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—— Abstract

Recently, Chalermsook et al. [SODA’21] introduces a notion of vertex sparsifiers for c-edge connec-
tivity, which has found applications in parameterized algorithms for network design and also led to
exciting dynamic algorithms for c-edge st-connectivity [Jin and Sun FOCS’22].

We study a natural extension called vertex sparsifiers for c-hyperedge connectivity and construct
a sparsifier whose size matches the state-of-the-art for normal graphs. More specifically, we show
that, given a hypergraph G = (V, E) with n vertices and m hyperedges with k terminal vertices
and a parameter c, there exists a hypergraph H containing only O(kcs) hyperedges that preserves
all minimum cuts (up to value ¢) between all subset of terminals. This matches the best bound
of O(kc?) edges for normal graphs by [Liu’20]. Moreover, H can be constructed in almost-linear
O(p+°M 4 n(rclogn)®T) logm) time where r = max.cg |e| is the rank of G and p = Doecr lelis
the total size of G, or in poly(m,n) time if we slightly relax the size to O(kc® log"-® (kc)) hyperedges.
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1 Introduction

Graph sparsification has played a central role in graph algorithm research in the last two
decades. Prominent examples include spanners [1], cut sparsifiers [3], and spectral sparsi-
fiers [22]. Recently, there has been significant effort in generalizing the graph sparsification
results to hypergraphs. For cut sparsifiers, Kogan and Krauthgamer [13] generalized the
Bencztir and Karger’s cut sparsifiers [3] by showing that, given any hypergraph G = (V, E)
with n vertices, there is a (1+€)-approximate cut sparsifier H containing O(nr/€?) hyperedges
where 7 = max.cp |e| denotes the rank of the hypergraph. After some follow-up work [5, 2],
Chen, Khanna, and Nagda [6] finally improved the sparsifier size to O(n/e?) hyperedges,
matching the optimal bound for normal graphs. Another beautiful line of work generalizes
Speilman and Teng’s spectral sparsifiers [22] to hypergraphs [2, 21, 10] and very recently
results in spectral sparsifiers with O(n/poly(€)) hyperedges [11]. We also mention that the
classical sparse connectivity certificates by Nagamochi and Ibaraki [19] were also generalized
to hypergraphs by Chekuri and Xu [5].

This paper studies a graph sparsification problem recently introduced by Chalermsook
et al. [4] called vertex sparsifiers for c-edge connectivity. It is closely related to the vertex
sparsifiers for edge cuts [15, 12] and vertex cuts [14]. In this problem, we are given an
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unweighted undirected graph G = (V, E) and a set of terminals 7 C V. For any disjoint
subsets A, B C T, let mincutg(A4, B) denote the size of a minimum (edge-)cut that disconnects
A and B. Now, a graph H = (Vg, Eg) with T C Vi is a (T, ¢)-sparsifier of G if for any
disjoint subsets A, B C T, min{c, mincutg(A, B)} = min{c, mincuty (A, B)}. Basically, H
preserves all minimum cut structures between the terminals 7 up to the value c¢. This
notion of graph sparsifiers has found interesting applications in offline dynamic algorithms
and network design problems [4]. Moreover, the very recent breakthrough on dynamic
c-edge st-connectivity by Jin and Sun [9] is also crucially based on dynamic algorithms for
maintaining (7, ¢)-sparsifiers.

In the original paper by [4], they showed that, for any graph G = (V| F) and terminal set
T of size k, there exists a (T, c)-sparsifier containing O(kc?) edges (which can be constructed
in O(m(clogn)©() time) and also showed fast algorithms for constructing (7, ¢)-sparsifiers
of size k- O(c)2® in mc®@ log®M n time. Then, Liu [16] improved the size bound to O(kc?)
together with polynomial-time algorithms (no exponential dependency on ¢) for constructing
(T, c)-sparsifiers with O(ke? log'® n) edges.

A natural question is then whether these results can be extended to hypergraphs. The
notion of (7, ¢)-sparsifiers itself can be naturally extended to hypergraphs by allowing G
and H to be hypergraphs and letting mincutg (A, B) denote the value of the minimum
hyperedge-cut instead. However, it is conceivable that there might not exist a (7, ¢)-sparsifier
with poly(k, ¢). This bound might require bad dependency on the rank r, for example.

