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Abstract
Two genomes over the same set of gene families form a canonical pair when each of them has
exactly one gene from each family. A genome is circular when it contains only circular chromosomes.
Different distances of canonical circular genomes can be derived from a structure called breakpoint
graph, which represents the relation between the two given genomes as a collection of cycles of even
length. Then, the breakpoint distance is equal to n − c2, where n is the number of genes and c2 is
the number of cycles of length 2. Similarly, when the considered rearrangements are those modeled
by the double-cut-and-join (DCJ) operation, the rearrangement distance is n − c, where c is the
total number of cycles.

The distance problem is a basic unit for several other combinatorial problems related to genome
evolution and ancestral reconstruction, such as median or double distance. Interestingly, both median
and double distance problems can be solved in polynomial time for the breakpoint distance, while
they are NP-hard for the rearrangement distance. One way of exploring the complexity space
between these two extremes is to consider a σk distance, defined to be n − (c2 + c4 + . . . + ck), and
increasingly investigate the complexities of median and double distance for the σ4 distance, then
the σ6 distance, and so on. While for the median much effort was done in our and in other research
groups but no progress was obtained even for the σ4 distance, for solving the double distance under
σ4 and σ6 distances we could devise linear time algorithms, which we present here.
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1 Introduction

In genome comparison, the most elementary problem is that of computing a distance between
two given genomes [10], each one being a set of chromosomes. Usually a high-level view
of a chromosome is adopted, in which each chromosome is represented by a sequence of
oriented genes and the genes are classified into families. The simplest model in this setting
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is the breakpoint model, whose distance consists of somehow quantifying the points of
dissimilarity between the two genomes, a point in a genome being the oriented neighborhood
between two genes in one of its chromosomes [11]. Other models rely on large-scale genome
rearrangements, such as inversions, translocations, fusions and fissions, yielding distances that
correspond to the minimum number of rearrangements required to transform one genome
into another [6, 7, 12].

Independently of the underlying model, the distance problem is a basic unit for several
other combinatorial problems related to genome evolution and ancestral reconstruction [11].
The median problem, for example, has three genomes as input and asks for an ancestor
genome that minimizes the sum of its distances to the three given genomes. Other models
are related to the whole genome duplication (WGD) event [5]. Let the doubling of a genome
duplicate each of its chromosomes. The double distance is the problem that has a duplicated
genome and a singular genome as input and computes the distance between the former and
a doubling of the latter. The halving problem has a duplicated genome as input and asks
for a singular genome whose double distance to the given duplicated genome is minimized.
Finally, the guided halving problem has a duplicated and a singular genome as input and
asks for another singular genome that minimizes the sum of its double distance to the given
duplicated genome and its distance to the given singular genome.

In this work, we assume that all considered genomes contain only circular chromosomes
and are therefore circular. Our study relies on the breakpoint graph, a structure that represents
the relation between two given genomes [2]. When the two genomes are over the same set of
gene families and form a canonical pair, that is, when each of them has exactly one gene from
each family, their breakpoint graph is a collection of cycles of even length. If we call k-cycle
a cycle of length k and assume that both genomes have n genes, their breakpoint distance
is equal to n− c2, where c2 is the number of 2-cycles [11]. Similarly, when the considered
rearrangements are those modeled by the double-cut-and-join (DCJ) operation [12], the
rearrangement distance is n− c, where c is the total number of cycles [3].

While the halving problem under both breakpoint and rearrangement distances can be
solved in polynomial time [1, 5, 9, 11], median, double distance and guided halving problems
can be solved in polynomial time only under the breakpoint distance, but are NP-hard under
the rearrangement distance [11]. One way of exploring the complexity space between these
two extremes is to consider a σk distance [4], defined to be n − (c2 + c4 + . . . + ck), and
increasingly investigate the complexities of median, guided halving and double distance under
the σ4 distance, then under the σ6 distance, and so on. Note that the σ2 distance is the
breakpoint distance and the σ∞ distance is the DCJ distance. To the best of our knowledge,
the guided halving problem has not been studied for this class of problems, while for the
median under σ4 distance much effort has been done in our group and in other research
groups (e.g. [4]) but no progress was obtained so far.

In contrast, for the double distance, while σ8 and higher were not yet studied, we succeeded
in devising efficient algorithms for σ4 and σ6. Our results, which we present here, are built
on a variation of the breakpoint graph, called ambiguous breakpoint graph [11] and have
three main parts. First we show that in any σk double distance, including the NP-hard DCJ
double distance, all 2-cycles are fulfilled, meaning that the common adjacencies between the
compared genomes are always preserved. Then we show that the σ4 double distance can be
computed by a greedy linear time algorithm. Finally we present a non-greedy but still linear
time algorithm for the σ6 double distance.

Recall that the results we present in this work consider only circular genomes, for which
the underlying breakpoint graph is more regular and composed of cycles only. With linear
chromosomes the graph also includes paths that may be of odd or of even length. Often the
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studies of genomic distances for genomes with linear chromosomes can be adapted to circular
genomes and vice-versa [8], and we believe the same could be done for the problems that we
study here, as we discuss in the end of the paper.

