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—— Abstract

A Lyndon word is a string that is lexicographically smaller than all of its proper suffixes (e.g., airbus

is a Lyndon word; amtrak is not a Lyndon word because its suffix ak is lexicographically smaller
than amtrak). The Lyndon array (sometimes called Lyndon table) identifies the longest Lyndon
prefix of each suffix of a string. It is well known that the Lyndon array of a length-n string can be
computed in O(n) time. However, most of the existing algorithms require the suffix array, which
has theoretical and practical disadvantages. The only known algorithms that compute the Lyndon
array in O(n) time without the suffix array (or similar data structures) do so in a particularly space
efficient way (Bille et al., ICALP 2020), or in an online manner (Badkobeh et al., CPM 2022). Due
to the additional goals of space efficiency and online computation, these algorithms are complicated
in technical detail. Using the main ideas of the aforementioned algorithms, we provide a simpler
and easier to understand algorithm that computes the Lyndon array in O(n) time.
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1 Related Work

A Lyndon word is a string that is lexicographically smaller than all of its proper suffixes
(e.g., airbus is a Lyndon word; amtrak is not a Lyndon word because its suffix ak is
lexicographically smaller than amtrak). The Lyndon array (sometimes called Lyndon table)
identifies the longest Lyndon prefix of each suffix of a string (a precise definition follows
later). It has both theoretical and practical applications related to repetitiveness in strings.
Most notably, it is a crucial component for showing that a length-n string contains less
than n maximal repetitions (the “Runs” theorem by Bannai et al. [3]), and it is useful for
computing all of these maximal repetitions in optimal time [8]. Other applications of the
Lyndon array include text compression and indexing [16].

There is a close relation [12] between the Lyndon array and the suffix array (one of
the most fundamental data structures in string algorithmics [15]). This inspired research
focused on computing the Lyndon array from the suffix array [9], computing both arrays
simultaneously [2, 13], and also using properties of the Lyndon array to compute the suffix
array [2, 4]. One of the conceptually simplest methods for computing the Lyndon array
combines the (inverse) suffix array with a folklore algorithm for the computation of nearest
smaller values [9, Algorithm ISA-NSV] (we will discuss this algorithm in Section 4).

However, using the suffix array is both a theoretical and practical drawback. From a
theoretical point of view, computing the suffix array of a length-n string over a general
ordered alphabet takes Q(nlgn) time. This is due to the well-known information-theoretic
lower bound on the number of comparisons for sorting. We can only compute the suffix array
in optimal O(n) time, if the alphabet can be sorted in O(n) time (e.g., a polynomial integer
alphabet ¥ = {1,...,n°M} on a word RAM of width w > log,n). This is not a concern

© Jonas Ellert;
37 licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 48; pp. 48:1-48:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:jonas.ellert@tu-dortmund.de
https://orcid.org/0000-0003-3305-6185
https://doi.org/10.4230/LIPIcs.ESA.2022.48
https://github.com/jonas-ellert/simple-lyndon
https://github.com/jonas-ellert/simple-lyndon
https://archive.softwareheritage.org/swh:1:dir:dbbf2b4ac2fa652eb0865cdc6719924ce8a81952;origin=https://github.com/jonas-ellert/simple-lyndon;visit=swh:1:snp:1a40ff8c462536624a348dbd651a5e66629fb09c;anchor=swh:1:rev:4b61d4a2500693886e0d69cd0c1c5ea68e48dd89
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2

Lyndon Arrays Simplified

in practice, where this requirement is virtually always met. Nevertheless, even the fastest
algorithms for the suffix array are relatively slow in practice, and the computation appears
to be somewhat excessive for the seemingly simpler task of computing the Lyndon array.
There are two known algorithms that compute the Lyndon array by mere symbol
comparisons, without using the suffix array, and in optimal O(n) time. The first one [5]
computes the Lyndon array using only O(1) words of additional working space, or the
succinct 2n-bit version of the Lyndon array using only o(n) bits of additional working space.
The second one [1] is an online algorithm that computes the Lyndon array from right to
left. The technical details of these algorithms are rather intricate, and many of the used
techniques are only needed due to the goals of space efficiency and online computation.

Contributions. We present a simple O(n) time and space algorithm that computes the
Lyndon array of a length-n string in the comparison model (i.e., the only elementary
operations allowed on symbols of the string are comparisons of the form less-greater-equal).
It requires no precomputed data structures (like the suffix array), and works by exploiting
the powerful combinatorial properties of Lyndon words. Many of the used techniques are
simpler versions of what was done in [5, 1]. The final trick used to achieve linear time is
similar to Manacher’s classic algorithm for longest palindromic substrings [14].

The proof of correctness is still rather technical, but the resulting algorithm is incredibly
easy to implement. The provided C++ implementation consists of not even 50 lines of code,
and uses neither external nor standard libraries.