In this paper, we show that the state-of-the-art for normal graphs indeed extend to
hypergraphs and we can even slightly improve the bounds:

» Theorem 1. Let G = (V, E) be a hypergraph with n vertices, m hyperedges, rank r and
total size p. Let T C V be the set of k terminals. There are algorithms for computing the
following:

1. a (T, c¢)-sparsifier H of G with O(kc®) hyperedges in O(p't°M) + n(rclogn)©e) logm)
time, which is almost-linear in the input size when both r and ¢ = O(1), and

2. a (T, c)-sparsifier H of G with O(kc®log'®(kc)) hyperedges in poly(m,n) time.

The first result matches the best known bound of O(kc?) edges for normal graphs [16].
When r = O(1), the first time bound slightly improves the O(m(clogn)®(©)) bound of
[4] for normal graphs. The second result removes the exponential dependency on r and ¢
after relaxing the size by a logl‘s(kc) factor. The number of hyperedges in our sparsifier is
completely independent from n, while the polynomial time algorithm by Liu [16] gives the
size of O(kc®log'® n). So this implies the first polynomial time construction of sparsifiers of
size near-linear in k£ and independent of n, even for normal graphs.

Open Problems. Can we construct vertex sparsifiers for c-hyperedge connectivity of k -
poly(c) size in near-linear time even when the rank is unbounded? This is a prerequisite
to near-linear time algorithms for computing vertex sparsifiers for c-vertex connectivity of
k- poly(c) size. Such a result might lead to dynamic c-vertex st-connectivity algorithm similar
to the previous development where a near-linear time construction of vertex sparsifiers for
c-edge connectivity leads to a dynamic algorithm for c-edge st-connectivity [9]. As dynamic
c-vertex st-connectivity is one of the major open problems in dynamic graph algorithms
(known solutions only works for very small ¢ < 3 [7, 8, 20]), we view this work as a stepping
stone towards this goal.
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1.1 Technical Challenges

There are two main obstacles that prevent us extending the results of [16, 4] directly from
normal graphs to hypergraphs. First, if we follow the divide and conquer framework of
Chalermsook et al. [4] in a straightforward way, then we would end up with a much larger
(T, c¢)-sparsifier with O(|T|(rc)?) hyperedges. This is because, in [4], all vertices incident to
the boundary edges are declared as new terminal vertices in the recursion. However in our
case, each hyperedge may contain r vertices and this yields the dependency of r. To handle
this issue, we instead introduce only two anchor vertices for each boundary hyperedge. Our
divide and conquer framework requires slightly more careful analysis, but this naturally gives
a (T, c)-sparsifier with O(|7T|¢?) hyperedges.

The second obstacle is the near-linear time algorithm, Part (1) of Theorem 1. Chalermsook
et al. [4] introduced auxiliary graphs and apply the ¢-SPARSIFY procedure on it to identify
all essential hyperedges, which roughly are hyperedges that will be kept in the sparsifier.
However, there is a subtle small gap in [4]: their ¢-SPARSIFY procedure could erroneously
identify non-essential hyperedges as essential hyperedges. This is explained in more detail
in the full version of the paper. This bug results in a much larger (7, ¢)-sparsifier. In this
paper we fix the bug by (1) introducing a notion of useful partitions of the terminal set
and (2) providing an efficient algorithm that discards all non-useful partitions from the
auxiliary graph. Then, we show that, after our modification, this approach indeed gives a
small (7, ¢)-sparsifier as desired.

1.2 Organization

In Section 2 we review some basic definitions of hypergraphs. In Section 3 we define contraction
based (T, ¢)-sparsifiers and introduce the divide and conquer framework. In Section 4 we
show the existence of a (T, c)-sparsifier with O(|T|¢?) hyperedges. In Section 5 we give
a near-linear-time algorithm that computes a (7, c)-sparsifier with O(|T|c®) hyperedges,
proving Part (1) of Theorem 1. For Part (2) of Theorem 1 we refer readers to the full version
of the paper.

2  Preliminary

Let G = (V, E) be a hypergraph. V is the set of vertices and F is a multiset of hyperedges
with each hyperedge e being a subset of V. The rank r := max.cg |e| of a hypergraph is the
size of the largest hyperedge, and the total size p = . |e| is the sum of all edge sizes.