2 Definitions and background

A chromosome is an oriented DNA molecule and can be either linear or circular. We represent
a chromosome by its sequence of genes, where each gene is an oriented DNA fragment. We
assume that each gene belongs to a family, which is a set of homologous genes. A gene that
belongs to a family X is represented by the symbol X itself if it is read in direct orientation or
by the symbol X if it is read in reverse orientation. For example, the circular string (1 3 2)
(flanked by parentheses) represents a circular chromosome K, shown in Figure 1, composed
of three genes from the families 1, 2 and 3. Note that K can be equally represented by any
circular rotation of the given string and additionally by (2 3 1) or any of its circular rotations.

1

3

2

Figure 1 Graphical representation of circular chromosome K = (132).

We can also represent a gene from family X referring to its extremities Xh (head) and Xt

(tail). For example, we could represent the circular chromosome K above by (1t1h3h3t2t2h)
or (2h2t3t3h1h1t), or by any of their circular rotations. Recall that a gene is an occurrence
of a family, therefore distinct genes from the same family are represented by the same symbol.
The adjacencies in a chromosome are the neighboring extremities of distinct genes. In the
given example, the adjacencies in K are {1h3h, 3t2t, 2h1t}. Note that an adjacency has no
orientation, that is, an adjacency between extremities 1h and 3h can be equally represented
by 1h3h and by 3h1h. In the particular case of a single-gene circular chromosome, e.g. (4),
an adjacency exceptionally occurs between the extremities of the same gene (here 4h4t).

A genome is then a set of chromosomes and we denote by F(G) the set of gene families
that occur in the chromosomes of genome G. In addition, we denote by A(G) the multiset of
adjacencies that occur in the chromosomes of G. A genome S is called singular if each gene
family occurs exactly once in S. Similarly, a genome D is called duplicated if each gene family
occurs exactly twice in D. The two occurrences of a family in a duplicated genome are called
paralogs. A doubled genome is a special type of duplicated genome in which each adjacency
occurs exactly twice. These two copies of the same adjacency in a doubled genome are called
paralogous adjacencies. Observe that distinct doubled genomes can have exactly the same
adjacencies, as we show in Table 1, where we also give examples of singular and duplicated
genomes.

2.1 Comparing canonical genomes
Two genomes S1 and S2 are said to be a canonical pair when they are singular and F(S1) =
F(S2), that is, when singular genomes S1 and S2 have exactly the same gene families. Denote
by F∗ the set of families occurring in canonical genomes S1 and S2. For example, genomes
S1 = {(132)(4)} and S2 = {(12)(34)} are canonical with F∗ = {1, 2, 3, 4}.

WABI 2022
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Table 1 Examples of a singular, a duplicated and two doubled genomes, with their sets of families
and their multisets of adjacencies. Note that the doubled genomes B1 and B2 have exactly the same
adjacencies.

Singular genome
(each family occurs once) S = {(132)(4)}

{
F(S) = {1, 2, 3, 4}
A(S) = {1h3h, 3t2t, 2h1t, 4h4t}

Duplicated genome
(each family occurs twice) D = {(1 2 3 1 3 2)}

{
F(D) = {1, 2, 3}
A(D) = {1h2t, 2h3h, 3t1t, 1h3h, 3t2t, 2h1t}

Doubled genomes
(each adj. occurs twice)

B1 = {(1 2 3) (1 2 3)}
B2 = {(1 2 3 1 2 3)}

{
F(Bi) = {1, 2, 3}
A(Bi) = {1h2t, 2h3t, 3h1t, 1h2t, 2h3t, 3h1t}

2.1.1 Breakpoint distance
A simple way of comparing canonical genomes S1 and S2 is by searching for their common
adjacencies, which occur in both S1 and S2. For circular canonical genomes S1 and S2 the
breakpoint distance, denoted by dbp, can be computed as follows [11]:

dbp(S1,S2) = n∗ − |A(S1) ∩ A(S2)|, where n∗ = |F∗|.

For S1 = {(132)(4)} and S2 = {(12)(34)}, the common adjacencies are A(S1)∩A(S2) =
{1t2h}. Since n∗ = 4, their breakpoint distance is dbp(S1,S2) = 3.

2.1.2 DCJ distance and breakpoint graph
Another way of comparing two genomes is by searching for the mininum number of rearrange-
ments transforming one genome into the other. A very useful model for this task is called
double cut and join (DCJ) [12]. Basically, given a genome, a DCJ is the operation that
breaks two adjacencies and rejoins the open extremities in a different way.

For example, consider the chromosome K = (1234) and a DCJ that cuts K between
genes 1 and 2 and between genes 3 and 4, creating segments •23• and •41• (where the
symbols • represent the open ends). If we join the first with the third and the second with the
fourth open end, we get K ′ = (1324), that is, the described DCJ operation is an inversion
transforming K into K ′. Besides inversions, in circular genomes a DCJ operation can also
represent a circular fission or a circular fusion. The DCJ distance dDCJ is then the minimum
number of DCJ operations that transform one genome into the other.

