
Automated Design of Dynamic Programming
Schemes for RNA Folding with Pseudoknots
Bertrand Marchand #

LIX (UMR 7161), Ecole Polytechnique, Institut Polytechnique de Paris, France
LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée France

Sebastian Will #

LIX (UMR 7161), Ecole Polytechnique, Institut Polytechnique de Paris, France

Sarah J. Berkemer #

LIX (UMR 7161), Ecole Polytechnique, Institut Polytechnique de Paris, France

Laurent Bulteau #

LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée France

Yann Ponty1 #

LIX (UMR 7161), Ecole Polytechnique, Institut Polytechnique de Paris, France

Abstract
Despite being a textbook application of dynamic programming (DP) and routine task in RNA
structure analysis, RNA secondary structure prediction remains challenging whenever pseudoknots
come into play. To circumvent the NP-hardness of energy minimization in realistic energy models,
specialized algorithms have been proposed for restricted conformation classes that capture the most
frequently observed configurations.

While these methods rely on hand-crafted DP schemes, we generalize and fully automatize
the design of DP pseudoknot prediction algorithms. We formalize the problem of designing DP
algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and
automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm
for the problem, based on the tree-decomposition of a well-chosen representative structure, which
we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the
tree-width tw of the fatgraph, and its output represents a O(ntw+1) algorithm for predicting the
MFE folding of an RNA of length n.

Our general framework supports general energy models, partition function computations, recursive
substructures and partial folding, and could pave the way for algebraic dynamic programming beyond
the context-free case.

2012 ACM Subject Classification Applied computing → Computational biology; Theory of compu-
tation → Dynamic programming

Keywords and phrases RNA folding, treewidth, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.WABI.2022.7

Related Version Full Version: Preprint, including proofs and supplementary material

Supplementary Material Software (Source Code): https://gitlab.inria.fr/bmarchan/auto-dp

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 101029676, and
from the French-Austrian PaRNAssus project (ANR-19-CE45-0023; I 4520-N) supported by the
ANR/FWF agencies.

1 To whom correspondence should be addressed

© Bertrand Marchand, Sebastian Will, Sarah J. Berkemer, Laurent Bulteau, and Yann Ponty;
licensed under Creative Commons License CC-BY 4.0

22nd International Workshop on Algorithms in Bioinformatics (WABI 2022).
Editors: Christina Boucher and Sven Rahmann; Article No. 7; pp. 7:1–7:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bertrand.marchand@lix.polytechnique.fr
https://orcid.org/0000-0001-8060-6640
mailto:sebastian.will@polytechnique.edu
https://orcid.org/0000-0002-2376-9205
mailto:berkemer@lix.polytechnique.fr
https://orcid.org/0000-0003-2028-7670
mailto:laurent.bulteau@u-pem.fr
https://orcid.org/0000-0003-1645-9345
mailto:yann.ponty@lix.polytechnique.fr
https://orcid.org/0000-0002-7615-3930
https://doi.org/10.4230/LIPIcs.WABI.2022.7
https://hal.inria.fr/hal-03676377
https://gitlab.inria.fr/bmarchan/auto-dp
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Automated Design of RNA Folding Algorithms

Figure 1 Given a finite number of arbitrary fatgraphs, a dynamic programming scheme for
folding (restricted to the family of structures specified by the fatgraphs) is derived from canonical
tree decompositions of minimal representative expansions of the helices, for each fatgraph. The
workflow gives an overview of the steps of the algorithm. Each step is described in more details in
the subsequent sections and figures: see Figure 2 for fatgraphs, Figure 8 and Section 3 for a detailed
version of the canonical tree decomposition, Figure 5 for a detailed view of the compact skeleton of
the tree decomposition.

1 Introduction

The function of non-coding RNAs is, to a large extent, determined by their structure. Struc-
ture prediction algorithms therefore play a crucial role in (bio-)medical and pharmaceutical
applications. The basis to determine more complex 3D structures of RNA molecules is set by
first accurately predicting their 2D or secondary structures. There exist various RNA folding
algorithms that predict an optimal secondary structure as minimum free energy structure
of the given RNA sequence in suitable thermodynamic models. In the most frequently
used methods, this optimization is performed efficiently by a dynamic programming (DP)
algorithm, e.g. mfold [47], RNAfold [23], RNAstructure [36]. A recent alternative to predic-
tions based on experimentally determined energy parameters are machine learning approaches
that train models on known secondary structures, e.g., CONTRAfold [15], ContextFold [46],
MXfold2 [40].

However, the most frequently used algorithms (including all of the above ones) optimize
solely over pseudoknot-free structures [44], which do not contain crossing base pairs. Although
pseudoknots appear in many RNA secondary structures, they have been omitted by initial

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:3

prediction algorithms due to their computational complexity [1], and the difficulty to score
individual conformations [9]. Nevertheless, many algorithms have been proposed to predict
at least certain pseudoknots. These methods are either based on exact DP algorithms such
as pknots-RE [39], NUPACK [14], gfold [33], Knotty [21] or they use heuristics that don’t
guarantee exact solutions, e.g., HotKnots [35], IPknot [41, 40], Hfold [20].

Due to the hardness of PK prediction, efficient exact DP algorithms are necessarily
restricted to certain categories of pseudoknotted structures. The underlying DP schemes
are designed manually, guided by design to either i) support structures that are frequently
observed in experimentally resolved structures (declarative categories); or ii) support the
largest possible set of conformations, while remaining within a certain complexity (complexity-
driven). For most categories, essentially declarative ones, there exists one or several helix
arrangements, either observed in experimentally-determined structures or implicitly charac-
terized by graph-theoretical properties (3 non-crossing [34], topologically bounded [33]) that
need to be captured. A detailed overview of pseudoknot categories is given in [27]. Similar
situations occur for RNA-RNA interactions [2], possibly including several RNA molecules.
Interestingly, when more than two RNA strands are considered, existing algorithms restrict
the joint conformation to crossing-free interactions [16], further motivating the design of
algorithms beyond the case of pseudoknot-free secondary structures.

In this work, we describe classes of pseudoknotted structures as fatgraphs [19, 33, 22, 30],
an abstraction of RNA conformations related to RNA shapes [17] or shadows [34, 33]. We
formalize the principles underlying the design of DP folding algorithms including pseudoknots,
and, at the same time, give a formulation of the computational problem based on the design
of DP algorithms. We show how to leverage tree-decompositions, computed on a minimal
expansion of the input fatgraph, to automatically derive DP schemes that use as little
indices as possible. Our algorithm can be interpreted as a generalization of the algorithms
underlying LiCoRNA [38] and gfold [33] and we propose a parameterized algorithm based on
the treewidth (tw) of the underlying fatgraph.

In Section 2, we state our problem and define its input structure abstraction, the fatgraph.
Then, we describe helix expansions of the fatgraph and their tree decompositions (Section 3).
By minimal helix expansions and a derivation of the tree decomposition to its canonical form,
we automatically derive a DP scheme for the folding of pseudoknotted structures (Section 4),
using a number of indices equal to the treewidth. Figure 1 outlines the fundamental algorithm.
Section 5, discusses extensions to combine multiple fatgraphs, include recursive substructure,
and cover realistic energy models.

2 Definitions and main result

We define an RNA sequence S as a word of length n over the nucleotides A, C, G and U ;
moreover an RNA secondary structure (potentially, with pseudoknots) ω of S as a set of base
pairs (i, j) between sequence positions i and j (in 1, ..., n), such that there is at most one base
pair incident to each position. A diagram is a graph of nodes 1,...,n (the positions), connecting
consecutive positions by directed edges (i, i + 1) and moreover connecting positions by arcs,
visualizing the arc-annotation of the sequence. Typically this is represented drawing the
backbone linearly and the arcs on top. RNA secondary structures are naturally interpreted
as diagrams.