For any two disjoint sets of vertices A, B C V, let Eg(A, B) denote the set of hyperedges
with at least one endpoint in A and at least one endpoint in B. For any set of vertices
X C V, we denote the boundary of X of the graph G by 0cX = Eg(X,V \ X). If the
context is clear then we will omit the graph G and write 0X instead.

Restrictions and Induced Sub-Hypergraphs. Let 7 C VUE be a mixed multiset of vertices
and hyperedges, for any set of vertices X C V', we define the restriction of the multiset 7 on
Xtobe Tlx =(TNX)U{enX |ee (TNE)and enX # 0}. The induced sub-hypergraph
G[X] is then defined over the vertex set X with the restriction of all hyperedges E|x, that
is, G[X] = (X, E|x).
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Incident Edges and Vertices. For any set of vertices X C V, define E(X) to be the set of
all hyperedges that incident to at least one vertex in X. For any set of hyperedges Y C F,
define V(YY) = Uer y to be the set of vertices incident to hyperedges in Y. Similarly, for
any mixed set of vertices and hyperedges 7 C V U E we define V(T) = (TNV)UV(T NE)
to be the set of all vertices that are in the set or incident to any hyperedge in the set.

3  Structural Properties on Hypergraphs

In this section, we explore more structural properties on hypergraphs. In particular, we
introduce anchored separated hyperedges, and describe useful properties in a divide and
conquer framework that leads to a construction of (7, ¢)-sparsifiers.

3.1 Cuts in Hypergraphs

Let u and v be two elements in V. We say that u and v are connected in a hypergraph G, if
there is a path connecting u and v. Let A, B C V be two disjoint sets of vertices. A and B
are disconnected if for any a € A and b € B, a and b are not connected.

» Definition 2 (Cuts and Minimum Cuts). A cut s a bipartition (X,V \ X) of vertices. The
value of the cut is |0X| = |Eg(X,V \ X)|. For any disjoint subsets A,B CV, if AC X
and B C (V' \ X) then we say that (X,V \ X) is an (A, B)-cut. A minimum (A, B)-cut or
(A, B)-mincut s any (A, B)-cut with minimum value. Its value is denoted as mincutg(A, B).
Given a parameter ¢, a c-thresholded (A, B)-mincut cut value is defined as

mincutg (A, B) := min(mincutg (A, B), ¢).

3.2 (T,c)-Equivalency and (T, c)-Sparsifiers

Our vertex sparsifier algorithms are based on identifying a set of hyperedges and contract
them. Given a hypergraph G = (V| F) and a hyperedge e € E, the contracted hypergraph
G/e is defined by identifying all incident vertices V'(e) as one vertex, and then remove e
itself from the graph. For any set of terminals T" C V, the effect of contracting an hyperedge
e is denoted as T'/e. Similarly, for any set E C E, we denote G / E the hypergraph obtained
from G by contracting all hyperedges in E (notice that all hyperedges in E are removed
after the contraction.)

» Definition 3 ((7, c)-Sparsifiers). Let G = (Vg, Eq) and H = (Vy, Eg) be two hypergraphs.
Let T C Vi be the set of terminals. We say H is a contraction based (7T, c)-sparsifier of G,
if there exists a surjective (onto) projection 7w : Vg — Vi, such that for any e € Ey there is
an edge f € Eq such that w(f) = Uyep{m(v)} = e, and for any two subsets Ty, To C T,

mincutg (T, Tz) = mincut§y (7(T1), 7(T2)).

Furthermore, if the terminals are not affected by the projection, i.e., m(T) =T, then we say
that G and H are (T, c)-equivalent.

Remark. A more general (T, c¢)-sparsifier would allow an arbitrary mapping 7 on both
vertices and edges. However, we note that all (7, ¢)-sparsifiers constructed in this paper are
always contraction based. Therefore, for the ease of the presentation we will omit the term
“contraction based” when we mention (7, ¢)-sparsifiers.

For the ease of the reading, we define the following set operations that allow us to
add/remove hyperedges of G into a sparsifier H.
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» Definition 4. Let G = (V, E) be a hypergraph. For any multiset X of hyperedges over the
vertices V', and any contraction based (T, c)-sparsifier H with the projection 7, define
(Adding contracted hyperedges) H U X := HUn(X), and
(Removing contracted hyperedges) H — X := H — w(X).

