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—— Abstract

The Robinson—Schensted-Knuth (RSK) correspondence is a fundamental concept in combinatorics
and representation theory. It is defined as a certain bijection between permutations and pairs of
Young tableaux of a given order. We consider the RSK correspondence as an algorithmic problem,
along with the closely related k-chain problem. We give a simple, direct description of the symmetric
RSK algorithm, which is implied by the k-chain algorithms of Viennot and of Felsner and Wernisch.
We also show how the doubling search of Bentley and Yao can be used as a subroutine by the
symmetric RSK algorithm, replacing the default binary search. Surprisingly, such a straightforward
replacement improves the asymptotic worst-case running time for the RSK correspondence that has
been best known since 1998. A similar improvement also holds for the average running time of RSK
on uniformly random permutations.
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1 Introduction

The Robinson—Schensted-Knuth (RSK) correspondence is a fundamental concept in com-
binatorics and representation theory; for the background on the combinatorial aspects of
RSK, see e.g. [20, 17]. Tt is defined as a certain bijection between pairs of standard Young
tableaux and permutations of a given order, and represents a far-reaching generalisation of
the longest increasing subsequence problem in a permutation. A common definition of RSK
correspondence is algorithmic, via Robinson—Schensted tableau insertions or, alternatively,
via the Viennot geometric construction.

The combinatorial properties of RSK are well-studied. In this paper, we consider the RSK
correspondence as an algorithmic problem, along with the closely related k-chain problem.
In particular, we are interested in both the worst-case and the average asymptotic running
time of algorithms for these problems. This aspect of the RSK correspondence seems to have
been studied relatively less thoroughly than its combinatorial aspects.

In the rest of this paper, we recall the definition of the RSK correspondence, using the
geometric construction of Viennot [23, 24]. We then describe the standard RSK algorithm
by Robinson [15] and Schensted [18]. Further, we give a simple, direct decription of the
symmetric RSK algorithm, which is implied by the k-chain algorithms of Viennot [24] and of
Felsner and Wernisch [9]. Next, we recall the doubling search algorithm of Bentley and Yao [1],
and show how it can be used as a subroutine by the symmetric RSK algorithm, replacing
the default binary search. Surprisingly, such a straightforward replacement improves the
3/2logn), which
has been the best known since [9], to O(n3/2). A similar improvement also holds for the

asymptotic worst-case running time for the RSK correspondence from O(n

average running time of RSK on uniformly random permutations.
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2 The RSK correspondence

Partial orders. We will use the standard terminology related to partial orders: downset,
principal downset, chain, antichain. We consider two mutually inverse (strict) total orders on
R: < and >. We also consider the corresponding (strict) partial dominance orders on R?: <,
S, 2, >, where (z,y) < (¢/,y') if < 2’ and y < 3/, and similarly for the other three orders.
Dominance orders <, > are mutually inverse, and so are <, 2. When considering a point
set P as a partial order, we will indicate it by a superscript, e.g. P<. We will always assume
that P is finite, and that all z-coordinates in P are distinct, and so are all the y-coordinates.

Young tableaux. Let N, denote the set of all positive integers. Given n € N, let
Nn:{l,...,n} CN+.

» Definition 1. A Young diagram of order n is a subset of Ni of cardinality n, that is
a downset in the dominance partial order <. A Young tableau' of order n is an order-
preserving bijection from a Young diagram of order n (called the tableau’s shape) to a subset
of R with total order <.

We use the so-called French notation for visual representation of Young diagrams and tableaux.
The elements of a diagram are represented by cells of an integer grid, arranged in left-aligned
rows and bottom-aligned columns. Columns are ordered from left to right, and rows from
below upwards. The value of each cell of a tableau is written within that cell; these values
increase from left to right in rows, and from below upwards in columns.

» Example 2. Figure 1 (middle and right columns) gives several examples of Young tableaux
with cell values in Nyg.