The DCJ distance can be easily computed with the help of the following structure. Given
two canonical circular genomes S1 and S2, their breakpoint graph BG(S1,S2) = (V, E) is a
multigraph representing the adjacencies of S1 and S2 [2]. The vertex set V comprises, for
each family X in F∗, one vertex for the extremity Xh and one vertex for the extremity Xt.
The edge multiset E represents the adjacencies. For each adjacency in S1 there exists one
S1-edge in E linking its two extremities. Similarly, for each adjacency in S2 there exists one
S2-edge in E linking its two extremities. An example is given in Figure 2.

The breakpoint graph of canonical circular genomes is a simple collection of cycles of
even length, where each cycle alternates between S1-edges and S2-edges. We call k-cycle
a cycle of length k. Note that a common adjacency of S1 and S2 corresponds to a 2-cycle
in BG(S1,S2). Furthermore, if S1 = S2, their breakpoint graph is composed of exactly n∗
2-cycles. Otherwise, if S1 ̸= S2, their breakpoint graph is composed of c < n∗ cycles. It has
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Figure 2 Breakpoint graph of genomes S1 = { (1 3 2) (4) } and S2 = { (1 2) (3 4) }. The colors
distinguish the edge types: S1-edges are drawn in black and S2-edges are drawn in blue.

been shown that one DCJ operation can create at most one new cycle. Such a DCJ is called
a split DCJ. Moreover, it was proven that it is possible to transform one genome into another
with split DCJs only. Therefore, the DCJ distance of two genomes S1 and S2 can be directly
derived from their breakpoint graph [3]:

ddcj(S1,S2) = n∗ − c, where n∗ = |F∗| and c is the number of cycles in BG(S1,S2).

If S1 = {(132)(4)} and S2 = {(12)(34)}, then n∗ = 4 and c = 2 (see Figure 2).
Consequently, their DCJ distance is ddcj(S1,S2) = 2.

2.1.3 The class of σk distances
For k = 2, 4, 6, . . ., we denote by ck the number of k-cycles in BG(S1,S2) and by σk the
cumulative sums σk = c2 + c4 + . . . + ck. Since a common adjacency of genomes S1 and S2
corresponds to a 2-cycle in BG(S1,S2), their breakpoint distance can be rewritten as

dbp(S1,S2) = n∗ − c2 = n∗ − σ2.

Similarly, since we have c = c2 + c4 + . . . + c∞, the DCJ distance can be rewritten as

ddcj(S1,S2) = n∗ − (c2 + c4 + . . . + c∞) = n∗ − σ∞.

Generalizing the formulas above, we can define the class σk-dist of σk distances of two
canonical circular genomes S1 and S2, for k = 2, 4, 6, . . . ,∞, as follows:

dσk
(S1,S2) = n∗ − (c2 + c4 + . . . + ck) = n∗ − σk.

2.2 Comparing a singular to a duplicated genome
Let S be a circular singular genome and D be a circular duplicated genome such that
F(S) = F(D). Note that the number of adjacencies in D is twice the number of adjacencies
in S. In order to search for common adjacencies of S and D or to transform one genome into
the other with DCJ operations, we need to somehow equalize the contents of these genomes.
This can be done by doubling the singular genome S. This rearrangement operation mimics a
whole genome duplication of S and consists of doubling each adjacency of S. However, when S
is circular, it is not possible to find a unique layout of its chromosomes after the doubling:
indeed, each circular chromosome of S can be doubled into two identical circular chromosomes,
or the two copies are concatenated to each other in a single circular chromosome. Therefore,
the doubling of a circular genome S results in a set of doubled genomes denoted by 2 ·S.
Note that |2·S| = 2r, where r is the number of (circular) chromosomes in S. For example,
if S = {(1 2 3)}, then 2 ·S = {B1,B2} with B1 = {(1 2 3) (1 2 3)} and B2 = {(1 2 3 1 2 3)}.
Since all genomes in 2·S have exactly the same multiset of adjacencies, we can refer to its
adjacencies as A(2·S) = A(B) where B is any doubled genome in 2·S.

WABI 2022
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Each family in a duplicated genome can be
(a

b

)
-singularized by adding the index a to one of

its occurrences and the index b to the other. A duplicated genome can be entirely singularized
if each of its families is singularized. Let Sa

b(D) be the set of all possible genomes obtained
by all distinct ways of

(a
b

)
-singularizing the duplicated genome D. Similarly, we denote by

Sa
b(2·S) the set of all possible genomes obtained by all distinct ways of

(a
b

)
-singularizing each

doubled genome in the set 2·S.

2.2.1 Breakpoint double distance
The breakpoint double distance of S and D, denoted by d2

bp(S,D), is defined as follows [11]:

d2
bp(S,D) = d2

bp(S, Ď) = min
B∈Sa

b(2·S)
{dbp(B, Ď)}, where Ď is any genome in Sa

b(D).

Observe that d2
bp(S, Ď) = d2

bp(S, Ď′) for any Ď, Ď′ ∈ Sa
b(D).

Although the search space of this optimization problem can be huge, the solution can
be found easily with a greedy algorithm [11]: Each adjacency of D that occurs in S can be
fulfilled. If an adjacency that occurs twice in D also occurs in S, it can be fulfilled twice in
any genome from 2·S. Then,

d2
bp(S,D) = 2n∗ − |A(2·S) ∩ A(D)|, where n∗ = |F(S)|.