3.3 (T, c)-Sparsifiers from a Divide and Conquer Framework

Another important concept to our contraction based (T, c)-sparsifier construction is that
we apply a divide and conquer framework to G. Let G = (V, E) be a hypergraph and let
(V1,V2) be a bipartition of vertices. We note that our divide and conquer framework is
slightly different than just recurse on the induced sub-hypergraphs G[V;] and G[V2]. In
particular, for each separated hyperedge e we add two new anchor vertices to e, ended up
slightly increasing the size of the vertex set in the next-level recursion.

Separated Hyperedges and Anchor Vertices. Let e € E(V7,V3) be a hyperedge across the
bipartition. The separated hyperedges of e with respect to this bipartition (Vi, Va) is the set
composed of hyperedges of e restricted on both V4 and V. The anchored separated hyperedges
are separated hyperedges with additional anchor vertices: let e; = e|y, and es = e|y, be the
separated hyperedges of e, then we introduce four new anchored vertices o 1, 0 2, v 3, and
0,4 and define &1 := eq U {0 1,9c2} and é3 := ea U {ve 3,0c4}. Let S = E(V1, V2) be the set
of crossing hyperedges, in this paper the set of anchored separated hyperedges respect to
bipartition (V1, V) are denoted by Sep(S, Vi, Va) := {é1,é2 | e € S}.

Let A1 = {0e,1,0e2 | e € E(V1,V2)} and let Ay = {0c3,0c4 | € € E(V1,V2)} be the set of
newly introduced anchor vertices. These anchor vertices will be added to the terminal set
in order to correctly preserve the mincut values. That is, the terminal sets defined for the
subproblems are 77 := Ty, UA; and T3 := Ty, U As. Now, we define the anchored induced
sub-hypergraphs, which are useful when applying the divide and conquer framework.

» Definition 5 (Anchored Induced Sub-Hypergraphs). Let G = (V| E) be a hypergraph and Vi C
V be a subset of vertices. Define Vo =V \ Vi, G = G U Sep(E(V1, Vo), V1, Vo) — E(V1, Va),
and the set of anchored vertices to be Ay U As. Then, the anchored induced sub-hyperegraph
for Vi is defined as G[V1] := G%P|y, 04, .

The Divide and Conquer Framework. The most generic divide and conquer method works
as the follows. First, a bipartition (V1, Vs) are determined. Then, the algorithm performs
recursion on the anchored induced sub-hypergraphs G[V;] and G[V5] with terminal sets
T1 and T respectively. After obtaining the (77, ¢)-sparsifier and (72, ¢)-sparsifier from the
subproblems, the algorithm combines them by replacing the anchored separated hyperedges
with the original hyperedges.

Algorithm 1 A Divide and Conquer Framework.

Input: Hypergraph G, terminal set T, bipartition (V;, V) of vertices, parameter c.
Output: A (7, c)-sparsifier H for G.

1 (Divide) Construct subproblems (G[Vi],7;) and (G[Va], T3).

2 (Conquer) For i € {1,2}, obtain H;, a (T;, ¢)-sparsifier of G[V;].

3 (Combine) Return H := Hy U Hy U E(V1, V) — Sep(E(V1, Va), Vi, Va).

We summarize the divide and conquer framework in Algorithm 1. The following lemma
states the correctness of the framework.
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» Lemma 6. H returned from Algorithm 1 is a (T ,c)-sparsifier.

Proof. Let m : V4 U A1 — Vg, and my : Vo U As — Vg, be the projection maps on H; and
H, respectively. Since V3 U Ay and Vo U As are disjoint, it is natural to define 7 : V — Vi
by simply combining both maps where 7(v) = 71 (v) if v € V1, and #(v) = ma(v) if v € V5.

Now, it suffices to show that for any two disjoint subsets A, B C 7, we have
mincuté (A, B) = mincut$ (w(A), 7(B)).

Part 1. We first show that mincutg (A, B) > mincut§ (r(A), 7(B)). Let (X,V \ X) be a
minimum (A, B)-cut on G with size |0X| < c. Intuitively, we will construct the cuts in
the subproblems G[V;] and G[Vz] using (X, V \ X). Then we will argue that the preserved
mincuts in G[V;] and G[V3] can be merged back, proving that there is a (7(A), 7(B))-mincut
in H with size no larger than |0X]|.