2 Preliminaries

We use the interval notations [¢,j] = [i,7 + 1) = (i — 1,j] = (¢ — 1,5 + 1) to denote the
integer set {i,s+1,...,5} (or @ if ¢ > j). A string x = x[1..n] over an ordered alphabet
is a sequence z = z[1]z[2]- - - z[n] of symbols drawn from some totally ordered set 3. We
write || = n to denote the length of the string. The set X* contains all strings over X,
including the empty string € of length 0. The concatenation of two strings z[1..n] and y[1..m)
is the sequence z[1]...z[n]y[1]...y[m|, and simply written as zy (or x - y). The total order
of symbols from Y induces the lexicographical order of strings from ¥*. We say that x is
lezicographically smaller than y and write x < y, if and only if either y = zw for some
non-empty string w, or = urv and y = usw for (possibly empty) strings u, v, w and symbols
r < s. We write x Xy to denote x =y Vz < y.

For 4,j € [1,n] with ¢ < j, the substring x[i..j] = «[i.j+ 1) =x(i —1..j] =x(i—1..5 + 1)
of z[1..n] is the sequence x[i]x[i + 1]---z[j]. If ¢ > j, then z[i..j] equals the empty string
denoted by e. If x[i..j] # = then x[i..j] is a proper substring. A substring of the form x[1..5] is
called prefiz of x, while z[i..n] is called suffiz of . We use the simplified notation z; = xz[i..n]
for the suffix starting at position i. The longest common extension (LCE) of two suffixes
z; and z; is defined as the length of the longest common prefix of the suffixes, formally
LCE(4, j) = max{|u| | u,v,w € ¥* Az; = wv A z; = uw}.

Sentinel Symbols. Throughout this work, we often compare two suffixes z;, z; of the same
string x[1..n]. The special case where one suffix is a prefix of another, e.g., i < j and z; =
T;jTiy|,|, often complicates the notation of definitions and algorithms. This can be avoided
by assuming that the text starts and ends with special sentinel symbols x[1] = # and z[n] = $.
The sentinels are smaller than all other symbols, i.e., Vk € (1,n) : z[k] > $ > #. In definitions
and lemmas we emphasize the presence of sentinels by writing « = z[1..n] = #x(1..n)$. (Note
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that 7 is the length of the string including the sentinels.) The usage of sentinels is of purely
cosmetic nature. Particularly, they do not affect the lexicographical order of suffixes, i.e., it
holds z[i..n)$ < z[j..n)$ if and only if z[i..n) < x[j..n). In practice, we can add sentinels to
any string by either physically prepending and appending them, or by using an appropriate
wrapper function! when accessing the string.

Lyndon Words and Arrays

There are multiple equivalent definitions of Lyndon words. We use Duval’s characterization
based on the lexicographical order of suffixes:

» Definition 1 ([7, Proposition 1.2]). A string z[1..n] is a Lyndon word, if and only if it is
lexicographically smaller than all of its proper non-empty suffizes, i.e., Vi € [2,n] : © < ;.

The Lyndon array of a string and its close relatives, the nearest smaller suffix arrays,
capture the combinatorial structure of Lyndon substrings. We denote the Lyndon array by
A, which was also done in [5, 9]. Other notations are Lyn in [6, 1], ! in [3], and £ in [10, 11].

» Definition 2. The Lyndon array A[1..n], the previous smaller suffix array prev[l..n], and
the next smaller suffix array next[1..n] of a string x = #x(1..n)$ are defined as:

(i) Vi € [1,n] : Ali] = max{m | m € [1,n — i+ 1] A z[i..i +m) is a Lyndon word },
i.e., x[i..i + A[i]) is the longest Lyndon prefix of suffix x;
(ii) Vi e (1,n) : previ] =max{j | j € [1,9) Axz; <z;}, prev[l]=0, prev[n] =1,
i.e., Tprey[s] i the nearest suffix starting left of 7 that is lex. smaller than z;
(iii) Vi € (1,n) : next[i] = min{j | j € (¢,n] Ax; < x;}, next[l]=n+1, next[n]=n+1,

i.e., Tpext[q] 18 the nearest suffix starting right of ¢ that is lex. smaller than z;

Figure la shows an example of these arrays. In drawings, we use a directed edge from
position i to position j of a string to indicate that either prev[i]| = j (whenever the edge is
directed from right to left) or next[i] = j (whenever the edge is directed from left to right).
We refer to these edges as PSS and NSS edges. It is no coincidence that in the example
it holds next[i] = i + A[7] for all i. In fact, this is a fundamental combinatorial property
of the Lyndon array, which was first (indirectly in a different form) shown by Hohlweg
and Reutenauer [12]. Subsequently, Franek et al. [9, Lemma 15] and Franek and Liut [11,
Lemma 1]? proved the property in the form stated below.

» Lemma 3 ([12, 9, 11]). Let z = #x(1..n)$ be a string with Lyndon array \ and next
smaller suffiz array next, then it holds Vi € [1,n] : next[i] = ¢ + A[i].

Another property shown by Bille et al. [5] relates prev and Lyndon words:

» Lemma 4 ([5, Lemma 4]). Let x = #x(1..n)$ be a string with previous smaller suffiz array
prev. For every i € [2,n], the string x|prev[i]..1) is a Lyndon word.