2.2.2 DCJ double distance and ambiguous breakpoint graph
Extending the ideas above to the DCJ model, the formulation of the DCJ double distance
follows:

d2
dcj(S,D) = d2

dcj(S, Ď) = min
B∈Sa

b(2·S)
{ddcj(B, Ď)}, where Ď is any genome in Sa

b(D).

Here the solution space cannot be explored greedily. In fact, computing the DCJ double
distance of circular genomes S and D is an NP-hard problem [11]. However, an interesting
relation between its solutions and a modified breakpoint graph was established.

Given a singular genome S and a duplicated genome D, their ambiguous breakpoint graph
ABG(S, Ď) = (V, E) is a multigraph representing the adjacencies of any element in Sa

b(2·S)
and a genome Ď in Sa

b(D). The vertex set V comprises, for each family X in F(S), the two
pairs of paralogous vertices Xh

a , Xh
b and Xt

a, Xt
b. We can use the notation û to refer to the

paralogous counterpart of a vertex u. For example, if u = Xh
a , then û = Xh

b .
The edge set E represents the adjacencies. For each adjacency in Ď there exists one Ď-edge

in E linking its two extremities. The S-edges represent all adjacencies occurring in all genomes
from Sa

b(2·S): For each adjacency γβ of S, we have the pair of paralogous edges P(γβ) =
{γaβa,γbβb} and the complementary pair of paralogous edges P̃(γβ) = {γaβb,γbβa}. Note
that ˜̃P(γβ) = P(γβ). The square of γβ is then Q(γβ) = P(γβ) ∪ P̃(γβ). The S-edges
in the ambiguous breakpoint graph are therefore the squares of all adjacencies in S. The
number of squares obviously equals |F(S)|. Again, we can use the notation ê to refer to
the paralogous counterpart of an S-edge e. For example, if e = γaβa, then ê = γbβb. An
example of an ambiguous breakpoint graph is shown in Figure 3 (a).

Resolving a square Q(·) = P(·)∪P̃(·) corresponds to choosing in the ambiguous breakpoint
graph either the edges from P(·) or the edges from P̃(·), while the complementary pair is
masked. Resolving all squares is called disambiguating the ambiguous breakpoint graph.
If we number the squares of ABG(S, Ď) from 1 to n∗ = |F(S)|, a disambiguation can be
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Figure 3 (a) Ambiguous breakpoint graph ABG(S, Ď) for genomes S = {(1 2 3)} and Ď =
{(1a 2a 3a 1b 3b 2b)}. The colors distinguish the edge types: Ď-edges are drawn in black and S-edges
(squares) are drawn in red. (b) Induced breakpoint graph BG(τ, Ď) in which all squares are resolved
by the disambiguation τ = ({1h

a 2t
a, 1h

b 2t
b}, {2h

a 3t
a, 2h

b 3t
b}, {3h

a 1t
b, 3h

b 1t
a}), resulting in three cycles (a 2-,

a 4- and a 6-cycle). This is also the breakpoint graph of Ď and B = {(1a 2a 3a 1b 2b 3b)} ∈ Sa
b(2·S).

represented by a tuple τ = (L1,L2, . . . ,Ln∗), where each Li contains the pair of paralogous
edges (either Pi or P̃i) that are chosen (kept) in the graph for square Qi. The graph induced
by τ is a simple breakpoint graph, which we denote by BG(τ, Ď). Figure 3 (b) shows an
example.

Computing the DCJ double distance of S and D is equivalent to finding a disambiguation τ

so that the number of cycles in BG(τ, Ď) is maximized [11]. As already mentioned, this
problem is NP-hard.

2.2.3 The class of σk double distances
We can now define the class σk-2Dist of σk double distances of a singular circular genome S
and duplicated circular genome D for k = 2, 4, 6, . . . as follows:

d2
σk

(S,D) = d2
σk

(S, Ď) = min
B∈Sa

b(2·S)
{dσk

(B, Ď)}, where Ď is any genome in Sa
b(D).

The complexity of (breakpoint) σ2-2Dist being linear and the complexity of (DCJ) σ∞-
2Dist being NP-hard, the goal of our research is to increasingly determine, for k = 4, 6, . . .,
the complexity of each σk-2Dist. In this process we search for unveiling the boundary in
which the complexity changes from polynomial to NP-hard: if for some k ≥ 4 the complexity
is found to be NP-hard, it is very likely that the complexity is also NP-hard for any k′ > k.

So far we accomplished this task for the σ4 and the σ6 double distances, showing that
both problems can be solved in linear time, as we will explain in the next section.

3 Solving the σk double distance problem

Similarly to the DCJ double distance, each σk-2Dist of S and D can be computed by finding
a disambiguation τ of ABG(S, Ď) so that the number of cycles of length at most k in the
resulting breakpoint graph BG(τ, Ď) is maximized. We call the latter problem σk-max.

In order to solve σk-max, one idea is to visit ABG(S, Ď) and search for candidate cycles.
For describing how the graph can be screened, we need to introduce the following concepts.
Two S-edges in ABG(S, Ď) are incompatible when they belong to the same square and are not

WABI 2022
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paralogous. A cycle in ABG(S, Ď) is valid when it does not contain any pair of incompatible
edges. Note that a valid cycle necessarily alternates S-edges and Ď-edges. Two valid cycles
C ̸= C ′ in ABG(S, Ď) are either intersecting, when they share at least one edge, or disjoint.