Let S = E¢(V1,Va) be the set of hyperedges across the bipartition in the divide and
conquer framework, and let V =V UA; U A, be the vertex set in G5P. We define the set of
vertices X**P that contains X and all newly created anchor vertices that belongs to the X
side: for any e € S, we add {ve1, v¢,2, 9e,3, Ve,a} to X°P if e C X (the hyperedge is fully in
the X side). We add {vc 1,03} to X*P if e € S. We add nothing if e C V' \ X.

Now, we have X = (0X)USep((0X)NS, V1, Va)—(0X)NS. Moreover, (X5, V'\ X5P)
is an (A%, B®Y)-cut in G*P of size |0X| + |(0X) N S|, where

A% = AU {0c 1,03 | e € ((0X)NS)}, and
B®t .= BU {967279674 | ec ((8X) N S)}

Intuitively, by carefully extend the pair (A, B) to a larger pair (A®*, B®") we ensure that all
separated hyperedges Sep((0X) NS, Vi, Va) appear in every (A%, B&*)-mincut on G**P. See
Figure 1.

Figure 1 An illustration to the proof of Lemma 6. The gray circles represent hyperedges that
cross the bipartition (Vi,V2) in the divide and conquer framework. When these hyperedges are
separated, new anchor vertices are introduced and added to the terminal sets. The newly created
terminal vertices are forced to join different sides of the cut, if and only if the separated hyperedge
crosses the (A, B)-mincut (X,V \ X).

Suppose Hj is a (71, ¢)-sparsifier of G[Vi] and Hs is a (73, ¢)-sparsifier of G[Va] obtained
from the conquer step (Algorithm 1). Let (Y1, 7(V1 U A1)\ Y1) and (Yo, m(VaU A3) \ Ya) be a
(m(A®yv, 04, ), T(B®Yv 04, ) )-mincut on Hy and a (7(A%Yv,u4,), (B v,u4, ))-mincut on
H, respectively. Notice that every hyperedge in Sep((0X) NS, Vi, Va) are in 9(Y; UYs). Let
Yy := Y7 UY> and after removing all anchor vertices we get Y =Yy NV. Now (Y, n(V)\Y)
is a (m(A), m(B))-cut. Since for each hyperedge e € (0zX) NS, e is separated into two
hyperedges and both of them are in d0g,un, Yo, we have
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00Y | < [0m,0m, Yol — (06 X) N 5. (1)

Notice that the inequality in Equation (1) comes from the fact that Op, m, Yo may or may
not contain more separated hyperedges from Sep(S \ 0X, V1, V3).
Finally we obtain

mincutf (w(A), 7(B)) < |0gY | (Y is some (w(A), w(B))-cut on H)
< |0mum, Yo| — 1(0X) N S| (by Equation (1))

= [0m, Y| + [0, Y| — [(0X) N S|
(Yp is the disjoint union Y; UYs

)
< |Ogse X*P| — |(0X) N S| (X% is some (A%, B®%)-cut)
= |0X]| (exactly |(0X) N S| hyperedges were separated)
= mincut& (A, B) (X is an (A, B)-mincut)

as desired.

Part 2. The proof of mincut§, (w(A), 7(B)) > mincutf (A, B) is very similar to Part 1, so
we defer the proof (for completeness) in the full version. <

3.4 (5c¢,c)-Edge-Unbreakable Terminals

Let G = (V, E) be a hypergraph and let 7 C V be the set of terminals. By adopting the
notations from [17], we say that a terminal set T is (5¢, ¢)-edge-unbreakable on G if for
any bipartition (V1,V3) of V' with no more than ¢ crossing edges |Eq(Vi,V2)| < ¢, either
[T vy | < beor |T|v,| < 5e. That is, if there is a cut of size at most ¢, then at least one of the
sides has less than 5c¢ induced terminals.

Liu [16] obtained an (7, c¢)-sparsifier of size O(|T|c?) with a (5c, ¢)-edge-unbreakable
terminal set 7 where each terminal vertex v € 7 has degree 1. It turns out that Liu’s
techniques naturally extend to hypergraphs. We prove the following in the full version of the

paper.

» Lemma 7. Let G = (V, E) be a hypergraph and let T CV be a set of degree-1 terminals.