1 see, e.g., lines 4-5 in file https://github.com/jonas-ellert /simple-lyndon /blob/main/lyndon.hpp

2 Lemma 1 (b) in [11] should state “z[i..j] is proto-Lyndon” rather than “z[i..n] is proto-Lyndon”
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3 Key Properties of Nearest Smaller Suffixes

2 3 4 5 6 7 8 9 1011 12 13 14
= # am¢trakadirbus$

Al144 3 1 1 2 1 6 2 1 3 1 1 1

next 15 6

6
prev. 0 1 2 3 6 1 8 9 8 11 11 1

|

|
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1
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1
(a) Example of arrays A, next and prev. (b) Drawing for Lemma 5.
1 prev[r] 44 3 12 *_21 r n
Lo 1 1 Ll 1
T = |
(c) Drawing for Lemma 6.
£ = prev[k] k r = next[k] £ = prev[k] k r = next[k]

(d) Drawing for Lemma 7(ii). (e) Drawing for Lemma 7(iii).

Figure 1 Examples and technical drawings for Sections 2 and 3. PSS edges are solid and red.
NSS edges are dashed and blue. Dotted black edges are either NSS or PSS edges.

In this section, we show combinatorial properties of prev and next that are essential for
all algorithms presented in this paper. Some of the properties have been shown (in a similar
form) in [, 1]. Proving Lemmas 5-7 is helpful for truly understanding the mechanisms
at play. The reader is encouraged to do so on their own, with the help of the provided
supplementary drawings. The full proofs are given in Section 7.

Naming of variables. Throughout the remainder of the paper, we use the variables £ and r
to denote positions of the string. The intended meaning of these variables is left and right,
i.e., whenever we use ¢ and r it holds £ < r.

PSS and NSS edges are intersection-free. The first property that we show is that, when
drawn underneath the text as in the previous example, none of the PSS and NSS edges
intersect. This is formally expressed by the following lemma (see also Figure 1b).

» Lemma 5. Let © = #x(1..n)$ be a string with previous and next smaller suffiz array prev
and next. Let l1,03,71,7r2 € [1,n] be indices with either next[¢1] = r1 or prev[ri] = ¢1, and
also either next[lz] = rq or prev[re] = €3. Then it does not hold {1 < by <11 < Ta.
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Chains of previous smaller suffixes. For arbitrary index r € [1,n] and integer e > 0, we
recursively define prev®[r] = r and prev®™![r] = prev®[prev[r]]. We write £ = prev*[r] to denote
that there is some integer e > 0 with £ = prev®[r]. Note that generally 1 = prev*[r] (due to
the sentinel z[1] = #) and r = prev*[r]. In drawings, ¢ = prev®[r] means that there is a chain
of PSS edges from r to £. The following lemma states useful properties of PSS chains, which
we will later use to compute the arrays prev and next. The lemma is visualized in Figure lc.

» Lemma 6. Let x = #x(1..n)$ be a string with previous and next smaller suffiz arrays prev
and next, and let ,r € [1,n] be arbitrary indices.

(i) It holds prev[r] = prev*[r — 1].

(ii) It holds next[¢] = r if and only if £ = prev*[r — 1] and £ > prev[r].

Finally, for some indices that are related via next and prev, we can deduce LCEs. The
following lemma is visualized in Figures 1d and le.

» Lemma 7. Let x = #x(1..n)$ be a string with previous and next smaller suffiz arrays prev
and next. Let k € (1,n) be an arbitrary index, and let £ = prev]k] and r = next[k].
(i) If Lce({, k) = LcE(k, ), then LCE({, 1) > LCE(k,r) and either prev[r] = £ or next[{] = r.
(i) If Lce(l, k) < Lee(k,r), then LCE((,r) = LCE(L, k) and prev[r] = {.
(iii) If LcE(Y, k) > LcE(k,r), then LCE({,r) = LCE(k,r) and next[(] = r.

4 Algorithms to Compute the Lyndon Array

Due to Lemma 3, instead of designing algorithms that compute the Lyndon array A, we
can design algorithms that compute the next smaller suffix array next. This has been done,
e.g., by Bille et al. [5] and Crochemore et al. [1], and is also the general approach used in
this paper. All of the presented algorithms are based on a simple folklore algorithm for
nearest smaller values, where instead of comparing values we lexicographically compare
suffixes (Algorithm 1(a)). We obtain three different versions of this algorithm depending
on how the lexicographical comparisons are implemented: Algorithm 1(b) uses the inverse
suffix array and is only shown because it is a standard solution for computing the Lyndon

array. Algorithm 1(c) implements lexicographical comparisons with naively computed LCEs.

Algorithm 1(d) refines the LCE computation such that it is more time efficient. In the
remainder of this section, we explain each version of the algorithm in detail.

Algorithms 1(c) and 1(d) require super-linear time, but they can be seen as incremental
stepping stones towards the final solution. In Section 5, we modify Algorithm 1(d) such that
it runs in O(n) time.