One of our central concerns is the crossing configuration of arcs in a diagram. We define
two arcs (i, j) and (i′, j′) in a diagram as crossing iff i < i′ < j < j′ or i′ < i < j′ < j.
Naturally, this leads to the notion of a conflict graph consisting of all the arcs of a diagram

WABI 2022

7:4 Automated Design of RNA Folding Algorithms

(((((..............[[[[..[[...)))))]]]]]]

H1

H2

(a) (b)

H1 H1H2 H2

Figure 2 (a) Diagram of a secondary structure with two crossing helices (H1 green, H2 blue). (b)
fatgraph corresponding to the above structure such that helices are collapsed into bands and form
the shadow of the structure.

and connecting crossing arcs by a conflict edge. Given a potentially conflicted set of base pairs,
the associated RNA structure graph is the diagram consisting of one vertex per nucleotide,
backbone links, and one arc per base pair.

A fatgraph [19, 33, 22, 30] is an abstraction of a family of pseudoknotted RNA structures
displaying a specific conflict structure. It is typically represented as a band diagram (see
Figure 1 and Figure 2), in which each band may represent a helix of arbitrary size, including
bulges. An arc-annotation is said to be an expansion of a fatgraph if collapsing nested arcs
and contracting isolated bases yields the band diagram of a fatgraph. Given a finite number
of fatgraphs, we say a structure is a recursive expansion of these fatgraphs if decomposing the
structure into conflict-connected components, collapsing nested arcs and contracting isolated
bases only yields members of the given fatgraph set. For the purpose of this presentation
(where we do not explicitly study structure topology), we moreover identify fatgraphs with
their diagrams.

To make the connection to gfold [33] explicit, recursive expansions of fatgraphs are
equivalently understood in terms of the shadows of a structure. The shadow of an RNA
structure (or equivalently, its diagram) is defined in [33] as the diagram obtained by, firstly,
removing all unpaired bases and non-crossing structures and, secondly, contracting all stacks
(i.e. pairs of arcs between directly consecutive positions) to single arcs. Then, the class
of recursive expansions of a set of input fatgraphs Γ is the class of structures, where the
shadows of their conflict-connected components are in Γ.

In this paper, we consider a class of RNA folding problems in which the search space is
restricted to recursive expansions of a user-specified finite set of fatgraphs. For the sake of
simplicity, we first describe minimizing energy in a simple free-energy model E , where the
energy of a sequence/structure is obtained by summing the contributions of individual base
pairs; moreover, we present the method initially without recursive substructure. Only later,
in Section 5, we extend to the full problem in realistic energy models.

▶ Definition 1 ((Recursive) fatgraph MFE folding problem).
Input: Finite collection of fatgraphs γ1, . . . , γp, sequence S

Output: Minimum Free Energy (MFE) arc-annotation for S according to free-energy model
E, restricting the search to recursive expansions of the input fatgraphs.

Specifically, we solve the problem of automatic design of such pseudoknot prediction
algorithms based on an input set of fatgraphs.

▶ Definition 2 (Fatgraph folding algorithm design problem).
Input: Finite collection of fatgraphs γ1, . . . , γp, sequence S

Output: A Dynamic-Programming algorithm that efficiently returns the MFE arc-annotation
for S, with respect to free-energy model E, over the recursive expansions of the input
fatgraphs.

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:5

Algorithm 1 Pseudocode for the recursive fatgraph folding problem.

Input : Finite number of fatgraphs γ1, . . . , γp, sequence S, base-pair based energy model E
Output : Best-scoring arc-annotation for S, in the class specified by the fatgraphs

1 foreach fatgraph γi do
2 Compute minimal expansion Gi of fatgraph γi ▶ Linear time; see Section 3.2
3 Find min. width tree decomposition T for Gi ▶ FPT in tw using classic exact tree dec. algorithm
4 Transform T into a canonical form tree dec T ′ ▶ Polynomial time; see Section 4.1
5 Compute skeleton of T ′ ▶ Linear time; see Section 4.1
6 Derive corresponding DP scheme ▶ Linear time; see Section 4.2
7 end
8 Use union of DP schemes to find MFE arc-annotation of S ▶ XP in tw O(ntw+1); See Section 5

Defining the treewidth of a fatgraph as the treewidth of its minimal expansion (see
Section 3.2), our main result, stated in Algorithm 1, is the existence of an effective algorithm
for the fatgraph-folding problem, XP over tw the maximum treewidth of the input fatgraphs.
Its first step consists in a Fixed-Parameter Tractable (FPT) pre-processing of the input fat
graphs, yielding DP equations for folding (see Figure 1), which can be reused to fold any
other input sequence.

▶ Theorem 3 (Main result). Algorithm 1 solves the fatgraph folding problem in O(ntw+1),
where tw is the maximum treewidth of the input fatgraphs.

Since the number of indices used by the DP equation is minimized, the resulting com-
plexities could be seen as optimal within a family of simple DP algorithms. However, a
characterization of such a non-trivial family of algorithms would be beyond the scope of
this work, and we leave formal proofs of optimality to future work, as briefly discussed in
Section 7.

3 Minimal representative expansion of a fatgraph

Our approach builds on the concept of tree decomposition, which we want to leverage to derive
decomposition strategies within dynamic programming (DP) schemes. A key challenge is in
the fact that tree decompositions are computed for concrete graphs, whereas our objective is
to find an algorithm whose search space includes all possible expansions of an input fatgraph.

Fortunately, we find that expanding every helix of a fatgraph to length 5 (i.e. 5 nested BPs)
yields a graph which is representative of the fatgraph. Namely, its optimal tree decomposition,
having treewidth tw, trivially generalizes into a tree decomposition for any further expansion,
retaining treewidth tw. This tree decomposition can finally be reinterpreted into a DP scheme
that exactly solves the MFE folding problem in O(ntw+1) complexity.

3.1 Treewidth and tree decompositions
▶ Definition 4. A tree decomposition T = (T, {Xi}i∈V (T)) of a graph G = (V, E) is a tree
of subsets of vertices of G, called bags, verifying the following conditions:

∀u ∈ V ∃i ∈ V (T) such that u ∈ Xi. (representing vertices)
∀(u, v) ∈ E ∃i ∈ V (T) such that {u, v} ⊂ Xi. (representing edges)
Tu = {i ∈ V (T) | u ∈ Xi} must be connected. (vertex subtree property)

The width of a tree decomposition is the size of its biggest bag minus one, i.e.
maxi∈V (T) |Xi| − 1. The treewidth of a graph G is then the minimum possible width
of a tree decomposition of G. Intuitively, the lower the treewidth, the closer G is to being

WABI 2022

7:6 Automated Design of RNA Folding Algorithms

a tree. Treewidth is NP-hard to compute [3], but fixed-parameter tractable: there is a
O(f(w) · n) algorithm [5] deciding whether tw(G) ≤ w given G. Many polynomial heuristics
are also known to yield reasonable results [8], and optimized exact solvers have also been
developed [43, 18]. Notoriously, a wide variety of hard computational problems can be solved
efficiently when restricted to graphs of bounded treewidth [7, 11], including in bioinfomat-
ics [45, 42, 38]. Such is the case of LiCoRNA [38], for pseudoknotted structure-sequence
alignment, of which the algorithm presented in this paper can be seen as a generalization.

We will rely in the remainder of this section on some well known-properties for treewidth,
which we recall here. First, taking any minor of G [24], i.e. performing any sequence or edge
contractions, edge deletions and vertex deletions on G can only lower the treewidth. Second,
degree-2 vertices can be contracted into their neighbors without changing the treewidth, as
quickly stated below (proof in appendix). This implies in particular that any bulge in a helix
of an RNA structure graph is inconsequential with respect to treewidth.

▶ Proposition 5. If u is a degree-2 vertex of G with neighbors {v, w}, and Gv←u is the graph
obtained by contracting u into v in G then tw(G) = tw(Gv←u)

Then, we import from [6] an inequality valid for any separator of G. A separator is a
subset S of vertices of G such that G \ S is composed of at least 2 conected components,
which we write CG(S). We then have:

▶ Proposition 6. If S is a separator of G, then

tw(G) ≤ max
C∈CG(S)

tw(G[C ∪ clique(S)])

with G[C ∪ clique(S)] the subgraph of G induced by C ∪ S augmented by edges making S a
clique. In case of equality, we say that S is safe.