If T is (5c,c)-edge-unbreakable on G, then there ewists a subset E' C E with O(|T|c?)
hyperedges, such that G/(E — E') is a (T, c)-sparsifier of G.

4 Existence of (7, c)-Sparsifiers with O(kc®) Hyperedges
With all the tools equipped in the previous section, we are able to prove the existence of a
(T, c)-sparsifier with O(| T |¢?) hyperedges.

» Theorem 8. Let G = (V, E) be a hypergraph and T C V be the set of terminals. Then
there is a subset E' C E such that |E'| = O(|T|c®) and the contracted hypergraph G/(E — E')
is (T, ¢)-equivalent to G.

To prove Theorem 8, it suffices to prove the following Lemma 9 where every terminal
vertex has degree 1:

» Lemma 9. Let G = (V, E) be a hypergraph and T CV be the set of degree 1 terminals.

Then there is a subset E' C E such that |E'| = O(|T|c?) and the contracted hypergraph
G/(E — E') is (T, c)-equivalent to G.
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Proof of Theorem 8. Without loss of generality, we may assume that each vertex in T has
degree at most ¢, by duplicating each terminal vertex and add c parallel edges between the
duplicated vertex and the original vertex. Let T be the terminal set of an input instance.
Now, assuming each terminal has degree at most ¢, we can further duplicate each of these
terminals ¢ times so we have a set 77 of at most |7 |c degree-1 terminal vertices. By Lemma 9,
there exists a subset E/ C E such that |E’| = O(|T"|c?) = O(|]T|¢*) and the contracted
hypergraph G/(E — E') is (T, ¢)-equivalent to G. <

To prove Lemma 9, we first present an algorithm SPARSIFYSLOW (See Algorithm 2).
The algorithm recursively apply divide and conquer framework until the terminal set is
(5¢, ¢)-edge-unbreakable as the base case. After applying Lemma 7 on each base case, the
algorithm combines the sparsifiers from the subproblems using Lemma 6.

Algorithm 2 SPARSIFYSLOW SPARSIFYSLOW(G, T, ¢).

Input: An undirected unweighted multi-hypergraph G, a set of degree-1 vertex
terminals 7 C V, and a constant c.
Output: A (7, c)-sparsifier H for G.
1 if T is (B¢, ¢)-edge-unbreakable then

2 Construct H, a (T, c)-sparsifier of G using Lemma 7.
3 return H.
4 else
5 Let (V1, V) be a bipartition of V(G) that refutes the (5¢, ¢)-edge-unbreakable
property. That is, |[Eg(V1,V2)| < ¢ but [T NVy| > 5c and [T N Va| > 5e.
, {Hl + SPARSIFYSLOW(G[V4], 71, ¢), and
6 Obtain A
Hj < SPARSIFYSLOW(G[V2], Tz, ¢).
7 return H < H; U Hy U E(V1,V3) — Sep(S, Vi, Va).

8 end

Lemma 10 and Lemma 11 give the correctness proof and the size to the returned (7, ¢)-
sparsifier from Algorithm 2.

» Lemma 10. Algorithm 2 returns a (T, c)-sparsifier of G.

Proof. First we notice that all vertices in 7; and 73 have degree 1 in G[Vi] and G[V3]
respectively: the anchor vertices have degree 1 and so the recursive calls in Algorithm 2 are
valid. The correctness is then recursively guaranteed by Lemma 6 (divide-and-conquer step)
and Lemma 7 (base case). <

» Lemma 11. Let G be a hypergraph, T CV is the set of degree-1 terminal vertices, and
let ¢ be a constant. Let H = SPARSIFYSLOW(G, T, ¢) be the output of Algorithm 2. Then H
has at most O(|T|c?) hyperedges.

The proof to Lemma 11 is via a potential function similarly defined in Liu [16].