Canonical antichain partitioning. The theory of Young tableaux is intimately connected
with the combinatorics of permutations. We take a symmetric view of this connection, due
to Viennot [23, 24]. A permutation, viewed as a mapping 7 : N, — N,,, is identified with the
mapping’s graph, i.e. the point set P, = {(z,7(z)) | x € Ny, }.

» Definition 3. The height of an element in a finite partial order O is the mazimum
cardinality of a chain in the principal downset gemerated by that element. A canonical
antichain is formed by all the elements of a given height. The partitioning of O into disjoint
canonical antichains is called the canonical antichain partition (CAP), denoted cap(O).

Canonical antichains in R? are also sometimes called layers of minima (mazima) [4, 3],
Pareto fronts [5], or terraces [14]. The canonical antichain partition of a point set in R? is
also sometimes called greedy cover [12], patience sorting [2], or non-dominated sorting [5].

» Example 4. Figure 1 (top-left) shows a point set P of cardinality 10, and its partitioning
cap(P<) into five antichains.

We recall the following standard result.

» Proposition 5. The partitioning cap(O) of a finite partial order has the minimum possible
number of antichains among all antichain partitionings of O. This number is also equal to
the mazximum cardinality of a chain in O.

Proof. Straightforward; see e.g. [9]. <

! Young tableaux as defined here are often called “standard”, to distinguish them from more general types
of tableaux; we omit this qualifier, since it is the only type of Young tableaux we are dealing with.
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Figure 1 The standard RSK algorithm for rsk(P<) = (H,T); tableaux H, T obtained by rows.
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Figure 2 The symmetric RSK algorithm for rsk(P<) = (_,T) and rsk(P<) = (_,T"): tableau

T obtained by principal hooks.
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Given a permutation , the problem of finding the cardinality of cap(PX) is equivalent to
the problem of finding the length of a longest increasing subsequence (LIS) in w. The LIS
problem has a long history, going back to Erdés and Szekeres [8] and Robinson [15]. Based
on their ideas, the classical LIS algorithm running in time O(nlogn) was made explicit by
Knuth [13], Fredman [10] and Dijkstra [6].

» Definition 6. Let P be a point set with dominance order <. Let A = {(z1,y1) S
(2,92) S ... S (zr,yr)} C P be an antichain of cardinality r > 1. Values z1 and y,
will be called respectively the head and the tail of A. The skeleton of A is the antichain
sk(A) = {(z2,11) S (x3,92) S ... S (T, Yr—1)} of cardinality r — 1. The skeleton of P is
the point set sk(P<) = U sccop(p<) $k(A). The heads, tails and skeletons with respect to
dominance orders <, 2, > are defined analogously.

The RSK correspondence. The Robinson—Schensted—Knuth (RSK) correspondence, dis-
covered independently by Robinson [15] and Schensted [18] (see also Romik [17]), is a bijection
between permutations of a given order and pairs of Young tableaux of the same order and
identical shape. The two tableaux in the pair will be called the head and the tail tableaux
(such a terminology is chosen for its symmetry and consistency with the rest of our exposition,
whereas the traditional terminology calls them the recording and the insertion tableaux).

» Definition 7. Let P be a point set with dominance order <. The RSK image? of P is
a pair of Young tableauz rsk(P<) = (H,T), defined recursively as follows. The initial row
in H (respectively, T') is formed by the heads (respectively, the tails) of the antichains in
cap(P<). The remaining rows of H, T are formed as rsk(sk(P<)). The RSK image with
respect to dominance orders S, 2, > is defined analogously.

» Example 8. Figure 1 (top row) shows the construction of the initial rows in tableaux
rsk(P<) = (H,T) from a point set P C N2, (top left). Figure 1 (middle and bottom rows)
shows the recursive construction of the remaining rows in the tableaux H, T

The RSK correspondence has some beautiful symmetries, exposed by Schiitzenberger [19].

» Definition 9. Let P be a point set. Its transpose is the point set PT = {(z,y) | (y,z) € P}
obtained by exchanging the x- and y-coordinates of every point.

» Observation 10. Let 7 be a permutation. We have Pl = P, 1.