It is obvious that any disambiguation τ of ABG(S, Ď) is composed of disjoint valid cycles.
Let the k-score of τ , denoted by σk(τ), be the number of cycles of length at most k in
BG(τ, Ď). The k-score of ABG(S, Ď) is the score of an optimal disambiguation for σk-max.
The switching operation of the i-th element of a disambiguation τ = (L1,L2, . . . ,Li . . . ,Ln∗)
is denoted by s̃(τ, i) and replaces value Li by L̃i resulting in τ ′ = (L1,L2, . . . , L̃i . . . ,Ln∗).
A choice of paralogous edges resolving a given square Qi can be fixed for any disambiguation,
meaning that the pair assigned to Qi can no longer be switched. In this case, Qi is itself
said to be fixed.

3.1 Common adjacencies are preserved in any σk double distance
Let τ be an optimal disambiguation for σk-max of ABG(S, Ď). If a cycle C ∈ BG(τ, Ď) is
disjoint from any cycle distinct from C in any other optimal disambiguation, then C must
be part of all optimal disambiguations and is itself said to be optimal.

▶ Lemma 1. For any σk-max, all existing 2-cycles in ABG(S,D) are optimal.

Proof. The proof is sketched in Figure 4. It is clear that any 2-cycle C in ABG(S,D) is
valid. Suppose that an optimal disambiguation τ induces a cycle D ̸= C, such that C and
D intersect. Note that τ cannot induce C. Since two 2-cycles cannot intersect with each
other, it is clear that |D| > 2. Let Qi be the square containing the S-edge that is present in
C and let τ ′ = s̃(τ, i). The disambiguation τ ′ induces the same cycles as τ , except that D is
split into and replaced by C and D′. Note that |C| = 2 ≤ k and |D′| = |D| − 2, therefore we
have σk(τ ′) > σk(τ), contradicting the assumption that τ is optimal. ◀

yu
ŷu
ŷv

yv
i

i
i

i
Figure 4 Illustration of the optimality of every 2-cycle. The gray path connecting vertices v̂ and û

is necessarily odd with length at least one and alternates Ď- and S-edges. The 2-cycle C = (uv)
intersects the longer cycle D = (uv̂ . . . ûv). Any disambiguation containing (red edges) P̃ = {uv̂, ûv}
induces D and can be improved by switching P̃ to (blue edges) P = {uv, ûv̂}, inducing, instead
of D, the 2-cycle C and the cycle D′ = (v̂ . . . û) (which is shorter than D).

This lemma is a generalization of the (breakpoint) σ2-max and guarantees that all
common adjacencies are preserved in any σk-2Dist, including the NP-hard (DCJ) σ∞-2Dist.
A square that has at least one S-edge in a 2-cycle is called a {2}-square. From now on we
assume that these {2}-squares are fixed so that all existing 2-cycles are induced.

3.2 A linear time greedy algorithm for the σ4 double distance
Differently from 2-cycles, two valid 4-cycles can intersect with each other. However, two
intersecting 4-cycles are always part of two co-optimal disambiguations of σ4-max.

▶ Lemma 2. Any valid 4-cycle that is disjoint from a 2-cycle in ABG(S,D) is induced by
an optimal disambiguation of σ4-max.
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Proof. All possible patterns are represented in Figure 5: (a) two co-optimal valid 4-cycles
within a single square; (b) – (d) a valid 4-cycle C (in the center) connecting two squares and
the three distinct possibilities of linking the four open ends. In all cases the valid 4-cycle C

is either optimal or co-optimal. ◀
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ŷv
i

i
i

i C

yw
ŷw
ŷz
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Figure 5 Illustration of the σ4-max co-optimality of every valid 4-cycle not intersecting a 2-cycle.
In this picture, each gray path is necessarily odd with length at least one and alternates Ď- and
S-edges. In (a) any optimal solution includes either the blue edges inducing 4-cycle (uvv̂û) or the
red edges inducing 4-cycle (uv̂vû). Parts (b) – (c) show the 4-cycle C = (uvwz) in the center,
induced by blue edges. In (b) it is easy to see that any optimal solution is induced by the blue
edges and includes, besides the cycle C, cycles (û . . . v̂) and (ŵ . . . ẑ). In (c) an optimal solution
includes 4-cycle C and cycle C′ = (ûv̂ . . . ŵẑ . . .). If the connection between v̂ and ŵ is a single edge,
then another optimal solution is induced by the red edges, including 4-cycle D = (uv̂ŵz) and cycle
D′ = (vû . . . ẑw). And if additionally the connection between û and ẑ is a single edge, then both C′

and D′ are also 4-cycles. In (d) any optimal solution is induced by the blue edges and includes
4-cycle C and cycle (ûv̂ . . . ẑŵ . . .), which is also a 4-cycle when the connections between v̂ and ẑ

and between û and ŵ are single edges.