Proof. The execution to Algorithm 2 defines a recursion tree. If |[T| < 5¢, then the recursion
terminates immediately because T is trivially (5¢, ¢)-edge-unbreakable by definition and a
(T, c)-sparsifier of O(|T|c?) hyperedges is returned by Lemma 7. Assume that |7| > 5c, then
each recursive call on the subproblem (G’,T’) guarantees that | 7’| > 5c.
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Now, it suffices to use the following potential function to prove that the total number of
terminal vertices in all recursion tree leaves can be bounded by O(|T|). Define a potential
function for each subproblem (G',7T’) to be ®(G',T") := |T’| — 5¢. Then, according to
Algorithm 2, whenever (G’,T") splits into two subproblems (G/[V4],77) and (G'[Va],T3)
we have

(G VA, TY) + (G'Val, T3) < |T VA + | T' N V3| + 4| Eg (Vi, Va)| — 10¢
< PG, T -c

Since every subproblem has a non-negative potential, and the sum of potential decreases by
¢ at each divide-and-conquer step, the total number of leaf cases do not exceed (G, T)/c <
[T|/c. Hence, the total size from the base case is at most 3- g/ 7). [T < ®(G,T)+
(5¢)(# of leaf cases) = O(|T)).

By Lemma 7, the total number of hyperedges returned from Algorithm 2 is at most
O(|T|¢?). The total number of hyperedges added back at Algorithm 2 is at most the number
of divide-and-conquer steps times the cut size, which is at most |7|. Therefore, the output
(T, c)-sparsifier H has at most O(|T|c?) hyperedges as desired. <

base case

Proof of Lemma 9. Lemma 9 follows immediately after the correctness proof (Lemma 10)
and upper bounding the number of hyperedges (Lemma 11). <

5 An Almost-linear-time Algorithm Constructing a Sparsifier

This section is devoted to proving part (1) in Theorem 1. That is, we give a almost-linear-time
(assuming a constant rank) algorithm that constructs a contraction based (7, ¢)-sparsifier of
O(|T|¢?) hyperedges which matches with Theorem 8 up to a constant factor. We summarize
the result in Theorem 12.

» Theorem 12. Let G = (V, E) be a hypergraph with n vertices, m hyperedges, and rank r =
maxecp le|. Let T CV be a terminal set T C V. Then there exists a randomized algorithm
which constructs a (T, c)-sparsifier with O(|T|c®) hyperedges in O(p + n(rclogn)®) logm)
time.

Overview of the algorithm. Although Algorithm 2 can construct a (7, ¢)-sparsifier with
O(|T|c®) hyperedges, it is slow because we do not have an efficient algorithm searching for a
bipartition that violates the (5¢, ¢)-edge-unbreakable property.

To construct our contraction-based (7, c¢)-sparsifier, all we need to do is identifying
essential hyperedges and contract non-essential ones. Essential hyperedges are indispensable
to maintaining mincut between terminals. It seems to be challenging to identify essential
hyperedges on an arbitrary graph without a (5¢, ¢)-edge-unbreakable guarantee. Fortunately,
we notice there is an efficient way to identify essential hyperedges in an expander.

Naturally, we can utilize EXPANDERDECOMPOSE (where the version for hypergraphs is
explicitly stated in [18]) which splits a hypergraph into expanders. Expander decomposition
not only guarantees expander sub-hypergraphs, but also fits in the divide-and-conquer
framework indicated by Lemma 6 with a favorable almost-linear time. Then, we can focus
on identifying essential hyperedges in an expander.

To identify essential hyperedges in an expander, we first enumerate all connected cuts®
with value at most ¢ — the sub-hypergraph induced by the smaller side of a connected cut

! In Chalermsook et al. [4], the concept of connected cuts is not explicitly defined. We give a formal
definition in the full version and hope it clarifies some ambiguity in their paper.
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is connected; see Algorithm 3 and Algorithm 4. Then, we build a pruned auziliary graph
based on the cuts we have enumerated. The pruned auxiliary graph leads to an efficient way
identifying essential hyperedges. Finally, we contract all detected non-essential hyperedges.
We call the above procedure that sparsifies an expander ¢-SPARSIFY. See Algorithm 5.

Algorithm 3 ENUMERATECUTS (G, ¢, 1, c).

Input: A ¢-expander hypergraph G = (V, E) with rank r, and a threshold
parameter c.
Output: All connected cuts with value at most c.
1 C4+ (. // Stores all found connected cuts.
2 for each vseeqg € V' do

/* Invokes a helper function to find all connected cuts involving vseed- */
3 C + C U ENUMERATECUTSHELP(0, G, G, &, T, ¢, Useed )- // See Algorithm 4.
4 end

5 return C.

Algorithm 4 ENUMERATECUTSHELP (depth, H, G, $, 7, C, Vseed )-

Input: The current recursion depth depth. A hypergraph H = (V, E) with rank r.
The original hypergraph G. Parameters ¢ and ¢. A seed vertex vseeq € V.
Output: All connected cut with value at most ¢ so that v4eeq is in the smaller side.