» Definition 11. Let Y be a Young diagram. Its transpose YT is the Young diagram obtained
by exchanging the x- and y-coordinates of every cell.

We now state the theorem by Schiitzenberger [19] on the symmetries of the RSK correspond-
ence; for completeness, we also present its proof.

» Theorem 12 (Schitzenberger). Let P be a point set, rsk(P<) = (H,T). We have
(i) rsk(P1<) = (T, H),
(i) rsk(P2) = (H*1,TT),
(iii) rsk(PS) = (H', T*),
(iv) rsk(P>) = (H*,T*).
Here, H*, T* are Young diagrams of the same shape as H, T, called the Schiitzenberger
dual of H, T, respectively.

2 The terms “RSK correspondence”, “RSK image” as defined here are often called just “Robinson—
Schensted”, reserving the name “RSK” for a more general type of combinatorial bijection. Since this is
an algorithmic study, we use the term RSK throughout, in order to highlight the contribution of Donald
Knuth to the development of RSK algorithms.
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Proof. Part (i) is obvious by symmetry.

Let us establish part (ii). Let (zo,%o) be the point with the least y-coordinate in sk(P<),
0 yo is the tail of the least-height antichain in cap(sk(P<)). Let A be an antichain in
cap(P<) such that (zg,yo) € sk(A). Then, there is a pair of points (zo,y) = (z,y0) in
A. Let B be the subset of points in P with y-coordinate less than yy. Subset B must
consist of a single chain including point (xg,y): otherwise, there would be two points with
y-coordinate less than yo in some antichain A’ of cap(P<), and then sk(A’) would contain
a point of sk(P<) with y-coordinate less than yg, which would contradict the minimality
of yo. Now consider the points of B with the partial order 2; these points, including point
(0,y), form a subset of the least height antichain in cap(P<). Point (z,y) must belong to
the second-least height antichain in cap(P<), and must have the least y-coordinate in that
antichain. Therefore, yo is the tail of the second-least height antichain in cap(PZ<).

We have established that the tail of the least height antichain in cap(sk(P<)) is equal
to the tail of the second-least height antichain in cap(P<). Now (ii) follows by (i) and the
recursive construction of Definition 7, and (iii), (iv) follow from (ii) by symmetry. <

Multichains. A notion closely related to the subject of this paper is that of a k-chain.

» Definition 13. Let O be a finite partial order. A k-chain is a subset of O that can be
represented as a union of k chains.

The connection between the RSK correspondence and k-chains is given by the classical
theorem of Greene [11].

» Theorem 14 (Greene). Let P be a point set with dominance order <. The mazimum
cardinality of a k-chain in P is equal to the number of cells in the initial k rows of the shape

of rsk(P<).

In fact, the RSK algorithm by Felsner and Wernisch [9] is presented entirely in the language
of k-chains. While we use the language of Young tableaux in this paper, our results translate
immediately into the corresponding statements on maximum k-chains in a set of points, and
thus relate to the results of [9].

3 RSK algorithms

Standard RSK algorithm. Definition 7 leads directly to the following standard algorithm
for computing the RSK image of a given point set.
Given a point set P, the pair of tableaux rsk(P<) = (H,T) are constructed by rows. To

obtain the initial rows of H, T', the points in P are scanned in order of increasing z-coordinate.

For the subset @ of points seen so far, we maintain the partitioning cap(Q<); in particular,
the heads and the tails of antichains in that partitioning are kept in sorted order. We also
maintain the skeleton sk(Q<) in order of increasing xz-coordinate. When the scan of P is
complete () = P), the heads (respectively, tails) of antichains in cap(P<) become the initial
row of tableau H (respectively, T') in rsk(P<). To obtain the remaining rows of rsk(P<),
we repeat the above procedure on point set sk(P<). Algorithm 1 gives the algorithm’s
pseudocode.

» Example 15. Figure 1 shows the execution of the standard RSK algorithm in three
successive iterations: the point set at the beginning of each iteration and its CAP (left
column), and the state of the tableaux H and T at the end of the respective iteration (middle
and right columns).