Algorithm 1: The general approach. Due to the sentinels, we can directly assign prev[1],
next[1], and next[n] (lines 1-2). We compute the arrays next and prev in n — 1 iterations of a
simple for-loop (line 4). The goal of iteration r is to compute prev[r], while also identifying
all indices ¢ with next[¢] = r. A simple strategy for this is dictated by Lemma 6, which states
that all the relevant indices lie on the chain of PSS edges that starts at position r — 1. We
thus inspect the positions £ = prev*[r — 1] one at a time, starting with £ = r — 1 (line 5). As
long as xy = x,, we assign next[{] < r, and then continue with the next index ¢ < prev[{] on
the chain of PSS edges (lines 6-8). As soon as xy < z;., we break out of the inner loop and
finish the current iteration of the outer loop by assigning prev[r] <— ¢ (line 9). (The sentinel
x[1] = # ensures that 1 = prev*[r] and x; < z,; thus we are guaranteed to reach some ¢ with
2y < x, eventually.) The correctness of the algorithm follows directly from Lemma 6. An
example of an outer loop iteration is provided in Figure 2 (the arrays lexrank, plce, and nlce
will be relevant later and can be ignored for now).

48:5
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Algorithm 1 Various algorithms for computing nearest smaller suffixes.

Require: string « = z[1..n] = #z(i..n)$

Ensure:

1. prev[l..n] < new array with prev[l] =0

previous and next smaller suffix arrays prev and next

2: next[l..n] < new array with next[1] = next[n] =n+1

(a) Folklore (b) ISA-NSV

3: lexrank < inverse suffix array of =

4: for r =2 to n do 4: for r =2 to n do
5: l+—r—1 5: l—r—1
6: while z, = z, do 6: while lexrank[{] > lexrank[r] do
7: next[¢] < r 7 next[{] < r
8: ¢ < prev[(] 8: £ < prev[{]
9: prev(r] < ¢ 9: prev(r] < ¢

(c) Naive LCE-NSS (d) Improved LCE-NSS
3: plce[l..n] — array filled with 0 3: plce[l..n] — array filled with 0
4: nlce[l..n] « array filled with 0 4: nlce[l..n] « array filled with 0

5: for r =2 to n do

10:

14:

15:

l+—r—1
m < LCE-SCAN({, 1)

while z[¢ + m] > z[r + m| do
next[{], nlce[l] < r,m

m <— LCE-SCAN(prev[{], )

¢+ prev[{)

prev[r], plce[r] < ¢, m

(e) LCE Functions for (c) and (d)

function LCE-EXTEND(4, 7, m)
while z[¢ + m] = z[r + m] do
m<«—m+1
return m

function LCE-SCAN({, 1)
t return LCE-EXTEND(Y, r,0)

5: for r =2 to n do

10:
11:
12:
13:

14:

15:

le—r—1
m < LCE-SCAN({, 1)

while z[¢ + m] > z[r + m| do

next[¢], nlce[(] <— r,m

if m = plce[] then

‘ m <— LCE-EXTEND(prev([{],r,m)

else if m > plce[¢] then
t m < plce[/]

£ <+ prev[/{]

prev(r], plce[r] + £,m

to achieve O(n) time, substitute:

line 7: m < SMART-LCE(/,r,0)

line 11: m <— SMART-LCE(prev[{], r,m)
(see Algorithm 2)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
r = # a b abcaccbabdacabdadabcacecat$
lexrank 4 6 7 8 12 27 5
plce 2 2 4 1 0 2
prev 2 5 12 17 20 2
- ) |
nlce 6 2 2 1 0
next 22 22 22 22 22

Figure 2 For any of the Algorithms 1(a)—(d), we perform six suffix comparisons in outer loop
iteration r = 22. We evaluate x; > x, for each of the values ¢ = 21,20,17,12,5,2 (precisely in this
order). For the first five values ¢ = 21,20,17,12,5, we enter the body of the inner loop and thus
assign next[¢] <— 22. We break out of the inner loop by discovering that z2 < x22, after which we
assign prev[22] < 2. By design of the algorithm, and following Lemma 6, the values assumed by £
form a consecutive chain of PSS edges starting at position r — 1 = 21 (dashed edges).

Whenever we perform the lexicographical comparison of suffixes in line 6, we correctly
assign either next[l] < r or prev[r] + ¢ immediately afterwards. Since each entry of prev
and next gets assigned exactly once, we perform exactly 2n — 3 suffix comparisons; we
enter the body of the inner loop exactly n — 2 times (once per entry of next, but not for
next[1] = next[n] = n + 1), and break out of the inner loop exactly n — 1 times (once per
outer loop iteration, or equivalently once per entry of prev, but not for prev[1] = 0). It follows

that the algorithm takes O(n) time, plus the time needed to perform the suffix comparisons.

Next, we discuss three possible implementations of these comparisons.

Algorithm 1(b): Using the inverse suffix array. The inverse suffix array lexrank[1..n]
of z[l..n] is the unique permutation of [1,n] that satisfies V¢,r € [1,n] : z; < z, <=
lexrank[¢] < lexrank[r] (an example is provided in Figure 2). Algorithm 1(b) precomputes the
inverse suffix array, and then uses it to perform the lexicographical suffix comparisons. This
idea was first proposed by Franek et al. [9, Algorithm NSVISA]. As discussed in Section 1,
the precomputation takes O(nlgn) time for general ordered alphabets, or O(n) time for
linearly-sortable alphabets. The remainder of the algorithm takes O(n) time because we
perform O(n) suffix comparisons, each of which takes constant time when using lexrank.