1 if depth < rc then
2 Run DFS from vgeeq on H and stop as soon as visiting c¢~! + 1 hyperedges.
3 Let E be the set of visited hyperedges and X be the set of visited vertices.
4 if DFS gets stuck before visiting c¢~' + 1 hyperedges then
5 if |0cX| < ¢ then
6 ‘ return {(X,V\X)} /* Some connected cut with value at most c. */
7 else
8 ‘ return 0.
9 end
10 else
11 S+ 0.
12 for each e € E and for each v € e, vV # Vgeeq dO
13 Let ¢/ < ¢ \ v./* modify the boundary hyperedge into a smaller one. */
// A recursive call with v being removed from e.
14 S + S UENUMERATECUTSHELP(depth + 1, H — e+ €', G, ¢, T, ¢, Vseed)
15 end
16 return S.
17 end
18 else
19 return (.

20 end
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Algorithm 5 ¢-SpPARsIFY (G, T, é,r,¢).

4

© ® g9 o w

10

Input: ¢-expander hypergraph G = (V, E') with rank r, terminal set 7 ,threshold

parameter c.

Output: A (7, c¢)-sparsifier of G.

1 Run ENUMERATECUTS and construct the pruned auxiliary graph
G = (Ve Fav) where V2 = Py U Cy U Ej.

2 Let E' + E\ Ej.

3 for each e € Ey (in any order) do

Compute the set of partitions P! := Py N N(N(e)) who has at least one mincut
that contains the edge e.
if Vpe P, N(p) £ N(e) then
Remove N(e) and all incident edges from G2
E +— E'U {6} // e is non-essential.
end

end
return G/E’.

Algorithm 6 SPARSIFYFAST (G,7,T,c,C").

© W N OO A W N+

10

11
12
13
14

15

Input: hypergraph G = (E, V) with rank r, terminal set 7, threshold parameter c,

constant C’.

Output: a (7T, c)-sparsifier H.
H+ G.
tter <— 0. /* Number of iterations of the following while-loop. */

do

G+ H

¢t 4C"rc* log® n.

{Vi}t_; + EXPANDERDECOMPOSE(G, ¢).

G’ + G /* Anchored sub-hypergraphs will be separated from G’ one by one. */
for eachi=1,2,...,t do

Apply the divide step in Algorithm 1 to G’ with terminal 7 and bipartition
(Vis Upir Vo), and get G  G'[Vi] and G’ + G'[Uj_;., Vil.

(For each boundary hyperedge e with anchor vertices o, 3 and ¢, 4 created on
the UE:M Vi side, we assign both v 3 and 0. 4 to an arbitrary V; such that
j>iandenV; #0.)

{H;}!_; « {¢-SPARSIFY(G;, Vi N T, ¢,7,¢)}_,. /* The conquer step. */
H + H; /+ Each sparsifier H; will be merged with H one by one. */
for eachi=t—1,...,1 do

Apply the combine step in Algorithm 1 to merge H; with H. That is, all
anchor vertices introduced at the divide step are removed and all separated
hyperedges are replaced by the boundary hyperedges before separating V;
from Uz:i Vi

iter = iter + 1.

16 while iter < logm.
17 return H.
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With EXPANDERDECOMPOSE and ¢-SPARSIFY procedures introduced above, we are able
to construct the (7, c)-sparsifier on general hypergraphs of size O(|T|c?) efficiently. Our
algorithm (Algorithm 6) is based on Chalermsook et al. [4] and consists of iterations of
EXPANDERDECOMPOSE and ¢-SPARSIFY. Each iteration implements the divide-and-conquer
framework shown by Algorithm 1: we first apply EXPANDERDECOMPOSE and decompose
the hypergraph into ¢-expanders. Then we apply ¢-SPARSIFY to sparsify the ¢-expanders.
Finally, we glue all sparsifiers of the ¢-expanders by recovering the inter-cluster hyperedges
between the ¢-expanders. Similar to [4], we prove that O(logm) iterations suffice to obtain
a (T, c)-sparsifier of O(|T|c®) hyperedges.

Due to the page limit, we refer the readers to the full version of this paper to see the
details of the algorithms in this section.
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