A consequence of this lemma is that an optimal disambiguation of σ4-max can be obtained
greedily: After fixing the squares containing edges that are part of 2-cycles, traverse the
remainder of the graph and, for each valid 4-cycle C that is found, fix the square(s) containing
S-edges that are part of C. When this part is accomplished the remaining squares can be
fixed arbitrarily.

3.3 A linear time algorithm for the σ6 double distance
In this section we may refer to a valid 4- or 6-cycle as a {4..6}-cycle. It is easy to see that
{4..6}-cycles can intersect with each other. Moreover, for the σ6-max, not every {4..6}-cycle
is induced by at least one optimal disambiguation. For that reason, a greedy algorithm does
not work here. Still, we can solve σ6-max in linear time, as we will describe in the following.

Pruning the ambiguous breakpoint graph

We proceed with a preprocessing in which from ABG(S, Ď) first all edges are removed that
are incompatible with the existing 2-cycles, and then all remaining edges that cannot be part
of a {4..6}-cycle. This results in a {6}-pruned ambiguous breakpoint graph ABG{6}(S, Ď).
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The first step is easily achieved by a simple graph traversal in which for each Ď-edge uv it is
tested whether both ends connect to the same S-edge uv. If this is the case, the two incident
S-edges uv̂ and vû are removed from the graph, separating the 2-cycle (uv). Then, in the
second step, for any remaining edge e, its 6-neighborhood (which has constant size in a graph
of degree at most three) is exhaustively explored for the existence of a {4..6}-cycle involving
e. If no such cycle is found, e is deleted. Each of these two steps clearly takes linear time
O(|ABG(S, Ď)|), and what remains is exactly the desired graph ABG{6}(S, Ď).

Note that, for any square Qi with 1 ≤ i ≤ n∗, graph ABG{6}(S, Ď) might contain either
(a) all edges, or (b) only three edges, or (c) only two edges each one being from a distinct pair
of paralogous edges, or (d) only two edges being from the same pair of paralogous edges, or
(e) a single edge, or (f) no edge (see Figure 6). In cases (a), (b) and (c), Qi is still ambiguous,
while for cases (d), (e) and (f) Qi is already resolved. We assume that these resolved squares
are fixed according to the remaining paralogous edges in cases (d) and (e) or arbitrarily in
case (f).
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Figure 6 Possible (partial) squares of prunned ABG{6}(S, Ď). Shadowed parts represent the
removed elements: S-edges that are incompatible with 2-cycles and/or edges and vertices that cannot
be part of a {4..6}-cycle. Cases (a), (b) and (c) are ambiguous, cases (d) and (e) are resolved and
case (f) is arbitrarily resolved.

Let the 6-score of ABG{6}(S, Ď) be the score of a disambiguation that maximizes c2 +
c4 + c6 in ABG{6}(S, Ď). Obviously, a disambiguation giving the 6-score of ABG{6}(S, Ď)
is an optimal disambiguation for σ6-max. Therefore we can search for optimally resolving
the remaining ambiguous squares by analyzing the smaller pruned graph ABG{6}(S, Ď).
Furthermore, the problem can be solved independently for each of the connected components
of ABG{6}(S, Ď), so that the result of σ6-max is the sum

∑
G∈ABG{6}(S,Ď) σ6(G), where

σ6(G) is the 6-score (maximum number of disjoint 2- and {4..6}-cycles) of component G.

Describing the connected components of the pruned graph

We will now describe the properties of the pruned graph ABG{6}(S, Ď). An S-edge (respect-
ively Ď-edge) that is present in ABG{6}(S, Ď) is called an S{6}-edge (respectively Ď{6}-edge).
Any square that is still ambiguous in ABG{6}(S, Ď) is called a {6}-ambiguous square. A
{6}-ambiguous square Qi is a {6}-neighbor of another {6}-ambiguous square Qj when a
vertex of Qi is connected to a vertex of Qj by a Ď{6}-edge.

▶ Proposition 3. Each connected component G of ABG{6}(S, Ď) is of one of the two types:
1. Ambiguous: G includes at least one {6}-ambiguous square and no 2-cycle;
2. Resolved (trivial): G is a simple valid 2-, 4- or 6-cycle;

Proof. By construction all 2-cycles are disconnected from the other components of the graph
ABG{6}(S, Ď). Therefore, if a component G of ABG{6}(S, Ď) has a {6}-ambiguous square,
G cannot include any 2-cycle. Now let G be a connected component that does not include
a {6}-ambiguous square. Then any vertex in G has exactly one incident S-edge and one
incident Ď-edge. Therefore G must be a simple valid 2-, 4- or 6-cycle. ◀
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Let R be the set of resolved and B be the set of ambiguous components of ABG{6}(S, Ď).
The result of σ6-max can be then computed with the formula |R|+

∑
G∈B σ6(G).

Computing the 6-score of an ambiguous component of the pruned graph

For solving σ6-max, we will now describe the only missing part: a procedure that computes
the 6-score of an ambiguous component G ∈ B.

▶ Proposition 4. Any Ď{6}-edge is part of either one or two (intersecting) {4..6}-cycles.