86:5

ESA 2022



86:6 Fast RSK Correspondence by Doubling Search

Algorithm 1 Standard RSK. The choice of a search method in line 7 is either linear or binary
(Section 3) or doubling (Section 4).

1: procedure RSK(P) > given point set P sorted by z-coordinate, returns rsk(P<)
2: if P =( then return (0, )

3 Hipir < 05 Tipse <— 0 > initialise variables for initial rows of H, T'
4: S0 > initialise variable for sk(P<)
5: while P # () do

6 (z,y) + point in P with least z-coordinate

7
8
9

y' < least value in T}, greater than y; +oo if none exists > search
if 4/ = +o00 then
append x to H;pi; append y to Tipi > start new antichain

10: else
11: replace ¥’ by y in Tyu; append (z,y') to S > extend antichain
12: remove (x,y) from P
13: (Hy,Ty) < RSK(S5) > recursive call
14: H < tableau with initial row H;,;; and remaining rows H
15: T <+ tableau with initial row T},;; and remaining rows 7.
16: return (H,T) > rsk(P<) = (H,T)

The computation of the initial row in the standard RSK algorithm (before the recursive
call in line 13 of Algorithm 1) is essentially identical to the classical algorithm for the LIS
problem [13, 10, 6]. In line 7, the canonical antichain for each of the n points can be found by
binary search, therefore the whole initial row is obtained in time O(nlogn). In total, there
are at most n rows in rsk(P<), therefore the overall time is n - O(nlogn) = O(n?logn).

Apart from the worst-case running time, it is of interest to consider the average-case
running time of RSK algorithms on a uniformly random permutation; in this case, the shape
of tableaux H, T turns out to be sampled from the Plancherel probability distribution (see,
e.g. [17]). Romik [16] established this average-case running time to be O(n3/2logn).

RSK with linear search. Paradoxically, a speedup can be obtained by replacing binary
search with (a carefully controlled) linear search. Indeed, for a given z-coordinate, the value
of the search target y’ in line 7 of Algorithm 1 can only increase. Therefore, as long these
different search invocations are performed as a linear search continuing from the search target
of the previous invocation, the combined search time for a given z-coordinate will be O(n),
so the overall running time across all z-coordinates is reduced to n - O(n) = O(n?). This
observation may be considered part of the folklore; it is made e.g. by Thomas and Yong [21],
who attribute it to an anonymous referee. A simple and elegant alternative description of
this algorithm can be obtained by using edge local rules of Viennot [25], giving the same
asymptotic running time O(n?).

Symmetric RSK algorithm. Felsner and Wernisch [9] proposed a more efficient, symmetric
approach to developing an RSK algorithm. Their algorithm was described in the language
of k-chains. In particular, they gave an algorithm for computing maximum k-chains (and,
by symmetry, also k-antichains) of a planar point set in time O(knlogn). In combination
with the algorithm for the same problem by Viennot [24], runnning in time O((n?/k)logn),
maximum k-chains can be obtained in time O(n3/?logn) for all k.
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Here, we give a simpler, more direct description of this combined algorithm of [24, 9],
as an extension of the standard RSK algorithm. The main idea of the symmetric RSK
algorithm is to construct the pair of tableaux rsk(P<) = (H,T) simultaneously by rows
and by columns. The successive rows of tableaux H, T are constructed as in the standard
RSK algorithm. At the same time, the successive columns in tableau H (respectively, T') are
obtained by running the standard RSK algorithm for rsk(PS) (respectively, rsk(P<)), using
the symmetries exposed by Theorem 12.

There is clearly some redundancy in running the standard algorithm three times on
partial orders P<, PS, PZ. However, this constant-factor redundancy allows one to reduce
the overall asymptotic running time. Notice that as a result of the first iteration of each of
the three runs, we obtain the union of the initial row and initial column in each of H and T
this union is called the initial principal hook of the respective tableau. Likewise, as a result
of the second iteration, we obtain the second principal hook of both H and T (i.e. the union
of the second row and column, minus the initial principal hook). Crucially, while the number
of both rows and columns in a Young tableau of order n can be as high as n, the number of

its principal hooks is always at most n'/2. Thus, the algorithm can be terminated after at
most |n'/2] iterations made by each of the three simulaneous runs on P<, PS, PZ. The

worst-case running time of the symmetric RSK algorithm is n!/2 - O(nlogn) = O(n%/?logn).