Proof. Consider, for each C ∈ CG(S), a tree decomposition TC of G[C ∪ clique(S)]. Since
these graphs contain S as a clique, each TC must have a bag XC containing S entirely.
Consider now the following tree decomposition for G, make a bag out of S, and connect
XC for each C to it. The resulting tree decomposition is valid for G, and its width is the
left-hand-side of the inequality. ◀

Let us finish by noting that, in a tree decomposition, any intersection S = X ∩ Y of two
adjacent bags is always a separator of G. To write down the proofs of the following section
in a smoother fashion, we add the following two properties, whose proofs are delayed to the
appendix:

▶ Proposition 7. A tree decomposition can always be locally modified such that, for any two
adjacent bags X and Y and S = X ∩ Y :

|S| ≤ tw(G)
S is minimal with respect to inclusion, i.e. removing any vertex from S makes it lose its
separating properties.

3.2 Helices of length 5 are sufficient to obtain generalizable tree
decompositions

Given an RNA graph (with one vertex per nucleotide and one edge per base pair and backbone
link, see Figure 3(a)), we call perfect helix a set of directly nested base pairs, resulting in
the subgraph depicted on Figure 3(b). We call the number of nested base pairs its length,

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:7

and denote it with l. With a slight abuse of language, we call such a subgraph a helix, even
for general graphs. Our main structural result is to show that the treewidth of a graph G

does not increase when extending a helix past a length of 5. Its proof relies on the following
inequality, involving the graphs G⊠ and G�, obtained from G by replacing a helix H with
either ⊠ or �, (see Figure 3(c)).

▶ Lemma 8. Given a graph G and a helix H of length l ≥ 3 in G, we have:

tw(G⊠) − 1 ≤ tw(G�) ≤ tw(G) ≤ max(4, tw (G⊠))

Proof. To start with, by noticing that the 4 extremities of the helix form a separator S between
the inside and the outside of it, we get by Proposition 6 that tw(G) ≤ max(H∪clique(S), G⊠).
The graph H ∪ clique(S) does not depend on G, and consists of a helix with the 4 extremities
forming a clique. With l ≥ 2, it turns out that this graph has treewidth 4, see Appendix A,
hence the inequality.

Next, we notice that G� is a minor of G when l ≥ 3. This can be seen by contracting
the helix according to the pattern outlined on Figure 3(d) by the green areas (each green
area is contracted to the extremity it contains). Therefore, tw(G�) ≤ tw(G).

Finally, let us note that G⊠ and G� only differ by 1 edge, and removing a single
edge from a graph can only decrease its treewidth by at most 1. Indeed, suppose that
tw(G�) < tw(G⊠) − 1, and consider an optimal tree decomposition T for G�. Let us denote
by u and v the two extremities of the helix not connected in G�. If the subtrees of bags
containing respectively u and v do not intersect, then one can just add v to all bags of the
tree decomposition, to represent the edge (u, v) while increasing the width by ≤ 1. Therefore
tw(G⊠) − 1 ≤ tw(G�) and the inequality is complete. ◀

Through the introduction of G⊠ and G� as the two possible graphs to which G is equivalent
in terms of treewidth, Lemma 8 already contains the essence of our main structural result,
Theorem 9. It will be the basis for generalizing tree decompositions of minimal expansions
of a fatgraph to arbitrary helix lengths. Its proof is delayed to Appendix E.

▶ Theorem 9. If H is a helix in G of length l ≥ 5, then extending the helix to have length
l + 1 does not increase the treewidth.

Since bulges in a helix only consist of vertices of degree exactly 2, combining Proposition 5
with Theorem 9 implies that the treewidth of any expansion of a given fatgraph is always
smaller than or equal to the treewidth of a minimal expansion where all bands are helices of
length exactly 5. As for gaps, arguments similar to the proof of Theorem 9 can show that
going from a gap of length 0 to an arbitrary length does not increase the treewidth of a
fatgraph expansion. Overall, we formally define the minimal expansion of a fatgraph as:

▶ Definition 10 (Minimal representative expansion of a fatgraph). Given a fatgraph γ, its
minimal representative expansion consists of:

A perfect helix of length 5 for each band.
No gap between the extremities of two helices

Such a minimal representative expansion is illustrated in Figure 5(a). For visual clarity,
gaps have been kept between consecutive helices, but one can see that the corresponding
extremities have the same labels. Given a fatgraph, this RNA structure graph contains
all necessary information for formulating DP equations decomposing all RNA structures
compatible with the fatgraph.

WABI 2022

7:8 Automated Design of RNA Folding Algorithms

((((([[[[[[[[[[)))))(((((]]]]][[[[[)))))]]]]]]]]]]

(a) (b)

(c)

(d)

Figure 3 (a) minimal expansion of a fatgraph, with every helix of length 5, and no unpaired base.
The associated graph consists of one vertex per base, and one edge per base pair and backbone link.
(b) A helix of length l in an RNA graph, as per the latter definition. (c) Given a helix in a graph
G, the treewidth of G is either equal to tw(G⊠) or tw(G�). Each case is associated with a type of
separator that can be used to extend the helix, or insert bulges, without changing the treewidth. (d)
The dotted line represents a “hop-edge” which, if represented in a given tree decomposition of G,
can be used to obtain G⊠ as a minor of G, showing that the helix is in the “clique” case.

Interestingly, the two graphs G⊠ and G� that emerge in the proofs as the two graphs
G could be equivalent in terms of treewidth, as well as the separators they are associated
to (see Figure 3 (c)) are reminiscent of two typical decomposition strategies used into
dynamic programming for RNA folding. They suggest, for each helix in a graph, two possible
“canonical representations” in terms of tree decomposition, which will be elaborated on in
the next section.

4 Tree decompositions of fatgraph expansions as RNA DP algorithms

Starting with a tree decomposition for a minimal representative expansion of a given fatgraph,
we first describe in this section how to represent it in a canonical form, with each helix
represented either in one of two different ways, respectively related to G� and G⊠. The
resulting tree decomposition can be further compressed into a skeleton, where bags within
individual helices are compressed into a single bag.

This tree can then be interpreted as a dynamic programming scheme, in which helices
are generated by specializing dynamic programming subroutines. In a sense, the tree
decomposition yields automatically a decomposition strategy usable for dynamic programming,
of the kind that was hand-crafted in previous approaches [33, 14].

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:9

Figure 4 Illustration of the two types of canonical representations for the helices of a graph G.

4.1 Canonical form for tree decompositions
We introduce an additional definition for the sake of presentation: Given an edge e = (X, Y)
of a tree decomposition T , we call the X − side of T the connected component of T \ e

containing X.

▶ Definition 11. A tree decomposition of an expansion G of a fatgraph is in canonical form
if, for each helix H of length l, either:

Clique case: Helix H is represented by a root bag that contains all 4 extremities of H,
connected to a sub-tree-decomposition Tl recursively defined as

T⊠
0 = ∅ T⊠

l = {u1, v1, ul, vl} → {u1, v1, ul, vl−1, vl} → {u1, v1, ul−1, ul, vl−1} → T⊠
l−1.

Diagonal case: Helix H is represented by a linear series of bags starting with X1 =
S∗ ∪ {u1, v1}, finishing with X2l+2 = S∗ ∪ {ul, vl}, and such that for 1 < k < l + 1
X2k = S∗ ∪ {u2k−1, v2k−1, u2k} and X2k+1 = S∗ ∪ {v2k−1, u2k, v2k} for k odd.

The definition above is illustrated on Figure 4. A canonical tree decomposition for a
minimum expansion of a fatgraph is also presented on Figure 8. It was obtained through
the processing routine that we describe in Algorithm 2 (see Appendix D), applicable to any
(optimal or not) tree decomposition. It essentially follows the dichotomy of the proof of
Theorem 9. We state its correctness and run-time below, but delay the proof to Appendix E.