Algorithm 1(c): Using LCEs with simple scanning. If ¢ # r and z[n] = $, then it holds
g < xp <= z[l +LCE({,r)] < z[r + LCE({,r)] (both of the conditions are satisfied for the
comparisons performed by our algorithms). The LCE can be computed by simple scanning,
as shown in Algorithm 1(e). Due to the sentinel z[n] = $, no suffix is prefix of another
suffix, and we always find a mismatching symbol eventually. Algorithm 1(c) implements the
lexicographical suffix comparisons with LCEs (lines 7, 8, and 10). Additionally, it stores the
computed LCEs in two arrays nlce and plce (lines 3-4, 9, and 15), where after termination it
holds plce[i] = LCE(prev]i],¢) and nlce[i] = LCE(4, next[i]) for all ¢ € (1,n). These arrays are
of independent interest. For example, nlce is useful when computing maximal repetitions [8].

Computing some LCE(¢, r) by scanning takes LCE(¢,7) + 1 symbol comparisons: LCE({, )
comparisons with outcome “equal”, and one comparison with outcome “not equal”. For the
example iteration in Figure 2, we compute LCE(21,22) = 0, LCE(20,22) = 1, LCE(17,22) = 2,

48:7
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LCE(12,22) = 2, LCE(5,22) = 6 and LCE(5,22) = 2, and thus we perform 19 symbol
comparisons. In the worst case, a single LCE scan takes O(n) time, and thus Algorithm 1(c)
takes O(n?) time (the bound is tight, e.g., for the string = #a"~2$). If the string = is
drawn uniformly at random from the set of length-n strings over ¥, where |X| > 1, then the
expected running time of Algorithm 1(c) is O(n) (see [1, Theorem 7]).

Algorithm 1(d): Using LCEs with improved scanning. In a single outer loop iteration
r of Algorithm 1(c), we may compute LCE({,r) for multiple different values of ¢. So far,
we always scanned each new LCE entirely from scratch (line 10). For many of the LCEs,
we can avoid (a part of) the scan by utilizing Lemma 7. This is done in Algorithm 1(d),
which is identical to Algorithm 1(c), except for the highlighted computation of the LCE
in lines 10-13. At the point in time at which we reach line 10, let k" = ¢, ¢/ = prev[{], and
r’ = r. Note that ¢ = prev[k’] and 7" = next[k’], and thus we can use ¢, k’, and ' to invoke
Lemma 7. We already computed LCE(¢', k") = plce[k’] (due to the iteration order of the
algorithm) and LCE(K', r") = nlce[k’] = m (this is the most recently computed LCE). Now
we compute LCE(¢, ') according to the cases of Lemma 7:
If LoE(¢', k') = LCE(K’,r’) then Lemma 7(i) implies LCE(¢', ") > LCE(K’,r"). We compute
LCE(¢,7’) by scanning, but we skip m = LCE(K’, ') symbol comparisons (lines 10-11).
If Lce(?, k') < Lee(K,r’) then Lemma 7(ii) implies LCE(¢',r') = LCE(,k’). Since
plce[k'] = LCE(',EK'), we can simply assign m < plce[k’] (lines 12-13). Note that
Lemma 7(ii) also implies prev[r’] = ¢/, which means that we will immediately break out
of the inner loop and finish the current iteration of the outer loop.
If Lce(¢, k') > LCE(K',r’") then Lemma 7(iii) implies LCE(¢',r") = LCE(K/,7’). It already
holds m = LCE(K/, '), and thus there is no need to do anything.

For the example iteration in Figure 2, we entirely skip the computation of LCE(12,22) due
to Lemma 7(iii), as well as the computation of LCE(2, 22) due to Lemma 7(ii). Additionally, we
skip two symbol comparisons when computing LCE(5, 22), and one symbol comparison when
computing LCE(17,22). The number of symbol comparisons for iteration 22 is 10 (significantly
less than the 19 comparisons needed by Algorithm 1(c)). However, Algorithm 1(d) still takes
O(n?) time in the worst case. In the next section, we slightly modify the algorithm such
that it achieves linear time.

A note on the space complexity. Algorithms 1(c¢) and 1(d) require 4n [log, n| bits to store
the arrays next, prev, nlce and plce. For a small practical improvement, it is possible to
remove the array prev. This is because the only access to prev[l] occurs at the same time at
which we assign next[(] (see lines 9 and 14). Thus, we only need to maintain access to the
values prev[{] for positions with uninitialized next[¢], which means that we can use a single
array for storing both PSS and NSS information. The total working space (without the input
string) then becomes 3n [logy n] + O(lgn) bits.

5 Achieving Linear Time

In order to achieve linear time, we use the function SMART-LCE (Algorithm 2) to more
efficiently compute LCEs. A call to SMART-LCE({, r,m) means that we want to compute
LCE(¢, ), and we have already established LCE({,r) > m. We modify Algorithm 1(d) by
replacing line 7 with m - SMART-LCE({, r,0), and line 11 with m - SMART-LCE(prev|[{],r,m)
(and leave everything else unchanged). In the remainder of the section, we show that
SMART-LCE works correctly, and that the total time spent for all invocations of SMART-LCE
is O(n). Then, it directly follows that the modified version of Algorithm 1(d) takes O(n)
time. Note that Algorithm 2 is tailored to (and thus only works as a part of) Algorithm 1(d).
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Algorithm 2 Efficient LCE computation (only works in conjunction with Algorithm 1(d)).