Proof. By construction any Ď{6}-edge is part of at least one {4..6}-cycle. The remainder of
the proof can be found in Figure 7 and in supplementary Figures 8-10 (in the appendix),
which display all possible patterns showing a Ď-edge in two distinct intersecting {4..6}-cycles
which themselves do not intersect 2-cycles. In all cases an exhaustive search shows that the
same Ď-edge cannot be part of a third {4..6}-cycle. ◀
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Figure 7 Patterns showing a Ď-edge uv in two distinct intersecting {4..6}-cycles which themselves

do not intersect 2-cycles. (a) The edge uv is part of two 4-cycles within the same square. (b) – (d)
The edge uv connects two distinct squares and is part of two {4..6}-cycles whose intersection is
only uv. (e) The edge uv is part of two 6-cycles whose intersection is a 3-path starting in uv. (f1) The
edge uv connects vertices of the same square and is part of two 6-cycles. (f2) The edge uv is one of
the other two Ď-edges in the 6-cycles of (f1). In all cases an exhaustive search shows that uv cannot
be part of a third {4..6}-cycle (see supplementary Figures 8-10 in the appendix). Furthermore, in
each one of the cases (e) – (f2) one square (marked in blue) is clearly fixed: if this square could be
switched, this would merge each of the two existing 6-cycles into a longer cycle.

▶ Proposition 5. Any S{6}-edge of a {6}-ambiguous square Qi is part of exactly one {4..6}-
cycle.
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Proof. If an S{6}-edge e is in a {6}-ambiguous square Qi, it “shares” the same Ď{6}-edge d

with another S{6}-edge e′ from the same square Qi. In this case the Ď{6}-edge d is part
of exactly two {4..6}-cycles and each of the S{6}-edges e and e′ can be part of only one
{4..6}-cycle. ◀

The proposition above immediately implies the following:

▶ Corollary 6. Choosing an S{6}-edge e of a {6}-ambiguous square Qi (and its paralogous
edge ê) implies a unique disambiguation of all {6}-neighbors of Qi.

Consider an ambiguous component G of ABG{6}(S, Ď) and denote by τG a disambiguation
including only the {6}-ambiguous squares of G. Now let τG be obtained with Algorithm 1,
using a recursion of the statement of Corollary 6, as described in Algorithm 2. Since the
recursion first tests whether each neighbor was already resolved or fixed (lines 1 and 8), it
visits and resolves each {6}-ambiguous square of G exactly once. The resolving procedure
itself visits the 6-neighborhood of up to two S{6}-edges and can be done in constant time.
Therefore the whole recursive procedure takes linear time O(m), where m is the number of
{6}-ambiguous squares in G.

Algorithm 1 StraightComponentDisambiguation.

Input: A component G whose {6}-ambiguous squares are numbered Q1, Q2, . . . , Qm

Output: A disambiguation τG of G

1: e← any S{6}-edge in Q1;
2: τG[1]← {e, ê};
3: for i← 2, . . . , m do τG[i]← ∅;
4: ResolveNeighbors(τG, e); /∗ recursive procedure ∗/
5: if ê is an S{6}-edge then /∗ the paralogous S-edge ê is also in G ∗/
6: ResolveNeighbors(τG, ê); /∗ recursive procedure ∗/
7: return τG

Algorithm 2 ResolveNeighbors.

Input: A partially filled disambiguation τG and an S-edge uv of component G

/∗ S-edge uv is adjacent to two Ď{6}-edges uz and vw ∗/
1: if vertex z is not in a resolved or fixed square then
2: i← index in τG of square containing z;
3: e← S-edge zx of Qi forming a {4..6}-cycle with uv and uz;
4: τG[i]← {e, ê};
5: ResolveNeighbors(τG, e);
6: if ê is an S{6}-edge then
7: ResolveNeighbors(τG, ê);
8: if vertex w is not in a resolved or fixed square then
9: j ← index in τG of square containing w;

10: f ← S-edge wy of Qj forming a {4..6}-cycle with uv and vw;
11: τG[j]← {f, f̂};
12: ResolveNeighbors(τG, f);
13: if f̂ is an S{6}-edge then
14: ResolveNeighbors(τG, f̂);
15: return
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Let s̃(τG) be the disambiguation obtained by switching all squares in τG. Examples of
the two disambiguations τG and s̃(τG) are given in supplementary Figures 11, 12 and 13 in
the appendix. Now denote by τ∗

G a disambiguation with highest 6-score among τG and s̃(τG).

▶ Corollary 7. The disambiguation τ∗
G is optimal.

4 Discussion and open problems

Several combinatorial problems related to genome evolution and ancestral reconstruction,
including median, guided halving and double distance, have the distance problem as a basic
unit. Interestingly, for circular genomes these three problems can be solved in polynomial
time when they are built upon the breakpoint distance, while they are NP-hard when they
are built upon the (rearrangement) DCJ distance.

Our study started as an exploration of the complexity space of the double distance between
these two extremes. Therefore we considered a new class of genomic distance measures called
σk distances, for k = 2, 4, 6, . . . ,∞, which are between the breakpoint (σ2) and the DCJ
(σ∞) distance. In this work we presented the results of investigating the complexity of the
double distance first for the σ4, then for the σ6 distance, assuming that the given genomes
have only circular chromosomes. For both cases we devised linear time algorithms, built on
a variation of the breakpoint graph called ambiguous breakpoint graph.