▶ Proposition 12. Given G and T , Algorithm 2 outputs a canonical tree decomposition for
G, having same width as T , in time O(NH · n3), where NH is the number of helices.

Note that in a canonical tree decomposition, all vertices and edges internal to a helix
of a graph are represented in the canonical sub-tree-decomposition associated to it. All
bags outside of these canonical blocks only consist of extremities of helices, or other vertices
outside of helices. Ignoring these internal parts, to focus on a more compact “skeleton” of
canonical tree decompositions will be the first step towards automatically deriving dynamic
programming equations.

▶ Definition 13. The skeleton of a canonical tree decomposition for a graph G, is defined as
follows:

All sub-tree-decompositions representing a helix in the “clique” case are replaced with a
unique bag containing all extremities of the helix

WABI 2022

7:10 Automated Design of RNA Folding Algorithms

All sub-tree-decompositions representing a helix in the “diagonal” case are contracted
to contain their first and last bags only, denoted as S ∪ {u1, v1} and S ∪ {ul, vl} in
Definition 11.

Figure 5(b) gives an example of such a skeleton.

4.2 Automatic derivation of dynamic programming equations
Given the skeleton of a representative minimal expansion of a fatgraph γ, we describe
here how to formulate DP equations for the corresponding folding problem. As mentioned
previously, we initially restrict our exposition to a base-pair based model, akin to the one
optimized by the seminal Nussinov algorithm [29].

Essentially, we introduce helix DP tables for each helix, and transitional tables for non-
helix bags. The variables indexing these tables are called anchors. These integer variables
each represent a separation point between consecutive (half-)helices. Taken together, a full

Figure 5 (a) Minimal representative length-5 expansion of the fat graph shown in Figure 1.
Anchor variables are highlighted in green. We introduce one such variable per gap between helices. (b)
Skeleton of the tree decomposition. White boxes represent transitional bags, introducing/propagating
indices, while colored boxes represent helices in the fatgraph (H0 to H4) with associated indices
in the input structure. Red letters indicate tables of the dynamic programming algorithm. Green
indices are novel indices, absent from a bag’s predecessor. (c) DP equations derived from the
compact skeleton, involving the anchor variable defined above, and following the rules described in
Section 4.2.

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:11

set of anchors (a, b, c, . . .) partitions the sequence into a set of disjoint intervals [a, b[, [b, c[. . .,
each associated with one half-helix, i.e. one of the subsequences that form a helix. Helix
tables will account for the free-energy contributions of concrete base-pairs, while transitional
tables will instantiate anchors in a way that remains consistent with previous assignments.

Indeed, owing to the tree decomposition, a skeleton is guaranteed to: i) feature each
anchor in some bag; ii) represent each pair of consecutive anchors in at least one bag; iii)
propagate anchor values, such that the anchor values within helix tables remain consistent.
Due to this observation, non-helix bags can simply propagate previously-assigned anchors,
possibly assigning values to novel anchors (if any and constrained to remain consistent with
the sequential order) to explore all possible partitions of the input RNA sequence.

Helix tables will predict concrete sets of base pairs and account for their associated
free-energy. In order to both prevent the double pairing of certain sequence positions, and to
avoid ambiguity, we require (and enforce in the DP rules) that an anchor x, separating the
consecutive halves of two helices H and H ′, implies the pairing of position x to the other
half of H ′, and the pairing of some position x′ < x as part of H. In other words, a helix H

delimited by anchors i, i′, j′, and j must pair position i to some position x ∈]j′, j[, and j′ to
some position y ∈]i, i′[, implicitly leaving both regions]y, i′[and]x, j[unpaired.

4.2.1 Helix table 1: “Clique” cases

In the skeleton, each bag representing a helix in the “clique” case is associated to the following
tables, where i, i′ + 1, j′, and j + 1 represent the values of the anchors delimiting the helix.
The increments on i′ and j are here to ensure the presence of gap of length ≥ 1 between two
base pairs belonging to different helices. (see also Figure 5(c) for an example of how anchor
values are passed to C⊠ with a decrement of −1 for the same reason).

A first table C ′⊠ holds the minimal free-energy of a helix delimited by i, i′, j′, and j, such
that position i is paired to some x ∈]j′, j[and j′ to some position y ∈]i, i′[. The idea is here
to iteratively move the anchor from j to j − 1, implicitly leaving position j unpaired, until
a base pair (i, j) is formed. Once a base pair is created, we transition to another table C⊠

which optimizes over helices like C ′⊠, but additionally allows position i to be left unpaired.
Those two tables can be filled owing to the following recurrences:

C ′⊠[i, i′, j′, j] = min


C ′⊠[i, i′, j′, j − 1] if j′ < j

C⊠[i + 1, i′, j′, j − 1] + ∆Gi,j if (i < i′) ∧ (j′ < j)
∆Gi,j if j = j′

+∞ if no such case apply

and

C⊠[i, i′, j′, j] = min



C ′⊠[i, i′, j′, j − 1] if j′ < j

C⊠[i + 1, i′, j′, j] if i < i′

C⊠[i + 1, i′, j′, j − 1] + ∆Gi,j if (i < i′) ∧ (j′ < j)
∆Gi,j if j = j′

+∞ if no such case apply

where ∆Gi,j denote the free-energy contribution of the base-pair (i, j) in the input RNA
sequence.

WABI 2022

7:12 Automated Design of RNA Folding Algorithms

4.2.2 Helix tables 2: “Diagonal” cases
In the skeleton bags representing the diagonal cases, we need to associate a different table to
each helix. Indeed, each “diagonal” case associates, to a helix H, a set S of indices, dubbed
the constant anchors, whose values remain unchanged during the construction of H.

We focus on the case where (i, j) represents the value of the outermost anchor pair (i.e.
[i, j] represents the full span of H), leaving to the reader the symmetric case starting from
the innermost pair. Note that, in the skeleton, we kept two bags for a “diagonal case” helix.
Yet they are associated to a single table, since the helix is created by incrementing two
indices only, such that the initial pair of extremities “becomes” the other pair. We need
this second bag to know how to map index values to the children tables {Mk}k. This value
mapping at the end of a diagonal case is illustrated on Figure 6.

Namely, let the cell DH [i, j | S] (resp. D′H [i, j | S]) represent the minimum-free energy
achieved by the set of helices in the subtree of H, when H is anchored at (i, j) without
constraints on i or j (resp. such that i is paired to some position x ≤ j′). We have:

D′H [i, j | S] = min
{

D′H [i, j − 1 | S] if j − 1 > i ∧ ∀s ∈ S, j − 1 ̸= s

DH [i + 1, j − 1 | S] + ∆Gi,j if ∀s ∈ S, (i + 1 ̸= s) ∧ (j − 1 ̸= s)

and

DH [i, j | S] = min


DH [i + 1, j | S] if i + 1 < j ∧ ∀s ∈ S, i + 1 ̸= s

D′H [i, j − 1 | S] if j − 1 > i ∧ ∀s ∈ S, j − 1 ̸= s

DH [i + 1, j − 1 | S] + ∆Gi,j if ∀s ∈ S, (i + 1 ̸= s) ∧ (j − 1 ̸= s)∑
k Mk[Ik] with Ik := ({i, j + 1} ∪ S) ∩ Ak

where Ak denotes the anchors values needed for the k-th child of the diagonal bag.

4.2.3 Transitional tables: Non-helix bags
The general case consists of passing the values of relevant variables onward to the diagonal
and clique tables, possibly assigning/propagating anchors that appear in the bag for the first
time. Let IP be the anchors of the parent bag of M in the tree decomposition, we have:

M [IP] = min
Values for all

anchors in I\IP

∑
k


Mk[Ik] if k-th child is transitional
C ′⊠[i, i′ − 1, j′, j − 1] if clique, anchored at (i, i′, j′, j)
D′Hk

[i, j − 1 | Sk] if diagonal, anchored at (i, j′)

where Ik denotes the anchor values from I needed for the k-th child of the bag, and S

represents the constant anchors of the k-th child, assumed to be a diagonal.

