, although MpV1
belongs to Micromonas group and OtV6 belongs to Ostreococcus group.

5 Conclusions and discussion

In this paper, we proposed a new alignment-, assembly- and reference-free partition-based
method to build the phylogeny inference of a set of organisms.

To the best of our knowledge, phyBWT is the first method that applies the properties
of the Extended Burrows-Wheeler Transform (eBWT) to the idea of decomposition for
phylogenetic inference. Our approach is based on the eBWT positional cluster framework
introduced in [29], which allowed us to consider longest shared substrings of varying length,
unlike k-mer-based approaches such as SANS. We introduce the inner partitioning algorithm
based on the eBWT positional cluster, and employ it as a black-box in our novel tree
reconstruction algorithm. Specifically, phyBWT does not start from the leaves to group them
together in a bottom-up fashion; it does not start from the root and performs a top-down
partition; instead, it proceeds in both directions (bottom-up and top-down), according to
what is returned by the inner partitioning algorithm.

We tested our method on three sequencing datasets, with short reads and de novo
assembled sequences. The experimental results show that our algorithm produces trees
comparable to the benchmark phylogeny and to the newly introduced tool SANS. We plan
to perform algorithm engineering of phyBWT that will better exploit the bounded length of
the reads to overcome the computational bottleneck of computing the eBWT.

While the worst-case complexity of the method is competitive with existing methods, there
are interesting directions for further optimization, such as using Colored Range Queries [16] to
speed up identification of colors in the various clusters, or exploiting the natural predisposition
of the method for parallel computation. Our current prototype requires a preprocessing
in order to compute some data structures that are at the heart of several text and string
algorithms. More efficient tools for computing them can appear in the literature, and we
plan to investigate whether the required information can be reduced for instances of our
problem.

https://gitlab.ub.uni-bielefeld.de/gi/sans
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