» Example 16. Figure 2 shows the execution of the symmetric RSK algorithm on the same
input point set as in Figure 1. For the sake of brevity, only the computation of tableau T'
from partial orders P<, P2 is shown explicitly, while the symmetric computation of tableau
H from partial orders P<, PS is omitted. Compared to the three iterations of the standard
algorithm in Figure 1, now only two iterations are required.

4 Speeding up RSK by doubling search

Doubling search. The doubling search technique (also called exponential search) was

introduced by Bentley and Yao [1], and represents a hybrid between linear and binary search.

Doubling search is particularly efficient for a non-uniform distribution of the target index,
skewed towards an end of the array being searched.

We describe doubling search with the starting point at the upper end of the array, in
order to be consistent with its intended application as a subroutine for RSK. Given an array
a;, 1 <1 < s, sorted in increasing order, and a value ¢ distinct from all a;, we consider
the problem of finding the greatest value in a less than g, that is index k£ > 0 such that
sk < q < as_gr1. We assume a; = —oo for i < 0, and azy1 = +00.

The search begins at the upper end of the array, comparing ¢ against as. If as < g, we
have found k£ = 0. Otherwise, the search continues in two phases. In the doubling phase, we
compare ¢ against as_1, as—2, Gs—4, As—s, - - ., until we find a subtrahend ¢ that is the least
power of 2 such that as_; < ¢. This phase takes |logk| + 1 comparisons.

We now know that 1 < k < ¢, and move on to the binary search phase. In this phase, we
find the exact value of k in this range by binary search, taking at most |log¢| < |logk]| + 1

comparisons. Overall, the doubling search algorithm takes at most 2|log k| + 3 comparisons.

Algorithm 2 shows the pseudocode for the doubling search algorithm.

Symmetric RSK with doubling search. Unfortunately, the asymptotic speedup by a factor
of n'/? to the standard RSK algorithm, which is provided by the symmetric algorithm, is
not compatible with the speedup by a factor of logn provided by linear search. However, we
are still able to obtain both speedups simultaneously by employing doubling search.
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Algorithm 2 Doubling search.

1: procedure DSEARCH(a, q) > given sorted array a and ¢, returns index for ¢ in a
2 if a; < g then return 0

3: t+1

4 while as_y > gdo t < 2t > doubling phase
5 return index k in {1,...,t}, such that as_; < ¢ < as—_g+1 > binary search

Consider a specific value x for a point’s z-coordinate, as the RSK algorithm iterates on
P, sk(P<), sk(sk(P<)), etc. These iterations form respectively row 1, 2, 3, ... of diagrams
H, T. Let [, denote the length of row r before a point with coordinate x is processed for
that row. Let b, denote the index of the search target ¢’ in row r of a point with coordinate
x (as per lines 9 or 11 of Algorithm 1); b, is undefined if no point with coordinate z is left in
iteration r (that is, in the r — 1-th skeleton of P). Let the displacement interval in row r
be {b.,b, + 1,...,min(l,, b._1 — 1)}, where by = +00. We denote this interval’s length by
d, = min(l, + 1,b,—1) — by; in particular, d,, = 0 if b, = b,_1. We also define d,, = 0 if b, is
undefined due to no point with coordinate x being left in iteration r.

» Example 17. Consider the computation of rsk(P<) by the standard and the symmetric
RSK algorithms in Figures 1 and 2. Let us fix x = 6.

In the first iteration, the bottom row of tableaux H, T is formed. Just before the
processing of point (6,3) € P begins, the current state of the tableaux rows is Hyni: = (1,2,4),
Tinit = (1,5,6), and their common length is I; = 3. The least value in Ty, greater than
y =3 is 5, and its index in Ty, is by = 2. The displacement interval is between b; = 2 and
Iy = 3 inclusive, and its length is dy =1; +1 — b, = 2.