5 Extensions

The DP scheme, as stated above, only supports conformations that consist of a single
pseudoknot configuration, indicated by a fatgraph. Moreover, it forces the first position
of the sequence to always form a base pair. Finally, it considers an energy model that is
fairly unrealistic in comparison with the current state of the art. In this section, we briefly
describe how to extend this fundamental construction in several directions in order to solve
the stated algorithm design problem (Def. 2) and consequently the associated folding problem
in complex energy models, and discuss the consequences on the complexity.

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:13

Figure 6 Derivation of DP equations from a skeleton, starting from the canonical tree decompos-
ition of a length-5 expansion for a simple H-type fatgraph. On the left-hand-side, special emphasis
is given to explaining how values are mapped at the end of a diagonal case. Extra tables C′

⊠ and
D′

H , needed to ensure unambiguity of the DP scheme, are omitted for the sake of simplicity without
adverse consequences to correctness.

5.1 Multiple fatgraphs and integration within 2D folding scheme

Alternative fatgraphs can easily be considered, without added complexity, by simply adding
a disjunctive rule at the top level of the DP scheme, such as MFEPK := minp

i=1 rootγi

where rootγi
is the top level of the DP scheme for fatgraph γi. The associated conformation

space then consists of the union of all pseudoknotted structures compatible with one of the
fatgraphs.

However, fatgraphs usually represent a structural module rather than a complete RNA
conformation. The classic DP scheme for 2D structure energy-minimization can thus be
supplemented by additional constructs, enabling the consideration of pseudoknots. Towards
that, one needs to access MFEPK(i, j), the MFE achieved over a region [i, j] by a conformation
compatible with one of the input fat graphs. In other words, one needs an ability to prescribe
the span, say [i, j], of the fatgraph occurrence, i.e. the values of the extremal anchors, while
initiating the dynamic programming.

To ensure this possibility, one simply needs to connect the first and last positions in the
minimal fatgraph completion. Indeed, since each arc of the input graph must be represented,
any tree decomposition for the completion will feature a bag B including both first and

WABI 2022

7:14 Automated Design of RNA Folding Algorithms

last position (+ additional anchors S := {k1, k2, . . .}). Moreover, since a tree decomposition
is unordered, B can be arbitrarily used as the root, preceded by a root node restricted to
anchors (i, j). This yields the following entry point for the DP of a fatgraph γ:

rγ(i, j) := min
i<k1<k2<...<j

MB [i, k1, k2, . . . , j]

which can be queried from within a classic DP scheme for the secondary structure.

5.2 Energy models
The extension to more realistic energy models is possible through functions evaluating
recursive non-crossing substructure; crossing configuration-specific score contributions; and
modifications of the algorithms that fill tables for the clique and diagonal cases. The former
enables scoring non-crossing substructure in the Turner model and doesn’t require changes
beyond our discussion on recursive substructures and performing standard non-crossing free
energy minimization. Handling multiple fatgraphs as described by disjunction at the top
level enables specific scoring of different crossing configurations.

The latter case concerns the scoring of energy within helix expansions. Firstly, we observe
that stacking energy between base pairs of the helix can be accounted for with minimal
modification of the helix table recursions and therefore does not change the complexity. For
this purpose, one introduces additional ’closed’ states of the tables (corresponding to the
matrix for closed subsequences in non-crossing free energy minimization). To explicitly score
interior loops and bulges, the helix table recursions are extended by a case minimizing over
the different loops. Naïvely, this would increase the complexity by a linear factor, which is
avoided by bounding the loop size, as common in implemented folding algorithms, or without
bounding the size following [25].

5.3 Recursive substructures
Recursive substructures consist of secondary structures/occurrences of fatgraphs that are
inserted, both in between and within helices, usually through recursive calls to the (augmented)
2D folding scheme.

To enable the insertion of substructures within an helix requires modifications to the helix
clique/diagonal rules that are very similar to the ones enabling support for the Turner energy
model. Assuming the presence of a base pair (i, j), An insertion can indeed be performed
by delimiting a region [i, k] (resp. [k, j]) of arbitrary length, leading to an overall MFE of
MFESS(i, k) + δ, where δ is the free-energy contributed by the rest of the helix (possibly
accounting for additional terms associated with multiloops).

To allow arbitrary sub-structures to be inserted in the gaps between consecutive helices,
one can again modify the minimal helix expansion to distinguish the anchors a, b associated
with consecutive helices (instead of merging them into a single anchor in our initial exposition).
By connecting a and b, one ensures their simultaneous presence in a tagged bag B, whose
DP recurrence is then augmented to include an energy contribution MFESS(a + 1, b − 1).

5.4 Partition functions and ensemble applications
For ensemble applications of our DP schemes, such as computing the partition function [26]
and statistical sampling of the Boltzmann ensemble [12], it is imperative for the DP scheme
above to be complete and unambiguous [31]. Fortunately, both properties are already
guaranteed by our DP schemes. Indeed, intuitively: the completeness is ensured by the

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:15

exhaustive investigation of all possible anchor positions, i.e. all possible partitions; the
unambiguity is guaranteed by the invariant that assigning a position x to a given anchor
(within a transitional or diagonal bag), leads x to be paired within the (half-)helix immediately
to its right. Choosing different values for x thus induces different innermost/outermost base
pairs for the associated helix, leading to disjoint sets of structures.

From this property, we conclude that the partition function for a fatgraph (or several,
possibly recursively and/or within a realistic energy model) can be obtained by simply
replacing the (min, +, ∆G) terms into (

∑
, ×, eβ∆G), with β = RT being the Boltzmann

constant multiplied by some absolute temperature.

6 (Re-)Designing algorithms for specific pseudoknot classes

Our pipeline for automated generation of DP folding equations given a fatgraph has been
implemented using Python and Snakemake [28]. The implementation is freely available at:

https://gitlab.inria.fr/bmarchan/auto-dp
Since the algorithms in [33] have been described in terms of a finite number of fatgraphs

(called irreducible shadows in the paper), one can directly apply our method to obtain
an efficient algorithm that covers the same class as gfold, namely 1-structures that are
recursive expansions of the four fatgraphs of genus 1 corresponding to simple PK ’H’ ([)],
kissing hairpin ’K’ ([)(]), three-knot ’L’ ({[)}] and ’M’ ([{)(]}) (here, represented in
dot-bracket notation, i.e. corresponding opening and closing brackets correspond to arcs).
The maximum complexity of O(n6) of the four fatgraphs (see Table 1) implies that the
automatically derived algorithm covers the class of 1-structures in O(n6) time – the same
complexity as hand-crafted gfold. Note that [33] used declarative methods in their algorithm
design only to the point of generating grammar rules, which without further optimization
yield O(n18) (after applying algebraic dynamic programming; ADP [37]). In contrast, our
method obtains the optimal complexity in fully automatic fashion. Beyond this re-design of
gfold, remarkably our method is equally prepared to automatically design a DP algorithm
with optimized efficiency for 2-structures, which are based on all genus 2 fatgraphs. This is
remarkable, since the implementation of a practical algorithm has been considered infeasible
[33] due to the large number of genus 2 shadows (namely, there are 3472 shadows/fatgraphs),
whose grammar rules would have to be optimized by hand. In contrast, due to full automation,
our method directly handles even the large number of fatgraphs of genus 2 and yields an
efficient, complexity optimized, DP scheme.

Recall that we cover all other pseudoknot classes that are recursive expansions of a finite
number of fatgraphs (in the same way as we cover the design of prediction algorithms for 1-
and 2-structures). In this way, among the previously existing DP algorithms, we cover the
class of Dirks&Pierce (D&P) [14], simply by specifying the H-type as single input fatgraph.
Consequently, we automatically re-design the D&P algorithm in the same complexity of
O(n5). Even more interestingly, we can design algorithms covering specific (sets of) crossing
configurations. This results in an infinite class of efficient algorithms that have not been
designed before. Again the complexity of such algorithms is dominated by the most complex
fatgraph; where results for interesting ones are given in Table 1. Most remarkably, we design
an algorithm optimizing over recursive expansions of kissing hairpins in O(n4), whereas
CCJ [10, 21], which was specifically designed to cover kissing hairpins, requires O(n5).