Require: string = z[1..n] = #x(i..n)$ with z[¢..0 +m) = z[r..r +m).
Ensure: longest common extension LCE(¢, )

1: global variable ¢ + 0

2: global variable d <+ 0

3: function SMART-LCE(/,r,m)

4 if »+m < c then

5: if next[¢ — d] = r — d then m « nlce[l — d]
6 else m « plce[r — d]
7 if r +m < c then return m
8 m+<—c—r

9: while z[¢ + m| = z[r + m] do

10: | méemAl

11: ce,d+—r+m,r—~

12: return m

In the following description, whenever we use the variables ¢, r, and m, we mean the
arguments of the function SMART-LCE (rather than the identically named variables from
Algorithm 1(d)). Now we explain how the new LCE function works. Generally speaking, it
computes LCEs with two different methods: naive scanning (as done before), and deduction
from previously computed LCEs. Sometimes, a combination of both is necessary. Both
methods rely on a global variable ¢ (persistent between the function calls) that stores at all
times the rightmost position of the string that we have already inspected (line 2).

Scanning LCEs. We start by explaining the simpler method of naive scanning. If at the
beginning of the function call it holds r +m > ¢ (line 4), then we simply scan the remainder
of the LCE (lines 9-10; identical to what we did in LCE-EXTEND). Let m’ be the initial value
of m before the scan, and let m"”" = LCE(¢,r) be the final value of m after performing the
scan. After the scan, the rightmost inspected position is r +m”, and we update ¢ accordingly
(line 11; the variable d is not relevant for now). Since we only perform the scan if » +m’ > ¢,
the assignment ¢ < r + m/ increases ¢ by at least m” — m’. Note that m” — m’ is also
exactly the number of times we execute line 10. Since ¢ never exceeds n, we execute line 10
no more than n times during all the calls to SMART-LCE that initially satisfy r +m > c. It
follows that, for all of these calls together, we spend at most O(n) time.

Deducing LCEs. If at the beginning of the function call it holds r + m < ¢, then we try
to deduce LCE({,r) from previously computed LCEs (lines 4-8). Let r. be the rightmost
position for which we already computed some LCE({, 1) with r. + LCE({.,r.) = ¢ (such a
position must exist because otherwise we would not have inspected z[c| yet). The global
variable d contains at all times the distance r. — £. (line 2; we update d together with ¢, see
line 11). Let ¢, = ¢ — d and r. = r — d. The example in Figure 3 helps with understanding
the notation. Later, we will show that (as suggested by the examples)

(i) it holds r. < ¢ < r < ¢, and thus ¢, < ¢, < r, < £, + LCE({.,1.), and

(ii) either prev[r,] = ¢, (and thus plce[r.] = LCE({, 7))
or next[l,] = r, (and thus nlce[¢,] = LCE(£y,7x)).
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Figure 3 Deducing LCEs with Algorithm 2 in (a) and (c), and deducing longest palindromes
with Manacher’s algorithm in (b) and (d). Boxes of equal color indicate equal substrings. In (b) and
(d), boxes of equal color sometimes indicate substrings that are the reverse of each other.

When deducing LCEs, we first use (ii) to obtain LCE({,, ) (lines 5-6). Note that, by the
definition of ¢, and r,, the relative positions of ¢, and r, within z[{...f. + LCE({.,r.)) are
the same as the relative positions of £ and r within z[r...r. + LCE({, r.)) (and the positions
are indeed within these intervals due to (i)). If » + LCE({., 7.) < ¢ then

x[r..r + LCE({x, 7)) = @[r«..r« + LCE({y, )] and
z[l.l + LCE(Ly, 74)] = x[ly..li + LCE({y,74)],

where both equalities follow from z[l...l. + LCE({.,1.)) = x[re..re + LCE({e,7¢)). This
implies LCE({, 1) = LCE({,, ), and we return LCE(/,,r,) in constant time (line 7). Since
it holds r + LCE(¢,r) < ¢, there is no need to update ¢ and d. In Figure 3a, we have
21 + LCE(4,7) = 23 < 29 = ¢, and thus LCE(18,21) = LCE(4,7) = 2.

If, however, r + LCE({,,7«) > ¢ then we cannot immediately deduce the exact value of
LCE(Y,r) (as is the case in Figure 3c). We can still obtain some useful information because of

zlr.r+c—r)=zlreretc—r) =zl b+ c—1)=xl.l+c—T),

where the first and the third equality follow from z[l...£.+LCE({,, rc)) = Z[re..re+LCE(Le, 7¢)),
and the second equality follows from 7+ LCE({,, r.) > ¢, which is equal to LCE({, ry) > c—r.
The equation implies LCE(¢, ) > ¢ — 7, and we update m accordingly (line 8). In Figure 3c,
we have 26 + LCE(7,12) = 29 = ¢, and thus LCE(21,26) > 29 — 26 = 3.