In the second iteration, the middle row of tableaux H, T is formed. Just before the
processing of point (6,5) € sk(P<) begins, the current state of the tableaux rows is Hy,s =
(3,5), Tinit = (2,8), and their common length is lo = 2. The least value in T}, greater than
y =5 is 8, and its index in Ty, is by = 2. The displacement interval is empty (being defined
between by = 2 and by — 1 = 1 inclusive), and its length is dy = by — by = 0.

In the third and final iteration (which is absent from the symmetric algorithm in Figure 2),
the top row of tableaux H, T is formed. Just before the processing of point (6, 8) € sk(sk(P<))
begins, the tableaux rows Hpni, Ting are both empty, and their common length is I3 = 0.
The least value in T;,;; greater than y = 5 is by convention +o00, and its index in Ty, is by
convention b3 = 1. The displacement interval is between b3 = 1 and by, = 2, and its length is
dg = b3 — bQ =1.

» Theorem 18. The symmetric RSK algorithm with doubling search solves the RSK corres-
pondence problem in worst-case time O(n>/?).

Proof. Without loss of generality, assume that n is a perfect square (otherwise, the input
can be extended by extra points with a suitably high y-value). Let m = n'/2.

For a fixed z-coordinate, consider the displacement interval in a given row r. The rectangle
of tableau cells below and including this interval consists of rd,. cells. All these rectangles
for different values of r are pairwise disjoint. The symmetric RSK algorithm terminates
after processing at most m rows. The total number of cells in the rectangles defined by the
displacement intervals in these rows is obviously at most n:

m
Z rd, <n
r=1
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We also have /" | r = W <m? =n. Let d. = d, + 1. By the above, we have

Z'rd’rgnJrn:Qn

r=1

While working on a point with coordinate x within row r, doubling search makes at
most [2logd! | + 3 comparisons. For the total number of comparisons made for the given
z-coordinate, we have by the arithmetic-geometric mean inequality and the Stirling lower
bound on the factorial (cancelling the rounding down of the logarithms, and omitting the
constant factor 2 and the additive term Y_* ; 3 = O(m)):

Zlogd; = Zlog % = log H % = log(%b! H rd;) <

r=1 r=1 r=1 r=1

tog (557 (5 D_ )" ) < tog B2 = log " < log (A =
r=1

mlog(2e) = O(m)

There are n different z-coordinates to consider, therefore the algorithm makes n - O(m) =
O(n?/?) comparisons in total. <

5 Conclusion

We have given a simple, direct description of the symmetric RSK algorithm by Felsner and
Wernisch [9]. We have shown how this algorithm can be enhanced with doubling search,
improving the asymptotic running time from O(n*?logn) to O(n?/?). It it also worth
noticing that the (worst-case) running time of our algorithm is lower than the average-case
running time of the standard (or the symmetric) RSK algorithm on uniformly random
permutations, as analysed by Romik [16]. Our result implies a similar improvement for the
k-chain problem for arbitrary k.

A natural lower bound on the running time of RSK correspondence is provided by the
LIS problem, which is a subproblem for RSK, and requires Q(nlogn) comparisons in the
comparison model [10]. Thus, there remains a substantial gap between the known upper and
lower bounds for the asymptotic complexity of the RSK correspondence.

Apart from potential improvements in the algorithm or the lower bound, there is scope
for future work in extending the algorithm for more general versions of the RSK correspond-
ence, e.g. that between positive integer matrices and semistandard Young tableaux. An
experimental confirmation of the efficiency of our algorithm also remains an endeavor for
future work; this is a non-trivial task, since most existing experiments with RSK, e.g. those
by Vasilyev and Duzhin [7, 22], concentrate on either Plancherel-random Young diagrams, or
on Young diagrams with (near-)maximum dimensions; such a diagram shape seems to be far
away from the worst-case shape suggested by the proof of Theorem 18.
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