A special case, which further showcases the flexibility, is the extension of existing classes
by specific crossing configurations. For example, extending D&P by kissing hairpin covers a
much larger class while staying in the same complexity. Extending 1-structures by 5-chain

WABI 2022

https://gitlab.inria.fr/bmarchan/auto-dp

7:16 Automated Design of RNA Folding Algorithms

Table 1 Table listing pseudoknot classes, corresponding treewidth and resulting complexity of the
folding algorithm. In all cases except the one denoted by (*), the complexity of folding is equal to
O(ntw+1). For the kissing hairpins case, we are in the specific case where the most complex routine
is the alignment of a “clique case” helix, which is done in O(n4) despite a treewidth of 4. These
examples are detailed in the Appendix, Figure 9. The DP equations for each of these examples
have been automatically generated by a Python implementation of our pipeline, freely available at
https://gitlab.inria.fr/bmarchan/auto-dp.

name fatgraph treewidth complexity of folding
H-type ([)] 4 O(n5)

kissing hairpins ([)(]) 4 O(n4) (*)
“L” [33] ([{)]} 5 O(n6)
“M” [33] ([{)(]}) 5 O(n6)
4-clique ([{<)]}> 5 O(n6)
5-clique ([{<A)]}>a 5 O(n6)
5-chain ({[)(][)}] 6 O(n7)

yields a new algorithm with a complexity below of 2-structures (namely only O(n7) instead of
O(n8) [33]). The complexity of 5-chain is remarkably low, when considering that previously
described algorithms covering this configuration take O(n8) (e.g. gfold’s generalization to 2-
structures and a hypothetical blow-up of the Rivas and Eddy algorithm [39] to 6-dimensional
instead of 4-dimensional DP matrix elements – both of which have never been implemented).

7 Conclusions and discussion

In this work, we provide an algorithm that takes a family of fatgraphs, i.e. pseudoknotted
structures, and returns DP equations that efficiently predict arc annotations minimizing the
free energy. The DP equations are automatically generated based on an expansion of the
fatgraph, designed to capture helices of arbitrary length. The DP tables in the equations use
a number of indices smaller than or equal to the treewidth of the minimal expansion. This
very general framework recovers the complexity of prior, hand-crafted algorithms, and lays
the foundation for a purely declarative approach to RNA folding with pseudoknots.

In addition to the extensions described in Section 5, this work suggests perspectives that
will be explored in future work. Indeed, the choice of an optimal decomposition/DP scheme
for the input fatgraph can be seen as the automated design of an optimal table strategy in
the context of algebraic dynamic programming [32, 4, 37]. This would enable extensions to
multiple context free grammars or tree grammars when describing the problem in the ADP
framework.

Our automated design of pseudoknot folding algorithms could naturally be extended
to RNA–RNA interactions, since the joint conformation of two interacting RNA sequences
can be seen as a pseudoknot when concatenating the two structures [13]. More ambitiously,
categories of pseudoknots inducing an infinite family of fatgraphs, e.g. as covered by the
seminal Rivas & Eddy algorithm [39], could be captured by allowing the introduction of
recursive gapped structures in prescribed parts of the fatgraph. This could be addressed by
adding cliques to the minimal completion graph would ensure the availability of the relevant
anchors in some bags of the tree decomposition, allowing to score such, non-contiguous,
recursive substructures.

Another avenue for future research includes a proof of optimality, in term of polynomial
complexity, for the produced DP algorithms. Of course, it would be far too ambitious (and
erroneous) to expect our DP schemes to be optimal within general computational models.

https://gitlab.inria.fr/bmarchan/auto-dp

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:17

However, it may be possible to prove optimality within a clearly-defined subset of standard
implementations of a subset of DP schemes, e.g. by contradiction since the existence of a
better algorithm would imply the existence of a tree decomposition having smaller width.

References
1 Tatsuya Akutsu. Dynamic programming algorithms for RNA secondary structure prediction

with pseudoknots. Discrete Applied Mathematics, 104(1-3):45–62, 2000.
2 Can Alkan, Emre Karakoç, Joseph H. Nadeau, S. Cenk Sahinalp, and Kaizhong Zhang.

RNA–RNA Interaction Prediction and Antisense RNA Target Search. Journal of Computational
Biology, 13(2):267–282, 2006. doi:10.1089/cmb.2006.13.267.

3 Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding embeddings
in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

4 Sarah J Berkemer, Christian Höner zu Siederdissen, and Peter F Stadler. Algebraic dynamic
programming on trees. Algorithms, 10(4):135, 2017.

5 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on computing, 25(6):1305–1317, 1996.

6 Hans L Bodlaender and Arie MCA Koster. Safe separators for treewidth. Discrete Mathematics,
306(3):337–350, 2006.

7 Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255–269, 2008.

8 Hans L Bodlaender and Arie MCA Koster. Treewidth computations i. upper bounds. Inform-
ation and Computation, 208(3):259–275, 2010.

9 Song Cao and Shi-Jie Chen. Predicting RNA pseudoknot folding thermodynamics. Nucleic
Acids Research, 34(9):2634–2652, January 2006. doi:10.1093/nar/gkl346.

10 Ho-Lin Chen, Anne Condon, and Hosna Jabbari. An O(n5) algorithm for MFE prediction of
kissing hairpins and 4-chains in nucleic acids. Journal of Computational Biology, 16(6):803–815,
2009.

11 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 1. Springer,
2015.

12 Ye Ding and Charles E. Lawrence. A statistical sampling algorithm for RNA secondary
structure prediction. Nucleic Acids Research, 31(24):7280–7301, December 2003. doi:10.
1093/nar/gkg938.

13 Robert M Dirks, Justin S Bois, Joseph M Schaeffer, Erik Winfree, and Niles A Pierce.
Thermodynamic analysis of interacting nucleic acid strands. SIAM review, 49(1):65–88, 2007.

14 Robert M Dirks and Niles A Pierce. A partition function algorithm for nucleic acid secondary
structure including pseudoknots. Journal of computational chemistry, 24(13):1664–1677, 2003.

15 Chuong B Do, Daniel A Woods, and Serafim Batzoglou. CONTRAfold: RNA secondary
structure prediction without physics-based models. Bioinformatics, 22(14):e90–e98, 2006.

16 Mark E. Fornace, Nicholas J. Porubsky, and Niles A. Pierce. A Unified Dynamic Programming
Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability,
and Speed. ACS Synthetic Biology, 9(10):2665–2678, 2020. PMID: 32910644. doi:10.1021/
acssynbio.9b00523.

17 Robert Giegerich, Björn Voß, and Marc Rehmsmeier. Abstract shapes of rna. Nucleic acids
research, 32(16):4843–4851, 2004.

18 Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. arXiv preprint
arXiv:1207.4109, 2012.

19 Fenix Huang, Christian Reidys, and Reza Rezazadegan. Fatgraph models of RNA structure.
Computational and Mathematical Biophysics, 5(1):1–20, 2017.

20 Hosna Jabbari and Anne Condon. A fast and robust iterative algorithm for prediction of RNA
pseudoknotted secondary structures. BMC bioinformatics, 15(1):1–17, 2014.

WABI 2022

https://doi.org/10.1089/cmb.2006.13.267
https://doi.org/10.1093/nar/gkl346
https://doi.org/10.1093/nar/gkg938
https://doi.org/10.1093/nar/gkg938
https://doi.org/10.1021/acssynbio.9b00523
https://doi.org/10.1021/acssynbio.9b00523

7:18 Automated Design of RNA Folding Algorithms

21 Hosna Jabbari, Ian Wark, Carlo Montemagno, and Sebastian Will. Knotty: efficient and
accurate prediction of complex RNA pseudoknot structures. Bioinformatics, 34(22):3849–3856,
2018.