The breakpoint graph of genomes with linear chromosomes includes, besides the cycles of
even length, paths of odd and even length. It is known that the breakpoint double distance
of genomes with linear chromosomes can also be solved in linear time [11]. Furthermore, we
know that each linear chromosome in the singular genome S “removes” from the ambiguous
breakpoint graph one ambiguous square (corresponding to the four vertices that will then be
at the end of paths), reducing the number of choices to be made. We have not yet worked
out the details, but we see no reason why our linear time algorithms for the σ4 and the σ6
double distances cannot be extended to take genomes with linear chromosomes into account.

More far-reaching, we conjecture that, if for some k ≥ 8 the complexity of the σk double
distance is found to be NP-hard, the complexity is also NP-hard for any k′ > k: as k grows
each edge of the ambiguous breakpoint graph may be part of a larger number of valid cycles
of length at most k, making the description of the combinatorial space more complex. We
expect that by finding the smallest k for which the σk double distance is NP-hard we will be
able to confirm our conjecture. In any case, the natural next step in our research is to study
the σ8 double distance.

A more challenging avenue of research is doing the same exploration for both median
and guided halving problems under the class of σk distances. In both cases it seems possible
to adopt variations of the breakpoint graph. To the best of our knowledge, the guided
halving problem has not yet been studied for any σk distance, while for the median much
effort for the σ4 distance has been done but no progress was obtained so far. A reason for
this difference of progress between double distance and median is probably related to the
underlying approaches. While the double distance can be solved by removing paralogous
edges from the ambiguous breakpoint graph, solving the median requires adding new edges
(representing the adjacencies of the median genome) to an extended breakpoint graph, and
the combinatorial space of the distinct possibilities of doing that could not yet be described.
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A Supplementary figures

In Figures 8, 9 and 10 we show the exhaustive exploration of the most complex patterns
(b) – (d) of Figure 7, showing that uv (the black edge connecting black vertices) can only be
part of two intersecting {4..6}-cycles. Some patterns have very similar structure. If this is
the case for patterns P and P ′ and when the distance (length of shortest path) from uv to
the open ends in P ′ is bigger than in P , we say that P ′ is worse than P . In other words, if
uv cannot be in a third {4..6}-cycle in P , the same is true for P ′.
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Figure 8 Exhaustive exploration of the pattern from Figure 7 (b). The only possibility to be

explored is by connecting the top to the bottom vertex, and the smallest third cycle including
edge uv in this scenario is an 8-cycle. (A symmetric case was omitted.)

In Figures 11, 12 and 13 we give examples of running Algorithm 1 and computing a
straight disambiguation for three distinct ambiguous components.
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(c1)
ss sscc ccc ccc s sss c cccs sssc ccc ⇒ falls in the same case and is worse than pattern (b) (Fig. 8)

(c2)
ss sscc ccc ccc s sss c cccs sssc ccc ⇒

ss sscc ccc ccc s sss c cccs sssc ccc
ss sscc ccc ccc s sss c cccs sssc ccc

ss sscc ccc ccc s sss c cccs sssc ccc
(c3)

ss sscc ccc ccc s sss c cccs sssc ccc ⇒ the edge uv cannot reach any vertex that is not part
of the already considered pair with (intersecting) 4- and 6-cycle

Figure 9 Exhaustive exploration of the pattern from Figure 7 (c) with the three possibilities of
connecting the four open ends. Only (c2) needs to be further explored and no alternative gives a
third {4..6}-cycle. (Symmetric cases were omitted.)

(d1) (d2) (d3) (d4)

ssss cccc ss sscc ccc ccc s sss c cccs sssc ccc
ssss cccc ss sscc ccc ccc s sss c cccs sssc ccc

ssss cccc ss sscc ccc ccc s sss c cccs sssc ccc
ssss cccc ss sscc ccc ccc s sss c cccs sssc ccc

⇓ ⇓ ⇓ ⇓
falls in the same case

and is worse than
patterns (c1)-(c3) (Fig.9)

falls in the same case
and is worse than

pattern (c1) (Fig. 9)

falls in the same case
and is worse than

pattern (c1) (Fig. 9)

similar to and worse
than pattern (c2)

(Fig. 9)

Figure 10 Exhaustive exploration of the pattern from Figure 7 (d). Part (d1) falls in the same
case and is worse than pattern (c). Parts (d2) – (d4) display the other possibilities of connecting the
open ends and are worse than smaller scenarios already explored. (Symmetric cases were omitted.)
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Figure 11 Example of the two best candidate disambiguations of a component of a {6}-pruned
ambiguous breakpoint graph. Both candidates are optimal, inducing one 4- and two 6-cycles.
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Figure 12 Example of the two best candidate disambiguations of a component G of a {6}-pruned
ambiguous breakpoint graph. While τG is optimal and induces two 4-cycles and one 6-cycle, the
alternative s̃(τG) induces only a single 6-cycle.
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Figure 13 Example of the two best candidate disambiguations of a component G of a {6}-pruned
ambiguous breakpoint graph. Both candidates are optimal: τG induces one 4- and one 6-cycle, while
the alternative s̃(τG) induces two 6-cycles.
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