We compute the remaining part of LCE({, ) by scanning (lines 9-10), and then update
c and d (line 11). Since we assign m + (¢ — r) immediately before starting the scan, we
can use the same argument as in the previous paragraph about scanning LCEs: For every
symbol comparison of the scan (except for the last one), we will increase ¢ by one. Therefore,
the total number of symbol comparisons for all calls of SMART-LCE is O(n). In Figure 3c,
the scan extends the LCE by two more positions, and we obtain LCE(21,26) = 5. We then
have to update ¢ < 26 +5 =31 and d + 26 — 21 = 5.

The correctness of the algorithm follows from its description and the properties (i) and
(ii), which we will show in the next paragraphs.



J. Ellert

Showing Property (i). The property states that, if we call SMART-LCE(¢, r, m) with r+m <
¢, then r. < ¢ < r < c¢. Since trivially £ < r < r 4+ m < ¢, we only have to show r. < £. The
property is readily proven for the call SMART-LCE(¢, 7, 0) in line 7 of Algorithm 1(d). It holds
¢ =r —1, and this is the first LCE that we compute between r and any smaller index. Since
we already computed LCE({.,7c), it holds r > r. and £ =r — 1 > r..

Now we consider the call SMART-LCE({, 7, m) in line 11. As seen in the description of
Algorithm 1(d), for this call it holds m = LCE({,k) = LCE(k,r), where k € (¢,r) with
prev[k] = £ and next[k] = r. For every h € ({,r), the definition of prev and next implies that
xp = xf = x,. This also means that m = LCE(k,r) > LCE(h,r). If r = r. then, because we

already computed LCE({.,7), and due to the iteration order of the algorithm, it holds ¢ < ..

Then, however, £. € (¢,r) and thus m = LCE(k,r) > LCE({.,r) = ¢ — r, which contradicts
r 4+ m < ¢. We have shown that r > r., which also implies r, > £.. If £ < r, then r, € (¢,r)

and thus m > LCE(rs,r) = ¢ — r, which contradicts r +m < ¢. It follows that ¢ > r, > /..

Finally, if £ € (¢, 7.) then ¢, < ¢ < r. < r, which contradicts Lemma 5. The only remaining
possibility is ¢ > r., which is what we wanted to show.

Showing Property (ii). The property states that either prev[r,] = £, or next[¢,] = r.. By
the definition of £, and r,, and due to (i) and z[l...£. + LCE({., r.)) = z[re..rec + LCE({e, 7¢)),
it holds z[f..r) = x[l...r.). Since we want to compute LCE(¢, ), it holds either next[(] = r
or prev[r] = . Therefore, either Lemma 3 or Lemma 4 implies that z[¢..r) = z[l,..7.) is a
Lyndon word. Due to Lemma 3, we know that next[f.] > r.. If next[l.] = 7. or prev[r,] = £,
then there is nothing left to show. Thus, assume that next[¢.] > r. and prev[r,] > £, (it
cannot be that prev[r.] < ¢, because then prev(r.] < ¢, < r, < next[{,] contradicts Lemma 5).
Let p, = 7 — (r« — prev[ry]). Due to Lemma 4, the substring x[prev[r.]..r.) = z[p,..r) is
a Lyndon word, and Lemma 3 implies next[p,] > r. Since p, € (¢,r) it holds next[p,] < r
(otherwise we contradict Lemma 5), and the only possible option is next[p,] = r.

We have shown that next[p,] = r and thus z,,. > x,. By the definition of prev, it also
holds Zprey[r,] < Zr, . Since we chose r. to be the rightmost index with r. + LCE({e,7e) = ¢, it
holds r + LCE(p,, r) < ¢ (otherwise we would have updated r. already). Therefore, we have

x[prev[ry]..prev[r.] + LCE(p,, r)] = z[p,..p, + LCE(p,, )], and
x[ry..rx + LCE(py, r)] = z[r..r + LCE(p,, 7)].

This, however, means that Tpey[r,] < r, < Tp, < z,, which contradicts our previous
observation that x,_ > 2, and Tyey[r.] < Tr,. It follows that the assumption next[(.] > 7.
and prev[r,] > £, was wrong, and it holds next[¢,] = r,. or prev[r.] = /.

6 Similarity to Manacher’s Algorithm

In this section, we want to briefly highlight the similarity between the technique of Section 5
and Manacher’s algorithm for computing maximal palindromes [14]. For simplicity, we only
consider odd palindromes. An odd palindrome of radius |w| + 1 is a string of the form wsw,
where s is a symbol, w is some possibly empty string, and w is the reverse string of w defined
by |w| = |w| and Vi € [1, |w]|] : W[i] = w[|w| — ¢ + 1]. For a string z[1..n], the presented
version of Manacher’s algorithm computes an array rad[l..n], where Vi € [1,n] :

rad[i] = max{m | m € [1,min(é¢,n — i+ 1)] and z(i — m..i + m) is an odd palindrome}.

If we compute the entries of rad in left-to-right order, then we can sometimes fully or partially
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Algorithm 3 Manacher’s algorithm for odd palindromes.

Require: string x = z[1..n] = #2(1..n)$.