22 Martin Loebl and Iain Moffatt. The chromatic polynomial of fatgraphs and its categorification.
Advances in Mathematics, 217(4):1558–1587, 2008.

23 R Lorenz, SH Bernhart, C Höner Zu Siederdissen, H Tafer, C Flamm, PF Stadler, and
IL Hofacker. ViennaRNA Package 2.0. vol. 6. Algorithms Mol. Biol, page 26, 2011.

24 László Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75–
86, 2006.

25 R. B. Lyngsø, M. Zuker, and C. N. Pedersen. Fast evaluation of internal loops in RNA
secondary structure prediction. Bioinformatics (Oxford, England), 15(6):440–445, June 1999.
doi:10.1093/bioinformatics/15.6.440.

26 J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for rna
secondary structure. Biopolymers, 29(6-7):1105–1119, 1990. doi:10.1002/bip.360290621.

27 Mathias Möhl, Sebastian Will, and Rolf Backofen. Lifting prediction to alignment of RNA
pseudoknots. Journal of Computational Biology, 17(3):429–442, 2010.

28 Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H Tomkins-
Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok, Alexander Kanitz, et al.
Sustainable data analysis with snakemake. F1000Research, 10, 2021.

29 Ruth Nussinov and Ann B Jacobson. Fast algorithm for predicting the secondary structure of
single-stranded rna. Proceedings of the National Academy of Sciences, 77(11):6309–6313, 1980.

30 Robert Clark Penner, Michael Knudsen, Carsten Wiuf, and Jørgen Ellegaard Andersen.
Fatgraph models of proteins. Communications on Pure and Applied Mathematics, 63(10):1249–
1297, 2010.

31 Yann Ponty and Cédric Saule. A combinatorial framework for designing (pseudoknotted)
RNA algorithms. In Teresa M. Przytycka and Marie-France Sagot, editors, Algorithms in
Bioinformatics, pages 250–269, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

32 Michela Quadrini, Luca Tesei, and Emanuela Merelli. An algebraic language for RNA
pseudoknots comparison. BMC bioinformatics, 20(4):1–18, 2019.

33 Christian M Reidys, Fenix WD Huang, Jørgen E Andersen, Robert C Penner, Peter F
Stadler, and Markus E Nebel. Topology and prediction of RNA pseudoknots. Bioinformatics,
27(8):1076–1085, 2011.

34 Christian M Reidys and Rita R Wang. Shapes of RNA pseudoknot structures. Journal of
Computational Biology, 17(11):1575–1590, 2010.

35 Jihong Ren, Baharak Rastegari, Anne Condon, and Holger H Hoos. HotKnots: heuristic
prediction of RNA secondary structures including pseudoknots. Rna, 11(10):1494–1504, 2005.

36 Jessica S Reuter and David H Mathews. RNAstructure: software for rna secondary structure
prediction and analysis. BMC bioinformatics, 11(1):1–9, 2010.

37 Maik Riechert, Christian Höner zu Siederdissen, and Peter F. Stadler. Algebraic dynamic
programming for multiple context-free grammars. Theoretical Computer Science, 639:91–109,
August 2016. doi:10.1016/j.tcs.2016.05.032.

38 Philippe Rinaudo, Yann Ponty, Dominique Barth, and Alain Denise. Tree decomposition and
parameterized algorithms for RNA structure-sequence alignment including tertiary interactions
and pseudoknots. In International Workshop on Algorithms in Bioinformatics, pages 149–164.
Springer, 2012.

39 Elena Rivas and Sean R Eddy. A dynamic programming algorithm for RNA structure prediction
including pseudoknots. Journal of molecular biology, 285(5):2053–2068, 1999.

40 Kengo Sato, Manato Akiyama, and Yasubumi Sakakibara. RNA secondary structure prediction
using deep learning with thermodynamic integration. Nature communications, 12(1):1–9, 2021.

41 Kengo Sato, Yuki Kato, Michiaki Hamada, Tatsuya Akutsu, and Kiyoshi Asai. IPknot:
fast and accurate prediction of RNA secondary structures with pseudoknots using integer
programming. Bioinformatics, 27(13):i85–i93, 2011.

https://doi.org/10.1093/bioinformatics/15.6.440
https://doi.org/10.1002/bip.360290621
https://doi.org/10.1016/j.tcs.2016.05.032

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:19

42 Céline Scornavacca and Mathias Weller. Treewidth-based algorithms for the small parsimony
problem on networks. In WABI, volume 201 of LIPIcs, pages 6:1–6:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021.

43 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. Journal of
Combinatorial Optimization, 37(4):1283–1311, 2019.

44 Edwin Ten Dam, Kees Pleij, and David Draper. Structural and functional aspects of RNA
pseudoknots. Biochemistry, 31(47):11665–11676, 1992.

45 Hua-Ting Yao, Jérôme Waldispühl, Yann Ponty, and Sebastian Will. Taming Disruptive Base
Pairs to Reconcile Positive and Negative Structural Design of RNA. In RECOMB 2021-25th
international conference on research in computational molecular biology, 2021.

46 Shay Zakov, Yoav Goldberg, Michael Elhadad, and Michal Ziv-Ukelson. Rich parameterization
improves RNA structure prediction. Journal of Computational Biology, 18(11):1525–1542,
2011.

47 Michael Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic
acids research, 31(13):3406–3415, 2003.

A Width of a helix closed by a clique

Let us denote by H∗l the graph corresponding to a helix of length l, with the extremit-
ies connected as a clique. This graph appears when considering the possible safety (see
Proposition 6) of the extremities as a separator of the graph. We show the following result:

▶ Lemma 14. For l = 2, tw(H∗l) = 3, while for l ≥ 3, tw(H∗l) = 4.

Proof. For l = 2, H∗l is simply the clique on 4 vertices, and which has a width of 3. For l ≥ 3,
a clique on 5 vertices can be obtained as a minor by contracting the internal part of the helix
to one vertex, which ends up being connected to all 4 extremities, which already form a clique.
Therefore, tw(H∗l) ≥ 4. To obtain the equality, we recursively build a tree decomposition
of width ≤ 4, starting with l = 2 which we already described. Given a tree decomposition
of width ≤ 4 for H∗l , there has to be a bag X containing all 4 extremities {u1, v1, ul, vl}
(see Figure 3(b)). We introduce two new bags: X ′ = {u1, v1, ul, vl, vl+1} introducing a new
vertex vl+1, and X ′′ = {u1, v1, ul, vl+1, ul+1} introducing ul+1. We connect X ′ to X and X ′′

to X ′. By doing so, we respect the subtree connectivity property for all involved vertices,
and build a tree decomposition capable of representing H∗l+1. ◀

B Helix extension close to a separator

Figure 7 shows how, once we have found a separator, associated to an edge of the tree
decomposition, separating {ui, vi} from {uj , vj} with i < j, we can insert new vertices in the
helix, extending it while preserving the treewidth. This is used in the proof of Theorem 9, in
what corresponds in Section 4 to the “diagonal” case.

C Detailed examples

Figure 8 shows a canonical tree decomposition for the minimal length-5 expansion, shown in
the upper half of the figure, for the fatgraph showed in Figure 1. This tree decomposition
is optimal, and was computed with [43], a solver that empirically works quite fast on RNA
graphs.

WABI 2022

7:20 Automated Design of RNA Folding Algorithms

Y X

vk′−1

uk−1

ui

vi

vk′+1

uk+1

uj

vj

S →

TXTY

Y

TY

S S ∪ {x}

S ∪ {x, y} \ {uk}

S ∪ {x, y} \ {uk, vk′} X’

S

T ′X

vi

ui uj

vjvk′

uk

→

vi

ui uj

vj

x

y

uk

vk′

Figure 7 Representation of the local rewriting of a tree decomposition next to a separator S

separating to base pairs (ui, vi) and (uj , vj), in order to extend a helix by one unit, through the
introduction of new vertices x and y.

D Transforming a tree decomposition in its canonical form

Algorithm 2 describes how to obtain a canonical tree decomposition for an RNA structure
graph, given any valid tree decomposition as input. Interestingly, it can use a sub-optimal
tree decomposition obtained from a polynomial heuristic [7] instead of an exponential solver
(although [43] is empirically quite efficient on RNA structure graphs).

The run-time and correctness of Algorithm 2 are stated in Proposition 12.

E Delayed proofs

Proof of Proposition 12. Concerning the run-time, enumerating all pairs 1 ≤ i < j ≤ l) is
quadratic in the length of the helix under consideration, which is O(n) in a general graph,
while testing a given edge for separation of ui, vi and uj , vj takes O(n) (through breadth-first
search) for each of the O(n) edges of the tree decomposition. As for its correctness: in all cases
of the algorithm, representations of edges outside the helices is not affected by the re-writing,
while edges inside the edges are accounted for by the canonical representations. ◀

Proof of Proposition 5. To start with, Gv←u is a minor of G, therefore tw(Gv←u) ≤ tw(G).
Then, given an optimal tree decomposition T for Gv←u, since (v, w) is an edge of this graph,
there has to be a bag X containing both vertices. If tw(Gv←u) = 1, then X = {v, w}
and can be split into two bags {v, u} and {u, w} to obtain a tree decomposition for G. If
tw(Gv←u) ≥ 2, then we can simply connect a new bag {u, v, w} and connect it to X to obtain
again a valid tree decomposition for G of the same width. Therefore tw(G) ≤ tw(Gv←u) and
we have the equality. ◀

Proof of Theorem 9. Let us distinguish two cases depending on the treewidth of G. For
both of them, we consider an optimal tree decomposition T of G and show how to modify it
into a valid tree decomposition for the extended version of G:

if tw(G) ≤ 3 then there has to be a pair i, j (i ≤ j) of indices ∈ [1, l] such that |i − j| > 1
and neither ui, vi or uj , vj are present together in one bag. Indeed, if ∀i, j ∈ [1, l] there
was such an “hop edge” represented, then contracting uk, vk together ∀k would yield a

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:21

Figure 8 Canonical tree decomposition of the fatgraph given in Figure 1. White boxes represent
the bags of the tree decomposition. Number in the bags correspond to the indices of the helices in
the fatgraph where number on the bottom are kept while traversing the branch of the decomposition
tree. Colored frames indicate the distinct helices (H0 to H4) of the structure.

WABI 2022

7:22 Automated Design of RNA Folding Algorithms

Figure 9 Minimal representative expansions and final equations for the examples of Table 1.
The equations have been automatically generated, and the pipeline code is freely available at
https://gitlab.inria.fr/bmarchan/auto-dp. In particular, the optimal tree decompositions were
computed by [43].

https://gitlab.inria.fr/bmarchan/auto-dp

B. Marchand, S. Will, S. J. Berkemer, L. Bulteau, and Y. Ponty 7:23

Algorithm 2 Algorithm for re-writing a tree decomposition into a canonical one in
which every helix of the input graph is represented in a canonical way.

Input : A (not necessarily optimal) tree decomposition T of a minimal expansion of a
fatgraph γ.

Output : A tree decomposition of G in canonical form
1 if width(T) ≤ 3 then
2 foreach helix H in fatgraph γ do
3 if ∃ hop-edge represented in T then
4 use hop-edge to obtain a tree dec. for G⊠ //▶ (see Fig. 3(d))
5

6 find a bag X = {u1, v1, ul, vl} as w(T) ≤ 3
7 replace X with a “diagonal” canonical representation with S = ∅.
8 else
9 find an edge (X, Y) of T s.t X ∩ Y separates u1, v1 on the X-side from ul, vl on

the Y-side
10 ∀i, replace ui with u1 and vi with v1 in all bags of the X-side of T
11 ∀j, replace uj with ul and vj with vl in all bags of the Y -side of T
12 Insert between X and Y the “diagonal” canonical representation for H, with

constant part S = (X ∩ Y) \ {uk, vk}i≤k≤j

13 end
14 end
15 else
16 for helix H in γ do
17 if ∃ a hop-edge represented in T then
18 Use the hop-edge to obtain a tree decomposition for G⊠

19 find a bag containing all extremities and connect T⊠
l to it

20 else
21 find an edge (X, Y) of T separating {u1, v1} and {ul, vl}
22 ∀i replace ui with u1 and vi with v1on the X-side of T
23 ∀i replace ui with ul and vi with vl on the Y -side of T
24 Insert between X and Y the “diagonal” canonical representation for H, with

constant part S = (X ∩ Y) \ {uk, vk}1≤k≤l

25 end
26 end
27 end

WABI 2022

7:24 Automated Design of RNA Folding Algorithms

clique on 5 vertices, which is forbidden if tw(G) ≤ 3. Given such a pair i, j of indices,
there has to be an edge (X, Y) of the tree decomposition that separates all occurrences
of ui, vi from all occurrences of uj , vj . Let us denote S = X ∩ Y the separator associated
to that edge. By Proposition 7, S can be assumed to be inclusion minimal, and therefore
to contain exactly 2 vertices uk and vk′ such that |k − k′| ≤ 1 and i ≤ k, k′ ≤ j. Such
a separator is depicted on Figure 3(c), as well as on Figure 7. On this latter Figure,
we also depict the re-writing we perform: we introduce two new vertices x and y to
the X-side of the separator, as well as intermediary bags between Y and X that will
gradually transform uk, v′k into x and y. To be specific, we introduce S as a bag between
X and Y , and connect it to X through the series of bags S ∪ {x}, S ∪ {x, y} \ {uk},
S ∪ {x, y} \ {uk, v′k} in the case (w.l.o.g) that k ≤ k′. In addition, all occurences of uk in
X and beyond in the subtree rooted at X and directed away from S are replaced with
x and those of v′k with y. Since |S| ≤ tw(G), such a re-writing does not increase the
treewidth, while representing all necessary edges for an extension of the helix by one level.
if tw(G) ≥ 4, then we consider two sub-cases depending on whether T represents any
“hop-edge” as depicted on Figure 3(d), i.e. an edge between uk and vl or vk and ul for
|k − l| > 1. If any such edge is represented (i.e. there exists a bag containing both end-
points), then by contracting the parts depicted in green on Figure 3 (d) to the extremity
they contain (i.e replacing all occurrences of these vertices in the tree decomposition with
their corresponding extremity), we obtain a valid tree decomposition for G⊠ of width
≤ tw(G). By the inequality of Proposition 8, we get that tw(G) = max(4, tw(G⊠)), and
the extremities of the helix are a safe separator. There exists therefor an optimal tree
decomposition T ′ of G which contains S as a bag, separating the helix from the rest
of the graph. By Lemma 14, replacing the sub-tree-decomposition of T ′ corresponding
to the helix with a tree decomposition for a helix longer by 1 unit does not change the
width of this sub-tree-decomposition. If there is no such “hop-edge”, then there is an
edge (X, Y) in the tree decomposition that separates (u1, v1) from (ul, vl), and to which
we can apply the same re-writing as in the case of tw(G) ≤ 3. ◀

	1 Introduction
	2 Definitions and main result
	3 Minimal representative expansion of a fatgraph
	3.1 Treewidth and tree decompositions
	3.2 Helices of length 5 are sufficient to obtain generalizable tree decompositions

	4 Tree decompositions of fatgraph expansions as RNA DP algorithms
	4.1 Canonical form for tree decompositions
	4.2 Automatic derivation of dynamic programming equations
	4.2.1 Helix table 1: ``Clique'' cases
	4.2.2 Helix tables 2: ``Diagonal'' cases
	4.2.3 Transitional tables: Non-helix bags

	5 Extensions
	5.1 Multiple fatgraphs and integration within 2D folding scheme
	5.2 Energy models
	5.3 Recursive substructures
	5.4 Partition functions and ensemble applications

	6 (Re-)Designing algorithms for specific pseudoknot classes
	7 Conclusions and discussion
	A Width of a helix closed by a clique
	B Helix extension close to a separator
	C Detailed examples
	D Transforming a tree decomposition in its canonical form
	E Delayed proofs