1: function SMART-PALINDROME(%, m)
Ensure: array rad containing the radii of the 9. if i +m < ¢ then
longest odd palindromes 3. m < rad[j — (i — j)]
1: rad[l..n] < new array initialized 4 if i +m < c then return m
5 m<—c—1

with rad[l] = rad[n] =1

b2

while z[i —m] = z[i + m] do

2: global variable ¢ <- 0 7. t mem+1

3: global variable j + 0
8: c,j—1+m,1

4: fori =2 ton—1do
return m

t rad[i] <— SMART-PALINDROME(%, 1) -

o

deduce an entry, see Figures 3b and 3d. This is highly similar to our observations for LCEs
in Figures 3a and 3c. A possible implementation of Manacher’s algorithm is provided in
Algorithm 3. It computes rad from left to right, while keeping track of the rightmost inspected
position of the string. Whenever possible, the function SMART-PALINDROME partially or fully
deduces rad[i]. Note that the functions SMART-LCE and SMART-PALINDROME are structurally
identical and use the same algorithmic ideas. Due to space constraints, we omit further
details on how and why Algorithm 3 functions as intended, and why it takes O(n) time.
(However, we invite the reader to produce a proof of correctness on their own. This is much
easier for Algorithm 3 than for Algorithm 1(d) and Algorithm 2. Particularly, it requires no
complicated technicalities like properties (i) and (ii) in Section 5.)

7 Proofs for Section 3

» Lemma 5. Let x = #2(1..n)$ be a string with previous and next smaller suffiz array prev
and next. Let {1,0s,7m1,r2 € [1,n] be indices with either next[¢1] = r1 or prev[ri] = ¢1, and
also either next[la] = ro or prev[re] = ¢3. Then it does not hold {1 < ly <11 < ra.

Proof. Assume ¢ < {5 < 71 < ro. Since {5 € (¢1,71) and either next[¢1] = r or prev[ri] = {1,
Definition 2 implies x;, = x,,. However, it also holds r; € (¢2,72) and either next[ls] = 7o or
prev(rq] = 5. Thus, Definition 2 also implies xy, < z,,, which is a contradiction. |

» Lemma 6. Let x = #x(1..n)$ be a string with previous and next smaller suffix arrays prev
and next, and let £,r € [1,n] be arbitrary indices.

(i) It holds prev[r] = prev*[r — 1].

(ii) It holds next[¢] = r if and only if £ = prev*[r — 1] and £ > prev[r].

Proof. For (i), assume that prev[r] # prev*[r — 1]. Then there must be some ' = prev*[r — 1]
with prev[r] € (prev[r’],r’). However, prev[r’] < prev[r] < r’ < r contradicts Lemma 5.

For (ii), we show both directions separately. Assume that next[¢] = r then Vk € [{,r) :
X > X, which means prev[r] ¢ [¢,r) and thus prev[r] < £. Assume that £ # prev*[r — 1], then
there must be some 7/ = prev*[r—1] with £ € (prev[r’],’). However, then prev[r'] < ¢ <r' <r
and Lemma 5 contradict the assumption that next[¢] = r. Thus ¢ # prev*[r — 1].

For the counter direction, assume that prev[r] < £ and ¢ = prev*[r — 1]. By the definition
of prev, and due to ¢ € (prev[r],r), it holds =, > x,. It is easy to see that £ = prev*[r — 1]
implies Vk € (¢,7) : xx > xy (when following a chain of PSS edges, by definition of prev, the
visited suffixes are lexicographically decreasing, and all suffixes skipped by a PSS edge are
lexicographically larger). From xy > x, and Vk € (¢,r) : xp > x follows next[¢] = r. <
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» Lemma 7. Let x = #2(1..n)$ be a string with previous and next smaller suffiz arrays prev
and next. Let k € (1,n) be an arbitrary index, and let £ = prev[k] and r = next[k].

(i) If Lce({, k) = LeE(k, ), then LCE({, 1) > LCE(k,r) and either prev[r] = £ or next[¢] = r.
(ii) If Lce(¢, k) < LeE(k,r), then LCE({,r) = LCE({, k) and prev[r] = £.
(iii) If Lce(¢, k) > LcE(k,r), then LCE(L,r) = LCE(k,r) and next[(] = r.

Proof. We start with (i). Definition 2 implies Vi € (¢, k) U (k,r) : ¢, < z;. Since ¢ = prev[k]
we have zy < xj and thus Vi € (¢,r) : 2y < z;. Analogously, due to r = next[k] we have
Vie (0,r): x, < x;. Thus, if 2, < , then prev[r] = ¢, and if x; > x, then next[(] = r.

For showing (ii), let u = z[(..£ + LCE({, k)), s = z[{ + LCE({, k)], and t = x[k + LCE({, k)].
By the definition of LCEs, it holds s # t. Due to £ = prev[k] we have us - 24y |us| = ¢ <
Ty, = ut - Ty |ue|, and therefore s < t. Because of LCE(/, k) < LCE(k, ), suffix 2, has prefix
ut. Thus, it holds x; = us - T4 |us| < Ul - Trpjuz| = . Due to (i), this means next[(] = r.
The proof of (iii) works analogously to the one for (ii). |
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